Sample records for non-destructive magic angle

  1. Setting the magic angle for fast magic-angle spinning probes.

    PubMed

    Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H

    2018-06-15

    Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.

  2. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  3. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    PubMed Central

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  4. Controlling soliton excitations in Heisenberg spin chains through the magic angle.

    PubMed

    Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P

    2009-01-01

    We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.

  5. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  6. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  7. From the Magic of Light to the Destruction of Night

    NASA Astrophysics Data System (ADS)

    Posch, Thomas

    2012-09-01

    Life on the Earth depends on the light from the Sun. Humans generally have a very positive attitude towards light. This paper discusses the 'magic of light' - i.e. our dependence on and even addiction to light - and how it gradually led to the destruction of natural darkness by means of excessive artificial illumination. Furthermore, we develop a theory of the aesthetic value of natural nightscapes, which we illustrate by masterpieces from the history of painting.

  8. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  9. Magic angle for barrier-controlled double quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Wang, Xin

    2018-01-01

    We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.

  10. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  11. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  12. Structural Biology of Supramolecular Assemblies by Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Quinn, Caitlin M.; Polenova, Tatyana

    2017-01-01

    In recent years, exciting developments in instrument technology and experimental methodology have advanced the field of magic angle spinning (MAS) NMR to new heights. Contemporary MAS NMR yields atomic-level insights into structure and dynamics of an astounding range of biological systems, many of which cannot be studied by other methods. With the advent of fast magic angle spinning, proton detection, and novel pulse sequences, large supramolecular assemblies, such as cytoskeletal proteins and intact viruses, are now accessible for detailed analysis. In this review, we will discuss the current MAS NMR methodologies that enable characterization of complex biomolecular systems and will present examples of applications to several classes of assemblies comprising bacterial and mammalian cytoskeleton as well as HIV-1 and bacteriophage viruses. The body of work reviewed herein is representative of the recent advancements in the field, with respect to the complexity of the systems studied, the quality of the data, and the significance to the biology. PMID:28093096

  13. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  14. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  15. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less

  16. Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle

    DOE PAGES

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2016-02-23

    Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less

  17. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  18. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  19. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896.

  20. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins.

    PubMed

    Wu, Chin H; Das, Bibhuti B; Opella, Stanley J

    2010-02-01

    (13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  2. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  3. Investigation of Regional Influence of Magic-Angle Effect on T2 in Human Articular Cartilage with Osteoarthritis at 3 T

    PubMed Central

    Wang, Ligong; Regatte, Ravinder R.

    2014-01-01

    Rationale and Objectives The objectives of this research study were to determine the magic-angle effect on different subregions of in vivo human femoral cartilage through the quantitative assessment of the effect of static magnetic field orientation (B0) on transverse (T2) relaxation time at 3.0 T. Materials and Methods Healthy volunteers (n = 5l; mean age, 36.4 years) and clinical patients (n = 5; mean age, 64 years) with early osteoarthritis (OA) were scanned at 3.0-T magnetic resonance using an 8-channel phased-array knee coil (transmit-receive). Results The T2 maps revealed significantly greater values in ventral than in dorsal regions. When the cartilage regions were oriented at 55° to B0 (magic angle), the longest T2 values were detected in comparison with the neighboring regions oriented 90° and 180° (0°) to B0. The subregions oriented 180° (0°) to B0 showed the lowest T2 values. Conclusions The differences in T2 values of different subregions suggest that magic-angle effect needs to be considered when interpreting cartilage abnormalities in OA patients. PMID:25481517

  4. Unconventional superconductivity in magic-angle graphene superlattices.

    PubMed

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-05

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  5. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    DOEpatents

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  6. NMR high-resolution magic angle spinning rotor design for quantification of metabolic concentrations

    NASA Astrophysics Data System (ADS)

    Holly, R.; Damyanovich, A.; Peemoeller, H.

    2006-05-01

    A new high-resolution magic angle spinning nuclear magnetic resonance technique is presented to obtain absolute metabolite concentrations of solutions. The magnetic resonance spectrum of the sample under investigation and an internal reference are acquired simultaneously, ensuring both spectra are obtained under the same experimental conditions. The robustness of the technique is demonstrated using a solution of creatine, and it is shown that the technique can obtain solution concentrations to within 7% or better.

  7. Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang

    2017-10-01

    In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.

  8. Measurement of 13C chemical shift tensor principal values with a magic-angle turning experiment.

    PubMed

    Hu, J Z; Orendt, A M; Alderman, D W; Pugmire, R J; Ye, C; Grant, D M

    1994-08-01

    The magic-angle turning (MAT) experiment introduced by Gan is developed into a powerful and routine method for measuring the principal values of 13C chemical shift tensors in powdered solids. A large-volume MAT probe with stable rotation frequencies down to 22 Hz is described. A triple-echo MAT pulse sequence is introduced to improve the quality of the two-dimensional baseplane. It is shown that measurements of the principal values of chemical shift tensors in complex compounds can be enhanced by using either short contact times or dipolar dephasing pulse sequences to isolate the powder patterns from protonated or non-protonated carbons, respectively. A model compound, 1,2,3-trimethoxybenzene, is used to demonstrate these techniques, and the 13C principal values in 2,3-dimethylnaphthalene and Pocahontas coal are reported as typical examples.

  9. Spin-locking and cross-polarization under magic-angle spinning of uniformly labeled solids.

    PubMed

    Hung, Ivan; Gan, Zhehong

    2015-07-01

    Spin-locking and cross-polarization under magic-angle spinning are investigated for uniformly (13)C and (15)N labeled solids. In particular, the interferences from chemical shift anisotropy, and (1)H heteronuclear and (13)C homonuclear dipolar couplings are identified. The physical origin of these interferences provides guidelines for selecting the best (13)C and (15)N polarization transfer rf fields. Optimal settings for both the zero- and double-quantum cross-polarization transfer mechanisms are recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Magic Angle Spinning NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Hu, Jian

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  11. Non-destructive evaluation of nano-sized structure of thin film devices by using small angle neutron scattering.

    PubMed

    Shin, E J; Seong, B S; Choi, Y; Lee, J K

    2011-01-01

    Nano-sized multi-layers copper-doped SrZrO3, platinum (Pt) and silicon oxide (SiO2) on silicon substrates were prepared by dense plasma focus (DPF) device with the high purity copper anode tip and analyzed by using small angle neutron scattering (SANS) to establish a reliable method for the non-destructive evaluation of the under-layer structure. Thin film was well formed at the time-to-dip of 5 microsec with stable plasma of DPF. Several smooth intensity peaks were periodically observed when neutron beam penetrates the thin film with multi-layers perpendicularly. The platinum layer is dominant to intensity peaks, where the copper-doped SrZnO3 layer next to the platinum layer causes peak broadening. The silicon oxide layer has less effect on the SANS spectra due to its relative thick thickness. The SANS spectra shows thicknesses of platinum and copper-doped SrZnO3 layers as 53 and 25 nm, respectively, which are well agreement with microstructure observation.

  12. Pulsed field gradient magic angle spinning NMR self-diffusion measurements in liquids

    NASA Astrophysics Data System (ADS)

    Viel, Stéphane; Ziarelli, Fabio; Pagès, Guilhem; Carrara, Caroline; Caldarelli, Stefano

    2008-01-01

    Several investigations have recently reported the combined use of pulsed field gradient (PFG) with magic angle spinning (MAS) for the analysis of molecular mobility in heterogeneous materials. In contrast, little attention has been devoted so far to delimiting the role of the extra force field induced by sample rotation on the significance and reliability of self-diffusivity measurements. The main purpose of this work is to examine this phenomenon by focusing on pure liquids for which its impact is expected to be largest. Specifically, we show that self-diffusion coefficients can be accurately determined by PFG MAS NMR diffusion measurements in liquids, provided that specific experimental conditions are met. First, the methodology to estimate the gradient uniformity and to properly calibrate its absolute strength is briefly reviewed and applied on a MAS probe equipped with a gradient coil aligned along the rotor spinning axis, the so-called 'magic angle gradient' coil. Second, the influence of MAS on the outcome of PFG MAS diffusion measurements in liquids is investigated for two distinct typical rotors of different active volumes, 12 and 50 μL. While the latter rotor led to totally unreliable results, especially for low viscosity compounds, the former allowed for the determination of accurate self-diffusion coefficients both for fast and slowly diffusing species. Potential implications of this work are the possibility to measure accurate self-diffusion coefficients of sample-limited mixtures or to avoid radiation damping interferences in NMR diffusion measurements. Overall, the outlined methodology should be of interest to anyone who strives to improve the reliability of MAS diffusion studies, both in homogeneous and heterogeneous media.

  13. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    NASA Astrophysics Data System (ADS)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  14. Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.

    PubMed

    Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J

    2018-05-23

    29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Non-Destructive and Direction-Insensitive Method Using a Strain Sensor and Two Single Axis Angle Sensors for Evaluating Corn Stalk Lodging Resistance.

    PubMed

    Guo, Qingqian; Chen, Ruipeng; Sun, Xiaoquan; Jiang, Min; Sun, Haifeng; Wang, Shun; Ma, Liuzheng; Yang, Yatao; Hu, Jiandong

    2018-06-06

    Corn stalk lodging is caused by different factors, including severe wind storms, stalk cannibalization, and stalk rots, and it leads to yield loss. Determining how to rapidly evaluate corn lodging resistance will assist scientists in the field of crop breeding to understand the contributing factors in managing the moisture, chemical fertilizer, and weather conditions for corn growing. This study proposes a non-destructive and direction-insensitive method, using a strain sensor and two single axis angle sensors to measure the corn stalk lodging resistance in the field. An equivalent force whose direction is perpendicular to the stalk is utilized to evaluate the corn lodging properties when a pull force is applied on the corn stalk. A novel measurement device is designed to obtain the equivalent force with the coefficient of variation (CV) of 4.85%. Five corn varieties with two different planting densities are arranged to conduct the experiment using the novel measurement device. The experimental results show that the maximum equivalent force could reach up to 44 N. A strong relationship with the square of the correlation coefficient of 0.88 was obtained between the maximum equivalent forces and the corn field’s stalk lodging rates. Moreover, the stalk lodging angles corresponding to the different pull forces over a measurement time of 20 s shift monotonically along the equivalent forces. Thus, the non-destructive and direction-insensitive method is an excellent tool for rapid analysis of stalk lodging resistance in corn, providing critical information on in-situ lodging dynamics.

  16. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  18. The role of magical thinking in hallucinations. Comparisons of clinical and non-clinical groups.

    PubMed

    García-Montes, José M; Pérez-Álvarez, Marino; Odriozola-González, Paula; Vallina-Fernández, Oscar; Perona-Garcelán, Salvador

    2014-11-01

    Magical thinking consists of accepting the possibility that events that, according to the causal concepts of a culture, cannot have any causal relationship, but might somehow nevertheless have one. Magical thinking has been related to both obsessive-compulsive disorder and schizophrenia. The purpose of this study was to investigate the role of magical thinking in hallucinations of patients diagnosed with schizophrenia. Four groups were recruited for this purpose from a clinical population (hallucinating schizophrenic patients, patients diagnosed with psychoses who had never hallucinated, obsessive-compulsive disorder patients and a clinical control group) and a non-clinical control group, who were given the Magical Ideation Scale. The results show that magical ideation differentiates the group of schizophrenic patients with auditory hallucinations from the rest of the groups that participated in the design. Items related to "mind reading", to the presence of auditory illusions in response to sound stimuli, and to the sense of sometimes being accompanied by an evil presence are the most closely related to the presence of auditory hallucinations. Magical thinking, understood as beliefs in non-consensual modes of causation, is closely linked to auditory hallucinations in patients diagnosed with schizophrenia.

  19. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  20. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo

    2018-04-01

    A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the ‘twist’ angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many

  1. A novel dipolar dephasing method for the slow magic angle turning experiment.

    PubMed

    Hu, J Z; Taylor, C M; Pugmire, R J; Grant, D M

    2001-09-01

    Complete suppression of the resonances from protonated carbons in a slow magic angle spinning experiment can be achieved using five dipolar dephasing (Five-DD) periods distributed in one rotor period. This produces a spectrum containing only the spinning sidebands (SSB) from the nonprotonated carbons. It is shown that the SSB patterns corresponding to the nonprotonated carbons are not distorted over a wide range of dipolar dephasing times. Hence, this method can be used to obtain reliable principal values of the chemical shift tensors for each nonprotonated carbon. The Five-DD method can be readily incorporated into isotropic-anisotropic 2D experiments such as FIREMAT and 2D-PASS to facilitate the measurement of the (13)C chemical shift tensors in complex systems. Copyright 2001 Academic Press.

  2. A high-resolution (13)C 3D CSA-CSA-CSA correlation experiment by means of magic angle turning.

    PubMed

    Hu, J Z; Ye, C; Pugmire, R J; Grant, D M

    2000-08-01

    It is shown in this paper that a previously reported 90 degrees sample flipping (13)C 2D CSA-CSA correlation experiment may be carried out alternatively by employing constant slow sample rotation about the magic angle axis and by synchronizing the read pulse to 13 of the rotor cycle. A high-resolution 3D CSA-CSA-CSA correlation experiment based on the magic angle turning technique is reported in which the conventional 90 degrees 2D CSA-CSA powder pattern for each carbon in a system containing a number of inequivalent carbons may be separated according to the isotropic chemical shift value. The technique is demonstrated on 1,2,3-trimethoxybenzene in which all of the overlapping powder patterns that cannot be segregated by the 2D CSA-CSA experiment are resolved successfully by the 3D CSA-CSA-CSA experiment, including even the two methoxy groups (M(1) and M(3)) whose isotropic shifts, confirmed by high-speed MAS, are separated by only 1 ppm. A difference of 4 ppm in the principal value component (delta(33)) between M(1) and M(3) is readily obtained. Copyright 2000 Academic Press.

  3. Singularities in the lineshape of a second-order perturbed quadrupolar nucleus. The magic-angle spinning case.

    PubMed

    Field, Timothy R; Bain, Alex D

    2014-01-01

    For a nucleus with a half-integral spin and a strong quadrupole coupling, the central transition (from magnetic quantum number -1/2 to +1/2) in the spectrum shows a characteristic lineshape. By strong coupling, we mean an interaction strong enough so that second-order perturbation theory is needed, yet still sufficient. The spectrum of a static sample is well-known and the magic-angle-spinning (MAS spectrum) is different, but still can be calculated. The important features of both these spectra are singularities and steps in the lineshape, since these are the main tools in fitting the calculated spectrum to experimental data. A useful tool in this investigation is a plot of the frequency as a function of orientation over the surface of the unit sphere. These plots have maxima, minima and saddle points, and these correspond to the features of the spectrum. We used these plots to define both the positions and derive new formulae for the heights of the features and we now extend this to the magic-angle spinning case. For the first time, we identify the orientations corresponding to the features of the MAS spectra and derive formulae for the heights. We then compare the static and MAS cases and show the relationships between the features in the two spectra. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The use of variable temperature and magic-angle sample spinning in studies of fulvic acids

    USGS Publications Warehouse

    Earl, W.L.; Wershaw, R. L.; Thorn, K.A.

    1987-01-01

    Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.

  5. Floquet-Magnus expansion for general N-coupled spins systems in magic-angle spinning nuclear magnetic resonance spectra

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane; Charpentier, Thibault

    2015-04-01

    In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.

  6. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Do cultural factors affect causal beliefs? Rational and magical thinking in Britain and Mexico.

    PubMed

    Subbotsky, Eugene; Quinteros, Graciela

    2002-11-01

    In two experiments, unusual phenomena (spontaneous destruction of objects in an empty wooden box) were demonstrated to adult participants living in rural communities in Mexico. These were accompanied by actions which had no physical link to the destroyed object but could suggest either scientifically based (the effect of an unknown physical device) or non-scientifically based (the effect of a 'magic spell') causal explanations of the event. The results were compared to the results of the matching two experiments from the earlier study made in Britain. The expectation that scientifically based explanations would prevail in British participants' judgments and behaviours, whereas Mexican participants would be more tolerant toward magical explanations, received only partial support. The prevalence of scientific explanations over magical explanations was evident in British participants' verbal judgments but not in Mexican participants' judgments. In their behavioural responses under the low-risk condition, British participants rejected magical explanations more frequently than did Mexican participants. However, when the risk of disregarding the possible causal effect of magic was increased, participants in both samples showed an equal degree of credulity in the possible effect of magic. The data are interpreted in terms of the relationships between scientific and 'folk' representations of causality and object permanence.

  8. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    PubMed

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  9. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  10. Cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectroscopic study of chlorophyll a in the solid state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C.E.; Spencer, R.B.; Burger, V.T.

    1984-01-01

    Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.

  11. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R. II.

    1989-09-12

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting and accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation ormore » graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning magic angle of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position. 2 figs.« less

  12. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  13. Magic-angle spinning NMR of a class I filamentous bacteriophage virus.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2011-08-11

    The fd bacteriophage is a filamentous virus that is widely used for bio- and nanotechnology applications ranging from phage display to battery materials. The possibility of obtaining a detailed description of its structural properties regardless of its state is therefore essential not only for understanding its physical arrangement and its bacterial infection process but also for many other applications. Here we present a study of the fd phage by magic-angle spinning solid-state NMR. While current structures rely on a Y21M mutant, experiments performed on a strain bearing a wild-type capsid report on high symmetry of the phage and lack of explicit subunit polymorphism. Chemical shift analysis confirmed that the coat protein mostly consists of a rigid right-handed curved α-helix (residues 6-47 of 50), preceded by a flexible loop-structured N-terminus. We were able to qualitatively assign the resonances belonging to the DNA, including the deoxyribose sugars and the thymine bases. These chemical shifts are consistent with base stacking and a C2'-endo/C3'-exo sugar pucker. © 2011 American Chemical Society

  14. Biomolecular solid state NMR with magic-angle spinning at 25K.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2008-12-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.

  15. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  16. A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

    PubMed

    Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2011-03-14

    Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

  17. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    DOEpatents

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  18. Atlantis Non-destructive Testing

    NASA Image and Video Library

    2003-10-29

    In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  19. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancementmore » is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.« less

  20. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Raya, J.; Hirschinger, J.

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and L-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined.

  1. Relationships between magical thinking, obsessive-compulsiveness and other forms of anxiety in a sample of non-clinical children.

    PubMed

    Simonds, Laura M; Demetre, James D; Read, Cristina

    2009-06-01

    Despite the obvious phenomenological similarities between magical thinking and obsessive-compulsiveness, the relationship between them has been the subject of few empirical investigations in samples of children. The present study aimed to examine the relationship between a general epistemic stance towards magical causation and tendencies towards obsessive-compulsiveness in a non-clinical sample of schoolchildren. One-hundred and two children, aged between 5 and 10 years (48 boys and 54 girls), completed questionnaire measures designed to assess magical thinking, obsessive-compulsiveness, and other forms of anxiety. School teachers completed a measure of strengths and difficulties for each child. General belief in magical causation was correlated with all types of anxiety, not just obsessive-compulsiveness, with significant correlations shown for boys in the sample, but not girls. General belief in magical causation contributed little to the prediction of obsessive-compulsiveness beyond general anxiety. In this study, a general epistemic stance towards magical causation did not differentiate obsessive-compulsiveness from other anxiety dimensions. The findings are considered in the context of developmental theories of magical and scientific causal reasoning.

  2. Spinning angle optical calibration apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.K.; Pratt, H.R.

    1991-02-26

    This patent describes an optical calibration apparatus provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning magic angles in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the magic angle of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to amore » graduation or graduations on a reticle in the magnifying scope is noted.« less

  3. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  4. Resolution enhancement in 13C and 15N magic-angle turning experiments with TPPM decoupling.

    PubMed

    McGeorge, G; Alderman, D W; Grant, D M

    1999-03-01

    Many solid-state spectra have been shown to have problems related to the poor proton decoupling of carbon nuclei in methylene groups under conditions of slow magic-angle turning. Two-pulse phase-modulation (TPPM) decoupling during the 2D PHORMAT chemical shift separation experiment is shown to be more effective in comparison to that obtainable at much higher spin rates using conventional CW decoupling. TPPM decoupling can also alleviate similar inadequacies when observing the 15N nucleus, particularly with NH2 groups. This is demonstrated in the 15N resonances of fully labeled l-arginine hydrochloride, where a line narrowing of about a factor of two was observed at moderate rotation rates. This significant advantage was also obtained at turning frequencies as low as 500 Hz. Copyright 1999 Academic Press.

  5. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  6. Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning.

    PubMed

    Raya, J; Hirschinger, J

    2017-08-01

    Multiple-contact cross-polarization (MC-CP) is applied to powder samples of ferrocene and l-alanine under magic-angle spinning (MAS) conditions. The method is described analytically through the density matrix formalism. The combination of a two-step memory function approach and the Anderson-Weiss approximation is found to be particularly useful to derive approximate analytical solutions for single-contact Hartmann-Hahn CP (HHCP) and MC-CP dynamics under MAS. We show that the MC-CP sequence requiring no pulse-shape optimization yields higher polarizations at short contact times than optimized adiabatic passage through the HH condition CP (APHH-CP) when the MAS frequency is comparable to the heteronuclear dipolar coupling, i.e., when APHH-CP through a single sideband matching condition is impossible or difficult to perform. It is also shown that the MC-CP sideband HH conditions are generally much broader than for single-contact HHCP and that efficient polarization transfer at the centerband HH condition can be reintroduced by rotor-asynchronous multiple equilibrations-re-equilibrations with the proton spin bath. Boundary conditions for the successful use of the MC-CP experiment when relying on spin-lattice relaxation for repolarization are also examined. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. [Magical thinking and self development].

    PubMed

    Resch, F

    1994-01-01

    Based on a historical survey of the term "magic thinking" structural aspects of primary process and prelogical thinking will be elucidated. Developmental necessities for the emergence of magic interpretations in children of pre-school age are proposed. The thesis will be formulated, that magic interpretations may help the developing self in the management of life-circumstances during a period of cognitive egocentrism: feelings of non-competence may be compensated, and the locus of control may be held in the face of experiences of inferiority.

  8. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    NASA Astrophysics Data System (ADS)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  9. A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Equbal, Asif; Bjerring, Morten; Nielsen, Niels Chr., E-mail: madhu@tifr.res.in, E-mail: ncn@inano.au.dk

    2015-05-14

    A unified strategy of two-pulse based heteronuclear decoupling for solid-state magic-angle spinning nuclear magnetic resonance is presented. The analysis presented here shows that different decoupling sequences like two-pulse phase-modulation (TPPM), X-inverse-X (XiX), and finite pulse refocused continuous wave (rCW{sup A}) are basically specific solutions of a more generalized decoupling scheme which incorporates the concept of time-modulation along with phase-modulation. A plethora of other good decoupling conditions apart from the standard, TPPM, XiX, and rCW{sup A} decoupling conditions are available from the unified decoupling approach. The importance of combined time- and phase-modulation in order to achieve the best decoupling conditions ismore » delineated. The consequences of different indirect dipolar interactions arising from cross terms comprising of heteronuclear and homonuclear dipolar coupling terms and also those between heteronuclear dipolar coupling and chemical-shift anisotropy terms are presented in order to unfold the effects of anisotropic interactions under different decoupling conditions. Extensive numerical simulation results are corroborated with experiments on standard amino acids.« less

  10. Survey of Non-Destructive Tire Inspection Techniques

    DOT National Transportation Integrated Search

    1971-07-01

    The status of several promising methods for non-destructive tire inspection is surveyed with the conclusion that radiographic, infrared, holographic and ultrasonic techniques warrant further evaluation. A program plan is outlined to correlate non-des...

  11. Characterization of lithium coordination sites with magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  12. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  13. Methods of both destructive and non-destructive metrology of GRIN optical elements

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2015-05-01

    Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.

  14. A comparison between destructive and non-destructive techniques in determining coating thickness

    NASA Astrophysics Data System (ADS)

    Haider, F. I.; Suryanto; Ani, M. H.; Mahmood, M. H.

