Science.gov

Sample records for non-abelian strongly-coupled gauge

  1. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin

  2. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin

  3. Non-Abelian vortices at weak and strong coupling in mass deformed ABJM theory

    NASA Astrophysics Data System (ADS)

    Auzzi, Roberto; Kumar, S. Prem

    2009-10-01

    We find half-BPS vortex solitons, at both weak and strong coupling, in the Script N = 6 supersymmetric mass deformation of ABJM theory with U(N) × U(N) gauge symmetry and Chern-Simons level k. The strong coupling gravity dual is obtained by performing a Bbb Zk quotient of the Script N = 8 supersymmetric eleven dimensional supergravity background of Lin, Lunin and Maldacena corresponding to the mass deformed M2-brane theory. At weak coupling, the BPS vortices preserving six supersymmetries are found in the Higgs vacuum of the theory where the gauge symmetry is broken to U(1) × U(1). The classical vortex solitons break a colour-flavour locked global symmetry resulting in non-Abelian internal orientational moduli and a CP1 moduli space of solutions. At strong coupling and large k, upon reduction to type IIA strings, the vortex moduli space and its action are computed by a probe D0-brane in the dual geometry. The mass of the D0-brane matches the classical vortex mass. However, the gravity picture exhibits a six dimensional moduli space of solutions, a section of which can be identified as the CP1 we find classically, along with a Dirac monopole connection of strength k. It is likely that the extra four dimensions in the moduli space are an artifact of the strong coupling limit and of the supergravity approximation.

  4. Non-Abelian gauge invariance and the infrared approximation

    SciTech Connect

    Cho, H.h.; Fried, H.M.; Grandou, T.

    1988-02-15

    Two constructions are given of infrared approximations, defined by a nonlocal configuration-space restrictions, which preserve the local, non-Abelian gauge invariance of SU(N) two-dimensional QCD (QCD/sub 2/). These continuum infrared methods are used to estimate the quenched order parameter in the strong-coupling, or chiral, limit and are compared to a previous calculation where gauge invariance was not manifest. Both constructions provide results which, in the chiral limit, differ from each other and from the previous estimation by an inessential, multiplicative scaling factor.

  5. Non-Abelian discrete gauge symmetries in F-theory

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego

    2016-02-01

    The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.

  6. Non-Abelian gauge redundancy and entropic ambiguities

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.

    2015-04-01

    The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. Therefore one reaches the remarkable possibility that there may be many entropies for a given state. We show that this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This ambiguity in entropy, which can occur at zero temperature, can often be traced to a gauge symmetry emergent from the non-trivial topological character of the configuration space of the underlying system. We also establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix. After demonstrating this entropy ambiguity for the simple example of the algebra of 2 × 2 matrices, we argue that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. We work out the simplest situation with such non-Abelian symmetry, that of an ethylene molecule.

  7. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  8. Simulation of non-Abelian gauge theories with optical lattices.

    PubMed

    Tagliacozzo, L; Celi, A; Orland, P; Mitchell, M W; Lewenstein, M

    2013-01-01

    Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors). PMID:24162080

  9. Simulation of non-Abelian gauge theories with optical lattices

    NASA Astrophysics Data System (ADS)

    Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M.

    2013-10-01

    Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).

  10. Non-Abelian gauge field theory in scale relativity

    NASA Astrophysics Data System (ADS)

    Nottale, Laurent; Célérier, Marie-Noëlle; Lehner, Thierry

    2006-03-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the "scale-space." We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.

  11. Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory

    SciTech Connect

    Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.

    2005-07-01

    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.

  12. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.

    PubMed

    Mezzacapo, A; Rico, E; Sabín, C; Egusquiza, I L; Lamata, L; Solano, E

    2015-12-11

    We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms. PMID:26705616

  13. Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields

    NASA Astrophysics Data System (ADS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz

    2016-04-01

    We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.

  14. Enhancing Gauge Symmetries of Non-Abelian Supersymmetric Chern-Simons Model

    NASA Astrophysics Data System (ADS)

    Gharavi, Kh. Bahalke; Monemzadeh, M.; Nejad, S. Abarghouei

    2016-07-01

    In this article, we study gauge symmetries of the Non-Abelian Supersymmetric Chern-Simons model (SCS) of SU(2) group at (2+1)-dimensions in the framework of the formalism of constrained systems. Since, broken gauge symmetries in this physical system lead to the presence of nonphysical degrees of freedom, the Non-Abelian SCS model is strictly constrained to second-class constraints. Hence, by introducing some auxiliary fields and using finite order BFT method, we obtain a gauge symmetric model by converting second-class constraint to first-class ones. Ultimately, the partition function of the model is obtained in the extended phase space.

  15. Strong Coupling Gauge Theories in LHC ERA

    NASA Astrophysics Data System (ADS)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    AdS/QCD, light-front holography, and the nonperturbative running coupling / Stanley J. Brodsky, Guy de Teramond and Alexandre Deur -- New results on non-abelian vortices - Further insights into monopole, vortex and confinement / K. Konishi -- Study on exotic hadrons at B-factories / Toru Iijima -- Cold compressed baryonic matter with hidden local symmetry and holography / Mannque Rho -- Aspects of baryons in holographic QCD / T. Sakai -- Nuclear force from string theory / K. Hashimoto -- Integrating out holographic QCD back to hidden local symmetry / Masayasu Harada, Shinya Matsuzaki and Koichi Yamawaki -- Holographic heavy quarks and the giant Polyakov loop / Gianluca Grignani, Joanna Karczmarek and Gordon W. Semenoff -- Effect of vector-axial-vector mixing to dilepton spectrum in hot and/or dense matter / Masayasu Harada and Chihiro Sasaki -- Infrared behavior of ghost and gluon propagators compatible with color confinement in Yang-Mills theory with the Gribov horizon / Kei-Ichi Kondo -- Chiral symmetry breaking on the lattice / Hidenori Fukaya [for JLQCD and TWQCD collaborations] -- Gauge-Higgs unification: Stable Higgs bosons as cold dark matter / Yutaka Hosotani -- The limits of custodial symmetry / R. Sekhar Chivukula ... [et al.] -- Higgs searches at the tevatron / Kazuhiro Yamamoto [for the CDF and D[symbol] collaborations] -- The top triangle moose / R. S. Chivukula ... [et al.] -- Conformal phase transition in QCD like theories and beyond / V. A. Miransky -- Gauge-Higgs unification at LHC / Nobuhito Maru and Nobuchika Okada -- W[symbol]W[symbol] scattering in Higgsless models: Identifying better effective theories / Alexander S. Belyaev ... [et al.] -- Holographic estimate of Muon g - 2 / Deog Ki Hong -- Gauge-Higgs dark matter / T. Yamashita -- Topological and curvature effects in a multi-fermion interaction model / T. Inagaki and M. Hayashi -- A model of soft mass generation / J. Hosek -- TeV physics and conformality / Thomas Appelquist -- Conformal

  16. The non-Abelian gauge theory of matrix big bangs

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Martin; Seri, Lorenzo

    2010-07-01

    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.

  17. Constraint Structure and Quantization of a Non-Abelian Gauge Theory by Means of Dirac Brackets

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    An SO(3) non-Abelian gauge theory is introduced. The Hamiltonian density is determined and the constraint structure of the model is derived. The first-class constraints are obtained and gauge-fixing constraints are introduced into the model. Finally, using the constraints, the Dirac brackets can be determined and a canonical quantization is found using Dirac's procedure.

  18. Controlling and probing non-abelian emergent gauge potentials in spinor Bose-Fermi mixtures

    PubMed Central

    Phuc, Nguyen Thanh; Tatara, Gen; Kawaguchi, Yuki; Ueda, Masahito

    2015-01-01

    Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices. PMID:26330292

  19. Dyonic String-Like Solution in a Non-Abelian Gauge Theory with Two Potentials

    NASA Astrophysics Data System (ADS)

    Tripathi, Buddhi Vallabh; Nandan, Hemwati; Purohit, K. D.

    2016-04-01

    Axially symmetric dyon solutions of a non-Abelian gauge theory model with two potentials are sought. While seeking axially symmetric (flux tube like solutions) for the model, we stumbled upon an exact solution which represents an infinite string-like dyonic configuration with cylindrical symmetry.

  20. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin

    2015-08-01

    Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.

  1. Particle coupled to a heat bath in non-Abelian gauge potentials

    NASA Astrophysics Data System (ADS)

    Guingarey, Issoufou; Avossevou, Gabriel Y. H.

    2015-12-01

    We derive the quantum Langevin equation (QLE) for a harmonically single trapped cold atom subjected to artificial non-Abelian gauge potentials and linearly coupled to a heat bath. The independent-oscillator (IO) and the momentum-momenta coupling models are studied. In each case, the non-Abelian effect on the QLE is pointed out for a U(2 ) gauge transformation. For the IO model, only the generalized Lorentz force is modified by the appearance of an additive term. For the momentum-momenta coupling model, the generalized Lorentz force as well as the friction force are subjected to modifications. The dependence of the system on the magnetic field is explicit even if the gauge potential is uniform in space.

  2. Non-abelian gauge extensions for B-decay anomalies

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier

    2016-09-01

    We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b → sℓ+ℓ- and b → cℓν decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU (2) L factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.

  3. Pauli-Villars Regularization of Non-Abelian Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-04-01

    As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.

  4. Pauli-Villars Regularization of Non-Abelian Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2016-07-01

    As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.

  5. Topological phase transitions on a triangular optical lattice with non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-03-01

    We study the mean-field BCS-BEC evolution of a uniform Fermi gas on a single-band triangular lattice and construct its ground-state phase diagrams, showing a wealth of topological quantum phase transitions between gapped and gapless superfluids that are induced by the interplay of an out-of-plane Zeeman field and a generic non-Abelian gauge field.

  6. Entanglement of Vortex Lattices for Ultracold Bose Gases in a Non-Abelian Gauge Potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Jiang, T. F.; Jheng, Shih-Da; Atomic; Molecular Physics Team; Atomic; Molecular Physics Team

    We develop a theory, referred to as the von Neumann lattice in a higher Landau level, for vortex lattices labelled by an integral number of flux quantums per unit cell in a higher Landau level. Using this lattice theory, we study the vortex lattice states of a pseudospin-1/2 ultracold Bose gas with contact interactions in a non-Abelian gauge potential. In addition to a uniform magnetic field, the Bose gas is also subjected to a non-Abelian gauge field, which creates an effect of the spin-orbit coupling to lift the spin degeneracy of the Landau levels. Because of interactions from the spin-orbit coupling, there are new degenerate points of the single particle spectrum due to the crossings of two Landau levels at certain coupling strengths. We show that interactions from the spin-orbit coupling force the nature and structure of the vortex lattice changing dramatically if the strength of the non-Abelian gauge field is increasing. We also find that the ground state of the vortex lattice at a degenerate point exhibits strong correlation and entanglement involving vortex lattices from different Landau levels. This entangled state builds the connection between two phases of vortex lattices during the first order phase transition of the adiabatic evolution.

  7. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  8. Non-Abelian black holes in D=5 maximal gauged supergravity

    SciTech Connect

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-02-15

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS{sub 2}xS{sup 3}. If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  9. Simulation of non-Abelian lattice gauge fields with a single-component gas

    NASA Astrophysics Data System (ADS)

    Kosior, Arkadiusz; Sacha, Krzysztof

    2014-07-01

    We show that non-Abelian lattice gauge fields can be simulated with a single-component ultra-cold atomic gas in an optical-lattice potential. An optical lattice can be viewed as a Bravais lattice with a N-point basis. An atom located at different points of the basis can be considered as a particle in different internal states. The appropriate engineering of tunneling amplitudes of atoms in an optical lattice allows one to realize U(N) gauge potentials and control a mass of particles that experience such non-Abelian gauge fields. We provide and analyze a concrete example of an optical-lattice configuration that allows for simulation of a static U(2) gauge model with a constant Wilson loop and an adjustable mass of particles. In particular, we observe that the non-zero mass creates large conductive gaps in the energy spectrum, which could be important in the experimental detection of the transverse Hall conductivity.

  10. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayantha P.; Zhang, Shizhong; Shenoy, Vijay B.

    2011-07-01

    We investigate the ground state of interacting spin-(1)/(2) fermions in three dimensions at a finite density (ρ˜kF3) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector λ≡(λx,λy,λz), whose magnitude λ determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (kF|as|≲1), the ground state in the absence of the gauge field (λ=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (λ=0). For large gauge couplings (λ/kF≫1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)—we call these bosons “rashbons.” In the absence of interactions (as=0-), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling λT. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of λ near λT. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  11. BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.; Zhang Shizhong

    2011-07-01

    We investigate the ground state of interacting spin-(1/2) fermions in three dimensions at a finite density ({rho}{approx}k{sub F}{sup 3}) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector {lambda}{identical_to}({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}), whose magnitude {lambda} determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k{sub F}|a{sub s}| < or approx. 1), the ground state in the absence of the gauge field ({lambda}=0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum ({lambda}=0). For large gauge couplings ({lambda}/k{sub F}>>1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)--we call these bosons ''rashbons.'' In the absence of interactions (a{sub s}=0{sup -}), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling {lambda}{sub T}. For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of {lambda} near {lambda}{sub T}. In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.

  12. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    SciTech Connect

    Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.

    1996-12-31

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.

  13. Quantum phase transition of ultracold bosons in the presence of a non-Abelian synthetic gauge field

    SciTech Connect

    Grass, T.; Saha, K.; Sengupta, K.; Lewenstein, M.

    2011-11-15

    We study the Mott phases and the superfluid-insulator transition of two-component ultracold bosons on a square optical lattice in the presence of a non-Abelian synthetic gauge field, which renders a SU(2)-hopping matrix for the bosons. Using a resummed hopping expansion, we calculate the excitation spectra in the Mott insulating phases and demonstrate that the superfluid-insulator phase boundary displays a nonmonotonic dependence on the gauge-field strength. We also compute the momentum distribution of the bosons in the presence of the non-Abelian field and show that they develop peaks at nonzero momenta as the superfluid-insulator transition point is approached from the Mott side. Finally, we study the superfluid phases near the transition and discuss the induced spatial pattern of the superfluid density due to the presence of the non-Abelian gauge potential.

  14. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators

    NASA Astrophysics Data System (ADS)

    Goldman, N.; Gerbier, F.; Lewenstein, M.

    2013-07-01

    We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.

  15. Dynamical symmetry breaking, gauge fields, and stability in four-Fermi, non-abelian interactions

    SciTech Connect

    Portney, M.N.

    1983-01-01

    The Nambu model of dynamical breaking of global symmetry is extended to the case of non-abelian SU(N) models. The possible patterns of symmetry breaking are investigated, and the masses of the composite spinless particles are found. Corresponding to each broken generator, this composite is the massless Goldstone boson. When the global symmetries are made local by the addition of gauge fields, the composite pseudoscalar Goldstone bosons disappear and the axial gauge fields become massive. This is analogous to the Higgs mechanism, but without the introduction of fundamental scalar fields. The composite scalar Goldstone bosons remain in the theory, and the vector gauge fields are still massless. This is in agreement with the charge conjugation argument. The stability of the possible solutions is discussed using several criteria. It is concluded that in theories with zero bare mass, if a nontrivial solution exists, the completely symmetric massive solution is realized. If the bare mass is symmetric and non-zero, asymmetric solutions may be found, with corresponding scalar Goldstone composites. These violate the persistent mass condition of Preskill and Weinberg.

  16. Strong-weak coupling duality in non-abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Ferrari, Frank

    1997-05-01

    This is a general introduction to electric-magnetic duality in non-abelian gauge theories. In chapter I, I review the general ideas which led in the late 70s to the idea of electric/magnetic duality in quantum field theory. In chapters II and III, I focus mainly on N=2 supersymmetric theories. I present the lagrangians and explain in more or less detail the non-renormalization theorems, rigid special geometry, supersymmetric instanton calculus, charge fractionization, the semiclassical theory of monopoles, duality in Maxwell theory and the famous Seiberg-Witten solution. I discuss various physical applications, as electric charge confinement, chiral symmetry breaking or non-trivial superconformal theories in four dimensions. In Section II.3 new material is presented, related to the computation of the eta invariant of certain Dirac operators coupled minimally to non-trivial monopole field configurations. I explain how these invariants can be obtained exactly by a one-loop calculation in a suitable N=2 supersymmetric gauge theory. This is an unexpected application of the holomorphy properties of N=2 supersymmetry, and constitutes a tremendous simplification of the usual computation. An expanded version of these new results will be published soon.

  17. Non-Abelian Gauge Groups for Real and Complex Amended Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Rauscher, E. A.

    2002-04-01

    We have developed an eight dimensional complex Minkowski space M4, compiled of four real dimensions and four imaginary dimensions, which is constant with Lorentz invariance and analytic continuation in the complex plane(1). Complexification, of Maxwell's equations requires a non-Abelian gauge group, which amends the usual theory which utilizes the usual unimodular Weyl U1 group. We have examined the modification of gauge conditions using higher symmetry groups such as SU2, SUn and other groups such as the SL(2,c) double cover group of the rotational group SO(3,1). The mappability of the twistor algebra and the spinor calculus is analyzed in the context of the electromagnetic theory. Thus we are led to new and interesting physics involving extended metrical space constraints, the usual transverse and also longitudinal, non Hertzian electric and magnetic field solutions to Maxwell's equations, possibly leading to new communications systems and antennae theory, non-zero solutions to Ñ·B, and a possible finite but small rest mass of the photon. Comparison of our theoretical approach is made to the work of T.W. Barrett and H.F. Hermuth?s work on amended Maxwell's theories. (1) C. Ramon and E. A. Rauscher, Found. of Phys. 10, 661 (1980)

  18. Quiver gauge theory of non-Abelian vortices and noncommutative instantons in higher dimensions

    SciTech Connect

    Popov, Alexander D.; Szabo, Richard J.

    2006-01-15

    We construct explicit Bogomolnyi, Prasad, Sommerfeld (BPS) and non-BPS solutions of the Yang-Mills equations on the noncommutative space R{sub {theta}}{sup 2n}xS{sup 2} which have manifest spherical symmetry. Using SU(2)-equivariant dimensional reduction techniques, we show that the solutions imply an equivalence between instantons on R{sub {theta}}{sup 2n}xS{sup 2} and non-Abelian vortices on R{sub {theta}}{sup 2n}, which can be interpreted as a blowing-up of a chain of D0-branes on R{sub {theta}}{sup 2n} into a chain of spherical D2-branes on R{sub {theta}}{sup 2n}xS{sup 2}. The low-energy dynamics of these configurations is described by a quiver gauge theory which can be formulated in terms of new geometrical objects generalizing superconnections. This formalism enables the explicit assignment of D0-brane charges in equivariant K-theory to the instanton solutions.

  19. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  20. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    SciTech Connect

    Viennot, David

    2010-10-15

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field in order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.

  1. Bound states of two spin-(1/2) fermions in a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.

    2011-03-01

    We study the bound states of two spin-(1/2) fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters ({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ''BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., {lambda}{sub x}={lambda}{sub y}={lambda}{sub z}) for which there is a two-body bound state for anyscattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid {sup 3}He. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.

  2. Topological phase transitions with non-Abelian gauge potentials on square lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yao-Hua; Li, Jian; Ting, C. S.

    2013-11-01

    We investigate the topological phase transition on interacting square lattices via the non-Abelian potential by employing the real-space cellular dynamical mean-field theory combining with the continuous-time Monte Carlo method. For a weak on-site Hubbard interaction, a topological band insulating state with a pair of gapless edge states is induced by a next-nearest-neighbor hopping. A phase transition from the metallic phase to the Mott insulating phase is observed when the interaction is increased. These two phases can be distinguished by detecting whether a bulk gap in the K-dependent spectral function exists. The whole phase diagrams as functions of the interaction, next-nearest-neighbor hopping energy, and temperature are presented. The experimental setup to observe these new interesting phase transitions is also discussed.

  3. Superfluid transition temperature across the BCS-BEC crossover induced by a synthetic non-Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Vyasanakere, Jayanth P.; Shenoy, Vijay B.

    2013-03-01

    A non-Abelian gauge field that induces a spin-orbit coupling on the motion of fermions engenders a BCS-BEC crossover even for weakly attracting fermions. The transition temperature at large spin-orbit coupling is known to be determined by the mass of the emergent boson - the rashbon. We obtain the transition temperature of the system as a function of the spin-orbit coupling by constructing and studying a Gaussian fluctuation (Nozieres-Schmitt-Rink) theory. These results will help guide the upcoming experiments on spin-orbit coupled fermions. In addition, this work suggests a route to enhance the transition temperature of a weakly attracting fermionic system by tuning the spin-orbit coupling. Work supported by CSIR, DST, DAE India

  4. Weak and strong coupling equilibration in nonabelian gauge theories

    NASA Astrophysics Data System (ADS)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan

    2016-04-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  5. Weak and strong coupling equilibration in nonabelian gauge theories

    DOE PAGESBeta

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan

    2016-04-06

    In this study, we present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of themore » system.« less

  6. Black hole thermodynamics from calculations in strongly coupled gauge theory.

    PubMed

    Kabat, D; Lifschytz, G; Lowe, D A

    2001-02-19

    We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics. PMID:11290159

  7. Spatial Dependence of Condensates in Strongly Coupled Gauge Theories

    SciTech Connect

    Brodsky, Stanley J.; Shrock, Robert; /SUNY, Stony Brook

    2008-03-25

    We analyze quark and gluon condensates in quantum chromodynamics. We suggest that these are localized inside hadrons, because the particles whose interactions are responsible for them are confined within these hadrons. This can explain the results of recent studies of gluon condensate contributions to vacuum correlators. We also give a general discussion of condensates in asymptotically free vectorial and chiral gauge theories.

  8. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    SciTech Connect

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  9. Regular non-Abelian vacua in N=4, SO(4) gauged supergravity

    SciTech Connect

    Chamseddine, Ali H.; Volkov, Mikhail S.

    2004-10-15

    We present a family of globally regular N=1 vacua in the D=4, N=4 gauged supergravity of Gates and Zwiebach. These solutions are labeled by the ratio {xi} of the two gauge couplings, and for {xi}=0 they reduce to the supergravity monopole previously used for constructing the gravity dual of N=1 super Yang-Mills theory. For {xi}>0 the solutions are asymptotically anti- de Sitter, but with an excess of the solid angle, and they reduce exactly to anti-de Sitter for {xi}=1. Solutions with {xi}<0 are topologically R{sup 1}xS{sup 3}, and for {xi}=-2 they become R{sup 1}xS{sup 3} geometrically. All solutions with {xi}{ne}0 can be promoted to D=11 to become vacua of M-theory.

  10. The Black Hole in the Throat - Thermodynamics of Strongly Coupled Cascading Gauge Theories

    SciTech Connect

    Aharony, Ofer; Buchel, Alex; Kerner, Patrick; /Western Ontario U.

    2007-06-14

    We numerically construct black hole solutions corresponding to the deconfined, chirally symmetric phase of strongly coupled cascading gauge theories at various temperatures. We compute the free energy as a function of the temperature, and we show that it becomes positive below some critical temperature, indicating the possibility of a first order phase transition at which the theory deconfines and restores the chiral symmetry.

  11. Chiral symmetry restoration at large chemical potential in strongly coupled SU(N) gauge theories

    SciTech Connect

    Tomboulis, E. T.

    2013-12-15

    We show that at sufficiently large chemical potential SU(N) lattice gauge theories in the strong coupling limit with staggered fermions are in a chirally symmetric phase. The proof employs a polymer cluster expansion which exploits the anisotropy between timelike and spacelike directions in the presence of a quark chemical potential μ. The expansion is shown to converge in the infinite volume limit at any temperature for sufficiently large μ. All expectations of chirally non-invariant local fermion operators vanish identically, or, equivalently, their correlations cluster exponentially, within the expansion. The expansion itself may serve as a computational tool at large μ and strong coupling.

  12. Tricritical points in a compact U (1 ) lattice gauge theory at strong coupling

    NASA Astrophysics Data System (ADS)

    De, Asit K.; Sarkar, Mugdha

    2016-06-01

    Pure compact U (1 ) lattice gauge theory exhibits a phase transition at gauge coupling g ˜O (1 ) separating a familiar weak coupling Coulomb phase, having free massless photons, from a strong coupling phase. However, the phase transition was found to be of first order, ruling out any nontrivial theory resulting from a continuum limit from the strong coupling side. In this work, a compact U (1 ) lattice gauge theory is studied with addition of a dimension-two mass counterterm and a higher derivative (HD) term that ensures a unique vacuum and produces a covariant gauge-fixing term in the naive continuum limit. For a reasonably large coefficient of the HD term, now there exists a continuous transition from a regular ordered phase to a spatially modulated ordered phase. For weak gauge couplings, a continuum limit from the regular ordered phase results in a familiar theory consisting of free massless photons. For strong gauge couplings with g ≥O (1 ), this transition changes from first order to continuous as the coefficient of the HD term is increased, resulting in tricritical points which appear to be a candidate in this theory for a possible nontrivial continuum limit.

  13. Black hole entropy from strongly coupled gauge theory--direct confirmation by Monte Carlo simulaton

    SciTech Connect

    Takeuchi, Shingo

    2008-11-23

    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature. The recently proposed non-lattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black hole geometry. This results provide highly non-trivial evidences for the gauge/gravity duality.

  14. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  15. Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins

    2011-08-12

    We find a correspondence between semiclassical gauge theories quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. Light-front holography also allows a precise mapping of transition amplitudes from AdS to physical space-time. In contrast with the usual AdS/QCD framework, the internal structure of hadrons is explicitly introduced in the gauge/gravity correspondence and the angular momentum of the constituents plays a key role. We also discuss how to introduce higher Fock-states in the correspondence as well as their relevance for describing the detailed structure of space and time-like form factors.

  16. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories.

    PubMed

    Banerjee, D; Bögli, M; Dalmonte, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2013-03-22

    Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time. PMID:25166816

  17. Line of critical points in 2+1 dimensions: quantum critical loop gases and non-Abelian gauge theory.

    PubMed

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill

    2005-04-15

    In this Letter, we (1) construct a one-parameter family of lattice models of interacting spins; (2) obtain their exact ground states; (3) derive a statistical-mechanical analogy which relates their ground states to O(n) loop gases; (4) show that the models are critical for dgauge theory; and (7) show that its one-loop beta function vanishes for all values of the coupling constant, implying that it is also on a critical line. PMID:15904103

  18. Investigation of gauge-fixed pure U(1) theory at strong coupling

    NASA Astrophysics Data System (ADS)

    Basak, S.; De, Asit K.

    2002-03-01

    We numerically investigate the phase diagram of pure U(1) gauge theory with gauge fixing at strong gauge coupling. The FM-FMD phase transition, which proved useful in defining Abelian lattice chiral gauge theory, persists also at strong gauge coupling. However, there the transition seems no longer to be continuous. At large gauge couplings we find evidences for confinement.

  19. Condensing Non-Abelian Quasiparticles

    SciTech Connect

    Hermanns, M.

    2010-02-05

    A most interesting feature of certain fractional quantum Hall states is that their quasiparticles obey non-Abelian fractional statistics. So far, candidate non-Abelian wave functions have been constructed from conformal blocks in cleverly chosen conformal field theories. In this work we present a hierarchy scheme by which we can construct daughter states by condensing non-Abelian quasiparticles (as opposed to quasiholes) in a parent state, and show that the daughters have a non-Abelian statistics that differs from the parent. In particular, we discuss the daughter of the bosonic, spin-polarized Moore-Read state at nu=4/3 as an explicit example.

  20. Dynamical non-Abelian two-form: BRST quantization

    SciTech Connect

    Lahiri, A.

    1997-04-01

    When an antisymmetric tensor potential is coupled to the field strength of a gauge field via a BANDF coupling and a kinetic term for B is included, the gauge field develops an effective mass. The theory can be made invariant under a non-Abelian vector gauge symmetry by introducing an auxiliary vector field. The covariant quantization of this theory requires ghosts for ghosts. The resultant theory including gauge fixing and ghost terms is BRST invariant by construction, and therefore unitary. The construction of the BRST-invariant action is given for both Abelian and non-Abelian models of mass generation. {copyright} {ital 1997} {ital The American Physical Society}

  1. Topological quantum liquids with quaternion non-Abelian statistics.

    PubMed

    Xu, Cenke; Ludwig, Andreas W W

    2012-01-27

    Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8). PMID:22400884

  2. Chiral Lagrangians from lattice gauge theories in the strong coupling limit

    SciTech Connect

    Nagao, Taro; Nishigaki, Shinsuke M.

    2001-07-01

    We derive nonlinear {sigma} models (chiral Lagrangians) over symmetric spaces U(n), U(2n)/Sp(2n), and U(2n)/O(2n) from U(N), O(N), and Sp(2N) lattice gauge theories coupled to n flavors of staggered fermions, in the large-N and g{sup 2}N limit. To this end, we employ Zirnbauer{close_quote}s color-flavor transformation. We prove the spatial homogeneity of the vacuum configurations of mesons by explicitly solving the large-N saddle point equations, and thus establish these patterns of spontaneous chiral symmetry breaking in the above limit.

  3. Non-Abelian dynamics in the resonant decay of the Higgs after inflation

    SciTech Connect

    Enqvist, Kari; Nurmi, Sami; Rusak, Stanislav E-mail: sami.nurmi@helsinki.fi

    2014-10-01

    We study the resonant decay of the Higgs condensate into weak gauge bosons after inflation and estimate the corrections arising from the non-Abelian self-interactions of the gauge fields. We find that non-Abelian interaction terms induce an effective mass which tends to shut down the resonance. For the broad resonance relevant for the Standard Model Higgs the produced gauge particles backreact on the dynamics of the Higgs condensate before the non-Abelian terms grow large. The non-Abelian terms can however significantly affect the final stages of the resonance after the backreaction. In the narrow resonance regime, which may be important for extensions of the Standard Model, the non-Abelian terms affect already the linear stage and terminate the resonance before the Higgs condensate is affected by the backreaction of decay products.

  4. Non-Abelian strings in supersymmetric Yang-Mills

    SciTech Connect

    Shifman, M.

    2012-09-26

    I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.

  5. Non-Abelian family symmetries as portals to dark matter

    NASA Astrophysics Data System (ADS)

    de Medeiros Varzielas, I.; Fischer, O.

    2016-01-01

    Non-Abelian family symmetries offer a very promising explanation for the flavour structure in the Standard Model and its extensions. We explore the possibility that dark matter consists in fermions that transform under a family symmetry, such that the visible and dark sector are linked by the familons - Standard Model gauge singlet scalars, responsible for spontaneously breaking the family symmetry. We study three representative models with non-Abelian family symmetries that have been shown capable to explain the masses and mixing of the Standard Model fermions.

  6. Chiral symmetry breaking in monolayer graphene by strong coupling expansion of compact and non-compact U(1) lattice gauge theories

    SciTech Connect

    Araki, Yasufumi

    2011-06-15

    Research Highlights: > Monolayer graphene is treated by strong coupling expansion of lattice gauge theory. > Spontaneous gap generation is shown in the strong coupling regime. > Results from compact and non-compact gauge formulations are compared. > Dispersion relation of the collective excitations are derived. - Abstract: Due to effective enhancement of the Coulomb coupling strength in the vacuum-suspended graphene, the system may turn from a semimetal into an insulator by the formation of a gap in the fermionic spectrum. This phenomenon is analogous to the spontaneous breaking of chiral symmetry in the strong-coupling relativistic field theories. We study this 'chiral symmetry breaking' and associated collective excitations on graphene in the strong coupling regime by taking U(1) lattice gauge theory as an effective model for graphene. Both compact and non-compact formulations of the U(1) gauge action show chiral symmetry breaking with equal magnitude of the chiral condensate (exciton condensate) in the strong coupling limit, while they start to deviate from the next-to-leading order in the strong coupling expansion. Phase and amplitude fluctuations of the order parameter are also investigated: in particular, a mass formula for the pseudo-Nambu-Goldstone mode ({pi}-exciton), which is analogous to Gell-Mann-Oakes-Renner relation for the pion in quantum chromodynamics (QCD), is derived from the axial Ward-Takahashi identity. To check the applicability of the effective field theory description, typical energy scales of fermionic and bosonic excitations are estimated by identifying the lattice spacing of the U(1) gauge theory with that of the original honeycomb lattice of graphene.

  7. Non-Abelian vortices and non-Abelian statistics

    SciTech Connect

    Lo, H.; Preskill, J. )

    1993-11-15

    We study the interactions of non-Abelian vortices in two spatial dimensions. These interactions have novel features, because the Aharonov-Bohm effect enables a pair of vortices to exchange quantum numbers. The cross section for vortex-vortex scattering is typically a multivalued function of the scattering angle. There can be an exchange contribution to the vortex-vortex scattering amplitude that adds coherently with the direct amplitude, even if the two vortices have distinct quantum numbers. Thus two vortices can be indistinguishable'' even though they are not the same.

  8. A non-perturbative argument for the non-abelian Higgs mechanism

    SciTech Connect

    De Palma, G.; Strocchi, F.

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  9. Universal Reconnection of Non-Abelian Cosmic Strings

    SciTech Connect

    Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2007-03-02

    We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings.

  10. Linear resistivity from non-abelian black holes

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.; Huang, Kuo-Wei; Vaz, Ricardo

    2014-11-01

    Starting with the holographic p-wave superconductor, we show how to obtain a finite DC conductivity through a non-abelian gauge transformation. The translational symmetry is preserved. We obtain phenomenological similarities with high temperature cuprate superconductors. Our results suggest that a lattice or impurities are not essential to produce a finite DC resistivity with a linear temperature dependence. An analogous field theory calculation for free fermions, presented in the appendix, indicates our results may be a special feature of strong interactions.

  11. Universal reconnection of non-Abelian cosmic strings.

    PubMed

    Eto, Minoru; Hashimoto, Koji; Marmorini, Giacomo; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2007-03-01

    We show that local and semilocal strings in Abelian and non-Abelian gauge theories with critical couplings always reconnect classically in collision, by using moduli space approximation. The moduli matrix formalism explicitly identifies a well-defined set of the vortex moduli parameters. Our analysis of generic geodesic motion in terms of those shows right-angle scattering in head-on collision of two vortices, which is known to give the reconnection of the strings. PMID:17359147

  12. Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics

    SciTech Connect

    Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto

    2011-04-01

    We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.

  13. Non-Abelian quantum holonomy of hydrogenlike atoms

    SciTech Connect

    Mousolou, Vahid Azimi; Canali, Carlo M.; Sjoeqvist, Erik

    2011-09-15

    We study the Uhlmann holonomy [Rep. Math. Phys. 24, 229 (1986)] of quantum states for hydrogenlike atoms where the intrinsic spin and orbital angular momentum are coupled by the spin-orbit interaction and are subject to a slowly varying magnetic field. We show that the holonomy for the orbital angular momentum and spin subsystems is non-Abelian while the holonomy of the whole system is Abelian. Quantum entanglement in the states of the whole system is crucially related to the non-Abelian gauge structure of the subsystems. We analyze the phase of the Wilson loop variable associated with the Uhlmann holonomy and find a relation between the phase of the whole system and corresponding marginal phases. Based on the results for the model system, we provide evidence that the phase of the Wilson loop variable and the mixed-state geometric phase [E. Sjoeqvist et al., Phys. Rev. Lett. 85, 2845 (2000).] are generally inequivalent.

  14. Review of strongly-coupled composite dark matter models and lattice simulations

    NASA Astrophysics Data System (ADS)

    Kribs, Graham D.; Neil, Ethan T.

    2016-08-01

    We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.

  15. Non-Abelian geometric phase and long-range atomic forces

    NASA Technical Reports Server (NTRS)

    Zygelman, B.

    1990-01-01

    It is shown how gauge fields, or geometric phases, manifest as observable effects in both bound and free diatom systems. It is shown that, in addition to altering energy splittings in bound systems, geometric phases induce transitions in levels separated by a finite-energy gap. An example is given where the non-Abelian gauge field couples nondegenerate electronic levels in a diatom. This gauge-field coupling gives rise to an observable effect. It is shown that when the diatom is 'pulled apart', the non-Abelian geometric phase manifests as a long-range atomic force.

  16. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  17. Non-Abelian gerbes and enhanced Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Strobl, Thomas

    2016-07-01

    We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .

  18. Large mass hierarchies from strongly-coupled dynamics

    NASA Astrophysics Data System (ADS)

    Athenodorou, Andreas; Bennett, Ed; Bergner, Georg; Elander, Daniel; Lin, C.-J. David; Lucini, Biagio; Piai, Maurizio

    2016-06-01

    Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover,our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.

  19. Non-abelian dynamics in first-order cosmological phase transitions

    SciTech Connect

    Johnson, Mikkel B.; Kisslinger, Leonard S.; Henley, Ernest M.; Hwang, P. W-Y.; Stevens, T.

