Science.gov

Sample records for non-abeliann nonlinear schrdinger

  1. ``Once Nonlinear, Always Nonlinear''

    NASA Astrophysics Data System (ADS)

    Blackstock, David T.

    2006-05-01

    The phrase "Once nonlinear, always nonlinear" is attributed to David F. Pernet. In the 1970s he noticed that nonlinearly generated higher harmonic components (both tones and noise) don't decay as small signals, no matter how far the wave propagates. Despite being out of step with the then widespread notion that small-signal behavior is restored in "old age," Pernet's view is supported by the Burgers-equation solutions of the early 1960s. For a plane wave from a sinusoidally vibrating source in a thermoviscous fluid, the old-age decay of the nth harmonic is e-nαx, not e-n2αx (small-signal expectation), where α is the absorption coefficient at the fundamental frequency f and x is propagation distance. Moreover, for spherical waves (r the distance) the harmonic diminishes as e-nαx/rn, not e-n2αx/r. While not new, these results have special application to aircraft noise propagation, since the large propagation distances of interest imply old age. The virtual source model may be used to explain the "anomalous" decay rates. In old age most of the nth harmonic sound comes from virtual sources close to the receiver. Their strength is proportional to the nth power of the local fundamental amplitude, and that sets the decay law for the nth harmonic.

  2. Orbital HP-Clouds for Solving Schr?dinger Equation inQuantum Mechanics

    SciTech Connect

    Chen, J; Hu, W; Puso, M

    2006-10-19

    Solving Schroedinger equation in quantum mechanics presents a challenging task in numerical methods due to the high order behavior and high dimension characteristics in the wave functions, in addition to the highly coupled nature between wave functions. This work introduces orbital and polynomial enrichment functions to the partition of unity for solution of Schroedinger equation under the framework of HP-Clouds. An intrinsic enrichment of orbital function and extrinsic enrichment of monomial functions are proposed. Due to the employment of higher order basis functions, a higher order stabilized conforming nodal integration is developed. The proposed methods are implemented using the density functional theory for solution of Schroedinger equation. Analysis of several single and multi-electron/nucleus structures demonstrates the effectiveness of the proposed method.

  3. Forward model nonlinearity versus inverse model nonlinearity

    USGS Publications Warehouse

    Mehl, S.

    2007-01-01

    The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.

  4. Nonlinear waveguides

    NASA Astrophysics Data System (ADS)

    SjöBerg, Daniel

    2003-04-01

    We investigate the propagation of electromagnetic waves in a cylindrical waveguide with an arbitrary cross section filled with a nonlinear material. The electromagnetic field is expanded in the usual eigenmodes of the waveguide, and the coupling between the modes is quantified. We derive the wave equations governing each mode with special emphasis on the situation with a dominant TE mode. The result is a strictly hyperbolic system of nonlinear partial differential equations for the dominating mode, whereas the minor modes satisfy hyperbolic systems of linear, nonstationary, and partial differential equations. A growth estimate is given for the minor modes.

  5. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  6. [Nonlinear magnetohydrodynamics

    SciTech Connect

    Not Available

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.

  7. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  8. Nonlinear Hysteretic Torsional Waves.

    PubMed

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421

  9. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  10. Nonlinear rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1985-01-01

    The special nonlinearities of the Jeffcott equations in rotordynamics are examined. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot firing ground testing. Deadband, side force and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency is defined and used to develop the solutions of the nonlinear Jeffcott equations as asympotic expansions. This nonlinear natural frequency which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies. Numerical solutions are included for comparison with the analysis. Also, nonlinear frequency-response tables are made for a typical range of values.

  11. Stationary nonlinear Airy beams

    SciTech Connect

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  12. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  13. Nonlinear optics at interfaces

    SciTech Connect

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.

  14. Friction and nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Manini, N.; Braun, O. M.; Tosatti, E.; Guerra, R.; Vanossi, A.

    2016-07-01

    The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction.

  15. Friction and nonlinear dynamics.

    PubMed

    Manini, N; Braun, O M; Tosatti, E; Guerra, R; Vanossi, A

    2016-07-27

    The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction. PMID:27249652

  16. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  17. Nonlinear cochlear mechanics.

    PubMed

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis. PMID:27250151

  18. Metamaterials with conformational nonlinearity

    NASA Astrophysics Data System (ADS)

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2011-11-01

    Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control.

  19. Nonlinear ordinary difference equations

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1979-01-01

    Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.

  20. Nonlinear Markov processes

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2008-06-01

    Some elementary properties and examples of Markov processes are reviewed. It is shown that the definition of the Markov property naturally leads to a classification of Markov processes into linear and nonlinear ones.

  1. Nonlinear Plasmonic Sensing.

    PubMed

    Mesch, Martin; Metzger, Bernd; Hentschel, Mario; Giessen, Harald

    2016-05-11

    We introduce the concept of nonlinear plasmonic sensing, relying on third harmonic generation from simple plasmonic nanoantennas. Because of the nonlinear conversion process we observe a larger sensitivity to a local change in the refractive index as compared to the commonly used linear localized surface plasmon resonance sensing. Refractive index changes as small as 10(-3) can be detected. In order to determine the spectral position of highest sensitivity, we perform linear and third harmonic spectroscopy on plasmonic nanoantenna arrays, which are the fundamental building blocks of our sensor. Furthermore, simultaneous detection of linear and nonlinear signals allows quantitative comparison of both methods, providing further insight into the working principle of our sensor. While the signal-to-noise ratio is comparable, nonlinear sensing gives about seven times higher relative signal changes. PMID:27050296

  2. Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Nonlinear structural analysis techniques for engine structures and components are addressed. The finite element method and boundary element method are discussed in terms of stress and structural analyses of shells, plates, and laminates.

  3. Nonlinear Dynamics in Cardiology

    PubMed Central

    Krogh-Madsen, Trine; Christini, David J.

    2013-01-01

    The dynamics of many cardiac arrhythmias, as well as the nature of transitions between different heart rhythms, have long been considered evidence of nonlinear phenomena playing a direct role in cardiac arrhythmogenesis. In most types of cardiac disease, the pathology develops slowly and gradually, often over many years. In contrast, arrhythmias often occur suddenly. In nonlinear systems, sudden changes in qualitative dynamics can, counter-intuitively, result from a gradual change in a system parameter –this is known as a bifurcation. Here, we review how nonlinearities in cardiac electrophysiology influence normal and abnormal rhythms and how bifurcations change the dynamics. In particular, we focus on the many recent developments in computational modeling at the cellular level focused on intracellular calcium dynamics. We discuss two areas where recent experimental and modeling work have suggested the importance of nonlinearities in calcium dynamics: repolarization alternans and pacemaker cell automaticity. PMID:22524390

  4. Library for Nonlinear Optimization

    Energy Science and Technology Software Center (ESTSC)

    2001-10-09

    OPT++ is a C++ object-oriented library for nonlinear optimization. This incorporates an improved implementation of an existing capability and two new algorithmic capabilities based on existing journal articles and freely available software.

  5. Nonlinear Refractive Properties

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2001-01-01

    Using nonlinear refractive properties of a salt-water solution at two wavelengths, numerical analysis has been performed to extract temperature and concentration from interferometric fringe data. The theoretical study, using a commercially available equation solving software, starts with critical fringe counting needs and the role of nonlinear refractive properties in such measurements. Finally, methodology of the analysis, codes, fringe counting accuracy needs, etc. is described in detail.

  6. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  7. Nonlinear systems in medicine.

    PubMed Central

    Higgins, John P.

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states. PMID:14580107

  8. Nonlinear optical Galton board

    SciTech Connect

    Navarrete-Benlloch, C.; Perez, A.; Roldan, Eugenio

    2007-06-15

    We generalize the concept of optical Galton board (OGB), first proposed by Bouwmeester et al. [Phys. Rev. A 61, 013410 (2000)], by introducing the possibility of nonlinear self-phase modulation on the wave function during the walker evolution. If the original Galton board illustrates classical diffusion, the OGB, which can be understood as a grid of Landau-Zener crossings, illustrates the influence of interference on diffusion, and is closely connected with the quantum walk. Our nonlinear generalization of the OGB shows new phenomena, the most striking of which is the formation of nondispersive pulses in the field distribution (solitonlike structures). These exhibit a variety of dynamical behaviors, including ballistic motion, dynamical localization, nonelastic collisions, and chaotic behavior, in the sense that the dynamics is very sensitive to the nonlinearity strength.

  9. Nonlinear optomechanics with graphene

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  10. Nonlinear Ehrenfest's urn model.

    PubMed

    Casas, G A; Nobre, F D; Curado, E M F

    2015-04-01

    Ehrenfest's urn model is modified by introducing nonlinear terms in the associated transition probabilities. It is shown that these modifications lead, in the continuous limit, to a Fokker-Planck equation characterized by two competing diffusion terms, namely, the usual linear one and a nonlinear diffusion term typical of anomalous diffusion. By considering a generalized H theorem, the associated entropy is calculated, resulting in a sum of Boltzmann-Gibbs and Tsallis entropic forms. It is shown that the stationary state of the associated Fokker-Planck equation satisfies precisely the same equation obtained by extremization of the entropy. Moreover, the effects of the nonlinear contributions on the entropy production phenomenon are also analyzed. PMID:25974470

  11. Solitons in nonlinear optics

    SciTech Connect

    Maimistov, Andrei I

    2010-11-13

    The classic examples of optical phenomena resulting in the appearance of solitons are self-focusing, self-induced transparency, and parametric three-wave interaction. To date, the list of the fields of nonlinear optics and models where solitons play an important role has significantly expanded. Now long-lived or stable solitary waves are called solitons, including, for example, dissipative, gap, parametric, and topological solitons. This review considers nonlinear optics models giving rise to the appearance of solitons in a narrow sense: solitary waves corresponding to the solutions of completely integrable systems of equations basic for the models being discussed. (review)

  12. Nonlinear magnetohydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Betancourt, O.; Garabedian, P.

    1981-01-01

    The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.

  13. Universal nonlinear entanglement witnesses

    SciTech Connect

    Kotowski, Marcin; Kotowski, Michal

    2010-06-15

    We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.

  14. Intramolecular and nonlinear dynamics

    SciTech Connect

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  15. Nonlinear growing neutrino cosmology

    NASA Astrophysics Data System (ADS)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  16. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  17. Nonlinear Theory and Breakdown

    NASA Technical Reports Server (NTRS)

    Smith, Frank

    2007-01-01

    The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.

  18. Nonlinear plasmonic nanorulers.

    PubMed

    Butet, Jérémy; Martin, Olivier J F

    2014-05-27

    The evaluation of distances as small as few nanometers using optical waves is a very challenging task that can pave the way for the development of new applications in biotechnology and nanotechnology. In this article, we propose a new measurement method based on the control of the nonlinear optical response of plasmonic nanostructures by means of Fano resonances. It is shown that Fano resonances resulting from the coupling between a bright mode and a dark mode at the fundamental wavelength enable unprecedented and direct manipulation of the nonlinear electromagnetic sources at the nanoscale. In the case of second harmonic generation from gold nanodolmens, the different nonlinear sources distributions induced by the different coupling regimes are clearly revealed in the far-field distribution. Hence, the configuration of the nanostructure can be accurately determined in 3-dimensions by recording the wave scattered at the second harmonic wavelength. Indeed, the conformation of the different elements building the system is encoded in the nonlinear far-field distribution, making second harmonic generation a promising tool for reading 3-dimension plasmonic nanorulers. Furthemore, it is shown that 3-dimension plasmonic nanorulers can be implemented with simpler geometries than in the linear regime while providing complete information on the structure conformation, including the top nanobar position and orientation. PMID:24697565

  19. Nonlinear and Nonideal MHD

    SciTech Connect

    Callen, J. D.

    2002-11-04

    The primary efforts this year have focused on exploring the nonlinear evolution of localized interchange instabilities, some extensions of neoclassical tearing mode theory, and developing a model for the dynamic electrical conductivity in a bumpy cylinder magnetic field. In addition, we have vigorously participated in the computationally-focused NIMROD and CEMM projects.

  20. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  1. Nonlinear chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki

    2016-06-01

    We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.

  2. Nonlinearity of Helmholtz resonators

    NASA Technical Reports Server (NTRS)

    Sirignano, W. A.

    1972-01-01

    Consideration of the nonlinear damping of pressure oscillations by means of acoustic liners consisting of a perforated plate communicating with a volume or of individual Helmholtz resonators. A nonlinear analysis leads to a modified first-order theory; in particular, some second-order damping effects (due to the formation of jets through the orifices) are considered, while other less important damping effects (of second order) are neglected. The effect of the vena contracta in the orifice flow is also taken into account, and the conditions of maximum damping are discussed. A determination is made of the orifice velocity, the cavity pressure, the admittance coefficient, the resistance, and the reactance, and good agreement is found between the theoretically determined resistance and orifice velocity and the pertinent experimental data.