    2018-01-01

    Measuring coating thickness is an important part in research works related to coating applications. In general, techniques for measuring coating thickness may be divided into destructive and non-destructive methods which are commonly used depending on the applications. The objective of this study is to compare two methods measuring the coating thickness of electroplating copper coating on the austenitic stainless-steel substrate. The electroplating was carried out in a solution containing 200 g/L CuSO4, 100 g/L H2SO4 at room temperature and current of 40mA/cm2 during 20, 40, 60, 80 and 100 mins as coating periods. And the coating thickness was measured by two methods, cross sectional analysis as a destructive technique and weight gain as a non-destructive technique. The results show that at 20 mins coating time interval, the thickness measured by cross sectional method was 16.67 μm and by weight gain method was 17.37 μm, with difference of 0.7 μm and percentage error of 4.11%. This error increased to 5.27% at 100mins time interval, where the values of the thickness measured by cross sectional and weight gain were 86.33 μm and 81.9 μm respectively, and the difference was 4.43 μm. Moreover, though the weight gain method is fast and gives the indication for the termination of a coating process, information regarding the uniformity, porosity and the presence of cracks cannot be obtained. On the other hand, determining the coating thickness using destructive method will damage the sample.

  15. Tissue Characterization with Quantitative High-Resolution Magic Angle Spinning Chemical Exchange Saturation Transfer Z-Spectroscopy.

    PubMed

    Zhou, Iris Yuwen; Fuss, Taylor L; Igarashi, Takahiro; Jiang, Weiping; Zhou, Xin; Cheng, Leo L; Sun, Phillip Zhe

    2016-11-01

    Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.

  16. Creating Magic Squares.

    ERIC Educational Resources Information Center

    Lyon, Betty Clayton

    1990-01-01

    One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)

  17. Hall Plateaus at magic angles in ultraquantum Bismuth

    NASA Astrophysics Data System (ADS)

    Benoît, Fauqué.

    2009-03-01

    The behaviour of a three-dimensional electron gas in the presence of a magnetic field strong enough to put all carriers in the first Landau level (i.e. beyond the quantum limit) is a longstanding question of theoretical condensed matter physics [1]. This issue has been recently explored by two high-field experiments on elemental semi-metal Bismuth. In a first study of transport coefficients (which are dominated by hole-like carriers), the Nernst coefficient presented three unexpected maxima that are concomitant with quasi-plateaux in the Hall coefficient [2]. In a second series of experiments, torque magnetometry (which mainly probes the three Dirac valley electron pockets) detected a field-induced phase transition [3]. The full understanding of the electron and hole behaviours above the quantum limit of pure Bi is therefore still under debate. In this talk, we will present our measurement of the Hall resistivity and torque magnetometry with magnetic field up to 31 T and rotating in the trigonal-bisectrix plane [4]. The Hall response is dominated by the hole pockets according to its sign as well as the period and the angular dependence of its quantum oscillations. In the vicinity of the quantum limit, it presents additional anomalies which are the fingerprints of the electron pockets. We found that for particular orientations of the magnetic field (namely ``magic angles''), the Hall response becomes field-independent within the experimental resolution around 20T. This drastic dependence of the plateaux on the field orientation provides strong constraints for theoretical scenarios. [4pt] [1] Bertrand I. Halperin, Japanese Journal of Applied Physics, 26, Supplement 26-3 (1987).[0pt] [2] Kamran Behnia, Luis Balicas, Yakov Kopelevich, Science, 317, 1729 (2008).[0pt] [3] Lu Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong , Science, 321, 5888 (2008).[0pt] [4] Benoît Fauqu'e, Luis Balicas, Ilya Sheikin, Jean Paul Issi and Kamran Behnia

  18. Analysis of periprosthetic capsular tissue from women with silicone breast implants by magic-angle spinning NMR.

    PubMed

    Garrido, L; Young, V L

    1999-09-01

    The amount of silicone (polydimethylsiloxane [PDMS]) in capsular tissue surgically removed from women with breast implants was measured by using (29)Si and (1)H magic-angle spinning solid-state NMR spectroscopy. Twelve women having smooth surface silicone gel-filled implants, including a subject with "low-bleed" double-lumen implants, had detectable levels of PDMS ranging from 0. 05 to 9.8% silicon in wet tissue (w/w). No silicon-containing compounds other than PDMS were detected. No correlation was found between the amount of PDMS measured in the capsular tissue and the length of implantation time (Pearson correlation coefficient, r = 0. 22). The results showed no relationship between higher amounts of PDMS and capsular contracture (p = 0.74) or other symptoms (p = 0. 53). Magn Reson Med 42:436-441, 1999. Copyright 1999 Wiley-Liss, Inc.

  19. The Phantom Vanish Magic Trick: Investigating the Disappearance of a Non-existent Object in a Dynamic Scene

    PubMed Central

    Tompkins, Matthew L.; Woods, Andy T.; Aimola Davies, Anne M.

    2016-01-01

    Drawing inspiration from sleight-of-hand magic tricks, we developed an experimental paradigm to investigate whether magicians’ misdirection techniques could be used to induce the misperception of “phantom” objects. While previous experiments investigating sleight-of-hand magic tricks have focused on creating false assumptions about the movement of an object in a scene, our experiment investigated creating false assumptions about the presence of an object in a scene. Participants watched a sequence of silent videos depicting a magician performing with a single object. Following each video, participants were asked to write a description of the events in the video. In the final video, participants watched the Phantom Vanish Magic Trick, a novel magic trick developed for this experiment, in which the magician pantomimed the actions of presenting an object and then making it magically disappear. No object was presented during the final video. The silent videos precluded the use of false verbal suggestions, and participants were not asked leading questions about the objects. Nevertheless, 32% of participants reported having visual impressions of non-existent objects. These findings support an inferential model of perception, wherein top-down expectations can be manipulated by the magician to generate vivid illusory experiences, even in the absence of corresponding bottom-up information. PMID:27493635

  20. Magic with Magic Squares.

    ERIC Educational Resources Information Center

    Wills, Herbert III

    1989-01-01

    Describes ways to make magic squares of 4 by 4 matrices. Presents two handouts: (1) Sets of 4 Numbers from 1 to 16 Whose Sum is 34; and (2) The Durer Square. Shows patterns which appeared in the magic squares, such as squares, chevrons, rhomboids, and trapezoids. (YP)

  1. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  2. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  3. Tunable magic wavelengths for trapping with focused Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Dutta, Narendra Nath; Majumder, Sonjoy

    2018-02-01

    We present in this paper a theory of dynamic polarizability for an atomic state due to an external field of nonparaxial Laguerre-Gaussian (LG) beam using the sum-over-states technique. A highly correlated relativistic coupled-cluster theory is used to evaluate the most important and correlation-sensitive parts of the sum. The theory is applied on Sr+ to determine the magic wavelengths for 5 s1 /2→4 d3 /2,4 d5 /2 transitions. Results show the variation of magic wavelengths with the choice of orbital and spin angular momenta of the incident LG beam. Also, the tunability of the magic wavelengths is studied by using the focusing angle of the LG beam and its efficiency in the near-infrared region is observed. Evaluations of the wide spectrum of magic wavelengths from infrared to ultraviolet have substantial importance to experimentalists for carrying out high-precision measurements in fundamental physics. These magic wavelengths can be used to confine the atom or ion at the dark central node or at the high-intensity ring of the LG beam.

  4. [Suicide under the influence of "magic mushrooms"].

    PubMed

    Müller, Katja; Püschel, Klaus; Iwersen-Bergmann, Stefanie

    2013-01-01

    Psilocybin/psilocin from so-called psychoactive mushrooms causes hallucinogenic effects. Especially for people with mental or psychiatric disorders ingestion of magic mushrooms may result in horror trips combined with the intention of self-destruction and suicidal thoughts. Automutilation after consumption of hallucinogenic mushrooms has already been described. Our case report demonstrates the suicide of a man by self-inflicted cut and stab injuries. A causal connection between suicidal behaviour and previous ingestion of psychoactive mushrooms is discussed.

  5. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  6. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

    PubMed Central

    Mandal, Abhishek; Boatz, Jennifer C.; Wheeler, Travis; van der Wel, Patrick C. A.

    2017-01-01

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation. PMID:28229262

  7. Magical ideation modulates spatial behavior.

    PubMed

    Mohr, Christine; Bracha, H Stefan; Brugger, Peter

    2003-01-01

    Previous research has found that animals as well as persons with psychotic disorders preferentially orient away from the cerebral hemisphere with the more active dopamine system. This study investigated the modulation of spatial behavior by a mode of thinking reminiscent of the positive symptoms of psychosis. In a non-treatment-seeking sample of healthy volunteers (20 women and 16 men), the authors assessed the lateral biases in turning and veering behavior and in line bisection as a function of their magical ideation, that is, a mild form of schizotypy. Across tasks, pronounced magical ideation was associated with reduced right-sided orientation preferences. This finding suggests a relative hyperdopaminergia of the right hemisphere as the biological basis of magical ideation.

  8. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day

    NASA Astrophysics Data System (ADS)

    Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.

  9. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  10. High zenith angle observations of PKS 2155-304 with the MAGIC-I telescope

    NASA Astrophysics Data System (ADS)

    Aleksić, J.; Alvarez, E. A.; Antonelli, L. A.; Antoranz, P.; Asensio, M.; Backes, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Eisenacher, D.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Gozzini, S. R.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Kellermann, H.; Klepser, S.; Krähenbühl, T.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López, R.; López-Oramas, A.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moralejo, A.; Munar-Adrover, P.; Niedzwiecki, A.; Nieto, D.; Nilsson, K.; Nowak, N.; Orito, R.; Paiano, S.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puerto Gimenez, I.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamatescu, V.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Uellenbeck, M.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.

    2012-08-01

    Context. The high frequency peaked BL Lac PKS 2155-304 with a redshift of z = 0.116 was discovered in 1997 in the very high energy (VHE, E > 100 GeV) γ-ray range by the University of Durham Mark VI γ-ray Cherenkov telescope in Australia with a flux corresponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the southern Cherenkov observatory H.E.S.S. establishing this source as the best studied southern TeV blazar. Detection from the northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE γ-emission. During the outburst, the VHE γ-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 h at large zenith angles. Aims: We studied the behavior of the source after its extraordinary flare. Furthermore, we developed an analysis method in order to analyze these data taken under large zenith angles. Methods: Here we present an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. Results: The quality of the results presented here is superior to the results presented previously for this data set: detection of the source on a higher significance level and a lower analysis threshold. The averaged energy spectrum we derived has a spectral index of (-3.5 ± 0.2) above 400 GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53 944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source

  11. Measurements of relative chemical shift tensor orientations in solid-state NMR: new slow magic angle spinning dipolar recoupling experiments.

    PubMed

    Jurd, Andrew P S; Titman, Jeremy J

    2009-08-28

    Solid-state NMR experiments can be used to determine conformational parameters, such as interatomic distances and torsion angles. The latter can be obtained from measurements of the relative orientation of two chemical shift tensors, if the orientation of these with respect to the surrounding bonds is known. In this paper, a new rotor-synchronized magic angle spinning (MAS) dipolar correlation experiment is described which can be used in this way. Because the experiment requires slow MAS rates, a novel recoupling sequence, designed using symmetry principles, is incorporated into the mixing period. This recoupling sequence is based in turn on a new composite cyclic pulse referred to as COAST (for combined offset and anisotropy stabilization). The new COAST-C7(2)(1) sequence is shown to give good theoretical and experimental recoupling efficiency, even when the CSA far exceeds the MAS rate. In this regime, previous recoupling sequences, such as POST-C7(2)(1), exhibit poor recoupling performance. The effectiveness of the new method has been explored by a study of the dipeptide L-phenylalanyl-L-phenylalanine.

  12. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    PubMed

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning.

    PubMed

    Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne

    2018-06-18

    Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Non-Destructive Sampling of Ancient Insect DNA

    PubMed Central

    Thomsen, Philip Francis; Elias, Scott; Gilbert, M. Thomas P.; Haile, James; Munch, Kasper; Kuzmina, Svetlana; Froese, Duane G.; Holdaway, Richard N.; Willerslev, Eske

    2009-01-01

    Background A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago - an alternative approach that also does not involve destruction of valuable material. Methodology/Principal Findings The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77–204 base pairs (-bp) in size using species-specific and general insect primers. Conclusion/Significance The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity. PMID:19337382

  15. An NMR thermometer for cryogenic magic-angle spinning NMR: The spin-lattice relaxation of 127I in cesium iodide

    NASA Astrophysics Data System (ADS)

    Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.

    2011-10-01

    The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.

  16. Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.

    PubMed

    Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B

    2018-04-19

    We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  18. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins

    NASA Astrophysics Data System (ADS)

    Schubeis, Tobias; Le Marchand, Tanguy; Andreas, Loren B.; Pintacuda, Guido

    2018-02-01

    Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.

  19. Automated Non-Destructive Testing Array Evaluation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, T; Zavaljevski, N; Bakhtiari, S

    2004-12-24

    Automated Non-Destructive Testing Array Evaluation System (ANTARES) sofeware alogrithms were developed for use on X-probe(tm) data. Data used for algorithm development and preliminary perfomance determination was obtained for USNRC mock-up at Argone and data from EPRI.

  20. Non destructive examination of interface of molecular assembly

    NASA Astrophysics Data System (ADS)

    Perez, Guy; Richard, Isaline; Lecomte, Jean-Claude

    2017-11-01

    Molecular assembly interfaces can be characterised by mechanical testing and/or the interaction between waves and the interface. The disadvantage of the mechanical approach is that new defects may be produced at the interface, or existing defects may be destroyed. Using the interaction between waves and the interface is a non-destructive approach. But what kind of waves should be used? Electromagnetic waves in the visible range depend on wave attenuation in the material, infrared waves also depend on the thickness and X-ray waves have a too short a wave length to detect interface defects. In this article, the use of acoustic waves is proposed for non-destructive examination of molecular assembly interfaces. Acoustic wave propagation is very sensitive to variations in interface characteristics depending on whether the waves are reflected or transmitted. To improve the sensitivity and resolution of this technique, small wave lengths have been used with a scanning acoustic microscope (S.A.M.) with a band width from 1MHz to 400 MHz. After a short description of the principle of the method, results are given for different types of components. Different applications of acoustic microscopy are proposed for non-destructive examination of interfaces and defect detection in materials.

  1. The Magic of Balanced Groups: Educational Applications of Magic Squares

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.; Ore, Melanie L.

    2007-01-01

    This paper provides students with many interesting observations regarding the nature of magic squares, magic rectangles, and quasi-magic squares and provides tools for teachers to group students into ability-balanced cooperative learning groups.

  2. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  3. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  4. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.

    2004-01-01

    Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.

  5. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  6. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  7. Non-destructive Moisture Content Measurement of Bioabsorbable Polymers Used in Medical Implants

    NASA Astrophysics Data System (ADS)

    Carroll, P. A.; Bell, S. A.; Maxwell, A. S.; Tomlins, P. E.

    2012-09-01

    Measurements have been made that link moisture content to the degradation of a bioabsorbable polymeric material, poly ( dl-lactide- co-glycolide) (PLGA). Bioabsorbable polymers used in medical implants degrade and are absorbed into the body. In the course of degradation, these polymers absorb water. Progressive non-destructive laboratory measurements of moisture content can be used as a means of tracking changes in these materials over the course of their degradation. Measurements of moisture content were made using a non-destructive microwave resonance instrument. The measurement approach, more usually applied to granular materials, was adapted to measure small, individual solid samples that do not fill the conventional sample volume of the resonator. Using the microwave resonance technique, gains in moisture content were measurable in increasingly degraded samples. The results were confirmed using alternative (destructive) measurements of sample moisture content. The microwave resonance technique offers a non-destructive measurement that can be used to study the degradation characteristics of PLGA. Better understanding of the degradation process can enable the polymer break-down rate to be tailored to match the healing rate of tissue. Non-destructive measurement allows effective study using single rather than multiple samples. This is a strong advantage when novel materials under study may be either expensive or in strictly limited availability.

  8. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.

    PubMed

    McGinley, John V M; Ristic, Mihailo; Young, Ian R

    2016-10-01

    A novel design of open permanent magnet is presented, in which the magnetic field is oriented parallel to the planes of its poles. The paper describes the methods whereby such a magnet can be designed with a field homogeneity suitable for Magnetic Resonance Imaging (MRI). Its primary purpose is to take advantage of the Magic Angle effect in MRI of human extremities, particularly the knee joint, by being capable of rotating the direction of the main magnetic field B0 about two orthogonal axes around a stationary subject and achieve all possible angulations. The magnet comprises a parallel pair of identical profiled arrays of permanent magnets backed by a flat steel yoke such that access in lateral directions is practical. The paper describes the detailed optimization procedure from a target 150mm DSV to the achievement of a measured uniform field over a 130mm DSV. Actual performance data of the manufactured magnet, including shimming and a sample image, is presented. The overall magnet system mounting mechanism is presented, including two orthogonal axes of rotation of the magnet about its isocentre. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    PubMed

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  10. NonDestructive Evaluation for Industrial & Development Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  11. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle

  12. Edward's sword? - A non-destructive study of a medieval king's sword

    NASA Astrophysics Data System (ADS)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  13. Edward's sword? - A non-destructive study of a medieval king's sword

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  14. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  15. Screening molecular associations with lipid membranes using natural abundance 13C cross-polarization magic-angle spinning NMR and principal component analysis.

    PubMed

    Middleton, David A; Hughes, Eleri; Madine, Jillian

    2004-08-11

    We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.

  16. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  17. A new non-destructive readout by using photo-recovered surface potential contrast

    NASA Astrophysics Data System (ADS)

    Wang, Le; Jin, Kui-Juan; Gu, Jun-Xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-An; Gu, Lin; He, Meng; Lu, Hui-Bin; Yang, Guo-Zhen

    2014-11-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  18. Non-Destructive Characterization of UO2+x Nuclear Fuels

    DOE PAGES

    Pokharel, Reeju; Brown, Donald W.; Clausen, Bjørn; ...

    2017-10-27

    This article describes the effect of fabrication conditions on as-sintered microstructures of various stoichiometric ratios of uranium dioxide, UO 2+x, with the aim of enhancing the understanding of fabrication process and developing and validating a predictive microstructurebased model for fuel performance. We demonstrate the ability of novel, non-destructive methods such as near-field high-energy X-ray diffraction microscopy (nf-HEDM) and micro-computed tomography (μ-CT) to probe bulk samples of high-Z materials by non-destructively characterizing three samples: UO 2.00, UO 2.11, and UO 2.16, which were sintered at 1450°C for 4 hours. The measured 3D microstructures revealed that grain size and porosity were influencedmore » by deviation from stoichiometry.« less

  19. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    ERIC Educational Resources Information Center

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  20. 39 CFR 762.41 - Advice of non-receipt or loss, destruction, or mutilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Advice of non-receipt or loss, destruction, or..., Mutilated, and Defaced Disbursement Postal Money Orders § 762.41 Advice of non-receipt or loss, destruction... purpose for which it was issued, giving, if possible, its date, number, and amount, and requesting that...

  1. 39 CFR 762.41 - Advice of non-receipt or loss, destruction, or mutilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Advice of non-receipt or loss, destruction, or..., Mutilated, and Defaced Disbursement Postal Money Orders § 762.41 Advice of non-receipt or loss, destruction... purpose for which it was issued, giving, if possible, its date, number, and amount, and requesting that...

  2. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  3. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  4. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  5. Recoupling of Heteronuclear Dipolar Interactions with Rotational-Echo Double-Resonance at High Magic-Angle Spinning Frequencies

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.; Tounge, Brett A.; Rienstra, Chad M.; Herzfeld, Judith; Griffin, Robert G.

    2000-09-01

    Heteronuclear dipolar recoupling with rotational-echo double-resonance (REDOR) is investigated in the rapid magic-angle spinning regime, where radiofrequency irradiation occupies a significant fraction of the rotor period (10-60%). We demonstrate, in two model 13C-15N spin systems, [1-13C, 15N] and [2-13C, 15N]glycine, that REDOR ΔS/S0 curves acquired at high MAS rates and relatively low recoupling fields are nearly identical to the ΔS/S0 curve expected for REDOR with ideal δ-function pulses. The only noticeable effect of the finite π pulse length on the recoupling is a minor scaling of the dipolar oscillation frequency. Experimental results are explained using both numerical calculations and average Hamiltonian theory, which is used to derive analytical expressions for evolution under REDOR recoupling sequences with different π pulse phasing schemes. For xy-4 and extensions thereof, finite pulses scale only the dipolar oscillation frequency by a well-defined factor. For other phasing schemes (e.g., xx-4 and xx¯-4) both the frequency and amplitude of the oscillation are expected to change.

  6. Non-destructive single-pass low-noise detection of ions in a beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less

  7. Magic Physics?

    ERIC Educational Resources Information Center

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  8. Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.

    PubMed

    Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva

    2015-09-01

    Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This

  9. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.

    PubMed

    Howard, Mark; Campbell, Earl

    2017-03-03

    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.

  10. Magic 2010 RASR Team

    DTIC Science & Technology

    2010-12-15

    MAGIC 2010 – FINAL REPORT RASR TEAM - CONTRACT NO: FA2386-10-1-4021 December 15, 2010 Final Report for AOARD Grant FA23861014021 – MAGIC ... MAGIC 2010 Competition - Robotic Research Team (RASR) Abstract: The RASR team developed a system for the coordination of groups of unmanned...accomplish those missions. Our team goal was to develop a system that can provide long term value to the war-fighter, utilizing MAGIC 2010 as a stepping

  11. Radiological properties of MAGIC normoxic polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Aljamal, M.; Zakaria, A.; Shamsuddin, S.

    2013-04-01

    For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.

  12. Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Argandona, G.; Biezma, M. V.; Berrueta, J. M.; Berlanga, C.; Ruiz, A.

    2016-12-01

    Duplex stainless steels (DSS), with a microstructure of an approximately equal mixture of ferrite ( α) and austenite ( γ) phases, are susceptible to the formation of undesirable phases if manufacturing processes are not carefully controlled. In particular, sigma phase (σ) is a Cr- and Mo-rich intermetallic phase, formed generally when DSS are by the temperature range from 600 to 900 °C, even for very short time periods. The precipitation of this phase induces detrimental effects in mechanical and corrosion resistance properties in the material, and even a low volume percentage of σ phase can significantly affect these properties. The current paper presents the effect of thermal treatments on UNS S32760 superduplex stainless steel seamless tubes, applied in order to promote the precipitation of different σ phase percentages in a ferrite/austenite microstructure. The detection and quantification of the σ phase using non-destructive ultrasounds testing has been one of the most relevant events of this study that contributes to improving the correlation of the results obtained using destructive and non-destructive techniques for the quantification of undesirable phases in superduplex seamless tubes during the manufacturing process.

  13. Magical attachment: Children in magical relations with hospital clowns

    PubMed Central

    2012-01-01

    The aim of the present study was to achieve a theoretical understanding of several different-age children's experiences of magic relations with hospital clowns in the context of medical care, and to do so using psychological theory and a child perspective. The method used was qualitative and focused on nine children. The results showed that age was important to consider in better understanding how the children experienced the relation with the hospital clowns, how they described the magical aspects of the encounter and how they viewed the importance of clown encounters to their own well-being. The present theoretical interpretation characterized the encounter with hospital clowns as a magical safe area, an intermediate area between fantasy and reality. The discussion presented a line of reasoning concerning a magical attachment between the child and the hospital clowns, stating that this attachment: a) comprised a temporary relation; b) gave anonymity; c) entailed reversed roles; and d) created an emotional experience of boundary-transcending opportunities. PMID:22371813

  14. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review.

    PubMed

    Kim, Kang; Wagner, William R

    2016-03-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.

  15. Non-invasive and non-destructive characterization of tissue engineered constructs using ultrasound imaging technologies: a review

    PubMed Central

    Kim, Kang; Wagner, William R.

    2015-01-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multilevel information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced. PMID:26518412

  16. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  17. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  18. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nano-porous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed non-porous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2 bar, 32.6 bar, 56.4 bar, 65.1 bar, 112.7 bar, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  19. NTRFACE for MAGIC

    DTIC Science & Technology

    1989-07-31

    40. NO NO ACCESSION NO N7 ?I TITLE (inWijuod Security Claisification) NTRFACE FOR MAGIC 𔃼 PERSONAL AUTHOR(S) N.T. GLADD PE OF REPORT T b TIME...the MAGIC Particle-in-Cell Simulation Code. 19 ABSTRACT (Contianue on reverse if nceary and d ntiy by block number) The NTRFACE system was developed...made concret by applying it to a specific application- a mature, highly complex plasma physics particle in cell simulation code name MAGIC . This

  20. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    PubMed

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  1. High-resolution diffusion and relaxation-edited magic angle spinning 1H NMR spectroscopy of intact liver tissue.