    2004-01-01

    Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented. The investigations reported in this talk have been motivated by an interest in studying cosmological phase transitions quantitatively, taking the non-abelian character of the gauge fields into account. Ultimately, we hope to identify observable consequences of cosmological phase transitions. First-order phase transitions proceed by nucleation of bubbles of the broken phase in the background of the symmetric phase. Bubble collisions are of special interest, as they may lead to observable effects such as correlations in the cosmic microwave background (CMB) or as seeds of galactic and extra-galactic magnetic fields. The quantum chromodynamic (QCD) and the electroweak (EW) phase transitions are both candidates of interest in these respects. The Lagrangian driving both the QCD and the EW phase transitions are essentially known and make it possible to approach the physics of the phase transitions from first principles. However, a difficulty to making reliable predictions is that the fundamental guage fields in both these instances are non-abelian: the gluon field in QCD and the W and Z fields in the EW case. The quantitative role of non-abelian fields in cosmological phase transitions is poorly known and difficult to calculate due to the nonlinearities arising from the non-abelian character of the gauge fields.

  20. Non-Abelian Braiding of Light

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-01

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.

  1. Non-Abelian Braiding of Light.

    PubMed

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-12

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965

  2. Geometry and energy of non-Abelian vortices

    SciTech Connect

    Manton, Nicholas S.; Rink, Norman A.

    2011-04-15

    We study pure Yang-Mills theory on {Sigma}xS{sup 2}, where {Sigma} is a compact Riemann surface, and invariance is assumed under rotations of S{sup 2}. It is well known that the self-duality equations in this setup reduce to vortex equations on {Sigma}. If the Yang-Mills gauge group is SU(2), the Bogomolny vortex equations of the Abelian Higgs model are obtained. For larger gauge groups, one generally finds vortex equations involving several matrix-valued Higgs fields. Here we focus on Yang-Mills theory with gauge group SU(N)/Z{sub N} and a special reduction which yields only one non-Abelian Higgs field. One of the new features of this reduction is the fact that while the instanton number of the theory in four dimensions is generally fractional with denominator N, we still obtain an integral vortex number in the reduced theory. We clarify the relation between these two topological charges at a bundle geometric level. Another striking feature is the emergence of nontrivial lower and upper bounds for the energy of the reduced theory on {Sigma}. These bounds are proportional to the area of {Sigma}. We give special solutions of the theory on {Sigma} by embedding solutions of the Abelian Higgs model into the non-Abelian theory, and we relate our work to the language of quiver bundles, which has recently proved fruitful in the study of dimensional reduction of Yang-Mills theory.

  3. Studying critical string emerging from non-Abelian vortex in four dimensions

    NASA Astrophysics Data System (ADS)

    Koroteev, P.; Shifman, M.; Yung, A.

    2016-08-01

    Recently a special vortex string was found [5] in a class of soliton vortices supported in four-dimensional Yang-Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang-Mills theory has the U (2) gauge group and the Fayet-Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP (2 , 2) model. The full target space is R4 ×Y6 where Y6 is a non-compact Calabi-Yau space. We study the above vortex string from the standpoint of string theory, focusing on the massless states in four dimensions. In the generic case all massless modes are non-normalizable, hence, no massless gravitons or vector fields are predicted in the physical spectrum. However, at the selfdual point (at strong coupling) weighted CP (2 , 2) admits deformation of the complex structure, resulting in a single massless hypermultiplet in the bulk. We interpret it as a composite "baryon."

  4. Matrix product states and the non-Abelian rotor model

    NASA Astrophysics Data System (ADS)

    Milsted, Ashley

    2016-04-01

    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  5. The existence of self-dual vortices in a non-Abelian {Phi}{sup 2} Chern-Simons theory

    SciTech Connect

    Chen Shouxin; Wang Ying

    2010-09-15

    Applying the dynamic shooting method, we proved the existence of nontopological radially symmetric n-vortex solutions to the self-dual equation in non-Abelian Chern-Simons gauge theory with a {Phi}{sup 2}-type potential. Moreover, we obtained all possible radially symmetric nontopological bare (or 0-vortex) solutions in the non-Abelian Chern-Simons model. Meanwhile, we established the asymptotic behavior for the solutions as |x|{yields}{infinity}.

  6. Field theory aspects of non-Abelian T-duality and {N} =2 linear quivers

    NASA Astrophysics Data System (ADS)

    Lozano, Yolanda; Núñez, Carlos

    2016-05-01

    In this paper we propose a linear quiver with gauge groups of increasing rank as field theory dual to the AdS 5 background constructed by Sfetsos and Thompson through non-Abelian T-duality. The formalism to study 4d {N} = 2 SUSY CFTs developed by Gaiotto and Maldacena is essential for our proposal. We point out an interesting relation between (Hopf) Abelian and non-Abelian T-dual backgrounds that allows to see both backgrounds as different limits of a solution constructed by Maldacena and Núñez. This suggests different completions of the long quiver describing the CFT dual to the nonAbelian T-dual background that match different observables.

  7. Nonperturbative approach to Yang-Mills theories in the continuum. II. Considerations away from strong coupling

    SciTech Connect

    Karanikas, A.I.; Ktorides, C.N.

    1987-02-15

    We confront the general problem posed by nonperturbative calculations in non-Abelian gauge theories, pertaining to the Wilson loop operator, away from strong coupling. We adopt a nonperturbatively regularized formulation of Yang-Mills theories in the continuum which has already been discussed in the preceding paper. We study, in particular, Yang-Mills duality, within our regularized context, with respect to the full SU(N) group and not simply its center Z/sub N/. We further show that, from the present viewpoint, duality emerges through a distinction between the regularization length on one hand and the scale by which the Yang-Mills system is observed on the other. Finally, we are able to derive a Makeenko-Migdal-type equation for finite N.

  8. A non-Abelian black ring

    NASA Astrophysics Data System (ADS)

    Ortín, Tomás; Ramírez, Pedro F.

    2016-09-01

    We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.

  9. Quantum Hall effects in a non-Abelian honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, Ling; Hao, Ningning; Liu, Guocai; Bai, Zhiming; Li, Zai-Dong; Chen, Shu; Liu, W. M.

    2015-12-01

    We study the tunable quantum Hall effects in a non-Abelian honeycomb optical lattice which is a multi-Dirac-point system. We find that the quantum Hall effects present different features with the change in relative strengths of several perturbations. Namely, the quantum spin Hall effect can be induced by gauge-field-dressed next-nearest-neighbor hopping, which, together with a Zeeman field, can induce the quantum anomalous Hall effect characterized by different Chern numbers. Furthermore, we find that the edge states of the multi-Dirac-point system represent very different features for different boundary geometries, in contrast with the generic two-Dirac-point system. Our study extends the borders of the field of quantum Hall effects in a honeycomb optical lattice with multivalley degrees of freedom.

  10. Minimal non-Abelian model of atomic dark matter

    NASA Astrophysics Data System (ADS)

    Choquette, Jeremie; Cline, James M.

    2015-12-01

    A dark sector resembling the Standard Model, where the abundance of matter is explained by baryon and lepton asymmetries and stable constituents bind to form atoms, is a theoretically appealing possibility. We show that a minimal model with a hidden SU(2) gauge symmetry broken to U(1), with a Dirac fermion doublet, suffices to realize this scenario. Supplemented with a dark Higgs doublet that gets no vacuum expectation value, we readily achieve the dark matter asymmetry through leptogenesis. The model can simultaneously have three portals to the Standard Model, through the Higgs, non-Abelian kinetic mixing, and the heavy neutrino, with interesting phenomenology for direct and collider searches, as well as cosmologically relevant dark matter self-interactions. Exotic bound states consisting of two fermions and a doubly charged vector boson can exist in one phase of the theory.

  11. Critical string from non-Abelian vortex in four dimensions

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2015-11-01

    In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang-Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski-Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U (2) gauge group, the Fayet-Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP (2 , 2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.

  12. Non-Abelian topological spin liquids from arrays of quantum wires or spin chains

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hao; Chen, Jyong-Hao; Gomes, Pedro R. S.; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    2016-05-01

    We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the construction can use either quantum wires or quantum spin chains as building blocks, with the same end result. The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are described by conformal field theories (CFT) in (1 +1 ) -dimensional space and time. We consider both the cases where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models with central charges c <1 . These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian, nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold way classification of two-dimensional noninteracting topological insulators using the Majorana representation that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting the number of null singular values of a mass matrix, with gapless edge modes present when left and right null eigenvectors exist.

  13. Non abelian hydrodynamics and heavy ion collisions

    SciTech Connect

    Calzetta, E.

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  14. Topologically Massive Non-Abelian Theory:. Superfield Approach

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Shukla, A.; Malik, R. P.

    We apply the well-established techniques of geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism in the context of four (3+1)-dimensional (4D) dynamical non-Abelian 2-form gauge theory by exploiting its inherent "scalar" and "vector" gauge symmetry transformations and derive the corresponding off-shell nilpotent and absolutely anticommuting BRST and anti-BRST symmetry transformations. Our approach leads to the derivation of three (anti-)BRST invariant Curci-Ferrari (CF)-type restrictions that are found to be responsible for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations. We derive the coupled Lagrangian densities that respect the (anti-)BRST symmetry transformations corresponding to the "vector" gauge transformations. We also capture the (anti-)BRST invariance of the CF-type restrictions and coupled Lagrangian densities within the framework of our superfield approach. We obtain, furthermore, the off-shell nilpotent (anti-)BRST symmetry transformations when the (anti-)BRST symmetry transformations corresponding to the "scalar" and "vector" gauge symmetries are merged together. These off-shell nilpotent "merged" (anti-)BRST symmetry transformations are, however, found to be non-anticommuting in nature.

  15. Non-Abelian Anyons and Interferometry

    NASA Astrophysics Data System (ADS)

    Bonderson, Parsa Hassan

    This thesis is primarily a study of the measurement theory of non-Abelian anyons through interference experiments. We give an introduction to the theory of anyon models, providing all the formalism necessary to apply standard quantum measurement theory to such systems. This formalism is then applied to give a detailed analysis of a Mach-Zehnder interferometer for arbitrary anyon models. In this treatment, we find that the collapse behavior exhibited by a target anyon in a superposition of states is determined by the monodromy of the probe anyons with the target. Such measurements may also be used to gain knowledge that would help to properly identify the anyon model describing an unknown system. The techniques used and results obtained from this model interferometer have general applicability, and we use them to also describe the interferometry measurements in a two point-contact interferometer proposed for non-Abelian fractional quantum Hall states. Additionally, we give the complete description of a number of important examples of anyon models, as well as their corresponding quantities that are relevant for interferometry. Finally, we give a partial classification of anyon models with small numbers of particle types.

  16. Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states

    SciTech Connect

    Barkeshli, Maissam; Wen Xiaogang

    2011-09-15

    We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.

  17. On Geometrical Interpretation of Non-Abelian Flat Direction Constraints

    NASA Astrophysics Data System (ADS)

    Cleaver, G. B.; Nanopoulos, D. V.; Perkins, J. T.; Walker, J. W.

    In order to produce a low-energy effective field theory from a string model, it is necessary to specify a vacuum state. In order that this vacuum be supersymmetric, it is well known that all field expectation values must be along so-called flat directions, leaving the F- and D-terms of the scalar potential to be zero. The situation becomes particularly interesting when one attempts to realize such directions while assigning vacuum expectation values to fields transforming under non-Abelian representations of the gauge group. Since the expectation value is now shared among multiple components of a field, satisfaction of flatness becomes an inherently geometrical problem in the group space. Furthermore, the possibility emerges that a single seemingly dangerous F-term might experience a self-cancellation among its components. The hope exists that the geometric language can provide an intuitive and immediate recognition of when the D and F conditions are simultaneously compatible, as well as a powerful tool for their comprehensive classification. This is the avenue explored in this paper, and applied to the cases of SU(2) and SO(2N), relevant respectively to previous attempts at reproducing the MSSM and the flipped SU(5) GUT. Geometrical interpretation of non-Abelian flat directions finds application to M-theory through the recent conjecture of equivalence between D-term strings and wrapped D-branes of Type II theory.1 Knowledge of the geometry of the flat direction "landscape" of a D-term string model could yield information about the dual brane model. It is hoped that the techniques encountered will be of benefit in extending the viability of the quasirealistic phenomenologies already developed.

  18. Non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Feng, Weibo

    A quantum computer is a proposed device which would be capable of initializing, coherently manipulating, and measuring quantum states with sufficient accuracy to carry out new kinds of computations. In the standard scenario, a quantum computer is built out of quantum bits, or qubits, two-level quantum systems which replace the ordinary classical bits of a classical computer. Quantum computation is then carried out by applying quantum gates, the quantum equivalent of Boolean logic gates, to these qubits. The most fundamental barrier to building a quantum computer is the inevitable errors which occur when carrying out quantum gates and the loss of quantum coherence of the qubits due to their coupling to the environment (decoherence). Remarkably, it has been shown that in a quantum computer such errors and decoherence can be actively fought using what is known as quantum error correction. A closely related proposal for fighting errors and decoherence in a quantum computer is to build the computer out of so-called topologically ordered states of matter. These are states of matter which allow for the storage and manipulation of quantum states with a built in protection from error and decoherence. The excitations of these states are non-Abelian anyons, particle-like excitations which satisfy non-Abelian statistics, meaning that when two excitations are interchanged the result is not the usual +1 and -1 associated with identical Bosons or Fermions, but rather a unitary operation which acts on a multidimensional Hilbert space. It is therefore possible to envision computing with these anyons by braiding their world-lines in 2+1-dimensional spacetime. In this Dissertation we present explicit procedures for a scheme which lives at the intersection of these two approaches. In this scheme we envision a functioning ``conventional" quantum computer consisting of an array of qubits and the ability to carry out quantum gates on these qubits. We then give explicit quantum circuits

  19. Multiflavor QCD* on R_3 * S_1: Studying Transition From Abelian to Non-Abelian Confinement

    SciTech Connect

    Shifman, M.; Unsal, M.; /SLAC /Stanford U., Phys. Dept.

    2009-03-31

    The center-stabilized multiflavor QCD* theories formulated on R{sub 3} x S{sub 1} exhibit both Abelian and non-Abelian confinement as a function of the S{sub 1} radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S{sub 1}), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking ({chi}SB). Unlike one-flavor theories where there is no phase transition in r(S{sub 1}), the multiflavor theories possess a single phase transition associated with breaking of the continuous {chi}S. We conjecture that the scale of the {chi}SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.

  20. Non-Abelian vortices on a cylinder: Duality between vortices and walls

    SciTech Connect

    Eto, Minoru; Fujimori, Toshiaki; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke; Ohta, Kazutoshi

    2006-04-15

    We investigate vortices on a cylinder in supersymmetric non-Abelian gauge theory with hypermultiplets in the fundamental representation. We identify moduli space of periodic vortices and find that a pair of wall-like objects appears as the vortex moduli is varied. Usual domain walls also can be obtained from the single vortex on the cylinder by introducing a twisted boundary condition. We can understand these phenomena as a T duality among D-brane configurations in type II superstring theories. Using this T-duality picture, we find a one-to-one correspondence between the moduli space of non-Abelian vortices and that of kinky D-brane configurations for domain walls.

  1. The non-abelian tensor multiplet in loop space

    NASA Astrophysics Data System (ADS)

    Gustavsson, Andreas

    2006-01-01

    We introduce a non-abelian tensor multiplet directly in the loop space associated with flat six-dimensional Miskowski space-time, and derive the supersymmetry variations for on-shell Script N = (2,0) supersymmetry.

  2. Quantum equivalence of noncommutative and Yang-Mills gauge theories in 2D and matrix theory

    SciTech Connect

    Ydri, Badis

    2007-05-15

    We construct noncommutative U(1) gauge theory on the fuzzy sphere S{sub N}{sup 2} as a unitary 2Nx2N matrix model. In the quantum theory the model is equivalent to a non-Abelian U(N) Yang-Mills theory on a two-dimensional lattice with two plaquettes. This equivalence holds in the 'fuzzy sphere' phase where we observe a 3rd order phase transition between weak-coupling and strong-coupling phases of the gauge theory. In the matrix phase we have a U(N) gauge theory on a single point.

  3. Topological invariants measured for Abelian and non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Sugawa, Seiji; Salces Carcoba, Francisco; Perry, Abigail; Yue, Yuchen; Putra, Andika; Spielman, Ian

    2016-05-01

    Understanding the topological nature of physical systems is an important topic in contemporary physics, ranging from condensed matter to high energy. In this talk, I will present experiments measuring the 1st and 2nd Chern number in a four-level quantum system both with degenerate and non-degenerate energies. We engineered the system's Hamiltonian by coupling hyperfine ground states of rubidium-87 Bose-Einstein condensates with rf and microwave fields. We non-adiabatically drove the system and measured the linear response to obtain the local (non-Abelian) Berry curvatures. Then, the Chern numbers were evaluated on (hyper-)spherical manifolds in parameter space. We obtain Chern numbers close to unity for both the 1st and the 2nd Chern numbers. The non-zero Chern number can be interpreted as monopole residing inside the manifold. For our system, the monopoles correspond to a Dirac monopole for non-degenerate spectra and a Yang monopole for our degenerate case. We also show how the dynamical evolution under non-Abelian gauge field emerged in degenerate quantum system is different from non-degenerate case by showing path-dependent acquisition of non-Abelian geometric phase and Wilson loops.

  4. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  5. The equations of motion for a classical color particle in background non-Abelian bosonic and fermionic fields

    NASA Astrophysics Data System (ADS)

    Markov, Yuri A.; Markova, Margaret A.; Shishmarev, Alexey A.

    2010-10-01

    Based on the most general principles of reality, gauge and reparametrization invariance, a problem of constructing the action describing dynamics of a classical color-charged particle interacting with background non-Abelian gauge and fermion fields is considered. The cases of the linear and quadratic dependence of a Lagrangian on background Grassmann fermion field are discussed. It is shown that in both cases in general there exists an infinite number of interaction terms, which should be included in the Lagrangian in question. Employing a simple iteration scheme, examples of the construction of the first few gauge-covariant currents and sources induced by a moving particle with non-Abelian charge are given. It is found that these quantities, by a suitable choice of parameters, exactly reproduce additional currents and sources previously obtained in Markov and Markova (2007 Nucl. Phys. A 784 443) on the basis of heuristic considerations.

  6. Heterotic non-Abelian string of a finite length

    NASA Astrophysics Data System (ADS)

    Monin, S.; Shifman, M.; Yung, A.

    2016-06-01

    We consider non-Abelian strings in N =2 supersymmetric quantum chromodynamics (QCD) with the U (N ) gauge group and Nf=N quark flavors deformed by a mass term for the adjoint matter. This deformation breaks N =2 supersymmetry down to N =1 . Dynamics of orientational zero modes on the string world sheet are described then by C P (N -1 ) model with N =(0 ,2 ) supersymmetry. We study the string of a finite length L assuming compactification on a cylinder (periodic boundary conditions). The world-sheet theory is solved in the large-N approximation. At N =∞ we find a rich phase structure in the (L ,u ) plane where u is a deformation parameter. At large L and intermediate u we find a phase with broken Z2 N symmetry, N vacua and a mass gap. At large values of L and u still larger we have the Z2 N-symmetric phase with a single vacuum and massless fermions. In both phases N =(0 ,2 ) supersymmetry is spontaneously broken. We also observe a phase with would-be broken SU (N ) symmetry at small L (it is broken only for N =∞ ). In the latter phase the mass gap vanishes and the vacuum energy is zero in the leading 1 /N approximation. We expect that at large but finite N corrections O (1 /N ) will break N =(0 ,2 ) supersymmetry. Simultaneously, the phase transitions will become rapid crossovers. Finally we discuss how the observed rich phase structure matches the N =(2 ,2 ) limit in which the world-sheet theory has a single phase with the mass gap independent of L .

  7. Probing Non-Abelian Statistics with Quasiparticle Interferometry

    SciTech Connect

    Bonderson, Parsa; Shtengel, Kirill; Slingerland, J.K.

    2006-07-07

    We examine interferometric experiments in systems that exhibit non-Abelian braiding statistics, expressing outcomes in terms of the modular S-matrix. In particular, this result applies to fractional quantum Hall interferometry, and we give a detailed treatment of the Read-Rezayi states, providing explicit predictions for the recently observed {nu}=12/5 plateau.

  8. Non-Abelian chiral instabilities at high temperature on the lattice

    NASA Astrophysics Data System (ADS)

    Akamatsu, Yukinao; Rothkopf, Alexander; Yamamoto, Naoki

    2016-03-01

    We report on an exploratory lattice study on the phenomenon of chiral instabilities in non-Abelian gauge theories at high temperature. It is based on a recently constructed anomalous Langevin-type effective theory of classical soft gauge fields in the presence of a chiral number density n 5 = n R - n L. Evaluated in thermal equilibrium using classical lattice techniques it reveals that the fluctuating soft fields indeed exhibit a rapid energy increase at early times and we observe a clear dependence of the diffusion rate of topological charge (sphaleron rate) on the the initial n 5, relevant in both early universe baryogenesis and relativistic heavy-ion collisions. The topological charge furthermore shows a drift among distinct vacuum sectors, roughly proportional to the initial n 5 and in turn the chiral imbalance is monotonously reduced as required by helicity conservation.

  9. Multiflavor QCD∗ on R3 ×S1: Studying transition from Abelian to non-Abelian confinement

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Ünsal, M.

    2009-11-01

    The center-stabilized multiflavor QCD∗ theories formulated on R3 ×S1 exhibit both Abelian and non-Abelian confinement as a function of the S1 radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r (S1), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking (χSB). Unlike one-flavor theories where there is no phase transition in r (S1), the multiflavor theories possess a single phase transition associated with breaking of the continuous χS. We conjecture that the scale of the χSB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.

  10. Non-Abelian bosonic currents in cosmic strings

    SciTech Connect

    Lilley, Marc; Di Marco, Fabrizio; Martin, Jerome; Peter, Patrick

    2010-07-15

    A non-Abelian generalization of the neutral Witten current-carrying string model is discussed in which the bosonic current carrier belongs to a two-dimensional representation of SU(2). We find that the current-carrying solutions can be of three different kinds: either the current spans a U(1) subgroup, and in which case one is left with an Abelian current-carrying string, or the three currents are all lightlike, traveling in the same direction (only left or right movers). The third, genuinely non-Abelian situation, cannot be handled within a cylindrically symmetric framework, but can be shown to depend on all possible string Lorentz invariant quantities that can be constructed out of the phase gradients.

  11. Braiding non-Abelian quasiholes in fractional quantum Hall states.

    PubMed

    Wu, Yang-Le; Estienne, B; Regnault, N; Bernevig, B Andrei

    2014-09-12

    Quasiholes in certain fractional quantum Hall states are promising candidates for the experimental realization of non-Abelian anyons. They are assumed to be localized excitations, and to display non-Abelian statistics when sufficiently separated, but these properties have not been explicitly demonstrated except for the Moore-Read state. In this work, we apply the newly developed matrix product state technique to examine these exotic excitations. For the Moore-Read and the Z_{3} Read-Rezayi states, we estimate the quasihole radii, and determine the correlation lengths associated with the exponential convergence of the braiding statistics. We provide the first microscopic verification for the Fibonacci nature of the Z_{3} Read-Rezayi quasiholes. We also present evidence for the failure of plasma screening in the nonunitary Gaffnian wave function. PMID:25259996

  12. Identifying non-Abelian topological order through minimal entangled states.

    PubMed

    Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N

    2014-03-01

    The topological order is encoded in the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order for topological band models through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice models with bosonic particles. We identify multiple independent minimal entangled states (MESs) in the ground state manifold on a torus. The extracted modular S matrix from MESs faithfully demonstrates the Ising anyon or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings unambiguously demonstrate the topological nature of the quantum states for these flatband models without using the knowledge of model wave functions. PMID:24655269

  13. An Exact Chiral Spin Liquid with Non-Abelian Anyons

    SciTech Connect

    Yao, Hong

    2010-04-06

    We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number {+-}1) CSL obey non-Abelian statistics.

  14. Non-Abelian anomalies on a curved space with torsion

    SciTech Connect

    Cognola, G.; Giacconi, P.

    1989-05-15

    Using path-integral methods and /zeta/-function regularization a nonperturbative derivation of non-Abelian-covariant and consistent anomalies on a curved space with torsion is given. All terms depending on torsion, that one has in the expression of the consistent anomaly, can be eliminated by adding suitable counterterms to the Lagrangian density. In this way, the well-known result of Bardeen is recovered. The so-called ''covariant anomaly'' will be discussed too.

  15. Designer non-Abelian anyon platforms: from Majorana to Fibonacci

    NASA Astrophysics Data System (ADS)

    Alicea, Jason; Stern, Ady

    2015-12-01

    The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ structures built from well-understood components. In this short overview we briefly tour the impressive progress that has taken place in the quest for the simplest type of non-Abelian anyon—defects binding Majorana zero modes—and then turn to similar strategies for pursuing more exotic excitations. Specifically, we describe how interfacing simple quantum Hall systems with conventional superconductors yields ‘parafermionic’ generalizations of Majorana modes and even Fibonacci anyons—the latter enabling fully fault tolerant universal quantum computation. We structure our treatment in a manner that unifies these topics in a coherent way. The ideas synthesized here spotlight largely uncharted experimental territory in the field of quantum Hall physics that appears ripe for discovery.

  16. Detecting 3d Non-Abelian Anyons via Adiabatic Cooling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiji; Freedman, Michael; Yang, Kun

    2011-03-01

    Majorana fermions lie at the heart of a number of recent developments in condensed matter physics. One important application is the realization of non-abelian statistics and consequently a foundation for topological quantum computation. Theoretical propositions for Majorana systems abound, but experimental detection has proven challenging. Most attempts involve interferometry, but the degeneracy of the anyon state can be leveraged to produce a cooling effect, as previously shown in 2d. We apply this method of anyon detection to the 3d anyon model of Teo and Kane. Like the Fu-Kane model, this involves a hybrid system of topological insulator (TI) and superconductor (SC). The Majorana modes are localized to anisotropic hedgehogs in the order parameter which appear at the TI-SC interface. The effective model bears some resemblance to the non-Abelian Higgs model with scalar coupling as studied, for example, by Jackiw and Rebbi. In order to make concrete estimates relevant to experiments, we use parameters appropriate to Ca doped Bi 2 Se 3 as the topological insulator and Cu doped Bi 2 Se 3 as the superconductor. We find a temperature window in the milli-Kelvin regime where the presence of 3d non-abelian anyons will lead to an observable cooling effect.

  17. Explicit non-Abelian monopoles and instantons in SU(N) pure Yang-Mills theory

    SciTech Connect

    Popov, Alexander D.

    2008-06-15

    It is well known that there are no static non-Abelian monopole solutions in pure Yang-Mills theory on Minkowski space R{sup 3,1}. I show that such solutions exist in SU(N) gauge theory on the spaces R{sup 2}xS{sup 2} and RxS{sup 1}xS{sup 2} with Minkowski signature (-+++). In the temporal gauge they are solutions of pure Yang-Mills theory on TxS{sup 2}, where T is R or S{sup 1}. Namely, imposing SO(3) invariance and some reality conditions, I consistently reduce the Yang-Mills model on the above spaces to a non-Abelian analog of the {phi}{sup 4} kink model whose static solutions give SU(N) monopole (-antimonopole) configurations on the space R{sup 1,1}xS{sup 2} via the above-mentioned correspondence. These solutions can also be considered as instanton configurations of Yang-Mills theory in 2+1 dimensions. The kink model on RxS{sup 1} admits also periodic sphaleron-type solutions describing chains of n kink-antikink pairs spaced around the circle S{sup 1} with arbitrary n>0. They correspond to chains of n static monopole-antimonopole pairs on the space RxS{sup 1}xS{sup 2} which can also be interpreted as instanton configurations in 2+1 dimensional pure Yang-Mills theory at finite temperature (thermal time circle). I also describe similar solutions in Euclidean SU(N) gauge theory on S{sup 1}xS{sup 3} interpreted as chains of n instanton-anti-instanton pairs.

  18. Low energy dynamics of slender monopoles in non-Abelian superconductor

    NASA Astrophysics Data System (ADS)

    Arai, M.; Blaschke, F.; Eto, M.; Sakai, N.

    2016-01-01

    Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2)c gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles in this phase are slender ellipsoids, pierced by a vortex string. We investigate scattering of monopole with anti-monopole and find that they do not always decay into radiation, contrary to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances. We point out that some part of solutions in 1 + 3 dimensions can be mapped exactly onto the sine-Gordon system in 1 + 1 dimensions in the first non-trivial order of rigid-body approximation and we provide analytic formulas for such solutions there.

  19. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Wiese, U.-J.

    2013-11-01

    Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

  20. Correlation-induced non-Abelian quantum holonomies

    NASA Astrophysics Data System (ADS)

    Johansson, Markus; Ericsson, Marie; Singh, Kuldip; Sjöqvist, Erik; Williamson, Mark S.

    2011-04-01

    In the context of two-particle interferometry, we construct a parallel transport condition that is based on the maximization of coincidence intensity with respect to local unitary operations on one of the subsystems. The dependence on correlation is investigated and it is found that the holonomy group is generally non-Abelian, but Abelian for uncorrelated systems. It is found that our framework contains the Lévay geometric phase (2004 J. Phys. A: Math. Gen. 37 1821) in the case of two-qubit systems undergoing local SU(2) evolutions.

  1. A geodesic principle for strong coupling gravity

    NASA Astrophysics Data System (ADS)

    Niedermaier, Max

    2015-11-01

    Strong coupling gravity arises from general relativity by a scaling limit that preserves the number of physical degrees of freedom as well as covariance under the group of spatio-temporal diffeomorphisms. An intrinsic geodesic principle for it is formulated and justified. Geodesic congruences and the test bodies following them are, according to the principle, unaffected by nonlinear gravitational waves and can be gauged-fixed so as to never depart from their initial values. Among other consequences this offers a new perspective on gravitational coarse graining.

  2. Inflationary magnetogenesis without the strong coupling problem

    SciTech Connect

    Ferreira, Ricardo J.Z.; Jain, Rajeev Kumar; Sloth, Martin S. E-mail: jain@cp3.dias.sdu.dk

    2013-10-01

    The simplest gauge invariant models of inflationary magnetogenesis are known to suffer from the problems of either large backreaction or strong coupling, which make it difficult to self-consistently achieve cosmic magnetic fields from inflation with a field strength larger than 10{sup −32}G today on the Mpc scale. Such a strength is insufficient to act as seed for the galactic dynamo effect, which requires a magnetic field larger than 10{sup −20}G. In this paper we analyze simple extensions of the minimal model, which avoid both the strong coupling and back reaction problems, in order to generate sufficiently large magnetic fields on the Mpc scale today. First we study the possibility that the coupling function which breaks the conformal invariance of electromagnetism is non-monotonic with sharp features. Subsequently, we consider the effect of lowering the energy scale of inflation jointly with a scenario of prolonged reheating where the universe is dominated by a stiff fluid for a short period after inflation. In the latter case, a systematic study shows upper bounds for the magnetic field strength today on the Mpc scale of 10{sup −13}G for low scale inflation and 10{sup −25}G for high scale inflation, thus improving on the previous result by 7-19 orders of magnitude. These results are consistent with the strong coupling and backreaction constraints.

  3. Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions

    NASA Astrophysics Data System (ADS)

    Pogrebkov, A. K.

    2016-06-01

    We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.

  4. A strongly coupled anyon material

    NASA Astrophysics Data System (ADS)

    Brattan, Daniel K.

    2015-11-01

    We use alternative quantisation of the D3-D5 system to explore properties of a strongly coupled anyon material at finite density and temperature. We study the transport properties of the material and find both diffusion and massive holographic zero sound modes. By studying the anyon number conductivity we also find evidence for the anyonic analogue of the metal-insulator transition.

  5. Non-Abelian states in Fractional Quantum Hall effect in charge carrier hole systems

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    Quasiparticle excitations obeying non-Abelian statistics represent the key element of topological quantum computing. Crossing of levels and strong coupling between angular momentum and orbital motion, described by Luttinger Hamiltonian, make properties of charge carrier holes different from those of electrons. Peculiarities of hole spectrum in magnetic field provide an opportunity for controlling Landau level mixing in charge carier hole systems. In order to describe Fractional Quantum Hall effect for holes, we propose a method to map hole spectrum and wavefunctions using a spherical shell. We investigate the experimentally observed ν = 1 / 2 state in spherical geometry. Haldane pseudopotentials are computed and the effect of Landau level mixing is evaluated. Exact diagonalization of Coulomb interaction in systems with eight to fourteen holes is performed. We determine that the ground state superposition with Abelian 331 state is very small and the overlap with Moore-Read state is significant. The quasihole and quasielectron excitations are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  6. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  7. Phenomenological analysis of heterotic strings: Non-abelian constructions and landscape studies

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav Hemant

    String theory offers the unique promise of unifying all the known forces in nature. However, the internal consistency of the theory requires that spacetime have more than four dimensions. As a result, the extra dimensions must be compactified in some manner and how this compactification takes place is critical for determining the low-energy physical predictions of the theory. In this thesis we examine two distinct consequences of this fact. First, almost all of the prior research in string model-building has examined the consequences of compactifying on so-called "abelian" orbifolds. However, the most general class of compactifications, namely those on non-abelian orbifolds, remains almost completely unexplored. This thesis focuses on the low-energy phenomenological consequences of compactifying strings on non-abelian orbifolds. One of the main interests in pursuing these theories is that they can, in principle, naturally give rise to low-energy models which simultaneously have N=1 supersymmetry along with scalar particles transforming in the adjoint of the gauge group. These features, which are exceedingly difficult to achieve through abelian orbifolds, are exciting because they are the key ingredients in understanding how grand unification can emerge from string theory. Second, the need to compactify gives rise to a huge "landscape" of possible resulting low-energy phenomenologies. One of the goals of the landscape program in string theory is then to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent features of string theory that hold independently of a vacuum-selection principle. In this thesis, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze

  8. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    SciTech Connect

    Escalante, Alberto Manuel-Cabrera, J.

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.

  9. Matrix model for non-Abelian quantum Hall states

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-08-01

    We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.

  10. Neutrino masses and non-abelian horizontal symmetries

    NASA Astrophysics Data System (ADS)

    Antonelli, V.; Caravaglios, F.; Ferrari, R.; Picariello, M.

    2002-12-01

    Recently neutrino experiments have made very significant progresses and our knowledge of neutrino masses and mixing has considerably improved. In a model-independent Monte Carlo approach, we have examined a very large class of textures, in the context of non-abelian horizontal symmetries; we have found that neutrino data select only those charged lepton matrices with left-right asymmetric texture. The large atmospheric mixing angle needs m23≃m33. This result, if combined with similar recent findings for the quark sector in the B oscillations, can be interpreted as a hint for SU(5) unification. In the neutrino sector strict neutrino anarchy is disfavored by data, and at least a factor 2 of suppression in the first row and column of the neutrino Majorana mass matrix is required.

  11. Non-Abelian Effects on D-Branes

    SciTech Connect

    Russo, Jorge G.

    2008-07-28

    We review different non-Abelian configurations of D-branes. We then extend the Myers dielectric effect to configurations with angular momentum. The resulting time-dependent N D0-brane bound states can be interpreted as describing rotating fuzzy ellipsoids. A similar solution exists also in the presence of a RR magnetic field, that we study in detail. We show that, for any finite N, above a certain critical angular momentum it is energetically more favorable for the bound state system to dissociate into an Abelian configuration of N D0-branes moving independently. We further study D-string configurations representing fuzzy funnels deformed by the magnetic field and by the rotational motion.

  12. Asymptotically free scaling solutions in non-Abelian Higgs models

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Zambelli, Luca

    2015-07-01

    We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by generalizing the renormalization/boundary conditions in the definition of the correlation functions of the theory. Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from threshold phenomena which are missed in a conventional perturbative analysis relying on the deep Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We provide estimates of their low-energy properties in the light of a possible application to the standard model Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type trajectories that do not suffer from a naturalness problem.

  13. Canonical non-Abelian dual transformations in supersymmetric field theories

    SciTech Connect

    Curtright, T.; Zachos, C.

    1995-07-15

    A generating functional {ital F} is found for a canonical non-Abelian dual transformation which maps the supersymmetric chiral O(4) {sigma} model to an equivalent supersymmetric extension of the dual {sigma} model. This {ital F} produces a mapping between the classical phase spaces of the two theories in which the bosonic (coordinate) fields transform nonlocally, the fermions undergo a local tangent space chiral rotation, and all currents (fermionic and bosonic) mix locally. Purely bosonic curvature-free currents of the chiral model become a {ital symphysis} of purely bosonic and fermion bilinear currents of the dual theory. The corresponding transformation functional {ital T} which relates wave functions in the two quantum theories is argued to be {ital exactly} given by {ital T}=exp({ital iF}).

  14. Non-Abelian monopole in the parameter space of point-like interactions

    NASA Astrophysics Data System (ADS)

    Ohya, Satoshi

    2014-12-01

    We study non-Abelian geometric phase in N = 2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry's connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule.

  15. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  16. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  17. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  18. Strongly coupled quark gluon plasma (SCQGP)

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.