  3. The nonlinear tearing mode

    NASA Technical Reports Server (NTRS)

    Van Hoven, G.; Steinolfson, R. S.

    1984-01-01

    A series of nonlinear computations of tearing-mode development have been performed which achieve higher values of the magnetic Reynolds number and larger wavelengths than previously considered. A prime candidate for the realization of dynamic reconnection is the resistive magnetic tearing mode, a spontaneous instability of a stressed magnetic field. Typical simulations are described for a magnetic Lundquist number S of 10 to the 4th and wavelength parameters alpha from 0.05 to 0.5. In all cases, the nonlinear mode initially evolves at the linear growth rate, followed by a period of reduced growth. Another common feature is the formation of secondary flow vortices, near the tearing surface, which are opposite in direction to the initial linear vortices.

  4. Nonlinear metamaterials for holography

    PubMed Central

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  5. Nonlinear differential equations

    SciTech Connect

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  6. Nonlinear metamaterials for holography.

    PubMed

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency-the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  7. Information geometric nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Newton, Nigel J.

    2015-06-01

    This paper develops information geometric representations for nonlinear filters in continuous time. The posterior distribution associated with an abstract nonlinear filtering problem is shown to satisfy a stochastic differential equation on a Hilbert information manifold. This supports the Fisher metric as a pseudo-Riemannian metric. Flows of Shannon information are shown to be connected with the quadratic variation of the process of posterior distributions in this metric. Apart from providing a suitable setting in which to study such information-theoretic properties, the Hilbert manifold has an appropriate topology from the point of view of multi-objective filter approximations. A general class of finite-dimensional exponential filters is shown to fit within this framework, and an intrinsic evolution equation, involving Amari's -1-covariant derivative, is developed for such filters. Three example systems, one of infinite dimension, are developed in detail.

  8. Optothermal nonlinearity of silica aerogel

    NASA Astrophysics Data System (ADS)

    Braidotti, Maria Chiara; Gentilini, Silvia; Fleming, Adam; Samuels, Michiel C.; Di Falco, Andrea; Conti, Claudio

    2016-07-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass (≃10-12 m2/W), with negligible optical nonlinear absorption. The nonlinear coefficient can be increased to values in the range of 10-10 m2/W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  9. Surface nonlinear optics

    SciTech Connect

    Shen, Y.R.; Chen, C.K.; de Castro, A.R.B.

    1980-01-01

    Surface electromagnetic waves are waves propagating along the interface of two media. Their existence was predicted by Sommerfield in 1909. In recent years, interesting applications have been found in the study of overlayers and molecular adsorption on surfaces, in probing of phase transitions, and in measurements of refractive indices. In the laboratory, the nonlinear interaction of surface electromagnetic waves were studied. The preliminary results of this recent venture in this area are presented.

  10. Nonlinear gyrokinetic equations

    SciTech Connect

    Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.

    1983-03-01

    Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.

  11. Forces in nonlinear media

    NASA Astrophysics Data System (ADS)

    Milgrom, Mordehai

    2002-02-01

    I investigate the properties of forces on bodies in theories governed by the generalized Poisson equation μ(|ϕ| /a0)ϕ] ∝ Gρ, for the potential ϕ produced by a distribution of sources ρ. This equation describes, inter alia, media with a response coefficient, μ, that depends on the field strength, such as in nonlinear, dielectric or diamagnetic, media; nonlinear transport problems with field-strength-dependent conductivity or diffusion coefficient; nonlinear electrostatics, as in the Born-Infeld theory; certain stationary potential flows in compressible fluids, in which case the forces act on sources or obstacles in the flow. The expressions for the force on a point charge are derived exactly for the limits of very low and very high charge. The force on an arbitrary body in an external field of asymptotically constant gradient, -g0, is shown to be F = Qg0, where Q is the total effective charge of the body. The corollary Q = 0 → F = 0 is a generalization of d'Alembert's paradox. I show that for G > 0 (as in Newtonian gravity) two point charges of the same (opposite) sign still attract (repel). The opposite is true for G < 0. I discuss its generalization to extended bodies and derive virial relations.

  12. Ultrafast Thermal Nonlinearity.

    PubMed

    Khurgin, Jacob B; Sun, Greg; Chen, Wei Ting; Tsai, Wei-Yi; Tsai, Din Ping

    2015-01-01

    Third order nonlinear optical phenomena explored in the last half century have been predicted to find wide range of applications in many walks of life, such as all-optical switching, routing, and others, yet this promise has not been fulfilled primarily because the strength of nonlinear effects is too low when they are to occur on the picosecond scale required in today's signal processing applications. The strongest of the third-order nonlinearities, engendered by thermal effects, is considered to be too slow for the above applications. In this work we show that when optical fields are concentrated into the volumes on the scale of few tens of nanometers, the speed of the thermo-optical effects approaches picosecond scale. Such a sub-diffraction limit concentration of field can be accomplished with the use of plasmonic effects in metal nanoparticles impregnating the thermo-optic dielectric (e.g. amorphous Si) and leads to phase shifts sufficient for all optical switching on ultrafast scale. PMID:26644322

  13. Ultrafast Thermal Nonlinearity

    PubMed Central

    Khurgin, Jacob B.; Sun, Greg; Chen, Wei Ting; Tsai, Wei-Yi; Tsai, Din Ping

    2015-01-01

    Third order nonlinear optical phenomena explored in the last half century have been predicted to find wide range of applications in many walks of life, such as all-optical switching, routing, and others, yet this promise has not been fulfilled primarily because the strength of nonlinear effects is too low when they are to occur on the picosecond scale required in today’s signal processing applications. The strongest of the third-order nonlinearities, engendered by thermal effects, is considered to be too slow for the above applications. In this work we show that when optical fields are concentrated into the volumes on the scale of few tens of nanometers, the speed of the thermo-optical effects approaches picosecond scale. Such a sub-diffraction limit concentration of field can be accomplished with the use of plasmonic effects in metal nanoparticles impregnating the thermo-optic dielectric (e.g. amorphous Si) and leads to phase shifts sufficient for all optical switching on ultrafast scale. PMID:26644322

  14. Is this scaling nonlinear?

    PubMed Central

    2016-01-01

    One of the most celebrated findings in complex systems in the last decade is that different indexes y (e.g. patents) scale nonlinearly with the population x of the cities in which they appear, i.e. y∼xβ,β≠1. More recently, the generality of this finding has been questioned in studies that used new databases and different definitions of city boundaries. In this paper, we investigate the existence of nonlinear scaling, using a probabilistic framework in which fluctuations are accounted for explicitly. In particular, we show that this allows not only to (i) estimate β and confidence intervals, but also to (ii) quantify the evidence in favour of β≠1 and (iii) test the hypothesis that the observations are compatible with the nonlinear scaling. We employ this framework to compare five different models to 15 different datasets and we find that the answers to points (i)–(iii) crucially depend on the fluctuations contained in the data, on how they are modelled, and on the fact that the city sizes are heavy-tailed distributed. PMID:27493764

  15. Is this scaling nonlinear?

    PubMed

    Leitão, J C; Miotto, J M; Gerlach, M; Altmann, E G

    2016-07-01

    One of the most celebrated findings in complex systems in the last decade is that different indexes y (e.g. patents) scale nonlinearly with the population x of the cities in which they appear, i.e. y∼x (β) ,β≠1. More recently, the generality of this finding has been questioned in studies that used new databases and different definitions of city boundaries. In this paper, we investigate the existence of nonlinear scaling, using a probabilistic framework in which fluctuations are accounted for explicitly. In particular, we show that this allows not only to (i) estimate β and confidence intervals, but also to (ii) quantify the evidence in favour of β≠1 and (iii) test the hypothesis that the observations are compatible with the nonlinear scaling. We employ this framework to compare five different models to 15 different datasets and we find that the answers to points (i)-(iii) crucially depend on the fluctuations contained in the data, on how they are modelled, and on the fact that the city sizes are heavy-tailed distributed. PMID:27493764

  16. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574

  17. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  18. Frequency domain nonlinear optics

    NASA Astrophysics Data System (ADS)

    Legare, Francois

    2016-05-01

    The universal dilemma of gain narrowing occurring in fs amplifiers prevents ultra-high power lasers from delivering few-cycle pulses. This problem is overcome by a new amplification concept: Frequency domain Optical Parametric Amplification - FOPA. It enables simultaneous up-scaling of peak power and amplified spectral bandwidth and can be performed at any wavelength range of conventional amplification schemes, however, with the capability to amplify single cycles of light. The key idea for amplification of octave-spanning spectra without loss of spectral bandwidth is to amplify the broad spectrum ``slice by slice'' in the frequency domain, i.e. in the Fourier plane of a 4f-setup. The striking advantages of this scheme, are its capability to amplify (more than) one octave of bandwidth without shorting the corresponding pulse duration. This is because ultrabroadband phase matching is not defined by the properties of the nonlinear crystal employed but the number of crystals employed. In the same manner, to increase the output energy one simply has to increase the spectral extension in the Fourier plane and to add one more crystal. Thus, increasing pulse energy and shortening its duration accompany each other. A proof of principle experiment was carried out at ALLS on the sub-two cycle IR beam line and yielded record breaking performance in the field of few-cycle IR lasers. 100 μJ two-cycle pulses from a hollow core fibre compression setup were amplified to 1.43mJ without distorting spatial or temporal properties. Pulse duration at the input of FOPA and after FOPA remains the same. Recently, we have started upgrading this system to be pumped by 250 mJ to reach 40 mJ two-cycle IR few-cycle pulses and latest results will be presented at the conference. Furthermore, the extension of the concept of FOPA to other nonlinear optical processes will be discussed. Frequency domain nonlinear optics.

  19. Nonlinear electrodynamics at Cinvestav

    NASA Astrophysics Data System (ADS)

    Bretón, Nora

    2012-02-01

    After a brief introduction to the original aims of Nonlinear electrodynamics (NLED), a review on NLED research that has been developed in the Physics Department at Cinvestav-IPN is addressed: from the seminal work by Jerzy Plebañski, which was followed by S. Hacyan and S. Alarcón, afterwards by A. García and H. Salazar; and more recently by E. Ayón-Beato and N. Bretón. We conclude by pointing to the current streams of research.

  20. Nonlinear methods for communications

    NASA Astrophysics Data System (ADS)

    1992-08-01

    An innovative communication system has been developed. This system has the potential for improved secure communication for covert operations. By modulating data on the chaotic signal used to synchronize two nonlinear systems, they have created a Low Probability of Intercept (LPI) communications system. The researchers derived the equations which govern the system, made models of the system, and performed numerical simulations to test these models. The theoretical and numerical studies of this system have been validated by experiment. A recent design improvement has led to a system that synchronizes at 0 db Signal-to-Noise. This development holds the promise of a Low Probability of Detection (LPD) system.

  1. Nonlinear waveform generation.

    PubMed

    Goldstein, L J; Rypins, E B

    1990-01-01

    We developed three analog logic SPICE (Simulation Program with Integrated Circuit Emphasis, developed at the University of California, Berkeley, CA) subcircuits, a voltage comparator and a nonlinear waveform generator to compliment the previously derived functions (Goldstein and Rypins, Comput. Methods Programs Biomed. 29 (1989) 161-172) that simplify modeling of physiologic systems. The logic elements are the 'AND', 'OR' and 'NOT' Boolean functions. In addition, we derived a voltage comparator for use in our composite waveform generator. All the circuits are analog so they can be incorporated into existing analog circuits while performing digital functions. PMID:2364683

  2. Chaos without nonlinear dynamics.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2006-07-14

    A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system. PMID:16907450

  3. Limits on nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Fouché, M.; Battesti, R.; Rizzo, C.

    2016-05-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test nonlinear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  4. Noisy Nonlinear Systems

    SciTech Connect

    Dr. Katja Lindenberg

    2005-11-20

    During the one-year period 2004-2005 our work continued to focus on nonlinear noisy systems, with special attention to spatially extended systems. There is a history of many decades of research in the sciences and engineering on the behavior of noninear noisy systems, but only in the past ten years or so has a theoretical understanding of spatially extended systems begun to emerge. This has been the outcome of a symbiosis of numerical simulations not possible until recently, laboratory experiments, and new analytic methods.