    PubMed

    Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L

    2003-11-01

    High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.

  2. Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives

    DTIC Science & Technology

    2013-02-01

    DTRA-TR-12-65 Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives ...Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives HDTRA1-09-1-0021 Valery...destructive detection of volatile explosives . Moshe Shapiro1, Valery Milner1 and Jun Ye2 1University of British Columbia, Vancouver, Canada 2JILA

  3. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    USDA-ARS?s Scientific Manuscript database

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  4. Routes for GMR-Sensor Design in Non-Destructive Testing

    PubMed Central

    Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas

    2012-01-01

    GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  5. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  6. Manufacturing Magic and Computational Creativity

    PubMed Central

    Williams, Howard; McOwan, Peter W.

    2016-01-01

    This paper describes techniques in computational creativity, blending mathematical modeling and psychological insight, to generate new magic tricks. The details of an explicit computational framework capable of creating new magic tricks are summarized, and evaluated against a range of contemporary theories about what constitutes a creative system. To allow further development of the proposed system we situate this approach to the generation of magic in the wider context of other areas of application in computational creativity in performance arts. We show how approaches in these domains could be incorporated to enhance future magic generation systems, and critically review possible future applications of such magic generating computers. PMID:27375533

  7. Magical thinking and memory: distinctiveness effect for tv commercials with magical content.

    PubMed

    Subbotsky, Eugene; Mathews, Jayne

    2011-10-01

    The aim of this study was to examine whether memorizing advertised products of television advertisements with magical effects (i.e., talking animals, inanimate objects which turn into humans, objects that appear from thin air or instantly turn into other objects) is easier than memorizing products of advertisements without such effects, by testing immediate and delayed retention. Adolescents and adults viewed two films containing television advertisements and were asked to recall and recognize the films' characters, events, and advertised products. Film 1 included magical effects, but Film 2 did not. On a free-recall test, no differences in the number of items recalled were noted for the two films. On the immediate recognition test, adolescents, but not adults, showed significantly better recognition for the magical than the nonmagical film. When this test was repeated two weeks later, results were reversed: adults, but not adolescents, recognized a significantly larger number of items from the magical film than the nonmagical one. These results are interpreted to accentuate the role of magical thinking in cognitive processes.

  8. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  9. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE PAGES

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...

    2017-11-03

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  10. Magic star puzzle for educational mathematics

    NASA Astrophysics Data System (ADS)

    Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza

    2013-04-01

    One of the interesting fields in recreational mathematics is the magic number arrangement. There are different kinds of arrays in the arrangement for a group of numbers. In particular, one of the arrays in magic number arrangement is called magic star. In fact, magic star involves combinatorics that contributes to geometrical analysis and number theory. Hence, magic star is suitable to be introduced as educational mathematics to cultivate interest in different area of mathematics. To obtain the solutions of normal magic stars of order six, the possible sets of numbers for every line in a magic star have been considered. Previously, the calculation for obtaining the solutions has been done manually which is time-consuming. Therefore, a programming code to generate all the fundamental solutions for normal magic star of order six without including the properties of rotation and reflection has been done. In this puzzle, a magic star puzzle is created by using Matlab software, which enables a user to verify the entries for the cells of magic star of order six. Moreover, it is also user-friendly as it provides interactive commands on the inputs given by the user, which enables the user to detect the incorrect inputs. In addition, user can also choose to view all the fundamental solutions as generated by the programming code.

  11. Double cross polarization for the indirect detection of nitrogen-14 nuclei in magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Carnevale, Diego; Ji, Xiao; Bodenhausen, Geoffrey

    2017-11-01

    Nitrogen-14 NMR spectra at fast magic-angle spinning rates can be acquired indirectly by means of two-dimensional techniques based on double cross polarization transfer 1H → 14N →1H. Experimental evidence is given for polycrystalline samples of glycine, l-histidine, and the dipeptide Ala-Gly. Either one-bond or long-range correlations can be favored by choosing the length of the cross polarization contact pulses. Longer contact pulses allow the detection of unprotonated nitrogen sites. In contrast to earlier methods that exploited second-order quadrupolar/dipolar cross-terms, cross polarization operates in the manner of the method of Hartmann and Hahn, even for 14N quadrupolar couplings up to 4 MHz. Simulations explain why amorphous samples tend to give rise to featureless spectra because the 14N quadrupolar interactions may vary dramatically with the lattice environment. The experiments are straightforward to set up and are shown to be effective for different nitrogen environments and robust with respect to the rf-field strengths and to the 14N carrier frequency during cross polarization. The efficiency of indirect detection of 14N nuclei by double cross polarization is shown to be similar to that of isotopically enriched 13C nuclei.

  12. Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.

    PubMed

    Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N

    2001-12-01

    Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.

  13. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain sizemore » variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.« less

  14. Computed tomography for non-destructive evaluation of composites: Applications and correlations

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Hediger, L.; Noel, E.

    1985-01-01

    The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

  15. Strong-coupling induced damping of spin-echo modulations in magic-angle-spinning NMR: Implications for J coupling measurements in disordered solids

    NASA Astrophysics Data System (ADS)

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2017-10-01

    In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.

  16. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  17. Non-destructive characterization of SiC coated carbon-carbon composites by multiple techniques

    NASA Astrophysics Data System (ADS)

    Nixon, Thomas D.; Hemstad, Stan N.; Pfeifer, William H.

    SiC coated carbon-carbon composites were evaluated using several non-destructive techniques as a means of quantifying the quality of both the coating and substrate. The techniques employed included dye penetrant infiltration, eddy current measurement, C-scan, and computed tomography (CT). The NDE results were then correlated to oxidation performance and destructive evaluations by electron and optical microscopy.

  18. Non-destructive controlled single-particle light scattering measurement

    NASA Astrophysics Data System (ADS)

    Maconi, G.; Penttilä, A.; Kassamakov, I.; Gritsevich, M.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2018-01-01

    We present a set of light scattering data measured from a millimeter-sized extraterrestrial rock sample. The data were acquired by our novel scatterometer, which enables accurate multi-wavelength measurements of single-particle samples whose position and orientation are controlled by ultrasonic levitation. The measurements demonstrate a non-destructive approach to derive optical properties of small mineral samples. This enables research on valuable materials, such as those returned from space missions or rare meteorites.

  19. Chinese "Magic" Mirrors.

    ERIC Educational Resources Information Center

    Swinson, Derek B.

    1992-01-01

    Chinese "magic" mirrors are made from bronze with the front side a mirror and the reverse side a molded image. When light is reflected from the mirror,the image on the reverse side appears. Discusses reflections of conventional mirrors, possible explanations for the magic mirror phenomenon, and applications of the phenomenon to…

  20. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  1. The molecular origin of a loading-induced black layer in the deep region of articular cartilage at the magic angle

    PubMed Central

    Wang, Nian; Kahn, David; Badar, Farid; Xia, Yang

    2014-01-01

    Purpose To investigate the molecular origin of an unusual low-intensity layer in the deep region of articular cartilage as seen in MRI when the tissue is imaged under compression and oriented at the magic angle. Materials and Methods Microscopic MRI (μMRI) T2 and T1ρ experiments were carried out for both native and degraded (treated with trypsin) 18 specimens. The glycosaminoglycan (GAG) concentrations in the specimens were quantified by both sodium ICP-OES and μMRI Gd(DTPA)2--contrast methods. The mechanical modulus of the specimens was also measured. Results Native tissue shows no load-induced layer, while the trypsin-degraded tissue shows clearly the low-intensity line at the deep part of tissue. The GAG reductions are confirmed by the sodium ICP-OES (from 81.7 ± 5.4 mg/ml to 9.2 ± 3.4 mg/ml), MRI GAG quantification (from 72.4 ± 6.7 mg/ml to 11.2 ± 2.9 mg/ml). The modulus reduction is confirmed by biomechanics (from 4.3 ± 0.7 MPa to 0.3 ± 0.1 MPa). Conclusion Both T2 and T1ρ profiles in native and degraded cartilage show strongly strain-, depth-, and angle-dependent using high resolution MRI. The GAG reduction is responsible for the visualization of a low-intensity layer in deep cartilage when it is loaded and orientated at 55°. PMID:24833266

  2. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  3. Old and New Magic Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talmi, Igal

    2008-11-11

    The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situationmore » will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.« less

  4. MAGIC gamma-ray telescopes hunting for neutrinos and their sources

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.; Satalecka, K.; Noda, K.; Manganaro, M.; López, M.; MAGIC Collaboration

    2017-09-01

    The discovery of an astrophysical flux of high-energy neutrinos by the IceCube Collaboration marks a major breakthrough in the ongoing search for the origin of cosmic rays. Presumably, the neutrinos, together with gamma rays, result from pion decay, following hadronic interactions of protons accelerated in astrophysical objects to ultra-relativistic energies. So far, the neutrino sky map shows no significant indication of astrophysical sources. Here, we report first results from follow-up observations, of sky regions where IceCube has detected muon tracks from energetic neutrinos, using the MAGIC telescopes which are sensitive to gamma rays at TeV energies. Furthermore, we show that MAGIC has the potential to distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range, employing a novel analysis method to the data obtained with high-zenith angle observations.

  5. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies.

    PubMed

    Somashekar, B S; Amin, Anita G; Rithner, Christopher D; Troudt, JoLynn; Basaraba, Randall; Izzo, Angelo; Crick, Dean C; Chatterjee, Delphi

    2011-09-02

    A crucial and distinctive feature of tuberculosis infection is that Mycobacterium tuberculosis (Mtb) resides in granulomatous lesion at various stages of disease development and necrosis, an aspect that is little understood. We used a novel approach, applying high resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS NMR) directly to infected tissues, allowing us to study the development of tuberculosis granulomas in guinea pigs in an untargeted manner. Significant up-regulation of lactate, alanine, acetate, glutamate, oxidized and the reduced form of glutathione, aspartate, creatine, phosphocholine, glycerophosphocholine, betaine, trimethylamine N-oxide, myo-inositol, scyllo-inositol, and dihydroxyacetone was clearly visualized and was identified as the infection progressed. Concomitantly, phosphatidylcholine was down-regulated. Principal component analysis of NMR data revealed clear group separation between infected and uninfected tissues. These metabolites are suggestive of utilization of alternate energy sources by the infiltrating cells that generate much of the metabolites in the increasingly necrotic and hypoxic developing granuloma through the glycolytic, pentose phosphate, and tricarboxylic acid pathways. The most relevant changes seen are, surprisingly, very similar to metabolic changes seen in cancer during tumor development.

  6. Magical thinking in obsessive-compulsive disorder and generalized anxiety disorder.

    PubMed

    West, Bonnie; Willner, Paul

    2011-07-01

    Magical thinking (MT), which has historically been associated with psychotic disorders, has more recently been found to be a central cognitive construct in Obsessive-Compulsive Disorder (OCD) that is associated with a poor prognosis (Einstein and Menzies, 2008). Although MT has been found to distinguish OCD from Panic Disorder (PD) (Einstein and Menzies, 2006), little is known about its role in other anxiety disorders. This study aimed to compare whether elevated levels of magical thinking could distinguish individuals with OCD from non-anxious controls and individuals with Generalized Anxiety Disorder (GAD). The Magical Ideation Scale (MIS, Eckblad and Chapman, 1983) was used to compare levels of magical thinking in groups of individuals with OCD (n = 40), GAD (n = 15), and a normal control group (n = 19). As expected, the mean MIS score of the OCD group was significantly higher than that of the non-clinical group. Interestingly, there was no significant difference between the mean MIS scores of the OCD and GAD group. However, the results of correlational analyses suggest that it may have differing roles in these disorders. Although elevated MT is evident in individuals with OCD, it may not be specific to OCD and may also be prominent in GAD. Further research is recommended to elucidate the exact role of this construct in these disorders.

  7. The Versatile Magic Square.

    ERIC Educational Resources Information Center

    Watson, Gale A.

    2003-01-01

    Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)

  8. Non-destructive method for determining neutron exposure

    DOEpatents

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  9. Lenz's Law Magic Trick

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2006-02-01

    The demonstration of Lenz's law by dropping a powerful magnet down a nonmagnetic metal pipe has become a classic lecture-hall demonstration.1,2 An inexpensive version is packaged as a professional magic trick3 called "Newton's Nightmare." Combining sleight-of-hand with a demonstration of Lenz's law is a surefire way to heighten student interest. The subsequent student discussion motivated by a desire to understand the magic trick can lead to a memorable physics lesson. This paper will discuss Lenz's law magic and review literature that reveals the subtlety of the physics.

  10. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  11. Science meets magic: photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Ozbay, Ekmel

    2012-05-01

    The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.

  12. Science meets magic: photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Ozbay, Ekmel

    2012-03-01

    The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.

  13. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  14. The relationship between magical thinking, inferential confusion and obsessive-compulsive symptoms.

    PubMed

    Goods, N A R; Rees, C S; Egan, S J; Kane, R T

    2014-01-01

    Inferential confusion is an under-researched faulty reasoning process in obsessive-compulsive disorder (OCD). Based on an overreliance on imagined possibilities, it shares similarities with the extensively researched construct of thought-action fusion (TAF). While TAF has been proposed as a specific subset of the broader construct of magical thinking, the relationship between inferential confusion and magical thinking is unexplored. The present study investigated this relationship, and hypothesised that magical thinking would partially mediate the relationship between inferential confusion and obsessive-compulsive symptoms. A non-clinical sample of 201 participants (M = 34.94, SD = 15.88) were recruited via convenience sampling. Regression analyses found the hypothesised mediating relationship was supported, as magical thinking did partially mediate the relationship between inferential confusion and OC symptoms. Interestingly, inferential confusion had the stronger relationship with OC symptoms in comparison to the other predictor variables. Results suggest that inferential confusion can both directly and indirectly (via magical thinking) impact on OC symptoms. Future studies with clinical samples should further investigate these constructs to determine whether similar patterns emerge, as this may eventually inform which cognitive errors to target in treatment of OCD.

  15. Non-destructive detection and quantification of blueberry bruising using near-infrared (NIR) hyperspectral reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Currently, blueberry bruising is evaluated by either human visual/tactile inspection or firmness measurement instruments. These methods are destructive and time-consuming. The goal of this paper was to develop a non-destructive approach for blueberry bruising detection and quantification. The spe...

  16. The non-destructive identification of early Chinese porcelain by PIXE

    NASA Astrophysics Data System (ADS)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes.

  17. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    PubMed

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane

  18. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  19. Overview of MAGIC results

    NASA Astrophysics Data System (ADS)

    Rico, Javier; MAGIC Collaboration

    2016-04-01

    MAGIC is a system of two 17-m diameter Cherenkov telescopes, located at the Observatorio del Roque de los Muchachos, in the Canary island La Palma (Spain). MAGIC performs astronomical observations of gamma-ray sources in the energy range between 50 GeV and 10 TeV. The first MAGIC telescope has been operating since 2004, and in 2009 the system was completed with the second one. During 2011 and 2012 the electronics for the readout system were fully upgraded, and the camera of the first telescope replaced. After that, no major hardware interventions are foreseen in the next years, and the experiment has undertaken a final period of steady astronomical observations. MAGIC studies particle acceleration in the most violent cosmic environments, such as active galactic nuclei, gamma-ray bursts, pulsars, supernova remnants or binary systems. In addition, it addresses some fundamental questions of Physics, such as the origin of Galactic cosmic rays and the nature of dark matter. Moreover, by observing the gamma-ray emission from sources at cosmological distances, we measure the intensity and evolution of the extragalactic background radiation, and perform tests of Lorentz Invariance. In this paper I present the status and some of the latest results of the MAGIC gamma-ray telescopes.

  20. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility studymore » described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.« less

  1. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    DOT National Transportation Integrated Search

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  2. Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance.

    PubMed Central

    Zhou, Z; Sayer, B G; Hughes, D W; Stark, R E; Epand, R M

    1999-01-01

    A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biological membranes. The average numbers of interlamellar water molecules in multilamellar vesicles (MLVs) of DOPC and POPC were found to be 37.5 +/- 1 and 37.2 +/- 1, respectively, at a spinning speed of 3 kHz. Even at speeds as high as 9 kHz, the number of interlamellar waters remained as high as 31, arguing against dehydration effects for DOPC and POPC. Both homonuclear and heteronuclear nuclear Overhauser enhancement spectroscopy (NOESY and HOESY) were used to establish the location of water near the headgroup of a PC bilayer. 1H NMR comparisons of DOPC with a lipid that can hydrogen bond (monomethyldioleoylphosphatidylethanolamine, MeDOPE) showed the following trends: 1) the interlamellar water resonance was shifted to lower frequency for DOPC but to higher frequency for MeDOPE, 2) the chemical shift variation with temperature for interlamellar water was less than that of bulk water for MeDOPE MLVs, 3) water exchange between the two lipids was rapid on the NMR time scale if they were mixed in the same bilayer, 4) water exchange was slow if they were present in separate MLVs, and 5) exchange between bulk and interlamellar water was found by two-dimensional exchange experiments to be slow, and the exchange rate should be less than 157 Hz. These results illustrate the utility of ultra-high-resolution 1H MAS NMR for determining the nature and extent of lipid hydration as well as the arrangement of nuclei at the membrane/water interface. PMID:9876150

  3. When "Holiday Magic" Hurts.

    ERIC Educational Resources Information Center

    Goldstein, Karen

    2001-01-01

    Claims that religious messages in public school are not acceptable and are hurtful to kids who do not subscribe to the beliefs expressed in those messages. Describes the author's personal experience in helping a teacher transform the script for "Christmas Magic" into the more inclusive "Holiday Magic." (RS)

  4. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  5. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  6. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor.

    PubMed

    Betemps, Débora L; Fachinello, José Carlos; Galarça, Simone P; Portela, Nicácia M; Remorini, Damiano; Massai, Rossano; Agati, Giovanni

    2012-07-01

    The detection of pigments and colourless flavonoids in apples can provide a useful indication of fruit quality. Optical methods are preferable because they are fast and non-destructive. In this study, a fluorescence-based portable sensor was used in order to non-invasively determine the content of chlorophylls, anthocyanins and flavonols in Fuji, Granny Smith and Golden Delicious apple cultivars. The aim was to define new non-destructive optical indices of apple quality. The anthocyanin index (ANTH) in Fuji was higher in the sunny (i.e. sun-exposed) side of the fruit compared to the shady side. For all cultivars, the flavonol index (FLAV) was higher in the sunny side compared with the shady side. The chlorophyll index (CHL) for the shady sides of Granny Smith and Golden Delicious was significantly higher than for the sunny sides. Fine linear regressions were found between the ANTH, FLAV and CHL indices and the actual anthocyanin, flavonol and chlorophyll concentrations, respectively, which were determined destructively on the apple peel extracts. A negative correlation was found between the apple sugar content and the chlorophyll fluorescence in the far-red spectral band. Our results indicate that a single multiparametric fluorescence-based sensor can provide valuable non-destructive markers of ripening and quality in apples. Copyright © 2012 Society of Chemical Industry.

  7. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  8. Using Magic Board as a Teaching Aid in Third Grader Learning of Area Concepts

    ERIC Educational Resources Information Center

    Chang, Wen-Long; Yuan, Yuan; Lee, Chun-Yi; Chen, Min-Hui; Huang, Wen-Guu

    2013-01-01

    The purpose of this study was to explore the impact of incorporating Magic Board in the instruction of concepts related to area. We adopted a non-equivalent quasi-experimental design and recruited participants from two classes of third-grade students in an elementary school in Taoyuan County, Taiwan. Magic Board was used as a teaching aid in the…

  9. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  10. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larimer, Curtis; Suter, Jonathan D.; Bonheyo, George

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolutionmore » as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.« less

  11. Magical arts: the poetics of play.

    PubMed

    Jacobus, Mary

    2005-01-01

    The paper argues that links between play and magic in British Object Relations point to the persistence of aesthetic concerns within psychoanalysis. Magical thinking is present in British Object Relations psychoanalysis from its beginnings in Klein's play technique and early aesthetic writings, surfacing elsewhere in Susan Isaac's educational experiments and her theories of metaphor. Marion Milner's clinical account of the overlapping areas of illusion and symbol-formation in a boy's war-games link the primitive rituals of Frazer's "The Golden Bough" with her patient's creativity. In Winnicott's concept of the transitional object, the theory of play achieves its apotheosis as a diffusive theory of culture or "private madness," and as a paradigm for psychoanalysis itself. Tracing the non-positivistic, mystical, and poetical elements in British Object Relations underlines the extent to which aesthetics is not just entangled with psychoanalysis, but constitutive of it in its mid-twentieth century manifestations.

  12. Cryogenic gamma detectors enable direct detection of 236U and minor actinides for non-destructive assay [Cryogenic gamma detectors enable direct detection of minor actinides for non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velazquez, Miguel; Dreyer, Jonathan; Drury, Owen B.

    2015-09-05

    Here, we demonstrate the utility of a superconducting transition edge sensor (TES) γ-ray detector with high energy resolution and low Compton background for non-destructive assay (NDA) of a uranium sample from reprocessed nuclear fuel. We show that TES γ-detectors can separate low energy actinide γ-emissions from the background and nearby lines, even from minor isotopes whose signals are often obscured in NDA with conventional Ge detectors. Superconducting γ detectors may therefore bridge the gap between high-accuracy destructive assay (DA) and easier to-use NDA.

  13. Immunoconjugates: Magic Bullets for Cancer Therapy?

    NASA Technical Reports Server (NTRS)

    Passeri, Daniel R.; Spiegel, Jack

    1993-01-01

    Conjugating cytotoxic agents to antibodies allows for site-specific delivery of the agent to tumor cells and should provide increased efficacy and reduced non-specific toxicity. These site-specific cytotoxic agents are known as immunoconjugates or 'magic bullets' and have demonstrated great promise as therapeutic agents for cancer and other diseases. The historical developments and future potential of this new approach to cancer therapy are reviewed.

  14. Q(n) species distribution in K2O.2SiO2 glass by 29Si magic angle flipping NMR.

    PubMed

    Davis, Michael C; Kaseman, Derrick C; Parvani, Sahar M; Sanders, Kevin J; Grandinetti, Philip J; Massiot, Dominique; Florian, Pierre

    2010-05-06

    Two-dimensional magic angle flipping (MAF) was employed to measure the Q((n)) distribution in a (29)Si-enriched potassium disilicate glass (K(2)O.2SiO(2)). Relative concentrations of [Q((4))] = 7.2 +/- 0.3%, [Q((3))] = 82.9 +/- 0.1%, and [Q((2))] = 9.8 +/- 0.6% were obtained. Using the thermodynamic model for Q((n)) species disproportionation, these relative concentrations yield an equilibrium constant k(3) = 0.0103 +/- 0.0008, indicating, as expected, that the Q((n)) species distribution is close to binary in the potassium disilicate glass. A Gaussian distribution of isotropic chemical shifts was observed for each Q((n)) species with mean values of -82.74 +/- 0.03, -91.32 +/- 0.01, and -101.67 +/- 0.02 ppm and standard deviations of 3.27 +/- 0.03, 4.19 +/- 0.01, and 5.09 +/- 0.03 ppm for Q((2)), Q((3)), and Q((4)), respectively. Additionally, nuclear shielding anisotropy values of zeta =-85.0 +/- 1.3 ppm, eta = 0.48 +/- 0.02 for Q((2)) and zeta = -74.9 +/- 0.2 ppm, eta = 0.03 +/- 0.01 for Q((3)) were observed in the potassium disilicate glass.

  15. A Note on Magic Squares

    ERIC Educational Resources Information Center

    Williams, Horace E.

    1974-01-01

    A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)

  16. Performance of the MAGIC telescopes under moonlight

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  17. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  18. Need for cognition moderates paranormal beliefs and magical ideation in inconsistent-handers.