    2006-07-01

    We propose that the reason for the non-ideal behaviour seen in lattice simulation of quark gluon plasma (QGP) and ultrarelativistic heavy ion collision experiments is that the QGP near Tc and above is a strongly coupled plasma (SCP), i.e., a strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include colour degrees of freedom and the running coupling constant. Results on pressure in pure gauge, 2-flavours and 3-flavours QGP can all be explained by treating QGP as SCQGP, as demonstrated here. Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and reasonably good fits to lattice results are obtained for (2+1)-flavours and 4-flavours QGP. Hence it is a unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.

  19. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  20. Synchrotron radiation in strongly coupled conformal field theories

    SciTech Connect

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Rajagopal, Krishna; Nickel, Dominik

    2010-06-15

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle {alpha}{approx}1/{gamma}. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  1. Eikonal Scattering at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Irizarry-Gelpi, Melvin Eloy

    The scattering of subatomic particles is a source of important physical phenomena. Decades of work have yielded many techniques for the computation of scattering amplitudes. Most of these techniques involve perturbative quantum field theory and thus apply only at weak coupling. Complementary to scattering is the formation of bound states, which are intrinsically nonperturbative. Regge theory arose in the late 1950s as an attempt to describe, with a single framework, both scattering and the formation of bound states. In Regge theory one obtains an amplitude with bound state poles after analytic continuation of a nonperturbative scattering amplitude, corresponding to a sum of an infinite number of Feynman diagrams at large energy and fixed momentum transfer (but with crossed kinematics). Thus, in order to obtain bound states at fixed energy, one computes an amplitude at large momentum transfer. In this dissertation we calculate amplitudes with bound states in the regime of fixed energy and small momentum transfer. We formulate the elastic scattering problem in terms of many-body path integrals, familiar from quantum mechanics. Then we invoke the semiclassical JWKB approximation, where the path integral is dominated by classical paths. The dynamics in the semiclassical regime are strongly coupled, as found by Halpern and Siegel. When the momentum transfer is small, the classical paths are simple straight lines and the resulting semiclassical amplitudes display a spectrum of bound states that agrees with the spectrum found by solving wave equations with potentials. In this work we study the bound states of matter particles with various types of interactions, including electromagnetic and gravitational interactions. Our work has many analogies with the work started by Alday and Maldacena, who computed scattering amplitudes of gluons at strong coupling with semiclassical quantum mechanics of strings in anti de-Sitter spacetime. We hope that in the future we can apply our

  2. Abelian and non-Abelian bosonization: The operator solution of the WZW. sigma. model

    SciTech Connect

    do Amaral, R.L.P.G. ); Stephany Ruiz, J.E. )

    1991-03-15

    The complete equivalence between the Abelian and the non-Abelian bosonization formalisms for the treatment of SU({ital N}) fermions in two dimensions is analyzed and the operator solution of the Wess-Zumino-Witten nonlinear {sigma} model, written in terms of the scalar fields of the non-Abelian construction, is obtained. The importance of the order and disorder operators is stressed. In particular, they are used to show that an adequate reinterpretation of Mandelstam's formula gives the fermion representation in the non-Abelian bosonization formalism.

  3. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  4. Fast non-Abelian geometric gates via transitionless quantum driving

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  5. Non-Abelian statistics of Luttinger holes in quantum wells

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    2015-03-01

    Non-Abelian quasiparticle excitations represent a key element of topologically protected quantum computing. Such exotic states appear in fractional quantum Hall (FQH) effect as eigenstates of N-body interaction potential. These potentials can be obtained by renormalization of electron-electron interactions in the presence of Landau level (LL) mixing. The properties of valence band holes makes them fundamentally different from electrons. In the presence of magnetic field, low-lying states do not exhibit fan-like diagram and several of the levels cross. Variation of magnetic field in the vicinity of level crossings serves as a knob that tunes LL mixing and enhances the 3-body interaction. 1 / 2 filling factor FQH is a state that was not observed in electron liquid, but has been observed for holes. The properties of the two dimensional charged quantum hole liquid in the presence of magnetic field are studied using the spherical geometry. The properties of the novel 1 / 2 state are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  6. Abelian and non-abelian D-brane effective actions

    NASA Astrophysics Data System (ADS)

    Koerber, P.

    2004-09-01

    In this Ph.D. thesis, accepted at the Vrije Universiteit Brussel, we review and elaborate on a method to find the D-brane effective action, based on BPS equations. Firstly, both for the Yang-Mills action and the Born-Infeld action it is shown that these configurations are indeed BPS, i.e. solutions to these equations saturate a Bogomolny bound and leave some supersymmetry unbroken. Next, we use the BPS equations as a tool to construct the D-brane effective action and require that (a deformation of) these equations should still imply the equations of motion in more general cases. In the abelian case we managed to calculate all order in four-derivative corrections to the effective action and the BPS equations while in the non-abelian case we obtained the effective action up to order 4. Furthermore, we discuss a check based on the spectrum of strings stretching between intersecting branes. Finally, this Ph.D. thesis also discusses the construction of a boundary superspace which would be the first step to use the method of Weyl invariance in N = 2 superspace in order to again construct the D-brane effective action. A more detailed summary of each section can be found in the introduction.

  7. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  8. Delineating parton distributions and the strong coupling

    DOE PAGESBeta

    Jimenez-Delgado, P.; Reya, E.

    2014-04-29

    In this study, global fits for precision determinations of parton distributions, together with the highly correlated strong coupling αs, are presented up to next-to-next-to- leading order (NNLO) of QCD utilizing most world data (charm and jet production data are used where theoretically possible), except Tevatron gauge boson production data and LHC data which are left for genuine predictions. This is done within the 'dynamical' (valencelike input at Q02 = 0.8 GeV2 ) and 'standard' (input at Q02 = 2 GeV2) approach. The stability and reliability of the results are ensured by including nonperturbative higher-twist terms, nuclear corrections as well asmore » target mass corrections, and by applying various (Q2, W2) cuts on available data. In addition, the Q02 dependence of the results is studied in detail. Predictions are given, in particular for LHC, on gauge and Higgs boson as well as for top-quark pair production. At NNLO the dynamical approach results in αs(MZ2) = 0.1136 ± 0.0004, whereas the somewhat less constrained standard fit gives αs(MZ2) = 0.1162 ± 0.0006.« less

  9. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  10. On Geometrical Interpretation of Non-Abelian D and F-Flat Direction Constraints

    NASA Astrophysics Data System (ADS)

    Walker, Joel; Cleaver, Gerald; Nanopoulos, Dimitri; Perkins, John

    2004-10-01

    In order to produce a low energy effective field theory from a string model, it is necessary to specify a vacuum state. In order that this vacuum be supersymmetric, it is well known that all field expectation values must be along so-called flat directions, leaving the F- and D-terms of the scalar potential to be zero. The situation becomes particularly interesting when one attempts to realize such directions while assigning VEVS to fields transforming under non-Abelian representations of the gauge group. Since the expectation value is now shared among multiple components of a field, satisfaction of flatness becomes an inherently geometrical problem in the group space. Furthermore, the possibility emerges that a single seemingly dangerous F-term might experience a self-cancellation among its components. The hope exists that the geometric language can provide an intuitive and immediate recognition of when the D and F conditions are simultaneously compatible, as well as a powerful tool for their comprehensive classification. This is the avenue explored in this study, and applied to the cases of SU(2) and SO(2N), relevant respectively to previous attempts at reproducing the MSSM and the flipped SU(5) GUT. It is hoped that the techniques encountered will be of benefit in extending the viability of the quasi-realistic phenomenologies already developed.

  11. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  12. Beyond parafermions: Defects and zero-modes in non-Abelian phases

    NASA Astrophysics Data System (ADS)

    Lindner, Netanel; Berg, Erez; Stern, Ady

    Non-Abelian topological phases of matter can be utilized to encode and manipulate quantum information in a non-local manner, such that it is protected from imperfections in the implemented protocols and from interactions with the environment. The condition that the non-Abelian statistics of the anyons supports a computationally universal set of gates sets a very stringent requirement which is not met by many topological phases. We consider the possibility to enrich the possible topological operations supported by a non-Abelian topological phase by introducing defects into the system. We show that such defects bind zero modes which form a unique algebra that goes beyond the algebra of parafermions which describes defects in Abelian phases. For the case of a bi-layer containing Ising anyons, we show that by coupling zero modes one can obtain a set of topological operations that implements a universal set of gates.

  13. Collective states of non-Abelian quasiparticles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Halperin, Bertrand I.

    2009-05-01

    Motivated by the physics of the Moore-Read ν=1/2 state away from half filling, we investigate collective states of non-Abelian e/4 quasiparticles in a magnetic field. We consider two types of collective states: incompressible liquids and Wigner crystals. In the incompressible liquid case, we construct a natural series of states which can be thought of as a non-Abelian generalization of the Laughlin states. These states are associated with a series of hierarchical states derived from the Moore-Read state—the simplest of which occur at filling fraction 8/17 and 7/13. Interestingly, we find that the hierarchical states are Abelian even though their parent state is non-Abelian. In the Wigner crystal case, we construct two candidate states. We find that they, too, are Abelian—in agreement with previous analysis.

  14. Variational Study of SU(3) Gauge Theory by Stationary Variance

    NASA Astrophysics Data System (ADS)

    Siringo, Fabio

    2015-07-01

    The principle of stationary variance is advocated as a viable variational approach to gauge theories. The method can be regarded as a second-order extension of the Gaussian Effective Potential (GEP) and seems to be suited for describing the strong-coupling limit of non-Abelian gauge theories. The single variational parameter of the GEP is replaced by trial unknown two-point functions, with infinite variational parameters to be optimized by the solution of a set of coupled integral equations. The stationary conditions can be easily derived by the self-energy, without having to write the effective potential, making use of a general relation between self-energy and functional derivatives that has been proven to any order. The low- energy limit of pure Yang-Mills SU(3) gauge theory has been studied in Feynman gauge, and the stationary equations are written as integral equations for the gluon and ghost propagators. A physically sensible solution is found for any strength of the coupling. The gluon propagator is finite in the infrared, with a dynamical mass that decreases as a power at high energies. At variance with some recent findings in Feynman gauge, the ghost dressing function does not vanish in the infrared limit and a decoupling scenario emerges as recently reported for the Landau gauge.

  15. Hidden Q-structure and Lie 3-algebra for non-abelian superconformal models in six dimensions

    NASA Astrophysics Data System (ADS)

    Lavau, Sylvain; Samtleben, Henning; Strobl, Thomas

    2014-12-01

    We disclose the mathematical structure underlying the gauge field sector of the recently constructed non-abelian superconformal models in six space-time dimensions. This is a coupled system of 1-form, 2-form, and 3-form gauge fields. We show that the algebraic consistency constraints governing this system permit to define a Lie 3-algebra, generalizing the structural Lie algebra of a standard Yang-Mills theory to the setting of a higher bundle. Reformulating the Lie 3-algebra in terms of a nilpotent degree 1 BRST-type operator Q, this higher bundle can be compactly described by means of a Q-bundle; its fiber is the shifted tangent of the Q-manifold corresponding to the Lie 3-algebra and its base the odd tangent bundle of space-time equipped with the de Rham differential. The generalized Bianchi identities can then be retrieved concisely from Q2 = 0, which encode all the essence of the structural identities. Gauge transformations are identified as vertical inner automorphisms of such a bundle, their algebra being determined from a Q-derived bracket.

  16. Non-Abelian dark matter: Models and constraints

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Cline, James M.; Frey, Andrew R.

    2009-10-01

    Numerous experimental anomalies hint at the existence of a dark matter (DM) multiplet χi with small mass splittings. We survey the simplest such models which arise from DM in the low representations of a new SU(2) gauge symmetry, whose gauge bosons have a small mass μ≲1GeV. We identify preferred parameters Mχ≅1TeV, μ˜100MeV, αg˜0.04, and the χχ→4e annihilation channel, for explaining PAMELA, Fermi, and INTEGRAL/SPI lepton excesses, while remaining consistent with constraints from relic density, diffuse gamma rays, and the CMB. This consistency is strengthened if DM annihilations occur mainly in subhalos, while excitations (relevant to the excited DM proposal to explain the 511 keV excess) occur in the galactic center, due to higher velocity dispersions in the galactic center, induced by baryons. We derive new constraints and predictions which are generic to these models. Notably, decays of excited DM states χ'→χγ arise at one loop and could provide a new signal for INTEGRAL/SPI; big bang nucleosynthesis constraints on the density of dark SU(2) gauge bosons imply a lower bound on the mixing parameter γ between the SU(2) gauge bosons and photon. These considerations rule out the possibility of the gauge bosons that decay into e+e- being long-lived. We study in detail models of doublet, triplet, and quintuplet DM, showing that both normal and inverted mass hierarchies can occur, with mass splittings that can be parametrically smaller [e.g., O(100)keV] than the generic MeV scale of splittings. A systematic treatment of Z2 symmetry, which insures the stability of the intermediate DM state, is given for cases with inverted mass hierarchy, of interest for boosting the 511 keV signal from the excited dark matter mechanism.

  17. One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization

    NASA Astrophysics Data System (ADS)

    Aleshin, S. S.; Kazantsev, A. E.; Skoptsov, M. B.; Stepanyantz, K. V.

    2016-05-01

    We consider a general non-Abelian renormalizable {N} = 1 supersymmetric gauge theory, regularized by higher covariant derivatives without breaking the BRST invariance, and calculate one-loop divergences for a general form of higher derivative regulator and of the gauge fixing term. It is demonstrated that the momentum integrals giving the one-loop β-function are integrals of double total derivatives independently of a particular choice of the higher derivative term. Evaluating them we reproduce the well-known result for the one-loop β-function. Also we find that the three-point ghost vertices with a single line of the quantum gauge superfield are not renormalized in the considered approximation.

  18. Renormalized strong-coupling quenched QED in four dimensions

    SciTech Connect

    Hawes, F.T.; Sizer, T.; Williams, A.G. |

    1997-03-01

    We study renormalized quenched strong-coupling QED in four dimensions in an arbitrary covariant gauge. Above the critical coupling leading to dynamical chiral symmetry breaking, we show that there is no finite chiral limit. This behavior is found to be independent of the detailed choice of photon-fermion proper vertex in the Dyson-Schwinger equation formalism, provided that the vertex is consistent with the Ward-Takahashi identity and multiplicative renormalizability. We show that the finite solutions previously reported lie in an unphysical regime of the theory with multiple solutions and ultraviolet oscillations in the mass functions. This study is consistent with the assertion that in four dimensions strong coupling QED does not have a continuum limit in the conventional sense. {copyright} {ital 1997} {ital The American Physical Society}

  19. Strongly Coupled Semi-Direct Mediation of Supersymmetry Breaking

    SciTech Connect

    Ibe, M.; Izawa, K.-I.; Nakai, Y.; /Kyoto U., Yukawa Inst., Kyoto

    2011-09-13

    Supersymmetry (SUSY) is expected to be a crucial ingredient of basic laws in Nature. It is an attractive possibility that SUSY is broken at low energy within the experimental reach in the near future. Among others, low-energy dynamics with gauge mediation between a hidden sector of SUSY breaking and the visible sector of SUSY standard model may be phenomenologically viable. In particular, the gauge interactions are flavor blind, so that the unwanted flavor-changing processes are naturally suppressed. Strongly coupled semi-direct gauge mediation models of supersymmetry breaking through massive mediators with standard model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard model gaugino masses for a small mediator mass without breaking the standard model symmetries.

  20. Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan

    There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.

  1. Collective States of D(D3) Non-Abelian Anyons

    NASA Astrophysics Data System (ADS)

    Finch, P. E.; Frahm, H.

    2013-11-01

    We study an exactly solvable model of non-Abelian anyons symmetric under the quantum double of the dihedral group D3 on a one-dimensional lattice. Bethe ansatz methods are employed to compute the ground states of this model in different regions of the parameter space. The finite size spectrum is studied and the corresponding low energy field theories are identified.

  2. Non-abelian binding energies from the lightcone bootstrap

    NASA Astrophysics Data System (ADS)

    Li, Daliang; Meltzer, David; Poland, David

    2016-02-01

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C T , current central charge C J , and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D {N}=1 SQCD and the 3D O( N) vector models. We also show that in a unitary CFT, if the current central charge C J stays finite when the global symmetry group becomes infinitely large, such as the N → ∞ limit of the O( N) vector model, then the theory must contain an infinite number of higher spin currents.

  3. Strong coupling theory for interacting lattice models

    NASA Astrophysics Data System (ADS)

    Stanescu, Tudor D.; Kotliar, Gabriel

    2004-11-01

    We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling perspective represents the natural framework for a generalization of the dynamical mean field theory (DMFT). The main result of this analysis is twofold: (1) It provides the tools for a unified treatment of any nonlocal contribution to the Hamiltonian. Within our scheme, nonlocal terms such as hopping terms, spin-spin interactions, or nonlocal Coulomb interactions are treated on equal footing. (2) By performing a detailed strong-coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we develop a generalized expansion around the atomic limit in terms of the coupling constants for the nonlocal contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish the equations for a generalized dynamical mean-field theory. Second, we formulate the theory in terms of a generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Sénéchal, and Tremblay [Phys. Rev. Lett. 80, 5389 (1998)], we present our scheme in the language of a perturbation theory for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling quantities within a standard perturbative picture.

  4. From non-Abelian anyons to quantum computation to coin-flipping by telephone

    NASA Astrophysics Data System (ADS)

    Mochon, Carlos

    Following their divorce, Alice and Bob would like to split some of their possessions by flipping a coin. Unwilling to meet in person, and without a trusted third party, they must figure out a scheme to flip the coin over a telephone that guarantees that neither party can cheat. The preceding scenario is the traditional definition of two-party coin-flipping. In a classical setting, without limits on the available computational power, one player can always guarantee a coin-flipping victory by cheating. However, by employing quantum communication it is possible to guarantee, with only information-theoretic assumptions, that neither party can win by cheating, with a probability greater than two thirds. Along with the description of such a protocol, this thesis derives a tight lower bound on the bias for a large family of quantum weak coin-flipping protocols, proving such a protocol optimal within the family. The protocol described herein is an improvement and generalization of one examined by Spekkens and Rudolph. The key steps of the analysis involve Kitaev's description of quantum coin-flipping as a semidefinite program whose dual problem provides a certificate that upper bounds the amount of cheating for each party. In order for such quantum protocols to be viable, though, a number of practical obstacles involving the communication and processing of quantum information must be resolved. In the second half of this thesis, a scheme for processing quantum information is presented, which uses non-abelian anyons that are the magnetic and electric excitations of a discrete-group quantum gauge theory. In particular, the connections between group structure and computational power are examined, generalizing previous work by Kitaev, Ogburn and Preskill. Anyon based computation has the advantage of being topological, which exponentially suppresses the rate of decoherence and the errors associated with the elementary quantum gates. Though no physical systems with such

  5. Strongly coupled stress waves in heterogeneous plates.

    NASA Technical Reports Server (NTRS)

    Wang, A. S. D.; Chou, P. C.; Rose, J. L.

    1972-01-01

    Consideration of coupled stress waves generated by an impulsive load applied at one end of a semiinfinite plate. For the field equations governing the one-dimensional coupled waves a hyperbolic system of equations is obtained in which a strong coupling in the second derivatives exists. The method of characteristics described by Chou and Mortimer (1967) is extended to cover the case of strong coupling, and a study is made of the transient stress waves in a semiinfinite plate subjected to an initial step input. Coupled discontinuity fronts are found to propagate at different velocities. The normal plate stress and the bending moment at different time regimes are illustrated by graphs.

  6. Strong coupling BCS superconductivity and holography

    NASA Astrophysics Data System (ADS)

    Kalyana Rama, S.; Sarkar, Swarnendu; Sathiapalan, B.; Sircar, Nilanjan

    2011-11-01

    We attempt to give a holographic description of the microscopic theory of a BCS superconductor. Exploiting the analogy with chiral symmetry breaking in QCD we use the Sakai-Sugimoto model of two D8 branes in a D4 brane background with finite baryon number. In this case there is a new tachyonic instability which is plausibly the bulk analog of the Cooper pairing instability. We analyze the Yang-Mills approximation to the non-Abelian Dirac-Born-Infeld action. We give some exact solutions of the non-linear Yang-Mills equations in flat space and also give a stability analysis, showing that the instability disappears in the presence of an electric field. The holographic picture also suggests a dependence of T on the number density which is different from the usual (weak coupling) BCS. The flat space solutions are then generalized to curved space numerically and also, in an approximate way, analytically. This configuration should then correspond to the ground state of the boundary superconducting (superfluid) ground state. We also give some preliminary results on Green functions computations in the Sakai-Sugimoto model without any chemical potential.

  7. Non-abelian symmetries in tensor networks: A quantum symmetry space approach

    SciTech Connect

    Weichselbaum, Andreas

    2012-12-15

    A general framework for non-abelian symmetries is presented for matrix-product and tensor-network states in the presence of well-defined orthonormal local as well as effective basis sets. The two crucial ingredients, the Clebsch-Gordan algebra for multiplet spaces as well as the Wigner-Eckart theorem for operators, are accounted for in a natural, well-organized, and computationally straightforward way. The unifying tensor-representation for quantum symmetry spaces, dubbed QSpace, is particularly suitable to deal with standard renormalization group algorithms such as the numerical renormalization group (NRG), the density matrix renormalization group (DMRG), or also more general tensor networks such as the multi-scale entanglement renormalization ansatz (MERA). In this paper, the focus is on the application of the non-abelian framework within the NRG. A detailed analysis is presented for a fully screened spin- 3/2 three-channel Anderson impurity model in the presence of conservation of total spin, particle-hole symmetry, and SU(3) channel symmetry. The same system is analyzed using several alternative symmetry scenarios based on combinations of U(1){sub charge}, SU(2){sub spin}, SU(2){sub charge}, SU(3){sub channel}, as well as the enveloping symplectic Sp(6) symmetry. These are compared in detail, including their respective dramatic gain in numerical efficiency. In the Appendix, finally, an extensive introduction to non-abelian symmetries is given for practical applications, together with simple self-contained numerical procedures to obtain Clebsch-Gordan coefficients and irreducible operators sets. The resulting QSpace tensors can deal with any set of abelian symmetries together with arbitrary non-abelian symmetries with compact, i.e. finite-dimensional, semi-simple Lie algebras. - Highlights: Black-Right-Pointing-Pointer We introduce a transparent framework for non-abelian symmetries in tensor networks. Black-Right-Pointing-Pointer The framework was successfully

  8. QCD and strongly coupled gauge theories: Challenges and perspectives

    SciTech Connect

    Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H. B.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Höllwieser, R.; Janik, M. A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J. -W.; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; von Hippel, G. M.; Zakharov, V. I.

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

  9. QCD and strongly coupled gauge theories: Challenges and perspectives

    DOE PAGESBeta

    Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; et al

    2014-10-21

    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to stongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many researchmore » streams which flow into and out of QCD, as well as a vision for future developments.« less

  10. Non-abelian dark matter solutions for Galactic gamma-ray excess and Perseus 3.5 keV X-ray line

    SciTech Connect

    Cheung, Kingman; Huang, Wei-Chih; Tsai, Yue-Lin Sming

    2015-05-26

    We attempt to explain simultaneously the Galactic center gamma-ray excess and the 3.5 keV X-ray line from the Perseus cluster based on a class of non-abelian SU(2) DM models, in which the dark matter and an excited state comprise a “dark” SU(2) doublet. The non-abelian group kinetically mixes with the standard model gauge group via dimensions-5 operators. The dark matter particles annihilate into standard model fermions, followed by fragmentation and bremsstrahlung, and thus producing a continuous spectrum of gamma-rays. On the other hand, the dark matter particles can annihilate into a pair of excited states, each of which decays back into the dark matter particle and an X-ray photon, which has an energy equal to the mass difference between the dark matter and the excited state, which is set to be 3.5 keV. The large hierarchy between the required X-ray and γ-ray annihilation cross-sections can be achieved by a very small kinetic mixing between the SM and dark sector, which effectively suppresses the annihilation into the standard model fermions but not into the excited state.

  11. Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states

    SciTech Connect

    Fendley, Paul; Fisher, Matthew P.A.; Nayak, Chetan

    2009-07-15

    We explain how (perturbed) boundary conformal field theory allows us to understand the tunneling of edge quasiparticles in non-Abelian topological states. The coupling between a bulk non-Abelian quasiparticle and the edge is due to resonant tunneling to a zero mode on the quasiparticle, which causes the zero mode to hybridize with the edge. This can be reformulated as the flow from one conformally invariant boundary condition to another in an associated critical statistical mechanical model. Tunneling from one edge to another at a point contact can split the system in two, either partially or completely. This can be reformulated in the critical statistical mechanical model as the flow from one type of defect line to another. We illustrate these two phenomena in detail in the context of the {nu}=5/2 quantum Hall state and the critical Ising model. We briefly discuss the case of Fibonacci anyons and conclude by explaining the general formulation and its physical interpretation.

  12. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators

    NASA Astrophysics Data System (ADS)

    Mross, David F.; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-01

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.

  13. Non-Abelian bremsstrahlung and azimuthal asymmetries in high energy p+A reactions

    NASA Astrophysics Data System (ADS)

    Gyulassy, M.; Levai, P.; Vitev, I.; Biró, T. S.

    2014-09-01

    We apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute to all orders in nuclear opacity the non-Abelian gluon bremsstrahlung of event-by-event fluctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vnM{1}, and even numbered 2ℓ gluon distribution, vnM{2ℓ}, inclusive distributions in high-energy p +A reactions as a function of harmonic n, target recoil cluster number, M, and gluon number, 2ℓ, at the RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form color scintillation antenna (CSA) arrays that lead to characteristic boost-noninvariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of the intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to vn moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic nonflow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd vn without invoking kT factorization. A test of the CSA mechanism is the predicted nearly linear η rapidity dependence of the vn(kT,η). Non-Abelian beam jet bremsstrahlung may, thus, provide a simple analytic solution to the beam energy scan puzzle of the near √s independence of vn(pT) moments observed down to 10 AGeV, where large-x valence-quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of vn in p(D)+A and noncentral A+A at the same dN/dη multiplicity as observed at the RHIC and LHC.

  14. Improved HDRG decoders for qudit and non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Loss, Daniel; Wootton, James R.

    2015-03-01

    Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.

  15. Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states

    SciTech Connect

    Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan

    2011-02-15

    We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506, 685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c=1+(1/2) conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.

  16. Strong Coupling between Nanoscale Metamaterials and Phonons

    SciTech Connect

    Shelton, David J.; Brener, Igal; Ginn, James C.; Sinclair, Michael B.; Peters, David W.; Coffey, Kevin R.; Boreman, Glenn D.

    2011-05-11

    We use split ring resonators (SRRs) at optical frequencies to study strong coupling between planar metamaterials and phonon vibrations in nanometer-scale dielectric layers. A series of SRR metamaterials were fabricated on a semiconductor wafer with a thin intervening SiO{sub 2} dielectric layer. The dimensions of the SRRs were varied to tune the fundamental metamaterial resonance across the infrared (IR) active phonon band of SiO{sub 2} at 130 meV (31 THz). Strong anticrossing of these resonances was observed, indicative of strong coupling between metamaterial and phonon excitations. This coupling is very general and can occur with any electrically polarizable resonance including phonon vibrations in other thin film materials and semiconductor band-to-band transitions in the near to far IR. These effects may be exploited to reduce loss and to create unique spectral features that are not possible with metamaterials alone.

  17. Temperature equilibration in strongly coupled plasma

    SciTech Connect

    Thode, L. E.; Chang, C. H.; Snell, C. M.; Daughton, W. S.; Csanak, G. Y.

    2002-01-01

    A laser-driven experiment investigating electron-ion equilibration in strongly coupled plasma was performed in 1995. At that time, standard estimates for the electron-ion equilibration time were two-to-three orders of magnitude faster than observed experimentally. As a result, the electron-ion equilibration time was taken as a fitting parameter to understand the experimental results. Based upon guidance from nonequilibrium molecular dynamics mixture calculations 121 and comparison with strongly coupled resistivity experiments, we have developed a consistent binary collision model to understand the electron-ion equilibration experiment. The model has been implemented in a newly developed multi-species, multi-temperature physics code, which was used for simulation of the experiment. The resulting electron-ion exchange rate is close to the experiment, which is about three orders-of-magnitude slower than given by standard estimates, most of which is the result of a modified coulomb logarithm.

  18. Kinetic Characterization of Strongly Coupled Systems

    SciTech Connect

    Knapek, C. A.; Ivlev, A. V.; Klumov, B. A.; Morfill, G. E.; Samsonov, D.

    2007-01-05

    We propose a simple method to determine the local coupling strength {gamma} experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of {gamma} and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.

  19. Strong coupling QED with two fermionic flavors

    SciTech Connect

    Wang, K.C.

    1990-11-01

    We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices 10{sup 4} and 16{sup 4}. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the simulation. In addition to the measurement of the chiral order parameter {l angle}{bar {psi}}{psi}{r angle}, we also measure magnetic monopole susceptibility, {chi}, throughout the region of chiral transition. 6 refs., 6 figs.

  20. Strongly coupled fourth generation at the LHC

    SciTech Connect

    Burdman, G.; Da Rold, L.; Eboli, O. J. P.; Matheus, R. D.

    2009-04-01

    We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D{sub 4}. We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D{sub 4} pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.

  1. Numerical techniques for lattice gauge theories

    SciTech Connect

    Creutz, M.

    1981-02-06

    The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields.

  2. The dynamics of strong coupling gravity

    NASA Astrophysics Data System (ADS)

    Niedermaier, Max

    2015-01-01

    In the limit of infinite Newton constant, the 1+d dimensional vacuum Einstein equations reduce to their ‘velocity dominated’ counterparts. We construct all solutions with generic initial data and spatially closed sections by employing the constant mean curvature (CMC) gauge [1]. The latter is a nonlinearly admissible gauge in which the evolution equations are integrable ordinary differential equations and the diffeomorphism constraint decouples from the Hamiltonian constraint. The dynamical fields in this gauge are invariant under all gauge transformations but time independent spatial diffeomorphisms. The decoupled constraints are solved using a lapse-weighted conformal-traceless decomposition and produce equivalence classes of physical configurations modulo spatial diffeomorphisms. The CMC gauge can be augmented by a gauge condition {{χ }a} on the unimodular part of the spatial metric to provide a complete gauge fixing. Based on it a complete set of fully gauge invariant dynamical fields (observables) is constructed. By utilizing an algebraic gauge condition {{χ }a} a variant of the construction is found that isolates the physical degrees of freedoms algebraically.

  3. Supersymmetric composite gauge fields with compensators

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  4. Thermalization of Strongly Coupled Field Theories

    SciTech Connect

    Balasubramanian, V.; Bernamonti, A.; Copland, N.; Craps, B.; Staessens, W.; Boer, J. de; Keski-Vakkuri, E.; Mueller, B.; Schaefer, A.; Shigemori, M.

    2011-05-13

    Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.

  5. Thermalization of strongly coupled field theories.

    PubMed

    Balasubramanian, V; Bernamonti, A; de Boer, J; Copland, N; Craps, B; Keski-Vakkuri, E; Müller, B; Schäfer, A; Shigemori, M; Staessens, W

    2011-05-13

    Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first. PMID:21668141

  6. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect

    Tasinato, Gianmassimo

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  7. Understanding the physics of a possible non-Abelian fractional quantum hall effect state.

    SciTech Connect

    Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III

    2010-10-01

    We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.

  8. Role of nonlocal probes of thermalization for a strongly interacting non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Bellantuono, L.; Colangelo, P.; De Fazio, F.; Giannuzzi, F.; Nicotri, S.

    2016-07-01

    The thermalization process of an out-of-equilibrium boost-invariant strongly interacting non-Abelian plasma is investigated using a holographic method. Boundary sourcing, a distortion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed in the fully dynamical system through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. A dependence of the thermalization time on the size of the probes is found, which can be compared to the result of local observables: the onset of thermalization is first observed at short distances.

  9. Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid

    SciTech Connect

    Zhu Shiliang; Shao, L.-B.; Wang, Z. D.; Duan, L.-M.

    2011-03-11

    We propose an experiment to directly probe the non-Abelian statistics of Majorana fermions by braiding them in an s-wave superfluid of ultracold atoms. We show that different orders of braiding operations give orthogonal output states that can be distinguished through Raman spectroscopy. Realization of Majorana states in an s-wave superfluid requires strong spin-orbital coupling and a controllable Zeeman field in the perpendicular direction. We present a simple laser configuration to generate the artificial spin-orbital coupling and the required Zeeman field in the dark-state subspace.

  10. Russian doll spectrum in a non-Abelian string-net ladder

    NASA Astrophysics Data System (ADS)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2015-04-01

    We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent energy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark contrast with the ones obtained for Fibonacci or Ising theories.

  11. Infinite-randomness fixed points for chains of non-Abelian quasiparticles.

    PubMed

    Bonesteel, N E; Yang, Kun

    2007-10-01

    One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size L in these phases scales as S(L) approximately lnd/3 log(2)L for large L, where d is the quantum dimension of the particles. PMID:17930652

  12. Non-Abelian Berry-s phase effects and optical pumping of atoms

    SciTech Connect

    Segert, J.

    1987-11-01

    We predict experimentally verifiable manifestations of non-Abelian Berry's phase effects for atoms in external collinear electric and magnetic fields. The field strengths are arranged so as to cause accidental degeneracy between atomic states. The relevant theoretical results, which have been presented in detail elsewhere, are summarized and explained. We propose an experiment using optically pumped metastable multiplets of Pb/sup 208/ in an atomic beam apparatus to test these predictions. We estimate required experimental parameters, and conclude that the proposed experiment can realistically be performed. copyright 1987 Academic Press, Inc.

  13. A simple model for the evolution of a non-Abelian cosmic string network

    NASA Astrophysics Data System (ADS)

    Cella, G.; Pieroni, M.

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.

  14. Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma

    DOE PAGESBeta

    Iatrakis, Ioannis; Kharzeev, Dmitri E.

    2016-04-26

    The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of largemore » Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. As a result, in the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.« less

  15. Holographic entropy and real-time dynamics of quarkonium dissociation in non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Iatrakis, Ioannis; Kharzeev, Dmitri E.

    2016-04-01

    The peak of the heavy quark pair entropy at the deconfinement transition, observed in lattice QCD, suggests that the transition is effectively driven by the increase of the entropy of bound states. The growth of the entropy with the interquark distance leads to the emergent entropic force that induces dissociation of quarkonium states. Since the quark-gluon plasma around the transition point is a strongly coupled system, we use the gauge-gravity duality to study the entropy of heavy quarkonium and the real-time dynamics of its dissociation. In particular, we employ the improved holographic QCD model as a dual description of large Nc Yang-Mills theory. Studying the dynamics of the fundamental string between the quarks placed on the boundary, we find that the entropy peaks at the transition point. We also study the real-time dynamics of the system by considering the holographic string falling in the black hole horizon where it equilibrates. In the vicinity of the deconfinement transition, the dissociation time is found to be less than a fermi, suggesting that the entropic destruction is the dominant dissociation mechanism in this temperature region.

  16. Circuit electromechanics with single photon strong coupling

    SciTech Connect

    Xue, Zheng-Yuan Yang, Li-Na; Zhou, Jian

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  17. Inhomogeneous thermalization in strongly coupled field theories.

    PubMed

    Balasubramanian, V; Bernamonti, A; de Boer, J; Craps, B; Franti, L; Galli, F; Keski-Vakkuri, E; Müller, B; Schäfer, A

    2013-12-01

    To describe theoretically the creation and evolution of the quark-gluon plasma, one typically employs three ingredients: a model for the initial state, nonhydrodynamic early time evolution, and hydrodynamics. In this Letter we study the nonhydrodynamic early time evolution using the AdS/CFT correspondence in the presence of inhomogeneities. We find that the AdS description of the early time evolution is well matched by free streaming. Near the end of the early time interval where our analytic computations are reliable, the stress tensor agrees with the second order hydrodynamic stress tensor computed from the local energy density and fluid velocity. Our techniques may also be useful for the study of far-from-equilibrium strongly coupled systems in other areas of physics. PMID:24476254

  18. Experimental realization of non-abelian geometric gates with a superconducting three-level system

    NASA Astrophysics Data System (ADS)

    Abdumalikov, Abdufarrukh; Fink, J. M.; Juliusson, K.; Pechal, M.; Berger, S.; Wallraff, A.; Filipp, S.

    2013-03-01

    Geometric gates hold promise to provide the building blocks for robust quantum computation. In our experiments, we use a superconducting three-level system (transmon) to realize non-adiabatic non-abelian geometric gates. As computational basis we choose the ground and second excited states, while the first excited state acts as an ancilla state. The gates are realized by applying two resonant drives between the transmon levels. During the geometric gate ration of the amplitudes of the two drive tone is kept constant. Different gates are obtained for different ratio of the drive tones. We implement a Hadamard, a NOT and a phase gates with the fidelities of 95 % , 98 % , and 97 % as determined by full process tomography and maximum likelihood methods. We explicitly show the non-abelian nature of gates by applying two non-commuting gates in alternating order. The demonstrated holonomic gates are not exclusive to superconducting quantum devices, but can also be applied to other three level systems with similar energy level structure.