  5. Nonlinear refraction in vitreous humor.

    PubMed

    Rockwell, B A; Roach, W P; Rogers, M E; Mayo, M W; Toth, C A; Cain, C P; Noojin, G D

    1993-11-01

    We extend the application of the z-scan technique to determine the nonlinear refractive index (n(2)) for human and rabbit vitreous humor, water, and physiological saline. In these measurements there were nonlinear contributions to the measured signal from the aqueous samples and the quartz cell that held the sample. Measurements were made with 60-ps pulses at 532 nm. To our knowledge, this is the first measurement of the nonlinear refractive properties of biological material. PMID:19829406

  6. Nonlinear heat conduction with combustion

    SciTech Connect

    Galaktionov, V.A.; Kurclyumov, S.P.; Samarskiv, A.A. )

    1991-01-01

    This paper deals with a study of the properties of high-intensity combustion of a solid nonlinear heat conducting medium which is described by the quasilinear parabolic-type equation for nonlinear heat conduction with a source. The paper summarizes a significant range of investigations dealing with the study of high-intensity thermal processes in solid nonlinear media carried out by the authors in the past decade.

  7. Improved nonlinear prediction method

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  8. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  9. Attosecond Nonlinear Optics

    SciTech Connect

    Midorikawa, Katsumi

    2010-10-08

    We report nonlinear multiphoton processes in atoms and molecules by intense high harmonics and their applications to attosecond pulse characterization. Phase matched high harmonics by a loosely focusing geometry produce highly focusable intensity with fully spatiotemporal coherence, which is sufficient to induce nonlinear optical phenomena in the extreme ultraviolet and soft x-ray (XUV) region. With this XUV coherent light source, two-photon double ionization in He is demonstrated with 42-eV high harmonic photons. On the other hand, when intense high harmonics around 20 eV is subjected to N{sub 2} molecules, occurrence of Coulomb explosion following to two-photon double ionization is observed in attosecond temporal precision. Taking advantage of larger cross section of two-photon ionization in molecules, we successfully perform the interferometric autocorrelation of an attosecond pulse train with the ion signals produced by Coulomb explosion of nitrogen molecules. The result reveals the phase relation between attosecond pulses in the train.

  10. Nonlocal homogenization for nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Gorlach, Maxim A.; Voytova, Tatiana A.; Lapine, Mikhail; Kivshar, Yuri S.; Belov, Pavel A.

    2016-04-01

    We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analyzing resonant nonlinear metamaterials.

  11. Nonlinear ptychographic coherent diffractive imaging.

    PubMed

    Odstrcil, M; Baksh, P; Gawith, C; Vrcelj, R; Frey, J G; Brocklesby, W S

    2016-09-01

    Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions. PMID:27607631

  12. Problems in nonlinear resistive MHD

    SciTech Connect

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  13. Nonlinear Beat Cepheid Models

    NASA Astrophysics Data System (ADS)

    Kolláth, Z.; Beaulieu, J. P.; Buchler, J. R.; Yecko, P.

    1998-07-01

    The numerical hydrodynamic modeling of beat Cepheid behavior has been a long-standing quest in which purely radiative models have failed miserably. We find that beat pulsations occur naturally when turbulent convection is accounted for in our hydrodynamics codes. The development of a relaxation code and of a Floquet stability analysis greatly facilitates the search for and analysis of beat Cepheid models. The conditions for the occurrence of beat behavior can be understood easily and at a fundamental level with the help of amplitude equations. Here a discriminant \\Dscr arises whose sign decides whether single-mode or double-mode pulsations can occur in a model, and this \\Dscr depends only on the values of the nonlinear coupling coefficients between the fundamental and the first overtone modes. For radiative models \\Dscr is always found to be negative, but with sufficiently strong turbulent convection its sign reverses.

  14. Solution of Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Turner, L. R.

    1960-01-01

    The problem of solving systems of nonlinear equations has been relatively neglected in the mathematical literature, especially in the textbooks, in comparison to the corresponding linear problem. Moreover, treatments that have an appearance of generality fail to discuss the nature of the solutions and the possible pitfalls of the methods suggested. Probably it is unrealistic to expect that a unified and comprehensive treatment of the subject will evolve, owing to the great variety of situations possible, especially in the applied field where some requirement of human or mechanical efficiency is always present. Therefore we attempt here simply to pose the problem and to describe and partially appraise the methods of solution currently in favor.

  15. Nonlinear integrable ion traps

    SciTech Connect

    Nagaitsev, S.; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  16. Multimodal Nonlinear Optical Microscopy

    PubMed Central

    Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-01-01

    Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747

  17. Spherically symmetric nonlinear structures

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban A.; Kandus, Alejandra

    1997-02-01

    We present an analytical method to extract observational predictions about the nonlinear evolution of perturbations in a Tolman universe. We assume no a priori profile for them. We solve perturbatively a Hamilton-Jacobi equation for a timelike geodesic and obtain the null one as a limiting case in two situations: for an observer located in the center of symmetry and for a noncentered one. In the first case we find expressions to evaluate the density contrast and the number count and luminosity distance versus redshift relationships up to second order in the perturbations. In the second situation we calculate the CMBR anisotropies at large angular scales produced by the density contrast and by the asymmetry of the observer's location, up to first order in the perturbations. We develop our argument in such a way that the formulas are valid for any shape of the primordial spectrum.

  18. Nonlinear dynamical systems analyzer

    NASA Astrophysics Data System (ADS)

    Coffey, Adrian S.; Johnson, Martin; Jones, Robin

    1994-10-01

    Computationally intensive algorithms are an ever more common requirement of modern signal processing. Following the work of Gentleman and Kung, McWhirter, Shepherd and Proudler suggested that certain matrix-orientated algorithms can be mapped onto systolic array architectures for adaptive linear signal processing. This has been extended by Broomhead et al. to the calculation of nonlinear predictive models and applied by Jones et al. to target identification and recognition. We shall show that predictive models are extremely sharp discriminators. Our chosen problem, if implemented as a systolic array, would require 3403 processors which would result in high through-put rate at excessive cost. We are developing an efficient sub-optimally implemented systolic array; one processor servicing more than one systolic node. We describe a prototype Heuristic Processor which computes a multi- dimensional, nonlinear, predictive model. It consists of a Radial Basis Function Network and a least squares optimizer using QR decomposition. The optimized solution of a set of simultaneous equations in 81 unknowns is calculated in 150 (mu) S. The QR section emulates a triangular systolic array by the novel use of an array of 40 mature silicon DSP chips costing under DOL100 each. The DSP chips operate in synchronism at a 50 MHz clock rate passing data to each other through multi-port memories on a dead-letter box principle; there are no memory access conflicts and only two-port and three-port memories are required. The processor provides 1-GFlop of computing power per cubic-foot of electronics for a component cost of approximately DOL15,000.

  19. Adaptive nonlinear flight control

    NASA Astrophysics Data System (ADS)

    Rysdyk, Rolf Theoduor

    1998-08-01

    Research under supervision of Dr. Calise and Dr. Prasad at the Georgia Institute of Technology, School of Aerospace Engineering. has demonstrated the applicability of an adaptive controller architecture. The architecture successfully combines model inversion control with adaptive neural network (NN) compensation to cancel the inversion error. The tiltrotor aircraft provides a specifically interesting control design challenge. The tiltrotor aircraft is capable of converting from stable responsive fixed wing flight to unstable sluggish hover in helicopter configuration. It is desirable to provide the pilot with consistency in handling qualities through a conversion from fixed wing flight to hover. The linear model inversion architecture was adapted by providing frequency separation in the command filter and the error-dynamics, while not exiting the actuator modes. This design of the architecture provides for a model following setup with guaranteed performance. This in turn allowed for convenient implementation of guaranteed handling qualities. A rigorous proof of boundedness is presented making use of compact sets and the LaSalle-Yoshizawa theorem. The analysis allows for the addition of the e-modification which guarantees boundedness of the NN weights in the absence of persistent excitation. The controller is demonstrated on the Generic Tiltrotor Simulator of Bell-Textron and NASA Ames R.C. The model inversion implementation is robustified with respect to unmodeled input dynamics, by adding dynamic nonlinear damping. A proof of boundedness of signals in the system is included. The effectiveness of the robustification is also demonstrated on the XV-15 tiltrotor. The SHL Perceptron NN provides a more powerful application, based on the universal approximation property of this type of NN. The SHL NN based architecture is also robustified with the dynamic nonlinear damping. A proof of boundedness extends the SHL NN augmentation with robustness to unmodeled actuator

  20. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  1. Passive linearization of nonlinear resonances

    NASA Astrophysics Data System (ADS)

    Habib, G.; Grappasonni, C.; Kerschen, G.

    2016-07-01

    The objective of this paper is to demonstrate that the addition of properly tuned nonlinearities to a nonlinear system can increase the range over which a specific resonance responds linearly. Specifically, we seek to enforce two important properties of linear systems, namely, the force-displacement proportionality and the invariance of resonance frequencies. Numerical simulations and experiments are used to validate the theoretical findings.

  2. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  3. Nonlinear Oscillators in Space Physics

    NASA Technical Reports Server (NTRS)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  4. Mathematical opportunities in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Optics is described in this survey as being so scientifically fertile and technologically promising that it is destined to be one of the most important areas of science for the next quarter century. The study of nonlinear optics is fascinating both because of the enormous technological dividends that are likely and because of the intrinsic scientific interest. This survey notes that on the technological side nonlinear optics is likely to revolutionize future telecommunications and computer technologies, while on the mathematical side it is an ideal subject for the applied mathematician, who is particularly well positioned to make major contributions. Also, optics displays the full spectrum of behavior associated with nonlinear equations. There are several new concepts of nonlinear science, including the soliton and the strange attractor, which are very important in nonlinear optics and which require some depth of mathematical knowledge to understand.

  5. Properties of Nonlinear Dynamo Waves

    NASA Technical Reports Server (NTRS)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  6. Basic considerations on surface optical nonlinearities

    SciTech Connect

    Guyot-Sionnest, P.; Chen, W.; Shen, Y.R.

    1986-01-01

    The origins of the surface nonlinearity in surface second harmonic generation are discussed. It is shown that this second-order nonlinear optical process is characterized by a surface nonlinear susceptibility tensor containing both local and nonlocal contributions.

  7. Nonlinear optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2005-01-01

    Whispering gallery mode (WGM) optical resonators comprising nonlinear optical materials, where the nonlinear optical material of a WGM resonator includes a plurality of sectors within the optical resonator and nonlinear coefficients of two adjacent sectors are oppositely poled.

  8. LDRD report nonlinear model reduction

    SciTech Connect

    Segalman, D.; Heinstein, M.

    1997-09-01

    The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.

  9. Width of nonlinear resonance

    SciTech Connect

    Ohnuma, S.

    1984-03-01

    Two approximations are made, one essential and the other not so essential but convenient to keep the analytical treatment manageable: (1) Only one nonlinear resonance is considered at a time so that the treatment is best suited when the tune is close to one resonance only. To improve this approximation, one must go to the next order which involves a canonical transformation of dynamical variables. Analytical treatment of more than one resonance is not possible for general cases. (2) In the formalism using the action-angle variables, the Hamiltonian can have terms which are independent of the angle variables. These terms are called phase-independent terms or shear terms. The tune is then a function of the oscillation amplitudes. In the lowest-order treatment, the (4N)-pole components but not the (4N + 2)-pole components contribute to this dependence. In deriving the resonance width analytically, one ignores these terms in the Hamiltonian for the sake of simplicity. If these are retained, one needs at least three extra parameters and the analytical treatment becomes rather unwieldy.

  10. Chirality in nonlinear optics.

    PubMed

    Haupert, Levi M; Simpson, Garth J

    2009-01-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made approximately 50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity. PMID:19046125

  11. Chirality in Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  12. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  13. Guidance of Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Meyer, George

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  14. Nonlinear Frequency Compression

    PubMed Central

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  15. Nonlinear effects in Thomson backscattering

    NASA Astrophysics Data System (ADS)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  16. Intrinsic Negative Mass from Nonlinearity

    NASA Astrophysics Data System (ADS)

    Di Mei, F.; Caramazza, P.; Pierangeli, D.; Di Domenico, G.; Ilan, H.; Agranat, A. J.; Di Porto, P.; DelRe, E.

    2016-04-01

    We propose and provide experimental evidence of a mechanism able to support negative intrinsic effective mass. The idea is to use a shape-sensitive nonlinearity to change the sign of the mass in the leading linear propagation equation. Intrinsic negative-mass dynamics is reported for light beams in a ferroelectric crystal substrate, where the diffusive photorefractive nonlinearity leads to a negative-mass Schrödinger equation. The signature of inverted dynamics is the observation of beams repelled from strongly guiding integrated waveguides irrespective of wavelength and intensity and suggests shape-sensitive nonlinearity as a basic mechanism leading to intrinsic negative mass.

  17. Berry phase in nonlinear systems

    SciTech Connect

    Liu, J.; Fu, L. B.