    PubMed

    Prichard, Eric C; Christman, Stephen D

    2016-01-01

    A growing literature suggests that degree of handedness predicts gullibility and magical ideation. Inconsistent-handers (people who use their non-dominant hand for at least one common manual activity) report more magical ideation and are more gullible. The current study tested whether this effect is moderated by need for cognition. One hundred eighteen university students completed questionnaires assessing handedness, self-reported paranormal beliefs, and self-reported need for cognition. Handedness (Inconsistent vs. Consistent Right) and Need for Cognition (High vs. Low) were treated as categorical predictors. Both paranormal beliefs and magical ideation served as dependent variable's in separate analyses. Neither set of tests yielded main effects for handedness or need for cognition. However, there were a significant handedness by need for cognition interactions. Post-hoc comparisons revealed that low, but not high, need for cognition inconsistent-handers reported relatively elevated levels of paranormal belief and magical ideation. A secondary set of tests treating the predictor variables as continuous instead of categorical obtained the same overall pattern.

  19. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.

    2015-07-01

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional `Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  20. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    PubMed

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  1. Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias

    2013-11-01

    By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.

  2. MagIC: Fluid dynamics in a spherical shell simulator

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.

    2017-09-01

    MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

  3. Non-Destructive Analysis of Natural Uranium Pellet

    NASA Astrophysics Data System (ADS)

    Wigley, Samantha; Glennon, Kevin; Kitcher, Evans; Folden, Cody

    2017-09-01

    As part of ongoing nuclear forensics research, samples of natUO2 have been irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) with the goal of simulating a pressurized heavy water reactor. Non-destructive gamma ray analysis has been performed on the samples to assay various nuclides in order to determine the burnup and time since irradiation. The quantity of 137Cs was used to determine the burnup directly, and a maximum likelihood method has been used to estimate both the burnup and the time since irradiation. This poster will discuss the most recent results of these analyses. National Science Foundation (PHY-1659847), Department of Energy (DE-FG02-93ER40773).

  4. Non-contact measurement of rotation angle with solo camera

    NASA Astrophysics Data System (ADS)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  5. A COAXIAL MAGIC-T

    DTIC Science & Technology

    Three different designs of coaxial hybrid junctions having perf ormance analogous to a wave-guide magic -T are discussed. The experimental results...loads, decoupling greater than 70 db can be obtained. An application of the magic -T in phase measurement is described which is independent of the signal amplitude and is similar to the homodyne system of phase measurement.

  6. Chemical and carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance characterization of logyard fines from British Columbia.

    PubMed

    Preston, C M; Forrester, P D

    2004-01-01

    Phasing out beehive burners and rising costs for landfilling have increased the need to widen options for utilization of the smaller size fractions of woody wastes generated during log handling and sawmilling in British Columbia. We characterized several size classes of logyard fines up to 16 mm sampled from coastal and interior operations. Total C, total N, ash, and condensed tannin concentrations were consistent with properties derived largely from wood, with varying proportions of bark and mixing with mineral soil. Especially for < 3-mm fractions, the latter resulted in high ash contents that would make them unsuitable for fuel. Solid-state 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectra were consistent with the chemical data, with high O-alkyl intensity and similarity to naturally occurring woody forest floor; no samples were high in aromatic or phenolic C. Aqueous extracts of two < 16-mm fines, which accounted for only a small proportion of the total C, were enriched in alkyl C and had low or undetectable tannins. Application to forest sites might cause short-term immobilization of N, but also might include possible longer-term benefits from reduction of N loss after harvesting and restoration of soil organic matter in degraded sites.

  7. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  8. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  9. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Avadhut, Yamini S.; Weber, Johannes; Schmedt auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method.

  10. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  11. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfeng; Li, Jianping; Chen, Yanke; Xie, Huayong; Yang, Jun

    2017-12-01

    In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N → 13C‧ and 15N → 13Cα), Bro-DBP has almost the same 15N → 13Cα efficiency while offers 30-40% enhancement on 15N → 13C‧ transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C‧)-selected method, whose 15N → 13C‧ efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.

  12. Origins of magic: review of genetic and epigenetic effects.

    PubMed

    Ramagopalan, Sreeram V; Knight, Marian; Ebers, George C; Knight, Julian C

    2007-12-22

    To assess the evidence for a genetic basis to magic. Literature review. Harry Potter novels of J K Rowling. Muggles, witches, wizards, and squibs. Limited. Family and twin studies, magical ability, and specific magical skills. Magic shows strong evidence of heritability, with familial aggregation and concordance in twins. Evidence suggests magical ability to be a quantitative trait. Specific magical skills, notably being able to speak to snakes, predict the future, and change hair colour, all seem heritable. A multilocus model with a dominant gene for magic might exist, controlled epistatically by one or more loci, possibly recessive in nature. Magical enhancers regulating gene expressionmay be involved, combined with mutations at specific genes implicated in speech and hair colour such as FOXP2 and MCR1.

  13. Children's and adults' reactions to magical and ordinary suggestion: are suggestibility and magical thinking psychologically close relatives?

    PubMed

    Subbotsky, Eugene

    2007-11-01

    In Experiment 1, 6- and 9-year-old children and adults were asked to imagine various types of objects. The experimenter then attempted to change the image of those objects in participants' minds by either suggesting that the objects may change against the participants' will, or by asking participants to change the objects as a favor to the experimenter. Two types of suggestive causation were employed: Magical-suggestion (a magic spell was cast with the aim of changing the imagined objects) and ordinary-suggestion (participants were told that the objects in their minds could alter against their will). Ordinary-suggestion was as effective as magical-suggestion in changing the participants' imagined objects. For adults, a direct request for compliance produced a stronger effect than did magical suggestion. This effect was not found in children. In Experiment 2, the two types of suggestion were tested on an alternative type of imagined objects. Adult participants were asked to imagine their futures. It was then proposed that (a) a magic spell could be cast on their futures with the aim of changing them either for the worse or for the better (magical-suggestion), or (b) changing a numerical pattern on a computer screen could change their futures (ordinary-suggestion). All participants denied that changing a numerical pattern on a computer screen could affect their lives, yet in their actions they demonstrated an element of belief in this possibility. As in Experiment 1, in Experiment 2 ordinary suggestion was as effective as magical suggestion. The hypothesis of an historic contiguity between magical causality and ordinary suggestion is discussed.

  14. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  15. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    NASA Astrophysics Data System (ADS)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  16. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  17. Unconventional superconductivity in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  18. Metabolomics by Proton High-Resolution Magic-Angle-Spinning Nuclear Magnetic Resonance of Tomato Plants Treated with Two Secondary Metabolites Isolated from Trichoderma.

    PubMed

    Mazzei, Pierluigi; Vinale, Francesco; Woo, Sheridan Lois; Pascale, Alberto; Lorito, Matteo; Piccolo, Alessandro

    2016-05-11

    Trichoderma fungi release 6-pentyl-2H-pyran-2-one (1) and harzianic acid (2) secondary metabolites to improve plant growth and health protection. We isolated metabolites 1 and 2 from Trichoderma strains, whose different concentrations were used to treat seeds of Solanum lycopersicum. The metabolic profile in the resulting 15 day old tomato leaves was studied by high-resolution magic-angle-spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy directly on the whole samples without any preliminary extraction. Principal component analysis (PCA) of HRMAS NMR showed significantly enhanced acetylcholine and γ-aminobutyric acid (GABA) content accompanied by variable amount of amino acids in samples treated with both Trichoderma secondary metabolites. Seed germination rates, seedling fresh weight, and the metabolome of tomato leaves were also dependent upon doses of metabolites 1 and 2 treatments. HRMAS NMR spectroscopy was proven to represent a rapid and reliable technique for evaluating specific changes in the metabolome of plant leaves and calibrating the best concentration of bioactive compounds required to stimulate plant growth.

  19. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  20. Magic state distillation protocols with noisy Clifford gates

    NASA Astrophysics Data System (ADS)

    Brooks, Peter

    2013-03-01

    A promising approach to universal fault-tolerant quantum computation is to implement the non-universal group of Clifford gates, and to achieve universality by adding the ability to prepare high-fidelity copies of certain ``magic states''. By applying state distillation protocols, many noisy copies of a magic state ancilla can be purified into a smaller number of clean copies which are arbitrarily close to the perfect state, using only Clifford operations. In practice, the Clifford gates themselves will be noisy, which can limit the efficiency of state distillation and put a floor on the achievable fidelity with the desired state. Recently, a number of new state distillation protocols have been proposed that have the potential to reduce the required resource overhead. I analyze these protocols and explore the tradeoffs between these different approaches to magic state distillation when noisy Clifford gates are taken into account. Supported in part by IARPA under contract D11PC20165, by NSF under Grant No. PHY-0803371, by DOE under Grant No. DE-FG03-92-ER40701, and by NSA/ARO under Grant No. W911NF-09-1-0442.

  1. Non-destructive and non-invasive observation of friction and wear of human joints and of fracture initiation by acoustic emission.

    PubMed

    Schwalbe, H J; Bamfaste, G; Franke, R P

    1999-01-01

    Quality control in orthopaedic diagnostics according to DIN EN ISO 9000ff requires methods of non-destructive process control, which do not harm the patient by radiation or by invasive examinations. To obtain an improvement in health economy, quality-controlled and non-destructive measurements have to be introduced into the diagnostics and therapy of human joints and bones. A non-invasive evaluation of the state of wear of human joints and of the cracking tendency of bones is, as of today's point of knowledge, not established. The analysis of acoustic emission signals allows the prediction of bone rupture far below the fracture load. The evaluation of dry and wet bone samples revealed that it is possible to conclude from crack initiation to the bone strength and thus to predict the probability of bone rupture.

  2. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors

    PubMed Central

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.

    2015-01-01

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional ‘Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities. PMID:26139568

  3. Characterization of completely k-magic regular graphs

    NASA Astrophysics Data System (ADS)

    Eniego, A. A.; Garces, I. J. L.

    2017-10-01

    Let k ∈ ℕ and c ∈ ℤ k . A graph G is said to be c-sum k-magic if there is a labeling ℓ : E(G) → ℤ k {0} such that Σ u∈N(v) ℓ(uv) ≡ c (mod k) for every vertex v of G, where N(v) is the neighborhood of v in G. We say that G is completely k-magic whenever it is c-sum k-magic for every c ∈ ℤ k . In this paper, we characterize all completely k-magic regular graphs.

  4. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Treesearch

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  6. Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT).

    PubMed

    Tracy, Saoirse R; Gómez, José Fernández; Sturrock, Craig J; Wilson, Zoe A; Ferguson, Alison C

    2017-01-01

    Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley ( Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering

  7. The magic words: Using computers to uncover mental associations for use in magic trick design.

    PubMed

    Williams, Howard; McOwan, Peter W

    2017-01-01

    The use of computational systems to aid in the design of magic tricks has been previously explored. Here further steps are taken in this direction, introducing the use of computer technology as a natural language data sourcing and processing tool for magic trick design purposes. Crowd sourcing of psychological concepts is investigated; further, the role of human associative memory and its exploitation in magical effects is explored. A new trick is developed and evaluated: a physical card trick partially designed by a computational system configured to search for and explore conceptual spaces readily understood by spectators.

  8. The magic words: Using computers to uncover mental associations for use in magic trick design

    PubMed Central

    2017-01-01

    The use of computational systems to aid in the design of magic tricks has been previously explored. Here further steps are taken in this direction, introducing the use of computer technology as a natural language data sourcing and processing tool for magic trick design purposes. Crowd sourcing of psychological concepts is investigated; further, the role of human associative memory and its exploitation in magical effects is explored. A new trick is developed and evaluated: a physical card trick partially designed by a computational system configured to search for and explore conceptual spaces readily understood by spectators. PMID:28792941

  9. Intermodal transportation infrastructure interactions : utilizing acoustic emission and other non-destructive evaluation technologies.

    DOT National Transportation Integrated Search

    2014-09-01

    This project studied application of acoustic emission (AE) technology to perform structural : health monitoring of highway bridges. Highway bridges are a vital part of transportation : infrastructure and there is need for reliable non-destructive met...

  10. Quality parameters of mango and potential of non-destructive techniques for their measurement - a review.

    PubMed

    Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R

    2010-01-01

    The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars.

  11. [Magical thinking in healthy people and in schizophrenia].

    PubMed

    Jarosz, M

    1996-01-01

    Different conditions of magical thinking have been analyzed. A formation of the proportion "realistic thinking - magical thinking" in paranoid schizophrenia has been discussed and the characteristic features of magical thinking in schizophrenia have been indicated.

  12. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  13. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  14. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-10-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  15. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.

    PubMed

    McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M

    2015-10-23

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  16. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  17. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  18. An Overview of the MAGIC Project

    DTIC Science & Technology

    1993-12-01

    unlimnitedj_ _______ 13. ABSTRACT (Mxmwn WO0 words) This note provides an overview of the MAGIC project1 which is developing a high-speed, wide-area...298Rv.9 16. PRICE COASSDE 3.1 17. SEURITY18. SEURITY19. SEURITY2930.2BIA NO An Overview of the M 93B0000173 MAGIC Project December 1993 Barbara B...Intelligence Division ii ABSTRACT This note provides an overview of the MAGIC project, which is developing a high-speed, wide- area networking testbed

  19. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  20. Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy.

    PubMed

    Yan, Si; Guo, Changmiao; Hou, Guangjin; Zhang, Huilan; Lu, Xingyu; Williams, John Charles; Polenova, Tatyana

    2015-11-24

    Microtubules and their associated proteins perform a broad array of essential physiological functions, including mitosis, polarization and differentiation, cell migration, and vesicle and organelle transport. As such, they have been extensively studied at multiple levels of resolution (e.g., from structural biology to cell biology). Despite these efforts, there remain significant gaps in our knowledge concerning how microtubule-binding proteins bind to microtubules, how dynamics connect different conformational states, and how these interactions and dynamics affect cellular processes. Structures of microtubule-associated proteins assembled on polymeric microtubules are not known at atomic resolution. Here, we report a structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of dynactin motor on polymeric microtubules, solved by magic angle spinning NMR spectroscopy. We present the intermolecular interface of CAP-Gly with microtubules, derived by recording direct dipolar contacts between CAP-Gly and tubulin using double rotational echo double resonance (dREDOR)-filtered experiments. Our results indicate that the structure adopted by CAP-Gly varies, particularly around its loop regions, permitting its interaction with multiple binding partners and with the microtubules. To our knowledge, this study reports the first atomic-resolution structure of a microtubule-associated protein on polymeric microtubules. Our approach lays the foundation for atomic-resolution structural analysis of other microtubule-associated motors.

  1. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  2. Augmented reality application for industrial non-destructive inspection training

    NASA Astrophysics Data System (ADS)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  3. Compact Magic-T using microstrip-slotline transitions

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Doiron, Terence (Inventor); Moseley, Samuel H. (Inventor)

    2010-01-01

    The design of a compact low-loss Magic-T is described. The planar Magic-T incorporates a compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The Magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has low in-band insertion loss, and small in-band phase and amplitude imbalance.

  4. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    NASA Astrophysics Data System (ADS)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  5. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Sharma, Kshama; Madhu, P. K.; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1 = n · νr). Recently, two schemes, namely, PISSARRO and rCWApA, have been shown to be less affected by the problem of MAS and RF interference, specifically at the n = 2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n = 1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40 kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power 1H irradiation of ca.195 kHz.

  6. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  7. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  8. A comparison of various algorithms to extract Magic Formula tyre model coefficients for vehicle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Vijay Alagappan, A.; Narasimha Rao, K. V.; Krishna Kumar, R.

    2015-02-01

    Tyre models are a prerequisite for any vehicle dynamics simulation. Tyre models range from the simplest mathematical models that consider only the cornering stiffness to a complex set of formulae. Among all the steady-state tyre models that are in use today, the Magic Formula tyre model is unique and most popular. Though the Magic Formula tyre model is widely used, obtaining the model coefficients from either the experimental or the simulation data is not straightforward due to its nonlinear nature and the presence of a large number of coefficients. A common procedure used for this extraction is the least-squares minimisation that requires considerable experience for initial guesses. Various researchers have tried different algorithms, namely, gradient and Newton-based methods, differential evolution, artificial neural networks, etc. The issues involved in all these algorithms are setting bounds or constraints, sensitivity of the parameters, the features of the input data such as the number of points, noisy data, experimental procedure used such as slip angle sweep or tyre measurement (TIME) procedure, etc. The extracted Magic Formula coefficients are affected by these variants. This paper highlights the issues that are commonly encountered in obtaining these coefficients with different algorithms, namely, least-squares minimisation using trust region algorithms, Nelder-Mead simplex, pattern search, differential evolution, particle swarm optimisation, cuckoo search, etc. A key observation is that not all the algorithms give the same Magic Formula coefficients for a given data. The nature of the input data and the type of the algorithm decide the set of the Magic Formula tyre model coefficients.

  9. Magical Landscapes: Two Love Stories.

    ERIC Educational Resources Information Center

    Moore, John Noell

    2002-01-01

    Introduces two books about magic, one a collection of essays "Ex Libris: Confessions of a Common Reader," which describes the author's inherited lifelong passion for books and reading; and the other a novel, "Mangos, Bananas and Coconuts: A Cuban Love Story," which tells a story of love and magic that seems both real and…

  10. Emotional salience, emotional awareness, peculiar beliefs, and magical thinking.

    PubMed

    Berenbaum, Howard; Boden, M Tyler; Baker, John P

    2009-04-01

    Two studies with college student participants (Ns = 271 and 185) tested whether peculiar beliefs and magical thinking were associated with (a) the emotional salience of the stimuli about which individuals may have peculiar beliefs or magical thinking, (b) attention to emotion, and (c) clarity of emotion. Study 1 examined belief that a baseball team was cursed. Study 2 measured magical thinking using a procedure developed by P. Rozin and C. Nemeroff (2002). In both studies, peculiar beliefs and magical thinking were associated with Salience x Attention x Clarity interactions. Among individuals for whom the objects of the belief-magical thinking were highly emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with increased peculiar beliefs-magical thinking. In contrast, among individuals for whom the objects of the belief-magical thinking were not emotionally salient and who had high levels of attention to emotion, higher levels of emotional clarity were associated with diminished peculiar beliefs-magical thinking. (c) 2009 APA, all rights reserved.

  11. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report.

    PubMed

    Piotto, Martial; Moussallieh, François-Marie; Neuville, Agnès; Bellocq, Jean-Pierre; Elbayed, Karim; Namer, Izzie Jacques

    2012-01-18

    Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  12. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  13. Garden Gnomes: Magical or Tacky?

    ERIC Educational Resources Information Center

    Flynt, Deborah

    2012-01-01

    Garden gnomes: magical or tacky? Well, art is in the eye of the beholder, and for the author's advanced seventh-grade art class, garden gnomes are magical. Gnomes have a very long history, dating back to medieval times. A fairytale describes them as brownie-like creatures that are nocturnal helpers. In this article, the author describes how her…

  14. Improving the Repair Planning System for Mining Equipment on the Basis of Non-destructive Evaluation Data

    NASA Astrophysics Data System (ADS)

    Drygin, Michael; Kuryshkin, Nicholas

    2017-11-01

    The article tells about forming a new concept of scheduled preventive repair system of the equipment at coal mining enterprises, based on the use of modem non-destructive evaluation methods. The approach to the solution for this task is based on the system-oriented analysis of the regulatory documentation, non-destructive evaluation methods and means, experimental studies with compilation of statistics and subsequent grapho-analytical analysis. The main result of the work is a feasible explanation of using non-destructive evaluation methods within the current scheduled preventive repair system, their high efficiency and the potential of gradual transition to condition-based maintenance. In practice wide use of nondestructive evaluation means w;ill allow to reduce significantly the number of equipment failures and to repair only the nodes in pre-accident condition. Considering the import phase-out policy, the solution for this task will allow to adapt the SPR system to Russian market economy conditions and give the opportunity of commercial move by reducing the expenses for maintenance of Russian-made and imported equipment.

  15. Magic User’s Manual 2006

    DTIC Science & Technology

    2006-12-01

    K (M) M issioin Research MRC/WDC-R-556 MAGIC USER’S MANUAL 2006 Author(s): Larry Ludeking ATK Mission Research Contract No.: F49620-03-C-0030 L¾[iJiD... Magic Tool Suite for Windows. It uses the standard Windows Help so it is pretty self-explanatory. You can use the panel to the left to scan through... MAGIC Go to Part 2. MCL Commands Go to Part 3. Tirnc and Space Go to Part 4. Spatial Extensions Go to Part 5. Properties Go to Part 6. Algorithms Go

  16. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    PubMed

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1 H- 1 H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1 H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1 H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of

  17. Airbag Trail Dubbed 'Magic Carpet'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HD

    This section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.

    This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.

  18. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  19. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    PubMed

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. [Magical and religious healing in Byzantium].

    PubMed

    Józsa, László

    2010-01-01

    Religious and magical ways of healing have been known and practiced since the very beginning of human history. In the present article, the Byzantine philosophical, cultural, historical and "methodological" aspects of this way of healing are discussed. The article outlines the development of magic healing in Byzantium from the 4th to the 15th century. During this period magical therapy included the cult of patron saints--listed by the author--and pleading for divine intervention as well. The activity of "anargyroi" and the use of magical objects and amulets is also discussed in detail. Exorcism was also a part of religious therapy both against psychical and somatical diseases. In early Christianity, and especially in Byzantium the devil or other demons were also supposed to cause various somatical or psychical illnesses by "intrusion" or "internalisation," i.e. by possession or obsession of their victims.

  2. Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma

    NASA Astrophysics Data System (ADS)

    May, A.; Andarawis, E.

    2007-03-01

    We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.

  3. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  4. High-Energy Laser for Detection, Inspection, and Non-Destructive Testing

    DTIC Science & Technology

    2011-03-21

    at the gra odes. The -2 at 0.1 Hz -cm-2, and mage thre n array of beam. Th burns on pled to a to measur laser is eq micron lev ent beam ( rget...project or resulting research?  Defense Threat Reduction Agency, “Compact Source of Laser -Driven Monoenergetic Gamma-Rays” --$2,982,685... LASER FOR DETECTION, INSPECTION, AND NON-DESTRUCTIVE TESTING 3) Grant/Contract Number: FA9550-07-1-0521 4) Reporting Period Start: 06/21/2007

  5. Non-destructive techniques for the detection of fungal infection in cereal grains.

    PubMed

    Orina, Irene; Manley, Marena; Williams, Paul J

    2017-10-01

    Infection of cereal grains by fungi is a serious problem worldwide. Depending on the environmental conditions, cereal grains may be colonised by different species of fungi. These fungi cause reduction in yield, quality and nutritional value of the grain; and of major concern is their production of mycotoxins which are harmful to both humans and animals. Early detection of fungal contamination is an essential control measure for ensuring storage longevity and food safety. Conventional methods for detection of fungal infection, such as culture and colony techniques or immunological methods are either slow, labour intensive or difficult to automate. In recent years, there has been an increasing need to develop simple, rapid, non-destructive methods for early detection of fungal infection and mycotoxins contamination in cereal grains. Methods such as near infrared (NIR) spectroscopy, NIR hyperspectral imaging, and electronic nose were evaluated for these purposes. This paper reviews the different non-destructive techniques that have been considered thus far for detection of fungal infection and mycotoxins in cereal grains, including their principles, application and limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Watching films with magical content facilitates creativity in children.

    PubMed

    Subbotsky, Eugene; Hysted, Claire; Jones, Nicola

    2010-08-01

    Two experiments examined the possible link between magical thinking and creativity in preschool children. In Exp. 1, 4- and 6-yr.-old children were shown a film with either a magical or nonmagical theme. Results indicated that the mean scores of children shown the magical film was significantly higher than that of children watching the nonmagical film on the majority of subsequent creativity tests for both age groups. This trend was also found for 6-yr.-olds' drawings of impossible items. In Exp. 2, Exp. 1 was replicated successfully with 6- and 8-yr.-old children. Exposing children to a film with a magical theme did not affect their beliefs about magic. The results were interpreted to accentuate the role of magical thinking in children's cognitive development. Classroom implications of the results were also discussed.

  7. Magical thinking by inpatient staff members.

    PubMed

    Pilette, W L

    1983-01-01

    Magical thinking is a primitive form of mental activity which, nevertheless, the author contends, is common among mental health professionals. Four examples of magical thinking by inpatient staff members are presented and briefly explored, in order to shed light on our work and ourselves.

  8. The Combine Use of Semi-destructive and Non-destructive Methods for Tiled Floor Diagnostics

    NASA Astrophysics Data System (ADS)

    Štainbruch, Jakub; Bayer, Karol; Jiroušek, Tomáš; Červinka, Josef

    2017-04-01

    The combination of semi-destructive and non-destructive methods was used to asset the conditions of a tiled floor in the historical monument Minaret, situated in the park complex of the Chateau Lednice (South Moravia Region, Czech Republic), before its renovation. Another set of measurements is going to be performed after the conservation works are finished. (The comparison of the results collected during pre- and post-remediation measurements will be known and presented during the General Assembly meeting in Wien.) The diagnostic complex of methods consisted of photogrammetry, resistivity drilling and georadar. The survey was aimed to contour extends of air gaps beneath the tiles and the efficiency of filling gaps by means of injection, consolidation and gluing individual layers. The state chateau Lednice creates a part of the Lednice-Valtice precinct, a UNESCO landmark, and belongs among the greatest historic monuments in Southern Moravia. In the chateau park there is a romantic observation tower in the shape of a minaret built according to the plans of Josef Hardtmuth between 1798-1804. The Minaret has been extensively renovated for many decades including the restoration of mosaic floors from Venetian terazzo. During the static works of the Minaret building between 1999-2000, the mosaic floors in the rooms on the second floor were transferred and put back onto concrete slabs. Specifically, the floor was cut up to tiles and these were glued to square slabs which were then attached to the base plate. The transfer was not successful and the floor restoration was finalized between 2016-2017. The damage consisted in separating the original floor from the concrete plate which led to creating gaps. Furthermore, the layers of the floor were not compact. It was necessary to fill the gaps and consolidate and glue the layers. The existence of air gap between individual layers of the tiles and their degradation was detected using two different diagnostic methods: semi-destructive

  9. Non-Destructive Assessment of Residual Strength of Thermally Damaged Concrete Made with Different Aggregate Types

    NASA Astrophysics Data System (ADS)

    Mróz, Katarzyna; Hager, Izabela

    2017-10-01

    The paper presents the results obtained for four concretes made with four different aggregate types: basalt, granite, dolomite and riverbed gravel. In this study, the cement paste and mortar compositions and their volumes remained the same for all the four concretes that allow clear comparisons and conclusions of aggregate type effect. Moreover, the aggregate particle size distribution is chosen to be quasi identical for all concretes so that this factor does not affect the concrete behaviour. The residual material properties (after heating and cooling down) are determined with the use of destructive and non-destructive testing methods for each concrete type being not thermally damaged and after thermal exposure at temperature of 200 °C. 400 °C, 600 °C, 800 °C and 1000 °C. Residual mechanical properties are compared with diagnostic parameters obtained with NDT methods. The aim of this study is to provide and compare the regression curves between selected non-destructive diagnostic parameters and the residual values of mechanical properties. The NDT methods used in this experiment are: surface hardness and Ultrasonic Pulse Velocity.

  10. Lightweight application for generating clinical research information systems: MAGIC.

    PubMed

    Leskošek, Brane; Pajntar, Marjan

    2015-12-01

    Our purpose was to build and test a lightweight solution for generating clinical research information systems (CRIS) that would allow non-IT professionals with basic knowledge of computer usage to quickly define and build a ready-to-use, safe and secure web-based clinical research system for data management. We use the acronym MAGIC (Medical Application Generator InteraCtive) for the system. The generated CRIS should be very easy to build and use, so a common LAMP (Linux Apache MySQL Perl) platform was used, which also enables short development cycles. The application was built and tested using eXtreme Programming (XP) principles by a small development team consisting of one informatics specialist, one physician and one graphical designer/programmer. The parameter and graphical user interface (GUI) definitions for the CRIS can be made by non-IT professionals using an intuitive English-language-like formalism called application definition language (ADL). From these definitions, the MAGIC builds an end-user CRIS that can be used on a wide variety of platforms (from standard workstations to hand-held devices). A working example of a national health-care-quality assessment program is presented to illustrate this process. The lightweight application for generating CRIS (MAGIC) has proven to be useful for both clinical and analytical users in real working environment. To achieve better performance and interoperability, we are planning to recompile the application using XML schemas (XSD) in HL7 CDA or openEHR archetypes formats used for parameters definition and for data interchange between different information systems.

  11. High-resolution magic angle spinning 1H-NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity.

    PubMed

    Griffin, J L; Walker, L; Shore, R F; Nicholson, J K

    2001-06-01

    1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.

  12. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  13. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  14. Automatic Non-Destructive Growth Measurement of Leafy Vegetables Based on Kinect

    PubMed Central

    Hu, Yang; Wang, Le; Xiang, Lirong; Wu, Qian; Jiang, Huanyu

    2018-01-01

    Non-destructive plant growth measurement is essential for plant growth and health research. As a 3D sensor, Kinect v2 has huge potentials in agriculture applications, benefited from its low price and strong robustness. The paper proposes a Kinect-based automatic system for non-destructive growth measurement of leafy vegetables. The system used a turntable to acquire multi-view point clouds of the measured plant. Then a series of suitable algorithms were applied to obtain a fine 3D reconstruction for the plant, while measuring the key growth parameters including relative/absolute height, total/projected leaf area and volume. In experiment, 63 pots of lettuce in different growth stages were measured. The result shows that the Kinect-measured height and projected area have fine linear relationship with reference measurements. While the measured total area and volume both follow power law distributions with reference data. All these data have shown good fitting goodness (R2 = 0.9457–0.9914). In the study of biomass correlations, the Kinect-measured volume was found to have a good power law relationship (R2 = 0.9281) with fresh weight. In addition, the system practicality was validated by performance and robustness analysis. PMID:29518958

  15. Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition.

    PubMed

    Chen, WenXue; Lou, HaiYan; Zhang, HongPing; Nie, Xiu; Lan, WenXian; Yang, YongXia; Xiang, Yun; Qi, JianPin; Lei, Hao; Tang, HuiRu; Chen, FenEr; Deng, Feng

    2011-07-01

    Clinical data have shown that survival rates vary considerably among brain tumor patients, according to the type and grade of the tumor. Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS (1)H NMRS) can provide important information on tumor biology and metabolism. These metabolic fingerprints can then be used for tumor classification and grading, with great potential value for tumor diagnosis. We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies, including two astrocytomas (grade I), 12 astrocytomas (grade II), eight anaplastic astrocytomas (grade III), three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS (1)H NMRS. The results were correlated with pathological features using multivariate data analysis, including principal component analysis (PCA). There were significant differences in the levels of N-acetyl-aspartate (NAA), creatine, myo-inositol, glycine and lactate between tumors of different grades (P<0.05). There were also significant differences in the ratios of NAA/creatine, lactate/creatine, myo-inositol/creatine, glycine/creatine, scyllo-inositol/creatine and alanine/creatine (P<0.05). A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%. HRMAS (1)H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.

  16. Secrets of the Chinese magic mirror replica

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    2001-03-01

    We examine the structure of five Chinese magic mirror replicas using a special imaging technique developed by the authors. All mirrors are found to have a two-layered structure. The reflecting surface that gives rise to a projected magic pattern on the screen is hidden under a polished half-reflecting top layer. An alternative method of making the magic mirror using ancient technology has been proposed. Finally, we suggest a simple method of reconstructing a mirror replica in the laboratory.

  17. MAGIC Computer Simulation. Volume 1: User Manual

    DTIC Science & Technology

    1970-07-01

    vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to...A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1970 4. TITLE AND SUBTITLE MAGIC Computer Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  18. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  19. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielopolski, Lucian; Hendrey, G.; Orion, I.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrumentmore » offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  20. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    DOT National Transportation Integrated Search

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  1. Measurement of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1984-01-01

    The mean angle of incidence at the beam stop of a 60 KA, 7 MV annular electron beam, in the 20 kg guide field of the MABE accelerator, is determined. Radiation measured in TLD arrays mounted downstream of the stop is compared with the radiation expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing theta with that expected from themore » Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  2. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Towards Large-Scale, Non-Destructive Inspection of Concrete Bridges

    NASA Astrophysics Data System (ADS)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2005-04-01

    It is estimated that the rehabilitation of deteriorating engineering infrastructure in the harsh North American environment could cost billions of dollars. Bridges are key infrastructure components for surface transportation. Steel-free and fibre-reinforced concrete is used increasingly nowadays to circumvent the vulnerability of steel rebar to corrosion. Existing steel-free and fibre-reinforced bridges may experience extensive surface-breaking cracks that need to be characterized without incurring further damage. In the present study, a method that uses Lamb elastic wave propagation to non-destructively characterize cracks in plain as well as fibre-reinforced concrete is investigated both numerically and experimentally. Numerical and experimental data are corroborated with good agreement.

  4. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    USDA-ARS?s Scientific Manuscript database

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  5. Magic and the aesthetic illusion.

    PubMed

    Balter, Leon

    2002-01-01

    The aesthetic illusion is the subjective experience that the content of a work of art is reality. It has an intrinsic relation to magic, an intrapsychic maneuver oriented toward modification and control of the extraspyschic world, principally through ego functioning. Magic is ontogenetically and culturally archaic, expresses the omnipotence inherent in primary narcissism, and operates according to the logic of the primary process. Magic is a constituent of all ego functioning, usually latent in later development. It may persist as an archaic feature or may be evoked regressively in global or circumscribed ways. It causes a general disinhibition of instincts and impulses attended by a sense of confidence, exhiliration, and exuberance. The aesthetic illusion is a combination of illusions: (1) that the daydream embodied by the work of art is the beholder's own, the artist being ignored, and (2) that the artistically described protagonist is a real person with a real "world." The first illusion arises through the beholder's emotional-instinctual gratification from his or her own fantasy-memory constellations; the second comes about because the beholder, by taking the protagonist as proxy, mobilizes the subjective experience of the imaginary protagonist's "reality." The first illusion is necessary for the second to take place; the second establishes the aesthetic illusion proper. Both illusions are instances of magic. Accordingly, the aesthetic illusion is accompanied by a heady experience of excitement and euphoria. The relation among the aesthetic illusion, magic, and enthusiasm is illustrated by an analytic case, J. D. Salinger's "The Laughing Man," Woody Allen's Play It Again, Sam, Don Quixote, and the medieval Cult of the Saints.

  6. Raman spectroscopy measurement of bilayer graphene's twist angle to boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Bin; Wang, Peng; Pan, Cheng

    2015-07-20

    When graphene is placed on hexagonal boron nitride with a twist angle, new properties develop due to the resulting moiré superlattice. Here, we report a method using Raman spectroscopy to make rapid, non-destructive measurements of the twist angle between bilayer graphene and hexagonal boron nitride. The lattice orientation is determined by using flakes with both bilayer and monolayer regions, and using the known Raman signature for the monolayer to measure the twist angle of the entire flake. The widths of the second order Raman peaks are found to vary linearly in the superlattice period and are used to determine themore » twist angle. The results are confirmed by using transport measurements to infer the superlattice period by the charge density required to reach the secondary resistance peaks. Small twist angles are also found to produce a significant modification of the first order Raman G band peak.« less

  7. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  8. The MAGIC (Manually Assisted Gaming of Integrated Combat) Model,

    DTIC Science & Technology

    1982-05-01

    IP -6 7 6 7 Zo - A O - ?G O 6 7 9 N L mhhhhh1h8I 1-I THE MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner May 1982 L io...Corporation Santa Monica, California 90406 - - ~-. - - -i 77 THE MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner May 1982 THE... MAGIC (MANUALLY ASSISTED GAMING OF INTEGRATED COMBAT) MODEL Milton G. Weiner The Rand Corporation, Santa Monica, California The MAGIC model isn’Vt

  9. [Magical and physical reality].

    PubMed

    Kállai, János

    In the postmodern countries the computer generated virtual reality provides new perceptual domains wherein the evaluation of real and unreal contents generates an essential challenge for both children and adults. The expectances to perceive unreal content which is contradictory with the common sense experiences become seductive for most of people. The time in front of the screen that emits the magic reality gradually rises. The sudden advance in generation of alternative realities demands that we have to recall the basic principles of psychological reality testing and the involving mechanism that produces a distinction between phantasy and reality for both healthy and pathological mind. Frame of reference usually restrains the thinking. This review contains two parts, the first is focuses on the historical aspect of magical and physical reality and the second one, that will be published in a next issue, will present an evaluation of the boundary between self and another person in point of view of the psychopathological phenomenon. This analysis will focus on how the boundary of the self behaves in physically real and magic computer generated environment.

  10. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center.

    PubMed

    Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg

    2017-09-21

    Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.

  11. Working wonders? investigating insight with magic tricks.

    PubMed

    Danek, Amory H; Fraps, Thomas; von Müller, Albrecht; Grothe, Benedikt; Ollinger, Michael

    2014-02-01

    We propose a new approach to differentiate between insight and noninsight problem solving, by introducing magic tricks as problem solving domain. We argue that magic tricks are ideally suited to investigate representational change, the key mechanism that yields sudden insight into the solution of a problem, because in order to gain insight into the magicians' secret method, observers must overcome implicit constraints and thus change their problem representation. In Experiment 1, 50 participants were exposed to 34 different magic tricks, asking them to find out how the trick was accomplished. Upon solving a trick, participants indicated if they had reached the solution either with or without insight. Insight was reported in 41.1% of solutions. The new task domain revealed differences in solution accuracy, time course and solution confidence with insight solutions being more likely to be true, reached earlier, and obtaining higher confidence ratings. In Experiment 2, we explored which role self-imposed constraints actually play in magic tricks. 62 participants were presented with 12 magic tricks. One group received verbal cues, providing solution relevant information without giving the solution away. The control group received no informative cue. Experiment 2 showed that participants' constraints were suggestible to verbal cues, resulting in higher solution rates. Thus, magic tricks provide more detailed information about the differences between insightful and noninsightful problem solving, and the underlying mechanisms that are necessary to have an insight. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Magic in the machine: a computational magician's assistant

    PubMed Central

    Williams, Howard; McOwan, Peter W.

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimization of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimization of magical impact. In the paper we introduce our optimization methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London. PMID:25452736

  13. Magic in the machine: a computational magician's assistant.

    PubMed

    Williams, Howard; McOwan, Peter W

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimization of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimization of magical impact. In the paper we introduce our optimization methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.

  14. Compact Low-Loss Planar Magic-T

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence; Moseley, Sameul H.

    2008-01-01

    This design allows broadband power combining with high isolation between the H port and E port, and achieves a lower insertion loss than any other broadband planar magic-T. Passive micro wave/millimeter-wave signal power is combined both in-phase and out-of-phase at the ports, with the phase error being less than 1 , which is limited by port impedance. The in-phase signal combiner consists of two quarter-wavelength-long transmission lines combined at the microstrip line junction. The out-of-phase signal combiner consists of two half-wavelength-long transmission lines combined in series. Structural symmetry creates a virtual ground plane at the combining junction, and the combined signal is converted from microstrip line to slotline. Optimum realizable characteristic impedances are used so that the magic-T provides broadband response with low return loss. The magic-T is used in microwave and millimeter-wave frequencies, with the operating bandwidth being approximately 100 percent. The minimum isolation obtainable is 32 dB from port E to port H. The magic-T VSWR is less than 1.1 in the operating band. Operating temperature is mainly dependent on the variation in the dielectric constant of the substrate. Using crystallized substrate, the invention can operate in an extremely broad range of temperatures (from 0 to 400 K). It has a very high reliability because it has no moving parts and requires no maintenance, though it is desirable that the magic-T operate in a low-humidity environment. Fabrication of this design is very simple, using only two metallized layers. No bond wires, via holes, or air bridges are required. Additionally, this magic-T can operate as an individual component without auxiliary components.

  15. The Magic of Magic: The Effect of Magic Tricks on Subsequent Engagement with Lecture Material

    ERIC Educational Resources Information Center

    Moss, Simon A.; Irons, Melanie; Boland, Martin

    2017-01-01

    Background and aims: Lecturers often present entertaining videos, or organize a variety of amusing demonstrations, to foster student engagement or to encourage critical analysis. Magic tricks, in particular, have been shown to activate neural circuits that underpin motivation or problem-solving and, therefore, could be beneficial during lectures.…

  16. Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larimer, Curtis J.; Brann, Michelle R.; Suter, Jonathan D.

    White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time.more » The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.« less

  17. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian

    2014-11-01

    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.

  18. Algebra Magic Tricks: Algecadabra! Volume 1.

    ERIC Educational Resources Information Center

    Edwards, Ronald

    This resource book contains 20 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  19. Algebra Magic Tricks: Algecadabra! Volume 2.

    ERIC Educational Resources Information Center

    Edwards, Ronald

    This resource book contains 15 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  20. Finding All Solutions to the Magic Hexagram

    ERIC Educational Resources Information Center

    Holland, Jason; Karabegov, Alexander

    2008-01-01

    In this article, a systematic approach is given for solving a magic star puzzle that usually is accomplished by trial and error or "brute force." A connection is made to the symmetries of a cube, thus the name Magic Hexahedron.

  1. The use of fractional order derivatives for eddy current non-destructive testing

    NASA Astrophysics Data System (ADS)

    Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz

    2018-04-01

    The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.

  2. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ok, Salim; Hoyt, David W.; Andersen, Amity

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  3. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study

    DOE PAGES

    Ok, Salim; Hoyt, David W.; Andersen, Amity; ...

    2017-01-18

    Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, we observed changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200more » nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. There was no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar) for pure methane. However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.« less

  4. Mummies & Magic.

    ERIC Educational Resources Information Center

    Casey, Jeanne E.

    1989-01-01

    Covers the cultural and aesthetic significance of Egyptian mummies, as explained in an exhibition at Boston's Museum of Fine Arts. The display, "Mummies & Magic: The Funerary Arts of Ancient Egypt," allowed for restoration work which did much to advance modern knowledge of Egyptian culture and funerary art. (LS)

  5. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing

  6. Metabolic profiling of apples from different production systems before and after controlled atmosphere (CA) storage studied by 1H high resolution-magic angle spinning (HR-MAS) NMR.

    PubMed

    Vermathen, Martina; Marzorati, Mattia; Diserens, Gaëlle; Baumgartner, Daniel; Good, Claudia; Gasser, Franz; Vermathen, Peter

    2017-10-15

    Determination of metabolic alterations in apples induced by such processes as different crop protection strategies or storage, are of interest to assess correlations with fruit quality or fruit disorders. Preliminary results proposed the metabolic discrimination of apples from organic (BIO), integrated (IP) and low-input (LI) production. To determine contributions of temporal metabolic developments and to define the type of metabolic changes during storage, 1 H high resolution-magic angle spinning (HR-MAS) NMR spectroscopy of apple pulp was performed before and after two time points of controlled atmosphere storage. Statistical analysis revealed similar metabolic changes over time for IP-, LI- and BIO-samples, mainly decreasing lipid and sucrose, and increasing fructose, glucose and acetaldehyde levels, which are potential contributors to fruit aroma. Across the production systems, BIO apples had consistently higher levels of fructose and monomeric phenolic compounds but lower levels of condensed polyphenols than LI and IP apples, while the remaining metabolites assimilated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Magic moment? Maternal marriage for children born out of wedlock.

    PubMed

    Gibson-Davis, Christina

    2014-08-01

    To test the existence of the "magic moment" for parental marriage immediately post-birth and to inform policies that preferentially encourage biological over step parent marriage, this study estimates the incidence and stability of maternal marriage for children born out of wedlock. Data came from the National Survey of Family Growth on 5,255 children born non maritally. By age 15, 29 % of children born non maritally experienced a biological-father marriage, and 36 % experienced a stepfather marriage. Stepfather marriages occurred much later in a child's life-one-half occurred after the child turned age 7-and had one-third higher odds of dissolution. Children born to black mothers had qualitatively different maternal marriage experiences than children born to white or Hispanic mothers, with less biological-parent marriage and higher incidences of divorce. Findings support the existence of the magic moment and demonstrate that biological marriages were more enduring than stepfather marriages. Yet relatively few children born out of wedlock experienced stable, biological-parent marriages as envisioned by marriage promotion programs.

  8. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  9. High-resolution non-destructive three-dimensional imaging of integrated circuits

    NASA Astrophysics Data System (ADS)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  10. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    PubMed Central

    Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen

    2015-01-01

    Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVMs model is more accurate than the statistical regression model. PMID:28793627

  11. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    PubMed

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  12. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  13. On Super Edge-magic Total Labeling of Modified Watermill Graph

    NASA Astrophysics Data System (ADS)

    Nurdin; Ungko, T. S.; Gormantara, J.; Abdullah, A.; Aulyah, S.; Nikita

    2018-03-01

    An edge-magic total labeling on a graph G is one-to-one map from V(G) ∪ E(G) onto the set of integers 1,2, ...,ν + e, where ν = |V(G)| and e = |E(G)|, with the property that, given any edge uv, f(u) + f(u, ν}) + f(ν) = k for every u,v ∈ V(G), and k is called magic valuation. An edge-magic total labeling f is called super edge-magic total if f(v(G)) = {1,2 ...,|V(G)|} and f(E(G)) = {|V(G)| + 1, |V(G)| + 2,... |V(G) + E(G)|}. In this paper we investigate edge-magic total labeling of a new graph called modified Watermill graph. Furthermore, the magic valuation of the modified Watermill graph WM(n) is k=\\frac{1}{2}(21n+3), for n odd, n ≥ 3.

  14. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials.

    PubMed

    Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  15. Quantification In Situ of Crystalline Cholesterol and Calcium Phosphate Hydroxyapatite in Human Atherosclerotic Plaques by Solid-State Magic Angle Spinning NMR

    PubMed Central

    Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.

    2010-01-01

    Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882

  16. Evaluation of Electromagnetic Near-Field Measurement Technique as Non-Destructive Testing for Composite Structures

    NASA Astrophysics Data System (ADS)

    Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt

    2018-05-01

    Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.

  17. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  18. The MAGIC telescope for gamma-ray astronomy above 30 GeV

    NASA Astrophysics Data System (ADS)

    Moralejo, A.; MAGIC Collaboration

    The MAGIC telescope is presently at its commissioning phase at the Roque de los Muchachos Observatory (ORM) on the island of La Palma. MAGIC will become the largest ground-based gamma ray telescope in the world, being sensitive to photons of energies as low as 30 GeV. The spectral range between 10 and 300 GeV remains to date mostly unexplored. Observations in this region of the spectrum are expected to provide key data for the understanding of a wide variety of astrophysical phenomena belonging to the so-called ``non thermal Universe'', like the processes in the nuclei of active galaxies, the radiation mechanisms of pulsars and supernova remnants, and the enigmatic gamma-ray bursts. And overview of the telescope and its Physics goals is presented.

  19. Non-equilibrium plasma reactors for organic solvent destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.L.; Beltran, M.R.; Kravets, Z.

    1997-12-31

    Two non-equilibrium plasma reactors were evaluated for their ability to destroy three widely used organic solvents, i.e., 2-butanone, toluene and ethyl acetate. The catalyzed plasma reactor (CPR) with 6 mm glass beads destroys 98% of 50 ppm toluene in air at 24 kV/cm and space velocities of 1,400 v/v/hr. Eighty-five percent of ethyl acetate and 2-butanone are destroyed under the same conditions. The tubular plasma reactor (TPR) has an efficiency of 10% to 20% lower than that of a CPR under the same conditions. The 1,400 v/v/hr in a CPR is equal to a residence time of 2.6 seconds inmore » a TPR. The operating temperatures, corona characteristics, as well as the kinetics of VOC destruction in both TPR and CPR were studied.« less

  20. Sleightly Persuasive: Using Magic To Teach Principles of Persuasion.

    ERIC Educational Resources Information Center

    Frasier, C. Jay

    Magic can be used in the communication classroom as a means for introducing and/or illustrating the subject of persuasion. A magical effect which fools the class can lead to an early discussion of the need to be a critical consumer of persuasive messages. Magic can also be used to introduce the subject of ethics in persuasion. Each student can be…

  1. Redefining the magic square on numerical characters

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.; Sawaluddin

    2018-02-01

    As a number system, the magic square is different from the others. Characteristic depends not only on size but also depends on numerical character in computation. This paper has redefined the term of magic square formally, by exposing the inductive general characteristics of cases to numerical ordering of numbers.

  2. Schizotypy and mindfulness: Magical thinking without suspiciousness characterizes mindfulness meditators.

    PubMed

    Antonova, Elena; Amaratunga, Kavitha; Wright, Bernice; Ettinger, Ulrich; Kumari, Veena

    2016-09-01

    Despite growing evidence for demonstrated efficacy of mindfulness in various disorders, there is a continuous concern about the relationship between mindfulness practice and psychosis. As schizotypy is part of the psychosis spectrum, we examined the relationship between long-term mindfulness practice and schizotypy in two independent studies. Study 1 included 24 experienced mindfulness practitioners (19 males) from the Buddhist tradition (meditators) and 24 meditation-naïve individuals (all males). Study 2 consisted of 28 meditators and 28 meditation-naïve individuals (all males). All participants completed the Schizotypal Personality Questionnaire (Raine, 1991), a self-report scale containing 9 subscales (ideas of reference, excessive social anxiety, magical thinking, unusual perceptual experiences, odd/eccentric behavior, no close friends, odd speech, constricted affect, suspiciousness). Participants of study 2 also completed the Five-Facet Mindfulness Questionnaire which assesses observing (Observe), describing (Describe), acting with awareness (Awareness), non-judging of (Non-judgment) and non-reactivity to inner experience (Non-reactivity) facets of trait mindfulness. In both studies, meditators scored significantly lower on suspiciousness and higher on magical thinking compared to meditation-naïve individuals and showed a trend towards lower scores on excessive social anxiety. Excessive social anxiety correlated negatively with Awareness and Non-judgment; and suspiciousness with Awareness, Non-judgment and Non-reactivity facets across both groups. The two groups did not differ in their total schizotypy score. We conclude that mindfulness practice is not associated with an overall increase in schizotypal traits. Instead, the pattern suggests that mindfulness meditation, particularly with an emphasis on the Awareness, Non-judgment and Non-reactivity aspects, may help to reduce suspiciousness and excessive social anxiety.

  3. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  4. Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1)H and (31)P magic angle spinning MRS of intact tissue.

    PubMed

    De Silva, Sonali S; Payne, Geoffrey S; Thomas, Valerie; Carter, Paul G; Ind, Thomas E J; deSouza, Nandita M

    2009-02-01

    The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated

  5. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    NASA Astrophysics Data System (ADS)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  6. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  7. Magic Finger Teaching Method in Learning Multiplication Facts among Deaf Students

    ERIC Educational Resources Information Center

    Thai, Liong; Yasin, Mohd. Hanafi Mohd

    2016-01-01

    Deaf students face problems in mastering multiplication facts. This study aims to identify the effectiveness of Magic Finger Teaching Method (MFTM) and students' perception towards MFTM. The research employs a quasi experimental with non-equivalent pre-test and post-test control group design. Pre-test, post-test and questionnaires were used. As…

  8. MAGIC database and interfaces: an integrated package for gene discovery and expression.

    PubMed

    Cordonnier-Pratt, Marie-Michèle; Liang, Chun; Wang, Haiming; Kolychev, Dmitri S; Sun, Feng; Freeman, Robert; Sullivan, Robert; Pratt, Lee H

    2004-01-01

    The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC) Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs), and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  9. Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic

    ERIC Educational Resources Information Center

    O'Brien, Thomas D.

    2006-01-01

    Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…

  10. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  11. Non-destructive evaluation of water ingress in photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, Mihail; Kotovsky, Jack

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less

  12. The presence of magical thinking in obsessive compulsive disorder.

    PubMed

    Einstein, Danielle A; Menzies, Ross G

    2004-05-01

    Two research groups have raised the possibility that magical ideation may be a fundamental feature of obsessive-compulsive disorder. It has been proposed to underlie thought action fusion and superstitious beliefs. In this study, the Magical Ideation scale, the Lucky Behaviours and Lucky Beliefs scales, the Thought Action Fusion-Revised scale, the Padua Inventory, and the Obsessive Compulsive Inventory-Short Version were completed by 60 obsessive compulsive patients at a hospital clinic. Of all the measures, the Magical Ideation (MI) scale was found to be the most strongly related to obsessive compulsive symptoms. Large and significant relationships between MI scores and the measures of OCD were obtained even when alternative constructs (Lucky Behaviours, Lucky Beliefs, Thought Action Fusion-Revised scales) were held constant. No other variable remained significantly related to the Obsessive Compulsive Inventory-Short Version when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion and OCD severity.

  13. Maximum nonlocality and minimum uncertainty using magic states

    NASA Astrophysics Data System (ADS)

    Howard, Mark

    2015-04-01

    We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.

  14. Quantum computation with realistic magic-state factories

    NASA Astrophysics Data System (ADS)

    O'Gorman, Joe; Campbell, Earl T.

    2017-03-01

    Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.

  15. Magical thinking in narratives of adolescent cutters.

    PubMed

    Gregory, Robert J; Mustata, Georgian T

    2012-08-01

    Adolescents sometimes cut themselves to relieve distress; however, the mechanism is unknown. Previous studies have linked self-injury to deficits in processing emotions symbolically through language. To investigate expressive language of adolescent cutters, the authors analyzed 100 narratives posted on the Internet. Most narratives (n = 66) displayed idiosyncratic use of language indicating poor differentiation between the real and the symbolic, such as blood substituting for negative emotions, which can then be released from the self; or emotional pain magically transforming into physical pain, which can then be managed. This kind of magical thinking correlated with cutting to relieve distress, to see blood, and to feel pain, but negatively correlated with complex representation of people, understanding social causality, and self-esteem. The results suggest that magical thinking represents a pre-symbolic mental state that processes and organizes distressing emotions through body schema. Magical thinking thus provides a plausible mechanism for why cutting works. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Atmospheric monitoring in MAGIC and data corrections

    NASA Astrophysics Data System (ADS)

    Fruck, Christian; Gaug, Markus

    2015-03-01

    A method for analyzing returns of a custom-made "micro"-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  17. Magic C60 islands forming due to moiré interference between islands and substrate

    NASA Astrophysics Data System (ADS)

    Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Utas, O. A.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2015-05-01

    Recently proposed mechanism for self-organized formation of magic islands [Nat.Comm. 4(2013)1679] has received a new experimental confirmation. According to this mechanism, self-assembly is mediated by the moiré interference between an island and underlying substrate lattice. It was first detected at C60 island growth on In-adsorbed Si(111)√{ 3} ×√{ 3}-Au surface. Changing In adsorbate for Tl results in lowering the corrugations of the surface potential relief due to a greater surface metallization. This allows formation of the C60 arrays with novel moiré pattern. As a result, a new set of magic C60 islands is formed on Tl-adsorbed Au/Si(111) surface differing from that observed on In-adsorbed surface. For example, the 19-C60 magic island which has a non-compact boomerang shape on In-adsorbed Au/Si(111) surfaces adopts a shape of a regular hexagon on Tl-adsorbed surface.

  18. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  19. Measurement and interpretation of electron angle at MABE beam stop

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Coleman, P. D.; Poukey, J. W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, was determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15(0) + or - 2(0). A comparison of theta with that expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.

  20. Measurement and interpretation of electron angle at MABE beam stop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, T.W.L.; Coleman, P.D.; Poukey, J.W.

    1985-02-01

    The mean angle of incidence at the beam stop of a 60 kA, 7 MV annular electron beam, in the 20 kG guide field of the MABE accelerator, is determined. Radiation dose measured in TLD arrays mounted downstream of the stop is compared with the radiation dose expected using a CYLTRAN Monte Carlo simulation of the electron/photon transport in the stop as a function of incident angles and energies. All radiation profiles measured are well fit, if the electrons are assumed to be incident with a polar angle theta of 15/sup 0/ +- 2/sup 0/. Comparing this theta with thatmore » expected from the Adler-Miller model, and a MAGIC code simulation of beam behavior at the stop enables the mean transverse beam velocity to be estimated.« less

  1. MAGIC Computer Simulation. Volume 2: Analyst Manual, Part 1

    DTIC Science & Technology

    1971-05-01

    A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1971 4. TITLE AND SUBTITLE MAGIC Computer Simulation Analyst Manual Part 1 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The MAGIC computer simulation generates target description data consisting of item-by-item listings of the target’s components and air

  2. Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterisation

    NASA Astrophysics Data System (ADS)

    Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.

    2018-07-01

    The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of <20% are seen. In contrast, the magnetic properties of annealed steel show the onsets of both recovery and recrystallisation, with recovery accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.

  3. Contact angles and wettability of ionic liquids on polar and non-polar surfaces†

    PubMed Central

    Sousa, Filipa L.; Silva, Nuno J. O.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation–anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation–anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application. PMID:26554705

  4. Contact angles and wettability of ionic liquids on polar and non-polar surfaces.

    PubMed

    Pereira, Matheus M; Kurnia, Kiki A; Sousa, Filipa L; Silva, Nuno J O; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.

  5. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  6. Magical Boxes

    ERIC Educational Resources Information Center

    Costello, Judith

    2005-01-01

    Students get excited when they realize that they can transform a flat sheet of paper into a box. By using different sizes of paper, they can make different sizes of boxes and put a box inside a box, inside a box. These magical boxes within boxes can contain unwanted emotions or special treasures. The project described in this article incorporates…

  7. The role of magical thinking in Obsessive-Compulsive Disorder symptoms and cognitions in an analogue sample.

    PubMed

    Yorulmaz, Orçun; Inozu, Mujgan; Gültepe, Bedirhan

    2011-06-01

    In addition to clinical observations exemplifying biased reasoning styles (e.g., overemphasis of thoughts) and particular ritualistic behaviors, it is also empirically supported that magical beliefs are also associated with Obsessive-Compulsive Disorder (OCD) symptoms and some cognitions. It should be noted, however, that most empirical studies have been carried out on the samples from Western cultures, even though these beliefs were culturally determined. Thus, more research is needed in order to understand their roles in the OCD symptoms in different cultural contexts. The present study aimed to examine the impact of magical beliefs in OCD symptoms, cognitions and thought control in a non-Western analogue sample from Turkey. The measures of paranormal beliefs, fusion of thoughts-actions, obsessive beliefs, strategies of thought control and OCD symptoms were administered to an undergraduate sample. Consistent with findings in the literature, the analyses of group comparisons, correlation and regression showed that even after controlling general negative affect, magical beliefs were still associated with OCD symptoms, some beliefs and control strategies, namely the symptoms of obsessional thoughts and checking, fusions of thoughts and actions in likelihood, faulty beliefs in perfectionism-certainty and punishment. Some methodological concerns such as cross-sectional nature, inclusion of only non-clinical sample were major restrictions of the present study. Evidence that magical thinking is a critical factor in the OCD is supported once more in a different cultural context. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review

    PubMed Central

    Lecourt, Julien; Bishop, Gerard

    2018-01-01

    Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre- and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshouse) assessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed. PMID:29320410

  9. Future constraints on angle-dependent non-Gaussianity from large radio surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Shiraishi, Maresuke; Bartolo, Nicola; Bertacca, Daniele; Liguori, Michele; Matarrese, Sabino; Norris, Ray P.; Parkinson, David

    2017-03-01

    We investigate how well future large-scale radio surveys could measure different shapes of primordial non-Gaussianity; in particular we focus on angle-dependent non-Gaussianity arising from primordial anisotropic sources, whose bispectrum has an angle dependence between the three wavevectors that is characterized by Legendre polynomials PL and expansion coefficients cL. We provide forecasts for measurements of galaxy power spectrum, finding that Large-Scale Structure (LSS) data could allow measurements of primordial non-Gaussianity that would be competitive with, or improve upon, current constraints set by CMB experiments, for all the shapes considered. We argue that the best constraints will come from the possibility to assign redshift information to radio galaxy surveys, and investigate a few possible scenarios for the EMU and SKA surveys. A realistic (futuristic) modeling could provide constraints of fNLloc ≈ 1(0 . 5) for the local shape, fNL of O(10) (O(1)) for the orthogonal, equilateral and folded shapes, and cL=1 ≈ 80(2) , cL=2 ≈ 400(10) for angle-dependent non-Gaussianity showing that only futuristic galaxy surveys will be able to set strong constraints on these models. Nevertheless, the more futuristic forecasts show the potential of LSS analyses to considerably improve current constraints on non-Gaussianity, and so on models of the primordial Universe. Finally, we find the minimum requirements that would be needed to reach σ(cL=1) = 10, which can be considered as a typical (lower) value predicted by some (inflationary) models.

  10. Fast Magic-Angle Spinning Three-Dimensional NMR Experiment for Simultaneously Probing H-H and N-H Proximities in Solids.

    PubMed

    Reddy, G N Manjunatha; Malon, Michal; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2016-12-06

    A fast magic-angle spinning (MAS, 70 kHz) solid-state NMR experiment is presented that combines 1 H Double-Quantum (DQ) and 14 N- 1 H HMQC (Heteronuclear Multiple-Quantum Coherence) pulse-sequence elements, so as to simultaneously probe H-H and N-H proximities in molecular solids. The proposed experiment can be employed in both two-dimensional (2D) and three-dimensional (3D) versions: first, a 2D 14 N HMQC-filtered 1 H-DQ experiment provides specific DQ-SQ correlation peaks for proton pairs that are in close proximities to the nitrogen sites, thereby achieving spectral filtration. Second, a proton-detected three-dimensional (3D) 1 H(DQ)- 14 N(SQ)- 1 H(SQ) experiment correlates 1 H(DQ)- 1 H(SQ) chemical shifts with 14 N shifts such that longer range N···H-H correlations are observed between protons and nitrogen atoms with internuclear NH distances exceeding 3 Å. Both 2D and 3D versions of the proposed experiment are demonstrated for an amino acid hydrochloride salt, l-histidine·HCl·H 2 O, and a DNA nucleoside, guanosine·2H 2 O. In the latter case, the achieved spectral filtration ensures that DQ cross peaks are only observed for guanine NH and CH8 1 H resonances and not ribose and water 1 H resonances, thus providing insight into the changes in the solid-state structure of this hydrate that occur over time; significant changes are observed in the NH and NH 2 1 H chemical shifts as compared to the freshly recrystallized sample previously studied by Reddy et al., Cryst. Growth Des. 2015, 15, 5945.

  11. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  12. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    NASA Astrophysics Data System (ADS)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  13. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  14. An fMRI investigation of expectation violation in magic tricks.

    PubMed

    Danek, Amory H; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L

    2015-01-01

    Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic - control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician's brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.

  15. A framework for using magic to study the mind.

    PubMed

    Rensink, Ronald A; Kuhn, Gustav

    2014-01-01

    Over the centuries, magicians have developed extensive knowledge about the manipulation of the human mind-knowledge that has been largely ignored by psychology. It has recently been argued that this knowledge could help improve our understanding of human cognition and consciousness. But how might this be done? And how much could it ultimately contribute to the exploration of the human mind? We propose here a framework outlining how knowledge about magic can be used to help us understand the human mind. Various approaches-both old and new-are surveyed, in terms of four different levels. The first focuses on the methods in magic, using these to suggest new approaches to existing issues in psychology. The second focuses on the effects that magic can produce, such as the sense of wonder induced by seeing an apparently impossible event. Third is the consideration of magic tricks-methods and effects together-as phenomena of scientific interest in their own right. Finally, there is the organization of knowledge about magic into an informative whole, including the possibility of a science centered around the experience of wonder.

  16. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  17. Non-destructive control of graphite electrodes with use of current displacement effect

    NASA Astrophysics Data System (ADS)

    Myatezh, A. V.; Malozyomov, B. V.; Smirnov, M. A.

    2017-10-01

    The work is devoted to methods of nondestructive diagnostics and their use for solving the problem of diagnosing various defects in solid surface of graphite electrodes used in steelmaking furnaces. Various non-destructive control methods of materials are analyzed. In the article, methods of eddy-current defectoscopy of graphite electrodes are considered. Rationalization of the sensitivity increase of the method and localization of damage is described. Imitating modeling of electromagnetic processes was executed; results were made and conclusions were drawn.

  18. Review of fundamental physics results with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Rico, Javier

    2017-01-01

    The MAGIC Cherenkov telescopes are powerful tools for the exploration of the Physics frontiers, addressing topics such as the nature of dark matter and its distribution in the Universe, or the search for quantum gravitational effects in photon propagation. Since the beginning of operations in 2004, MAGIC has studied these questions thanks to hundreds of hours of observations of different targets, and has produced several high-impact results. Those include, significantly, the most constraining limits to the WIMP annihilation cross-section for particle masses above few hundred GeV, from observations of dwarf spheroidal (dSph) satellite galaxies. More recently, we have completed a combined analysis of MAGIC and Fermi-LAT observations of dSphs, obtaining limits for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis - and improving the previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. In this talk, I present an overview of the status and results of MAGIC Fundamental Physics projects, including our latest results concerning searches for Lorentz Invariance violation (LIV), and dark matter searches. I will propose the use of the framework developed for the MAGIC/Fermi-LAT joint analysis for the combination of results from the current generation of gamma-ray and neutrino detectors.

  19. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  20. Polar and singular value decomposition of 3×3 magic squares

    NASA Astrophysics Data System (ADS)

    Trenkler, Götz; Schmidt, Karsten; Trenkler, Dietrich

    2013-07-01

    In this note, we find polar as well as singular value decompositions of a 3×3 magic square, i.e. a 3×3 matrix M with real elements where each row, column and diagonal adds up to the magic sum s of the magic square.

  1. Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR.

    PubMed

    De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G

    2008-03-28

    We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5

  2. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation

  3. The MAGIC telescope for gamma-ray astronomy above 30 GeV

    NASA Astrophysics Data System (ADS)

    Moralejo, A.; Baixeras, C.; Bastieri, D.; Bednarek, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Böck, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Commichau, S.; Contreras, J. L.; Cortina, J.; de Angelis, A.; de los Reyes, R.; de Lotto, B.; Domingo, C.; Domingo, E.; Dorner, D.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giannitrapani, R.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacon, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kim, K.-S.; Kneiske, T.; Laatiaoui, M.; Laille, A.; Lindfors, E.; Longo, F.; López, M.; López, J.; Lorenz, E.; Lucarelli, F.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Mirzoyan, R.; Mizobuchi, S.; Moralejo, A.; Oña-Wilhelmi, E.; Orduña, R.; Paneque, D.; Paoletti, R.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Pin, M.; Robert, A.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Shinozaki, K.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stark, L. S.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Viertel, G.; Vitale, V.; Volkov, S.; Wagner, R.; Wibig, T.; Wittek, W.

    2003-12-01

    The MAGIC telescope, presently at its commissioning phase, will become fully operative by the end of 2003. Placed at the Roque de los Muchachos Observatory (ORM) on the island of La Palma, MAGIC is the largest among new generation ground-based gamma ray telescopes, and will reach an energy threshold as low as 30 GeV. The range of the electromagnetic spectrum between 10 and 250 GeV remains to date mostly unexplored. Observations in this energy region are expected to provide key data for the understanding of a wide variety of astrophysical phenomena belonging to the so-called ``non thermal Universe'', like the processes in the nuclei of active galaxies, the radiation mechanisms of pulsars and supernova remnants, and the enigmatic gamma-ray bursts. An overview of the telescope and its physics goals is presented.

  4. Evaluation of magical thinking: validation of the Illusory Beliefs Inventory.

    PubMed

    Shihata, Sarah; Egan, Sarah J; Rees, Clare S

    2014-01-01

    Magical thinking has been related to obsessive-compulsive disorder; yet, little research has examined this construct in other anxiety disorders. The Illusory Beliefs Inventory (IBI) is a recently developed measure of magical thinking. The aim of this study was to investigate the psychometric properties of this new measure and to determine if magical thinking accounts for pathological worry beyond the well-researched constructs of intolerance of uncertainty (IU) and perfectionism. A sample of 502 participants completed an online survey. Confirmatory factor analysis identified a three-factor solution for the IBI, and the measure had good internal consistency (α = .92), test-retest reliability (r = .94) and discriminant validity. Magical thinking, IU, and perfectionism all predicted pathological worry; however, magical thinking accounted for less than 1% of unique variance in worry, suggesting that it is not strongly related to worry. Further investigation regarding the validity and clinical utility of the IBI is required.

  5. Resonant ultrasound spectroscopy and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  6. Pulsar observations with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Fidalgo, David

    2016-07-01

    The vast majority of spectra of gamma-ray pulsars exhibit an exponential cut-off at a few GeV, as seen by the Large Area Telescope (LAT) on board of the Fermi satellite. Due to this cut-off, current Imaging Atmospheric Cherenkov Telescopes (IACTs) with an energy threshold as low as 30 GeV, struggle to detect pulsars. So far, emission above 50 GeV has been confirmed only for the Crab and Vela pulsars. In the case of the former, the spectrum even extends up to about 1 TeV firmly revealing a second emission component. To further understand the emission mechanism of gamma-ray pulsars, the MAGIC collaboration continues the search of pulsars above 50 GeV. In this talk we report on recent results on the Crab and Geminga Pulsar obtained with the MAGIC telescopes, including the analysis of data taken with a new trigger system lowering the energy threshold of the MAGIC telescopes.

  7. Spectroscopic Measurements of L X-rays with a TES Microcalorimeter for a Non-destructive Assay of Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke; Sugimoto, Tetsuya; Kiguchi, Yu; Iyomoto, Naoko; Mitsuda, Kazuhisa

    2018-05-01

    Spectroscopic measurement of the L X-rays emitted from transuranium elements is one of the most useful techniques for the non-destructive assays of nuclear materials. In this study, we fabricated a transition-edge-sensor (TES) microcalorimeter using a 5-μm-thick Au absorber and tested its ability to measure the L X-rays emitted from two transuranium elements, Np-237 and Cm-244 sources. The microcalorimeter was found to successfully measure the L X-rays with an energy resolution (full width at half maximum) below 70 eV. These results confirm that L X-rays can be identified using the proposed TES microcalorimeter to enable non-destructive assays of transuranium elements.

  8. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE PAGES

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.; ...

    2016-08-11

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  9. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  10. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E; Elliott, K Wade; Dzyuba, Sergei V; Varga, Krisztina

    2016-12-01

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentration of ionic liquids, has been challenging. In the present work the 13 C, 15 N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid - protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4 -mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). Interactions between GB1 and [C 4 -mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15 N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4 -mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of the molecular mechanism of ionic liquid - protein interactions.

  11. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  12. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  13. Ambidexterity and magical ideation.

    PubMed

    Barnett, Kylie J; Corballis, Michael C

    2002-01-01

    In a sample of 250 healthy undergraduate students, scores on a scale of magical ideation rose to a peak at the point of ambilaterality on a scale of hand preference, and fell away with increasing right- or left-handedness. This effect mirrors that reported by Crow, Crow, Done, and Leask (1998) who found a dip in academic abilities at the point of ambilaterality, or what they call ''the point of hemispheric indecision''. We relate these findings to genetic theories of laterality in which one allele (RS+) codes for left-cerebral dominance while the other (RS-) leaves laterality to chance. RS-- homozygotes may be susceptible to a lack of dominance, resulting in a disposition to magical ideation and an increased risk of schizophrenia, but also enhanced creativity and lateral thinking.

  14. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  15. [The magic universe of cures: the role of magic practices and witchcraft in the universe of 17th century Mato Grosso].

    PubMed

    Sá, Mario

    2009-01-01

    The article analyzes the role of healing agents played by practitioners of magic and witchcraft in Mato Grosso society during the 17th century. It observes that magic and witchcraft were developed as competitors, alternatives or associated with other forms of healing (official and lay). It points out how such roles contributed to the process of subjugating its practitioners, especially Africans, Indians and their descendents, and were appropriated as an opportunity for survival in the colonial slave society. The pastoral visit made by Bruno Pinna in 1785 to Cuiabá and nearby areas served as the principal source of knowledge regarding the practices and practitioners of magic and witchcraft.

  16. MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2012-01-01

    Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.

  17. A framework for using magic to study the mind

    PubMed Central

    Rensink, Ronald A.; Kuhn, Gustav

    2015-01-01

    Over the centuries, magicians have developed extensive knowledge about the manipulation of the human mind—knowledge that has been largely ignored by psychology. It has recently been argued that this knowledge could help improve our understanding of human cognition and consciousness. But how might this be done? And how much could it ultimately contribute to the exploration of the human mind? We propose here a framework outlining how knowledge about magic can be used to help us understand the human mind. Various approaches—both old and new—are surveyed, in terms of four different levels. The first focuses on the methods in magic, using these to suggest new approaches to existing issues in psychology. The second focuses on the effects that magic can produce, such as the sense of wonder induced by seeing an apparently impossible event. Third is the consideration of magic tricks—methods and effects together—as phenomena of scientific interest in their own right. Finally, there is the organization of knowledge about magic into an informative whole, including the possibility of a science centered around the experience of wonder. PMID:25698983

  18. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  19. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Magical ideation is related to questionnaire but not behavioural measures of handedness.

    PubMed

    Grimshaw, Gina M; Yelle, Serena K; Schoger, Jamie; Bright, Kathleen S

    2008-01-01

    Magical ideation has repeatedly been shown to be related to handedness, with mixed-handers exhibiting higher levels of magical thinking. However, most previous research has assessed hand preference with a questionnaire measure, leaving open the possibility that the correlation reflects some aspect of questionnaire-taking behaviour and not an underlying neuropsychological relationship. The present study addressed this issue by administering the Magical Ideation Scale (Eckblad & Chapman, 1983), the Waterloo Handedness Questionnaire-Revised (Elias, Bryden, & Bulman-Fleming, 1998), and a manual dot-filling task (Tapley & Bryden, 1985) as a behavioural measure of handedness to an undergraduate student sample. The expected relationship between magical ideation and handedness as assessed by the questionnaire was observed. However, magical ideation was not related to the behavioural measure of handedness. Results cast doubt on a neuropsychological interpretation of the relationship between handedness and magical ideation in sub-clinical populations.

  1. Non-destructive evaluation of containment walls in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the

  2. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    PubMed

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  3. The applicability of a material-treatment laser pulse in non-destructive evaluations.

    PubMed

    Hrovatin, R; Petkovsek, R; Diaci, J; Mozina, J

    2006-12-22

    A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.

  4. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    PubMed

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  5. [Further Distinctions between Magic, Reality, Religion, and Fiction. Commentaries.

    ERIC Educational Resources Information Center

    Boyer, Pascal; Taylor, Marjorie; Harris, Paul L.; Chandler, Michael; Johnson, Carl N.

    1997-01-01

    Contains the following commentaries: "Further Distinctions between Magic, Reality, Religion, and Fiction"; "The Role of Creative Control and Culture in Children's Fantasy/Reality Judgments"; "The Last of the Magicians? Children, Scientists, and the Invocation of Hidden Causal Powers"; "Rescuing Magical Thinking…

  6. A Simple Parameterization of 3 x 3 Magic Squares

    ERIC Educational Resources Information Center

    Trenkler, Gotz; Schmidt, Karsten; Trenkler, Dietrich

    2012-01-01

    In this article a new parameterization of magic squares of order three is presented. This parameterization permits an easy computation of their inverses, eigenvalues, eigenvectors and adjoints. Some attention is paid to the Luoshu, one of the oldest magic squares.

  7. Assessment of Magical Beliefs about Food and Health.

    PubMed

    Lindeman, M; Keskivaara, P; Roschier, M

    2000-03-01

    The Magical Beliefs About Food and Health scale (MFH) was developed to assess individual differences in the tendency to adopt eating and health instructions that many magazines, health care books and food ideologies regard as valid but which obey universal laws of similarity and contagion. In a study of 216 individuals, the total MFH score showed good internal consistency and it was associated with various validity criteria as hypothesized (e.g. vegetarianism and other ideological commitments to food choice, female gender, increased neuroticism, experiential thinking, positive attitudes towards alternative medicine, low sensation seeking and endorsement of universalism values). Factor analysis yielded two factors: General Magical Beliefs and Animal Products as Food Contaminants. In addition, three other items (the Animal Products as Personality Contaminants scale) cross-loaded on the two factors. The factor structure and test-retest reliability were confirmed with separate samples. The results showed that the total MFH score is a reliable and valid measure of magical food and health beliefs, and that the subscales may prove useful when a multidimensional assessment of magical beliefs is needed.

  8. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    PubMed Central

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  9. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  10. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A tale of two morphs: modeling pollen transfer, magic traits, and reproductive isolation in parapatry.

    PubMed

    Haller, Benjamin C; de Vos, Jurriaan M; Keller, Barbara; Hendry, Andrew P; Conti, Elena

    2014-01-01

    The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a "magic trait" mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not "magic" in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.

  12. Template synthesis of test tube nanoparticles using non-destructive replication

    PubMed Central

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive “bionanoreactors” loaded with enzymes. PMID:23376956

  13. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    NASA Astrophysics Data System (ADS)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  14. Angle imaging: Advances and challenges

    PubMed Central

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  15. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  16. Magical thinking decreases across adulthood.

    PubMed

    Brashier, Nadia M; Multhaup, Kristi S

    2017-12-01

    Magical thinking, or illogical causal reasoning such as superstitions, decreases across childhood, but almost no data speak to whether this developmental trajectory continues across the life span. In four experiments, magical thinking decreased across adulthood. This pattern replicated across two judgment domains and could not be explained by age-related differences in tolerance of ambiguity, domain-specific knowledge, or search for meaning. These data complement and extend findings that experience, accumulated over decades, guides older adults' judgments so that they match, or even exceed, young adults' performance. They also counter participants' expectations, and cultural sayings (e.g., "old wives' tales"), that suggest that older adults are especially superstitious. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue.

    PubMed

    Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles

    2013-08-01

    In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.

  18. Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC.

    PubMed

    Terada, K; Sato, A; Ninomiya, K; Kawashima, Y; Shimomura, K; Yoshida, G; Kawai, Y; Osawa, T; Tachibana, S

    2017-11-13

    Electron- or X-ray-induced characteristic X-ray analysis has been widely used to determine chemical compositions of materials in vast research fields. In recent years, analysis of characteristic X-rays from muonic atoms, in which a muon is captured, has attracted attention because both a muon beam and a muon-induced characteristic X-ray have high transmission abilities. Here we report the first non-destructive elemental analysis of a carbonaceous chondrite using one of the world-leading intense direct current muon beam source (MuSIC; MUon Science Innovative Channel). We successfully detected characteristic muonic X-rays of Mg, Si, Fe, O, S and C from Jbilet Winselwan CM chondrite, of which carbon content is about 2 wt%, and the obtained elemental abundance pattern was consistent with that of CM chondrites. Because of its high sensitivity to carbon, non-destructive elemental analysis with a muon beam can be a novel powerful tool to characterize future retuned samples from carbonaceous asteroids.

  19. Thawing Out Some Magic

    ERIC Educational Resources Information Center

    Hippler, Arthur E.

    1975-01-01

    Psychiatrists have learned that delivering mental health services in a culture long dominated by magical thinking is not easy. Article discussed the problem of bringing the Eskimo into the care of the Alaska Psychiatric Institute and contemporary society. (Editor/RK)

  20. Logistical Support of AirLand Operations: Myth or Magic?

    DTIC Science & Technology

    1992-05-04

    I4 May 1992 Master’s Thesis, 4 Aug 91-5 Jun 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS .Support of AirLand Operations: Myth or Magic 6. AUTHOR(S) HA•J...SUPPORT OF AIRLAND OPERATIONS: MYTH OR MAGIC A thesis nresented to the Faculty of the U.S. Army Command and General Staff College in oartial fulfillment of...inerati,,,: Myth or Magic . Aprroved by: .Theq is Comni tt-t- fTh~airrnan; J ),I i .5 .a rria A.n . T.T! 3:•, J!. Pnwe r. M’. P. A . " ,ý) VoD" Member

  1. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  2. Does magical thinking produce neutralising behaviour? An experimental investigation.

    PubMed

    Bocci, Laura; Gordon, P Kenneth

    2007-08-01

    Magical thinking is of relevance to obsessive compulsive disorder (OCD), and has been most widely investigated in relation to the cognitive bias known as thought-action fusion (TAF). This is seen as playing a role in the formation of fears about responsibility for harm. We suggest that magical thinking may also characterise some types of neutralising behaviour, which arise in response to those fears, and are a hallmark of the disorder. In an experimental study of 51 undergraduate students, we assessed whether the use of neutralising behaviours in response to an induction of fears of increasing likelihood for harm is related to a propensity for magical thinking. The 75.5% of participants demonstrated at least one form of neutralising behaviour in response to a TAF-induction task. Neutralising was associated with stronger and more persistent responses to the task, and with questionnaire measures of magical ideation. Those who neutralised did not report higher levels of OCD symptoms. It appears that neutralising is a common response in circumstances that provoke a sense of responsibility for harm. Its occurrence may be linked to magical thinking, however, the results from this experimental investigation suggested that this process may not be specific to OCD.

  3. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  4. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  5. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGES

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  6. Sugar Cane Magic.

    ERIC Educational Resources Information Center

    Mower, Nancy Alpert

    The booklet contains a story for middle-grade students which shows how the roles of men and women change through the years. The main characters are three sixth graders in Hawaii: one girl has Hawaiian ancestors, one girl has Japanese ancestors, and one boy has New England missionary ancestors. The children discover a magic stalk of sugar cane…

  7. Response to: Dittrich et al.: Non-Embryo-Destructive Extraction of Pluripotent Embryonic Stem Cells – Overlooked Legal Prohibitions, Professional Legal Consequences and Inconsistencies in Patent Law

    PubMed Central

    Faltus, T.; Storz, U.

    2016-01-01

    The publication of “Non-embryo-destructive Extraction of Pluripotent Embryonic Stem Cells: Implications for Regenerative Medicine and Reproductive Medicine” by Dittrich et al. in Geburtshilfe und Frauenheilkunde 2015; 75: 1239–1242 1 describes various possibilities which could result from the non-embryo-destructive extraction of embryonic stem cells from human blastocysts. But implementing this method is more problematic, both legally and ethically, than the authors have represented it to be and is illegal in Germany. German patent DE 10 2004 062 184 on the non-embryo-destructive extraction of embryonic stem cells referred to by Dittrich et al. contravenes the higher-ranking case-law of the European Court of Justice. Ultimately, the non-embryo-destructive harvesting of embryonic stem cells with the aim of storing these cells for use in potential therapies as proposed by Dittrich et al. is prohibited in Germany and could lead to criminal prosecution. PMID:28094826

  8. Bound states for magic state distillation in fault-tolerant quantum computation.

    PubMed

    Campbell, Earl T; Browne, Dan E

    2010-01-22

    Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.

  9. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at... participation is available for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web...

  10. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National... for each meeting. Please reference the MAGIC Team Web site for updates. Magic Web site: The agendas...

  11. Magic informationally complete POVMs with permutations

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  12. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    NASA Astrophysics Data System (ADS)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  13. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging

    PubMed Central

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model

  14. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.

    PubMed

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model

  15. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces

    PubMed Central

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-01-01

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions. PMID:29292781

  16. Thermal Transmission through Existing Building Enclosures: Destructive Monitoring in Intermediate Layers versus Non-Destructive Monitoring with Sensors on Surfaces.

    PubMed

    Echarri, Víctor; Espinosa, Almudena; Rizo, Carlos

    2017-12-08

    Opaque enclosures of buildings play an essential role in the level of comfort experienced indoors and annual energy demand. The impact of solar radiation and thermal inertia of the materials that make up the multi-layer enclosures substantially modify thermal transmittance behaviour of the enclosures. This dynamic form of heat transfer, additionally affected by indoor HVAC systems, has a substantial effect on the parameters that define comfort. It also has an impact on energy demand within a daily cycle as well as throughout a one-year use cycle. This study describes the destructive monitoring of an existing block of flats located in Alicante. Once the enclosure was opened, sensors of temperature (PT100), air velocity, and relative humidity were located in the different layers of the enclosure, as well as in the interior and exterior surfaces. A pyranometer was also installed to measure solar radiation levels. A temperature data correction algorithm was drawn up to address irregularities produced in the enclosure. The algorithm was applied using a Raspberry Pi processor in the data collection system. The comparative results of temperature gradients versus non-destructive monitoring systems are presented, providing measures of the transmittance value, surface temperatures and indoor and outdoor air temperatures. This remote sensing system can be used in future studies to quantify and compare the energy savings of different enclosure construction solutions.

  17. Non-destructive Detection of Screw Dislocations and the Corresponding Defects Nucleated from Them During SiC Epitaxial Growth and Their Effect on Device Characteristics

    NASA Astrophysics Data System (ADS)

    Das, H.; Sunkari, S.; Naas, H.

    2018-06-01

    In high-volume manufacturing of SiC power devices like Schottky barrier diodes and MOSFETs, especially with the high demands of high reliability applications like the automotive market, the issue of reliability needs to be tackled from multiple angles. It becomes important to isolate and eliminate failure mechanisms at the source rather than just rely on electrical tests. As we enter volume production on 150-mm substrates, an added layer of reliability and improved yield can be added if potential sources of defects are identified and removed. In this work, we present the non-destructive detection of a subset of screw dislocations in N+ doped substrates, trace the preferential nucleation of V-type epitaxial defects and stacking faults from these screw dislocations, and study their electrical effects on Schottky diodes. This enables the screening of highly defective substrates even before committing them to epitaxial growth.

  18. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  19. Development of vibrational spectroscopic methods to rapidly and non-destructively assess quality of chicken breast meat

    USDA-ARS?s Scientific Manuscript database

    Development of Vibrational Spectroscopic Methods to Rapidly and Non-Destructively Assess Quality of Chicken Breast Meat H. Zhuang1, M. Sohn2, S. Trabelsi1 and K. Lawrence1 1Quality and Safety Assessment Research Unit, ARS-USDA, 950 College Station Road, Athens, GA 30605 2University of Georgia, De...

  20. Migration to Current Open Source Technologies by MagIC Enables a More Responsive Website, Quicker Development Times, and Increased Community Engagement

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Koppers, A.; Constable, C.; Tauxe, L.; Jonestrask, L.

    2017-12-01

    The Magnetics Information Consortium (MagIC) supports an online database for the paleo, geo, and rock magnetic communities ( https://earthref.org/MagIC ). Researchers can upload data into the archive and download data as selected with a sophisticated search system. MagIC has completed the transition from an Oracle backed, Perl based, server oriented website to an ElasticSearch backed, Meteor based thick client website technology stack. Using JavaScript on both the sever and the client enables increased code reuse and allows easy offloading many computational operations to the client for faster response. On-the-fly data validation, column header suggestion, and spreadsheet online editing are some new features available with the new system. The 3.0 data model, method codes, and vocabulary lists can be browsed via the MagIC website and more easily updated. Source code for MagIC is publicly available on GitHub ( https://github.com/earthref/MagIC ). The MagIC file format is natively compatible with the PmagPy ( https://github.com/PmagPy/PmagPy) paleomagnetic analysis software. MagIC files can now be downloaded from the database and viewed and interpreted in the PmagPy GUI based tool, pmag_gui. Changes or interpretations of the data can then be saved by pmag_gui in the MagIC 3.0 data format and easily uploaded to the MagIC database. The rate of new contributions to the database has been increasing with many labs contributing measurement level data for the first time in the last year. Over a dozen file format conversion scripts are available for translating non-MagIC measurement data files into the MagIC format for easy uploading. We will continue to work with more labs until the whole community has a manageable workflow for contributing their measurement level data. MagIC will continue to provide a global repository for archiving and retrieving paleomagnetic and rock magnetic data and, with the new system in place, be able to more quickly respond to the community

  1. Magic Universe - The Oxford Guide to Modern Science

    NASA Astrophysics Data System (ADS)

    Calder, Nigel

    2003-11-01

    As a prolific author, BBC commentator, and magazine editor, Nigel Calder has spent a lifetime spotting and explaining the big discoveries in all branches of science. In Magic Universe , he draws on his vast experience to offer readers a lively, far-reaching look at modern science in all its glory, shedding light on the latest ideas in physics, biology, chemistry, medicine, astronomy, and many other fields. What is truly magical about Magic Universe is Calder's incredible breadth. Migrating birds, light sensors in the human eye, black holes, antimatter, buckyballs and nanotubes--with exhilarating sweep, Calder can range from the strings of a piano to the superstrings of modern physics, from Pythagoras's theory of musical pitch to the most recent ideas about atoms and gravity and a ten-dimensional universe--all in one essay. The great virtue of this wide-ranging style--besides its liveliness and versatility--is that it allows Calder to illuminate how the modern sciences intermingle and cross-fertilize one another. Indeed, whether discussing astronauts or handedness or dinosaurs, Calder manages to tease out hidden connections between disparate fields of study. What is most wondrous about the "magic universe" is that one can begin with stellar dust and finish with life itself. Drawing on interviews with more than 200 researchers, from graduate students to Nobel prize-winners, Magic Universe takes us on a high-spirited tour through the halls of science, one that will enthrall everyone interested in science, whether a young researcher in a high-tech lab or an amateur buff sitting in the comfort of an armchair.

  2. Magical ideation -- defense mechanism or neuropathology? A study with multiple sclerosis patients.

    PubMed

    te Wildt, Bert Theodor; Schultz-Venrath, Ulrich

    2004-01-01

    The major psychological stress factor in multiple sclerosis (MS) is loss of control of life. In MS patients with impaired cognition, magical ideation might be a characteristic way of thinking. Proof for this may be the high frequency of alternative treatments used by individuals with MS. The study investigates whether the level of magical ideation in MS patients is higher compared to healthy control subjects and, in case of positive confirmation, with which somatic and psychological features it is associated. Moreover, it is aimed to discuss the modalities of magical ideation in general. A German version of the Magical Ideation Scale was validated with a group of 69 healthy subjects. Ninety-four MS patients were additionally assessed with the Dissociative Experience Scale, the Symptom-Check-List-90-Revised and 5 neuropsychological tests. The Magical Ideation Scale did not reveal a significant difference between MS patients and healthy controls (p = 0.968). Among the MS patients, magical ideation shows a correlation neither with age nor with disability, but a positive correlation (p = 0.007; r = 0.329) with the grade of neuropsychological deficiency. Among the psychological parameters, the highest positive correlation with magical ideation was found in dissociation (p = 0.000; r = 0.520). Magical ideation, sharing common features with dissociation, can be viewed as an early defense mechanism when perceiving a loss of control of life, particularly in early stages of MS. In late stages, when developing neuropsychological deficits, it may occur as a substitute for cognitive coping. The data may encourage clinicians to identify magical ideation. In young and previously diagnosed patients, it is important to acknowledge helplessness and support a rather rational way of coping. Training cognitive skills could be crucial to prevent older patients from losing touch with reality. More generally, the occurrence of a significant amount of magical ideation is discussed both as

  3. Craton destruction and related resources

    NASA Astrophysics Data System (ADS)

    Zhu, Rixiang; Zhang, Hongfu; Zhu, Guang; Meng, Qingren; Fan, Hongrui; Yang, Jinhui; Wu, Fuyuan; Zhang, Zhiyong; Zheng, Tianyu

    2017-10-01

    Craton destruction is a dynamic event that plays an important role in Earth's evolution. Based on comprehensive observations of many studies on the North China Craton (NCC) and correlations with the evolution histories of other cratons around the world, craton destruction has be defined as a geological process that results in the total loss of craton stability due to changes in the physical and chemical properties of the involved craton. The mechanisms responsible for craton destruction would be as the follows: (1) oceanic plate subduction; (2) rollback and retreat of a subducting oceanic plate; (3) stagnation and dehydration of a subducting plate in the mantle transition zone; (4) melting of the mantle above the mantle transition zone caused by dehydration of a stagnant slab; (5) non-steady flow in the upper mantle induced by melting, and/or (6) changes in the nature of the lithospheric mantle and consequent craton destruction caused by non-steady flow. Oceanic plate subduction itself does not result in craton destruction. For the NCC, it is documented that westward subduction of the paleo-Pacific plate should have initiated at the transition from the Middle-to-Late Jurassic, and resulted in the change of tectonic regime of eastern China. We propose that subduction, rollback and retreat of oceanic plates and dehydration of stagnant slabs are the main dynamic factors responsible for both craton destruction and concentration of mineral deposits, such as gold, in the overriding continental plate. Based on global distribution of gold deposits, we suggest that convergent plate margins are the most important setting for large gold concentrations. Therefore, decratonic gold deposits appear to occur preferentially in regions with oceanic subduction and overlying continental lithospheric destruction/modification/growth.

  4. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    NASA Astrophysics Data System (ADS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  5. Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis.

    PubMed

    Luzgin, Mikhail V; Stepanov, Alexander G; Arzumanov, Sergei S; Rogov, Vladimir A; Parmon, Valentin N; Wang, Wei; Hunger, Michael; Freude, Dieter

    2005-12-23

    By using 13C MAS NMR spectroscopy (MAS = magic angle spinning), the conversion of selectively 13C-labeled n-butane on zeolite H-ZSM-5 at 430-470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C-label in the n-butane molecule, and 2) oligomerization-cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl-substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC-MS data provided evidence for a monomolecular mechanism of the 13C-label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (E(a) = 75 kJ mol(-1) for the scrambling and 71 kJ mol(-1) for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n-butane as being the rate-determining stage of the n-butane conversion on zeolite H-ZSM-5.

  6. Magical Ideation and Schizophrenia.

    ERIC Educational Resources Information Center

    George, Leonard; Neufeld, Richard W. J.

    1987-01-01

    Administered the Eckblad and Chapman (1983) Magical Ideation Scale to groups of paranoid and nonparanoid schizophrenics and control subjects. Schizophrenics scored significantly higher than nonschizophrenic patients (mainly cases of affective disorder) and normal control subjects. Discusses theoretical and prognostic utility of this finding.…

  7. Helping, Manipulation, and Magic

    ERIC Educational Resources Information Center

    Frey, Louise A.; Edinburg, Golda M.

    1978-01-01

    The thesis of this article is that an understanding of the primitive origins of the helping process in myth, magic, and ritual may prevent social workers from engaging in practices that negate their clients' ability to work out their own solutions to problems. (Author)

  8. Magical Realist Pathways into and under the Psychotherapeutic Imaginary

    ERIC Educational Resources Information Center

    Speedy, Jane

    2011-01-01

    My experience of people's life stories from my work as a narrative therapist consistently destabilised distinctions between imagined/magical and real experiences. I came to realise that the day-to-day magical realist juxtapositions I came upon were encounters with people's daily lives, as lived, that have remained unacknowledged within the…

  9. Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2018-04-01

    We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004

  10. Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hualan; Price, Morgan N.; Waters, Robert Jordan

    Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. Tomore » identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylumBacteroidetes. IMPORTANCEMolecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.« less

  11. Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria

    DOE PAGES

    Liu, Hualan; Price, Morgan N.; Waters, Robert Jordan; ...

    2018-01-16

    Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term “magic pools.” Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. Tomore » identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylumBacteroidetes. IMPORTANCEMolecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a “magic pool.” The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA “parts,” we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.« less

  12. Non-destructive study of iron gall inks in manuscripts

    NASA Astrophysics Data System (ADS)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  13. On an algebraic structure of dimensionally reduced magical supergravity theories

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shin; Mizoguchi, Shun'ya

    2018-06-01

    We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.

  14. Overhauser effects in non-conducting solids at 1.2 K

    NASA Astrophysics Data System (ADS)

    Ji, X.; Can, T. V.; Mentink-Vigier, F.; Bornet, A.; Milani, J.; Vuichoud, B.; Caporini, M. A.; Griffin, R. G.; Jannin, S.; Goldman, M.; Bodenhausen, G.

    2018-01-01

    Recently, it was observed that protons in non-conducting solids doped with 1,3-bisdiphenylene-2-phenylallyl (BDPA) or its sulfonated derivative (SA-BDPA) can be polarized through Overhauser effects via resonant microwave irradiation. These effects were present under magic angle spinning conditions in magnetic fields between 5 and 18.8 T and at temperatures near 100 K. This communication reports similar effects in static samples at 6.7 T and, more importantly, at temperatures as low as 1.2 K, in a different dynamic regime than in the previous study. Our results provide new information towards understanding the mechanism of the Overhauser effect in non-conducting solids. We discuss possible origins of the fluctuations that can give rise to an Overhauser effect at such low temperatures.