  19. Fermion structure of non-Abelian vortices in high density QCD

    SciTech Connect

    Yasui, Shigehiro; Itakura, Kazunori; Nitta, Muneto

    2010-05-15

    We study the internal structure of a non-Abelian vortex in color superconductivity with respect to quark degrees of freedom. Stable non-Abelian vortices appear in the color-flavor-locked phase whose symmetry SU(3){sub c+L+R} is further broken to SU(2){sub c+L+R} x U(1){sub c+L+R} at the vortex cores. Microscopic structure of vortices at scales shorter than the coherence length can be analyzed by the Bogoliubov-de Gennes equation (rather than the Ginzburg-Landau equation). We obtain quark spectra from the Bogoliubov-de Gennes equation by treating the diquark gap having the vortex configuration as a background field. We find that there are massless modes (zero modes) well-localized around a vortex, in the triplet and singlet states of the unbroken symmetry SU(2){sub c+L+R} x U(1){sub c+L+R}. The velocities v{sub i} of the massless modes (i=t, s for triplet and singlet) change at finite chemical potential {mu}{ne}0, and decrease as {mu} becomes large. Therefore, low energy excitations in the vicinity of the vortices are effectively described by 1+1 dimensional massless fermions whose velocities are reduced v{sub i}<1.

  20. Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation.

    SciTech Connect

    Pan, Wei; Thalakulam, Madhu; Shi, Xiaoyan; Crawford, Matthew; Nielsen, Erik; Cederberg, Jeffrey George

    2013-10-01

    Topological quantum computation (TQC) has emerged as one of the most promising approaches to quantum computation. Under this approach, the topological properties of a non-Abelian quantum system, which are insensitive to local perturbations, are utilized to process and transport quantum information. The encoded information can be protected and rendered immune from nearly all environmental decoherence processes without additional error-correction. It is believed that the low energy excitations of the so-called =5/2 fractional quantum Hall (FQH) state may obey non-Abelian statistics. Our goal is to explore this novel FQH state and to understand and create a scientific foundation of this quantum matter state for the emerging TQC technology. We present in this report the results from a coherent study that focused on obtaining a knowledge base of the physics that underpins TQC. We first present the results of bulk transport properties, including the nature of disorder on the 5/2 state and spin transitions in the second Landau level. We then describe the development and application of edge tunneling techniques to quantify and understand the quasiparticle physics of the 5/2 state.

  1. Creating and manipulating non-Abelian anyons in cold atom systems using auxiliary bosons

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhe; Sreejith, G. J.; Jain, J. K.

    2015-08-01

    The possibility of realizing bosonic fractional quantum Hall effect in ultracold atomic systems suggests a new route to producing and manipulating anyons, by introducing auxiliary bosons of a different species that capture quasiholes and thus inherit their nontrivial braiding properties. States with localized quasiholes at any desired locations can be obtained by annihilating the auxiliary bosons at those locations. We explore how this method can be used to generate non-Abelian quasiholes of the Moore-Read Pfaffian state for bosons at filling factor ν =1 . We show that a Hamiltonian with an appropriate three-body interaction can produce two-quasihole states in two distinct fusion channels of the topological "qubit." Characteristics of these states that are related to the non-Abelian nature can be probed and verified by a measurement of the effective relative angular momentum of the auxiliary bosons, which is directly related to their pair distribution function. Moore-Read states of more than two quasiholes can also be produced in a similar fashion. We investigate some issues related to the experimental feasibility of this approach, in particular, how large the systems should be for a realization of this physics and to what extent this physics carries over to systems with the more standard two-body contact interaction.

  2. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  3. Continuum strong-coupling expansion for quantum electrodynamics

    SciTech Connect

    Cooper, F.; Kenway, R.

    1981-11-15

    We derive from the path integral a continuum strong-coupling expansion for QED in d-dimensional Euclidean space-time. It s a double expansion in the fermion and boson kinetic energy (inverse free propagators), which leads to a double power series for the Green's functions of the cutoff theory in terms of 1/e/sup 2/ and ..lambda../sup 2//M/sup 2/. ..lambda.. is a smooth cutoff in Euclidean momentum space, and M is an infrared regulator mass for the photons needed to define the local part of the path integral. We demonstrate how dimensional continuation is necessary to control the broken gauge invariance of the cutoff theory. Restricting to d = 2 (the Schwinger model) we show how to remove the cutoff using Pade approximants. We find some evidence that as ..lambda../sup 2//M/sup 2/..-->..infinity gauge invariance is restored and we calculate the vector-mean mass, keeping the first three terms in the expansion in powers of the bare photon inverse propagator.

  4. Dynamics of strongly-coupled spiking neurons.

    PubMed

    Bressloff, P C; Coombes, S

    2000-01-01

    We present a dynamical theory of integrate-and-fire neurons with strong synaptic coupling. We show how phase-locked states that are stable in the weak coupling regime can destabilize as the coupling is increased, leading to states characterized by spatiotemporal variations in the interspike intervals (ISIs). The dynamics is compared with that of a corresponding network of analog neurons in which the outputs of the neurons are taken to be mean firing rates. A fundamental result is that for slow interactions, there is good agreement between the two models (on an appropriately defined timescale). Various examples of desynchronization in the strong coupling regime are presented. First, a globally coupled network of identical neurons with strong inhibitory coupling is shown to exhibit oscillator death in which some of the neurons suppress the activity of others. However, the stability of the synchronous state persists for very large networks and fast synapses. Second, an asymmetric network with a mixture of excitation and inhibition is shown to exhibit periodic bursting patterns. Finally, a one-dimensional network of neurons with long-range interactions is shown to desynchronize to a state with a spatially periodic pattern of mean firing rates across the network. This is modulated by deterministic fluctuations of the instantaneous firing rate whose size is an increasing function of the speed of synaptic response. PMID:10636934

  5. Stochastic properties of strongly coupled plasmas.

    PubMed

    Morozov, I V; Norman, G E; Valuev, A A

    2001-03-01

    Stochastic properties of equilibrium strongly coupled plasmas are investigated by a molecular dynamics method. The Krylov-Kolmogorov entropy K and the dynamical memory time t(m) are calculated both for electrons and ions with mass ratios 10-10(5). Two values of K entropy for ions are discovered corresponding to electron and ion time scales. The dependence of the K entropy on the number of particles, the nonideality parameter, and the form of the interaction potential is investigated. The problem of the accuracy of molecular dynamics simulations is discussed. A universal relation between Kt(m) and the fluctuation of the total energy of the system is obtained. The relation does not depend on the numerical integration scheme, temperature, density, and the interparticle interaction potential, so that it may be applied to arbitrary dynamic systems. Transition from dynamic to stochastic correlation is treated for both electron and ion velocity autocorrelation functions, for Langmuir and ion-sound plasma wave dynamic structure factors. We point to quantum uncertainty as a physical reason which limits dynamic (Newton) correlation for times greater than t(m). PMID:11308773

  6. Gauge anomalies in an effective field theory

    SciTech Connect

    Preskill, J. )

    1991-09-01

    A four-dimensional gauge theory with anomalous fermion content can be consistently quantized, provided that at least some gauge fields are permitted to have nonvanishing masses. Such a theory is nonrenormalizable; there is a maximal value of the ultraviolet cutoff {Lambda}, beyond which the locality of the theory breaks down. The maximal {Lambda} can be estimated in perturbation theory and has a qualitatively different character in Abelian and non-Abelian anomalous gauge theories.

  7. Gauge fields

    SciTech Connect

    Mills, R.

    1989-06-01

    This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment.

  8. Appearance of gauge structure in simple dynamical systems

    NASA Technical Reports Server (NTRS)

    Wilczek, F.; Zee, A.

    1984-01-01

    By generalizing a construction of Berry and Simon, it is shown that non-Abelian gauge fields arise in the adiabatic development of simple quantum mechanical systems. Characteristics of the gauge fields are related to energy splittings, which may be observable in real systems. Similar phenomena are found for suitable classical systems.

  9. The Fock-Schwinger Gauge in the Bfv Formalism

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Galvão, Carlos A. P.; Gaete, P.

    We consider the implementation of a properly modified form of the Fock-Schwinger gauge condition in a general non-Abelian gauge theory in the context of the BFV formalism. Arguments are presented to justify the necessity of modifying the original Fock-Schwinger condition. The free field propagator and the general Ward identity are also calculated.

  10. Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium

    SciTech Connect

    Bliokh, K. Yu.; Frolov, D. Yu.; Kravtsov, Yu. A.

    2007-05-15

    A theory of electromagnetic wave propagation in a weakly anisotropic smoothly inhomogeneous medium is developed, based on the quantum-mechanical diagonalization procedure applied to Maxwell equations. The equations of motion for the translational (ray) and intrinsic (polarization) degrees of freedom are derived ab initio. The ray equations take into account the optical Magnus effect (spin Hall effect of photons) as well as trajectory variations owing to the medium anisotropy. Polarization evolution is described by the precession equation for the Stokes vector. In the generic case, the evolution of wave turns out to be non-Abelian: it is accompanied by mutual conversion of the normal modes and periodic oscillations of the ray trajectories analogous to electron zitterbewegung. The general theory is applied to examples of wave evolution in media with circular and linear birefringence.

  11. Extended hubbard model with ring exchange: a route to a non-Abelian topological phase.

    PubMed

    Freedman, Michael; Nayak, Chetan; Shtengel, Kirill

    2005-02-18

    We propose an extended Hubbard model on a 2D kagome lattice with an additional ring exchange term. The particles can be either bosons or spinless fermions. We analyze the model at the special filling fraction 1/6, where it is closely related to the quantum dimer model. We show how to arrive at an exactly soluble point whose ground state is the "d-isotopy" transition point into a stable phase with a certain type of non-Abelian topological order. Near the "special" values, d=2cos(pi/(k+2), this topological phase has anyonic excitations closely related to SU(2) Chern-Simons theory at level k. PMID:15783757

  12. Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas

    SciTech Connect

    Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten

    2009-03-15

    We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.

  13. Collective Non-Abelian Instabilities in a Melting Color Glass Condensate

    SciTech Connect

    Romatschke, Paul; Venugopalan, Raju

    2006-02-17

    We present first results for (3+1)D simulations of SU(2) Yang-Mills equations for matter expanding into the vacuum after a heavy ion collision. Violations of boost invariance cause a non-Abelian Weibel instability leading soft modes to grow with proper time {tau} as exp({gamma}{radical}(g{sup 2}{mu}{tau})), where g{sup 2}{mu} is a scale arising from the saturation of gluons in the nuclear wave function. The scale for the growth rate {gamma} is set by a plasmon mass, defined as {omega}{sub pl}={kappa}{sub 0}{radical}(g{sup 2}{mu}/{tau}), generated dynamically in the collision. We compare the numerical ratio {gamma}/{kappa}{sub 0} to the corresponding value predicted by the hard thermal loop formalism for anisotropic plasmas.

  14. Beta function in the non-Abelian Nambu-Jona-Lasinio model in four dimensions

    SciTech Connect

    Alves, Van Sergio; Pinheiro, S. V. L.; Nascimento, Leonardo; Pena, Francisco

    2009-08-15

    In this paper we present the structure of the renormalization group in non-Abelian Nambu-Jona-Lasinio model up to 1-loop order. The model is not perturbatively renormalizable in the usual power counting sense, but it is treated as an effective theory, valid in a scale of energy in which p<<{lambda}, where p is the external momenta of the loop and {lambda} is a massive parameter that characterizes the couplings of the nonrenormalizable vertex. We clarify the tensorial structure of the interaction vertices and calculate the functions of the renormalization group. The analysis of the fixed points of the theory is also presented using Zimmermann's procedure for reducing the coupling constants. We find that the origin is an infrared-stable fixed point at low energies and also there is a nontrivial ultraviolet stable fixed point, indicating that the theory could be perturbatively investigated in the low momentum regime.

  15. Robustness of non-Abelian holonomic quantum gates against parametric noise

    SciTech Connect

    Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo

    2004-10-01

    We present a numerical study of the robustness of a specific class of non-Abelian holonomic quantum gates. We take into account the parametric noise due to stochastic fluctuations of the control fields which drive the time-dependent Hamiltonian along an adiabatic loop. The performance estimator used is the state fidelity between noiseless and noisy holonomic gates. We carry over our analysis with different correlation times and we find out that noisy holonomic gates seem to be close to the noiseless ones for 'short' and 'long' noise correlation times. This result can be interpreted as a consequence of the geometric nature of the holonomic operator. Our simulations have been performed by using parameters relevant to the excitonic proposal for the implementation of holonomic quantum computation [P. Solinas et al., Phys. Rev. B 67, 121307 (2003)].

  16. Fields in nonaffine bundles. IV. Harmonious non-Abelian currents in string defects

    NASA Astrophysics Data System (ADS)

    Carter, Brandon

    2010-11-01

    This article continues the study of the category of harmonious field models that was recently introduced as a kinetically nonlinear generalization of the well-known harmonic category of multiscalar fields over a supporting brane world sheet in a target space with a curved Riemannian metric. Like the perfectly harmonious case of which a familiar example is provided by ordinary barotropic perfect fluids, another important subcategory is the simply harmonious case, for which it is shown that as well as “wiggle” modes of the underlying brane world sheet, and sound type longitudinal modes, there will also be transverse shake modes that propagate at the speed of light. Models of this type are shown to arise from a non-Abelian generalization of the Witten mechanism for conducting string formation by ordinary scalar fields with a suitable quartic self-coupling term in the action.

  17. On the effective character of a non-abelian DBI action

    NASA Astrophysics Data System (ADS)

    Osorio, M. A. R.; Suárez, M.

    2001-03-01

    We study the way Lorentz covariance can be reconstructed from Matrix Theory as a IMF description of M-theory. The problem is actually related to the interplay between a non-abelian Dirac-Born-Infeld action and Super-Yang-Mills as its generalized non-relativistic approximation. All this physics shows up by means of an analysis of the asymptotic expansion of the Bessel functions Kν that profusely appear in the computations of amplitudes at finite temperature and solitonic calculations. We hope this might help to better understand the issue of getting a Lorentz covariant formulation in relation with the /N-->+∞ limit. There are also some computations that could be of some interest in Relativistic Statistical Mechanics.

  18. Effective models of doped quantum ladders of non-Abelian anyons

    NASA Astrophysics Data System (ADS)

    Soni, Medha; Troyer, Matthias; Poilblanc, Didier

    2016-01-01

    Quantum spin models have been studied extensively in one and higher dimensions. Furthermore, these systems have been doped with holes to study t -J models of SU (2 ) spin-1/2. Their anyonic counterparts can be built from non-Abelian anyons, such as Fibonacci anyons described by SU (2) 3 theories, which are quantum deformations of the SU (2 ) algebra. Inspired by the physics of SU (2 ) spins, several works have explored ladders of Fibonacci anyons and also one-dimensional (1D) t -J models. Here, we aim to explore the combined effects of extended dimensionality and doping by studying ladders composed of coupled chains of interacting itinerant Fibonacci anyons. We show analytically that in the limit of strong rung couplings these models can be mapped onto effective 1D models. These effective models can either be gapped models of hole pairs, or gapless models described by t -J (or modified t -J -V ) chains of Fibonacci anyons, whose spectrum exhibits a fractionalization into charge and anyon degrees of freedom. The charge degrees of freedom are described by the hardcore boson spectra while the anyon sector is given by a chain of localized interacting anyons. By using exact diagonalizations for two-leg and three-leg ladders, we show that indeed the doped ladders show exactly the same behavior as that of t -J chains. In the strong ferromagnetic rung limit, we can obtain a new model that hosts two different kinds of Fibonacci particles, which we denote as the heavy τ 's and light τ 's. These two particle types carry the same (non-Abelian) topological charge but different (Abelian) electric charges. Once again, we map the two-dimensional ladder onto an effective chain carrying these heavy and light τ 's. We perform a finite size scaling analysis to show the appearance of gapless modes for certain anyon densities, whereas a topological gapped phase is suggested for another density regime.

  19. Electrostatic control of spin polarization in a quantum Hall ferromagnet: a new platform to realize non-Abelian excitations

    NASA Astrophysics Data System (ADS)

    Kazakov, Alexander; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid

    2015-03-01

    Several experiments detected signatures of Majorana fermions in nanowires, and the focus of current research is shifting toward systems where non-Abelian statistics of excitations can be demonstrated. To achieve this goal we are developing a new platform where non-Abelian excitations can be created and manipulated in a two-dimensional plane, with support for Majorana and higher order non-Abelian excitations. The system is based on CdTe quantum wells non-uniformly doped with paramagnetic impurities, which result in a complicate field-dependence of Zeeman splitting. A unique property of the system is that at high fields we can form a quantum Hall ferromagnet with gate-controllable spin polarization. Helical 1D edge channels formed along the edges of electrostatic gates may support generalized non-Abelian excitations in the fractional qunatum Hall regime, and Majorana and parafermion excitations in the presence of induced superconductivity. We will present results on the gate control of s-d exchange in specially designed heterostructures, demonstrate gate control of spin polarization at filling factor ν = 2 , and show spatial separation of quantum Hall states with different spin polarization using lithographically defined gates.

  20. Supersymmetric QCD: exact results and strong coupling

    NASA Astrophysics Data System (ADS)

    Dine, Michael; Festuccia, Guido; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao

    2011-05-01

    We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius β, due to infrared effects, finite contributions indeed arise which are not visible in the formal β → ∞ limit.

  1. Renormalization effects on the MSSM from a calculable model of a strongly coupled hidden sector

    SciTech Connect

    Arai, Masato; Okada, Nobuchika

    2011-10-01

    We investigate possible renormalization effects on the low-energy mass spectrum of the minimal supersymmetric standard model (MSSM), using a calculable model of strongly coupled hidden sector. We model the hidden sector by N=2 supersymmetric quantum chromodynamics with gauge group SU(2)xU(1) and N{sub f}=2 matter hypermultiplets, perturbed by a Fayet-Iliopoulos term which breaks the supersymmetry down to N=0 on a metastable vacuum. In the hidden sector the Kaehler potential is renormalized. Upon identifying a hidden sector modulus with the renormalization scale, and extrapolating to the strongly coupled regime using the Seiberg-Witten solution, the contribution from the hidden sector to the MSSM renormalization group flows is computed. For concreteness, we consider a model in which the renormalization effects are communicated to the MSSM sector via gauge mediation. In contrast to the perturbative toy examples of hidden sector renormalization studied in the literature, we find that our strongly coupled model exhibits rather intricate effects on the MSSM soft scalar mass spectrum, depending on how the hidden sector fields are coupled to the messenger fields. This model provides a concrete example in which the low-energy spectrum of MSSM particles that are expected to be accessible in collider experiments is obtained using strongly coupled hidden sector dynamics.

  2. Classical and quantum distinctions between weak and strong coupling

    NASA Astrophysics Data System (ADS)

    Rahimzadeh-Kalaleh Rodriguez, Said

    2016-03-01

    Coupled systems subject to dissipation exhibit two different regimes known as weak coupling and strong coupling. Two damped coupled harmonic oscillators (CHOs) constitute a model system where the key features of weak and strong coupling can be identified. Several of these features are common to classical and quantum systems, as a number of quantum-classical correspondences have shown. However, the condition defining the boundary between weak and strong coupling is distinct in classical and quantum formalisms. Here we describe the origin of two widely used definitions of strong coupling. Using a classical CHO model, we show that energy exchange cycles and avoided resonance crossings signal the onset of strong coupling according to one criterion. From the classical CHO model we derive a non-Hermitian Hamiltonian describing open quantum systems. Based on the analytic properties of the Hamiltonian, we identify the boundary between weak and strong coupling with a different feature: a non-Hermitian degeneracy known as the exceptional point. For certain parameter ranges the classical and quantum criterion for strong coupling coincide; for other ranges they do not. Examples of systems in strong coupling according to one or another criterion, but not both, are illustrated. The framework here presented is suitable for introducing graduate or advanced undegraduate students to the basic properties of strongly coupled systems, as well as to the similarities and subtle differences between classical and quantum descriptions of coupled dissipative systems.

  3. Equilibration Rates in a Strongly Coupled Nonconformal Quark-Gluon Plasma.

    PubMed

    Buchel, Alex; Heller, Michal P; Myers, Robert C

    2015-06-26

    We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as the energy-momentum tensor. In each case, the lowest quasinormal frequency, which provides an approximate upper bound on the thermalization time, is proportional to temperature, up to a prefactor with only a mild temperature dependence. We find similar behavior in other holographic plasmas, where the model contains an additional scale beyond the temperature. Hence, our study suggests that the thermalization time is generically set by the temperature, irrespective of any other scales, in strongly coupled gauge theories. PMID:26197117

  4. Plasma transport theory spanning weak to strong coupling

    SciTech Connect

    Daligault, Jérôme; Baalrud, Scott D.

    2015-06-29

    We describe some of the most striking characteristics of particle transport in strongly coupled plasmas across a wide range of Coulomb coupling strength. We then discuss the effective potential theory, which is an approximation that was recently developed to extend conventional weakly coupled plasma transport theory into the strongly coupled regime in a manner that is practical to evaluate efficiently.

  5. Dynamics of symmetry breaking in strongly coupled QED

    SciTech Connect

    Bardeen, W.A.

    1988-10-01

    I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs.

  6. Numerical characterization of non-Abelian Moore-Read state in the microscopic lattice boson model

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Gong, Shoushu; Haldane, F. D. M.; Sheng, D. N.

    2015-03-01

    Identifying the interacting systems that host the non-Abelian (NA) topological phases have attracted intense attention in physics. Theoretically, it is possible to realize the NA Moore-Read (MR) state in bosonic system or double-layer system by coupling two Abelian fractional quantum Hall (FQH) states together. Here, based on the density matrix renormalization group and exact diagonalization calculations, we study two such examples in the microscopic lattice models and investigate their NA nature. In the first example, we provide a thorough characterization of the universal properties of MR state on Haldane honeycomb lattice model, including both the edge spectrum and the bulk anyonic quasiparticle statistics. By inspecting the entanglement spectral response to the U (1) flux, it is found that two of Abelian ground states can be adiabatically connected through a charge unit quasiparticle pumping from one edge to the other. In the second example, we study a double-layer bosonic FQH system built from the π-flux lattice model. Some evidences of NA nature has been identified, including the groundstate degeneracy and finite drag Hall conductance. The numerical methods we developed here provides a useful and practical way for detecting the full information of NA topological order. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46305.

  7. Spin correlations and topological entanglement entropy in a non-Abelian spin-one spin liquid

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia; Bonesteel, N. E.

    2016-07-01

    We analyze the properties of a non-Abelian spin-one chiral spin liquid state proposed by Greiter and Thomale [Phys. Rev. Lett. 102, 207203 (2009), 10.1103/PhysRevLett.102.207203] using Monte Carlo. In this state the bosonic ν =1 Moore-Read Pfaffian wave function is used to describe a gas of bosonic spin flips on a square lattice with one flux quantum per plaquette. For toroidal geometries there is a three-dimensional space of these states corresponding to the topological degeneracy of the bosonic Moore-Read state on the torus. We show that spin correlations for different states in this space become indistinguishable for large system size. We also calculate the Renyi entanglement entropy for different system partitions to extract the topological entanglement entropy and provide evidence that the topological order of the lattice spin-liquid state is the same as that of the continuum Moore-Read state from which it is constructed.

  8. Index theorem and Majorana zero modes along a non-Abelian vortex in a color superconductor

    SciTech Connect

    Fujiwara, Takanori; Fukui, Takahiro; Nitta, Muneto; Yasui, Shigehiro

    2011-10-01

    Color superconductivity in high-density QCD exhibits the color-flavor-locked phase. To explore zero modes in the color-flavor-locked phase in the presence of a non-Abelian vortex with an SU(2) symmetry in the vortex core, we apply the index theorem to the Bogoliubov-de Gennes (BdG) Hamiltonian. From the calculation of the topological index, we find that triplet, doublet and singlet sectors of SU(2) have certain number of chiral Majorana zero modes in the limit of vanishing chemical potential. We also solve the BdG equation by the use of the series expansion to show that the number of zero modes and their chirality match the result of the index theorem. From particle-hole symmetry of the BdG Hamiltonian, we conclude that if and only if the index of a given sector is odd, one zero mode survives generically for a finite chemical potential. We argue that this result should hold nonperturbatively even in the high-density limit.

  9. Velocity-dependent models for non-Abelian/entangled string networks

    SciTech Connect

    Avgoustidis, A.; Shellard, E. P. S.

    2008-11-15

    We develop velocity-dependent models describing the evolution of string networks that involve several types of interacting strings, each with a different tension. These incorporate the formation of Y-type junctions with links stretching between colliding strings, while always ensuring energy conservation. These models can be used to describe network evolution for non-Abelian strings as well as cosmic superstrings. The application to Z{sub N} strings in which interactions are topologically constrained, demonstrates that a scaling regime is generally reached which involves a hierarchy of string densities with the lightest most abundant. We also study hybrid networks of cosmic superstrings, where energetic considerations are more important in determining interaction outcomes. We again find that networks tend towards scaling, with the three lightest network components being dominant and having comparable number densities, while the heavier string states are suppressed. A more quantitative analysis depends on the precise calculation of the string interaction matrix using the underlying string or field theory. Nevertheless, these results provide further evidence that the presence of junctions in a string network does not obstruct scaling.

  10. Non-Abelian phases in two-component ν =2 /3 fractional quantum Hall states: Emergence of Fibonacci anyons

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Vaezi, Abolhassan; Lee, Kyungmin; Kim, Eun-Ah

    2015-08-01

    Recent theoretical insights into the possibility of non-Abelian phases in ν =2 /3 fractional quantum Hall states revived the interest in the numerical phase diagram of the problem. We investigate the effect of various kinds of two-body interlayer couplings on the (330) bilayer state and exactly solve the Hamiltonian for up to 14 electrons on sphere and torus geometries. We consider interlayer tunneling, short-ranged repulsive/attractive pseudopotential interactions, and Coulomb repulsion. We find a 6-fold ground-state degeneracy on the torus when the interlayer hollow-core interaction is dominant. To identify the topological nature of this phase we measure the orbital-cut entanglement spectrum, quasihole counting, topological entanglement entropy, and wave-function overlap. Comparing the numerical results to the theoretical predictions, we interpret this 6-fold ground-state degeneracy phase to be the non-Abelian bilayer Fibonacci state.

  11. Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time

    SciTech Connect

    Medeiros, D. M.; Landim, R. R.; Almeida, C. A. S.

    2001-06-15

    Starting from a recently proposed Abelian topological model in 2+1 dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for the generalization is detected. However, we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore, in order to quantize the theory, we construct a complete set of Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST equations using the horizontality condition.

  12. Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2013-03-22

    Non-Abelian gauge theories play an important role in the standard model of particle physics, and unfold a partially unexplored world of exciting physical phenomena. In this Letter, we suggest a realization of a non-Abelian lattice gauge theory-SU(2) Yang-Mills in (1 + 1) dimensions, using ultracold atoms. Remarkably, and in contrast to previous proposals, in our model gauge invariance is a direct consequence of angular momentum conservation and thus is fundamental and robust. Our proposal may serve as well as a starting point for higher-dimensional realizations. PMID:25166817

  13. A topological semimetal model with f-wave symmetry in a non-Abelian triangular optical lattice

    NASA Astrophysics Data System (ADS)

    Li, Ling; Bai, Zhiming; Hao, Ningning; Liu, Guocai

    2016-08-01

    We demonstrate that an chiral f-wave topological semimetal can be induced in a non-Abelian triangular optical lattice. We show that the f-wave symmetry topological semimetal is characterized by the topological invariant, i.e., the winding number W, with W=3 and is different from the semimetal with W=1 and 2 which have the p-wave and d-wave symmetry, respectively.

  14. Competing Abelian and non-Abelian topological orders in ν =1 /3 +1 /3 quantum Hall bilayers

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott; Zaletel, Michael P.; Papić, Zlatko; Mong, Roger S. K.

    2015-05-01

    Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two subbands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the problem of quantum Hall bilayers at filling ν =1 /3 +1 /3 . We first consider the Coulomb interaction at bilayer separation d , bilayer tunneling energy ΔSAS, and individual layer width w , where we find a phase diagram which includes three competing Abelian phases: a bilayer Laughlin phase (two nearly decoupled ν =1 /3 layers), a bilayer spin-singlet phase, and a bilayer symmetric phase. We also study the order of the transitions between these phases. A variety of non-Abelian phases has also been proposed for these systems. While absent in the simplest phase diagram, by slightly modifying the interlayer repulsion we find a robust non-Abelian phase which we identify as the "interlayer-Pfaffian" phase. In addition to non-Abelian statistics similar to the Moore-Read state, it exhibits a novel form of bilayer-spin charge separation. Our results suggest that ν =1 /3 +1 /3 systems merit further experimental study.

  15. Parity anomalies in gauge theories in 2 + 1 dimensions

    SciTech Connect

    Rao, S.; Yahalom, R.

    1986-01-01

    We show that the introduction of massless fermions in an abelian gauge theory in 2+1 dimensions does not lead to any parity anomaly despite a non-commutativity of limits in the structure function of the odd part of the vacuum polarization tensor. However, parity anomaly does exist in non-abelian theories due to a conflict between gauge invariance under large gauge transformations and the parity symmetry. 6 refs.

  16. Gauge-flation and cosmic no-hair conjecture

    SciTech Connect

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro E-mail: jabbari@theory.ipm.ac.ir

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  17. Composite gauge-bosons made of fermions

    NASA Astrophysics Data System (ADS)

    Suzuki, Mahiko

    2016-07-01

    We construct a class of Abelian and non-Abelian local gauge theories that consist only of matter fields of fermions. The Lagrangian is local and does not contain an auxiliary vector field nor a subsidiary condition on the matter fields. It does not involve an extra dimension nor supersymmetry. This Lagrangian can be extended to non-Abelian gauge symmetry only in the case of SU(2) doublet matter fields. We carry out an explicit diagrammatic computation in the leading 1 /N order to show that massless spin-one bound states appear with the correct gauge coupling. Our diagram calculation exposes the dynamical features that cannot be seen in the formal auxiliary vector-field method. For instance, it shows that the s -wave fermion-antifermion interaction in the 3S1 channel (ψ ¯ γμψ ) alone cannot form the bound gauge bosons; the fermion-antifermion pairs must couple to the d -wave state too. One feature common to our class of Lagrangian is that the Noether current does not exist. Therefore it evades possible conflict with the no-go theorem of Weinberg and Witten on the formation of the non-Abelian gauge bosons.

  18. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  19. Strongly-coupled plasmas formed from laser-heated solids.

    PubMed

    Lyon, M; Bergeson, S D; Hart, G; Murillo, M S

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  20. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect

    Das, Amita; Kaw, Predhiman

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  1. Nonlocal Hamiltonian gauge theories and their connection with lattice Hamiltonians

    SciTech Connect

    Ktorides, C.N.; Mavromatos, N.E.

    1985-06-15

    We introduce the concept of primitive Hamiltonian density for nonlocal Abelian gauge theories. We subsequently study the local limit both with respect to the continuum and with respect to a lattice structure introduced via hypercubic cells. The non-Abelian case is also discussed.

  2. How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Nag, Amit; Sau, Jay D.

    2016-07-01

    We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires: can the measured nonideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity? In particular, we define and calculate the topological visibility, which is a variation of the topological invariant associated with the scattering matrix of the system as well as the zero-bias-conductance-peak heights in the tunneling measurements, in the presence of dissipative broadening, using precisely the same realistic nanowire parameters to connect the topological invariants with the zero-bias tunneling conductance values. This dissipative broadening is present in both (the existing) tunneling measurements and also (any future) braiding experiments as an inevitable consequence of a finite braiding time. The connection between the topological visibility and the conductance allows us to obtain the visibility of realistic braiding experiments in nanowires, and to conclude that the current experimentally accessible systems with nonideal zero-bias conductance peaks may indeed manifest (with rather low visibility) non-Abelian statistics for the Majorana zero modes. In general, we find that a large (small) superconducting gap (Majorana peak splitting) is essential for the manifestation of the non-Abelian braiding statistics, and in particular, a zero-bias conductance value of around half the ideal quantized Majorana value should be sufficient for the manifestation of non-Abelian statistics in experimental nanowires. Our work also establishes that as a matter of principle the topological transition associated with the emergence of Majorana zero modes in finite nanowires is always a crossover (akin to a quantum phase transition at finite temperature) requiring the presence of dissipative broadening (which must be larger than the Majorana energy

  3. Strong coupling of optical nanoantennas and atomic systems

    NASA Astrophysics Data System (ADS)

    Słowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C.

    2013-11-01

    An optical nanoantenna and adjacent atomic systems are strongly coupled when an excitation is repeatedly exchanged between these subsystems prior to its eventual dissipation into the environment. It remains challenging to reach the strong-coupling regime but it is equally rewarding. Once they are achieved, promising applications such as signal processing at the nanoscale and at the single-photon level would immediately become available. Here, we study such hybrid configuration from different perspectives. The configuration we consider consists of two identical atomic systems, described in a two-level approximation, which are strongly coupled to an optical nanoantenna. First, we investigate when this hybrid system requires a fully quantum description, and we provide a simple analytical criterion. Second, a design for a nanoantenna is presented that enables the strong-coupling regime. In addition to a vivid time evolution, the strong coupling is documented in experimentally accessible quantities, such as the extinction spectra. The latter are shown to be strongly modified if the hybrid system is weakly driven and operates in the quantum regime. We find that the extinction spectra depend sensitively on the number of atomic systems coupled to the nanoantenna.

  4. Gluon production from non-Abelian Weizsäcker-Williams fields in nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; McLerran, Larry; Weigert, Heribert

    1995-12-01

    We consider the collisions of large nuclei using the theory of McLerran and Venugopalan. The two nuclei are ultrarelativistic and sources of non-Abelian Weizs¨acker-Williams fields. These sources are in the end averaged over all color orientations locally with a Gaussian weight. We show that there is a solution of the equations of motion for the two nucleus scattering problem where the fields are time and rapidity independent before the collision. After the collision the solution depends on proper time, but is independent of rapidity. We show how to extract the produced gluons from the classical evolution of the fields.

  5. A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space

    SciTech Connect

    Le, Van-Hoang; Nguyen, Thanh-Son

    2011-03-15

    We establish an explicit form of a non-Abelian SO(8) monopole in a 9-dimensional space and show that it is indeed a direct generalization of Dirac and Yang monopoles. Using the generalized Hurwitz transformation, we have found a connection between a 16-dimensional harmonic oscillator and a 9-dimensional hydrogenlike atom in the field of the SO(8) monopole (MICZ-Kepler problem). Using the built connection the group of dynamical symmetry of the 9-dimensional MICZ-Kepler problem is found as SO(10, 2).

  6. Collective dynamics in strongly coupled dusty plasma medium

    NASA Astrophysics Data System (ADS)

    Das, Amita; Dharodi, Vikram; Tiwari, Sanat; Tiwari

    2014-12-01

    A simplified description of dynamical response of strongly coupled medium is desirable in many contexts of physics. The dusty plasma medium can play an important role in this regard due to its uniqueness, as its dynamical response typically falls within the perceptible grasp of human senses. Furthermore, even at room temperature and normal densities it can be easily prepared to be in a strongly coupled regime. A simplified phenomenological fluid model based on the visco - elastic behaviour of the medium is often invoked to represent the collective dynamical response of a strongly coupled dusty plasma medium. The manuscript reviews the role of this particular Generalized Hydrodynamic (GHD) fluid model in capturing the collective properties exhibited by the medium. In addition the paper also provides new insights on the collective behaviour predicted by the model for the medium, in terms of coherent structures, instabilities, transport and mixing properties.

  7. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order. PMID:25375704

  8. Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling

    SciTech Connect

    Dixon, Lance J.; /SLAC

    2008-03-25

    I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.

  9. Running coupling and fermion mass in strong coupling QED3+1

    NASA Astrophysics Data System (ADS)

    Sauli, Vladimír

    2004-06-01

    A simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solutions obtained separately in Euclidean and Minkowski space were compared. The latter one was extracted with the help of spectral technique.

  10. Hamilton-Jacobi solutions for strongly coupled gravity and matter

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.

    1998-05-01

    A Green function method is developed for solving strongly coupled gravity and matter in the semiclassical limit. In the strong-coupling limit, one assumes that Newton's constant approaches infinity, 0264-9381/15/5/009/img1. As a result, one may neglect second-order spatial gradients, and each spatial point evolves like a homogeneous universe. After constructing the Green function solution to the Hamiltonian constraint, the momentum constraint is solved using functional methods in conjunction with the superposition principle for Hamilton-Jacobi theory. Exact and approximate solutions are given for a dust field or a scalar field interacting with gravity.

  11. Establishing non-Abelian topological order in Gutzwiller-projected Chern insulators via entanglement entropy and modular S-matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Vishwanath, Ashvin

    2013-04-01

    We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.