    2010-05-15

    The Berry phase acquired by an eigenstate that experienced a nonlinear adiabatic evolution is investigated thoroughly. The circuit integral of the Berry connection of the instantaneous eigenstate cannot account for the adiabatic geometric phase, while the Bogoliubov excitations around the eigenstates are found to be accumulated during the nonlinear adiabatic evolution and contribute a finite phase of geometric nature. A two-mode model is used to illustrate our theory. Our theory is applicable to Bose-Einstein condensate, nonlinear light propagation, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics.

  18. Dissipative nonlinear dynamics in holography

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Ghosh, Archisman

    2014-02-01

    We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behavior very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behavior, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of O, the operator dual to the scalar field. Our setup can also be used to study quenchlike behavior in strongly coupled nonlinear systems.

  19. Nonlinear ionic pulses along microtubules.

    PubMed

    Sekulić, D L; Satarić, B M; Tuszynski, J A; Satarić, M V

    2011-05-01

    Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells. PMID:21604102

  20. Nonlinear interaction between single photons.

    PubMed

    Guerreiro, T; Martin, A; Sanguinetti, B; Pelc, J S; Langrock, C; Fejer, M M; Gisin, N; Zbinden, H; Sangouard, N; Thew, R T

    2014-10-24

    Harnessing nonlinearities strong enough to allow single photons to interact with one another is not only a fascinating challenge but also central to numerous advanced applications in quantum information science. Here we report the nonlinear interaction between two single photons. Each photon is generated in independent parametric down-conversion sources. They are subsequently combined in a nonlinear waveguide where they are converted into a single photon of higher energy by the process of sum-frequency generation. Our approach results in the direct generation of photon triplets. More generally, it highlights the potential for quantum nonlinear optics with integrated devices and, as the photons are at telecom wavelengths, it opens the way towards novel applications in quantum communication such as device-independent quantum key distribution. PMID:25379916

  1. Nonlinear Stokes-Mueller polarimetry

    NASA Astrophysics Data System (ADS)

    Samim, Masood; Krouglov, Serguei; Barzda, Virginijus

    2016-01-01

    The Stokes-Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations with Kleinman symmetry. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional 4 ×1 Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, the relations between components of nonlinear susceptibility tensor and Mueller matrix are explicitly provided. The approach of combining linear and nonlinear optical elements is discussed within the context of polarimetry.

  2. Chaotic Nonlinear Prime Number Function

    NASA Astrophysics Data System (ADS)

    Mateos, Luis A.

    2011-06-01

    Dynamical systems in nature, such as heartbeat patterns, DNA sequence pattern, prime number distribution, etc., exhibit nonlinear (chaotic) space-time fluctuations and exact quantification of the fluctuation pattern for predictability purposes has not yet been achieved [1]. In this paper a chaotic-nonlinear prime number function P(s) is developed, from which prime numbers are generated and decoded while composite numbers are encoded over time following the Euler product methodology, which works on sequences progressively culled from multiples of the preceding primes. By relating this P(s) to a virtually closed 2D number line manifold, it is possible to represent the evolving in time of nonlinear (chaotic) systems to a final value where the system becomes stable, becomes linear. This nonlinear prime number function is proposed as a chaotic model system able to describe chaotic systems.

  3. Nonlinear viscoelastic characterization of polycarbonate

    NASA Technical Reports Server (NTRS)

    Caplan, E. S.; Brinson, H. F.

    1982-01-01

    Uniaxial tensile creep and recovery data from polycarbonate at six temperatures and six stress levels are analyzed for nonlinear viscoelastic constitutive modeling. A theory to account for combined effects of two or more accelerating factors is presented.

  4. Non-linear potential problems

    NASA Astrophysics Data System (ADS)

    Skerget, P.; Brebbia, C. A.

    In many practical applications of boundary elements, the potential problems may be nonlinear. The use of Kirchoff's transform provides an approach to convert a nonlinear material problem into a linear one. A description of several different shape functions to define the conductivity is presented. Attention is given to the type of integral equations which are obtained if the Kirchoff's transform is applied for nonlinear material in the presence of mixed boundary conditions. The integral formulation for nonlinear radiation boundary conditions with and without potential dependent conductivity is also considered. For steady heat conduction problems with constant conductivity a boundary integral equation relating boundary values for temperatures (or potentials) and its normal derivatives over the boundary can be obtained. Applications which concern the solution of steady state conduction problems are investigated. The problems are related to a hollow cylinder, a nuclear reactor pressure vessel, and an industrial furnace.

  5. Mathematical opportunities in nonlinear optics

    NASA Astrophysics Data System (ADS)

    The Board on Mathematical Sciences takes as one of its functions that of identifying areas of important or emerging research activity and focusing attention on them. The Board seeks to stimulate cross-disciplinary research between mathematical sciences and disciplines. This survey notes that on the technological side nonlinear optics is likely to revolutionize future telecommunications and computer technologies, while on the mathematical side it is an ideal subject for the applied mathematician, who is particularly well positioned to make major contributions. Topics covered include wave propagation and the nonlinear Schrodinger equation; soliton propagation in the optical fibers; nonlinear waveguides; four-wave mixing, phase conjunction, and beam cleanup; lasers; optical bistability, logic elements, and information storing patterns; and spatiotemporal complexity and turbulence in nonlinear optics.

  6. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  7. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  8. Dynamics of Cochlear Nonlinearity.

    PubMed

    Cooper, Nigel P; van der Heijden, Marcel

    2016-01-01

    Dynamic aspects of cochlear mechanical compression were studied by recording basilar membrane (BM) vibrations evoked by tone pairs ("beat stimuli") in the 11-19 kHz region of the gerbil cochlea. The frequencies of the stimulus components were varied to produce a range of "beat rates" at or near the characteristic frequency (CF) of the BM site under study, and the amplitudes of the components were balanced to produce near perfect periodic cancellations, visible as sharp notches in the envelope of the BM response. We found a compressive relation between instantaneous stimulus intensity and BM response magnitude that was strongest at low beat rates (e.g., 10-100 Hz). At higher beat rates, the amount of compression reduced progressively (i.e. the responses became linearized), and the rising and falling flanks of the response envelope showed increasing amounts of hysteresis; the rising flank becoming steeper than the falling flank. This hysteresis indicates that cochlear mechanical compression is not instantaneous, and is suggestive of a gain control mechanism having finite attack and release times. In gain control terms, the linearization that occurs at higher beat rates occurs because the instantaneous gain becomes smoothened, or low-pass filtered, with respect to the magnitude fluctuations in the stimulus. In terms of peripheral processing, the linearization corresponds to an enhanced coding, or decompression, of rapid amplitude modulations. These findings are relevant both to those who wish to understand the underlying mechanisms and those who need a realistic model of nonlinear processing by the auditory periphery. PMID:27080667

  9. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  10. Nonlinear Observers for Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  11. Nonlinearities in the Quantum Multiverse

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu; Herdeiro, Victor

    2013-08-01

    It has been recently proposed that the multiverse of eternal inflation, string landscape and the many-worlds interpretation of quantum mechanics can be identified, yielding a new view on the measure and measurement problems. In the present note, we argue that a nonlinear evolution of observables in the quantum multiverse would be an obstacle for such a description and that these nonlinearities are expected from quite general arguments.

  12. Studies of Nonlinear Problems. I

    DOE R&D Accomplishments Database

    Fermi, E.; Pasta, J.; Ulam, S.

    1955-05-01

    A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.

  13. Nonlinear focusing of DNA macromolecules

    NASA Astrophysics Data System (ADS)

    Frumin, Leonid L.; Peltek, Sergey E.; Zilberstein, Gleb V.

    2001-08-01

    The present paper reports the nonlinear electrophoretic focusing techniques developed after an original idea by Chacron and Slater [Phys. Rev. E 56, 3436 (1997)]. Focusing of DNA molecules is achieved in an alternating nonuniform electric field, created in a wedge gel with hyperbolic boundaries. The fractions separated on such a wedge retained their rectilinear shape during the electrophoresis. Experiments with gel electrophoresis confirm the possibility of a noticeable nonlinear focusing of DNA molecules.

  14. Nonlinear competition in nematicon propagation.

    PubMed

    Laudyn, Urszula A; Kwasny, Michał; Piccardi, Armando; Karpierz, Mirosław A; Dabrowski, Roman; Chojnowska, Olga; Alberucci, Alessandro; Assanto, Gaetano

    2015-11-15

    We investigate the role of competing nonlinear responses in the formation and propagation of bright spatial solitons. We use nematic liquid crystals (NLCs) exhibiting both thermo-optic and reorientational nonlinearities with continuous-wave beams. In a suitably prepared dye-doped sample and dual beam collinear geometry, thermal heating in the visible affects reorientational self-focusing in the near infrared, altering light propagation and self-trapping. PMID:26565843

  15. Nonlinear vibrations of buried landmines.

    PubMed

    Donskoy, Dimitri; Reznik, Alexander; Zagrai, Andrei; Ekimov, Alexander

    2005-02-01

    The seismo-acoustic method is one of the most promising emerging techniques for the detection of landmines. Numerous field tests have demonstrated that buried landmines manifest themselves at the surface through linear and nonlinear responses to acoustic/seismic excitation. The present paper describes modeling of the nonlinear response in the framework of the mass-spring model of the soil-mine system. The perturbation method used in the model allows for the derivation of an analytical solution describing both quadratic and cubic acoustic interactions at the soil-mine interface. This solution has been compared with actual field measurements to obtain nonlinear parameters of the buried mines. These parameters have been analyzed with respect to mine types and burial depths. It was found that the cubic nonlinearity could be a significant contributor to the nonlinear response. This effect has led to the development of a new intermodulation detection algorithm based on dual-frequency excitation. Both quadratic and intermodulation nonlinear algorithms were evaluated at the U.S. Army outdoor testing facilities. The algorithms appear to complement each other in improving the overall detection performance. PMID:15759689

  16. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  17. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  18. Nonlinear optical properties and nonlinear optical probes of organic materials

    NASA Astrophysics Data System (ADS)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  19. Effect of nonlinear nonlinear coupling to a pure dephasing model

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2015-03-01

    We investigate the influence of the nonlinear coupling to the coherence of a pure dephasing model. The total system consists of a qubit and a Bosonic bath, which are coupled by an interaction HI =g1σz ⊗ x +g2σz ⊗x2 with x =1/√{ 2} (a +a†) . It's shown that no matter how small g2 is, the long time behavior of the coherence is significantly changed by the nonlinear coupling for free induction decay (FID), while the effect of g1 can be neglected as long as g1 is much smaller than the enegy splitting of the qubit. In the case that many-pulse dynamical decoupling control is exerted on the qubit, g2 also modulates the oscillation of the coherence. Our results indicate that the nonlinear coupling must be taken into account for long time dynamics.

  20. Transparency in nonlinear frequency conversion

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-04-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order χ(2 ) susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency ω1 can exchange power, thus being amplified or attenuated, when phase-matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of "scattering" in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility χ(2 ) along the nonlinear medium is tailored following a suitable spatial apodization profile and the power level of the pump wave is properly tuned. While broadband transparency is observed under such conditions, the nonlinear medium is not invisible owing to an additional effective dispersion for the signal wave introduced by the nonlinear interaction.

  1. Nonlinear Observers for Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    High precision estimation and control algorithms, to achieve unprecedented levels of pointing accuracy, will be required to support future formation flying missions such as interferometry missions. Achieving high pointing accuracy requires precise knowledge of the spacecraft rotation rate. Typically, the rotation rate is measured by a gyro. The measured rates can be corrupted by errors in alignment and scale factor, gyro biases, and noise. In this work, we present nonlinear observers for gyro calibration. Nonlinear observers are superior to extended or pseudo-linear Kalman filter type approaches for large errors and global stability. Three nonlinear gyro calibration observers are developed. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. The observers are then combined, and the gyro calibration parameters are estimated simultaneously. The stability of the combined observers is addressed, as well as the stability of the resulting closed loop systems. Simulated test results are presented for each scenario. Finally, the nonlinear observers are compared to a pseudo-linear Kalman filter.

  2. Nonlinear problems in flight dynamics

    NASA Technical Reports Server (NTRS)

    Chapman, G. T.; Tobak, M.

    1984-01-01

    A comprehensive framework is proposed for the description and analysis of nonlinear problems in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of nonlinearities in the flight dynamic system. Four aerodynamic flows are examined to illustrate the richness and regularity of the flow structures and the nature of the flow structures and the nature of the resulting nonlinear aerodynamic forces and moments. A framework to facilitate the study of the aerodynamic system is proposed having parallel observational and mathematical components. The observational component, structure is described in the language of topology. Changes in flow structure are described via bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear dynamical systems characterized by the existence of strange attractors having fractal dimensionality. Scales of the flow are considered in the light of ideas from group theory. Several one and two degree of freedom dynamical systems with various mathematical models of the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows are shown to be similarly useful in the description of flight dynamic behavior.