  15. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    DOT National Transportation Integrated Search

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  16. A Compact Low-loss Magic-T using Microstrip-Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Moseley, Samuel H.; Papapolymerou, John; Laskar, Joy

    2007-01-01

    The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively.

  17. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  18. Early Childhood Corner: Take the Magic Out of Your Classroom!

    ERIC Educational Resources Information Center

    Andrews, Angela Giglio

    1995-01-01

    Students are often as mystified by mathematical procedures as they are by magic tricks. This article suggests ways of making the estimation of how many jelly beans in a jar and the 20-questions game less magical and more understandable. (MKR)

  19. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    NASA Astrophysics Data System (ADS)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  20. Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.

    Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to trackmore » oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.« less

  1. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  2. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    NASA Astrophysics Data System (ADS)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  3. Non-destructive examination of interfacial debonding using acoustic emission.

    PubMed

    Li, Haiyan; Li, Jianying; Yun, Xiaofei; Liu, Xiaozhou; Fok, Alex Siu-Lun

    2011-10-01

    This study aims to assess the viability of using the acoustic emission (AE) measurement technique to detect and monitor in situ the interfacial debonding in resin composite restorations due to build-up of shrinkage stresses during polymerization of the composite. The non-destructive testing technique that measures acoustic emission (AE) was used to detect and monitor the interfacial debonding in resin composite during curing of the composite. Four groups of specimens, n=4 each, were tested: (1) intact human molars with Class-I cavities restored with the composite Z100 (3M ESPE, USA); (2) intact human molars with Class-I cavities restored with the composite Filtek™ P90 (3M ESPE, USA); (3) ring samples prepared from the root of a single bovine tooth and 'restored' with Z100; (4) freestanding pea-size specimens of Z100 directly placed on the AE sensor. The restorations in Groups (1)-(3) were bonded to the tooth tissues with the adhesive Adper™ Scotchbond™ SE Self-Etch (3M ESPE, USA). The composites in all the specimens were cured with a blue light (3M ESPE, USA) for 40s. The AE signals were recorded continuously for 10 min from the start of curing. Non-destructive 3D imaging was performed using X-ray micro-computed tomography (micro-CT) to examine the bonding condition at the tooth-restoration interface. The development of AE events followed roughly that of the shrinkage stress, which was determined separately by the cantilever beam method. The number of AE events in the real human tooth samples was more than that in the ring samples, and no AE events were detected in the pea-size specimens placed directly on the AE sensor. The number of AE events recorded in the specimens restored using Z100 was more than that found in specimens restored with Filtek P90. The micro-CT imaging results showed clear interfacial debondings in the tooth specimens restored with Z100 after curing, but no clear debonding was found in the P90 specimens. The AE technique is an effective

  4. Automatic non-destructive system for quality assurance of welded elements in the aircraft industry

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Waszczuk, Paweł; Szydłowski, Michał; Szwagiel, Mariusz

    2018-04-01

    Flaws that might be a result of the welding process have to be detected, in order to assure high quality thus reliability of elements exploited in aircraft industry. Currently the inspection stage is conducted manually by a qualified workforce. There are no commercially available systems that could support or replace humans in the flaw detection process. In this paper authors present a novel non-destructive system developed for quality assurance purposes of welded elements utilized in the aircraft industry.

  5. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  6. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    NASA Astrophysics Data System (ADS)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  7. Studies of an Isolated 15N- 15N Spin Pair. Off-Angle Fast-Sample-Spinning NMR and Self-Consistent-Field Calculations for Diazo Systems

    NASA Astrophysics Data System (ADS)

    Challoner, Robin; Harris, Robin K.; Tossell, John A.

    1997-05-01

    An off-magic-angle spinning study of the nonassociated molecular solid, doubly15N-labeled 5-methyl-2-diazobenzenesulphonic acid hydrochloride (I) is reported. The validity of the off-magic-angle spinning approach under fast-spinning conditions is verified by average Hamiltonian theory. Ab initio SCF calculations were performed on the simpler molecule, C6H5N2+, to provide the shielding parameters, the dipolar coupling between the two nitrogen nuclei, and the electric field gradient existing at both the α-nitrogen and β-nitrogen sites. The calculated values are in good agreement with the shielding and effective dipolar coupling data elucidated in the present investigation, and with a previous study of the two singly15N-labeled isotopomers in which information concerning the electric field gradient at the α and β sites was deduced.

  8. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  9. Reliability and reproducibility of disc-foveal angle measurements by non-mydriatic fundus photography.

    PubMed

    Le Jeune, Caroline; Chebli, Fayçal; Leon, Lorette; Anthoine, Emmanuelle; Weber, Michel; Péchereau, Alain; Lebranchu, Pierre

    2018-01-01

    Abnormal torsion could be associated with cyclovertical strabismus, but torsion measurements are not reliable in children. To assess an objective fundus torsion evaluation in a paediatric population, we used Non-Mydriatic Fundus photography (NMFP) in healthy and cyclovertical strabismus patients to evaluate the disc-foveal angle over time and observers. We used a retrospective set of NMFP including 24 A or V-pattern strabismus and 27 age-matched normal children (mean age 6.4 and 6.7 years respectively), taken during 2 distinct follow-up consultations (separated by 251 and 479 days respectively). Each disc-foveal angle measurement (from which the ocular torsion can be assessed) was performed by 5 different observers, using graphical software and based on reproducible fundus anatomical marks. Statistical analysis was performed with a multivariate ANOVA using group, time and observers as factors, in addition to intraclass coefficient correlation (ICC) to assess measurement reproducibility. A significant difference of disc-foveal angle measures was observed between groups (p<0,001): 18.73° (SD = 6.42), -3,25° (SD = 5.51) and 6,89° (SD = 4,41) respectively for V-pattern, A- pattern and normal subjects. Neither observers (F = 0,2028 p = 0,9369) nor time between 1st and 2nd NMFP (F = 0,6312 p = 0,4271) seem to influence the measure of disc-foveal angle. The evaluation of disc-foveal angle was very reproducible between observers (ICC>0,97). Abnormal amount of objective torsion could be associated with alphabet-pattern strabismus. Disc-foveal angle evaluation by NMFP in a children population appears as a non-invasive, reliable and reproducible method.

  10. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  11. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  12. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei

    2013-05-01

    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  13. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  14. MagIC, a genetically encoded fluorescent indicator for monitoring cellular Mg2+ using a non-Förster resonance energy transfer ratiometric imaging approach

    NASA Astrophysics Data System (ADS)

    Koldenkova, Vadim Pérez; Matsuda, Tomoki; Nagai, Takeharu

    2015-10-01

    Intracellular Mg roles are commensurate with its abundance in the cell cytoplasm. However, little is known about Mg subcellular dynamics, primarily due to the lack of suitable Mg-selective tools to monitor this ion in intracellular compartments. To cope with this lack, we developed a Mg-sensitive indicator-MagIC (indicator for Magnesium Imaging in Cell) -composed of a functionalized yellow fluorescent protein (FP) variant fused to a red-emitting FP serving as a reference, thus allowing ratiometric imaging of Mg. MagIC expressed in mammalian cells is homogeneously distributed between the cytosol and nucleus but its fusion with appropriate targeting sequences redirects it to mitochondria or the endoplasmic reticulum. MagIC shows little interference by intracellular Ca [Kd(Mg2+)=5.1 mM Kd(Ca2+)=4.8 mM] and its kinetic properties (k=84 s-1) approach those of indicator dyes. With MagIC, as reported previously, we also observed a cytosolic Mg increase provoked by application of 50 mM MgCl2 in the medium. This effect is, however, mimicked by 75 mM KCl or 150 mM D-sorbitol addition, indicating that it is a response to the associated hyperosmotic shock and not to Mg itself. Our results confirm the functionality of MagIC as a useful tool for the long-awaited possibility of prolonged and organelle-specific monitoring of cellular Mg.

  15. MAGIC: Model and Graphic Information Converter

    NASA Technical Reports Server (NTRS)

    Herbert, W. C.

    2009-01-01

    MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

  16. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Liao, Zuolei; Nyman, May

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  17. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  18. The use of a selective saturation pulse to suppress t1 noise in two-dimensional 1H fast magic angle spinning solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Robertson, Aiden J.; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P.

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+ kHz) suppresses t1 noise in the indirect dimension of two-dimensional 1H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl 1H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion - this is quantified by comparing two-dimensional 1H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear 1H-1H double quantum (DQ)/single quantum (SQ) MAS and 14N-1H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments.

  19. The use of a selective saturation pulse to suppress t1 noise in two-dimensional (1)H fast magic angle spinning solid-state NMR spectroscopy.

    PubMed

    Robertson, Aiden J; Pandey, Manoj Kumar; Marsh, Andrew; Nishiyama, Yusuke; Brown, Steven P

    2015-11-01

    A selective saturation pulse at fast magic angle spinning (MAS) frequencies (60+kHz) suppresses t1 noise in the indirect dimension of two-dimensional (1)H MAS NMR spectra. The method is applied to a synthetic nucleoside with an intense methyl (1)H signal due to triisopropylsilyl (TIPS) protecting groups. Enhanced performance in terms of suppressing the methyl signal while minimising the loss of signal intensity of nearby resonances of interest relies on reducing spin diffusion--this is quantified by comparing two-dimensional (1)H NOESY-like spin diffusion spectra recorded at 30-70 kHz MAS. For a saturation pulse centred at the methyl resonance, the effect of changing the nutation frequency at different MAS frequencies as well as the effect of changing the pulse duration is investigated. By applying a pulse of duration 30 ms and nutation frequency 725 Hz at 70 kHz MAS, a good compromise of significant suppression of the methyl resonance combined with the signal intensity of resonances greater than 5 ppm away from the methyl resonance being largely unaffected is achieved. The effectiveness of using a selective saturation pulse is demonstrated for both homonuclear (1)H-(1)H double quantum (DQ)/single quantum (SQ) MAS and (14)N-(1)H heteronuclear multiple quantum coherence (HMQC) two-dimensional solid-state NMR experiments. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Neuroscience, Magic, and Counseling

    ERIC Educational Resources Information Center

    Echterling, Lennis G.; Presbury, Jack; Cowan, Eric

    2012-01-01

    Recent findings in neuroscience have identified principles, such as attention management and change blindness, which stage magicians exploit to create illusions. Neuroscientists have also revealed how mirror neurons and oxytocin enhance the impact of magic. In other words, magicians are just as much practitioners of sleight of mind as they are of…

  1. Magical Mysteries. Texas Reading Club, 1984. A Librarian's Planning Handbook.

    ERIC Educational Resources Information Center

    Oliver, Jim

    Designed to encourage library use by Texas youth, the Texas Reading Club programs usually include a structured reading program and a variety of entertaining literature-related storyhours, puppet shows, films, and other attractive happenings. This handbook for the 1984 theme--"magical mysteries"--focuses on mysteries, magic, and adventure…

  2. Gamma-ray blazars: the combined AGILE and MAGIC views

    NASA Astrophysics Data System (ADS)

    Persic, M.; De Angelis, A.; Longo, F.; Tavani, M.

    The large FOV of the AGILE Gamma-Ray Imaging Detector (GRID), 2.5 sr, will allow the whole sky to be surveyed once every 10 days in the 30 MeV - 50 GeV energy band down to 0.05 Crab Units. This fact gives the opportunity of performing the first flux-limited, high-energy g-ray all-sky survey. The high Galactic latitude point-source population is expected to be largely dominated by blazars. Several tens of blazars are expected to be detected by AGILE (e.g., Costamante & Ghisellini 2002), about half of which accessible to the ground-based MAGIC Cherenkov telescope. The latter can then carry out pointed observations of this subset of AGILE sources in the 50GeV - 10TeV band. Given the comparable sensitivities of AGILE/GRID and MAGIC in adjacent energy bands where the emitted radiation is produced by the same (e.g., SSC) mechanism, we expect that most of these sources can be detected by MAGIC. We expect this broadband g-ray strategy to enable discovery by MAGIC of 10-15 previously unknown TeV blazars.

  3. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    PubMed

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  4. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    NASA Astrophysics Data System (ADS)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  5. Distribution of Facial Exposure to Non-melanoma Biologically Effective UV Irradiance Changes by Rotation Angles.

    PubMed

    Wang, Fang; Yu, Jia Ming; Yang, De Qi; Gao, Qian; Hua, Hui; Liu, Yang

    2017-02-01

    To show the distribution of facial exposure to non-melanoma biologically effective UV irradiance changes by rotation angles. This study selected the cheek, nose, and forehead as representative facial sites for UV irradiance measurements, which were performed using a rotating manikin and a spectroradiometer. The measured UV irradiance was weighted using action spectra to calculate the biologically effective UV irradiances that cause non-melanoma (UVBEnon-mel) skin cancer. The biologically effective UV radiant exposure (HBEnon-mel) was calculated by summing the UVBEnon-mel data collected over the exposure period. This study revealed the following: (1) the maximum cheek, nose and forehead exposure UVA and UVB irradiance times and solar elevation angles (SEA) differed from those of the ambient UV irradiance and were influenced by the rotation angles; (2) the UV irradiance exposure increased in the following order: cheek < nose < forehead; (3) the distribution of UVBEnon-mel irradiance differed from that of unweighted UV radiation (UVR) and was influenced by the rotation angles and exposure times; and (4) the maximum percentage decreases in the UVBEnon-mel radiant exposure for the cheek, nose and forehead from 0°to 180°were 48.41%, 69.48% and 71.71%, respectively. Rotation angles relative to the sun influence the face's exposure to non-melanoma biologically effective UV. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Magic While They are Young

    ERIC Educational Resources Information Center

    Cox, Anne Mae

    1974-01-01

    Magic squares are used both as a vehicle for arithmetic drill and the development of mathematical concepts for second-grade students. By searching for patterns within the squares, additional number concepts are developed along with the concept of symmetry. (JP)

  7. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  8. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography.

    PubMed

    Hughes, Nathan; Askew, Karen; Scotson, Callum P; Williams, Kevin; Sauze, Colin; Corke, Fiona; Doonan, John H; Nibau, Candida

    2017-01-01

    Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (μCT). The image analysis pipeline developed automatically identifies plant material of interest in μCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.

  9. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar)

    PubMed Central

    Pandey, Ashok Kumar; Yadav, Swati

    2010-01-01

    Background: Madhunashini (Gymnema sylvestre R. Br.) commonly known as ‘Gudmar’ in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. Methods: In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Results: Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1st harvest during October matured in June at the time of 2nd harvest. Conclusion: Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes. PMID:21589758

  10. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar).

    PubMed

    Pandey, Ashok Kumar; Yadav, Swati

    2010-09-01

    Madhunashini (Gymnema sylvestre R. Br.) commonly known as 'Gudmar' in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1(st) harvest during October matured in June at the time of 2(nd) harvest. Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes.

  11. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  12. The use of magical plants by curanderos in the Ecuador highlands

    PubMed Central

    Cavender, Anthony P; Albán, Manuel

    2009-01-01

    Although the use of plants for treating supernaturally caused illnesses (e.g., soul loss, evil wind, witchcraft) has been documented in the Ecuador highlands, so-called magical plants have received much less focused attention than plants used for treating naturalistic disorders. Drawing on interviews done in 2002 and 2003 with 116 curanderos residing in the Ecuador highlands, this paper examines the characteristics of plants identified as magical, how they are used, and how the study of magical plants provides insights into the mindscape of residents of the highlands. PMID:19161618

  13. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    PubMed Central

    Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav

    2015-01-01

    Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626

  14. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two

  15. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    DOT National Transportation Integrated Search

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  16. Magical ideation, creativity, handedness, and cerebral asymmetries: a combined behavioural and fMRI study.

    PubMed

    Badzakova-Trajkov, Gjurgjica; Häberling, Isabelle S; Corballis, Michael C

    2011-08-01

    Magical ideation has been shown to be related to measures of hand preference, in which those with mixed handedness exhibit higher levels of magical ideation than those with either consistent left- or right-handedness. It is unclear whether the relation between magical ideation and hand preference is the result of a bias in questionnaire-taking behaviour or of some neuropsychological concomitant of cerebral specialization. We sought to replicate this finding and further investigate how magical ideation is related to other measures of laterality, including handedness based on finger-tapping performance, and cerebral asymmetries for language, spatial judgment, and face processing as revealed by fMRI. Creative achievement was also assessed by questionnaire and correlated with magical ideation and the other measures. Magical ideation and creativity were positively correlated, and both were negatively correlated with absolute hand preference but not with hand performance or with any of the cerebral asymmetries being assessed. The results do not support the notion that the observed association between magical ideation, creativity and hand preference has a neuropsychological explanation based on reduced cerebral lateralization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Glamour and Spelling: Reclaiming Magical Thinking in the Composition Classroom.

    ERIC Educational Resources Information Center

    Wagner, Julia

    It is a good thing to demolish "magical thinking" if it refers to the view of language for which words have fixed, inevitable meanings. Words are often deprived of their meanings and reduced to verbal noises, producing involuntary responses like knee-reflexes. Various critics have discussed and written about the magical aspects of…

  18. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  19. Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method

    NASA Astrophysics Data System (ADS)

    Franco Grijalba, Freddy A.; Padovese, L. R.

    2018-01-01

    This paper reports the use of a non-destructive continuous magnetic Barkhausen noise technique to detect applied stress on steel surfaces. The stress profile generated in a sample of 1070 steel subjected to a three-point bending test is analyzed. The influence of different parameters such as pickup coil type, scanner speed, applied magnetic field and frequency band analyzed on the effectiveness of the technique is investigated. A moving smoothing window based on a second-order statistical moment is used to analyze the time signal. The findings show that the technique can be used to detect applied stress profiles.

  20. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-07-21

    Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.

  1. Magic, Morals and Health

    ERIC Educational Resources Information Center

    Johnson, Warren R.

    2010-01-01

    Magic has to do with the supernatural and the unnatural. It is indifferent to natural law and science and is aloof from scientific inquiry. Its existence depends upon unquestioning faith. Granted such faith, it is extraordinarily potent. If it does not move mountains, it convinces the faithful that it can. It can damage health and perhaps, restore…

  2. Non-destructive Techniques for Classifying Aircraft Coating Degradation

    DTIC Science & Technology

    2015-03-26

    model is bidirectional reflectance distribution func- tions ( BRDF ) which describes how much radiation is reflected for each solid angle and each...incident angle. An intermediate model between ideal reflectors and BRDF is to assume all reflectance is a combination of diffuse and specular reflectance...19 K-Fold Cross Validation

  3. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  4. Pulling Words Out of a Hat: Magic in ESL Lessons.

    ERIC Educational Resources Information Center

    Friedenberg, Randi D.

    Magic motivates students to talk, and stimulates the affective domain. While watching magic, many people imagine how the effect is accomplished or how they might perform the trick if they were performing. This can be extended into an English lesson by using phrases such as, "If I were a magician, I could..." Total physical response…

  5. 78 FR 7464 - Large Scale Networking (LSN)-Middleware And Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... (703) 292-4873. Date/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2... basis. WebEx participation is available for each meeting. Please reference the MAGIC Team Web site for...

  6. A Tale of Two Morphs: Modeling Pollen Transfer, Magic Traits, and Reproductive Isolation in Parapatry

    PubMed Central

    Haller, Benjamin C.; de Vos, Jurriaan M.; Keller, Barbara; Hendry, Andrew P.; Conti, Elena

    2014-01-01

    The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait's influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence. PMID:25211280

  7. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  8. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography.

    PubMed

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2008-06-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.

  9. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  10. Rescuing magical thinking from the jaws of social determinism.

    PubMed

    Chandler, M

    1997-12-01

    Although there is otherwise much to recommend it, by riveting attention too narrowly on the contents of magical thought, and by recasting what is left of process in exclusively substantiative terms, this target article works to create the unwarranted impression that the magical thoughts of children and adults are all of a common piece. This commentary reads these oversights and omissions as symptoms of an unspoken new-situationalism working behind the back of Woolley's review.

  11. "You Will": Technology, Magic, and the Cultural Contexts of Technical Communication.

    ERIC Educational Resources Information Center

    Kitalong, Karla Saari

    2000-01-01

    Provides some background on the use of magical language in technical contexts, gives examples of magical discourse in technology advertisements and newsmagazine articles, and proposes a technical communication pedagogy of media analysis. Notes that the proposed pedagogy involves students conducting diagnostic critiques of media texts and affords…

  12. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin

    2015-08-01

    Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.

  13. Magical Ideation, Creativity, Handedness, and Cerebral Asymmetries: A Combined Behavioural and fMRI Study

    ERIC Educational Resources Information Center

    Badzakova-Trajkov, Gjurgjica; Haberling, Isabelle S.; Corballis, Michael C.

    2011-01-01

    Magical ideation has been shown to be related to measures of hand preference, in which those with mixed handedness exhibit higher levels of magical ideation than those with either consistent left- or right-handedness. It is unclear whether the relation between magical ideation and hand preference is the result of a bias in questionnaire-taking…

  14. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP

    PubMed Central

    Shen, Mingwei; Yu, Jia; Wu, Di; Zhu, Daiyin

    2015-01-01

    In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented. PMID:26053755

  15. Illuminating the Depths of the MagIC (Magnetics Information Consortium) Database

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Minnett, R.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2015-12-01

    The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo-, geo-, and rock magnetic scientific community. Its mission is to archive their wealth of peer-reviewed raw data and interpretations from magnetics studies on natural and synthetic samples. Many of these valuable data are legacy datasets that were never published in their entirety, some resided in other databases that are no longer maintained, and others were never digitized from the field notebooks and lab work. Due to the volume of data collected, most studies, modern and legacy, only publish the interpreted results and, occasionally, a subset of the raw data. MagIC is making an extraordinary effort to archive these data in a single data model, including the raw instrument measurements if possible. This facilitates the reproducibility of the interpretations, the re-interpretation of the raw data as the community introduces new techniques, and the compilation of heterogeneous datasets that are otherwise distributed across multiple formats and physical locations. MagIC has developed tools to assist the scientific community in many stages of their workflow. Contributors easily share studies (in a private mode if so desired) in the MagIC Database with colleagues and reviewers prior to publication, publish the data online after the study is peer reviewed, and visualize their data in the context of the rest of the contributions to the MagIC Database. From organizing their data in the MagIC Data Model with an online editable spreadsheet, to validating the integrity of the dataset with automated plots and statistics, MagIC is continually lowering the barriers to transforming dark data into transparent and reproducible datasets. Additionally, this web application generalizes to other databases in MagIC's umbrella website (EarthRef.org) so that the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences

  16. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Magical Classroom: Exploring Science, Language, and Perception with Children.

    ERIC Educational Resources Information Center

    Strauss, Michael J.

    The science of magic is the subject of this book which also examines how to help children experience and describe the world, how to experiment and ask questions about it, and how to make decisions about what is true and what is not. Background information about the relationship between magic and science and the nature of effects and illusions are…

  18. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  19. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  20. Non destructive testing of soft body armor

    NASA Astrophysics Data System (ADS)

    Bhise, Karan

    Pristine bullet proof vests are extremely effective at halting pre-determined projectile threats and have saved over 3000 lives. However, the effectiveness of these vests to halt a bullet is seen to decrease over time.Owing to the importance of bullet proof vests over a period of time, tests to determine their effectiveness have been carried out on every batch of vests at the time of inception and at certain time intervals by shooting a bullet through them. A few vests from every batch are picked up and shot at to check for bullet penetration during this process while these results are extrapolated onto the other vests from the batch.One of the main issues with this method is the fact that testing a few jackets among a large set of jackets does not guarantee the safety of every jacket in the entire batch.Further the jackets that are shot-at have the possibility of undergoing substantial damage during the process thus compromising its safety rendering them unsafe for future use.As the vest penetration phenomenon is extremely complex too, there arose a need for a better testing procedure that could not only help ensure more safety, but also save time and money.The new testing procedure proposed a non-destructive evaluation of the jackets that would solve the issues previous faced in testing the vests. This would lead to the building of a portable set up which could be carried to any location to test jackets in a matter of minutes thus saving time and money.