  12. Topological characterization of the non-Abelian Moore-Read state using density-matrix renormalization group

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Haldane, F. D. M.; Sheng, D. N.

    2015-10-01

    The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on a density-matrix renormalization-group calculation, we provide a complete characterization of the universal properties of the bosonic Moore-Read state on a Haldane honeycomb lattice model at filling number ν =1 for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through simulating a flux-inserting experiment, it is found that two of the Abelian ground states can be adiabatically connected, whereas the ground state in the Ising anyon sector evolves back to itself, which reveals the fusion rules between different QPs in real space. Furthermore, we calculate the modular matrices S and U , which contain all the information for the anyonic QPs, such as quantum dimensions, fusion rule, and topological spins.

  13. Anyonic Symmetries and Non-Abelian Topological Defects of Bosonic Abelian Fractional Quantum (Spin) Hall States in the ADE Classification

    NASA Astrophysics Data System (ADS)

    Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor

    2014-03-01

    We consider bosonic abelian Fractional Quantum Hall (FQH) and Fractional Quantum Spin Hall (FQSH) states with edge theories drawn from the ADE Kac Moody algebras at level 1 . This set of systems have `anyonic' symmetries that leave braiding and fusion invariant Remarkably, the group of anyonic symmetries for this class of models is isomorphic to the symmetries of the Dynkin diagrams of the particular ADE Lie Algebra under consideration. The triality symmetry of the Dynkin diagram of so(8) leads to the largest anyonic symmetry group S3 (the permutation group on 3 elements). Each element of the anyonic symmetry group corresponds to a distinct way of gapping out the edge (i.e., each element corresponds to a Lagrangian subgroup). Junctions between two distinct gapped edges host non abelian twist defects with quantum dimensions (> 1). In the case of so(8) we have more exotic twist defects with non-abelian fusion. We acknowledge support from the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02- 07ER46453 (MK, TLH) and the Simons Foundation (JT).

  14. Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2.

    PubMed

    Willett, R L; Nayak, C; Shtengel, K; Pfeiffer, L N; West, K W

    2013-11-01

    We show that the resistance of the ν = 5/2 quantum Hall state, confined to an interferometer, oscillates with the magnetic field consistent with an Ising-type non-Abelian state. In three quantum Hall interferometers of different sizes, resistance oscillations at ν = 7/3 and integer filling factors have the magnetic field period expected if the number of quasiparticles contained within the interferometer changes so as to keep the area and the total charge within the interferometer constant. Under these conditions, an Abelian state such as the (3, 3, 1) state would show oscillations with the same period as at an integer quantum Hall state. However, in an Ising-type non-Abelian state there would be a rapid oscillation associated with the "even-odd effect" and a slower one associated with the accumulated Abelian phase due to both the Aharonov-Bohm effect and the Abelian part of the quasiparticle braiding statistics. Our measurements at ν = 5/2 are consistent with the latter. PMID:24237543

  15. Fractional Quantum Hall States at ν =13 /5 and 12 /5 and Their Non-Abelian Nature

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Haldane, F. D. M.; Sheng, D. N.

    2015-09-01

    Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The fractional quantum Hall (FQH) state at a filling factor of ν =12 /5 is a promising candidate; however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν =13 /5 state and its particle-hole conjugate state at 12 /5 with the Coulomb interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix renormalization group calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν =13 /5 and 12 /5 is captured by the k =3 parafermion Read-Rezayi state (RR3), including a robust excitation gap and the topological fingerprint from the entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR3 state at 13 /5 and 12 /5 filling numbers.

  16. The Fractional Quantum Hall States at ν = 13 / 5 and 12 / 5 and their Non-Abelian Nature

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Sheng, D. N.

    Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for their exotic fundamental physics and potential applications in universal quantum computing. The fractional quantum Hall (FQH) state at filling factor ν = 12 / 5 is such a promising candidate, however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν = 13 / 5 state and its particle-hole conjugate state at 12 / 5 with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν = 13 / 5 and 12 / 5 is captured by the k = 3 parafermion Read-Rezayi state (RR3), including a robust excitation gap and the topological fingerprint from entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR3 state at 13 / 5 and 12 / 5 filling numbers. This work is supported by the DOE Grants No. DE-FG02-06ER46305, DE-SC0002140, and the NSF Grant No. DMR-1408560.

  17. Fractional Quantum Hall States at ν=13/5 and 12/5 and Their Non-Abelian Nature.

    PubMed

    Zhu, W; Gong, S S; Haldane, F D M; Sheng, D N

    2015-09-18

    Topological quantum states with non-Abelian Fibonacci anyonic excitations are widely sought after for the exotic fundamental physics they would exhibit, and for universal quantum computing applications. The fractional quantum Hall (FQH) state at a filling factor of ν=12/5 is a promising candidate; however, its precise nature is still under debate and no consensus has been achieved so far. Here, we investigate the nature of the FQH ν=13/5 state and its particle-hole conjugate state at 12/5 with the Coulomb interaction, and we address the issue of possible competing states. Based on a large-scale density-matrix renormalization group calculation in spherical geometry, we present evidence that the essential physics of the Coulomb ground state (GS) at ν=13/5 and 12/5 is captured by the k=3 parafermion Read-Rezayi state (RR_{3}), including a robust excitation gap and the topological fingerprint from the entanglement spectrum and topological entanglement entropy. Furthermore, by considering the infinite-cylinder geometry (topologically equivalent to torus geometry), we expose the non-Abelian GS sector corresponding to a Fibonacci anyonic quasiparticle, which serves as a signature of the RR_{3} state at 13/5 and 12/5 filling numbers. PMID:26431006

  18. Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via Entanglement Entropy and Modular S-matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Vishwanath, Ashvin

    2013-03-01

    We use entanglement entropy signatures to establish non-Abelian topological order in a new class of ground states, the projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2 which may also be viewed as the square of the band insulator Slater determinant. We demonstrate that this wave function is captured by the SU(2)2 Chern Simons theory coupled to fermions. In addition to the expected torus degeneracy and topological entanglement entropy, we also show that the modular S-matrix, extracted from entanglement entropy calculations, provides direct access to the peculiar non-Abelian braiding statistics of Majorana fermions in this state. We also provide microscopic evidence for the generalization (expected from the field theory), that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern Simons theory coupled to fermions, by studying the SU(2)3 and the SU(3)2 wave functions. An advantage of projected Chern insulator wave functions over lowest Landau level wave functions for the same phases is the relative ease with which physical properties, such as entanglement entropy, can be numerically calculated using Monte Carlo techniques.

  19. Visco-elastic effects in strongly coupled dusty plasmas

    SciTech Connect

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2008-09-07

    We report on experimental evidence of visco-elastic effects in a strongly coupled dusty plasma through investigations of the propagation characteristics of low frequency dust acoustic waves and by excitations of transverse shear waves in a DC discharge Argon plasma.

  20. Beam-Plasma Instabilities in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Kalman, Gabor J.; Rosenberg, Marlene

    2001-10-01

    Strongly coupled dusty plasmas under laboratory conditions are permeated by streaming ions: in this scenario beam- plasma instabilities may be excited. The strong coupling between the dust grains, however, fundamentally affects the condition for instability and renders the conventional Vlasov treatment entirely inadequate. Based on the Quasilocalized Charge Approximation [1,2,3] we develop an analysis of instabilities generated by the relative streaming of a weakly coupled and a strongly coupled plasma. The central role in this formalism is played by the Dynamical Matrix D(k), a functional of the equilibrium correlation function, determined in our earlier work [2,3]. Novel physical effects generated by strong coupling alter both the beam resonance condition and the coupling between the beam and the plasma modes. Our analysis covers both resonant and non-resonant, as well as resistive instabilities. [1] Kenneth I. Golden and Gabor J. Kalman, Phys. Plasmas, 7, 14 (2000) [2] M. Rosenberg and G. Kalman, Phys. Rev. E 56, 7166 (1997) [3] G. Kalman, M.Rosenberg and H. E. DeWitt, Phys. Rev Lett. 84, 6030 (2000)

  1. Practical thermodynamics of Yukawa systems at strong coupling

    SciTech Connect

    Khrapak, Sergey A.; Kryuchkov, Nikita P.; Yurchenko, Stanislav O.; Thomas, Hubertus M.

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.

  2. SOLITONS: Dynamics of strong coupling formation between laser solitons

    NASA Astrophysics Data System (ADS)

    Rosanov, Nikolai N.; Fedorov, S. V.; Shatsev, A. N.

    2005-03-01

    The dynamics of the strong coupling formation between two solitons with the unit topological charge is studied in detail for a wide-aperture class A laser. The sequence of bifurcations of the vector field of energy fluxes in the transverse plane was demonstrated during the formation of a soliton complex.

  3. Advances in Dusty Plasmas 5.Strongly Coupled Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    We review thermodynamical and dynamical properties of strongly coupled dusty plasmas, focusing on the recent development of molecular dynamics (MD) simulations. In the present paper, dusty plasmas are modeled by the Yukawa system, which is a collection of particles interacting through Yukawa (i.e., screened Coulomb) potentials. The phase diagram, wave dispersion relations and some transport coefficients of Yukawa systems are discussed.

  4. Strong coupling between surface plasmon polaritons and emitters: a review.

    PubMed

    Törmä, P; Barnes, W L

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science. PMID:25536670

  5. Strong coupling between surface plasmon polaritons and emitters: a review

    NASA Astrophysics Data System (ADS)

    Törmä, P.; Barnes, W. L.

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

  6. Practical thermodynamics of Yukawa systems at strong coupling.

    PubMed

    Khrapak, Sergey A; Kryuchkov, Nikita P; Yurchenko, Stanislav O; Thomas, Hubertus M

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed. PMID:26001480

  7. Noether's therorem for local gauge transformations

    SciTech Connect

    Karatas, D.L.; Kowalski, K.L.

    1989-05-22

    The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current. This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs.

  8. On Pauli's Invention of Non-Abelian Kaluza-Klein Theory in 1953

    NASA Astrophysics Data System (ADS)

    Straumann, N.

    2002-12-01

    There are documents which show that Wolfgang Pauli developed in 1953 the first consistent generalization of the five-dimensional theory of Kaluza, Klein, Fock and others to a higher dimensional internal space. Because he saw no way to give masses to the gauge bosons, he refrained from publishing his results formally.

  9. "Wormhole" geometry for entrapping topologically protected qubits in non-abelian quantum hall states and probing them with voltage and noise measurements.

    PubMed

    Hou, Chang-Yu; Chamon, Claudio

    2006-10-01

    We study a tunneling geometry defined by a single point-contact constriction that brings to close vicinity two points sitting at the same edge of a quantum Hall liquid, shortening the trip between the otherwise spatially separated points along the normal chiral edge path. This wormhole-like geometry allows for entrapping bulk quasiparticles between the edge path and the tunnel junction, possibly realizing a topologically protected qubit if the quasiparticles have non-Abelian statistics. We show how either noise or simpler voltage measurements along the edge can probe the non-Abelian nature of the trapped quasiparticles. PMID:17155280

  10. Energy Exchange in Driven Open Quantum Systems at Strong Coupling.

    PubMed

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-17

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367

  11. Measurement of the strong coupling constant using τ decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  12. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  13. Collinear limit of scattering amplitudes at strong coupling.

    PubMed

    Basso, Benjamin; Sever, Amit; Vieira, Pedro

    2014-12-31

    In this Letter, we consider the collinear limit of gluon scattering amplitudes in planar N=4 super-Yang-Mills theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional nonlinear O(6) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string world-sheet picture and the predictions coming from the operator product expansion series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere. PMID:25615305

  14. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect

    Hu, S.X.; Militzer, B.; Goncharov, V.N.; Skupsky, S.

    2010-06-10

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of rho = 0.002–1596 g/cm^3 and T = 1.35 eV–5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density, and neutron yield relative to SESAME simulations.

  15. Cosmological constraints on strongly coupled moduli from cosmic strings

    SciTech Connect

    Sabancilar, Eray

    2010-06-15

    Cosmic (super)string loops emit moduli as they oscillate under the effect of their tension. Abundance of such moduli is constrained by diffuse gamma ray background, dark matter, and primordial element abundances if their lifetime is of the order of the relevant cosmic time. It is shown that the constraints on string tension G{mu} and modulus mass m are significantly relaxed for moduli coupling to matter stronger than gravitational strength which appears to be quite generic in large volume and warped compactification scenarios in string theory. It is also shown that thermal production of strongly coupled moduli is not efficient, hence free from constraints. In particular, the strongly coupled moduli in warped and large volume compactification scenarios and the radial modulus in the Randall-Sundrum model are found to be free from the constraints when their coupling constant is sufficiently large.

  16. Resurgence and holomorphy: From weak to strong coupling

    SciTech Connect

    Cherman, Aleksey; Koroteev, Peter; Ünsal, Mithat

    2015-05-15

    We analyze the resurgence properties of finite-dimensional exponential integrals which are prototypes for partition functions in quantum field theories. In these simple examples, we demonstrate that perturbation theory, even at arbitrarily weak coupling, fails as the argument of the coupling constant is varied. It is well-known that perturbation theory also fails at stronger coupling. We show that these two failures are actually intimately related. The formalism of resurgent transseries, which takes into account global analytic continuation properties, fixes both problems and provides an arbitrarily accurate description of exact result for any value of coupling. This means that strong coupling results can be deduced by using merely weak coupling data. Finally, we give another perspective on resurgence theory by showing that the monodromy properties of the weak coupling results are in precise agreement with the monodromy properties of the strong-coupling expansions, obtained using analysis of the holomorphy structure of Picard-Fuchs equations.

  17. A new class of strongly coupled plasmas inspired by sonoluminescence

    NASA Astrophysics Data System (ADS)

    Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth

    2014-10-01

    Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.

  18. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2005-09-15

    We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  19. Tuning the work-function via strong coupling.

    PubMed

    Hutchison, James A; Liscio, Andrea; Schwartz, Tal; Canaguier-Durand, Antoine; Genet, Cyriaque; Palermo, Vincenzo; Samorì, Paolo; Ebbesen, Thomas W

    2013-05-01

    The tuning of the molecular material work-function via strong coupling with vacuum electromagnetic fields is demonstrated. Kelvin probe microscopy extracts the surface potential (SP) changes of a photochromic molecular film on plasmonic hole arrays and inside Fabry-Perot cavities. Modulating the optical cavity resonance or the photochromic film effectively tunes the work-function, suggesting a new tool for tailoring material properties. PMID:23463588

  20. Shear waves in an inhomogeneous strongly coupled dusty plasma

    SciTech Connect

    Janaki, M. S.; Banerjee, D.; Chakrabarti, N.

    2011-09-15

    The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic (GH) equation. In the usual kinetic limit, the resulting equation has similarity to zero energy Schrodinger's equation. This has helped in obtaining some exact eigenmode solutions in both Cartesian and cylindrical geometries for certain nontrivial density profiles. The corresponding velocity profiles and the discrete eigenfrequencies are obtained for several interesting situations and their physics discussed.

  1. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  2. Equation of state of strongly coupled plasma mixtures

    SciTech Connect

    DeWitt, H.E.

    1984-02-03

    Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution.

  3. Improving entanglement of two atoms in strong coupling regime

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Yang, Qing; Yang, Ming; Cao, Zhuoliang

    2016-03-01

    We consider a model of two identical atoms coupled to a single-mode cavity. When in atom-field strong coupling regime, the entanglement of the two atoms with spontaneous emission should be investigated beyond rotating-wave approximation (RWA). In order to improve the entanglement of the two atoms, some typical feedback based on quantum-jump are attempted to impose on the atoms. The result of numerical simulations shows that an appropriate feedback control can improve the entanglement.

  4. Probing strongly coupled anisotropic plasmas from higher curvature gravity

    NASA Astrophysics Data System (ADS)

    Jahnke, Viktor; Misobuchi, Anderson Seigo

    2016-06-01

    We consider five-dimensional AdS-axion-dilaton gravity with a Gauss-Bonnet term and use a black brane solution displaying spatial anisotropy as the gravity dual of a strongly coupled anisotropic plasma. We compute several observables relevant to the study of the plasma, namely, the drag force, the jet quenching parameter, the quarkonium potential, and the thermal photon production. The effects of higher derivative corrections and of the anisotropy are discussed and compared with previous results.

  5. Collective Modes in Strongly Coupled Electronic Bilayer Liquids

    SciTech Connect

    Kalman, G.; Valtchinov, V.; Valtchinov, V.; Golden, K.I.

    1999-04-01

    We present the first reliable calculation of the collective mode structure of a strongly coupled electronic bilayer. The calculation is based on a classical model through the 3rd frequency-moment-sum rule preserving quasi-localized-charge approximation, using the recently calculated hypernetted-chain pair correlation functions. The out-of-phase spectrum shows an energy gap at k=0 and the absence of a previously conjectured dynamical instability. {copyright} {ital 1999} {ital The American Physical Society}

  6. Dust acoustic waves in strongly coupled dusty plasmas

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1997-12-01

    Dust grains, or solid particles of {mu}m to sub-{mu}m sizes, are observed in various low-temperature laboratory plasmas such as process plasmas and dust plasma crystals. The massive dust grains are generally highly charged, and it has been shown within the context of standard plasma theory that their presence can lead to new low-frequency modes such as dust acoustic waves. In certain laboratory plasmas, however, the dust may be strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2}exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. This paper investigates the dispersion relation for dust acoustic waves in a strongly coupled dusty plasma comprised of strongly coupled negatively charged dust grains, and weakly correlated classical ions and electrons. The dust grains are assumed to interact via a (screened Coulomb) Yukawa potential. The strongly coupled gas phase (liquid phase) is considered, and a quasilocalized charge approximation scheme is used, generalized to take into account electron and/or ion screening of the dust grains. The scheme relates the small-k dispersion to the total correlation energy of the system, which is obtained from the results of published numerical simulations. Some effects of collisions of charged particles with neutrals are taken into account. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  7. Strong coupling constants of decuplet baryons with vector mesons

    SciTech Connect

    Aliev, T. M.; Savci, M.; Azizi, K.

    2010-11-01

    We provide a comprehensive study of strong coupling constants of decuplet baryons with light nonet vector mesons in the framework of light cone QCD sum rules. Using the symmetry arguments, we argue that all coupling constants entering the calculations can be expressed in terms of only one invariant function even if the SU(3){sub f} symmetry breaking effects are taken into account. We estimate the order of SU(3){sub f} symmetry violations, which are automatically considered by the employed approach.

  8. Helium-like magnesium embedded in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sukhamoy

    2016-05-01

    In recent days, with the advent of the x-ray free electron laser (FEL) with Linac coherent light source (LCLS) and the Orion laser, experimental studies on atomic systems within strongly coupled plasma environment with remarkable improvement in accuracy as compared to earlier experiments have become possible. In these kinds of experiments, hydrogen-like and helium-like spectral lines are used for determination of plasma parameters such as temperature, density. Accurate theoretical calculations are, therefore, necessary for such kind of studies within a dense plasma environment. In this work, ab initio calculations are carried out in the framework of the Rayleigh-Ritz variation principle to estimate the ground state energy of helium-like magnesium within strongly coupled plasma environment. Explicitly correlated wave functions in Hylleraas coordinates have been used to incorporate the effect of electron correlation. The ion-sphere model potential that confines the central positive ion in a finite domain filled with plasma electrons has been adopted to mimic the strongly coupled plasma environment. Thermodynamic pressure 'felt' by the ion in the ground states due to the confinement inside the ion spheres is also estimated.

  9. Local-field correction in the strong-coupling regime

    SciTech Connect

    Hien, Tran Minh; Dung, Ho Trung; Welsch, Dirk-Gunnar

    2011-04-15

    The influence of the local-field correction on the strong atom-field coupling regime are investigated using the real-cavity model. The atom is positioned at the center of a multilayer sphere. Three types of mirrors are considered: perfectly reflecting, Lorentz band gap, and Bragg-distributed ones, with special emphasis on experimental practicability. In particular, the influence of the local field on the spectral resonance lines, the Rabi oscillation frequency and decay rate, and the condition indicating the occurrence of the strong-coupling regime are studied in detail. It is shown that the local-field correction gives rise to a structureless plateau in the density of states of the electromagnetic field. The level of the plateau rises with increasing material density and/or absorption, which may eventually destroy the strong-coupling regime. The effect of the local field is especially pronounced at high-material densities due to direct energy transfer from the guest atom to the medium. At lower material density and/or absorption, variation of the material density does not seem to affect much the strong-coupling regime, except for a small shift in the resonance frequency.

  10. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M. Kalman, G.

    1998-10-01

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {Gamma}{sub d}=Q{sub d}{sup 2} exp({minus}d/{lambda}{sub D})/dT{sub d}{ge}1, where Q{sub d} is the dust charge, {ital d} is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed. {copyright} {ital 1998 American Institute of Physics.}

  11. Effect of strong coupling on dust acoustic waves and instabilities

    SciTech Connect

    Rosenberg, M.; Kalman, G.

    1998-10-21

    The presence of charged dust in a plasma can lead to very low frequency dust acoustic waves and instabilities. In certain laboratory plasmas the dust is strongly coupled, as characterized by the condition {gamma}{sub d}=Q{sub d}{sup 2} exp(-d/{lambda}{sub D})/dT{sub d}{>=}1, where Q{sub d} is the dust charge, d is the intergrain spacing, T{sub d} is the dust thermal energy, and {lambda}{sub D} is the plasma screening length. When the dust is strongly coupled, the spatial correlation of the grains can affect the dispersion relation of these waves. We review our recent work [1] on the dispersion properties of dust acoustic waves in the strongly coupled (liquid) phase in a dusty plasma, including also the effects of dust-neutral collisions. We then discuss a preliminary analysis of the effect of strong dust coupling on an ion dust two-stream instability in a collisional dusty plasma. Applications to laboratory dusty plasmas are discussed.

  12. Dust acoustic instability in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Kalman, G. J.; Hartmann, P.; Goree, J.

    2013-10-01

    Dusty plasmas are plasmas containing charged micron to sub-micron size dust grains (solid particulates). Because the grains can be multiply charged and are much more massive than the ions, the presence of dust can lead to novel waves such as the dust acoustic wave, which is a compressional wave that can be excited by a flow of ions that is driven by an electric field. Moreover, the large dust charge can result in strong Coulomb coupling between the dust grains, where the electrostatic energy between neighboring grains is larger than their thermal (kinetic) energy. When the coupling between dust grains is strong, but not large enough for crystallization, the dust is in the strongly coupled liquid phase. This poster theoretically investigates the dust acoustic instability, which is driven by sub-thermal ion flow, in a three-dimensional dusty plasma in the strongly coupled liquid phase. It is found that strong coupling enhances the instability. The application is to microgravity experiments with dusty plasma planned for the PK-4 and PlasmaLab instruments, which are in development for the International Space Station. Microgravity conditions enable the preparation of dust clouds under these sub-thermal ion flow conditions by avoiding the need for strong electric fields to levitate the dust grains.

  13. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  14. Generating symmetry-adapted bases for non-Abelian point groups to be used in vibronic coupling Hamiltonians

    NASA Astrophysics Data System (ADS)

    Robertson, Christopher; Worth, Graham A.

    2015-10-01

    The vibronic coupling Hamiltonian is a standard model used to describe the potential energy surfaces of systems in which non-adiabatic coupling is a key feature. This includes Jahn-Teller and Renner-Teller systems. The model approximates diabatic potential energy functions as polynomials expanded about a point of high symmetry. One must ensure the model Hamiltonian belongs to the totally symmetric irreducible representation of this point group. Here, a simple approach is presented to generate functions that form a basis for totally symmetric irreducible representations of non-Abelian groups and apply it to D∞h (2D) and O (3D). For the O group, the use of a well known basis-generating operator is also required. The functions generated for D∞h are then used to construct a ten state, four coordinate model of acetylene. The calculated absorption spectrum is compared to the experimental spectrum to serve as a validation of the approach.

  15. Dyonic non-Abelian vortex strings in supersymmetric and non-supersymmetric theories — tensions and higher derivative corrections

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Murakami, Yoshihide

    2015-03-01

    Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.

  16. Light-induced gauge fields for ultracold atoms.

    PubMed

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms 'feeling' laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. PMID:25422950

  17. Interferometric measurements to test non-Abelian properties of e/4 charges in the fractional quantum Hall state at 5/2

    NASA Astrophysics Data System (ADS)

    Willett, Robert; Manfra, Michael; Pfeiffer, Loren; Shtengel, Kirill; Nayak, Chetan

    The excitations of charge e/4 at 5/2 filling factor are proposed to obey non-Abelian statistics. To test this, interferometry at fractional quantum Hall states can be performed that controllably braids edge currents around localized charges. We have conducted these measurements in a large number of interferometers of different sizes, also using multiple designs of high quality 2D electron heterostructures. We observe properties of the interference measurements at 5/2 that are specifically consistent with non-Abelian e/4. In particular, magnetic field sweeps around 5/2 show interference oscillations with frequency spectra that are consistent in detail with non-Abelian e/4 properties. Four frequency spectra peaks are observed corresponding to both e/4 and e/2 charges; importantly a rapid non-Abelian e/4 component is seen that is split due to beating between the two e/4 braiding processes. We review these results and their observation in a range of interferometer dimensions and in different heterostructure designs.

  18. Plasmons in strongly coupled shock-compressed matter

    SciTech Connect

    Neumayer, P; Fortmann, C; Doppner, T; Davis, P; Falcone, R W; Kritcher, A L; Landen, O L; Lee, H J; Lee, R W; Niemann, C; Pape, S L; Glenzer, S H

    2010-04-15

    We present the first measurements of the plasmon dispersion and damping in laser shock-compressed solid matter. Petawatt laser produced K-{alpha} radiation scatters on boron targets compressed by a 10 ns-long 400 J laser pulse. In the vicinity of the Fermi momentum, the scattering spectra show dispersionless, collisionally damped plasmons, indicating a strongly coupled electron liquid. These observations agree with x-ray scattering calculations that include both the Born-Mermin approximation to account for electron-ion collisional damping and local field corrections reflecting electron-electron correlations.

  19. Experimental determination of the effective strong coupling constant

    SciTech Connect

    Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch

    2007-07-01

    We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.

  20. Shear viscosities of photons in strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  1. Nonlinear wave propagation in a strongly coupled collisional dusty plasma

    SciTech Connect

    Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis

    2011-06-15

    The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched.

  2. Nonlinear wave propagation in a strongly coupled collisional dusty plasma.

    PubMed

    Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis

    2011-06-01

    The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched. PMID:21797497

  3. Tunable metamaterials based on voltage controlled strong coupling

    SciTech Connect

    Benz, Alexander Brener, Igal; Montaño, Inès; Klem, John F.

    2013-12-23

    We present the design, fabrication, and realization of an electrically tunable metamaterial operating in the mid-infrared spectral range. Our devices combine intersubband transitions in semiconductor quantum-wells with planar metamaterials and operate in the strong light-matter coupling regime. The resonance frequency of the intersubband transition can be controlled by an external bias relative to the fixed metamaterial resonance. This allows us to switch dynamically from an uncoupled to a strongly coupled system and thereby to shift the eigenfrequency of the upper polariton branch by 2.5 THz (corresponding to 8% of the center frequency or one full linewidth) with a bias of 5 V.

  4. Numerical tests of AdS/CFT at strong coupling

    SciTech Connect

    Berenstein, David; Cotta, Randel; Leonardi, Rodrigo

    2008-07-15

    We study various correlation functions (two- and three-point functions) in a large N matrix model of six commuting matrices with a numerical Monte Carlo algorithm. This is equivalent to a model of a gas of particles in six dimensions with a confining quadratic potential and logarithmic repulsions at finite temperature, where we are measuring the leading-order nongaussianities in the thermal fluctuations. This is a simplified model of the low-energy dynamics of N=4 SYM at strong coupling. We find strong evidence that the simplified matrix model matches with the dual gravitational description of three-point functions in the AdS/CFT correspondence.

  5. Wrapping interactions at strong coupling: The giant magnon

    SciTech Connect

    Janik, Romuald A.; Lukowski, Tomasz

    2007-12-15

    We derive generalized Luescher formulas for finite size corrections in a theory with a general dispersion relation. For the AdS{sub 5}xS{sup 5} superstring these formulas encode leading wrapping interaction effects. We apply the generalized {mu}-term formula to calculate finite size corrections to the dispersion relation of the giant magnon at strong coupling. The result exactly agrees with the classical string computation of Arutyunov, Frolov, and Zamaklar. The agreement involved a Borel resummation of all even loop orders of the BES/BHL dressing factor thus providing a strong consistency check for the choice of the dressing factor.

  6. Dispersion of doppleron-phonon modes in strong coupling regime.

    PubMed

    Gudkov, V V; Zhevstovskikh, I V

    2004-04-01

    The dispersion equation for doppleron-phonon modes was constructed and solved analytically in the strong coupling regime. The Fermi surface model proposed previously for calculating the doppleron spectrum in an indium crystal was used. It was shown that in the vicinity of doppleron-phonon resonance, the dispersion curves of coupled modes form a gap qualitatively different from the one observed under helicon-phonon resonance: there is a frequency interval forbidden for existence of waves of definite circular polarization depending upon direction of the external DC magnetic field. The physical reason for it is interaction of the waves which have oppositely directed group velocities. PMID:15047286

  7. Debye Shielding and Particle Correlations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Otani, N.; Bhattacharjee, A.

    1997-02-01

    A particle-in-cell simulation method is shown effective in modeling strongly coupled plasmas, exhibiting good energy conservation properties and good resolution of the dust-particle interaction. For coupling parameters of order unity, the simulation dust particles exhibit Debye shielding on the spatial scale of the dust Debye length. When initialized with a large coupling parameter, the dust particles do not organize themselves into a crystalline structure as expected, but instead are scattered by the presence of substantial electrostatic wave activity. Liquid-like or crystal-like correlations among the dust particles occur only when annealing is imposed. {copyright} {ital 1997} {ital The American Physical Society}

  8. Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes.

    PubMed

    Faust, Thomas; Rieger, Johannes; Seitner, Maximilian J; Krenn, Peter; Kotthaus, Jörg P; Weig, Eva M

    2012-07-20

    The Landau-Zener transition is a fundamental concept for dynamical quantum systems and has been studied in numerous fields of physics. Here, we present a classical mechanical model system exhibiting analogous behavior using two inversely tunable, strongly coupled modes of the same nanomechanical beam resonator. In the adiabatic limit, the anticrossing between the two modes is observed and the coupling strength extracted. Sweeping an initialized mode across the coupling region allows mapping of the progression from diabatic to adiabatic transitions as a function of the sweep rate. PMID:22861892

  9. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Wilms, Jochen

    2016-07-01

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where the critical condition for the hydraulic jump is located.

  10. Diagnostics for transport phenomena in strongly coupled dusty plasmas

    NASA Astrophysics Data System (ADS)

    Goree, J.; Liu, Bin; Feng, Yan

    2013-12-01

    Experimental methods are described for determining transport coefficients in a strongly coupled dusty plasma. A dusty plasma is a mixture of electrons, ions and highly charged microspheres. Due to their large charges, the microspheres are a strongly coupled plasma, and they arrange themselves like atoms in a crystal or liquid. Using a video microscopy diagnostic, with laser illumination and a high speed video camera, the microspheres are imaged. Moment-method image analysis then yields the microspheres' positions and velocities. In one approach, these data in the particle paradigm are converted into the continuum paradigm by binning, yielding hydrodynamic quantities like number density, flow velocity and temperature that are recorded on a grid. To analyze continuum data for two-dimensional laboratory experiments, they are fit to the hydrodynamic equations, yielding the transport coefficients for shear viscosity and thermal conductivity. In another approach, the original particle data can be used to obtain the diffusion and viscosity coefficients, as is discussed in the context of future three-dimensional microgravity experiments.

  11. Jeans self gravitational instability of strongly coupled quantum plasma

    SciTech Connect

    Sharma, Prerana; Chhajlani, R. K.

    2014-07-15

    The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using the normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.

  12. Turbulence in strongly coupled dusty plasmas using generalized hydrodynamic description

    SciTech Connect

    Tiwari, Sanat Kumar; Dharodi, Vikram Singh; Das, Amita; Patel, Bhavesh G.; Kaw, Predhiman

    2015-02-15

    The properties of decaying turbulence have been studied with the help of a Generalized Hydrodynamic (GHD) fluid model in the context of strongly coupled dusty plasma medium in two dimensions. The GHD model treats the strongly coupled dusty plasma system as a visco-elastic medium. The incompressible limit of the GHD model is considered here. The studies carried out here are, however, applicable to a wider class of visco-elastic systems, and are not merely confined to the dusty plasma medium. Our simulations studies show that an initial spectrum that is confined in a limited domain of wave numbers becomes broad, even when the Reynold's number is much less than the critical value required for the onset of turbulence in Newtonian fluids. This is a signature of elastic turbulence, where Weissenberg's number also plays an important role on the onset of turbulence. This feature has been observed in several experiments. It is also shown that the existence of memory relaxation time parameter and the transverse shear wave inhibit the normal process (for 2-D systems) of inverse spectral cascade in this case. A detailed simulation study has been carried out for the understanding of this inhibition.

  13. Baryon and dark matter genesis from strongly coupled strings

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.; Rey, Soo-Jong

    2011-06-01

    D3-brane probes of E-type Yukawa points lead to strongly coupled nearly conformal sectors nearby the Standard Model (visible sector) which are motivated by F-theory GUTs. Realistic visible sector brane configurations induce a seesaw mass hierarchy in the hidden sector with light GUT singlets charged under a strongly coupled hidden sector U(1). Interpreting these GUT singlets as dark matter, this leads to a matter genesis scenario where the freeze out and subsequent decay of heavy mediators between the two sectors simultaneously populates comparable amounts of baryon and dark matter asymmetry. Generating a net matter asymmetry requires a generational structure in the probe sector which is absent at weak string coupling, but is automatically realized at strong string coupling via towers of dyonic bound states corresponding to multi-prong string junctions. The hidden U(1) couples to the visible sector through both electric and magnetic kinetic mixing terms, providing an efficient means to deplete the symmetric component of dark matter. The mass of the dark matter is of order ˜ 10 GeV. The dark matter mass and the matter asymmetry are both controlled by the scale of conformal symmetry breaking ˜ 109 - 1013 GeV, with the precise relation between the two set by details of the visible sector brane configuration.

  14. Ultra-strong coupling in a transmon circuit architecture

    NASA Astrophysics Data System (ADS)

    Bosman, Sal; Gely, Mario; Singh, Vibhor; Bruno, Alessandro; Steele, Gary

    New unexplored phenomena are predicted in cQED for the ultra-strong coupling (USC) regime and beyond. Here, we explore two strategies to increase the coupling between a transmon qubit and a microwave resonator. In the first approach, we increase the impedance of the resonator, enhancing it's voltage zero-point fluctuations, and measure a vacuum Rabi splitting of 916 MHz. In a second approach, we create a transmon qubit by making a superconducting island suspended above the center conductor of the resonator and which is shorted to ground by two Josephson junctions. Doing so, we maximize the dipole moment of the qubit and observe a vacuum Rabi splitting of 1.2 GHz with a qubit linewidth of 1 MHz. This first transmon qubit in the USC regime improves the coherence time by a factor of 100 compared to other systems in the USC limit. Finally we predict that by combining both approaches, a coupling of ~ 3 . 6 GHz is possible, reaching close to the deep strong coupling limit. The work was supported by the Dutch science foundation NWO/FOM.

  15. Quasilocalized charge approximation in strongly coupled plasma physics

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.

    2000-01-01

    The quasilocalized charge approximation (QLCA) was proposed in 1990 [G. Kalman and K. I. Golden, Phys. Rev. A 41, 5516 (1990)] as a formalism for the analysis of the dielectric response tensor and collective mode dispersion in strongly coupled Coulomb liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. The authors review the application of the QLC approach to a variety of systems which can exhibit strongly coupled plasma behavior: (i) the one-component plasma (OCP) model in three dimensions (e.g., laser-cooled trapped ions) and (ii) in two dimensions (e.g., classical 2D electron liquid trapped above the free surface of liquid helium), (iii) binary ionic mixture in a neutralizing uniform background (e.g., carbon-oxygen white dwarf interiors), (iv) charged particle bilayers (e.g., semiconductor electronic bilayers), and (v) charged particles in polarizable background (e.g., laboratory dusty plasmas). (c) 2000 American Institute of Physics.

  16. Strongly Coupled Models with a Higgs-like Boson

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan

    2013-11-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].