  3. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. PMID:26351899

  4. Nonlinear acoustics for practical applications

    NASA Astrophysics Data System (ADS)

    Kang, To; Na, Jeong K.; Song, Sung-Jin; Park, Jin-Ho

    2015-04-01

    Three different ultrasonic nonlinearity parameter measurement methods are available: the capacitive detection method to measure absolute values of nonlinearity parameters; the laser interferometry detection as a non-contact method; the contact piezoelectric transducer based relative measurement method. Among all these three methods, the contact piezoelectric transducer detection method has been used as the most practical approach due to its operational simplicity for materials damage assessments. One of the main drawbacks of this technique, however, has been the low sensitivity of the receiving transducers, especially for the second harmonic signals, causing a high uncertainty in measurements. In this work, it is demonstrated with a copper [100] single crystal that a couple of high Q-value band-pass filters and a low-noise preamplifier introduced in the system not only improve the measurement accuracy but also make it possible to determine absolute values of nonlinearity parameters without using the complex capacitive detection method.

  5. Cognitive processing for nonlinear radar

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Ranney, Kenneth; Hedden, Abigail; Mazzaro, Gregory; McNamara, David

    2013-05-01

    An increasingly cluttered electromagnetic environment (EME) is a growing problem for radar systems. This problem is becoming critical as the available frequency spectrum shrinks due to growing wireless communication device usage and changing regulations. A possible solution to these problems is cognitive radar, where the cognitive radar learns from the environment and intelligently modifies the transmit waveform. In this paper, a cognitive nonlinear radar processing framework is introduced where the main components of this framework consist of spectrum sensing processing, target detection and classification, and decision making. The emphasis of this paper is to introduce a spectrum sensing processing technique that identifies a transmit-receive frequency pair for nonlinear radar. It will be shown that the proposed technique successfully identifies a transmit-receive frequency pair for nonlinear radar from data collected from the EME.

  6. New N=8 nonlinear supermultiplet

    SciTech Connect

    Bellucci, S.; Krivonos, S.; Marrani, A.

    2006-08-15

    We construct a new off-shell N=8, d=1 nonlinear supermultiplet (4,8,4) proceeding from the nonlinear realization of the N=8, d=1 superconformal group OSp(4*/4) in its supercoset (OSp(4*/4)/SU(2){sub R}x){l_brace}D,K{r_brace}xSO(4)). The irreducibility constraints for the superfields automatically follow from appropriate covariant conditions on the osp(4*/4)-valued Cartan superforms. We present the most general sigma-model type action for (4,8,4) supermultiplet. The relations between linear and nonlinear (4,8,4) supermultiplets and linear N=8 (5,8,3) vector supermultiplet are discussed.

  7. Neoclassical Transport Including Collisional Nonlinearity

    SciTech Connect

    Candy, J.; Belli, E. A.

    2011-06-10

    In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  8. Nonlinear dynamics and plasma transport

    SciTech Connect

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sageev, R.Z.

    1993-01-01

    This progress report details work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE since 1989. This program has been in cooperation with laboratories in theUSSR [now Russia and the Confederation of Independent States (CIS)]. The purpose of this program has been: To promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport. To promote cooperative scientific investigations between the US and CIS in the related areas of nonlinear science and plasma turbulence and transport. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. This allows for a deeper analysis and understanding of the system both analytically and numerically.

  9. Nonlinear photoacoustic spectroscopy of hemoglobin

    SciTech Connect

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  10. Nonlinear photoacoustic spectroscopy of hemoglobin

    PubMed Central

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography. PMID:26045627

  11. Nonlinear Single Spin Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-03-01

    Qubits have been used as linear spectrum analyzers of their environments, through the use of decoherence spectroscopy. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013). Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: NIST, Boulder, CO.

  12. Nonlinear photoacoustic spectroscopy of hemoglobin

    NASA Astrophysics Data System (ADS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-05-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  13. Time series with tailored nonlinearities.

    PubMed

    Räth, C; Laut, I

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations. PMID:26565155

  14. Route to Attosecond Nonlinear Spectroscopy

    SciTech Connect

    Reiter, F.; Kienberger, R.; Graf, U.; Schweinberger, W.; Fiess, M.; Goulielmakis, E.; Serebryannikov, E. E.; Zheltikov, A. M.; Schultze, M.; Krausz, F.; Azzeer, A. M.

    2010-12-10

    We demonstrate generation of coherent microjoule-scale, low-order harmonic supercontinua in the deep and vacuum ultraviolet (4-9 eV), resulting from the nonlinear transformations of near-single-cycle laser pulses in a gas cell. We show theoretically that their formation is connected to a novel nonlinear regime, holding promise for the generation of powerful deep-UV and vacuum ultraviolet subfemtosecond pulses. Our work opens the route to pump-probe spectroscopy of subfemtosecond-scale valence-shell phenomena in atoms, molecules, and condensed matter.

  15. Higher dimensional nonlinear massive gravity

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2016-05-01

    Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.

  16. Time series with tailored nonlinearities

    NASA Astrophysics Data System (ADS)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  17. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  18. Trigonometric functions of nonlinear quantities

    SciTech Connect

    Wester, D.W.

    1994-08-01

    Trigonometric functions of nonlinear quantities are introduced. Functions of the form {line_integral}(x{sup a}), {line_integral}(x{sup y}), and {line_integral}{sup n}(x{sup a}) are reported, where {line_integral} is a trigonometric function such as cos, sin, tan, cot, sec, or csc; x is a variable; a is a constant; y is a variable; and n is a constant. Sums, products and quotients of these functions are defined. Trigonometric functions of nonlinear quantities involving constants to variable powers also are mentioned. Possible applications to quantum mechanics, gravity, and a final theory of matter are discussed.

  19. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  20. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  1. Nonlinear control in fusion reactors

    NASA Astrophysics Data System (ADS)

    Schuster, Eugenio

    There is consensus in the fusion reactor community that active control will be one of the key enabling technologies. With further advancements in reduced-order fusion modeling, advances in control systems for fusion will continue, including vertical and shape control, kinetic and current profile control, MHD (magnetohydrodynamic) stabilization and plasma transport reduction. This dissertation addresses different control problems in tokamaks using as common denominator a nonlinear control approach. Contributions are made in the areas of kinetic control, magnetic control, and MHD flow control. In the area of kinetic control, we approach the problem of nonlinear control of burn instability in fission reactors, where a lumped-parameter nonlinear model involving approximate conservation equations for the energy and the densities of the species is used to synthesize a nonlinear feedback controller (backstepping, feedback linearization, passivity and input to state stability) for stabilizing the thermally unstable burn condition of a fusion reactor. In addition, the problem of control of kinetic profiles in non-burning plasmas, where a set of nonlinear partial differential equations (PDE's) describing approximately the dynamics of the density and energy was considered as the plant model used to synthesize a boundary controller (infinite-dimensional nonlinear backstepping) whose goal was the control of the density and energy spatial distributions, is also considered. In the area of magnetic control, the problem of plasma vertical position stabilization and shape control under actuation saturation in the DIII-D Tokamak at General Atomics is approached. In this case, modifications of the nominal control loops (nonlinear anti-windup augmentation) are proposed to ensure stability of the plant and good behavior of the nominal controller under the presence of voltage saturation in the coils that are used to vertically position and shape the plasma inside the tokamak. In the area

  2. Non-linear meteor trails

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    1988-08-01

    In this essay an attempt is made to not only review but reopen the debate on nonlinear meteor trails. On the basis of data culled from various, now historical, sources it is found that approximately one in every two hundred of the visual meteors is likely to show a nonlinear trail, and that of such trails about 60 percent will be continuously curved and 40 percent sinusoidal. It is suggested that two mechanisms may explain the various trail types: the continuously curved trails being a manifestation of the classical Magnus effect, and the sinusoidal trails resulting from torque-free precession.

  3. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  4. Gauge fields, nonlinear realizations, supersymmetry

    NASA Astrophysics Data System (ADS)

    Ivanov, E. A.

    2016-07-01

    This is a brief survey of the all-years research activity in the Sector "Supersymmetry" (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.

  5. Duffing's Equation and Nonlinear Resonance

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2003-01-01

    The phenomenon of nonlinear resonance (sometimes called the "jump phenomenon") is examined and second-order van der Pol plane analysis is employed to indicate that this phenomenon is not a feature of the equation, but rather the result of accumulated round-off error, truncation error and algorithm error that distorts the true bounded solution onto…

  6. Diphenylpolyynes For Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Perry, Joseph W.; Coulter, Daniel R.

    1989-01-01

    Several diphenylpolyyne compounds found to exhibit second-order nonlinear electric susceptibilities and chemical structures conducive to orientation in appropriate chemical environments. These features make new materials suitable for use in optical devices. Diphenylacetylene links give molecules rodlike characteristics making them amenable to orientation by suspension in liquid crystals. New molecules also have inherent liquid-crystalline properties enabling them to be oriented directly.

  7. Nonlinear dynamics and plasma transport

    SciTech Connect

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1992-01-01

    In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data.

  8. Nonlinear inflaton fragmentation after preheating

    SciTech Connect

    Felder, Gary N.; Kofman, Lev

    2007-02-15

    We consider the nonlinear dynamics of inflaton fragmentation during and after preheating in the simplest model of chaotic inflation. While the earlier regime of parametric resonant particle production and the later turbulent regime of interacting fields evolving towards equilibrium are well identified and understood, the short intermediate stage of violent nonlinear dynamics remains less explored. Lattice simulations of fully nonlinear preheating dynamics show specific features of this intermediate stage: occupation numbers of the scalar particles are peaked, scalar fields become significantly nongaussian and the field dynamics become chaotic and irreversible. Visualization of the field dynamics in position space reveals that nonlinear interactions generate nongaussian inflaton inhomogeneities with very fast growing amplitudes. The peaks of the inflaton inhomogeneities coincide with the peaks of the scalar field(s) produced by parametric resonance. When the inflaton peaks reach their maxima, they stop growing and begin to expand. The subsequent dynamics is determined by expansion and superposition of the scalar waves originating from the peaks. Multiple wave superposition results in phase mixing and turbulent wave dynamics. Thus, the short intermediate stage is defined by the formation, expansion and collision of bubblelike field inhomogeneities associated with the peaks of the original gaussian field. This process is qualitatively similar to the bubblelike inflaton fragmentation that occurs during tachyonic preheating after hybrid or new inflation.

  9. Canonical forms for nonlinear systems

    NASA Technical Reports Server (NTRS)

    Su, R.; Hunt, L. R.; Meyer, G.

    1983-01-01

    Necessary and sufficient conditions for transforming a nonlinear system to a controllable linear system have been established, and this theory has been applied to the automatic flight control of aircraft. These transformations show that the nonlinearities in a system are often not intrinsic, but are the result of unfortunate choices of coordinates in both state and control variables. Given a nonlinear system (that may not be transformable to a linear system), we construct a canonical form in which much of the nonlinearity is removed from the system. If a system is not transformable to a linear one, then the obstructions to the transformation are obvious in canonical form. If the system can be transformed (it is called a linear equivalent), then the canonical form is a usual one for a controllable linear system. Thus our theory of canonical forms generalizes the earlier transformation (to linear systems) results. Our canonical form is not unique, except up to solutions of certain partial differential equations we discuss. In fact, the important aspect of this paper is the constructive procedure we introduce to reach the canonical form. As is the case in many areas of mathematics, it is often easier to work with the canonical form than in arbitrary coordinate variables.

  10. Nonlinear optical properties of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Hendrickx, Eric; Verbiest, Thierry; Clays, Koen J.; Persoons, Andre P.

    1993-04-01

    In this paper we show the applicability of Hyper-Rayleigh scattering to obtain hyperpolarizabilities of ionic and biochemical compounds. It was found that dark-adapted bacteriorhodopsin and its isolated chromophore have considerable second order nonlinear optical properties. Information obtained from depolarization studies of the scattered light is discussed.

  11. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  12. Nonlinear optics in relativistic plasmas.

    PubMed

    Umstadter, D; Chen, S Y; Wagner, R; Maksimchuk, A; Sarkisov, G

    1998-03-30

    We review our recent work on the various nonlinear optical processes that occur as an intense laser propagates through a relativistic plasma. These include the experimental observations of electron acceleration driven by laser-wakefield generation, relativistic self-focusing, waveguide formation and laser self-channeling. PMID:19377614

  13. Interaction nonlinearity in asphalt binders

    NASA Astrophysics Data System (ADS)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2012-05-01

    Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.

  14. Nonlinear SCHRÖDINGER-PAULI Equations

    NASA Astrophysics Data System (ADS)

    Ng, Wei Khim; Parwani, Rajesh R.

    2011-11-01

    We obtain novel nonlinear Schrüdinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought forward by the nonlinear terms and suggests how to regularise previous equations studied in the literature. The enhancement of contributions coming from the regularised singularities suggests that the obtained equations might be useful for future precision tests of quantum nonlinearity.

  15. Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.

    PubMed

    Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh

    2010-09-01

    We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200

  16. Nonlinear Principal Components Analysis: Introduction and Application

    ERIC Educational Resources Information Center

    Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.

    2007-01-01

    The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…

  17. Introducing Nonlinear Pricing into Consumer Choice Theory.

    ERIC Educational Resources Information Center

    DeSalvo, Joseph S.; Huq, Mobinul

    2002-01-01

    Describes and contrasts nonlinear and linear pricing in consumer choice theory. Discusses the types of nonlinear pricing: block-declining tariff, two-part tariff, three-part tariff, and quality discounts or premia. States that understanding nonlinear pricing enhances student comprehension of consumer choice theory. Suggests teaching the concept in…

  18. Nonlinear electron oscillations in a warm plasma

    SciTech Connect

    Sarkar, Anwesa; Maity, Chandan; Chakrabarti, Nikhil

    2013-12-15

    A class of nonstationary solutions for the nonlinear electron oscillations of a warm plasma are presented using a Lagrangian fluid description. The solution illustrates the nonlinear steepening of an initial Gaussian electron density disturbance and also shows collapse behavior in time. The obtained solution may indicate a class of nonlinear transient structures in an unmagnetized warm plasma.

  19. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  20. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  1. Nonlinear Growth of Singular Vector Based Perturbations

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.

    2002-12-01

    The nonlinearity of singular vector-based perturbation growth is examined within the context of a global atmospheric forecast model. The characteristics of these nonlinearities and their impact on the utility of SV-based diagnostics are assessed both qualitatively and quantitatively. Nonlinearities are quantified by examining the symmetry of evolving positive and negative "twin" perturbations. Perturbations initially scaled to be consistent with estimates of analysis uncertainty become significantly nonlinear by 12 hours. However, the relative magnitude of the nonlinearities is a strong function of scale and metric. Small scales become nonlinear very quickly while synoptic scales can remain significantly linear out to three day. Small shifts between positive and negative perturbations can result in significant nonlinearities even when the basic anomaly patterns are quite similar. Thus, singular vectors may be qualitatively useful even when nonlinearities are large. Post-time pseudo-inverse experiments show that despite significant nonlinear perturbation growth, the nonlinear forecast corrections are similar to the expected linear corrections, even at 72 hours. When the nonlinear correction does differ significantly from the expected linear correction, the nonlinear correction is usually better, indicating that in some cases the pseudo-inverse correction effectively suppresses error growth outside the subspace defined by the leading (dry) singular vectors. Because a significant portion of the nonlinear growth occurs outside of the dry singular vector subspace, an a priori nonlinearity index based on the full perturbations is not a good predictor of when pseudo-inverse based corrections will be ineffective. However, one can construct a reasonable predictor of pseudo-inverse ineffectiveness by focusing on nonlinearities in the synoptic scales or in the singular vector subspace only.

  2. Condition assessment of nonlinear processes

    DOEpatents

    Hively, Lee M.; Gailey, Paul C.; Protopopescu, Vladimir A.

    2002-01-01

    There is presented a reliable technique for measuring condition change in nonlinear data such as brain waves. The nonlinear data is filtered and discretized into windowed data sets. The system dynamics within each data set is represented by a sequence of connected phase-space points, and for each data set a distribution function is derived. New metrics are introduced that evaluate the distance between distribution functions. The metrics are properly renormalized to provide robust and sensitive relative measures of condition change. As an example, these measures can be used on EEG data, to provide timely discrimination between normal, preseizure, seizure, and post-seizure states in epileptic patients. Apparatus utilizing hardware or software to perform the method and provide an indicative output is also disclosed.

  3. Solitons and nonlinear wave equations

    SciTech Connect

    Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.

    1982-01-01

    A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.

  4. Nonlinear evolution of Buneman instability

    NASA Astrophysics Data System (ADS)

    Ishihara, O.; Hirose, A.; Langdon, A. B.

    1981-03-01

    The nonlinear evolution of one-dimensional electron-ion two-stream instability in a field-free plasma is investigated analytically and by computer simulation. The instability is dominated by the fastest growing mode and its harmonics, provided that the initial fluctuation level is sufficiently small. A nonlinear dispersion relation is obtained and solved numerically, with allowance for the frequency and growth rate modulation, the electric field up to a specified order, and the renormalized particle distribution functions. It is shown that the model can explain computer simulation results, including the presence of an algebraic growth stage following the breakdown of the exponential linear growth, the appearance of harmonics, and the final saturation level.

  5. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  6. Some nonlinear space decomposition algorithms

    SciTech Connect

    Tai, Xue-Cheng; Espedal, M.

    1996-12-31

    Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.

  7. Single-cycle nonlinear optics

    SciTech Connect

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  8. Modeling of Nonlinear Systems using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hayashi, Kayoko; Yamamoto, Toru; Kawada, Kazuo

    In this paper, a newly modeling system by using Genetic Algorithm (GA) is proposed. The GA is an evolutionary computational method that simulates the mechanisms of heredity or evolution of living things, and it is utilized in optimization and in searching for optimized solutions. Most process systems have nonlinearities, so it is necessary to anticipate exactly such systems. However, it is difficult to make a suitable model for nonlinear systems, because most nonlinear systems have a complex structure. Therefore the newly proposed method of modeling for nonlinear systems uses GA. Then, according to the newly proposed scheme, the optimal structure and parameters of the nonlinear model are automatically generated.

  9. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  10. Nonlinear features of Northern Annular Mode variability

    NASA Astrophysics Data System (ADS)

    Fu, Zuntao; Shi, Liu; Xie, Fenghua; Piao, Lin

    2016-05-01

    Nonlinear features of daily Northern Annular Mode (NAM) variability at 17 pressure levels are quantified by two different measures. One is nonlinear correlation, and the other is time-irreversible symmetry. Both measures show that there are no significant nonlinear features in NAM variability at the higher pressure levels, however as the pressure level decreases, the strength of nonlinear features in NAM variability becomes predominant. This indicates that in order to reach better prediction of NAM variability in the lower pressure levels, nonlinear features must be taken into consideration to build suitable models.

  11. Townes' contribution to nonlinear optics

    NASA Astrophysics Data System (ADS)

    Garmire, Elsa

    2015-03-01

    In honour of the Fiftieth Anniversary of the Nobel Prize in Physics, this talk introduced the contributions of Nicholas Basov and Alexei Prokhorov, who shared the prize with Charles Townes. The talk then detailed the quantum electronics research of Townes, particularly at MIT, which was related to nonlinear optics. The years from 1961 to 1968 were particularly exciting, as the ruby laser enabled a wide variety of new physics to be discovered and explored.

  12. Nonlinear combining of laser beams.

    PubMed

    Lushnikov, Pavel M; Vladimirova, Natalia

    2014-06-15

    We propose to combine multiple laser beams into a single diffraction-limited beam by beam self-focusing (collapse) in a Kerr medium. Beams with total power above critical are first combined in the near field and then propagated in the optical fiber/waveguide with Kerr nonlinearity. Random fluctuations during propagation eventually trigger a strong self-focusing event and produce a diffraction-limited beam carrying the critical power. PMID:24978503

  13. A nonlinear SIR with stability

    NASA Astrophysics Data System (ADS)

    Trisilowati, Darti, I.; Fitri, S.

    2014-02-01

    The aim of this work is to develop a mathematical model of a nonlinear susceptible-infectious-removed (SIR) epidemic model with vaccination. We analyze the stability of the model by linearizing the model around the equilibrium point. Then, diphtheria data from East Java province is fitted to the model. From these estimated parameters, we investigate which parameters that play important role in the epidemic model. Some numerical simulations are given to illustrate the analytical results and the behavior of the model.

  14. Linear superposition in nonlinear equations.

    PubMed

    Khare, Avinash; Sukhatme, Uday

    2002-06-17

    Several nonlinear systems such as the Korteweg-de Vries (KdV) and modified KdV equations and lambda phi(4) theory possess periodic traveling wave solutions involving Jacobi elliptic functions. We show that suitable linear combinations of these known periodic solutions yield many additional solutions with different periods and velocities. This linear superposition procedure works by virtue of some remarkable new identities involving elliptic functions. PMID:12059300

  15. Nonlinear dynamics in cardiac conduction

    NASA Technical Reports Server (NTRS)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  16. Nonlinear input-output systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Luksic, Mladen; Su, Renjeng

    1987-01-01

    Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.

  17. Nonlinear positron acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-07-15

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  18. Nonlinear Optical Studies of Bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Rao, D. V. G. L. N.; Aranda, F. J.; Chen, Z.; Akkara, J. A.; Kaplan, D. L.; Nakashima, M.

    We report interesting results on nonlinear optics at low powers in bacteriorhodopsin films with applications in all-optical switching and modulation. Chemically stabilized films of bacteriorhodopsin in a polymer matrix for which the lifetime of the excited M state is 3 to 4 orders of magnitude longer than that of water solutions of wild-type bR were used in these experiments. Due to the sensitivity of the films, very small powers of order microwatts are required for optical phase conjugation. The influence of the fast photochemical M to B transition induced by blue light on the saturation intensity, phase conjugate intensity and switching time was established. We also report our measurements of the intensity dependence of the self-focusing and self-defocusing properties of wild-type bR in water solution using the Z-scan technique with low power cw lasers at two wavelengths on either side of the absorption band. Our measurements indicate that the sign of the nonlinearity depends on the wavelength and the magnitude depends on the fluence of the incident laser beam. The observed self-focusing and defocusing is not due to the intrinsic electronic nonlinearity. The observations can be explained in terms of the Kramers-Kronig dispersion relation that relates the real and imaginary parts of the complex index of refraction.

  19. Nonlinear microscopy of collagen fibers

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  20. Nonlinear Single Spin Spectrum Analayzer

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  1. Nonlinear polariton effects in naphthalene

    SciTech Connect

    Stevenson, S.H.

    1985-01-01

    Resonant second harmonic generation (SHG) and two-photon excited emission (TPE) were studied in pure, strain-free crystals of naphthalene at frequencies near that of the (0,0) a-exciton in order to probe the relationship between the two signals and to investigate the effect of polariton states on second order nonlinearities in molecular crystals. The strong coupling of the 31473 cm/sup -1/ exciton in naphthalene to the photon field dictates the second-order nonlinear behavior of naphthalene crystals at frequencies near half-resonance. The dynamics of polaritons produced coherently via nonlinear interactions is shown to deviate in a controllable way from the dynamics of the one-photon polaritons produced in a linear experiment. The nature of the excitation remains principally that of an exciton. The necessity of using a strong coupling model to explain orientational dispersion and intensity and lineshape behavior is established. The experimental angular frequency dispersion of the SHG and TPE signals are fit to theoretical polariton dispersion curves. The orientation of the naphthalene optical indicatrix at 31475 cm/sup -1/ is shown to be very nearly the same as that reported for visible light. The temperature dependences of the SHG and TPE signal intensities are successfully predicted from the polariton fusion model by inclusion of temporal damping in the fusion rate expression. The shapes of the SHG and TPE profiles are compared to shapes predicted from the semi-classical theory.

  2. LSD-a nonlinear approach

    NASA Astrophysics Data System (ADS)

    Sennhauser, C.; Berdyugina, S. V.; Fluri, D. M.

    2009-02-01

    Stellar spectra usually are very limited in the signal-to-noise ratio (SNR) that can be obtained. In order to increase their informative value, different techniques have been developed in the past ten years which combine multiple spectral lines by cutting out individual line profiles and analysing them by means of least-squares errors or PCA. They usually neglect that the bulk of lines are blended, resulting in artificial broadening of the retrieved common line pattern, while those that care to disentangle blended profiles assume linear line adding. Based on the well-known least-squares deconvolution (LSD) method, we developed a new technique, which truly accounts for blended profiles and deconvolves them in a physically meaningful way by taking into account the nonlinearity when abandoning the regime of optically thin lines. The so-called interpolation formula by M. Minnaert is a unique tool to describe a line profile both in the optically thin and the optically thick regime. It enables us to write a total line depth in terms of a (nonlinear) combination of contributing individual components. Applying different versions of LSD, among them our nonlinear (NL-) LSD, to simulated atomic and molecular intensity spectra shows the unrivaled functionality of our new method in terms of interpretability of the retrieved common line pattern. For the first time it is possible to recover an intrinsic line pattern from a molecular band.

  3. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  4. Nonlinear diffraction in orientation-patterned semiconductors.