  17. Gauge equivalence in QCD: The Weyl and Coulomb gauges

    NASA Astrophysics Data System (ADS)

    Haller, Kurt; Ren, Hai-Cang

    2003-10-01

    The Weyl-gauge (Aa0=0) QCD Hamiltonian is unitarily transformed to a representation in which it is expressed entirely in terms of gauge-invariant quark and gluon fields. In a subspace of gauge-invariant states we have constructed that implement the non-Abelian Gauss’s law, this unitarily transformed Weyl-gauge Hamiltonian can be further transformed and, under appropriate circumstances, can be identified with the QCD Hamiltonian in the Coulomb gauge. We demonstrate an isomorphism that materially facilitates the application of this Hamiltonian to a variety of physical processes, including the evaluation of S-matrix elements. This isomorphism relates the gauge-invariant representation of the Hamiltonian and the required set of gauge-invariant states to a Hamiltonian of the same functional form but dependent on ordinary unconstrained Weyl-gauge fields operating within a space of “standard” perturbative states. The fact that the gauge-invariant chromoelectric field is not Hermitian has important implications for the functional form of the Hamiltonian finally obtained. When this non-Hermiticity is taken into account, the “extra” vertices in the Christ-Lee’ Coulomb-gauge Hamiltonian are natural outgrowths of the formalism. When this non-Hermiticity is neglected, the Hamiltonian used in the earlier work of Gribov and others results.

  18. Aspects of entanglement entropy for gauge theories

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2016-01-01

    A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories.

  19. A general non-Abelian density matrix renormalization group algorithm with application to the C{sub 2} dimer

    SciTech Connect

    Sharma, Sandeep

    2015-01-14

    We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.

  20. Gauge invariance of color confinement due to the dual Meissner effect caused by Abelian monopoles

    SciTech Connect

    Suzuki, Tsuneo; Hasegawa, Masayasu; Ishiguro, Katsuya; Koma, Yoshiaki; Sekido, Toru

    2009-09-01

    The mechanism of non-Abelian color confinement is studied in SU(2) lattice gauge theory in terms of the Abelian fields and monopoles extracted from non-Abelian link variables without adopting gauge fixing. First, the static quark-antiquark potential and force are computed with the Abelian and monopole Polyakov loop correlators, and the resulting string tensions are found to be identical to the non-Abelian string tension. These potentials also show the scaling behavior with respect to the change of lattice spacing. Second, the profile of the color-electric field between a quark and an antiquark is investigated with the Abelian and monopole Wilson loops. The color-electric field is squeezed into a flux tube due to monopole supercurrent with the same Abelian color direction. The parameters corresponding to the penetration and coherence lengths show the scaling behavior, and the ratio of these lengths, i.e., the Ginzburg-Landau parameter, indicates that the vacuum type is near the border of the type 1 and type 2 (dual) superconductors. These results are summarized in which the Abelian fundamental charge defined in an arbitrary color direction is confined inside a hadronic state by the dual Meissner effect. As the color-neutral state in any Abelian color direction corresponds to the physical color-singlet state, this effect explains non-Abelian color confinement and supports the existence of a gauge-invariant mechanism of color confinement due to the dual Meissner effect caused by Abelian monopoles.

  1. Particle dynamics in a strongly-coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Goree, J.; Pieper, J. B.

    1996-11-01

    We have used video imaging to study the dynamics of 9 μ m plastic spheres suspended in low-power Krypton discharges. The spheres, which are highly charged and levitated by the electrode sheath, form a strongly-coupled system. Using a digitized series of images, we tracked individual particles and measured collective and random particle motions.footnote J. B. Pieper and J. Goree, submitted to PRL Dust acoustic waves were excited at <= 10 Hz and their dispersion relation verified. Fitting the measured and theoretical dispersion relations also give a measurement of the particle charge and the "linearized" Debye length. The temperature of random particle motion in the horizontal plane (parallel to the electrode) was measured to be 2-10 times room temperature and about 2 times the temperature in the vertical plane. It is proposed that the particles are heated by low-frequency (kHz) electrostatic plasma fluctuations. Work supported by NSF and NASA

  2. Particle dynamics in a strongly-coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Quinn, R. A.; Goree, J.; Pieper, J. B.

    1996-10-01

    We have used video imaging to study the dynamics of 9 μ m plastic spheres in low-power Krypton discharges. The spheres, which are highly charged and levitated by the electrode sheath, form a strongly-coupled system. Using a digitized series of images, we tracked individual particles and measured collective and random particle motions.footnote Pieper and Goree, submitted to PRL Dust acoustic waves were excited at <= 10 Hz and their dispersion relation verified. The temperature of random particle motion in the horizontal plane (parallel to the electrode) was measured to be 2-10 times room temperature and about 2 times the temperature in the vertical plane. It is proposed that the particles are heated by low-frequency (kHz) electrostatic plasma fluctuations.

  3. Nonlinear wave propagation in strongly coupled dusty plasmas.

    PubMed

    Veeresha, B M; Tiwari, S K; Sen, A; Kaw, P K; Das, A

    2010-03-01

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain. PMID:20365882

  4. Nonlinear wave propagation in strongly coupled dusty plasmas

    SciTech Connect

    Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A.

    2010-03-15

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain.

  5. Charge transport in strongly coupled quantum dot solids

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie R.; Murray, Christopher B.

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  6. Strongly coupled plasma with electric and magnetic charges

    SciTech Connect

    Liao Jinfeng; Shuryak, Edward

    2007-05-15

    A number of theoretical and lattice results lead us to believe that quark-gluon plasma not too far from T{sub c} contains not only electrically charged quasiparticles - quarks and gluons - but magnetically charged ones--monopoles and dyons--as well. Although binary systems such as charge-monopole and charge-dyon were considered in detail before in both classical and quantum settings, this is the first study of coexisting electric and magnetic particles in a many-body context. We perform a molecular dynamics study of strongly coupled plasmas with {approx}1000 particles and differing fractions of magnetic charge. Correlation functions and Kubo formulas lead to transport properties such as the diffusion constant, the shear viscosity, and electric conductivity: We compare the first two with empirical data from RHIC experiments as well as with results from anti-de-Sitter space/conformal field theory correspondence. We also study a number of collective excitations in these systems.

  7. Strong-coupling approach to nematicity in the cuprates

    NASA Astrophysics Data System (ADS)

    Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael

    The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.

  8. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  9. A scanning transmon qubit for strong coupling circuit quantum electrodynamics.

    PubMed

    Shanks, W E; Underwood, D L; Houck, A A

    2013-01-01

    Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon-photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area. PMID:23744062

  10. Imaginary potential of heavy quarkonia moving in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, M.; Giataganas, D.; Rezaei, Z.

    2014-10-01

    The melting of a heavy quark-antiquark bound state depends on the screening phenomena associated with the binding energy, as well as scattering phenomena associated with the imaginary part of the potential. We study the imaginary part of the static potential of heavy quarkonia moving in the strongly coupled plasma. The imaginary potential dependence on the velocity of the traveling bound states is calculated. Nonzero velocity leads to an increase of the absolute value of the imaginary potential. The enhancement is stronger when the quarkonia move orthogonal to the quark-gluon plasma maximizing the flux between the pair. Moreover, we estimate the thermal width of the moving bound state and find it enhanced compared to the static one. Our results imply that the moving quarkonia dissociate easier than the static ones in agreement with the expectations.

  11. Strong-Coupling and the Stripe Phase of ^3He

    NASA Astrophysics Data System (ADS)

    Wiman, Joshua J.; Sauls, J. A.

    2016-09-01

    Thin films of superfluid 3He were predicted, based on weak-coupling BCS theory, to have a stable phase which spontaneously breaks translational symmetry in the plane of the film. This crystalline superfluid, or "stripe" phase, develops as a one-dimensional periodic array of domain walls separating degenerate B phase domains. We report calculations of the phases and phase diagram for superfluid 3He in thin films using a strong-coupling Ginzburg-Landau theory that accurately reproduces the bulk 3He superfluid phase diagram. We find that the stability of the Stripe phase is diminished relative to the A phase, but the Stripe phase is stable in a large range of temperatures, pressures, confinement, and surface conditions.

  12. Strong coupling and parametric amplification in mechanical modes of graphene

    NASA Astrophysics Data System (ADS)

    Mathew, John; Patel, Raj; Borah, Abhinandan; Vijayaraghavan, Rajamani; Deshmukh, Mandar

    We demonstrate strong dynamical coupling and parametric amplification in mechanical modes of a graphene drum using an all electrical configuration. Low tension in the system allows large electrostatic tunability of the modes thus enabling dynamic pumping experiments. In the strong coupling regime a red detuned pump gives rise to new eigenmodes having highly tunable mode splitting (cooperativity ~60) with coherent energy transfer. The coupling is also used to amplify the modes under the action of a blue detuned pump. In addition, self-oscillations and parametric amplification of the fundamental vibrational mode is demonstrated with a gain of nearly 3. The low mass and high frequency of these atomically thin resonators could prove useful for studying mode coupling in the quantum regime.

  13. The properties of strong couple bound polaron in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Ding, Zhao-Hua; Zhao, Ying; Xiao, Jing-Lin

    2016-09-01

    Based on the Hamiltonian of the interaction energy between electron on the surface of the graphene and longitudinal acoustic phonon on the surface of the substrate, the paper studies the properties of strong couple polaron in monolayer graphene considering the coulomb doping problem. The conventional Lee-Low-Pine unitary transformation method and linear combination operator method are used to calculate the ground state energy of the polaron. The results show that the ground state energy of the system has a linear relationship with the magnetic field strength, the cut-off wave number, the coulomb bound parameter, the distance between the graphene and the substrates, meanwhile, the ground state energy will split into two branches near the Dirac point.

  14. Excitonic spectral features in strongly coupled organic polaritons

    NASA Astrophysics Data System (ADS)

    Ćwik, Justyna A.; Kirton, Peter; De Liberato, Simone; Keeling, Jonathan

    2016-03-01

    Starting from a microscopic model, we investigate the optical spectra of molecules in strongly coupled organic microcavities examining how they might self-consistently adapt their coupling to light. We consider both rotational and vibrational degrees of freedom, focusing on features which can be seen in the peak in the center of the spectrum at the bare excitonic frequency. In both cases we find that the matter-light coupling can lead to a self-consistent change of the molecular states, with consequent temperature-dependent signatures in the absorption spectrum. However, for typical parameters, these effects are much too weak to explain recent measurements. We show that another mechanism which naturally arises from our model of vibrationally dressed polaritons has the right magnitude and temperature dependence to be at the origin of the observed data.

  15. Quasinormal modes and the phase structure of strongly coupled matter

    NASA Astrophysics Data System (ADS)

    Janik, Romuald A.; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-06-01

    We investigate the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to different first order phase transitions. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We focus on quantifying linearized level dynamical response of the system in the critical region of phase diagram. Generically non-hydrodynamic degrees of freedom are important for the low energy physics in the vicinity of a phase transition. For a model with linear confinement in the meson spectrum we find degeneracy of hydrodynamic and non-hydrodynamic modes close to the minimal black hole temperature, and we establish a region of temperatures with unstable non-hydrodynamic modes in a branch of black hole solutions.

  16. Strongly coupled modes in a weakly driven micromechanical resonator

    NASA Astrophysics Data System (ADS)

    Venstra, Warner J.; van Leeuwen, Ronald; van der Zant, Herre S. J.

    2012-12-01

    We demonstrate a strong coupling between the flexural vibration modes of a clamped-clamped micromechanical resonator vibrating at low amplitudes. This coupling enables the direct measurement of the frequency response via amplitude- and phase modulation schemes using the fundamental mode as a mechanical detector. In the linear regime, a frequency shift of 0.8 Hz is observed for a mode with a line width of 5.8 Hz in vacuum. The measured response is well-described by the analytical model based on the Euler-Bernoulli beam including tension. Calculations predict an upper limit for the room-temperature Q-factor of 4.5×105 for our top-down fabricated micromechanical beam resonators.

  17. Dust-acoustic shocks in strongly coupled dusty plasmas

    NASA Astrophysics Data System (ADS)

    Cousens, S. E.; Yaroshenko, V. V.; Sultana, S.; Hellberg, M. A.; Verheest, F.; Kourakis, I.

    2014-04-01

    Electrostatic dust-acoustic shock waves are investigated in a viscous, complex plasma consisting of dust particles, electrons, and ions. The system is modelled using the generalized hydrodynamic equations, with strong coupling between the dust particles being accounted for by employing the effective electrostatic temperature approach. Using a reductive perturbation method, it is demonstrated that this model predicts the existence of weakly nonlinear dust-acoustic shock waves, arising as solutions to Burgers's equation, in which the nonlinear forces are balanced by dissipative forces, in this case, associated with viscosity. The evolution and stability of dust-acoustic shocks is investigated via a series of numerical simulations, which confirms our analytical predictions on the shock characteristics.

  18. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2016-05-01

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointed out.

  19. Quantum simulations of strongly coupled quark-gluon plasma

    SciTech Connect

    Filinov, V. S.; Ivanov, Yu. B.; Bonitz, M.; Levashov, P. R.; Fortov, V. E.

    2011-09-15

    A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the model developed by B.A. Gelman, E.V. Shuryak, and I. Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces and turn out to be colorless. At the temperature as large as twice the critical one no bound states are observed. Quantum effects turned out to be of prime importance in these simulations.

  20. Strong coupling problem with time-varying sound speed

    NASA Astrophysics Data System (ADS)

    Joyce, Austin; Khoury, Justin

    2011-10-01

    For a single scalar field with unit sound speed minimally coupled to Einstein gravity, there are exactly three distinct cosmological solutions which produce a scale invariant spectrum of curvature perturbations in a dynamical attractor background, assuming vacuum initial conditions: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and an adiabatic ekpyrotic phase on a slowly expanding background. Of these three, only inflation remains weakly coupled over a wide range of modes, while the other scenarios can produce at most 12 e-folds of scale invariant and Gaussian modes. In this paper, we investigate how allowing the speed of sound of fluctuations to evolve in time affects this classification. While in the presence of a variable sound speed there are many more scenarios which are scale invariant at the level of the two-point function, they generically suffer from strong coupling problems similar to those in the canonical case. There is, however, an exceptional case with superluminal sound speed, which suppresses non-Gaussianities and somewhat alleviates strong coupling issues. We focus on a particular realization of this limit and show these scenarios are constrained and only able to produce at most 28 e-folds of scale invariant and Gaussian perturbations. A similar bound should hold more generally—the condition results from the combined requirements of matching the observed amplitude of curvature perturbations, demanding that the Hubble parameter remain sub-Planckian and keeping non-Gaussianities under control. We therefore conclude that inflation remains the unique cosmological scenario, assuming a single degree of freedom on an attractor background, capable of producing arbitrarily many scale invariant modes while remaining weakly coupled. Alternative mechanisms must inevitably be unstable or rely on multiple degrees of freedom.

  1. Numerical Experiments In Strongly Coupled Complex (Dusty) Plasmas

    NASA Astrophysics Data System (ADS)

    Hou, L. J.; Ivlev A.; Hubertus M. T.; Morfill, G. E.

    2010-07-01

    Complex (dusty) plasma is a suspension of micron-sized charged dust particles in a weakly ionized plasma with electrons, ions, and neutral atoms or molecules. Therein, dust particles acquire a few thousand electron charges by absorbing surrounding electrons and ions, and consequently interact with each other via a dynamically screened Coulomb potential while undergoing Brownian motion due primarily to frequent collisions with the neutral molecules. When the interaction potential energy between charged dust particles significantly exceeds their kinetic energy, they become strongly coupled and can form ordered structures comprising liquid and solid states. Since the motion of charged dust particles in complex (dusty) plasmas can be directly observed in real time by using a video camera, such systems have been generally regarded as a promising model system to study many phenomena occurring in solids, liquids and other strongly-coupled systems at the kinetic level, such as phase transitions, transport processes, and collective dynamics. Complex plasma physics has now grown into a mature research field with a very broad range of interdisciplinary facets. In addition to usual experimental and theoretical study, computer simulation in complex plasma plays an important role in bridging experimental observations and theories and in understanding many interesting phenomena observed in laboratory. The present talk will focus on a class of computer simulations that are usually non-equilibrium ones with external perturbation and that mimic the real complex plasma experiments (i. e., numerical experiment). The simulation method, i. e., the so-called Brownian Dynamics methods, will be firstly reviewed and then examples, such as simulations of heat transfer and shock wave propagation, will be present.

  2. The arithmetic of elliptic fibrations in gauge theories on a circle

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Kapfer, Andreas; Klevers, Denis

    2016-06-01

    The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.

  3. Two-point one-dimensional δ-{\\delta }^{\\prime } interactions: non-abelian addition law and decoupling limit

    NASA Astrophysics Data System (ADS)

    Gadella, M.; Mateos-Guilarte, J.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2016-01-01

    In this contribution to the study of one-dimensional point potentials, we prove that if we take the limit q\\to 0 on a potential of the type {v}0δ (y)+2{v}1{δ }\\prime (y)+{w}0δ (y-q)+2{w}1{δ }\\prime (y-q), we obtain a new point potential of the type {u}0δ (y)+2{u}1{δ }\\prime (y), when u 0 and u 1 are related to v 0, v 1, w 0 and w 1 by a law with the structure of a group. This is the Borel subgroup of {{SL}}2({{R}}). We also obtain the non-abelian addition law from the scattering data. The spectra of the Hamiltonian in the decoupling cases emerging in the study are also described in full. It is shown that for the {v}1=+/- 1, {w}1=+/- 1 values of the {δ }\\prime couplings the singular Kurasov matrices become equivalent to Dirichlet at one side of the point interaction and Robin boundary conditions at the other side.

  4. Non-Abelian two dimensional topological phases constructed from coupled wires and connections to exceptional lie algebras

    NASA Astrophysics Data System (ADS)

    Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor

    2015-03-01

    Non-abelian anyons exhibit exotic braiding statistics which can be utilized to realize a universal topological quantum computer. In this work we focus on Fibonacci anyons which occur in Z3 Read Rezayi fractional quantum hall states. Traditionally they have been constructed using su(2)3 / u (1) coset theories. We introduce conformal field theories(CFTs) of exceptional and non-simply laced Lie Algebras at level 1, for example G2 ,F4 which host Fibonacci anyons. We realize these CFT's concretely on the 1d gapless edge of an anisotropic 2d system built out of coupled, interacting Luttinger wires. Interactions are introduced within a bundle of wires to fractionalize the original chiral bosons into different sectors. Next, we couple these sectors to get the desired topological phase in the bulk. The 2d bulk of the stack is gapped by backscattering terms between counterpropagating modes on different bundles. The emergence of this topological phase can be interpreted using techniques of anyon condensation . We also explicitly construct the Kac Moody algebra on the edge CFT using original bosonic degrees of freedom.We acknowledge support from NSF CAREER DMR-1351895(TH) and Simons Foundation (JT).

  5. Can (electric-magnetic) duality be gauged?

    SciTech Connect

    Bunster, Claudio; Henneaux, Marc

    2011-02-15

    There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

  6. Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye

    PubMed Central

    2012-01-01

    We demonstrate a strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye molecules. Dispersion curves for surface plasmon polaritons on samples with a thin layer of silver covered with Sulforhodamine 101 molecules embedded in SU-8 polymer are obtained experimentally by reflectometry measurements and compared to the dispersion of samples without molecules. Clear Rabi splittings, with energies up to 360 and 190 meV, are observed at the positions of the dye absorption maxima. The split energies are dependent on the number of Sulforhodamine 101 molecules involved in the coupling process. Transfer matrix and coupled oscillator methods are used to model the studied multilayer structures with a great agreement with the experiments. Detection of the scattered radiation after the propagation provides another way to obtain the dispersion relation of the surface plasmon polaritons and, thus, provides insight into dynamics of the surface plasmon polariton/dye interaction, beyond the refrectometry measurements. PACS: 42.50.Hz, 33.80.-b, 78.67.-n PMID:22429311

  7. Effect of strongly coupled plasma on photoionization cross section

    NASA Astrophysics Data System (ADS)

    Das, Madhusmita

    2014-01-01

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li+2, C+5, Al+12) and lithium like ions (C+3, O+5). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  8. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    SciTech Connect

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  9. Tiling analysis of melting in strongly-coupled dusty plasma*

    NASA Astrophysics Data System (ADS)

    Suranga Ruhunusiri, W. D.; Feng, Yan; Liu, Bin; Goree, John

    2010-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter, which collect electrons and ions and become negatively charged. Due to large Coulomb interparticle potential energies, the microparticles represent a strongly-coupled plasma. In the absence of an external disturbance, the microparticles self-organize, arranging themselves in a crystalline lattice, due to their Coulomb interaction. If kinetic energy is added, the arrangement of microparticles becomes disordered, like atoms in a liquid. This melting process can be characterized by a proliferation of defects, which previous experimenters measured using Voronoi analysis. Here we use another method, tiling [1] to quantify defects. We demonstrate this method, which until now has been used only in simulations, in a dusty plasma experiment. A single layer of 4.83 μm polymer microparticles was electrically levitated in a glow discharge argon plasma. The lattice was melted by applying random kicks to the micoparticles from rastered laser beams. We imaged the particle positions and computed the corresponding tiling for both the crystalline lattice and liquid states. [1] Matthew A. Glaser, Phys. Rev A 41, 4585 (1990) ^*Work supported by NSF and NASA.

  10. Dusty Plasmas - Kinetic Studies of Strong Coupling Phenomena

    NASA Astrophysics Data System (ADS)

    Morfill, Gregor

    2011-10-01

    ``Dusty plasmas'' can be found almost everywhere - in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere and in the laboratory. In astrophysical plasmas the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory there is great interest in industrial processes (e.g. etching, vapor deposition) and at the fundamental physics level - the main topic here - the study of strong coupling phenomena. Here the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and pace, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many particle systems including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12 to 10-9 g) precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  11. Complex (dusty) plasmas—kinetic studies of strong coupling phenomenaa)

    NASA Astrophysics Data System (ADS)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-01

    "Dusty plasmas" can be found almost everywhere—in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and—at the fundamental level—in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12to10-9g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  12. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  13. Spiky strings in the Bethe ansatz at strong coupling

    SciTech Connect

    Kruczenski, M.; Tirziu, A.

    2010-05-15

    We study spiky string solutions in AdS{sub 3}xS{sup 1} that are characterized by two spins S, J as well as winding m in S{sup 1} and spike number n. We construct explicitly two-cut solutions by using the SL(2) asymptotic Bethe ansatz equations at leading order in strong coupling. Unlike the folded spinning string, these solutions have asymmetric distributions of Bethe roots. The solutions match the known spiky string classical results obtained directly from string theory for arbitrary semiclassical parameters, including J=0 and any value of S, namely, short and long strings. At large spins and winding number the string touches the boundary, and we find a new scaling limit with the energy given as E-S=(n/2{pi}){radical}(1+[(4{pi}{sup 2})/n{sup 2}](J{sup 2}/ln{sup 2}S+m{sup 2}/ln{sup 2}S))lnS. This is a generalization of the known scaling for the folded spinning string.

  14. Energy exchange in strongly coupled plasmas with electron drift

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  15. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  16. Temperature evolution of strongly coupled electron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel; Baalrud, Scott D.

    2015-11-01

    Molecular dynamics simulations of electron-ion plasmas have been carried out, focusing on the classical strongly coupled regime relevant to ultracold neutral plasmas. The interaction of oppositely charged species is modeled using a pseudopotential with a repulsive core at a specified distance ɛ in units of average interparticle spacing. This parameter distinguishes classical from quantum statistical regimes. Simulations are initiated with an equilibration phase in which ions and electrons are held to fixed independent temperatures using a thermostat. Subsequently, the thermostats are removed and the system is allowed to evolve. Two effects are observed: (1) For sufficiently small values of ɛ, the plasma rapidly heats, (2) electrons and ions equilibrate on a longer time scale. The critical ɛ value for the onset of heating and the temperature equilibration rate are compared with existing theory. Excess pressure is calculated in each case based on the equilibrium radial distribution functions obtained during the equilibration phase. The Γ - ɛ phase space is explored, revealing qualitative differences in the temperature evolution due to electron-ion interactions in the classical and quantum regimes. The authors gratefully acknowledge support from NSF grant PHY-1453736.

  17. Neutron Limit on the Strongly-Coupled Chameleon Field

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    2016-03-01

    One of the major open questions of cosmology is the physical origin of the dark energy. There are a few sets of theories which might explain this origin that could be tested experimentally. The chameleon dark energy theory postulates self-interacting scalar field that couples to matter. This coupling induces a screening mechanism chosen so that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. On behalf of the INDEX collaboration, I will report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. In our experiment we measure neutron phase induced by chameleon field. We report a 95 % confidence level upper bound on the neutron-chameleon coupling ranging from β < 4 . 7 ×106 for a Ratra-Peebles index of n = 1 in the nonlinear scalar field potential to β < 2 . 4 ×107 for n = 6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n. This work was supported by NIST; NSF Grants: PHY-1205342, PHY-1068712, PHY-1307426; DOE award DE-FG02-97ER41042; NSERC CREATE and DISCOVERY programs; CERC; IUCSS and IU FRS program.

  18. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  19. Strongly coupled turbulent gas-particle flows in vertical channels

    NASA Astrophysics Data System (ADS)

    Fox, Rodney O.; Capecelatro, Jesse; Desjardins, Olivier

    2015-11-01

    Eulerian-Lagrangian (EL) simulations of strongly coupled (high mass loading) gas-particle flows in vertical channels are performed with the purpose of exploring the fundamental physics of fully developed, wall-bounded multiphase turbulence. An adaptive spatial filter is developed that accurately decomposes the total granular energy of the particles into correlated and uncorrelated components at each location in the wall-normal direction of the flow. In this manner, Reynolds- and phase-averaged (PA) two-phase turbulence statistics up to second order are reported for both phases and for three values of the PA mean fluid velocity. As expected due to the high mass loading, in all cases the turbulence production due to mean drag dominates production due to mean shear. A multiphase LRR-IP Reynolds-stress turbulence model is developed to predict the turbulent flow statistics as a function of the wall-normal distance. Using a correlation for the vertical drift velocity developed from the EL data, the turbulence model predictions agree satisfactorily with all of one-point EL statistics for the vertical channel flows, as well as for the homogeneous cluster-induced turbulence (CIT) statistics reported previously. Funded by U.S. National Science Foundation (CBET-1437865).

  20. Kolmogorov flow in two dimensional strongly coupled dusty plasma

    SciTech Connect

    Gupta, Akanksha; Ganesh, R. Joy, Ashwin

    2014-07-15

    Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.

  1. The Weibel instability in a strongly coupled plasma

    SciTech Connect

    Mahdavi, M. Khanzadeh, H.

    2014-06-15

    In this paper, the growth rate of the Weibel instability is calculated for an energetic relativistic electron beam penetrated into a strongly coupled plasma, where the collision effects of background electron-ion scattering play an important role in equations. In order to calculate the growth rate of the Weibel instability, two different models of anisotropic distribution function are used. First, the distribution of the plasma and beam electrons considered as similar forms of bi-Maxwellian distribution. Second, the distribution functions of the plasma electrons and the beam electrons follows bi-Maxwellian and delta-like distributions, respectively. The obtained results show that the collision effect decreases the growth rate in two models. When the distribution function of electrons beam is in bi-Maxwellian form, the instability growth rate is greater than where the distribution function of beam electrons is in delta-like form, because, the anisotropic temperature for bi-Maxwellian distribution function in velocity space is greater than the delta-like distribution function.

  2. Partons and Jets in a Strongly-Coupled Plasma from AdS/CFT

    NASA Astrophysics Data System (ADS)

    Iancu, E.

    2008-12-01

    We give a pedagogical review of recent progress towards understanding the response of a strongly coupled plasma at finite temperature to a hard probe. The plasma is that of the N=4 supersymmetric Yang-Mills theory and the hard probe is a virtual photon, or, more precisely, an R-current. Via the gauge/gravity duality, the problem of the current interacting with the plasma is mapped onto the gravitational interaction between a Maxwell field and a black hole embedded in the AdS5×S5 geometry. The physical interpretation of the AdS/CFT results can be then reconstructed with the help of the ultraviolet/infrared correspondence. We thus deduce that, for sufficiently high energy, the photon (or any other hard probe: a quark, a gluon, or a meson) disappears into the plasma via a universal mechanism, which is medium-induced quasi-democratic parton branching: the current develops a parton cascade such that, at any step in the branching process, the energy is almost equally divided among the daughter partons. The branching rate is controlled by the plasma which acts on the coloured partons with a constant force sim T2. When reinterpreted in the plasma infinite momentum frame, the same AdS/CFT results suggest a parton picture for the plasma structure functions, in which all the partons have fallen at very small values of Bjorken's x. For a time-like current in the vacuum, quasi-democratic branching implies that there should be no jets in electron-positron annihilation at strong coupling, but only a spatially isotropic distribution of hadronic matter.

  3. Compact waveguide grating couplers operating in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2005-07-01

    Since both photonic crystal and high index contrast waveguide photonic devices allow for tighter bend radii and thus reduced die size, they are being actively investigated for use in dense planar lightwave circuits (PLCs). To fully realize highly integrated PLCs, an efficient optical connection interface between single mode fibers or fiber arrays and high-index-contrast waveguides is required. The core size of single-mode fiber is typically 4--9mum while the core size of high-index-contrast waveguides is usually less than 1 to 2mum. Due to the mode size mismatch between the fiber and the waveguide, coupling light into small waveguides is challenging. This results in prohibitive insertion loss and extreme difficulty in fiber alignment for simple pigtail coupling, in which the end of a fiber is aligned and placed next to the end face of a waveguide. In addition, with input and output coupling taking place only along the edge of a chip at the plane of the waveguide device layer, this edge coupling arrangement severely limits the number of optical I/Os in dense PLCs. Moreover, fiber alignment has to be done after the wafer is diced into separate chips, and the end facet of the waveguide needs to be cut and polished. As a result, alignment and packaging accounts for the main manufacturing cost of optical components. In order to fully realize the potential of highly integrated PLCs, a new coupling approach needs to be developed, especially one that permits input and output to a 2-D array of fibers. The goal of this dissertation is to develop a high efficiency coupling method based on grating couplers operating in the strong coupling regime for fibers oriented normal to the waveguide plane without any intermediate optics between the fibers and waveguides. Development of this capability allows for relaxed fiber alignment requirements and wafer-scale alignment and testing. In this dissertation, three types of grating couplers that operate in the strong coupling regime are

  4. Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra

    SciTech Connect

    Lu Yuanming; Wang Ziqiang; Wen Xiaogang; Wang Zhenghan

    2010-03-15

    In the pattern-of-zeros approach to quantum Hall states, a set of data (n;m;S{sub a}|a=1,...,n;n,m,S{sub a} is n element of N) (called the pattern of zeros) is introduced to characterize a quantum Hall wave function. In this paper we find sufficient conditions on the pattern of zeros so that the data correspond to a valid wave function. Some times, a set of data (n;m;S{sub a}) corresponds to a unique quantum Hall state, while other times, a set of data corresponds to several different quantum Hall states. So in the latter cases, the pattern of zeros alone does not completely characterize the quantum Hall states. In this paper, we find that the following expanded set of data (n;m;S{sub a};c|a=1,...,n;n,m,S{sub a} is an element of N;c is an element of R) provides a more complete characterization of quantum Hall states. Each expanded set of data completely characterizes a unique quantum Hall state, at least for the examples discussed in this paper. The result is obtained by combining the pattern of zeros and Z{sub n} simple-current vertex algebra which describes a large class of Abelian and non-Abelian quantum Hall states PHI{sub Z{sub n}{sup sc}}. The more complete characterization in terms of (n;m;S{sub a};c) allows us to obtain more topological properties of those states, which include the central charge c of edge states, the scaling dimensions and the statistics of quasiparticle excitations.

  5. Neutron limit on the strongly-coupled chameleon field

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D. G.; Haun, R.; Heacock, B.; Huber, M. G.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C. B.; Skavysh, V.; Snow, W. M.; Young, A. R.; Index Collaboration

    2016-03-01

    The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling β ranging from β <4.7 ×106 for a Ratra-Peebles index of n =1 in the nonlinear scalar field potential to β <2.4 ×107 for n =6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n . Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.

  6. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    PubMed

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications. PMID:23339685

  7. Strongly Coupled Cyclometalated Ruthenium Triarylamine Chromophores as Sensitizers for DSSCs.

    PubMed

    Kreitner, Christoph; Mengel, Andreas K C; Lee, Tae Kyung; Cho, Woohyung; Char, Kookheon; Kang, Yong Soo; Heinze, Katja

    2016-06-20

    A series of anchor-functionalized cyclometalated bis(tridentate) ruthenium(II) triarylamine hybrids [Ru(dbp-X)(tctpy)](2-) [2 a](2-) -[2 c](2-) (H3 tctpy=2,2';6',2''-terpyridine-4,4',4''-tricarboxylic acid; dpbH=1,3-dipyridylbenzene; X=N(4-C6 H4 OMe)2 ([2 a](2-) ), NPh2 ([2 b](2-) ), N-carbazolyl [2 c](2-) ) was synthesized and characterized. All complexes show broad absorption bands in the range 300-700 nm with a maximum at about 545 nm. Methyl esters [Ru(Me3 tctpy)(dpb-X)](+) [1 a](+) -[1 c](+) are oxidized to the strongly coupled mixed-valent species [1 a](2+) -[1 c](2+) and the Ru(III) (aminium) complexes [1 a](3+) -[1 c](3+) at comparably low oxidation potentials. Theoretical calculations suggest an increasing spin delocalization between the metal center and the triarylamine unit in the order [1 a](2+) <[1 b](2+) <[1 c](2+) . Solar cells were prepared with the saponified complexes [2 a](2-) -[2 c](2-) and the reference dye N719 as sensitizers using the I3 (-) /I(-) couple and [Co(bpy)3 ](3+/2+) and [Co(ddpd)2 ](3+/2+) couples as [B(C6 F5 )4 ](-) salts as electrolytes (bpy=2,2'-bipyridine; ddpd=N,N'-dimethyl-N,N'-dipyridin-2-yl-pyridine-2,6-diamine). Cells with [2 c](2-) and I3 (-) /I(-) electrolyte perform similarly to cells with N719. In the presence of cobalt electrolytes, all efficiencies are reduced, yet under these conditions [2 c](2-) outperforms N719. PMID:27192962

  8. Gauge theories on A(dS) space and Killing vectors

    SciTech Connect

    Banerjee, Rabin Majhi, Bibhas Ranjan

    2008-03-15

    We provide a general technique for collectively analysing a manifestly covariant formulation of non-abelian gauge theories on both anti-de Sitter as well as de Sitter spaces. This is done by stereographically projecting the corresponding theories, defined on a flat Minkowski space, onto the surface of the A(dS) hyperboloid. The gauge and matter fields in the two descriptions are mapped by conformal Killing vectors and conformal Killing spinors, respectively. A bilinear map connecting the spinors with the vector is established. Different forms of gauge fixing conditions and their equivalence are discussed. The U(1) axial anomaly as well as the non-abelian covariant and consistent chiral anomalies on A(dS) space are obtained. Electric-magnetic duality is demonstrated. The zero curvature limit is shown to yield consistent findings.

  9. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate

  10. Standard model with partial gauge invariance

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.; Kepuladze, Z.

    2012-03-01

    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV), which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B μ and its interactions, leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz breaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.

  11. Residues of correlators in the strongly coupled N=4 plasma

    SciTech Connect

    Amado, Irene; Landsteiner, Karl; Montero, Sergio; Hoyos, Carlos

    2008-03-15

    Quasinormal modes of asymptotically AdS black holes can be interpreted as poles of retarded correlators in the dual gauge theory. To determine the response of the system to small external perturbations it is not enough to know the location of the poles: one also needs to know the residues. We compute them for R-charge currents and find that they are complex except for the hydrodynamic mode, whose residue is purely imaginary. For different quasinormal modes the residue grows with momentum q, whereas for the hydrodynamic mode it behaves as a damped oscillation with distinct zeroes at finite q. Similar to collective excitations at weak coupling the hydrodynamic mode decouples at short wavelengths. Knowledge of the residues allows as well to define the time scale {tau}{sub H} from when on the system enters the hydrodynamic regime, restricting the validity of hydrodynamic simulations to times t>{tau}{sub H}.

  12. Anomaly nucleation constrains SU(2) gauge theories.

    PubMed

    Halverson, James

    2013-12-27

    We argue for the existence of additional constraints on SU(2) gauge theories in four dimensions when realized in ultraviolet completions admitting an analog of D-brane nucleation. In type II string compactifications these constraints are necessary and sufficient for the absence of cubic non-Abelian anomalies in certain nucleated SU(N>2) theories. It is argued that they appear quite broadly in the string landscape. Implications for particle physics are discussed; most realizations of the standard model in this context are inconsistent, unless extra electroweak fermions are added. PMID:24483790

  13. Viability of strongly coupled scenarios with a light Higgs-like boson.

    PubMed

    Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José

    2013-05-01

    We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model. PMID:23683189

  14. Phase transitions at strong coupling in the 2+1-d abelian Higgs model

    NASA Astrophysics Data System (ADS)

    MacKenzie, R. B.; Nebia-Rahal, Faïza; Paranjape, M. B.

    2013-12-01

    We study, using numerical Monte-Carlo simulations, an effective description of the 2+1 dimensional Abelian Higgs model which is valid at strong coupling, in the broken symmetry sector. In this limit, the massive gauge boson and the massive neutral Higgs decouple leaving only the massive vortices. The vortices have no long range interactions. We find a phase transition as the mass of the vortices is made lighter and lighter. At the transition, the contributions to the functional integral come from a so-called infinite vortex anti-vortex loop. Adding the Chern-Simons term simply counts the linking number between the vortices. We find that the Wilson loop exhibits perimeter law behaviour in both phases, although the polarization cloud increases by an order of magnitude at the transition. We also study the 't Hooft loop. We find the 't Hooft loop exhibits perimeter law behaviour in the presence of the Chern-Simons term but is trivial in its absence. Thus we have a theory with perimeter law for both the Wilson loop and the 't Hooft loop, but contains no massless particles.

  15. On the evolution of jet energy and opening angle in strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Rajagopal, Krishna

    2016-05-01

    We calculate how the energy and the opening angle of jets in {N} = 4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE jet /dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE jet /dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that {N} = 4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the {N} = 4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.

  16. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGESBeta

    Gieres, Francois; Blaschke, Daniel N.; Reboud, Meril; Schweda, Manfred

    2016-07-12

    We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. Here, the relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  17. Warm Gauge-Flation with General Dissipative Coefficient

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Saleem, Rabia; Mohsaneen, Sidra

    2016-07-01

    In this work, we study the effects of generalized dissipative coefficient on the slow-roll inflation driven by non-Abelian gauge field minimally coupled to gravity. The dynamics of warm intermediate and logamediate inflationary models during weak and strong dissipative regimes is analyzed. In both cases, we explore effective scalar potential, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll conditions. We conclude that our gauge-flationary model with generalized dissipative coefficient remains consistent with the recent data for dissipative parameter m = 3 and m = 1 for weak and strong dissipative eras, respectively.

  18. Dispersion of Plasma Dust Acoustic Waves in the Strong-Coupling Regime

    SciTech Connect

    Pieper, J.B.; Goree, J.

    1996-10-01

    Low-frequency compressional waves were observed in a suspension of strongly coupled 9.4 {mu}m spheres in an rf Kr plasma. Both parts of the complex wave number were measured to determine the dispersion relation, which agreed with a theoretical model of damped dust acoustic waves, ignoring strong coupling, but not with a strongly coupled dust-lattice wave model. The results yield experimental values for the dust plasma frequency, charge, Debye length, and damping rate, and support the applicability of fluid-based dispersion relations to strongly coupled dusty plasmas, which has been a controversy. {copyright} {ital 1996 The American Physical Society.}

  19. Realizations of magnetic-monopole gauge fields - Diatoms and spin precession

    NASA Technical Reports Server (NTRS)

    Moody, J.; Shapere, A.; Wilczek, F.

    1986-01-01

    It is found that the effective Hamiltonian for nuclear rotation in a diatom is equivalent to that of a charged particle in a background magnetic-monopole field. In certain cases, half-integer orbital angular momentum or non-Abelian fields occur. Furthermore, the effects of magnetic-monopole-like gauge fields can be experimentally observed in spin-resonance experiments with variable magnetic fields.

  20. Complex spectrum of finite-density lattice QCD with static quarks at strong coupling

    NASA Astrophysics Data System (ADS)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2016-05-01

    We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop correlation functions. Our results are valid for all values of the gauge coupling in 1 +1 dimensions and in the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero, the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the combined action of charge conjugation C and complex conjugation K implies that the eigenvalues of Ts are either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are determined by a particle-hole symmetry. For μ that is small compared to the quark mass M , we typically find real eigenvalues for the lowest-lying states. At somewhat larger values of μ , pairs of eigenvalues may form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation functions. However, near μ =M , the low-lying spectrum becomes real again. This is a direct consequence of the approximate particle-hole symmetry at μ =M for heavy quarks. This behavior of the eigenvalues should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-Lasinio models using complex saddle points.

  1. Quantization of gauge fields, graph polynomials and graph homology

    SciTech Connect

    Kreimer, Dirk; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology. -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.

  2. Quantum strings in AdS5 × S5: strong-coupling corrections to dimension of Konishi operator

    NASA Astrophysics Data System (ADS)

    Roiban, R.; Tseytlin, A. A.

    2009-11-01

    We consider leading strong coupling corrections to the energy of the lightest massive string modes in \\adss, which should be dual to members of the Konishi operator multiplet in Script N = 4 SYM theory. This determines the general structure of the strong-coupling expansion of the anomalous dimension of the Konishi operator. We use 1-loop results for several semiclassical string states to extract information about the leading coefficients in this expansion. Our prediction is Δ = 2λ1/4+b0+b1λ-1/4+b3λ-3/4+..., where b0 and b1 are rational while b3 is transcendental (containing ζ(3)). Explicitly, we argue that b0 = Δ0-4 (where Δ0 is the canonical dimension of the corresponding gauge-theory operator in the Konishi multiplet) and b1 = 1. Our conclusions are sensitive to few assumptions, implied by a correspondence with flat-space expressions, on how to translate semiclassical quantization results into predictions for the exact quantum string spectrum.

  3. Numerical corrections to the strong coupling effective Polyakov-line action for finite T Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bergner, G.; Langelage, J.; Philipsen, O.

    2015-11-01

    We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.

  4. More on the properties of the first Gribov region in Landau gauge

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2016-03-01

    Complete gauge fixing beyond perturbation theory in non-Abelian gauge theories is a nontrivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.

  5. 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling

    NASA Astrophysics Data System (ADS)

    Buchbinder, E. I.; Tseytlin, A. A.

    2014-06-01

    We compute the one-loop correction to the probe D3-brane action in AdS5×S5 expanded around the classical Drukker-Fiol solution ending on a circle at the boundary. It is essentially the logarithm of the one-loop partition function of an Abelian N=4 vector multiplet in AdS2×S2 geometry. This one-loop correction should be describing the subleading 1/N term in the expectation value of circular Wilson loop in the totally symmetric rank k representation in SU(N) supersymmetric Yang-Mills theory at strong coupling. In the limit 1≪k≪N when the circular Wilson loop expectation values for the symmetric representation and for the product of k fundamental representations are expected to match, we find that this one-loop D3-brane correction agrees with the gauge theory result for the k-fundamental case.

  6. Gauge-flation confronted with Planck

    SciTech Connect

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco E-mail: ema@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strong tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.

  7. Classical gauged massless Rarita-Schwinger fields

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-10-01

    We show that, in contrast to known results in the massive case, a minimally gauged massless Rarita-Schwinger field yields a consistent classical theory, with a generalized fermionic gauge invariance realized as a canonical transformation. To simplify the algebra, we study a two-component left chiral reduction of the massless theory. We formulate the classical theory in both Lagrangian and Hamiltonian form for a general non-Abelian gauging and analyze the constraints and the Rarita-Schwinger gauge invariance of the action. An explicit wave front calculation for Abelian gauge fields shows that wavelike modes do not propagate with superluminal velocities. An analysis of Rarita-Schwinger spinor scattering from gauge fields shows that adiabatic decoupling fails in the limit of zero gauge field amplitude, invalidating various "no-go" theorems based on "on-shell" methods that claim to show the impossibility of gauging Rarita-Schwinger fields. Quantization of Rarita-Schwinger fields, using many formulas from this paper, is taken up in the following paper.

  8. Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Hyde, Paul; Bai, Lihui; Match, Christophe; Hu, Can-Ming

    2016-08-01

    We experimentally studied a strongly coupled magnon-photon system via microwave transmission measurements. An antiresonance, i.e., the suppression of the microwave transmission, is observed, indicating a relative phase change between the magnon response and the driving microwave field. We show that this antiresonance feature can be used to interpret the phase evolution of the coupled magnon-microwave system and apply this technique to reveal the phase evolution of magnon dark modes. Our work provides a standard procedure for the phase analysis of strongly coupled systems, enabling the phase characterization of each subsystem, and can be generally applied to other strongly coupled systems.

  9. Cavity piezomechanical strong coupling and frequency conversion on an aluminum nitride chip

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Ling; Han, Xu; Jiang, Liang; Tang, Hong X.

    2016-07-01

    Schemes to achieve strong coupling between mechanical modes of aluminum nitride microstructures and microwave cavity modes due to the piezoelectric effect are proposed. We show that the strong-coupling regime is feasible for an on-chip aluminum nitride device that is either enclosed by a three-dimensional microwave cavity or integrated with a superconducting coplanar resonator. Combining with optomechanics, the piezomechanical strong coupling permits coherent conversion between microwave and optical modes with high efficiency. Hence, the piezomechanical system will be an efficient transducer for applications in hybrid quantum systems.

  10. Quantum bound of the shear viscosity of a strongly coupled plasma.

    PubMed

    Fortov, V E; Mintsev, V B

    2013-09-20

    String theory methods led to the hypothesis that the ratio of a shear viscosity coefficient to the volume density of entropy of any physical system has a lower bound. Systems with strong coupling have a small viscosity as compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. Here, we have estimated the fully ionized strongly coupled plasma viscosity based on the dynamic experimental data on electrical conductivity and have shown that the ratio of viscosity to entropy of the strongly coupled plasma is very close to that of the lower bound predicted by the string theory. PMID:24093269

  11. Topological superfluids on a square optical lattice with non-Abelian gauge fields: Effects of next-nearest-neighbor hopping in the BCS-BEC evolution

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-01-01

    We consider a two-component Fermi gas with attractive interactions on a square optical lattice, and study the interplay of Zeeman field, spin-orbit coupling, and next-nearest-neighbor hopping on the ground-state phase diagrams in the entire BCS-BEC evolution. In particular, we first classify and distinguish all possible superfluid phases by the momentum-space topology of their zero-energy quasiparticle-quasihole excitations, and then numerically establish a plethora of quantum phase transitions in between. These transitions are further signaled and evidenced by the changes in the corresponding topological invariant of the system, i.e., its Chern number. Lastly, we find that the superfluid phase exhibits a reentrant structure, separated by a fingering normal phase, the origin of which is traced back to the changes in the single-particle density of states.

  12. Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter

    2000-08-01

    A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.

  13. Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation

    NASA Astrophysics Data System (ADS)

    Sluka, Travis C.; Penny, Stephen G.; Kalnay, Eugenia; Miyoshi, Takemasa

    2016-01-01

    The local ensemble transform Kalman filter (LETKF) is used to develop a strongly coupled data assimilation (DA) system for an intermediate complexity ocean-atmosphere coupled model. Strongly coupled DA uses the cross-domain error covariance from a coupled-model background ensemble to allow observations in one domain to directly impact the state of the other domain during the analysis update. This method is compared to weakly coupled DA in which the coupled model is used for the background, but the cross-domain error covariance is not utilized. We perform an observing system simulation experiment with atmospheric observations only. Strongly coupled DA reduces the ocean analysis errors compared to weakly coupled DA, and the higher accuracy of the ocean also improves the atmosphere. The LETKF system design presented should allow for easy implementation of strongly coupled DA with other types of coupled models.

  14. Experimental demonstration of the equivalence of inductive and strongly coupled magnetic resonance wireless power transfer

    NASA Astrophysics Data System (ADS)

    Ricketts, David S.; Chabalko, Matthew J.; Hillenius, Andrew

    2013-02-01

    In this work, we show experimentally that wireless power transfer (WPT) using strongly coupled magnetic resonance (SCMR) and traditional induction are equivalent. We demonstrate that for a given coil separation, and to within 4%, strongly coupled magnetic resonance and traditional induction produce the same theoretical efficiency of wireless power transfer versus distance. Moreover, we show that the difference between traditional induction and strongly coupled magnetic resonance is in the implementation of the impedance matching network where strongly coupled magnetic resonance uses the mini-loop impedance match. The mini-loop impedance mach provides a low-loss, high-ratio impedance transformation that makes it desirable for longer distance wireless power transfer, where large impedance transformations are needed to maximize power transfer.

  15. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification

    NASA Astrophysics Data System (ADS)

    Schluck, F.; Lehmann, G.; Müller, C.; Spatschek, K. H.

    2016-08-01

    Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below the strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.

  16. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.

    PubMed

    Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren

    2016-04-26

    Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions. PMID:26972554

  17. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey

  18. Quantum structure of the non-Abelian Weizsäcker-Williams field for a very large nucleus

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.

    1997-05-01

    We consider the McLerran-Venugopalan model for calculation of the small-x part of the gluon distribution function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which correspond to the classical Weizsäcker-Williams field found previously [Yu. V. Kovchegov, Phys. Rev. D 54, 5463 (1996)] as a solution of the classical equations of motion for the gluon field in the light-cone gauge. Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as this limit is not violated a classical field can be used for the calculation of scattering amplitudes.

  19. Non-Abelian T-duality, G 2-structure rotation and holographic duals of = 1 Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Macpherson, Niall T.

    2013-11-01

    A new dynamic SU(3)-structure solution in type-IIA is found by T-dualising a deformation of the Maldacena-Nastase solution along an SU(2) isometry. It is argued that this is dual to a quiver gauge theory with multiple Chern-Simons levels. A clear way of defining Chern-Simons levels in terms of Page charges is presented, which is also used to define a Chern-Simons term for the G 2-structure analogue of Klebanov-Strassler, providing evidence of a cascade in both the ranks and levels of the dual quiver.

  20. On gauge enhancement and singular limits in G 2 compactifications of M-theory

    NASA Astrophysics Data System (ADS)

    Halverson, James; Morrison, David R.

    2016-04-01

    We study the physics of singular limits of G 2 compactifications of M-theory, which are necessary to obtain a compactification with non-abelian gauge symmetry or massless charged particles. This is more difficult than for Calabi-Yau compactifications, due to the absence of calibrated two-cycles that would have allowed for direct control of W-boson masses as a function of moduli. Instead, we study the relationship between gauge enhancement and singular limits in G 2 moduli space where an associative or coassociative submanifold shrinks to zero size; this involves the physics of topological defects and sometimes gives indirect control over particle masses, even though they are not BPS. We show how a lemma of Joyce associates the class of a three-cycle to any U(1) gauge theory in a smooth G 2 compactification. If there is an appropriate associative submanifold in this class then in the limit of nonabelian gauge symmetry it may be interpreted as a gauge theory worldvolume and provides the location of the singularities associated with non-abelian gauge or matter fields. We identify a number of gauge enhancement scenarios related to calibrated submanifolds, including Coulomb branches and non-isolated conifolds, and also study examples that realize them.

  1. Holographic Gauge Mediation

    SciTech Connect

    Benini, Francesco; Dymarsky, Anatoly; Franco, Sebastian; Kachru, Shamit; Simic, Dusan; Verlinde, Herman; /Princeton, Inst. Advanced Study

    2009-06-19

    We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.

  2. Quantum structure of the non-Abelian Weizs{umlt a}cker-Williams field for a very large nucleus

    SciTech Connect

    Kovchegov, Y.V.

    1997-05-01

    We consider the McLerran-Venugopalan model for calculation of the small-x part of the gluon distribution function for a very large ultrarelativistic nucleus at weak coupling. We construct the Feynman diagrams which correspond to the classical Weizs{umlt a}cker-Williams field found previously [Yu. V. Kovchegov, Phys. Rev. D {bold 54}, 5463 (1996)] as a solution of the classical equations of motion for the gluon field in the light-cone gauge. Analyzing these diagrams we obtain a limit for the McLerran-Venugopalan model. We show that as long as this limit is not violated a classical field can be used for the calculation of scattering amplitudes. {copyright} {ital 1997} {ital The American Physical Society}

  3. AkF ¯ chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Shi, Yan-Liang; Shrock, Robert

    2015-11-01

    We study asymptotically free chiral gauge theories with an SU (N ) gauge group and chiral fermions transforming according to the antisymmetric rank-k tensor representation, Ak≡[k ]N , and the requisite number, nF ¯, of copies of fermions in the conjugate fundamental representation, F ¯ ≡[1] ¯ N , to render the theories anomaly-free. We denote these as AkF ¯ theories. We take N ≥2 k +1 so that nF ¯≥1 . The A2F ¯ theories form an infinite family with N ≥5 , but we show that the A3F ¯ and A4F ¯ theories are only asymptotically free for N in the respective ranges 7 ≤N ≤17 and 9 ≤N ≤11 , and that there are no asymptotically free AkF ¯ theories with k ≥5 . We investigate the types of ultraviolet to infrared evolution for these AkF ¯ theories and find that, depending on k and N , they may lead to a non-Abelian Coulomb phase, or may involve confinement with massless gauge-singlet composite fermions, bilinear fermion condensation with dynamical gauge and global symmetry breaking, or formation of multifermion condensates that preserve the gauge symmetry. We also show that there are no asymptotically free, anomaly-free SU (N ) SkF ¯ chiral gauge theories with k ≥3 , where Sk denotes the rank-k symmetric representation.

  4. Formation and evolution of vortices in a collisional strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2016-07-01

    Formation and evolution of vortices are studied in a collisional strongly coupled dusty plasma in the framework of a Generalized Hydrodynamic model (GH). Here we mainly present the nonlinear dynamical response of this strongly coupled system in presence of dust-neutral collisional drag. It is shown that the interplay between the nonlinear elastic stress and the dust-neutral collisional drag results in the generation of non-propagating monopole vortex for some duration before it starts to propagate like transverse shear wave. It is also found that the interaction between two unshielded monopole vortices having both same (co-rotating) and opposite (counter rotating) rotations result in the formation of two propagating dipole vortices of equal and unequal strength respectively. These results will provide some new understanding on the transport properties in such a strongly coupled system. The numerical simulation is carried out using a de-aliased doubly periodic pseudo-spectral code with Runge-Kutta-Gill time integrator.

  5. Wake potential in a strong coupling plasma from the AdS /CFT correspondence

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Liu, Hui

    2016-04-01

    With the dielectric function computed from the AdS /CFT correspondence, we studied the wake potential induced by a fast moving charge in a strong-coupling plasma and compared it with the weak-coupling wake potential for different particle velocities as v =0.55 c and v =0.99 c . The most prominent difference between strong and weak wake potential is that, when v =0.99 c , the remarkable oscillation due to Cerenkov-like radiation and the Mach cone in weak coupling disappears in strong coupling, which implies that the plasmon mode with phase velocity lower than the speed of light dose not exist in the strong-coupling plasma.

  6. Dual Strong Couplings Between TPPS J-Aggregates and Aluminum Plasmonic States.

    PubMed

    Li, Jie; Ueno, Kosei; Uehara, Hiyori; Guo, Jingchun; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-07-21

    We report on the spectral properties of strong coupling between the localized surface plasmon resonances (LSPRs) of aluminum (Al) nanostructures and tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) J-aggregates. Because of their wide spectral range of LSPR bands from ultraviolet to near-infrared wavelengths by controlling structural size, Al nanodisks can realize strong coupling with different excitons of TPPS J-aggregates. The Rabi splitting energies of the excitons based on Soret and Q bands are 300 and 180 meV, respectively. In addition to extinction spectrum, we have also measured an excitation spectrum to determine the essential absorption of the hybrid states and successfully confirmed a shoulder peak corresponding to a lower branch of hybrid states. In Al nanorod systems, strong coupling with two excitons can also be selectively induced by merely rotating the polarization of the incident light, which constituted a simple platform for the dynamic control of exciton/plasmon coupling states. PMID:27383561

  7. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  8. Gauge invariance and the physical spectrum in the two-Higgs-doublet model

    NASA Astrophysics Data System (ADS)

    Maas, Axel; Pedro, Leonardo

    2016-03-01

    Observable states are gauge invariant. In a non-Abelian gauge theory, these are necessarily composite operators. We investigate the spectrum of these operators in the two-Higgs-doublet model. For this purpose, we are working along the lines of the Fröhlich-Morchio-Strocchi mechanism to relate the physical spectrum to the spectrum of the elementary particles. We also investigate the consequences of spontaneous breaking of the global (custodial) symmetry group. Finally, we briefly comment on how to test the results using lattice methods.

  9. Stringy evidence for {ital D}=11 structure in a strongly coupled type-IIA superstring

    SciTech Connect

    Bars, I.

    1995-09-15

    Witten proposed that the low energy physics of a strongly coupled {ital D}=10 type-IIA superstring may be described by {ital D}=11 supergravity. To explore the stringy aspects of the underlying theory we examine the stringy massive states. We propose a systematic formula for identifying nonperturbative states in {ital D}=10 type-IIA superstring theory, such that, together with the elementary excited string states, they form {ital D}=11 supersymmetric multiplets, in SO(10) representations. This provides hints for the construction of a conjectured weakly coupled {ital D}=11 theory that is dual to the strongly coupled {ital D}=10 type-IIA superstring.

  10. Strong coupling in molecular exciton-plasmon Au nanorod array systems

    NASA Astrophysics Data System (ADS)

    Fedele, Stefano; Hakami, Manal; Murphy, Antony; Pollard, Robert; Rice, James

    2016-02-01

    We demonstrate here a strong coupling between localized surface plasmon modes in self-standing nanorods with excitons in a molecular J-aggregate layer through angular tuning. The enhanced exciton-plasmon coupling creates a Fano like line shape in the differential reflection spectra associated with the formation of hybrid states, leading to anti-crossing of the upper and lower polaritons with a Rabi frequency of 125 meV. The recreation of a Fano like line shape was found in photoluminescence demonstrating changes in the emission spectral profile under strong coupling.

  11. Y-system for form factors at strong coupling in AdS5 and with multi-operator insertions in AdS3

    NASA Astrophysics Data System (ADS)

    Gao, Zhiquan; Yang, Gang

    2013-06-01

    We study form factors in {N}=4 SYM at strong coupling in general kinematics and with multi-operator insertions by using gauge/string duality and integrability techniques. This generalizes the AdS3 results of Maldacena and Zhiboedov in two non-trivial aspects. The first generalization to AdS5 space was motivated by its potential connection to strong coupling Higgs-to-three-gluons amplitudes in QCD which was observed recently at weak coupling. The second generalization to multi-operator insertions was motivated as a step towards applying on-shell techniques to compute correlation functions at strong coupling. In this picture, each operator is associated to a monodromy condition on the cusp solutions. We construct Y-systems for both cases. The Y -functions are related to the spacetime (cross) ratios. Their WKB approximations based on a rational function P ( z) are also studied. We focus on the short operators, while the prescription is hopefully also applicable for more general operators.

  12. Conformal gauge-Yukawa theories away from four dimensions

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Langæble, Kasper; Litim, Daniel F.; Sannino, Francesco

    2016-07-01

    We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in d = 4 + ɛ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD d and then we add Yukawa interactions and scalars which we study at next-to- and next-to-next-to-leading order. Interacting infrared fixed points naturally emerge in dimensions lower than four while ultraviolet ones appear above four. We also analyse the stability of the scalar potential for the discovered fixed points. We argue for a very rich phase diagram in three dimensions while in dimensions higher than four certain Gauge-Yukawa theories are ultraviolet complete because of the emergence of an asymptotically safe fixed point.

  13. Towards a fully stringy computation of Yukawa couplings on non-factorized tori and non-abelian twist correlators (I): The classical solution and action

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2016-09-01

    We consider the simplest possible setting of non-abelian twist fields which corresponds to SU (2) monodromies. We first review the theory of hypergeometric function and of the solutions of the most general Fuchsian second order equation with three singularities. Then we solve the problem of writing the general solution with prescribed U (2) monodromies. We use this result to compute the classical string solution corresponding to three D2 branes in R4. Despite the fact that the configuration is supersymmetric the classical string solution is not holomorphic. Using the equation of motion and not the KLT approach we give a very simple expression for the classical action of the string. We find that the classical action is not proportional to the area of the triangle determined by the branes intersection points since the solution is not holomorphic. Phenomenologically this means that the Yukawa couplings for these supersymmetric configurations on non-factorized tori are suppressed with respect to the factorized case.

  14. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  15. Strong coupling and quasispinor representations of the SU(3) rotor model

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; de Guise, H.

    1992-06-01

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title.

  16. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    NASA Astrophysics Data System (ADS)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  17. Realization of power law inflation & variants via variation of the strong coupling constant

    NASA Astrophysics Data System (ADS)

    AlHallak, M.; Chamoun, N.

    2016-09-01

    We present a model of power law inflation generated by variation of the strong coupling constant. We then extend the model to two varying coupling constants which leads to a potential consisting of a linear combination of exponential terms. Some variants of the latter may be self-consistent and can accommodate the experimental data of the Planck 2015 and other recent experiments.

  18. Gauge bosons at zero and finite temperature

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2013-03-01

    Gauge theories of the Yang-Mills type are the single most important building block of the standard model of particle physics and beyond. They are an integral part of the strong and weak interactions, and in their Abelian version of electromagnetism. Since Yang-Mills theories are gauge theories their elementary particles, the gauge bosons, cannot be described without fixing a gauge. Therefore, to obtain their properties a quantized and gauge-fixed setting is necessary. Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed by the Gribov-Singer ambiguity, which requires the introduction of non-local constraints. The construction and implementation of a method-independent gauge-fixing prescription to resolve this ambiguity is the single most important first step to describe gauge bosons beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative Landau gauge, are described here. Their implementation are discussed for two example methods, lattice gauge theory and the quantum equations of motion. After gauge-fixing, it is possible to study gauge bosons in detail. The most direct access is provided by their correlation functions. The corresponding two- and three-point correlation functions are presented at all energy scales. These give access to the properties of the gauge bosons, like their absence from the asymptotic physical state space, particle-like properties at high energies, and the running coupling. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing, and their properties are discussed as well. These results are presented for two, three, and four dimensions, and for various gauge algebras. Finally, the modifications of the properties of gauge bosons at finite temperature are presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory. However, it is found that the phase transition is not deconfining the gauge bosons, although the bulk

  19. Nonzero {theta}{sub 13} for neutrino mixing in a supersymmetric B-L gauge model with T{sub 7} lepton flavor symmetry

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-10-01

    We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.

  20. Quantum Chromodynamics -- The Perfect Yang-Mills Gauge Field Theory

    NASA Astrophysics Data System (ADS)

    Gross, David

    David Gross: My talk today is about the most beautiful of all Yang-Mills Theories (non-Abelian gauge theories), the theory of the strong nuclear interactions, Quantum Chromodynamics, QCD. We are celebrating 60 years of the publication of a remarkable paper which introduced the concept of non-Abelian local gauge symmetries, now called the Yang-Mills theory, to physics. In the introduction to this paper it is noted that the usual principle of isotopic spin symmetry is not consistent with the concept of localized fields. This sentence has drawn attention over the years because the usual principle of isotopic spin symmetry is consistent, it is just not satisfactory. The authors, Yang and Mills, introduced a more satisfactory notion of local symmetry which did not require one to rotate (in isotopic spin space) the whole universe at once to achieve the symmetry transformation. Global symmetries are thus are similar to `action at a distance', whereas Yang-Mills theory is manifestly local...

  1. Extending plasma transport theory to strong coupling through the concept of an effective interaction potential

    SciTech Connect

    Baalrud, Scott D.; Daligault, Jérôme

    2014-05-15

    A method for extending traditional plasma transport theories into the strong coupling regime is presented. Like traditional theories, this is based on a binary scattering approximation, but where physics associated with many body correlations is included through the use of an effective interaction potential. The latter is simply related to the pair-distribution function. Modeling many body effects in this manner can extend traditional plasma theory to orders of magnitude stronger coupling. Theoretical predictions are tested against molecular dynamics simulations for electron-ion temperature relaxation as well as diffusion in one component systems. Emphasis is placed on the connection with traditional plasma theory, where it is stressed that the effective potential concept has precedence through the manner in which screening is imposed. The extension to strong coupling requires accounting for correlations in addition to screening. Limitations of this approach in the presence of strong caging are also discussed.

  2. Titratable macroions in multivalent electrolyte solutions: Strong coupling dressed ion approach

    NASA Astrophysics Data System (ADS)

    Adžić, Nataša; Podgornik, Rudolf

    2016-06-01

    We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macroions. The model system consists of two point-like macroions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a dressed ion strong coupling theory, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, pH of the solution, and salt concentration) through a simple charge regulation model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macroions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.

  3. Dynamics of compressional Mach cones in a strongly coupled complex plasma

    SciTech Connect

    Bandyopadhyay, P. Dey, R.; Sen, Abhijit; Kadyan, Sangeeta

    2014-10-15

    Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

  4. Ultrafast Polariton-Phonon Dynamics of Strongly Coupled Quantum Dot-Nanocavity Systems

    NASA Astrophysics Data System (ADS)

    Müller, Kai; Fischer, Kevin A.; Rundquist, Armand; Dory, Constantin; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Kelaita, Yousif A.; Borish, Victoria; Vučković, Jelena

    2015-07-01

    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for nonclassical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single-photon generation.

  5. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    PubMed Central

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-01-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360

  6. Strong-coupling superconductivity, the Lorenz number, and the Nernst effect in cuprates

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sasha

    2004-03-01

    Strong electron-phonon interaction in the cuprates has gathered support over the last decade in a large number of experiments. Here I argue that the bipolaron extension of the BCS theory to the strong-coupling regime [1] naturally explains the temperature dependent Lorenz number and the large Nernst effect in the cuprates. The Wiedemann-Franz law breaks down due to the interference of polaron and bipolaron contributions to the heat flow that provides a quantitative fit to the experimental "Hall" Lorenz number [2]. A strong enhancement of the Nernst signal and its magnetic field dependence above Tc originate in a critical slowing down of the bipolaron relaxation times, when the system approaches the Bose-Einstein condensation. [1] A.S. Alexandrov, Theory of superconductivity: from weak to strong coupling, IOP Publishing (Bristol-Philadelphia, 2003) [2] K. K. Lee, A. S. Alexandrov, and W. Y. Liang, Phys. Rev. Lett. 90, 217001 (2003)

  7. Group delay spread analysis of strongly coupled 3-core fibers: an effect of bending and twisting.

    PubMed

    Fujisawa, Takeshi; Saitoh, Kunimasa

    2016-05-01

    The effect of bending and twisting on the group delay spread (GDS) of strongly coupled 3-core fibers is investigated. For the random perturbation inducing modal coupling in the fiber, two physical mechanisms, microbending or macrobending with random twist, are considered. Calculated results show that both mechanisms lead to the same effect, namely, reduced GDS under strong coupling regime. Furthermore, a novel fiber structure having an air-hole at the center is proposed for reducing the GDS. By placing the air-hole, the effective index difference between fundamental and the higher order modes is reduced, leading to strong modal mixing in the fiber, and hence, small GDS. Calculated GDS of the fiber with air-hole is almost 1/5 compared with that of the fiber without air-hole. PMID:27137571

  8. Phase Fluctuations in Strongly Coupled d-Wave Superconductors

    SciTech Connect

    Mayr, Matthias; Alvarez, Gonzalo; Sen, Cengiz; Dagotto, Elbio R

    2005-01-01

    We present a numerically exact solution for the BCS Hamiltonian at any temperature, including the degrees of freedom associated with classical phase, as well as amplitude fluctuations via a Monte Carlo integration. This allows for an investigation over the whole range of couplings: from weak attraction, as in the well-known BCS limit, to the mainly unexplored strong-coupling regime of pronounced phase fluctuations. In the latter, two characteristic temperatures T{sup *} and T{sub c}, associated with short- and long-range ordering, respectively, can be identified in a mean-field-motivated Hamiltonian. T{sup *} at the same time corresponds to the opening of a gap in the excitation spectrum. In addition to introducing a novel procedure to study strongly coupled d-wave superconductors, our results indicate that classical phase fluctuations are not sufficient to explain the pseudogap features of high-temperature superconductors.

  9. Modeling of electric arcs: A study of the non-convective case with strong coupling

    NASA Astrophysics Data System (ADS)

    Wright, D.; Delmont, P.; Torrilhon, M.; Torrilhon

    2013-10-01

    In this paper, we investigate a mathematical model for electric arcs. The model is based on the equations of magnetohydrodynamics, where the flow and heat transfer in a plasma is coupled to electrodynamics. Our approach neglects convection and yields a reaction-diffusion model that includes only the core phenomena of electric arcs: Ohmic heating and nonlinear electric conductivity. The equations exhibit interesting mathematical properties like non-unique steady states and instabilities that can be linked to electric arc properties. Additionally, a 3D axisymmetric simulation of the creation and extinction of an electric arc is presented based on a strongly coupled numerical algorithm for the non-convective model. The approach is especially suited for high-current arcs where strong coupling becomes necessary.

  10. Determination of the Strong Coupling from Hadronic Tau Decays Using Renormalization Group Summed Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, Irinel

    2013-08-01

    We determine the strong coupling constant αs from the τ hadronic width using a renormalization group summed (RGS) expansion of the QCD Adler function. The main theoretical uncertainty in the extraction of αs is due to the manner in which renormalization group invariance is implemented, and the as yet uncalculated higher order terms in the QCD perturbative series. We show that new expansion exhibits good renormalization group improvement and the behavior of the series is similar to that of the standard CIPT expansion. The value of the strong coupling in /lineMS scheme obtained with the RGS expansion is α s(M_τ 2) = 0.338 ± 0.010. The convergence properties of the new expansion can be improved by Borel transformation and analytic continuation in the Borel plane. This is discussed elsewhere in these issues.

  11. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    PubMed Central

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-01-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<−133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton. PMID:26838665

  12. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    NASA Astrophysics Data System (ADS)

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-02-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<-133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.

  13. Self-consistent solution of the simultaneous Schwinger-Dyson equation in strong coupling QED

    SciTech Connect

    Kondo, K. . Dept. of Physics); Mino, H. . Faculty of Engineering); Nakatani, H. )

    1992-06-07

    In the strong coupling region of QED, the authors have obtained a numerical solution to the simultaneous Schwinger-Dyson equation for the fermion and the photon propagators. In this paper, it is shown that there is a critical point separating the spontaneous-chiral-symmetry-breaking (strong coupling) phase and the weak coupling phase. The critical point is consistently interpreted as the second order phase transition point at which the continuum limit of cutoff QED may be taken. The vacuum polarization function obtained in this framework exhibits essentially the same asymptotic uv behavior as that predicted from the one-loop calculation. The scaling behavior is not inconsistent with the mean-field result as predicted from the one-loop case, which favors the triviality of QED.

  14. Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium

    SciTech Connect

    Tiwari, Sanat Kumar; Das, Amita; Patel, Bhavesh G.; Angom, Dilip; Kaw, Predhiman

    2012-07-15

    The Kelvin-Helmholtz (KH) instability in the context of strongly coupled dusty plasma medium has been investigated. In particular, the role of transverse shear and the compressional acoustic modes in both the linear and nonlinear regimes of the KH instability has been studied. It is observed that in addition to the conventional nonlocal KH instability, there exists a local instability in the strong coupling case. The interplay of the KH mode with this local instability shows up in the simulations as an interesting phenomenon of recurrence in the nonlinear regime. Thus, a cyclic KH instability process is observed to occur. These cyclic events are associated with bursts of activity in terms of transverse and compressional wave generation in the medium.

  15. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    SciTech Connect

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-15

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  16. Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach

    SciTech Connect

    Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E.; Ballester, D.; Tkachenko, I. M.

    2010-02-15

    The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach allows us to correct and complement the results previously found with other treatments.

  17. Simple thermodynamics of strongly coupled one-component-plasma in two and three dimensions

    SciTech Connect

    Khrapak, Sergey A.; Khrapak, Alexey G.

    2014-10-15

    Simple analytical approximations for the internal energy of the strongly coupled one-component-plasma in two and three dimensions are discussed. As a result, new practical expressions for the internal energy in the fluid phase are proposed. Their accuracy is checked by evaluating the location of the fluid-solid phase transition from the free energy consideration. Possible applications to other related systems are briefly discussed.

  18. Strong coupling constants of heavy baryons with light mesons in QCD

    SciTech Connect

    Aliev, T. M.; Azizi, K.; Savci, M.

    2012-10-23

    The strong coupling constants of the heavy spin-1/2 and spin-3/2 baryons with light pseudoscalar and vector mesons are calculated in the framework of the light cone QCD sum rules. Using the symmetry arguments, some structure independent relations among different correlation functions are obtained. It is shown that all possible transitions are described by only one invariant function, whose explicit expression is structure dependent.

  19. Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity.

    PubMed

    Kato, Shinya; Aoki, Takao

    2015-08-28

    We demonstrate an all-fiber cavity quantum electrodynamics system with a trapped single atom in the strong coupling regime. We use a nanofiber Fabry-Perot cavity, that is, an optical nanofiber sandwiched by two fiber-Bragg-grating mirrors. Measurements of the cavity transmission spectrum with a single atom in a state-insensitive nanofiber trap clearly reveal the vacuum Rabi splitting. PMID:26371652

  20. Longitudinal singular response of dusty plasma medium in weak and strong coupling limits

    SciTech Connect

    Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2012-01-15

    The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.

  1. Single-molecule strong coupling at room temperature in plasmonic nanocavities.

    PubMed

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J; Scherman, Oren A; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter1, 2, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds. PMID:27296227

  2. Study of the Ionization Dynamics and Equation of State of a Strongly Coupled Plasma

    SciTech Connect

    Shepherd, R; Audebert, P; Geindre, J P; Iglesias, C; Foord, M; Rogers, F; Gauthier, J C; Springer, P

    2003-02-06

    Preliminary experiments to study the ionization dynamics and equation of state of a strongly coupled plasma have been performed at the LLNL COMET laser facility. In these experiment, a 1.0 J, 500 fs, 532 nm laser was used to create a uniform, warm dense plasma.The primary diagnostic, Fourier Domain Interferometry (FDI), was used to provide information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be strongly coupled. In addition work was performed characterizing the back-lighter. A von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL was used for these measurements. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS will be used to determine the time history, intensity, and spectral content of the back-lighter resulting in absorption measurements that provide insight into bound states in strongly coupled conditions.

  3. Single-molecule strong coupling at room temperature in plasmonic nanocavities

    NASA Astrophysics Data System (ADS)

    Chikkaraddy, Rohit; de Nijs, Bart; Benz, Felix; Barrow, Steven J.; Scherman, Oren A.; Rosta, Edina; Demetriadou, Angela; Fox, Peter; Hess, Ortwin; Baumberg, Jeremy J.

    2016-07-01

    Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.

  4. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    SciTech Connect

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    2015-09-15

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process. First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.

  5. Geometric phase and gauge connection in polyatomic molecules.

    PubMed

    Wittig, Curt

    2012-05-14

    Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge

  6. Strong-coupling theory of high-temperature superconductivity and colossal magnetoresistance

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. S.

    2005-08-01

    We argue that the extension of the BCS theory to the strong-coupling regime describes the high-temperature superconductivity of cuprates and the colossal magnetoresistance (CMR) of ferromagnetic oxides if the phonon dressing of carriers and strong attractive correlations are taken into account. The attraction between carriers, which is prerequisite to high-temperature superconductivity, is caused by an almost unretarted electron-phonon interaction sufficient to overcome the direct Coulomb repulsion in the strong-coupling limit, where electrons become polarons and bipolarons (real-space electron or hole pairs dressed by phonons). The long-range Froehlich electron-phonon interaction has been identified as the most essential in cuprates providing "superlight" lattice polarons and bipolarons. A number of key observations have been predicted and/or explained with polarons and bipolarons including unusual isotope effects, normal state (pseudo)gaps, upper critical fields, etc. Here some kinetic, magnetic, and more recent thermomagnetic normal state measurements are interpreted in the framework of the strong-coupling theory, including the Nernst effect and normal state diamagnetism. Remarkably, a similar strong-coupling approach offers a simple explanation of CMR in ferromagnetic oxides, while the conventional double-exchange (DEX) model, proposed half a century ago and generalised more recently to include the electronphonon interaction, is in conflict with a number of modern experiments. Among these experiments are site-selective spectroscopies, which have shown that oxygen p-holes are current carriers rather than d-electrons in ferromagnetic manganites (and in cuprates) ruling out DEX mechanism of CMR. Also some samples of ferromagnetic manganites manifest an insulating-like optical conductivity at all temperatures contradicting the DEX notion that their ferromagnetic phase is metallic. On the other hand, the pairing of oxygen holes into heavy bipolarons in the

  7. Yang-Mills Gauge Theory and Higgs Particle

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU (2) × SU (3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.

  8. Yang-Mills gauge theory and Higgs particle

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    2015-12-01

    Motivated by the experimental data on the Higgs particle from the ATLAS Collaboration and the CMS Collaboration at CERN, the standard model, which is a Yang-Mills non-Abelian gauge theory with the group U(1) × SU(2) × SU(3), is augmented by scalar quarks and scalar leptons without changing the gauge group and without any additional Higgs particle. Thus there is fermion-boson symmetry between these new particles and the known quarks and leptons. In a simplest scenario, the cancellation of the quadratic divergences in this augmented standard model leads to a determination of the masses of all these scalar quarks and scalar leptons. All these masses are found to be less than 100 GeV/c2, and the right-handed scalar neutrinos are especially light. Alterative procedures are given with less reliance on the experimental data, leading to the same conclusions.

  9. Stability of an elliptical vortex in a strongly coupled dusty plasma

    SciTech Connect

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2015-08-15

    The stability of a long scale equilibrium vortex structure to short scale perturbations is studied in a strongly coupled dusty plasma in the framework of a generalized hydrodynamic model. It is shown that the free energy associated with the velocity shear of the vortex can drive secondary instabilities consisting of transverse shear waves when the resonance condition between the vortex rotation frequency and the secondary wave frequency is met. Such a process can transfer energy from the long scale vortex to the short scale secondary wave and thereby provide a saturation mechanism for long scale vortices in plasmas in a manner analogous to that in neutral fluids.

  10. Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state

    SciTech Connect

    DeWitt, H.E.

    1993-12-02

    Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the {Gamma} {yields} {infinity} limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example.

  11. Pulse-controlled quantum gate sequences on a strongly coupled qubit chain

    NASA Astrophysics Data System (ADS)

    Frydrych, Holger; Marthaler, Michael; Alber, Gernot

    2015-12-01

    We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits with XX-type interactions, which is capable of dynamically suppressing any coupling in the chain by applying sequences of local pulses to the individual qubits. We demonstrate that high-fidelity single- and two-qubit gates can be achieved by this procedure and that sequences of gates can be implemented by this pulse control alone. We discuss the applicability and physical limitations of our model specifically for strongly coupled superconducting flux qubits. Since dynamically modifying the couplings between flux qubits is challenging, they are a natural candidate for our approach.

  12. The polarized Debye sheath effect on Kadomtsev-Petviashvili electrostatic structures in strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Alinejad, H.

    2015-04-15

    We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.

  13. Strong coupling between whispering gallery modes and chromium ions in ruby

    NASA Astrophysics Data System (ADS)

    Farr, Warrick G.; Goryachev, Maxim; Creedon, Daniel L.; Tobar, Michael E.

    2014-08-01

    We report the study of interactions between cavity photons and paramagnetic Cr3+ spins in a ruby (Cr3+:Al2O3) whispering gallery mode (WGM) resonator. Examining the system at microwave frequencies and millikelvin temperatures, spin-photon couplings up to 610 MHz or about 5% of photon energy are observed between the impurity spins and high quality factor (Q >105) WGM. Large tunability and spin-spin interaction allows operation in the strong coupling regime. The system exhibits behavior not predicted by the usual Tavis-Cummings model because of interactions within the two-level spin bath, and the existence of numerous photonic modes.

  14. Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction

    SciTech Connect

    Feng Yan; Goree, J.; Liu Bin

    2011-05-15

    A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity {eta} and the wave-number-dependent viscosity {eta}(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity {eta}(k) is validated by comparing the results of {eta}(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity {eta} in the presence of a modest level of friction as in dusty plasma experiments.

  15. Modeling the interaction between two dimensional strongly coupled confined dust clusters

    SciTech Connect

    Djebli, M.; Issaad, M.; Rouaiguia, L.

    2010-03-15

    Numerical simulations based on the Monte Carlo method are conducted to investigate ground-state configurations and phase transitions of strongly coupled dust particles. The interaction between negatively charged dust particles is modeled by three different potentials, namely, Coulomb, Yukawa, and logarithmic. The effect of random charge fluctuation is taken into account for a dominant charging process by particles collection and in the presence of two dimensional parabolic confinement potential. Structural arrangement and phase transition are found to be dependent on the potential interaction and the charge fluctuation. The changes in the melting temperature, when the charge fluctuation is taken into account, are particularly noticeable for systems with particles interacting through logarithmic potential.

  16. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    SciTech Connect

    El-Labany, S. K. Zedan, N. A.; El-Taibany, W. F. E-mail: eltaibany@du.edu.eg

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  17. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity

    NASA Astrophysics Data System (ADS)

    Abdurakhimov, L. V.; Yamashiro, R.; Badrutdinov, A. O.; Konstantinov, D.

    2016-07-01

    The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics.

  18. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity.

    PubMed

    Abdurakhimov, L V; Yamashiro, R; Badrutdinov, A O; Konstantinov, D

    2016-07-29

    The strong coupling regime is observed in a system of two-dimensional electrons whose cyclotron motion is coupled to an electromagnetic mode in a Fabry-Perot cavity resonator. Rabi splitting of eigenfrequencies of the coupled motion is observed both in the cavity reflection spectrum and ac current of the electrons, the latter probed by measuring their bolometric photoresponse. Despite the fact that similar observations of Rabi splitting in many-particle systems have been described as a quantum-mechanical effect, we show that the observed splitting can be explained completely by a model based on classical electrodynamics. PMID:27517786

  19. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    SciTech Connect

    Boruah, A.; Sharma, S. K. Bailung, H.; Nakamura, Y.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7 times the initial soliton amplitude.

  20. Coupling of dust acoustic and shear mode through velocity shear in a strongly coupled dusty plasma

    SciTech Connect

    Garai, S. Janaki, M. S.; Chakrabarti, N.

    2015-07-15

    In the strongly coupled limit, the generalized hydrodynamic model shows that a dusty plasma, acquiring significant rigidity, is able to support a “shear” like mode. It is being demonstrated here that in presence of velocity shear gradient, this shear like mode gets coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperatures of the dust, electron, and ion fluids. In the local analysis, the dispersion relation shows that velocity shear gradient not only couples the two modes but is also responsible for the instabilities of that coupled mode which is confirmed by nonlocal analysis with numerical techniques.

  1. The nature of the continuum limit in strongly coupled quenched [ital QED

    SciTech Connect

    Lombardo, M.; Kogut, J.B. ); Kocic, A. ); Wang, K.C. )

    1992-02-05

    We review the results of large scale simulations of noncompact quenched [ital QED] which use spectrum and Equation of State calculations to determine the theory's phase diagram, critical indices, and continuum limit. The resulting anomalous dimensions are in good agreement with Schwinger-Dyson solutions of the ladder graphs of conventional [ital QED] and they satisfy the hyperscaling relations expected of a relativistic renormalizable field theory. The spectroscopy results satisfy the constraints of the Goldstone mechanism and PCAC, and may be indicative of Technicolor versions of the Standard Model which are strongly coupled at short distances.

  2. Stability of an elliptical vortex in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Jana, Sayanee; Banerjee, Debabrata; Chakrabarti, Nikhil

    2015-08-01

    The stability of a long scale equilibrium vortex structure to short scale perturbations is studied in a strongly coupled dusty plasma in the framework of a generalized hydrodynamic model. It is shown that the free energy associated with the velocity shear of the vortex can drive secondary instabilities consisting of transverse shear waves when the resonance condition between the vortex rotation frequency and the secondary wave frequency is met. Such a process can transfer energy from the long scale vortex to the short scale secondary wave and thereby provide a saturation mechanism for long scale vortices in plasmas in a manner analogous to that in neutral fluids.

  3. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    SciTech Connect

    Rousset, J.-G. Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  4. Bistability effect in the extreme strong coupling regime of the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dombi, András; Vukics, András; Domokos, Peter

    2015-03-01

    We study the nonlinear response of a driven cavity QED system in the extreme strong coupling regime where the saturation photon number is below one by many orders of magnitude. In this regime, multi-photon resonances within the Jaynes-Cummings spectrum up to high order can be resolved. We identify an intensity and frequency range of the external coherent drive for which the system exhibits bistability instead of resonant multi-photon transitions. The cavity field evolves into a mixture of the vacuum and another quasi-classical state well separated in phase space. The corresponding time evolution of the outgoing intensity is a telegraph signal alternating between two attractors.

  5. Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation

    SciTech Connect

    Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.

    2009-02-15

    Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.

  6. Direct three-dimensional imaging of structure in a strongly-coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Quinn, R. A.; Goree, J.; Pieper, J. B.

    1996-11-01

    Using direct imaging of 9 μ m plastic spheres suspended in low-power Krypton discharges, we have constructed three-dimensional images showing the crystalline structure of a strongly-coupled dusty plasma. The spheres, which are highly charged and levitated by the electrode sheath, form a strongly-coupled system. A horizontal laser sheet illuminates a slice through the suspension, and a video camera views at 90^circ . Using a vertical stack of digitized images of particles in equally-spaced horizontal planes, we reconstructed the 3-D structure. We found bcc (body-centered cubic) and simple hexagonal structures coexisting in the same suspension. This coexistence is attributed to a bistability owing to an attractive potential region downstream of a charged grain in the presence of flowing ions. The probability of the system arranging in itself in the bcc or simple hexagonal phases is found to depend on the rf power that is used to sustain the discharge, and this in turn affects the particle charge and Debye length.(J. B. Pieper, J. Goree, R. A. Quinn, submitted to Phys. Rev. E) Work supported by NSF and NASA

  7. Strong Coupling Effects on the Specific Heat of an Ultracold Fermi Gas in the Unitarity Limit

    NASA Astrophysics Data System (ADS)

    van Wyk, P.; Tajima, H.; Hanai, R.; Ohashi, Y.

    2016-05-01

    We investigate strong-coupling corrections to the specific heat C_V in the normal state of an ultracold Fermi gas in the BCS-BEC crossover region. A recent experiment on a ^6Li unitary Fermi gas (Ku et. al. in Science 335:563 2012) shows that C_V is remarkably amplified near the superfluid phase transition temperature T_c, being similar to the well-known λ -structure observed in liquid ^4He. Including pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that strong pairing fluctuations are sufficient to explain the anomalous behavior of C_V observed in a ^6Li unitary Fermi gas near T_c. We also show that there is no contribution from stable preformed Cooper pairs to C_V at the unitarity. This indicates that the origin of the observed anomaly is fundamentally different from the case of liquid 4He, where stable ^4He Bose atoms induce the λ -structure in C_V near the superfluid instability. Instead, the origin is the suppression of the entropy S, near T_c, due to the increase of metastable preformed Cooper pairs. Our results indicate that the specific heat is a useful quantity to study the effects of pairing fluctuations on the thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.

  8. Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode

    NASA Astrophysics Data System (ADS)

    Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo

    2016-02-01

    We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure’s plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling.

  9. Self-Diffusion and Non-Markovian Dynamics in Strongly Coupled Ultracold Neutral Plasmas

    NASA Astrophysics Data System (ADS)

    Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Killian, Thomas

    2015-05-01

    Collisional processes in weakly coupled plasmas are well-described by the Landau-Spitzer formalism. Classical plasma theory breaks down, however, in strongly coupled systems because of the non-perturbative nature of particle interactions, and improving our understanding of this regime is an important fundamental challenge. We present experimental measurements of the self-diffusion constant and observation of non-Markovian equilibration for strongly coupled ions in an ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. Our diagnostic uses optical pumping to create ``spin-tagged'' subpopulations of ions having skewed velocity distributions that then relax back to equilibrium. A Green-Kubo relation is used to extract the self-diffusion constant from the equilibration curves. With improved time resolution (down to 30 ns), we have explored the early time dynamics of these skewed ion distributions within 100 ns after the optical pumping, where molecular dynamics simulations predict non-Markovian deviations from the exponential velocity damping expected for weakly coupled systems. At longer times, we observe oscillations of the average velocity during the relaxation, which indicate coupling of single-particle motion to collective modes. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), and the Air Force Office of Scientific Research (FA9550-12-1-0267).

  10. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    NASA Astrophysics Data System (ADS)

    Roy, Basudev; Scholten, Michael

    2012-08-01

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D+ magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 × 1010 atoms/s. The MMMOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 µm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  11. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    SciTech Connect

    Ema, S. A. Mamun, A. A.; Hossen, M. R.

    2015-09-15

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  12. Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment

    SciTech Connect

    Bhattacharyya, S.; Saha, J. K.; Mukherjee, T. K.

    2015-04-01

    In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with the Linac coherent light source (LCLS) x-ray free electron laser (FEL) and the Orion laser has been addressed. In both kinds of experiments, heliumlike and hydrogenlike spectral lines are used for plasma diagnostics. However, there exist no precise theoretical calculations for He-like ions within a dense plasma environment. The strong need for an accurate theoretical estimate for spectral properties of He-like ions in a strongly coupled plasma environment leads us to perform ab initio calculations in the framework of the Rayleigh-Ritz variation principle in Hylleraas coordinates where an ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with an extended basis inside a finite domain is presented here. The present values of electron densities corresponding to the disappearance of different spectral lines obtained within the framework of an ion-sphere potential show excellent agreement with Orion laser experiments in Al plasma and with recent theories. Moreover, this method is extended to predict the critical plasma densities at which the spectral lines of H-like and He-like carbon and argon ions disappear. Incidental degeneracy and level-crossing phenomena are being reported for two-electron ions embedded in strongly coupled plasma. Thermodynamic pressure experienced by the ions in their respective ground states inside the ion spheres is also reported.

  13. Strong-coupling electrostatic theory of polymer counterions close to planar charges

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Jho, Y. S.

    2016-01-01

    Strong-coupling phenomena, such as like-charge macroion attraction, opposite-charged macroion repulsion, charge renormalization, and charge inversion, are known to be mediated by multivalent counterions. Most theories treat the counterions as point charges and describe the system by a single coupling parameter that measures the strength of the Coulomb interactions. In many biological systems, the counterions are highly charged and have finite sizes and can be well-described by polyelectrolytes. The shapes and orientations of these polymer counterions play a major role in the thermodynamics of these systems. In this work we apply a field-theoretic description in the strong-coupling regime to the polymer counterions in the presence of a fixed charge distribution. We work out the special cases of rodlike polymer counterions confined by one, and two charged walls, respectively. The effects of the geometry of the rodlike counterions and the excluded volume of the walls on the density, pressure, and free energy of the rodlike counterions are discussed.

  14. Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode.

    PubMed

    Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo

    2016-01-01

    We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure's plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling. PMID:26916549

  15. Scaling properties of the pairing problem in the strong coupling limit

    SciTech Connect

    Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.

    2013-10-15

    We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G{sub sing} of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G{sub sing} is not related to the critical values of the coupling G{sub crit}, which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H.

  16. Inclusive jet cross section and strong coupling constant measurements at CMS

    NASA Astrophysics Data System (ADS)

    Cerci, Salim

    2016-03-01

    The probes which are abundantly produced in high energetic proton-proton (pp) collisions at the LHC are called jets. Events with jets can be described by Quantum Chromodynamics (QCD) in terms of parton-parton scattering. The inclusive jet cross section in pp collision is the fundamental quantity which can be measured and predicted within the framework of perturbative QCD (pQCD). The strong coupling constant αS which can be determined empirically in the limit of massless quarks, is the single parameter in QCD. The jet measurements can also be used to determine strong coupling constant αS and parton density functions (PDFs). The recent jet measurements which are performed with the data collected by the CMS detector at different center-of-mass energies and down to very low transverse momentum pT are presented. The measurements are compared to Monte Carlo predictions and perturbative calculations up to next-to-next-to leading order. Finally, the precision jet measurements give further insight into the QCD dynamics.

  17. Simulations of the formation of strongly coupled plasmas using pulsed power

    SciTech Connect

    Keinigs, R.K.; Wood, B.; Munson, C.; Trainor, R.J.

    1999-07-01

    One experimental campaign planned for the pulse power facility, atlas, will be devoted to the investigation of strongly-coupled plasma (SCP) effects transport phenomena and equations-of-state in high-Z materials. Methods for forming strongly coupled plasmas using the pulsed-power facility, Atlas, are currently under investigation. For SCP experiments being planned, a metal plasma (p/p{sub a} {approximately}0.1, and T {approximately}1--2 eV) imbedded in gas or foam (p {approximately}.05 p{sub metals}, T {approximately} 0.5eV) can produce initial values of {Gamma} (coupling parameter) between 2--20. One approach to forming a plasma with the desired properties involves using an auxiliary capacitor bank to ohmically heat a thin metal shell to vaporization. The expansion of the plasma is impeded by the imbedding gas. Both one and two-dimensional magneto-hydrodynamic models are being employed to characterize the plasma and determine the tamping conditions required for its confinement. Results for a titanium plasma, the confinement dynamics for this system, and values obtained for {Gamma} will be presented. Means for experimentally diagnosing such plasmas will also be discussed.

  18. Energy transfer efficiency in the chromophore network strongly coupled to a vibrational mode

    NASA Astrophysics Data System (ADS)

    Mourokh, Lev G.; Nori, Franco

    2015-11-01

    Using methods from condensed matter and statistical physics, we examine the transport of excitons through the photosynthetic complex from a receiving antenna to a reaction center. Writing the equations of motion for the exciton creation-annihilation operators, we are able to describe the exciton dynamics, even in the regime when the reorganization energy is of the order of the intrasystem couplings. We determine the exciton transfer efficiency in the presence of a quenching field and protein environment. While the majority of the protein vibrational modes are treated as a heat bath, we address the situation when specific modes are strongly coupled to excitons and examine the effects of these modes on the energy transfer efficiency in the steady-state regime. Using the structural parameters of the Fenna-Matthews-Olson complex, we find that, for vibrational frequencies below 16 meV, the exciton transfer is drastically suppressed. We attribute this effect to the formation of a "mixed exciton-vibrational mode" where the exciton is transferred back and forth between the two pigments with the absorption or emission of vibrational quanta, instead of proceeding to the reaction center. The same effect suppresses the quantum beating at the vibrational frequency of 25 meV. We also show that the efficiency of the energy transfer can be enhanced when the vibrational mode strongly couples to the third pigment only, instead of coupling to the entire system.

  19. Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.; Schlickeiser, R.

    2016-03-01

    A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated with electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.

  20. Constraints on parton distributions and the strong coupling from LHC jet data

    NASA Astrophysics Data System (ADS)

    Rojo, Juan

    2015-11-01

    Jet production at hadron colliders provides powerful constraints on the parton distribution functions (PDFs) of the proton, in particular on the gluon PDF. Jet production can also be used to extract the QCD coupling αs(Q) and to test its running with the momentum transfer up to the TeV region. In this review, I summarize the information on PDFs and the strong coupling that has been provided by Run I LHC jet data. First of all, I discuss why jet production is directly sensitive to the gluon and quark PDFs at large-x, and then review the state-of-the-art perturbative calculations for jet production at hadron colliders and the corresponding fast calculations required for PDF fitting. Then I present the results of various recent studies on the impact on PDFs, in particular the gluon, that have been performed using as input jet measurements from ATLAS and CMS. I also review the available determinations of the strong coupling constant based on ATLAS and CMS jet data, with emphasis on the fact that LHC jet data provides, for the first time, a direct test of the αs(Q) running at the TeV scale. I conclude with a brief outlook on possible future developments.

  1. Solitary and shock structures in a strongly coupled cryogenic quantum plasma

    SciTech Connect

    Hossen, M. A. Mamun, A. A.

    2015-07-15

    The quantum ion-acoustic (QIA) solitary and shock structures formed in a strongly coupled cryogenic quantum plasma (containing strongly coupled positively charged inertial cold ions and Fermi electrons as well as positrons) have been theoretically investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been employed to derive the Korteweg-de Vries (K-dV) and Burgers equations. The basic features of the QIA solitary and shock structures are identified by analyzing the stationary solitary and shock wave solutions of the K-dV and Burgers equations. It is found that the basic characteristics (e.g., phase speed, amplitude, and width) of the QIA solitary and shock structures are significantly modified by the effects of the Fermi pressures of electrons and positrons, the ratio of Fermi temperature of positrons to that of electrons, the ratio of effective ion temperature to electron Fermi temperature, etc. It is also observed that the effect of strong correlation among extremely cold ions acts as a source of dissipation, and is responsible for the formation of the QIA shock structures. The results of this theoretical investigation should be useful for understanding the nonlinear features of the localized electrostatic disturbances in laboratory electron-positron-ion plasmas (viz., super-intense laser-dense matter experiments)

  2. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    SciTech Connect

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang; Lin, Jingquan

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.

  3. Linear and nonlinear heavy ion-acoustic waves in a strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Hossen, M. R.; Mamun, A. A.

    2015-09-01

    A theoretical study on the propagation of linear and nonlinear heavy ion-acoustic (HIA) waves in an unmagnetized, collisionless, strongly coupled plasma system has been carried out. The plasma system is assumed to contain adiabatic positively charged inertial heavy ion fluids, nonextensive distributed electrons, and Maxwellian light ions. The normal mode analysis is used to study the linear behaviour. On the other hand, the well-known reductive perturbation technique is used to derive the nonlinear dynamical equations, namely, Burgers equation and Korteweg-de Vries (K-dV) equation. They are also numerically analyzed in order to investigate the basic features of shock and solitary waves. The adiabatic effects on the HIA shock and solitary waves propagating in such a strongly coupled plasma are taken into account. It has been observed that the roles of the adiabatic positively charged heavy ions, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features (viz., polarity, amplitude, width, etc.) of the HIA solitary/shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the linear as well as nonlinear phenomena associated with the HIA waves both in space and laboratory plasmas.

  4. Application of the Kalman Filter for Faster Strong Coupling of Cardiovascular Simulations.

    PubMed

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2016-07-01

    In this paper, we propose a method for reducing the computational cost of strong coupling for multiscale cardiovascular simulation models. In such a model, individual model modules of myocardial cell, left ventricular structural dynamics, and circulatory hemodynamics are coupled. The strong coupling method enables stable and accurate calculation, but requires iterative calculations which are computationally expensive. The iterative calculations can be reduced, if accurate initial approximations are made available by predictors. The proposed method uses the Kalman filter to estimate accurate predictions by filtering out noise included in past values. The performance of the proposed method was assessed with an application to a previously published multiscale cardiovascular model. The proposed method reduced the number of iterations by 90% and 62% compared with no prediction and Lagrange extrapolation, respectively. Even when the parameters were varied and number of elements of the left ventricular finite-element model increased, the number of iterations required by the proposed method was significantly lower than that without prediction. These results indicate the robustness, scalability, and validity of the proposed method. PMID:26011898

  5. Self-accelerating massive gravity: Superluminality, Cauchy surfaces, and strong coupling

    NASA Astrophysics Data System (ADS)

    Motloch, Pavel; Hu, Wayne; Joyce, Austin; Motohashi, Hayato

    2015-08-01

    Self-accelerating solutions in massive gravity provide explicit, calculable examples that exhibit the general interplay between superluminality, the well-posedness of the Cauchy problem, and strong coupling. For three particular classes of vacuum solutions, one of which is new to this work, we construct the conformal diagram for the characteristic surfaces on which isotropic stress-energy perturbations propagate. With one exception, all solutions necessarily possess spacelike characteristics, indicating perturbative superluminality. Foliating the spacetime with these surfaces gives a pathological frame where kinetic terms of the perturbations vanish, confusing the Hamiltonian counting of degrees of freedom. This frame dependence distinguishes the vanishing of kinetic terms from strong coupling of perturbations or an ill-posed Cauchy problem. We give examples where spacelike characteristics do and do not originate from a point where perturbation theory breaks down and where spacelike surfaces do or do not intersect all characteristics in the past light cone of a given observer. The global structure of spacetime also reveals issues that are unique to theories with two metrics: in all three classes of solutions, the Minkowski fiducial space fails to cover the entire de Sitter spacetime allowing worldlines of observers to end in finite proper time at determinant singularities. Characteristics run tangent to these surfaces requiring ad hoc rules to establish continuity across singularities.

  6. Strongly coupled slow-light polaritons in one-dimensional disordered localized states

    PubMed Central

    Gao, Jie; Combrie, Sylvain; Liang, Baolai; Schmitteckert, Peter; Lehoucq, Gaelle; Xavier, Stephane; Xu, XinAn; Busch, Kurt; Huffaker, Diana L.; De Rossi, Alfredo; Wong, Chee Wei

    2013-01-01

    Cavity quantum electrodynamics advances the coherent control of a single quantum emitter with a quantized radiation field mode, typically piecewise engineered for the highest finesse and confinement in the cavity field. This enables the possibility of strong coupling for chip-scale quantum processing, but till now is limited to few research groups that can achieve the precision and deterministic requirements for these polariton states. Here we observe for the first time coherent polariton states of strong coupled single quantum dot excitons in inherently disordered one-dimensional localized modes in slow-light photonic crystals. Large vacuum Rabi splittings up to 311 μeV are observed, one of the largest avoided crossings in the solid-state. Our tight-binding models with quantum impurities detail these strong localized polaritons, spanning different disorder strengths, complementary to model-extracted pure dephasing and incoherent pumping rates. Such disorder-induced slow-light polaritons provide a platform towards coherent control, collective interactions, and quantum information processing. PMID:23771242

  7. Non-Markovian Dynamics and Self-Diffusion in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Daligault, Jerome; Maksimovich, Nikola; Killian, Thomas

    2015-11-01

    In weakly coupled plasmas, collisions are dominated by long range, small angle scattering, and each collision is an uncorrelated binary event. In contrast, collisions in strongly coupled plasmas (coupling parameter Γ > 1) are dominated by short range, large angle scattering in which the collisions may be correlated and non-independent in time, i.e., non-Markovian. In this work, we present experimental results indicative of non-Markovian processes in a strongly coupled ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. We use optical pumping to create spin ``tagged'' subpopulations of ions having non-zero average velocity < v > , and use laser induced fluorescence (LIF) imaging to measure the relaxation of < v (t) > back to equilibrium. We observe clear non-exponential decay in < v (t) > , which indicates non-Markovian dynamics. We further demonstrate there is a theoretical basis to consider < v (t) > as an approximation to the ion velocity autocorrelation function (VAF). We then calculate diffusion coefficients from our data, demonstrating experimental measurement of self-diffusion coefficients for 0 . 3 < Γ < 3 . 5 . This work was supported by the United States National Science Foundation and Department of Energy Partnership in Basic Plasma Science and Engineering (PHY-1102516) and the Air Force Office of Scientific Research (FA9550- 12-1-0267).

  8. Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2013-07-15

    Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.

  9. Thermoplasmonic Study of a Triple Band Optical Nanoantenna Strongly Coupled to Mid IR Molecular Mode

    PubMed Central

    Hasan, Dihan; Ho, Chong Pei; Pitchappa, Prakash; Yang, Bin; Yang, Chunsheng; Lee, Chengkuo

    2016-01-01

    We report the first thermal study of a triple band plasmonic nanoantenna strongly coupled to a molecular mode at mid IR wavelength (MW IR). The hybrid plasmonic structure supports three spatially and spectrally variant resonances of which two are magnetic and one is dipolar in nature. A hybridized mode is excited by coupling the structure’s plasmonic mode with the vibrational mode of PMMA at 5.79 μm. Qualitative agreement between the spectral changes in simulation and experiment clearly indicates that resistive heating is the dominant mechanisms behind the intensity changes of the dipolar and magnetic peaks. The study also unveils the thermal insensitivity of the coupled mode intensity as the temperature is increased. We propose a mechanism to reduce the relative intensity change of the coupled mode at elevated temperature by mode detuning and surface current engineering and demonstrate less than 9% intensity variation. Later, we perform a temperature cycling test and investigate into the degradation of the Au-PMMA composite device. The failure condition is identified to be primarily associated with the surface chemistry of the material interface rather than the deformation of the nanopatterns. The study reveals the robustness of the strongly coupled hybridized mode even under multiple cycling. PMID:26916549

  10. Quirks in supersymmetry with gauge coupling unification

    NASA Astrophysics Data System (ADS)

    Martin, Stephen P.

    2011-02-01

    I investigate the phenomenology of supersymmetric models with extra vectorlike supermultiplets that couple to the standard model gauge fields and transform as the fundamental representation of a new confining non-Abelian gauge interaction. If perturbative gauge coupling unification is to be maintained, the new group can be SU(2), SU(3), or SO(3). The impact on the sparticle mass spectrum is explored, with particular attention to the gaugino mass dominated limit in which the supersymmetric flavor problem is naturally solved. The new confinement length scale is astronomical for SO(3), so the new particles are essentially free. For the SU(2) and SU(3) cases, the new vectorlike fermions are quirks; pair production at colliders yields quirk-antiquirk states bound by stable flux tubes that are microscopic but long compared to the new confinement scale. I study the reach of the Tevatron and LHC for the optimistic case that in a significant fraction of events the quirk-antiquirk bound state will lose most of its energy before annihilating as quirkonium.

  11. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    SciTech Connect

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  12. Classifying BPS states in supersymmetric gauge theories coupled to higher derivative chiral models

    NASA Astrophysics Data System (ADS)

    Nitta, Muneto; Sasaki, Shin

    2015-06-01

    We study N =1 supersymmetric gauge theories coupled with higher derivative chiral models in four dimensions in the off-shell superfield formalism. We solve the equation of motion for the auxiliary fields and find two distinct on-shell structures of the Lagrangian that we call the canonical and noncanonical branches characterized by zero and nonzero auxiliary fields, respectively. We classify Bogomol'nyi-Prasado-Sommerfield (BPS) states of the models in Minkowski and Euclidean spaces. In Minkowski space, we find Abelian and non-Abelian vortices, vortex lumps (or gauged lumps with fractional lump charges) as 1 /2 BPS states in the canonical branch, and higher derivative generalization of vortices and vortex-(BPS)baby Skyrmions (or gauged BPS baby Skyrmions with fractional baby Skyrme charges) as 1 /4 BPS states in the noncanonical branch. In four-dimensional Euclidean space, we find Yang-Mills instantons trapped inside a non-Abelian vortex, intersecting vortices, and intersecting vortex-(BPS)baby Skyrmions as 1 /4 BPS states in the canonical branch but no BPS states in the noncanonical branch other than those in the Minkowski space.

  13. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-01

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  14. Optical functionality of plasmon-exciton nanomaterials in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Sukharev, Maxim

    Understanding optical plasmon-exciton interaction in hybrid plasmonic nanostructures is important for tuning the optical response, e.g. for applications in nonlinear optics, organic solar cells, or organic light-emitting diodes. In developing such nanostructures, the strong coupling phenomena play crucial role allowing to efficiently transfer energy between plasmons and molecular excitons on a femtosecond time scale. In this talk I will discuss modeling aspects of various optical phenomena at plasmonic interfaces using Maxwell-Bloch equations in three dimensions. Various plasmonic systems including periodic V-grooves, bowtie antennas, nanowires, periodic hole arrays, and others will be considered. In particular, I will demonstrate that one can design hybrid nanomaterials with highly pronounced Fano resonances using femtosecond lasers. I will show that it is possible to use ultra-short laser pulses to materials with desired properties and functionality. Electromagnetic energy transport in systems composed of closely spaced nanowires in a presence of molecular excitons will also be discussed.

  15. Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Norman, M. R.

    2015-08-01

    Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.

  16. Nonlinear magnetosonic solitary and shock waves in strongly coupled quantum electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodan; Wang, Yunliang; Liu, Tielu; Zhang, Fan

    2016-06-01

    > Two-dimensional nonlinear magnetosonic solitary and shock waves propagating perpendicular to the applied magnetic field are presented in quantum electron-positron-ion plasmas with strongly coupled classical ions and weakly coupled quantum electrons and positrons. The generalized viscoelastic hydrodynamic model is used for the ions and a quantum hydrodynamic model is introduced for the electrons and positrons. In the weakly nonlinear limit, a modified Kadomstev-Petviashvili (KP) equation with a damping term and a KP-Burgers equation have been derived in the kinetic regime and hydrodynamic regime, respectively. The analytical and numerical solutions of the modified KP and KP-Burgers equations are also presented and analysed with the typical parameters of a white dwarf star and pulsar magnetosphere, which show that the quantum plasma beta and the variation of positron number density have remarkable effects on the propagation of magnetosonic solitary and shock waves.

  17. Holographic description of finite-size effects in strongly coupled superconductors

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Santos, Jorge E.; Way, Benson

    2012-08-01

    Despite its fundamental and practical interest, the understanding of mesoscopic effects in strongly coupled superconductors is still limited. Here we address this problem by studying holographic superconductivity in a disk and a strip of typical size ℓ. For ℓ<ℓc, where ℓc depends on the chemical potential and temperature, we have found that the order parameter vanishes. The superconductor-metal transition at ℓ=ℓc is controlled by mean-field critical exponents, which suggests that quantum and thermal fluctuations induced by finite-size effects are suppressed in holographic superconductors. Intriguingly, the effective interactions that bind the order parameter increase as ℓ decreases. Most of these results are consistent with experimental observations in Pb nanograins at low temperature and are qualitatively different from the ones expected in a weakly coupled superconductor.

  18. Critical and strong-coupling phases in one- and two-bath spin-boson models.

    PubMed

    Guo, Cheng; Weichselbaum, Andreas; von Delft, Jan; Vojta, Matthias

    2012-04-20

    For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical correspondence has been discussed extensively. We introduce a variational matrix product state approach involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum ∝ω(s), we confirm classical mean-field behavior for s<1/2, correcting earlier numerical renormalization-group results. We also provide the first results for an XY-symmetric model of a spin coupled to two competing bosonic baths, where we find a rich phase diagram, including both critical and strong-coupling phases for s<1, different from that of classical spin chains. This illustrates that symmetries are decisive for whether or not a quantum-to-classical correspondence exists. PMID:22680701

  19. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE PAGESBeta

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  20. Strong coupling in the sub-wavelength limit using metamaterial nanocavities

    PubMed Central

    Benz, A.; Campione, S.; Liu, S.; Montaño, I.; Klem, J.F.; Allerman, A; Wendt, J.R.; Sinclair, M.B.; Capolino, F.; Brener, I.

    2013-01-01

    The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 μm) to the near-infrared (~1.5 μm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10−4 (λ/n)3 from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process. PMID:24287692