    PubMed

    Karpinski, Pawel; Chen, Xin; Shvedov, Vladlen; Hnatovsky, Cyril; Grisard, Arnaud; Lallier, Eric; Luther-Davies, Barry; Krolikowski, Wieslaw; Sheng, Yan

    2015-06-01

    This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions. The study extends the concept of transverse nonlinear parametric interaction toward infrared frequency conversion in semiconductors. It also offers an effective nondestructive method to visualise and diagnose variations of second-order nonlinear coefficients inside semiconductors. PMID:26072847

  5. Earth solids and dynamic nonlinear elasticity

    SciTech Connect

    Johnson, P.A. |; Abeele, K.E.A. Van Den

    1997-05-01

    The authors` intention is to describe several manifestations of nonlinear behavior in rock. Nonlinear response may manifest itself in a variety of manners, including a nonlinear stress-strain relation, nonlinear attenuation, harmonic generation, resonant peak shift and slow dynamics, all of which are related. The authors have ample evidence that the responsible mechanism for nonlinear response [to first order] is the presence of compliant features and the influence of fluid. They define compliant features as those features that are the weakest in the rock, e.g., grain-to-grain contacts, low aspect ratio cracks, joints, etc. In addition, there may be other mechanisms responsible as yet unidentified. In the following, the authors emphasize the robust nature of observations by illustrating several experimental examples. They do not review the related theoretical framework. Finally, they do not present nonlinear parameters derived from these experiments as the purpose in this paper is to illustrate rather than quantify nonlinear response.

  6. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  7. Probing hysteretic elasticity in weakly nonlinear materials

    SciTech Connect

    Johnson, Paul A; Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  8. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  9. Beams on nonlinear elastic foundation

    SciTech Connect

    Lukkassen, Dag; Meidell, Annette

    2014-12-10

    In order to determination vertical deflections and rail bending moments the Winkler model (1867) is often used. This linear model neglects several conditions. For example, by using experimental results, it has been observed that there is a substantial increase in the maximum rail deflection and rail bending moment when considering the nonlinearity of the track support system. A deeper mathematical analysis of the models is necessary in order to obtain better methods for more accurate numerical solutions in the determination of deflections and rail bending moments. This paper is intended to be a small step in this direction.

  10. Galerkin Method for Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Noack, Bernd R.; Schlegel, Michael; Morzynski, Marek; Tadmor, Gilead

    A Galerkin method is presented for control-oriented reduced-order models (ROM). This method generalizes linear approaches elaborated by M. Morzyński et al. for the nonlinear Navier-Stokes equation. These ROM are used as plants for control design in the chapters by G. Tadmor et al., S. Siegel, and R. King in this volume. Focus is placed on empirical ROM which compress flow data in the proper orthogonal decomposition (POD). The chapter shall provide a complete description for construction of straight-forward ROM as well as the physical understanding and teste

  11. Nonlinear Convection in Mushy Layers

    NASA Technical Reports Server (NTRS)

    Worster, M. Grae; Anderson, Daniel M.; Schulze, T. P.

    1996-01-01

    When alloys solidify in a gravitational field there are complex interactions between solidification and natural, buoyancy-driven convection that can alter the composition and impair the structure of the solid product. The particular focus of this project has been the compositional convection within mushy layers that occurs in situations where the lighter component of the alloy is rejected into the melt during solidification by cooling from below. The linear stability of such a situation was previously described and has been further elucidated in a number of published articles. Here we describe some recent developments in the study of nonlinear evolution of convection in mushy layers.

  12. Dimensional interpolation for nonlinear filters

    NASA Astrophysics Data System (ADS)

    Daum, Fred

    2005-09-01

    Dimensional interpolation has been used successfully by physicists and chemists to solve the Schroedinger equation for atoms and complex molecules. The same basic idea can be used to solve the Fokker-Planck equation for nonlinear filters. In particular, it is well known (by physicists) that two Schroedinger equations are equivalent to two Fokker-Planck equations. Moreover, we can avoid the Schroedinger equation altogether and use dimensional interpolation directly on the Fokker-Planck equation. Dimensional interpolation sounds like a crazy idea, but it works. We will attempt to make this paper accessible to normal engineers who do not have quantum mechanics for breakfast.

  13. Dark solitons at nonlinear interfaces.

    PubMed

    Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S

    2010-05-01

    The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell's law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter. PMID:20436564

  14. Nonlinear dynamics in expanding plasmas

    NASA Astrophysics Data System (ADS)

    Sack, Ch.; Schamel, H.

    1985-07-01

    The expansion of a plasma occupying initially a half-space is investigated numerically and, by means of a novel description of the ion fluid, also analytically. A simple wave structure is found in the collisionless approximation. Stabilized by dissipation, the associated ion bunching gives rise to a fast ion component, similar to the ion blow-off in laser fusion. Three nonstationary regimes of this strongest nonlinear and inhomogeneous dynamical system are distinguished and discussed. For large t the ion front propagates with a speed proportional to the square root of t-t(1), where t(1) is a reference time. A simple picture emerges, explaining the diverse experimental data.

  15. Tunable nonlinear piezoelectric vibration harvester

    NASA Astrophysics Data System (ADS)

    Neiss, S.; Goldschmidtboeing, F.; Kroener, M.; Woias, P.

    2014-11-01

    Nonlinear piezoelectric energy harvesting generators can provide a large bandwidth combined with a good resonant power output. However, the frequency response is characterized by a strong hysteresis making a technical use difficult if the hysteresis cannot be compensated. We propose a tuning mechanism that allows both, a compensation of the hysteresis as well as maintaining the optimal work point. The compensation algorithm can reduce the hysteresis to a minimum of only 1.5 Hz and maintain a high energy oscillation in a large frequency window between 53.3 Hz and 74.5 Hz.

  16. Nonlinear Processes in Vibroseismic Monitoring

    SciTech Connect

    Khairetdinov, M. S.; Voskoboynikova, G. M.

    2008-06-24

    In this paper, on the basis of numerical calculations and results of processing of the data of field experiments, quantitative estimates of the spectral broadening of the initial sounding seismic oscillations are presented. The estimates were obtained as a result of vibroseismic sounding of fractured dilatancy media typical for seismically and volcanically dangerous zones. The authors' idea about the applicability of the parameters of wave field nonlinearity in the form of possible prognostic characteristics of the earthquake-volcano source development process is justified.

  17. Nonlinear dynamics of cell orientation

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; de, Rumi

    2009-12-01

    The nonlinear dependence of cellular orientation on an external, time-varying stress field determines the distribution of orientations in the presence of noise and the characteristic time, τc , for the cell to reach its steady-state orientation. The short, local cytoskeletal relaxation time distinguishes between high-frequency (nearly perpendicular) and low-frequency (random or parallel) orientations. However, τc is determined by the much longer, orientational relaxation time. This behavior is related to experiments for which we predict the angle and characteristic time as a function of frequency.

  18. A model of nonlinear electrodynamics

    SciTech Connect

    Kruglov, S.I.

    2015-02-15

    A new model of nonlinear electrodynamics with two parameters is investigated. We also consider a model with one dimensional parameter. It was shown that the electric field of a point-like charge is not singular at the origin and there is the finiteness of the static electric energy of point-like charged particle. We obtain the canonical and symmetrical Belinfante energy–momentum tensors and dilatation currents. It is demonstrated that the dilatation symmetry and dual symmetry are broken in the models suggested. We have calculated the static electric energy of point-like particles.

  19. Nonlinear Analysis Of Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    Day, William B.; Zalik, Richard

    1988-01-01

    Study explores analytical consequences of nonlinear Jeffcott equations of rotor dynamics. Section 1: Summary of previous studies. Section 2: Jeffcott Equations. Section 3: Proves two theorems that provide inequalities on coefficients of differential equations and magnitude of forcing function in absence of side force. Section 4: Numerical investigation of multiple-forcing-function problem by introducing both side force and mass imbalance. Section 5: Examples of numberical solutions of complex generalized Jeffcott equation with two forcing functions of different frequencies f1 and f2. Section 6: Boundedness and stability of solutions.Section 7: Concludes report reviewing analytical results and significance.

  20. Nonlinear magnetohydrodynamics of edge localized mode precursors

    SciTech Connect

    Guo, Z. B.; Wang, Lu; Wang, X. G.

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  1. Strong nonlinear focusing of light in nonlinearly controlled electromagnetic active metamaterial field concentrators

    NASA Astrophysics Data System (ADS)

    Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.

    2014-05-01

    The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects

  2. Investigation of a Nonlinear Control System

    NASA Technical Reports Server (NTRS)

    Flugge-Lotz, I; Taylor, C F; Lindberg, H E

    1958-01-01

    A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.

  3. Describing functions for nonlinear optical systems.

    PubMed

    Ghosh, A K

    1997-10-10

    The concept of describing functions is useful for analyzing and designing nonlinear systems. A proposal for using the idea of describing functions for studying the behavior of a nonlinear optical processing system is given. The describing function can be used in the same way that a coherent transfer function or optical transfer function is used to characterize linear, shift-invariant optical processors. Two coherent optical systems for measuring the magnitude of the describing function of nonlinear optical processors are suggested. PMID:18264243

  4. Spurious Solutions Of Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  5. Stationary nonlinear Alfven waves and solitons

    NASA Technical Reports Server (NTRS)

    Hada, T.; Kennel, C. F.; Buti, B.

    1989-01-01

    Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.

  6. Films Containing Optically Nonlinear Diacetylene Monomer

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Mcmanus, Samuel P.; Frazier, Donald O.

    1993-01-01

    Solid films exhibiting nonlinear optical properties prepared as mixtures of poly(methyl methacrylate) with various amounts of diacetylene monomer called "compound 1" in article, "Synthesizing Diacetylenes With Nonlinear Optical Properties" (MFS-26186). Useful as phase-conjugate mirrors in laser-beam communications and as optical switches in optical computers. This particular diacetylene monomer exhibits strong third-order nonlinear optical properties, both in pure form and in solution.

  7. Vibrational Control of a Nonlinear Elastic Panel

    NASA Technical Reports Server (NTRS)

    Chow, P. L.; Maestrello, L.

    1998-01-01

    The paper is concerned with the stabilization of the nonlinear panel oscillation by an active control. The control is actuated by a combination of additive and parametric vibrational forces. A general method of vibrational control is presented for stabilizing panel vibration satisfying a nonlinear beam equation. To obtain analytical results, a perturbation technique is used in the case of weak nonlinearity. Possible application to other types of problems is briefly discussed.

  8. Nonlinear secret image sharing scheme.

    PubMed

    Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  9. Nonlinear Secret Image Sharing Scheme

    PubMed Central

    Shin, Sang-Ho; Yoo, Kee-Young

    2014-01-01

    Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2⁡m⌉ bit-per-pixel (bpp), respectively. PMID:25140334

  10. Nonlinear electrodynamics and CMB polarization

    SciTech Connect

    Cuesta, Herman J. Mosquera; Lambiase, G. E-mail: lambiase@sa.infn.it

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  11. Nonlinear dynamics and plasma transport

    SciTech Connect

    Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.

    1995-12-01

    This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs.

  12. The Nonlinear Field Space Theory

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  13. Nonlinear spectroscopy of trapped ions

    NASA Astrophysics Data System (ADS)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  14. Inertial Mass from Spin Nonlinearity

    NASA Astrophysics Data System (ADS)

    Cohen, Marcus

    The inertial mass of a Fermion shows up as chiral cross-coupling in its Dirac system. No scalar term can invariantly couple left and right chirality fields; the Dirac matrices must be spin tensors of mixed chirality. We show how such tensor couplings could arise from nonlinear mixing of four spinor fields, two representing the local electron fields and two inertial spinor fields sourced in the distant masses. We thus give a model that implements Mach's principle. Following Mendel Sachs,1 we let the inertial spinors factor the moving spacetime tetrads qα(x) and bar {q}α (x) that appear in the Dirac operator. The inertial spinors do more than set the spacetime "stage;" they are players in the chiral dynamics. Specifically, we show how the massive Dirac system arises as the envelope modulation equations coupling left and right chirality electron fields on a Friedmann universe via nonlinear "spin gratings" with the inertial spinor fields. These gratings implement Penrose's "mass-scatterings," which keep the null zig-zags of the bispinor wave function confined to a timelike world tube. Local perturbations to the inertial spinor fields appear in the Dirac system as Abelian and non-Abelian vector potentials.

  15. Nonlinear cloaking at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Gurvitz, E. A.; Sedykh, E. A.; Khodzitskiy, M. K.

    The ideas of employing the unique properties of metamaterials for cloaking and invisibility applications has been recently suggested and investigated by several groups, because they may find numerous applications in physics and technology. While many of the recent designs of the cloaking structures are based on the transformation optics and exact formulas, the original concept suggested by Tretyakov employed the periodical set of parallel-plate waveguides with the height smoothly varying from H to h in order to reduce drastically the total scattering cross-section of a given object and to obtain broadband cloaking effect. Our paper is devoted to improvement of this design to make tunability and nonlinear effect. The Tretyakov's design was scaled for Ku-band frequencies and the cloak was placed into rectangular waveguide. The broad transmission band ("invisibility region") was obtained. The tunability of transmission band was realized by addition the capacitors into the cloak, between metallic plates. The cloaking system was simulated numerically by CST Microwave Studio. The possibility of invisibility switching on/off was shown by changing of capacity of varactor diodes from 0.4 to 3.4 pF by incident power. The nonlinear cloak behavior was shown at microwaves.

  16. Nonlinear quantum optical properties of graphene

    NASA Astrophysics Data System (ADS)

    Semnani, Behrooz; Hamed Majedi, Amir; Safavi-Naeini, Safieddin

    2016-03-01

    We present a semiclassical theory of the linear and nonlinear optical response of graphene. The emphasis is placed on the nonlinear optical response of graphene from the standpoint of the underlying chiral symmetry. The Bloch quasiparticles in the low-energy limit around the degeneracy points are dominantly chiral. It is shown that this chiral behavior in conjunction with scale invariance in graphene around the Dirac points results in the strong nonlinear optical response. Explicit expressions for the linear and nonlinear conductivity tensors are derived based on semiconductor Bloch equations (SBEs). The linear terms agree with the result of Kubo formulation. The three main additive mechanisms contribute in the nonlinear optical response of graphene: pure intraband, pure interband and the interplay between them. For each contribution, an explicit response function is derived. The Kerr-type nonlinearity of graphene is then numerically studied and it is demonstrated that the nonlinear refractive index of graphene can be tuned and enhanced by applying a gate voltage. It is also discussed that a strong Kerr nonlinearity can be achieved in a gated graphene monolayer. However, this nonlinearity is accompanied with a significant amount of absorption loss.

  17. Kurtosis Approach Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.

  18. Kurtosis Approach for Nonlinear Blind Source Separation

    NASA Technical Reports Server (NTRS)

    Duong, Vu A.; Stubbemd, Allen R.

    2005-01-01

    In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.

  19. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  20. Scalar discrete nonlinear multipoint boundary value problems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus; Taylor, Padraic

    2007-06-01

    In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].

  1. Nonlinear waves in an Alfven waveguide

    SciTech Connect

    Dmitrienko, I.S.

    1992-06-01

    A nonlinear Schroedinger equation is derived for the envelopes of weakly nonlinear quasilongitudinal (k{sub 1}<{radical}{omega}/{omega}{sub i}k{sub {parallel}}) Alfven waves in a waveguide, the existence of which is ensured by the presence of ion inertia (m{sub i}{ne}0) in a plasma with a transverse density gradient. It is shown that the nonlinear properties of such waves are associated with the presence of transverse structure in the waveguide modes. Estimates show that weakly nonlinear processes can have a significant effect on the dynamics of Pc 1 geomagnetic pulsations. 7 refs.

  2. Nonlinearly stacked low noise turbofan stator

    NASA Technical Reports Server (NTRS)

    Schuster, William B. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  3. Polariton spectrum in nonlinear dielectric medium.

    PubMed

    Dzedolik, Igor V; Karakchieva, Olga

    2013-05-01

    We obtain theoretically the phonon-polariton spectrum in nonlinear dielectric medium with the third-order Kerr-type nonlinearity. We investigate the dependence of number of the polariton spectrum branches on the intensity of electromagnetic field and demonstrate that the appearance of new branches located in the polariton spectrum gap is caused by the influence of dispersion of the third-order dielectric susceptibility at the intensive electromagnetic field in the medium. The modulation instability of new spectrum branch waves leads to the appearance of the cnoidal waves or solitons. These new nonlinear waves one can use for designing optical devices such as the nonlinear optical filter converter. PMID:23669776

  4. Dark energy simulacrum in nonlinear electrodynamics

    SciTech Connect

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  5. Haotic, Fractal, and Nonlinear Signal Processing. Proceedings

    SciTech Connect

    Katz, R.A.

    1996-10-01

    These proceedings include papers presented at the Third Technical Conference on Nonlinear Dynamics and Full{minus}Spectrum Processing held in Mystic, Connecticut. The Conference focus was on the latest advances in chaotic, fractal and nonlinear signal processing methods. Topics of discussion covered in the Conference include: mathematical frontiers; predictability and control of chaos, detection and classification with applications in acoustics; advanced applied signal processing methods(linear and nonlinear); stochastic resonance; machinery diagnostics; turbulence; geophysics; medicine; and recent novel approaches to modeling nonlinear systems. There were 58 papers in the conference and all have been abstracted for the Energy Science and Technology database. (AIP)

  6. Detonator comprising a nonlinear transmission line

    SciTech Connect

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  7. Single-ion nonlinear mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-12-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  8. Phased array beamforming using nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Larsen, Michael L.; Tsimring, Lev S.

    2004-10-01

    We describe a concept in which an array of coupled nonlinear oscillators is used for beamforming in phased array receivers. The signal that each sensing element receives, beam steered by time delays, is input to a nonlinear oscillator. The nonlinear oscillators for each element are in turn coupled to each other. For incident signals sufficiently close to the steering angle, the oscillator array will synchronize to the forcing signal whereas more obliquely incident signals will not induce synchronization. The beam pattern that results can show a narrower mainlobe and lower sidelobes than the equivalent conventional linear beamformer. We present a theoretical analysis to explain the beam pattern of the nonlinear oscillator array.

  9. Theory and design of nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

  10. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  11. Noise in nonlinear nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by

  12. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  13. Nonlinear stability of supersonic jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)

    1996-01-01

    The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  14. Nonlinear Opinion Dynamics on Networks

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Das, Arindam

    2013-03-01

    A model which treats group decision making as nonlinear opinion dynamics occurring over a network is presented. The model makes predictions regarding the interaction of network structure and initial disagreement level upon decision outcomes and consensus formation. The model displays bifurcations at high disagreement levels which lead to behaviors that are qualitatively distinct from those at low disagreement. For example, at high disagreement, the model exhibits asymmetric, majority rule outcomes that arise even when the system is symmetric with respect to the distribution of initial opinions and network structure. Analytical approximations for the bifurcation boundaries agree well with numerically-determined boundaries. An ongoing experimental effort involving the use of online discussion groups to test the model predictions is briefly described. We acknowledge the support of the Defense Threat Reduction Agency and the Office of Naval Research under grant HDTRA1-10-1-0075

  15. Nonlinear Echoes from Encapsulated Antibubbles

    NASA Astrophysics Data System (ADS)

    Johansen, Kristoffer; Kotopoulis, Spiros; Poortinga, Albert T.; Postema, Michiel

    An antibubble consists of a liquid droplet, surrounded by a gas, often with an encapsulating shell. Antibubbles of microscopic sizes suspended in fluids are acoustically active in the ultrasonic range. Antibubbles have applications in food processing and guided drug delivery. We study the sound generated from antibubbles, with droplet core sizes in the range of 0-90% of the equilibrium antibubble inner radius. The antibubble resonance frequency, the phase difference of the echo with respect to the incident acoustic pulse, and the presence of higher harmonics are strongly dependent of the core droplet size. Antibubbles oscillate highly nonlinearly around resonance size. This may allow for using antibubbles in clinical diagnostic imaging and targeted drug delivery.

  16. Nonlinear vibration caused by fatigue

    NASA Astrophysics Data System (ADS)

    Foong, Chee-Hoe; Wiercigroch, Marian; Pavlovskaia, Ekaterina; Deans, William F.

    2007-06-01

    The main aim of this work is to study the interactions between vibration and fatigue crack growth. In this paper, a detailed mathematical modelling of a newly designed fatigue-testing rig, description of the rig, experimental set-up and procedures, and sensor calibrations are presented. The test rig consists of two base-excited oscillators, one positioned above and the other below a single-edge-notched beam sample. The inertial forces of the oscillators act on the sample causing its bending and fatigue. Mathematically the fatigue crack sample is modelled as a discrete spring with piecewise nonlinear stiffness which is assumed to be constant when the crack closes and to decrease with crack length when it opens. The results from the modelling correlate well with the experimental tests.

  17. Shaping the nonlinear near field.

    PubMed

    Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus

    2016-01-01

    Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states. PMID:26762487

  18. NONLINEAR ASTEROSEISMOLOGY OF RR LYRAE

    SciTech Connect

    Molnar, L.; Kollath, Z.; Szabo, R.; Bryson, S.; Mullally, F.; Thompson, S. E.; Kolenberg, K.

    2012-09-20

    The observations of the Kepler Space Telescope revealed that fundamental-mode RR Lyrae stars may show various radial overtones. The presence of multiple radial modes may allow us to conduct nonlinear asteroseismology: comparison of mode amplitudes and frequency shifts between observations and models. Here we report the detection of three radial modes in the star RR Lyr, the eponym of the class, using the Kepler short cadence data: besides the fundamental mode, both the first and the ninth overtones can be derived from the data set. RR Lyrae shows period doubling, but switches occasionally to a state where a pattern of six pulsation cycles repeats instead of two. We found hydrodynamic models that show the same three modes and the period-six state, allowing for comparison with the observations.

  19. Nonlinear Stability of Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Bhat, T. R. S.; Seiner, J. M.; Tiwari, S. N.

    1995-01-01

    This paper presents stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations. In this analysis the large-scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.

  20. Nonlinear control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Pradeep, A. K.; Gurumoorthy, R.

    1994-01-01

    In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.

  1. Nonlinear image filtering within IDP++

    SciTech Connect

    Lehman, S.K.; Wieting, M.G.; Brase, J.M.

    1995-02-09

    IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

  2. Spillover, nonlinearity, and flexible structures

    NASA Technical Reports Server (NTRS)

    Bass, Robert W.; Zes, Dean

    1991-01-01

    Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.

  3. Shaping the nonlinear near field

    PubMed Central

    Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus

    2016-01-01

    Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states. PMID:26762487

  4. Nonlinear Cosmic Ray Diffusion Theories

    NASA Astrophysics Data System (ADS)

    Shalchi, Andreas

    Within cosmic ray transport theory, we investigate the interaction between energetic charged particles like electrons, protons, or heavy ions and astrophysical plasmas such as the solar wind or the interstellar medium. These particles interact with a background magnetic field B 0 and with turbulent electric and magnetic fields ýE and ýB, and they therefore experience scattering parallel and perpendicular to B 0. In this introductory chapter, general properties of cosmic rays are discussed, as well as the unperturbed motion of the particles. Furthermore, the physics of parallel and perpendicular scattering is investigated. At the end of this chapter, we consider observed mean free paths of cosmic rays in the heliosphere and in the interstel- lar medium. One aim of this book is to demonstrate that a nonlinear description of particle transport is necessary to reproduce these measurements.

  5. Time-frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank

    2011-10-01

    Presented here is a new time-frequency signal processing methodology based on Hilbert-Huang transform (HHT) and a new conjugate-pair decomposition (CPD) method for characterization of nonlinear normal modes and parametric identification of nonlinear multiple-degree-of-freedom dynamical systems. Different from short-time Fourier transform and wavelet transform, HHT uses the apparent time scales revealed by the signal's local maxima and minima to sequentially sift components of different time scales. Because HHT does not use pre-determined basis functions and function orthogonality for component extraction, it provides more accurate time-varying amplitudes and frequencies of extracted components for accurate estimation of system characteristics and nonlinearities. CPD uses adaptive local harmonics and function orthogonality to extract and track time-localized nonlinearity-distorted harmonics without the end effect that destroys the accuracy of HHT at the two data ends. For parametric identification, the method only needs to process one steady-state response (a free undamped modal vibration or a steady-state response to a harmonic excitation) and uses amplitude-dependent dynamic characteristics derived from perturbation analysis to determine the type and order of nonlinearity and system parameters. A nonlinear two-degree-of-freedom system is used to illustrate the concepts and characterization of nonlinear normal modes, vibration localization, and nonlinear modal coupling. Numerical simulations show that the proposed method can provide accurate time-frequency characterization of nonlinear normal modes and parametric identification of nonlinear dynamical systems. Moreover, results show that nonlinear modal coupling makes it impossible to decompose a general nonlinear response of a highly nonlinear system into nonlinear normal modes even if nonlinear normal modes exist in the system.

  6. Nonlinear control of magnetic signatures

    NASA Astrophysics Data System (ADS)

    Niemoczynski, Bogdan

    Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and

  7. Nonlinear dynamics of cardiovascular ageing

    PubMed Central

    Shiogai, Y.; Stefanovska, A.; McClintock, P.V.E.

    2010-01-01

    The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time–frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in

  8. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  9. Nonlinear optical studies of surfaces

    SciTech Connect

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980`s that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect.

  10. Nonlinear optical studies of surfaces

    NASA Astrophysics Data System (ADS)

    Shen, Y. R.

    1994-07-01

    The possibility of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect.