Science.gov

Sample records for non-equilibrium dissociation approach

  1. Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Mirzabekov, A. D.; Stahl, D. A.

    2001-01-01

    The utility of a high-density oligonucleotide microarray (microchip) for identifying strains of five closely related bacilli (Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus medusa and Bacillus subtilis) was demonstrated using an approach that compares the non-equilibrium dissociation rates ('melting curves') of all probe-target duplexes simultaneously. For this study, a hierarchical set of 30 oligonucleotide probes targeting the 16S ribosomal RNA of these bacilli at multiple levels of specificity (approximate taxonomic ranks of domain, kingdom, order, genus and species) was designed and immobilized in a high-density matrix of gel pads on a glass slide. Reproducible melting curves for probes with different levels of specificity were obtained using an optimized salt concentration. Clear discrimination between perfect match (PM) and mismatch (MM) duplexes was achieved. By normalizing the signals to an internal standard (a universal probe), a more than twofold discrimination (> 2.4x) was achieved between PM and 1-MM duplexes at the dissociation temperature at which 50% of the probe-target duplexes remained intact. This provided excellent differentiation among representatives of different Bacillus species, both individually and in mixtures of two or three. The overall pattern of hybridization derived from this hierarchical probe set also provided a clear 'chip fingerprint' for each of these closely related Bacillus species.

  2. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Clarke, Elaine T.

    2013-09-01

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  3. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  4. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, A.; Keidar, M.

    2015-12-01

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  5. A hydrodynamic approach to non-equilibrium conformal field theories

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2016-03-01

    We develop a hydrodynamic approach to non-equilibrium conformal field theory. We study non-equilibrium steady states in the context of one-dimensional conformal field theory perturbed by the T\\bar{T} irrelevant operator. By direct quantum computation, we show, to first order in the coupling, that a relativistic hydrodynamic emerges, which is a simple modification of one-dimensional conformal fluids. We show that it describes the steady state and its approach, and we provide the main characteristics of the steady state, which lies between two shock waves. The velocities of these shocks are modified by the perturbation and equal the sound velocities of the asymptotic baths. Pushing this approach further, we are led to conjecture that the approach to the steady state is generically controlled by the power law t -1/2, and that the widths of the shocks increase with time according to t 1/3.

  6. Developments in Power efficient dissociation of CO2 using non-equilibrium plasma activation

    NASA Astrophysics Data System (ADS)

    van de Sanden, Richard

    2013-09-01

    Sustainable energy generation by means of, either photovoltaic conversion, concentrated solar power or wind, will certainly form a significant part of the energy mix in 2025. The intermittency as well as the temporal variation and the regional spread of this energy source, however, requires a means to store and transport energy on a large scale. In this presentation the means of storage will be addressed of sustainable energy transformed into fuels and the prominent role plasma science and technology can play in this great challenge. The storage of sustainable energy in these so called solar fuels, e.g. hydrocarbons and alcohols, by means of artificial photosynthesis from the feedstock CO2 and H2O, will enable a CO2 neutral power generation infrastructure, which is close to the present infrastructure based on fossil fuels. The challenge will be to achieve power efficient dissociation of CO2 or H2O or both, after which traditional chemical conversion (Fisher-Tropsch, Sabatier, etc.) towards fuels can take place. A promising route is the dissociation or activation of CO2 by means of plasma, possible combined with catalysis. Taking advantage of non-equilibrium plasma conditions to reach optimal energy efficiency we have started a solar fuels program at the beginning of 2012 focusing on CO2 plasma dissociation into CO and O2. The plasma is generated in a low loss microwave cavity with microwave powers up to 10 kW using a supersonic expansion to quench the plasma and prevent vibrational-translational relaxation losses. New ideas on the design of the facility and results on power efficient conversion (more then 50%) of large CO2 flows (up to 75 standard liter per minute with 11% conversion) at low gas temperatures will be presented.

  7. Identification of non-specific hybridization using an empirical equation fitted to non-equilibrium dissociation curves.

    PubMed

    Baushke, Samuel W; Stedtfeld, Robert D; Tourlousse, Dieter M; Ahmad, Farhan; Wick, Lukas M; Gulari, Erdogan; Tiedje, James M; Hashsham, Syed A

    2012-07-01

    Non-equilibrium dissociation curves (NEDCs) have the potential to identify non-specific hybridizations on high throughput, diagnostic microarrays. We report a simple method for the identification of non-specific signals by using a new parameter that does not rely on comparison of perfect match and mismatch dissociations. The parameter is the ratio of specific dissociation temperature (T(d-w)) to theoretical melting temperature (T(m)) and can be obtained by automated fitting of a four-parameter, sigmoid, empirical equation to the thousands of curves generated in a typical experiment. The curves fit perfect match NEDCs from an initial experiment with an R(2) of 0.998±0.006 and root mean square of 108±91 fluorescent units. Receiver operating characteristic curve analysis showed low temperature hybridization signals (20-48°C) to be as effective as area under the curve as primary data filters. Evaluation of three datasets that target 16S rRNA and functional genes with varying degrees of target sequence similarity showed that filtering out hybridizations with T(d-w)/T(m)<0.78 greatly reduced false positive results. In conclusion, T(d-w)/T(m) successfully screened many non-specific hybridizations that could not be identified using single temperature signal intensities alone, while the empirical modeling allowed a simplified approach to the high throughput analysis of thousands of NEDCs. PMID:22537822

  8. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  9. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.

    PubMed

    Ruiz-Reina, Emilio; Carrique, Félix; Lechuga, Luis

    2014-03-01

    Most of the suspensions usually found in industrial applications are concentrated, aqueous and in contact with the atmospheric CO2. The case of suspensions with a high concentration of added salt is relatively well understood and has been considered in many studies. In this work we are concerned with the case of concentrated suspensions that have no ions different than: (1) those stemming from the charged colloidal particles (the added counterions, that counterbalance their surface charge); (2) the H(+) and OH(-) ions from water dissociation, and (3) the ions generated by the atmospheric CO2 contamination. We call this kind of systems "realistic salt-free suspensions". We show some theoretical results about the electrophoretic mobility of a colloidal particle and the electroviscous effect of realistic salt-free concentrated suspensions. The theoretical framework is based on a cell model that accounts for particle-particle interactions in concentrated suspensions, which has been successfully applied to many different phenomena in concentrated suspensions. On the other hand, the water dissociation and CO2 contamination can be described following two different levels of approximation: (a) by local equilibrium mass-action equations, because it is supposed that the reactions are so fast that chemical equilibrium is attained everywhere in the suspension, or (b) by non-equilibrium dissociation-association kinetic equations, because it is considered that some reactions are not rapid enough to ensure local chemical equilibrium. Both approaches give rise to different results in the range from dilute to semidilute suspensions, causing possible discrepancies when comparing standard theories and experiments concerning transport properties of realistic salt-free suspensions. PMID:24407659

  10. Green's function approach to the non-equilibrium superconductivity near the critical line

    NASA Astrophysics Data System (ADS)

    Lipavský, Pavel

    2016-03-01

    In spite of the absent friction of super-currents, normal currents affect the superconducting condensate. The BCS approach with Bogoliubov-Valutin quasiparticles is not suited for description of the normal current near the critical line. We review an alternative theory of the non-equilibrium superconductivity dealing exclusively with normal-state quasiparticles. It is based on the Thouless T-matrix criterion, which is extended to non-equilibrium. The problem of selfconsistency of the T-matrix in the superconducting state is examined and solved with the help of the multiple-scattering theory.

  11. I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework.

    PubMed

    Procacci, Piero

    2016-06-01

    In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues can be resolved by using a non-equilibrium variant of the alchemical method in molecular dynamics simulations, relying on the production of many independent trajectories with a continuous dynamical evolution of an externally driven alchemical coordinate, completing the decoupling of the ligand in a matter of a few tens of picoseconds rather than nanoseconds. The absolute binding free energy can be recovered from the annihilation work distributions by applying an unbiased unidirectional free energy estimate, on the assumption that any observed work distribution is given by a mixture of normal distributions, whose components are identical in either direction of the non-equilibrium process, with weights regulated by the Crooks theorem. I finally show that the inherent reliability and accuracy of the unidirectional estimate of the decoupling free energies, based on the production of a few hundreds of non-equilibrium independent sub-nanosecond unrestrained alchemical annihilation processes, is a direct consequence of the funnel-like shape of the free energy surface in molecular recognition. An application of the technique to a real drug-receptor system is presented in the companion paper. PMID:27193067

  12. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  13. Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Citro, Roberta; Romeo, Francesco

    2016-03-01

    We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.

  14. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  15. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Rezai, Raheleh; Ebrahimi, Farshad

    2014-04-01

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.

  16. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    SciTech Connect

    Rezai, Raheleh Ebrahimi, Farshad

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  17. Multiple scales approach to the gas-piston non-equilibrium themodynamics

    NASA Astrophysics Data System (ADS)

    Chiuchiù, D.; Gubbiotti, G.

    2016-05-01

    The non-equilibrium thermodynamics of a gas inside a piston is a conceptually simple problem where analytic results are rare. For example, it is hard to find in the literature analytic formulas that describe the heat exchanged with the reservoir when the system either relaxes to equilibrium or is compressed over a finite time. In this paper we derive this kind of analytic formula. To achieve this result, we take the equations derived by Cerino et al (2015 Phys. Rev. E 91 032128) describing the dynamic evolution of a gas-piston system, we cast them in a dimensionless form, and we solve the dimensionless equations with the multiple scales expansion method. With the approximated solutions we obtained, we express in a closed form the heat exchanged by the gas-piston system with the reservoir for a large class of relevant non-equilibrium situations.

  18. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    NASA Astrophysics Data System (ADS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  19. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    SciTech Connect

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong E-mail: li@chem.washington.edu; Mennucci, Benedetta E-mail: li@chem.washington.edu

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  20. A variational approach to coarse-graining of equilibrium and non-equilibrium atomistic description at finite temperature

    SciTech Connect

    Kulkarni, Y; Knap, J; Ortiz, M

    2007-04-26

    The aim of this paper is the development of equilibrium and non-equilibrium extensions of the quasicontinuum (QC) method. We first use variational mean-field theory and the maximum-entropy formalism for deriving approximate probability distribution and partition functions for the system. The resulting probability distribution depends locally on atomic temperatures defined for every atom and the corresponding thermodynamic potentials are explicit and local in nature. The method requires an interatomic potential as the sole empirical input. Numerical validation is performed by simulating thermal equilibrium properties of selected materials using the Lennard-Jones pair potential and the EAM potential and comparing with molecular dynamics results as well as experimental data. The max-ent variational approach is then taken as a basis for developing a three-dimensional non-equilibrium finite temperature extension of the quasicontinuum method. This extension is accomplished by coupling the local temperature-dependent free energy furnished by the max-ent approximation scheme to the heat equation in a joint thermo-mechanical variational setting. Results for finite-temperature nanoindentation tests demonstrate the ability of the method to capture non-equilibrium transport properties and differentiate between slow and fast indentation.

  1. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    NASA Astrophysics Data System (ADS)

    Dyke, J. G.; Gans, F.; Kleidon, A.

    2011-06-01

    Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  2. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  3. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  4. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  5. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. PMID:25619737

  6. Reprint of : Scattering theory approach to bosonization of non-equilibrium mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Eugene V.

    2016-08-01

    Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.

  7. An effective continuum approach for modeling non-equilibrium structural evolution of protein nanofiber networks

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Englander, Ongi; Paravastu, Anant; Oates, William S.

    2011-08-01

    We quantify the formation and evolution of protein nanofibers using a new phase field modeling framework and compare the results to transmission electron microscopy measurements (TEM) and time-dependent growth measurements given in the literature. The modeling framework employs a set of effective continuum equations combined with underlying nanoscale forces and chemical potential relations governing protein nanofiber formation in solution. Calculations based on the theoretical framework are implemented numerically using a nonlinear finite element phase field modeling approach that couples homogenized protein molecular structure via a vector order parameter with chemical potential relations that describe interactions between the nanofibers and the surrounding solution. Homogenized, anisotropic molecular and chemical flux relations are found to be critical in obtaining nanofiber growth from seed particles or a random monomer bath. In addition, the model predicts both sigmoidal and first-order growth kinetics for protein nanofibers for unseeded and seeded models, respectively. These simulations include quantitative predictions on time scales of typical protein self-assembly behavior which qualitatively match TEM measurements of the RADA16-I protein and growth rate measurements for amyloid nanofibers from the literature. For comparisons with experiments, the numerical model performs multiple nanofiber protein evolution simulations with a characteristic length scale of ˜2.4 nm and characteristic time scale of ˜9.1 h. These results provide a new modeling tool that couples underlying monomer structure with self-assembling nanofiber behavior that is compatible with various external loadings and chemical environments.

  8. An effective continuum approach for modeling non-equilibrium structural evolution of protein nanofiber networks.

    PubMed

    Cheng, Liang; Englander, Ongi; Paravastu, Anant; Oates, William S

    2011-08-01

    We quantify the formation and evolution of protein nanofibers using a new phase field modeling framework and compare the results to transmission electron microscopy measurements (TEM) and time-dependent growth measurements given in the literature. The modeling framework employs a set of effective continuum equations combined with underlying nanoscale forces and chemical potential relations governing protein nanofiber formation in solution. Calculations based on the theoretical framework are implemented numerically using a nonlinear finite element phase field modeling approach that couples homogenized protein molecular structure via a vector order parameter with chemical potential relations that describe interactions between the nanofibers and the surrounding solution. Homogenized, anisotropic molecular and chemical flux relations are found to be critical in obtaining nanofiber growth from seed particles or a random monomer bath. In addition, the model predicts both sigmoidal and first-order growth kinetics for protein nanofibers for unseeded and seeded models, respectively. These simulations include quantitative predictions on time scales of typical protein self-assembly behavior which qualitatively match TEM measurements of the RADA16-I protein and growth rate measurements for amyloid nanofibers from the literature. For comparisons with experiments, the numerical model performs multiple nanofiber protein evolution simulations with a characteristic length scale of ∼2.4 nm and characteristic time scale of ∼9.1 h. These results provide a new modeling tool that couples underlying monomer structure with self-assembling nanofiber behavior that is compatible with various external loadings and chemical environments. PMID:21823733

  9. Coherent phonon dynamics of normal metal in ultrafast spectroscopy: Non-equilibrium gauge invariant Green's function approach

    NASA Astrophysics Data System (ADS)

    Lee, Hyun C.

    2016-07-01

    The phonon dynamics of normal metal in the coherent regime of ultrafast spectroscopy is studied based on the non-equilibrium gauge invariant Green's function method. The non-equilibrium phonon self-energy is computed explicitly as a function of time in a gauge invariant way up to the second order of electric field of applied laser pulse. The extension beyond the coherent regime and the incorporation of correlation effects are discussed.

  10. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    SciTech Connect

    Salazar, Ramon B. E-mail: hilatikh@purdue.edu; Appenzeller, Joerg; Ilatikhameneh, Hesameddin E-mail: hilatikh@purdue.edu; Rahman, Rajib; Klimeck, Gerhard

    2015-10-28

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach.

  11. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    NASA Astrophysics Data System (ADS)

    Salazar, Ramon B.; Ilatikhameneh, Hesameddin; Rahman, Rajib; Klimeck, Gerhard; Appenzeller, Joerg

    2015-10-01

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach.

  12. Contact resistances in trigate and FinFET devices in a non-equilibrium Green's functions approach

    NASA Astrophysics Data System (ADS)

    Bourdet, Léo; Li, Jing; Pelloux-Prayer, Johan; Triozon, François; Cassé, Mikaël; Barraud, Sylvain; Martinie, Sébastien; Rideau, Denis; Niquet, Yann-Michel

    2016-02-01

    We compute the contact resistances Rc in trigate and FinFET devices with widths and heights in the 4-24 nm range using a Non-Equilibrium Green's Functions approach. Electron-phonon, surface roughness, and Coulomb scattering are taken into account. We show that Rc represents a significant part of the total resistance of devices with sub-30 nm gate lengths. The analysis of the quasi-Fermi level profile reveals that the spacers between the heavily doped source/drain and the gate are major contributors to the contact resistance. The conductance is indeed limited by the poor electrostatic control over the carrier density under the spacers. We then disentangle the ballistic and diffusive components of Rc and analyze the impact of different design parameters (cross section and doping profile in the contacts) on the electrical performances of the devices. The contact resistance and variability rapidly increase when the cross sectional area of the channel goes below ≃50 nm2. We also highlight the role of the charges trapped at the interface between silicon and the spacer material.

  13. The mechanism of inward rectification in Kir channels: A novel kinetic model with non-equilibrium thermodynamics approach.

    PubMed

    Hsieh, Chi-Pan; Chiang, Cheng-Chin; Huang, Chiung-Wei

    2016-05-01

    The mechanisms of the strong inward rectification in inward rectifier K(+) (Kir) channels are controversial because the drop in electrical potential due to the movement of the blocker and coupling ions is insufficient to explain the steep voltage-dependent block near the equilibrium potential. Here, we study the "driving force"-dependent block in Kir channels with a novel approach incorporating concepts from the non-equilibrium thermodynamics of small systems, and computer kinetic simulations based on the experimental data of internal Ba(2+) block on Kir2.1 channels. The steep exponential increase in the apparent binding rate near the equilibrium potential is explained, when the encounter frequency is construed as the likelihood of transfer events down or against the electrochemical potential gradient. The exponent of flux ratio, nf=2.62, implies that the blockage of the internal blocker may be coupled with the outward transport of 2 to 3K(+) ions. The flux-coupled block in the single-file multi-ion pore can be demonstrated by the concentration gradient alone, as well as when the driving force is the electrochemical potential difference across the membrane. PMID:26945551

  14. Non-equilibrium Transport of Light

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Hsuan; Taylor, Jacob

    Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.

  15. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    NASA Astrophysics Data System (ADS)

    Duchemin, Ivan; Jacquemin, Denis; Blase, Xavier

    2016-04-01

    We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  16. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach.

    PubMed

    Duchemin, Ivan; Jacquemin, Denis; Blase, Xavier

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology. PMID:27131530

  17. Probing strongly correlated materials in non-equilibrium: basic concepts and possible future trends in first principle approaches.

    PubMed

    Hopjan, M; Verdozzi, C

    2014-01-01

    Time-resolved spectroscopy has an emerging role among modern material-characterization techniques. Two powerful theoretical formalisms for systems out of equilibrium (and thus for time-resolved spectroscopy) are Non-Equilibrium Green's Functions (NEGF) and Time-Dependent Density Functional Theory (TDDFT). In this chapter, we offer a perspective (with more emphasis on the NEGF) on their current capability to deal with the case of strongly correlated materials. To this end, the NEGF technique is briefly presented, and its use in time-resolved spectroscopy highlighted. We then show how a linear response description is recovered from NEGF real-time dynamics. This is followed by a review of a recent ab initio NEGF treatment and by a short introduction to TDDFT. With these background notions, we turn to the problem of describing strong correlation effects by NEGF and TDDFT. This is done in terms of model Hamiltonians: using simple lattice systems as benchmarks, we illustrate to what extent NEGF and TDDFT can presently describe complex materials out of equilibrium and with strong electronic correlations. Finally, an outlook is given on future trends in NEGF and TDDFT research of interest to time-resolved spectroscopy. PMID:24797232

  18. Non-equilibrium DMFT - Polaritonics

    NASA Astrophysics Data System (ADS)

    Lubatsch, Andreas; Frank, Regine

    Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.

  19. Communication: energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach.

    PubMed

    Liu, Zhen-Fei; Neaton, Jeffrey B

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals. PMID:25296777

  20. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    SciTech Connect

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-07

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  1. Communication: Energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Neaton, Jeffrey B.

    2014-10-01

    The electronic structure of organic-inorganic interfaces often features resonances originating from discrete molecular orbitals coupled to continuum lead states. An example is molecular junction, individual molecules bridging electrodes, where the shape and peak energy of such resonances dictate junction conductance, thermopower, I-V characteristics, and related transport properties. In molecular junctions where off-resonance coherent tunneling dominates transport, resonance peaks in the transmission function are often assumed to be Lorentzian functions with an energy-independent broadening parameter Γ. Here we define a new energy-dependent resonance broadening function, Γ(E), based on diagonalization of non-Hermitian matrices, which can describe resonances of a more complex, non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively. We compute this quantity via an ab initio non-equilibrium Green's function (NEGF) approach based on density functional theory (DFT) for both symmetric and asymmetric molecular junctions, and show that our definition of Γ(E), when combined with Breit-Wigner formula, reproduces the transmission calculated from DFT-NEGF. Through a series of examples, we illustrate how this approach can shed new light on experiments and understanding of junction transport properties in terms of molecular orbitals.

  2. Investigation of oxidative phosphorylation in continuous cultures. A non-equilibrium thermodynamic approach to energy transduction for Escherichia coli in aerobic condition

    NASA Astrophysics Data System (ADS)

    Ghafuri, Mohazabeh; Nosrati, Mohsen; Hosseinkhani, Saman

    2015-03-01

    Adenosine triphosphate (ATP) production in living cells is very important. Different researches have shown that in terms of mathematical modeling, the domain of these investigations is essentially restricted. Recently the thermodynamic models have been suggested for calculation of the efficiency of oxidative phosphorylation process and rate of energy loss in animal cells using chemiosmotic theory and non-equilibrium thermodynamics equations. In our previous work, we developed a mathematical model for mitochondria of animal cells. In this research, according to similarities between oxidative phosphorylation process in microorganisms and animal cells, Golfar's model was developed to predict the non-equilibrium thermodynamic behavior of the oxidative phosphorylation process for bacteria in aerobic condition. With this model the rate of energy loss, P/O ratio, and efficiency of oxidative phosphorylation were calculated for Escherichia coli in aerobic condition. The results then were compared with experimental data given by other authors. The thermodynamic model had an acceptable agreement with the experimental data.

  3. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  4. Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach

    SciTech Connect

    Jolley, Kenny; Gill, Simon P.A.

    2009-10-20

    A method for controlling the thermal boundary conditions of non-equilibrium molecular dynamics simulations is presented. The method is simple to implement into a conventional molecular dynamics code and independent of the atomistic model employed. It works by regulating the temperature in a thermostatted boundary region by feedback control to achieve the desired temperature at the edge of an inner region where the true atomistic dynamics are retained. This is necessary to avoid intrinsic boundary effects in non-equilibrium molecular dynamics simulations. Three thermostats are investigated: the global deterministic Nose-Hoover thermostat and two local stochastic thermostats, Langevin and stadium damping. The latter thermostat is introduced to avoid the adverse reflection of phonons that occurs at an abrupt interface. The method is then extended to allow atomistic/continuum models to be thermally coupled concurrently for the analysis of large steady state and transient heat conduction problems. The effectiveness of the algorithm is demonstrated for the example of heat flow down a three-dimensional atomistic rod of uniform cross-section subjected to a variety of boundary conditions.

  5. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  6. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  7. Non-equilibrium Dynamics of DNA Nanotubes

    NASA Astrophysics Data System (ADS)

    Hariadi, Rizal Fajar

    nanotubes with an irreversible energy consumption reaction, analogous to nucleotide hydrolysis in actin and microtubule polymerization. Finally, we integrated the DNA strand displacement circuits with DNA nanotube polymerization to achieve programmable kinetic control of behavior within artificial cytoskeleton. Our synthetic approach may provide insights into natural cytoskeleton dynamics, such as minimal architectural or reaction mechanism requirements for non-equilibrium behaviors including treadmilling and dynamic instability. The outgrowth of DNA nanotechnology beyond its own boundaries, serving as a general model system for biomolecular dynamics, can lead to an understanding of molecular processes that advances both basic and applied sciences.

  8. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  9. Mathematical modeling of non-equilibrium sorption

    NASA Astrophysics Data System (ADS)

    Kaliev, Ibragim A.; Mukhambetzhanov, Saltanbek T.; Sabitova, Gulnara S.; Sakhit, Anghyz E.

    2016-08-01

    We consider the system of equations modeling the process of non-equilibrium sorption. Difference approximation of differential problem by the implicit scheme is formulated. The solution of the difference problem is constructed using the sweep method. Based on the numerical results we can conclude the following: when the relaxation time decreases to 0, then the solution of non-equilibrium problem tends with increasing time to solution of the equilibrium problem.

  10. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  11. Non equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.

    2012-04-01

    Onsager first proposed to explain the self organization of turbulent flows using the statistical mechanics framework. Generalization of those ideas to the class of 2D-Euler and Quasi-Gestrophic models led to the Robert-Sommeria-Miller theory. This approach was successful in modeling many geophysical phenomena: the Great Red Spot of Jupiter [2, 1], drift of mesoscale ocean vortices [3, 1], self-organization of Quasi-Geostrophic dynamics in mid-basin jets similar to the Gulf-Stream and the Kuroshio [3, 1], and so on. However, this type of equilibrium theories fail to take into account forces and dissipation. This is a strong limitation for many geophysical phenomena. Interestingly, it is possible to circumvent these difficulties using the most modern theoretical development of non-equilibrium statistical mechanics: large deviation [4] and instanton theories. As an example, we will discuss geophysical turbulent flows which have more than one attractor (bistability or mutistability). For instance, paths of the Kuroshio [5], the Earth's magnetic field reversal, atmospheric flows [6], MHD experiments [7], 2D turbulence experiments [8, 9], 3D flows [10] show this kind of behavior. On Navier-Stokes and Quasi-Geostrophic turbulent flows, we predict the conditions for existence of rare transitions between attractors, and the dynamics of those transitions. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans, and how non-equilibrium statistical mechanics can allow to settle this issue. Generalization of statistical mechanics to more comprehensive hydrodynamical models, which include gravity wave dynamics and allow for the possibility of energy transfer through wave motion, would be extremely interesting. Namely, both are essential in understanding energy balance of geophysical flows. However, due to difficulties in essential theoretical parts of the statistical mechanics approach, previous methods

  12. Non-equilibrium thermodynamics of gravitational screens

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Yokokura, Yuki

    2015-11-01

    We study the Einstein gravity equations projected on a timelike surface, which represents the time evolution of what we call a gravitational screen. We show that such a screen behaves like a viscous bubble with a surface tension and an internal energy, and that the Einstein equations take the same forms as non-equilibrium thermodynamic equations for a viscous bubble. We provide a consistent dictionary between gravitational and thermodynamic variables. In the non-viscous cases there are three thermodynamic equations that characterize a bubble dynamics: these are the first law, the Marangoni flow equation and the Young-Laplace equation. In all three equations the surface tension plays a central role: in the first law it appears as a work term per unit area, in the Marangoni flow its gradient drives a force, and in the Young-Laplace equation it contributes to a pressure proportional to the surface curvature. The gravity equations appear as a natural generalization of these bubble equations when the bubble itself is viscous and dynamical. In particular, this approach shows that the mechanism of entropy production for the viscous bubble is mapped onto the production of gravitational waves. We also review the relationship between surface tension and temperature, and discuss black-hole thermodynamics.

  13. Experimental studies in non-equilibrium physics

    NASA Astrophysics Data System (ADS)

    Cressman, John Robert, Jr.

    This work is a collection of three experiments aimed at studying different facets of non-equilibrium dynamics. Chapter I concerns strongly compressible turbulence, which turns out to be very different from incompressible turbulence. The focus is on the dispersion of contaminants in such a flow. This type of turbulence can be studied, at very low mach number, by measuring the velocity fields of particles that float on a turbulently stirred body of water. It turns out that in the absence of incompressibility, the turbulence causes particles to cluster rather than to disperse. The implications of the observations are far reaching and include the transport of pollutants on the oceans surface, phytoplankton growth, as well as industrial applications. Chapter II deals with the effects of polymer additives on drag reduction and turbulent suppression, a well-known phenomenon that is not yet understood. In an attempt to simplify the problem, the effects of a polymer additive were investigated in a vortex street formed in a flowing soap film. Measurements suggest that an increase in elongational viscosity is responsible for a substantial reduction in periodic velocity fluctuations. This study also helps to illuminate the mechanism responsible for vortex separation in the wake of a bluff body. Chapter III describes an experiment designed to test a theoretical approach aimed at generalizing the classical fluctuation dissipation theorem (FDT). This theorem applies to systems driven only slightly away from thermal equilibrium, whereas ours, a liquid crystal under-going electroconvection, is so strongly driven, that the FDT does not apply. Both theory and experiment focus on the flux in global power fluctuations. Physical limitations did not permit a direct test of the theory, however it was possible to establish several interesting characteristics of the system: the source of the fluctuations is the transient defect structures that are generated when the system is driven hard

  14. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  15. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. PMID:23306058

  16. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  17. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  18. The entropy concept for non-equilibrium states.

    PubMed

    Lieb, Elliott H; Yngvason, Jakob

    2013-10-01

    In earlier work, we presented a foundation for the second law of classical thermodynamics in terms of the entropy principle. More precisely, we provided an empirically accessible axiomatic derivation of an entropy function defined on all equilibrium states of all systems that has the appropriate additivity and scaling properties, and whose increase is a necessary and sufficient condition for an adiabatic process between two states to be possible. Here, after a brief review of this approach, we address the question of defining entropy for non-equilibrium states. Our conclusion is that it is generally not possible to find a unique entropy that has all relevant physical properties. We do show, however, that one can define two entropy functions, called S - and S +, which, taken together, delimit the range of adiabatic processes that can occur between non-equilibrium states. The concept of comparability of states with respect to adiabatic changes plays an important role in our reasoning. PMID:24101892

  19. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  20. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  1. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    SciTech Connect

    Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  2. Is Soret equilibrium a non-equilibrium effect?

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    2013-04-01

    Recent thermophoretic experiments on colloidal suspensions revived an old debate, namely whether the Soret effect is properly described by thermostatics, or necessarily requires non-equilibrium thermodynamics. Based on colloidal transport theory and the entropy production of the related viscous flow, our analysis leads to the conclusion that the equilibrium approach may work for small ions, yet fails for colloidal particles and polymers. Regarding binary molecular mixtures, our results shed some doubt on the validity of thermostatic approaches that derive the Soret coefficient from equilibrium potentials.

  3. Non-Equilibrium Transitions of Heliospheric plasma

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  4. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  5. New Simulator for Non-Equilibrium Modeling of Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Qorbani Nashaqi, K.; Jemai, K.; Vafaei, M.

    2014-12-01

    Due to Gibbs phase rule and combination of first and second law of thermodynamics, hydrate in nature cannot be in equilibrium since they come from different parent phases. In this system hydrate formation and dissociation is affected by local variables such as pressure, temperature and composition with mass and energy transport restrictions. Available simulators have attempted to model hydrate phase transition as an equilibrium reaction. Although those which treated the processes of formation and dissociation as kinetics used model of Kim and Bishnoi based on laboratory PVT experiment, and consequently hard to accept up scaling to real reservoirs condition. Additionally, they merely check equilibrium in terms of pressure and temperature projections and disregard thermodynamic requirements for equilibrium especially along axes of concentrations in phases. Non-equilibrium analysis of hydrate involves putting aside all the phase transitions which are not possible and use kinetic evaluation to measure phase transitions progress in each grid block for each time step. This procedure is Similar to geochemical reservoir simulators logic. As a result RetrasoCodeBright has been chosen as hydrate reservoir simulator and our work involves extension of this code. RetrasoCodeBright (RCB) is able to handle competing processes of formation and dissociation of hydrates as pseudo reactions at each node and each time step according to the temperature, pressure and concentration. Hydrates can therefore be implemented into the structure as pseudo minerals, with appropriate kinetic models. In order to implement competing nature of phase transition kinetics of hydrate formation, we use classical nucleation theory based on Kvamme et al. as a simplified model inside RCB and use advanced theories to fit parameters for the model (PFT). Hydrate formation and dissociation can directly be observed through porosity changes in the specific areas of the porous media. In this work which is in

  6. In command of non-equilibrium.

    PubMed

    Roduner, Emil; Radhakrishnan, Shankara Gayathri

    2016-05-21

    The second law of thermodynamics is well known for determining the direction of spontaneous processes in the laboratory, life and the universe. It is therefore often called the arrow of time. Less often discussed but just as important is the effect of kinetic barriers which intercept equilibration and preserve highly ordered, high energy non-equilibrium states. Examples of such states are many modern materials produced intentionally for technological applications. Furthermore, all living organisms fuelled directly by photosynthesis and those fuelled indirectly by living on high energy nutrition represent preserved non-equilibrium states. The formation of these states represents the local reversal of the arrow of time which only seemingly violates the second law. It has been known since the seminal work of Prigogine that the stabilisation of these states inevitably requires the dissipation of energy in the form of waste heat. It is this feature of waste heat dissipation following the input of energy that drives all processes occurring at a non-zero rate. Photosynthesis, replication of living organisms, self-assembly, crystal shape engineering and distillation have this principle in common with the well-known Carnot cycle in the heat engine. Drawing on this analogy, we subsume these essential and often sophisticated driven processes under the term machinery of life. PMID:27146424

  7. Non-equilibrium many body dynamics

    SciTech Connect

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  8. Turbulence modeling for non-equilibrium flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1995-01-01

    The work performed during this year has involved further assessment and extension of the k-epsilon-v(exp 2) model, and initiation of work on scalar transport. The latter is introduced by the contribution of Y. Shabany to this volume. Flexible, computationally tractable models are needed for engineering CFD. As computational technology has progressed, the ability and need to use elaborate turbulence closure models has increased. The objective of our work is to explore and develop new analytical frameworks that might extend the applicability of the modeling techniques. In past years the development of a method for near-wall modeling was described. The method has been implemented into a CFD code and its viability has been demonstrated by various test cases. Further tests are reported herein. Non-equilibrium near-wall models are needed for some heat transfer applications. Scalar transport seems generally to be more sensitive to non-equilibrium effects than is momentum transport. For some applications turbulence anisotropy plays a role and an estimate of the full Reynolds stress tensor is needed. We have begun work on scalar transport per se, but in this brief I will only report on an extension of the k-epsilon-v(exp 2) model to predict the Reynolds stress tensor.

  9. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  10. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  11. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  12. Radiation temperature of non-equilibrium plasmas

    SciTech Connect

    Arunasalam, V.

    1991-07-01

    In fusion devices measurements of the radiation temperature T{sub r} ({omega}, k) near the electron cyclotron frequency {omega}{sub C} and the second harmonic 2{omega}{sub C} in directions nearly perpendicular to the confining magnetic field B (i.e., k {approx} k {perpendicular}) serve to map out the electron temperature profiles T{sub e}(r,t). For optically thick plasma at thermodynamic equilibrium T{sub r} = T{sub e}. However, there is increasing experimental evidence for the presence of non-equilibrium electron distributions (such as a drifting Maxwellian with appreciable values of the streaming parameter {omicron} = v{sub d}/v{sub t}, a bi- Maxwellian, and anisotropic Maxwellian with T {perpendicular} {ne} T {parallel}, etc.,) in tokamak plasmas, especially in the presence of radio-frequency heating. Here, we examine (both non-relativistically and relativistically) the dependence of T{sub r} on {omicron}, T{perpendicular}/T{parallel}, T{sub h}/T{sub b}, n{sub h}/n{sub b}etc., where n{sub b}, n{sub h}, T{sub b}, T{sub h} are the densities and temperatures, respectively, of the bulk and the hot components of the bi-Maxwellian plasma. Our bi-Maxwellian results predict that the ratio T{sub r}/T{sub e} is a very sensitive function of the ratios n{sub h}/n{sub b} and T{sub h}/T{sub b}. Further, these relativistic and non-relativistic results satisfy the well-known limit c {yields} {infinity} correspondence principle'', showing that the intensity of the emission and absorption line is independent of the line broadening mechanism. 44 refs., 2 figs.

  13. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Das, A. K.

    2012-12-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  14. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  15. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  16. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  17. Statistical physics of shear flow: a non-equilibrium problem

    NASA Astrophysics Data System (ADS)

    Evans, R. M. L.

    2010-09-01

    Complex fluids are easily and reproducibly driven into non-equilibrium steady states by the action of shear flow. The statistics of the microstructure of non-equilibrium fluids is important to the material properties of every complex fluid that flows, e.g. axle grease on a rotating bearing; blood circulating in capillaries; molten plastic flowing into a mould; the non-equilibrium onion phase of amphiphiles used for drug delivery; the list is endless. Such states are as diverse and interesting as equilibrium states, but are not governed by the same statistics as equilibrium materials. I review some recently discovered principles governing the probabilities of various types of molecular re-arrangements taking place within a sheared fluid. As well as providing new foundations for the study of non-equilibrium matter, the principles are applied to some simple models of particles interacting under flow, showing that the theory exhibits physically convincing behaviour.

  18. Nonlinear optics in non-equilibrium microplasmas

    NASA Astrophysics Data System (ADS)

    Compton, Ryan E.

    2011-12-01

    This dissertation details the nature of subnanosecond laser-induced microplasma dynamics, particularly concerning the evolution of the electron temperature and concentration. Central to this development is the advent of a femtosecond four-wave mixing (FWM) spectroscopic method. FWM (in the form of coherent anti-Stokes Raman scattering (CARS)) measurements are performed on the fundamental oxygen vibrational transition. An analytical expression is provided that accounts for the resonant and nonresonant contributions to the CARS signal generated from the interaction of broadband pump and Stokes pulses. The inherent phase mismatch is also accounted for, resulting in quantitative agreement between experiment and theory. FWM is then used to measure the early-time electron dynamics in the noble gas series from He to Xe following irradiation by an intense (1014 Wcm-2) nonresonant 80 fs laser pulse. An electron impact ionization cooling model is presented to determine the evolution of electron kinetic energies following ionization. Kinetic energies are predicted to evolve from > 20 eV to < 1 eV in the first 1.5 ns. The initial degree of ionization is determined experimentally via measurement of the Bremsstrahlung background emission, and modeled with a modified ADK theory based on tunnel ionization. Combined, these two descriptions account for the evolution of both the electron temperature and concentration and provide quantitative agreement with the FWM measurements. The model is further tested with measurements of the gas pressure and pump laser intensity on the electron dynamics. The FWM experiments are concluded with a qualitative discussion of dissociative recombination dynamics occurring in molecular microplasmas. The microplasma environment is used as a source for the generation of two-level systems in the excited state manifold of atomic oxygen and argon. These two-level systems are coupled using moderately intense ˜1 ps near-infrared (and near-resonant) pulses

  19. Radiation transport and density effects in non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Fisher, Vladimir I.; Fisher, Dimitri V.; Maron, Yitzhak

    2007-05-01

    We describe a model for self-consistent computations of ionic level populations and the radiation field in transient non-equilibrium plasmas. In this model, the plasma density effects are described using the effective-statistical-weights (ESW) formalism based on the statistics of the microscopic environment of individual ions. In comparison to earlier work, the ESW formalism is expanded to a self-consistent treatment of the radiative transfer. For non-Maxwellian plasmas, the atomic-kinetics and radiative transfer computations may be performed for an arbitrary distribution of the free electrons. A plasma is presented by a finite number of cells, each with uniform thermodynamic parameters. The radiation field in each cell is computed by accounting for the radiation of entire plasma and of external sources. To demonstrate the predictions of the ESW approach and their difference from those of the traditional approach we apply the model to high-density plasmas. Based on hydrodynamic simulations of a laser-matter interaction, we use the model to analyze spectral line shapes, where the effects caused by the spatial dependence of the plasma flow velocity are demonstrated. In single-cell simulations, for acceleration of the computations, the model utilizes recently derived formula for the cell volume-average and direction-average specific intensity of radiation.

  20. Non-equilibrium relaxation analysis in cluster algorithms

    NASA Astrophysics Data System (ADS)

    Nonomura, Yoshihiko

    2014-03-01

    In Monte Carlo study of phase transitions, the critical slowing down has been a serious problem. In order to overcome this difficulty, two kinds of approaches have been proposed. One is the cluster algorithms, where global update scheme based on a percolation theory is introduced in order to refrain from the power-law behavior at the critical point. Another is the non-equilibrium relaxation method, where the power-law critical relaxation process is analyzed by the dynamical scaling theory in order to refrain from time-consuming equilibration. Then, the next step is to fuse these two approaches -- to investigate phase transitions with early-stage relaxation process of cluster algorithms. Since the dynamical scaling theory does not hold in cluster algorithms in principle, such attempt had been considered impossible. In the present talk we show that such fusion is actually possible using an empirical scaling form obtained from the 2D Ising models instead of the dynamical scaling theory. Applications to the q >= 3 Potts models, +/- J Ising models etc. will also be explained in the presentation.

  1. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  2. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  3. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the "first" engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  4. Non-equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Simonnet, E.

    2010-12-01

    We describe the dynamics of two-dimensional and quasi-geostrophic flows with stochastic forces. It exhibits extremely long correlations times, related to multi-scale dynamics, and collective behaviors such as bistability and multistability. We show that in regimes of weak forces and dissipation, dominated by the large scales inertial dynamics, equilibrium statistical mechanics provides extremely precise predictions for the self-organized large scale flows. This is true for amuch larger range of parameters than would have been expected, explaining a renewed interest for statistical mechanics approaches. Non-equilibrium theory, based on kinetic theories (or equivalently Mori-Zwanzig projections) gives explicit predictions for algebraic correlations of the velocity field, and for the large scale mean flow. We also describe briefly recent applications to ocean jets and vortices, explaining the detailed structure of inertial mid-basin jets and both the structure, and westward and poleward drifts of oceans rings and eddies. References: F. BOUCHET and E. SIMONNET, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. BOUCHET and J. SOMMERIA, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions in the dynamics of the 2D Navier-Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio d. The two main plots are the time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, illustrating random changes between dipoles (|z1| close to 0.55) and unidirectional flows (|z1| close to 0.). The small

  5. Non-equilibrium processes in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Strelnitskiy, V. S.

    1979-01-01

    The types of nonequilibrium emission and absorption by interstellar molecules are summarized. The observed brightness emission temperatures of compact OH and H2O sources are discussed using the concept of maser amplification. A single thermodynamic approach was used in which masers and anti-masers are considered as heat engines for the theoretical interpretation of the cosmic maser and anti-maser phenomena. The requirements for different models of pumping are formulated and a classification is suggested for the mechanisms of pumping, according to the source and discharge of energy.

  6. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  7. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  8. Detection of Non-Equilibrium Fluctuations in Active Gels

    NASA Astrophysics Data System (ADS)

    Bacanu, Alexandru; Broedersz, Chase; Gladrow, Jannes; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Active force generation at the molecular scale in cells can result in stochastic non-equilibrium dynamics on mesoscpopic scales. Molecular motors such as myosin can drive steady-state stress fluctuations in cytoskeletal networks. Here, we present a non-invasive technique to probe non-equilibrium fluctuations in an active gel using single-walled carbon nanotubes (SWNTs). SWNTs are semiflexible polymers with intrinsic fluorescence in the near infrared. Both thermal and active motor-induced forces in the network induce transverse fluctuations of SWNTs. We demonstrate that active driven shape fluctuations of the SWNTs exhibit dynamics that reflect the non-equilibrium activity, in particular the emergence of correlations between the bending modes. We discuss the observation of breaking of detailed balance in this configurational space of the SWNT probes. Supported by National Defense Science and Engineering Graduate Student Fellowship (NDSEG).

  9. Modeling non-equilibrium phase transitions in isentropically compressed Bi

    SciTech Connect

    Kane, J; Smith, R

    2005-09-19

    We report here on modeling of non-equilibrium phase transitions in Bi samples isentropically compressed to 120 GPa by a ramped drive, which is produced using the Janus laser. In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response of the targets is modeled using a multiphase Bi EOS, the Andrews-Hayes method for non-equilibrium transitions, and a Boettger-Wallace kinetics model. The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples.

  10. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  11. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  12. Hopping approach towards exciton dissociation in conjugated polymers

    SciTech Connect

    Emelianova, E. V.; Auweraer, M. van der; Baessler, H.

    2008-06-14

    By employing random walk an analytic theory for the dissociation of singlet excitons in a random organic solid, for instance, a conjugated polymer, has been developed. At variance of conventional three-dimensional Onsager theory, it is assumed that an exciton with finite lifetime can first transfer endothermically an electron to an adjacent site, thereby generating a charge transfer state whose energy is above the energy of that of the initial exciton. In a second step the latter can fully dissociate in accordance with Onsager's concept Brownian motion. The results indicate that, depending of the energy required for the first jump, the first jump contributes significantly to the field dependence of the dissociation yield. Disorder weakens the temperature dependence of the yield dramatically and precludes extracting information on the exciton binding energy from it.

  13. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures

    NASA Astrophysics Data System (ADS)

    Kunova, O.; Kustova, E.; Mekhonoshina, M.; Nagnibeda, E.

    2015-12-01

    In this paper, the influence of vibrational and dissociation kinetics on heat transfer and diffusion in non-equilibrium flows of N2/N and O2/O mixtures in the relaxation zone behind shock waves is studied on the basis of the state-to-state and one-temperature kinetic theory approaches. The results of calculations of vibrational level populations ni , gas temperature T, total energy flux q, diffusion velocities of molecules at different vibrational states Vi and atoms Va in the relaxation zone behind a shock front are presented for the free stream Mach numbers M = 18, 15, 10. The contribution of different dissipative processes to the total energy flux is evaluated for various flow conditions. Characteristic features of non-equilibrium kinetics, diffusion and energy transfer in two considered mixtures are discussed. The impact of vibrational excitation of N2 and O2 molecules in the free stream on a relaxation zone structure and transport properties behind a shock is shown.

  14. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  15. Non-Equilibrium Volumetric Response of Shocked Polymers

    NASA Astrophysics Data System (ADS)

    Clements, Brad

    2009-06-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, recent investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities have reminded us that the volumetric behavior also exhibits a non-equilibrium response. An area where this work should be important is the impact of glassy polymers. At the time of impact and near the impact surface, the polymer's volumetric response will be described as being Hugoniot-like, i.e., standard shock Hugoniot jump conditions apply. However, at later times, release waves from neighboring free surfaces will cause the polymer's volumetric response to be far from Hugoniot. In this talk, experiments showing the non-equilibrium behavior will be described. Following that discussion, a continuum-level theory is proposed that will allow us to bridge the equilibrium and non-equilibrium behaviors with a single model that can go seamlessly from one regime to the other.[4pt] In collaboration with Philip Rae and Dana Dattelbaum, Los Alamos National Laboratory.

  16. Modelling spectral properties of non-equilibrium atomic hydrogen plasma

    NASA Astrophysics Data System (ADS)

    D'Ammando, G.; Pietanza, L. D.; Colonna, G.; Longo, S.; Capitelli, M.

    2010-02-01

    A model to predict the emissivity and absorption coefficient of atomic hydrogen plasma is presented in detail. Non-equilibrium plasma is studied through coupling of the model with a collisional-radiative code for the excited states population as well as with the Boltzmann equation for the electron energy distribution function.

  17. Strongly Non-equilibrium Dynamics of Nanochannel Confined DNA

    NASA Astrophysics Data System (ADS)

    Reisner, Walter

    Nanoconfined DNA exhibits a wide-range of fascinating transient and steady-state non-equilibrium phenomena. Yet, while experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behavior of nanochannel confined DNA, non-equilibrium behavior remains largely unexplored. In particular, while the DNA extension along the nanochannel is the key observable in equilibrium experiments, in the non-equilibrium case it is necessary to measure and model not just the extension but the molecule's full time-dependent one-dimensional concentration profile. Here, we apply controlled compressive forces to a nanochannel confined molecule via a nanodozer assay, whereby an optically trapped bead is slid down the channel at a constant speed. Upon contact with the molecule, a propagating concentration ``shockwave'' develops near the bead and the molecule is dynamically compressed. This experiment, a single-molecule implementation of a macroscopic cylinder-piston apparatus, can be used to observe the molecule response over a range of forcings and benchmark theoretical description of non-equilibrium behavior. We show that the dynamic concentration profiles, including both transient and steady-state response, can be modelled via a partial differential evolution equation combining nonlinear diffusion and convection. Lastly, we present preliminary results for dynamic compression of multiple confined molecules to explore regimes of segregation and mixing for multiple chains in confinement.

  18. Stochastic Approaches to Understanding Dissociations in Inflectional Morphology

    ERIC Educational Resources Information Center

    Plunkett, Kim; Bandelow, Stephan

    2006-01-01

    Computer modelling research has undermined the view that double dissociations in behaviour are sufficient to infer separability in the cognitive mechanisms underlying those behaviours. However, all these models employ "multi-modal" representational schemes, where functional specialisation of processing emerges from the training process. Targeted…

  19. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  20. The Concept of Peritraumatic Dissociation: A Qualitative Approach.

    PubMed

    Mattos, Patrícia Ferreira; Pedrini, João Alencar; Fiks, José Paulo; de Mello, Marcelo Feijó

    2016-06-01

    Peritraumatic dissociation has been considered an important feature for the development of post-traumatic stress disorders, but this concept remains widely unclear. To explore the peritraumatic experience, we interviewed eight victims of urban violence shortly after their traumatic events. The data collected were compared and analyzed according to the systematic set of procedures of Grounded Theory (GT). The alterations reported by participants were coded and categorized according to their perceptions of their inner and outer world, and the impressions of others involved, including the examiner's observations. The theoretical perspective for interpreting this study has parallels with Jaspers' psychopathology. Peritraumatic dissociation was conceived as a failure of synthesis among emerging stimuli from the internal and the external world, including the time-space flow structure, even when cognitive-perceptual tools remain intact. This synthesis qualifies the totality of the perceptual experience as coherent and meaningful to conscience, enabling possibilities for being/existing. PMID:26531878

  1. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    NASA Astrophysics Data System (ADS)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  2. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, Aaron; Johnston, Chris; Cruden, Brett

    2016-01-01

    This paper presents measurements and simulations of non-equilibrium shock layer radiation relevant to high-speed Earth entry data obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79 N2 : 21 O2) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08 N2 : 20.95 O2 : 0.04 CO2 : 0.93 Ar). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to promote discussion about various aspects of modeling non-equilibrium radiating flows. Radiance profiles integrated over discreet wavelength regions, ranging from the VUV through to the NIR, were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURAHARA is shown to under-predict EAST by as much as 50 and over-predict by as much as 20 depending on the shock speed. DPLRNEQAIR is shown to under-predict EAST by as much as 40 and over-predict by as much as 12 depending on the shock speed. In terms of an upper bound estimate for the absolute error in wall-directed heat flux, at the lower speeds investigated in this paper, 8 to 9 km/s, even

  3. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  4. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  5. A simple non-equilibrium theory of non-contact dissipation force microscopy

    NASA Astrophysics Data System (ADS)

    Kantorovich, L. N.

    2001-02-01

    The tip-surface interaction in the non-contact atomic force microscopy (NC-AFM) leads to energy dissipation. Recently, this effect has been harnessed to obtain images with atomic resolution. In an important paper Gauthier and Tsukada (GT) (1999 Phys. Rev. B 60 11716) suggested a theory of this, so-called non-contact dissipation force microscopy (NC-DFM) using a stochastic approach within a simple one-atomic representation of the surface. In this paper we elaborate on this model further, stressing the importance of a consistent non-equilibrium consideration. Then, using a more general model, we offer an alternative derivation based on a rather simple approach to non-equilibrium phenomenon used by Kirkwood for the Brownian motion. We show that our method leads to the final result similar to that obtained in the GT paper. We also discuss some other models for the energy dissipation in NC-AFM. In particular, we emphasise that the `stick and slip' (or adhesion hysteresis) model of energy dissipation, although containing a specific element which requires additional features to be incorporated in our model, is to be considered using non-equilibrium methods.

  6. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    NASA Astrophysics Data System (ADS)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  7. Persistent Probability Currents in Non-equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Zia, Royce; Mellor, Andrew; Mobilia, Mauro; Fox-Kemper, Baylor; Weiss, Jeffrey

    For many interesting phenomena in nature, from all life forms to the global climate, the fundamental hypothesis of equilibrium statistical mechanics does not apply. Instead, they are perhaps better characterized by non-equilibrium steady states, evolving with dynamical rules which violate detailed balance. In particular, such dynamics leads to the existence of non-trivial, persistent probability currents - a principal characteristic of non-equilibrium steady states. In turn, they give rise to the notion of 'probability angular momentum'. Observable manifestations of such abstract concepts will be illustrated in two distinct contexts: a heterogeneous nonlinear voter model and our ocean heat content. Supported in part by grants from the Bloom Agency (Leeds, UK) and the US National Science Foundation: OCE-1245944. AM acknowledges the support of EPSRC Industrial CASE Studentship, Grant No. EP/L50550X/1.

  8. The thermal vacuum for non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Imai, Ryosuke; Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya

    Our purpose is to construct a theoretical description of non-equilibrium steady state (NESS), employing thermo field dynamics (TFD). TFD is the operator-based formalism of thermal quautum field theory, where every degree of freedom is doubled and thermal averages are given by expectation values of the thermal vacuum. To specify the thermal vacuum for NESS is a non-trivial issue, and we attempt it on the analogy between the superoperator formalism and TFD. Using the thermal vacuum thus obtained, we analyze the NESS which is realized in the two-reservoir model. It will be shown that the NESS vacuum of the model coincides with the fixed point solutions of the quantum transport equation derived by the self-consistent renormalization of the self-energy in non-equilibrium TFD.

  9. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  10. Boltzmann equation solver adapted to emergent chemical non-equilibrium

    SciTech Connect

    Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann

    2015-01-15

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)

  11. Construction of a Non-Equilibrium Thermal Boundary Layer Facility

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher

    2015-11-01

    A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.

  12. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.

    2016-01-01

    For Earth re-entry at velocities between 8 and 11.5 km/s, the accuracy of NASA's computational uid dynamic and radiative simulations of non-equilibrium shock layer radiation is assessed through comparisons with measurements. These measurements were obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79% N2 : 21% O2 by mole) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08% N2 : 20.95% O2 : 0.04% CO2 : 0.93% Ar by mole). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth re-entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to examine critical aspects of modeling non-equilibrium radiating flows. Radiance pro les integrated over discreet wavelength regions, ranging from the Vacuum Ultra Violet (VUV) through to the Near Infra-Red (NIR), were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURA/HARA is shown to under-predict EAST by as much as 40% and over-predict by as much as 12% depending on the shock speed. DPLR/NEQAIR is shown to under-predict EAST by as much as 50% and over-predict by as much as 20% depending

  13. Foundations and Application of Non-equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Robinson, Gregory

    2011-11-01

    Non-equilibrium thermodynamics provides a powerful but still unfamiliar way to peer into the properties of systems yet unexplored and holds promise for ready application to important engineered systems. This talk will consider some of the challenges, promises, and progress made toward an intuitive statistical theory of non-equilibrium behavior as well as recent work applying it. We will briefly discuss large deviations and the formalism of Freidlin and Wentzell for perturbed dynamical systems, which recasts certain questions about stochastic processes in the form of Hamiltonian mechanics. The methods and their applicability are illustrated by analyzing transitions between different stable states of a chemical reaction network, supplemented by a fast numerical solution of escape trajectories. We conclude with the prospects for using the ideas and methods in the design of more efficient and reliable grid computing platforms, which are crucial both to modern science and the operation of entire industries.

  14. Modeling MOSFET surface capacitance behavior under non-equilibrium

    NASA Astrophysics Data System (ADS)

    Kapoor, Abhishek; Jindal, R. P.

    2005-06-01

    A normalized analytical solution for the capacitance associated with a MOSFET surface under non-equilibrium conditions is presented. It is shown that this model can be mapped into an equivalent equilibrium problem with 98% accuracy for near intrinsic samples (UB ≅ 2). The precision becomes even better for highly doped semiconductors. The physics behind this transformation is explained and nomograms generated to present data in a highly normalized form.

  15. Structure of Non-Equilibrium Adsorbed Polymer Layers

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2004-03-01

    Equilibrium polymer adsorption has been widely studied theoretically. Many experiments however implicate strong non-equilibrium effects for monomer sticking energies somewhat larger than kT, the most common case. The structure and slow dynamics in these layers is not understood. We analyze theoretically non-equilibrium layers from dilute solutions in the limit of irreversible monomer adsorption. We find the density profile ˜ z-4/3 and loop distribution ˜ s-11/5 of the resulting layer are no different to equilibrium. However, single chain statistics are radically different: the layer consists of a flat inner portion of fully collapsed chains plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ˜ f-4/5, consistent with experiment [H. M. Schneider et al, Langmuir 12, 994 (1996)], and the lateral size R of adsorbed chains is of order the bulk coil size, R ˜ N^3/5. For equilibrium layers, by contrast, P has a unique peak at a value of f of order unity, while R ˜ N^1/2 is significantly less. The relaxation of a non-equilibrium layer towards equilibrium thus entails chain shrinkage and tighter binding. We speculate that the observed decrease of bulk-layer chain exchange rates with increasing aging reflects these internal layer dynamics.

  16. Novel mapping in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Heseltine, James; Kim, Eun-jin

    2016-04-01

    We investigate the time-evolution of a non-equilibrium system in view of the change in information and provide a novel mapping relation which quantifies the change in information far from equilibrium and the proximity of a non-equilibrium state to the attractor. Specifically, we utilize a nonlinear stochastic model where the stochastic noise plays the role of incoherent regulation of the dynamical variable x and analytically compute the rate of change in information (information velocity) from the time-dependent probability distribution function. From this, we quantify the total change in information in terms of information length { L } and the associated action { J }, where { L } represents the distance that the system travels in the fluctuation-based, statistical metric space parameterized by time. As the initial probability density function’s mean position (μ) is decreased from the final equilibrium value {μ }* (the carrying capacity), { L } and { J } increase monotonically with interesting power-law mapping relations. In comparison, as μ is increased from {μ }*,{ L } and { J } increase slowly until they level off to a constant value. This manifests the proximity of the state to the attractor caused by a strong correlation for large μ through large fluctuations. Our proposed mapping relation provides a new way of understanding the progression of the complexity in non-equilibrium system in view of information change and the structure of underlying attractor.

  17. Characterization of non equilibrium effects on high quality critical flows

    SciTech Connect

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  18. Non-equilibrium fission processes in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W.; Casey, C.; Xu, Z.; Seaborg, G.T.; Aleklett, K.; Sihver, L.

    1989-04-01

    We have measured the target fragment yields, angular and energy distributions for the interaction of 12-16 MeV/A/sup 32/S with /sup 165/Ho and /sup 197/Au and for the interaction of 32 and 44 MeV/A /sup 40/Ar with /sup 197/Au. The Au fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, ''slow'' fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the Au fission fragments associated with the central collision peak in the folding angle distribution originate in part from ''fast'' (/tau//approximately//sup /minus/23/s), non-equilibrium processes. Most of the Ho fission fragments originate in non- equilibrium processes. The fast, non-equilibrium process giving rise to these fragments has many of the characteristics of ''fast fission'', but the cross sections associated with these fragments are larger than one would expect from current theories of ''fast fission. '' 14 refs., 8 figs.

  19. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Giordano, D.

    2011-01-01

    A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  20. Upwind MacCormack Euler solver with non-equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Sherer, Scott E.; Scott, James N.

    1993-01-01

    A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.

  1. Lattice kinetic approach to non-equilibrium flows

    NASA Astrophysics Data System (ADS)

    Montessori, A.; Prestininzi, P.; La Rocca, M.; Falcucci, G.; Succi, S.

    2016-06-01

    We present a Lattice Boltzmann method for the simulation of a wide range of Knudsen regimes. The method is assessed in terms of normalised discharge for flow across parallel plates and three-dimensional flows in porous media. Available analytical solutions are well reproduced, supporting the the method as an appealing candidate to bridge the gap between the hydrodynamic regime and free molecular motion.

  2. Revisiting the Formation and Tunable Dissociation of a [2]Pseudorotaxane Formed by Slippage Approach

    PubMed Central

    Leung, Ken Cham-Fai; Lau, Kwun-Ngai; Wong, Wing-Yan

    2015-01-01

    A new [2]pseudorotaxane DB24C8⊃1-H·PF6 with dibenzo[24]crown-8 (DB24C8) crown ether-dibenzylammonium (1-H·PF6) binding which was formed by slippage approach at different solvents and temperature, had been isolated and characterized by NMR spectroscopy and mass spectrometry. The [2]pseudorotaxane DB24C8⊃1-H·PF6 was stable at room temperature. The dissociation rate of [2]pseudorotaxane DB24C8⊃1-H·PF6 could be tuned by using different stimuli such as triethylamine (TEA)/diisopropylethylamine (DIPEA) and dimethyl sulfoxide (DMSO). In particular, the dissociation of [2]pseudorotaxane DB24C8⊃1-H·PF6 by an excess of TEA/DIPEA base mixture possessed a long and sustained, complete dissociation over 60 days. Other stimuli by DMSO possessed a relatively fast dissociation over 24 h. PMID:25872145

  3. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    NASA Astrophysics Data System (ADS)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  4. Fluctuation-induced dissipation in non-equilibrium moving systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad; Golestanian, Ramin; Jaffe, Robert; Kardar, Mehran

    2013-03-01

    Quantum fluctuations in moving systems lead to nontrivial effects such as dissipation and radiation. We consider moving bodies--a single rotating object or multiple objects in relative motion--and derive the frictional force by using techniques from non-equilibrium statistical physics as well as quantum optics. The radiation to the environment is obtained as a general expression in terms of the scattering matrix which is a powerful analytical tool. We apply our general formulas to several examples of systems out of equilibrium due to their motion.

  5. Exploiting non-equilibrium phase separation for self-assembly.

    PubMed

    Grünwald, Michael; Tricard, Simon; Whitesides, George M; Geissler, Phillip L

    2016-02-01

    Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one particle species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns. PMID:26658789

  6. Model of opacity and emissivity of non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Politov, V. Y.

    2008-05-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments.

  7. Shape characteristics of equilibrium and non-equilibrium fractal clusters

    NASA Astrophysics Data System (ADS)

    Mansfield, Marc L.; Douglas, Jack F.

    2013-07-01

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  8. The non-equilibrium nature of culinary evolution

    NASA Astrophysics Data System (ADS)

    Kinouchi, Osame; Diez-Garcia, Rosa W.; Holanda, Adriano J.; Zambianchi, Pedro; Roque, Antonio C.

    2008-07-01

    Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.

  9. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  10. Non-equilibrium steady state in the hydro regime

    NASA Astrophysics Data System (ADS)

    Pourhasan, Razieh

    2016-02-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P({E}) . Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  11. High-resolution slice selection NMR for the measurement of CO2 diffusion under non-equilibrium conditions.

    PubMed

    Allen, Jesse; Damodaran, Krishnan

    2015-03-01

    We present a simple and an efficient approach using spatially selective NMR to investigate solvation and diffusion of CO2 in ionic liquids. The techniques demonstrated here are shown as novel and effective means of studying solvated gas dynamics under non-equilibrium conditions without the need for conventional high power gradients. PMID:25353108

  12. Debye screening under non-equilibrium plasma conditions

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Heyl, M.

    2016-04-01

    As has been revealed in a number of more recent astrophysical papers, in most of the tenuous space plasmas Maxwellian distribution functions cannot be expected for ions or electrons because of the lack of efficient relaxation processes. Many of the classical characteristics of plasmas, such as plasma frequency or Debye length, are calculated on the basis of the assumption, however, that Maxwellians prevail, which under most of the relevant astrophysical plasma conditions is not the case. We here therefore consider this specific problem of Debye shieldings of single charges in a plasma for the case of prevailing non-equilibrium distribution functions for ions and electrons. As typical non-equilibrium functions, so-called Kappa functions were considered with clear preference, and we therefore study here the Debye shielding in a plasma with Kappa-distributed electrons and ions. We show that the so-called Debye shielding increases with increasing extent of the high-velocity tail of the electron distribution function, or in other words, with lower Kappa index of the underlying Kappa function. In our calculations we demonstrate that the Debye lengths become enlarged by about a factor of 10 with respect to its classically expexted value if highly suprathermal electron distributions prevail with Kappa indices close to 1.5.

  13. Non-equilibrium thermodynamics analysis of transcriptional regulation kinetics

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Tovar, Hugo; Mejía, Carmen

    2014-12-01

    Gene expression in eukaryotic cells is an extremely complex and interesting phenomenon whose dynamics are controlled by a large number of subtle physicochemical processes commonly described by means of gene regulatory networks. Such networks consist in a series of coupled chemical reactions, conformational changes, and other biomolecular processes involving the interaction of the DNA molecule itself with a number of proteins usually called transcription factors as well as enzymes and other components. The kinetics behind the functioning of such gene regulatory networks are largely unknown, though its description in terms of non-equilibrium thermodynamics has been discussed recently. In this work we will derive general kinetic equations for a gene regulatory network from a non-equilibrium thermodynamical description and discuss its use in understanding the free energy constrains imposed in the network structure. We also will discuss explicit expressions for the kinetics of a simple model of gene regulation and show that the kinetic role of mRNA decay during the RNA synthesis stage (or transcription) is somehow limited due to the comparatively low values of decay rates. At the level discussed here, this implies a decoupling of the kinetics of mRNA synthesis and degradation a fact that may become quite useful when modeling gene regulatory networks from experimental data on whole genome gene expression.

  14. Non-equilibrium Thermodynamics of Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-04-01

    Here, the fundamental problem of Rayleigh-Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier-Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (Δ T = 70 K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.

  15. Non-equilibrium hot carrier dynamics in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Narang, Prineha; Sundararaman, Ravishankar; Jermyn, Adam; Cortes, Emiliano; Maier, Stefan A.; Goddard, William A., III

    Decay of surface plasmons to hot carriers is a new direction that has attracted considerable fundamental and application interest, yet a fundamental understanding of ultrafast plasmon decay processes and the underlying microscopic mechanisms remain incomplete. Ultrafast experiments provide insights into the relaxation of non-equilibrium carriers at the tens and hundreds of femtoseconds time scales, but do not yet directly probe shorter times with nanometer spatial resolution. Here we report the first ab initio calculations of non equilibrium transport of plasmonic hot carriers in metals and experimental observation of the injection of these carriers into molecules tethered to the metal surface. Specifically, metallic nanoantennas functionalized with a molecular monolayer allow for the direct probing of electron injection via surface enhanced Raman spectroscopy of the original and reduced molecular species. We combine first principles calculations of electron-electron and electron-phonon scattering rates with Boltzmann transport simulations to predict the ultrafast dynamics and transport of carriers in real materials. We also predict and compare the evolution of electron distributions in ultrafast experiments on noble metal nanoparticles.

  16. Light-induced electronic non-equilibrium in plasmonic particles.

    PubMed

    Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar

    2013-05-01

    We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena. PMID:23656152

  17. The non-equilibrium and energetic cost of sensory adaptation

    SciTech Connect

    Lan, G.; Sartori, Pablo; Tu, Y.

    2011-03-24

    Biological sensory systems respond to external signals in short time and adapt to permanent environmental changes over a longer timescale to maintain high sensitivity in widely varying environments. In this work we have shown how all adaptation dynamics are intrinsically non-equilibrium and free energy is dissipated. We show that the dissipated energy is utilized to maintain adaptation accuracy. A universal relation between the energy dissipation and the optimum adaptation accuracy is established by both a general continuum model and a discrete model i n the specific case of the well-known E. coli chemo-sensory adaptation. Our study suggests that cellular level adaptations are fueled by hydrolysis of high energy biomolecules, such as ATP. The relevance of this work lies on linking the functionality of a biological system (sensory adaptation) with a concept rooted in statistical physics (energy dissipation), by a mathematical law. This has been made possible by identifying a general sensory system with a non-equilibrium steady state (a stationary state in which the probability current is not zero, but its divergence is, see figure), and then numerically and analytically solving the Fokker-Planck and Master Equations which describe the sensory adaptive system. The application of our general results to the case of E. Coli has shed light on why this system uses the high energy SAM molecule to perform adaptation, since using the more common ATP would not suffice to obtain the required adaptation accuracy.

  18. Non-equilibrium theory of arrested spinodal decomposition

    SciTech Connect

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  19. Non-equilibrium phenomena in disordered colloidal solids

    NASA Astrophysics Data System (ADS)

    Yunker, Peter

    Colloidal particles are a convenient tool for studying a variety of non-equilibrium phenomena. I will discuss experiments that investigate the aging and non-equilibrium growth of disordered solids. In the first set of experiments, colloidal glasses are rapidly formed to study aging in jammed packings. A colloidal fluid, composed of micron-sized temperature-sensitive pNIPAM particles, is rapidly quenched into a colloidal glass. After the glass is formed, collective rearrangements occur as the glass ages. Particles that undergo irreversible rearrangements, which break nearest-neighbor pairings and allow the glass to relax, are identified. These irreversible rearrangements are accompanied by large clusters of fast moving particles; the number of particles involved in these clusters increases as the glass ages, leading to the slowing of dynamics that is characteristic of aging. In the second set of experiments, we study the role particle shape, and thus, interparticle interaction, plays in the formation of disordered solids with different structural and mechanical properties. Aqueous suspensions of colloidal particles with different shapes evaporate on glass slides. Convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow heterogeneously from the edge on the air-water interface. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Mechanical testing of these particulate deposits reveals that the deposit bending rigidity increases as particles become more anisotropic in shape.

  20. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  1. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  2. Coupled discretization of multicomponent diffusion problems in equilibrium and non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Peerenboom, Kim; Ten Thije Boonkkamp, Jan; van Dijk, Jan; Kroesen, Gerrit

    2013-09-01

    Solving balance equations is the essence of any fluid simulation of reactive, multicomponent plasmas. For plasmas in chemical non-equilibrium, balance equations are solved for all species of interest. When reactions are very fast with respect to transport time scales - and the plasma approaches chemical equilibrium - species abundances can be obtained from equilibrium relations. However, in many cases, balance equations still need to be solved for the elements, since the elemental composition can vary significantly in reactive multicomponent plasmas. Both in equilibrium and in non-equilibrium the species diffusive fluxes in these balance equations are governed by the Stefan-Maxwell equations. The use of Stefan-Maxwell diffusion leads to a coupled set of balance equations. Furthermore, this coupled set of equations is subject to charge and mass conservation constraints. Due to these complications the set of balance equations is often artificially decoupled to fit in the traditional finite volume discretization schemes and the constraints are explicitly applied. This approach can lead to very poor convergence behavior. We will present a new approach using a finite volume discretization scheme that takes into account the coupling and treats the constraints implicitly.

  3. High-precision work distributions for extreme non-equilibrium processes in large systems

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander

    2014-03-01

    The distributions of work for strongly non-equilibrium processes are studied using a very general form of a large-deviation approach, which allows one to study distributions down to extremely small probabilities of almost arbitrary quantities of interest for equilibrium, non-equilibrium stationary and even non-stationary processes. The method is applied to varying quickly the external field in a wide range B = 3 <--> 0 for critical (T = 2 . 269) two-dimensional Ising system of size L × L = 128 × 128 . To obtain free energy differences from the work distributions, they must be studied in ranges where the probabilities are as small as 10-240, which is not possible using direct simulation approaches. By comparison with the exact free energies, one sees that the present approach allows one to obtain the free energy with a very high relative precision of 10-4. This works well also for non-zero field, i.e., for a case where standard umbrella-sampling methods seem to be not so efficient to calculate free energies. Furthermore, for the present case it is verified that the resulting distributions of work fulfill Crooks theorem with high precision. Finally, the free energy for the Ising magnet as a function of the field strength is obtained.

  4. Non-equilibrium entropy and dynamics in a system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rocha Filho, T. M.

    2016-05-01

    We extend the core-halo approach of Levin et al (2014 Phys. Rep. 535, 1) for the violent relaxation of long-range interacting system with a waterbag initial condition, in the case of a widely studied Hamiltonian mean field model. The Gibbs entropy maximization principle is considered with the constraints of energy conservation and of coarse-grained Casimir invariants of the Vlasov equation. The core-halo distribution function depends only on the one-particle mean-field energy, as is expected from the Jeans theorem, and depends on a set of parameters which in our approach is completely determined without having to solve an envelope equation for the contour of the initial state, as required in the original approach. We also show that a different ansatz can be used for the core-halo distribution with similar results. This work also reveals a link between a parametric resonance causing the non-equilibrium phase transition in the model, a dynamical property, and a discontinuity of the (non-equilibrium) entropy of the system.

  5. Closure conditions for non-equilibrium multi-component models

    NASA Astrophysics Data System (ADS)

    Müller, S.; Hantke, M.; Richter, P.

    2016-07-01

    A class of non-equilibrium models for compressible multi-component fluids in multi-dimensions is investigated taking into account viscosity and heat conduction. These models are subject to the choice of interfacial pressures and interfacial velocity as well as relaxation terms for velocity, pressure, temperature and chemical potentials. Sufficient conditions are derived for these quantities that ensure meaningful physical properties such as a non-negative entropy production, thermodynamical stability, Galilean invariance and mathematical properties such as hyperbolicity, subcharacteristic property and existence of an entropy-entropy flux pair. For the relaxation of chemical potentials, a two-component and a three-component models for vapor-water and gas-water-vapor, respectively, are considered.

  6. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  7. Transient Features in Charge Fractionalization and Non-equilibrium Bosonization

    NASA Astrophysics Data System (ADS)

    Rosenow, Bernd; Schneider, Alexander; Milletari, Mirco

    2015-03-01

    In quantum Hall edge states and in other one-dimensional interacting systems, charge fractionalization can occur due to the fact that an injected charge pulse decomposes into eigenmodes propagating at different velocities. If the original charge pulse has some spatial width due to injection with a given source-drain voltage, a finite time is needed until the separation between the fractionalized pulses is larger than their width. In the formalism of non-equilibrium bosonization, the above physics is reflected in the separation of initially overlapping square pulses in the effective scattering phase. When expressing the single particle Green function as a functional determinant of counting operators containing the scattering phase, the time evolution of charge fractionalization is mathematically described by functional determinants with overlapping pulses. We develop a framework for the evaluation of such determinants, and compare our theoretical results with recent experimental findings. Supported by DFG Grant RO 2247/8-1.

  8. Non-equilibrium dynamics in driven Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Ha, Li-Chung; Chin, Cheng

    2016-05-01

    We report recent progress on the study of non-equilibrium dynamics in Bose-Einstein condensates using the shaken optical lattice or optically controlled Feshbach resonances. In the shaken lattice at sufficient shaking amplitude we observe a quantum phase transition from ordinary condensates to pseudo-spinor 1/2 condensates containing discrete domains with effective ferromagnetic interactions. We study the temporal and spatial Kibble-Zurek scaling laws for the dependence of this domain structure on the quench rate across the transition. Furthermore, we observe long-range density correlations within the ferromagnetic condensate. With optically controlled Feshbach resonances we demonstrate control of the interaction strength between atoms at timescales as short as ten nanoseconds and length scales smaller than the condensate. We find that making interactions attractive within only one region of the gas induces localized collapse of the condensate.

  9. Non-Equilibrium Steady States for Chains of Four Rotors

    NASA Astrophysics Data System (ADS)

    Cuneo, N.; Eckmann, J.-P.

    2016-07-01

    We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain of length three (considered previously by C. Poquet and the current authors), the new difficulty with four rotors is the appearance of resonances when both central rotors are fast. We deal with these resonances using the rapid thermalization of the two external rotors.

  10. Cavity Dephasing in Transmon Qubits from Non-equilibrium Noise

    NASA Astrophysics Data System (ADS)

    Yeh, Jen-Hao; Lefebvre, Jay; Wellstood, Frederick; Palmer, Benjamin

    The dephasing times for transmon qubits in a 3D cavity can be limited by coupling of the cavity input and output lines to non-equilibrium noise from higher temperature stages. In our system, the dominant source of thermal photons in the cavity is the last microwave attenuator in the microwave input line which is mounted on the 20 mK stage. Guided by thermal and microwave simulations, we have fabricated microwave attenuators and tested them in a 3D transmon measurement system. The performance of the attenuators was quantified by measuring the Ramsey decay time of a transmon qubit as a function of the temperature of the mixing chamber and power dissipated in the attenuator. Based on the Ramsey decay times and properties of the transmon-cavity system, we estimate the effective output noise temperature of the attenuator and compare our results to simulations.

  11. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  12. Non-equilibrium electrodynamics in the large N expansion

    SciTech Connect

    Mottola, E.

    1994-02-01

    An effective action technique for the time evolution of a closed system consisting of a mean field interacting with charged fluctuations is presented, and applied specifically to Quantum Electrodynamics. The effective action of QED is first developed in a systematic expansion in 1/N where N is the number of distinct fermion species. Then by making use of the Schwinger-Keldysh closed time path (CTP) formulation of field theory, causality of the resulting equations of motion is ensured. In QED this technique may be used to study the quantum non-equilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e{sup +}e{sup {minus}} plasma. Numerical results for these processes in lowest order are presented. The renormalization procedure, connection to quantum transport theory and extension to QCD and other applications of the method are also discussed.

  13. Thermal Non-equilibrium Consistent with Widespread Cooling

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mikic, Z.; Linker, J.; Mok, Y.

    2014-01-01

    Time correlation analysis has been used to show widespread cooling in the solar corona; this cooling has been interpreted as a result of impulsive (nanoflare) heating. In this work, we investigate wide-spread cooling using a 3D model for a solar active region which has been heated with highly stratified heating. This type of heating drives thermal non-equilibrium solutions, meaning that though the heating is effectively steady, the density and temperature in the solution are not. We simulate the expected observations in narrowband EUV images and apply the time correlation analysis. We find that the results of this analysis are qualitatively similar to the observed data. We discuss additional diagnostics that may be applied to differentiate between these two heating scenarios.

  14. Non Equilibrium Fluctuations In The Degenerated Polarizable Plasma

    SciTech Connect

    Belyi, V. V.; Kukharenko, Yu. A.

    2009-04-23

    The quantum plasma of Bose and Fermi particles is considered. A scheme of equation linearization for density matrix with the exchange interaction taken in account is proposed and the equation solution is found. An expression for Hartree- Fock dielectric permittivity with the exchange interaction is obtained. This interaction is taken into account in the exchange scattering amplitude. With the use of obtained solutions the non-equilibrium spectral function of electric field fluctuations in presence of exchange interaction and medium polarization is found. It is shown that in the state of thermodynamic equilibrium a Fluctuation-Dissipation Theorem holds. An expression for the system's response to an external electric field in presence of exchange interaction is given.

  15. Non-equilibrium plasma reactors for organic solvent destruction

    SciTech Connect

    Yang, C.L.; Beltran, M.R.; Kravets, Z.

    1997-12-31

    Two non-equilibrium plasma reactors were evaluated for their ability to destroy three widely used organic solvents, i.e., 2-butanone, toluene and ethyl acetate. The catalyzed plasma reactor (CPR) with 6 mm glass beads destroys 98% of 50 ppm toluene in air at 24 kV/cm and space velocities of 1,400 v/v/hr. Eighty-five percent of ethyl acetate and 2-butanone are destroyed under the same conditions. The tubular plasma reactor (TPR) has an efficiency of 10% to 20% lower than that of a CPR under the same conditions. The 1,400 v/v/hr in a CPR is equal to a residence time of 2.6 seconds in a TPR. The operating temperatures, corona characteristics, as well as the kinetics of VOC destruction in both TPR and CPR were studied.

  16. Complementary relations in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Nicholson, S. B.

    2015-08-01

    We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton-Jacobi relation for forced-dissipative systems.

  17. Non-Equilibrium in Line-Tied Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    1996-05-01

    Parker's model of nonequilibrium and topological dissipation [E. N. Parker, ApJ 174, 499, 1972] is revisited. Within the framework of ideal reduced MHD equations, it is shown that there can be at most one smooth magnetostatic equilibrium for each continuous footpoint mapping between the two plates with the line-tied boundary condition. This implies that for a given amount of footpoint driving, if a coronal equilibrium becomes unstable, magnetic non-equilibrium and current sheets (tangential discontinuities) can be realized. The special case of island coalescence is considered analytically and numerically. Stability of an equilibrium containing current layers is also studied. Numerical results suggest that such an equilibrium becomes more unstable as the current increases. This is consistent with the tendency for the formation of true tangential discontinuities. This work is supported by NSF and AFOSR.

  18. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  19. Non-equilibrium dynamics of glass-forming liquid mixtures

    NASA Astrophysics Data System (ADS)

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-01

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value overline{n}_α ({r},t) and for the covariance σ _{α β }({r},{r}^' };t)equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t)} of the fluctuations δ n_α ({r},t) = n_α ({r},t)- overline{n}_α ({r},t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C_{α β }({r},{r}^' };t,t^' }) equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t^' })}. If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and overline{n}_α (t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F^S_{α β }(k,τ ;t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  20. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  1. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases

    NASA Astrophysics Data System (ADS)

    Qorbani Nashaqi, K.

    2015-12-01

    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  2. Non-equilibrium Aspects of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Andrei, Natan

    The study of non-equilibrium dynamics of interacting many body systems is currently one of the main challenges of modern condensed matter physics, driven by the spectacular progress in the ability to create experimental systems - trapped cold atomic gases are a prime example - that can be isolated from their environment and be highly controlled. Many old and new questions can be addressed: thermalization of isolated systems, nonequilibrium steady states, the interplay between non equilibrium currents and strong correlations, quantum phase transitions in time, universality among others. In this talk I will describe nonequilibrium quench dynamics in integrable quantum systems. I'll discuss the time evolution of the Lieb-Liniger system, a gas of interacting bosons moving on the continuous infinite line and interacting via a short range potential. Considering a finite number of bosons on the line we find that for any value of repulsive coupling the system asymptotes towards a strongly repulsive gas for any initial state, while for an attractive coupling, the system forms a maximal bound state that dominates at longer times. In the thermodynamic limit -with the number of bosons and the system size sent to infinity at a constant density and the long time limit taken subsequently- I'll show that the density and density-density correlation functions for strong but finite positive coupling are described by GGE for translationally invariant initial states with short range correlations. As examples I'll discuss quenches from a Mott insulator initial state or a Newton's Cradle. Then I will show that if the initial state is strongly non translational invariant, e.g. a domain wall configuration, the system does not equilibrate but evolves into a nonequilibrium steady state (NESS). A related NESS arises when the quench consists of coupling a quantum dot to two leads held at different chemical potential, leading in the long time limit to a steady state current. Time permitting I

  3. Observing Organic Molecules in Interstellar Gases: Non Equilibrium Excitation.

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Faure, Alexandre; Remijan, Anthony; Szalewicz, Krzysztof

    2014-06-01

    In order to observe quantitatively organic molecules in interstellar gas, it is necessary to understand the relative importance of photonic and collisional excitations. In order to do so, collisional excitation transfer rates have to be computed. We undertook several such studies, in particular for H_2CO and HCOOCH_3. Both species are observed in many astrochemical environments, including star-forming regions. We found that those two molecules behave in their low-lying rotational levels in an opposite way. For cis methyl-formate, a non-equilibrium radiative transfer treatment of rotational lines is performed, using a new set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5 to 30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH_3 -- He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud. A total of 2080 low-lying transitions of methyl formate, with upper levels below 25 K, were treated. These lines are found to probe a cold (30 K), moderately dense (n ˜ 104 cm-3) interstellar gas. In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped weak masers amplifying the background of Sgr B2(N). This result demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. For formaldehyde, we performed a similar non-equilibrium treatment, with H_2 as the collisional partner, thanks to the accurate H_2CO - H_2 potential energy surface . We found very different energy transfer rates for collisions with para-H_2 (J=0) and ortho-H_2 (J=1). The well-known absorption against the cosmological background of the 111→ 101 line is shown to depend critically on the difference of behaviour between para and ortho-H_2, for a wide range of H_2 density. We thank the CNRS-PCMI French national program for continuous support

  4. Non-equilibrium dynamics of glass-forming liquid mixtures

    SciTech Connect

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-21

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles n{sub α}(r, t) of species α in terms of the coupled time-evolution equations for the mean value n{sup ¯}{sub α}(r,t) and for the covariance σ{sub αβ}(r,r{sup ′};t)≡δn{sub α}(r,t)δn{sub β}(r{sup ′},t){sup ¯} of the fluctuations δn{sub α}(r,t)=n{sub α}(r,t)−n{sup ¯}{sub α}(r,t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function b{sub α}(r, t) for each species, written in terms of the memory function of the two-time correlation function C{sub αβ}(r,r{sup ′};t,t{sup ′})≡δn{sub α}(r,t)δn{sub β}(r{sup ′},t{sup ′}){sup ¯}. If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and n{sup ¯}{sub α}(t), these equations predict the irreversible structural relaxation of the partial static structure factors S{sub αβ}(k; t) and of the (collective and self) intermediate scattering functions F{sub αβ}(k, τ; t) and F{sub αβ}{sup S}(k,τ;t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  5. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    NASA Astrophysics Data System (ADS)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  6. New directions in fluid dynamics: non-equilibrium aerodynamic and microsystem flows.

    PubMed

    Reese, Jason M; Gallis, Michael A; Lockerby, Duncan A

    2003-12-15

    Fluid flows that do not have local equilibrium are characteristic of some of the new frontiers in engineering and technology, for example, high-speed high-altitude aerodynamics and the development of micrometre-sized fluid pumps, turbines and other devices. However, this area of fluid dynamics is poorly understood from both the experimental and simulation perspectives, which hampers the progress of these technologies. This paper reviews some of the recent developments in experimental techniques and modelling methods for non-equilibrium gas flows, examining their advantages and drawbacks. We also present new results from our computational investigations into both hypersonic and microsystem flows using two distinct numerical methodologies: the direct simulation Monte Carlo method and extended hydrodynamics. While the direct simulation approach produces excellent results and is used widely, extended hydrodynamics is not as well developed but is a promising candidate for future more complex simulations. Finally, we discuss some of the other situations where these simulation methods could be usefully applied, and look to the future of numerical tools for non-equilibrium flows. PMID:14667308

  7. Non-equilibrium colloidal assembly pathways via synergistic dipolar, depletion, and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Coughlan, Anna; Bevan, Michael

    The ability to assemble nano- and micro- colloidal particles into ordered materials and controllable devices provides the basis for emerging technologies. However, current capabilities for manipulating colloidal assembly are limited by the degree of order, time to generate/reconfigure structures, and scalability to large areas. These limitations are due to problems with designing, controlling, and optimizing the thermodynamics and kinetics of colloidal assembly. Our approach is to provide viable non-equilibrium pathways for rapid assembly of defect free colloidal crystals using combinations of magnetic field and depletion mediated assembly. Results include video microscopy experiments and Stokesian Dynamic computer simulations of superparamagnetic colloidal particles experiencing depletion attraction in time varying magnetic fields. Findings show multi-body hydrodynamic interactions and magnetic dipole relaxation mechanisms are essential to capture assembly and annealing of attractive colloidal crystals. With the ability to measure, model and tune colloidal interactions and dynamics, we demonstrate the use of time varying fields to manipulate non-equilibrium pathways for the assembly, disassembly, and repair of colloidal microstructures.

  8. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  9. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Alfuhaid, S. A.; Cambier, J.-L.; Panesi, M.

    2015-10-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  10. Path-space variational inference for non-equilibrium coarse-grained systems

    NASA Astrophysics Data System (ADS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  11. Dielectric function of non-equilibrium warm dense gold

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2009-06-01

    Warm dense matter lies in a regime where densities are near the solid density and temperatures are between 0.1 and 100 eV. The behavior of such systems is dominated by electron degeneracy, excited electronic states and ion-ion correlations, rendering them a truly daunting many-body problem. Interest in Warm Dense Matter has been growing among broad disciplines as driven by the fundamental urge to understand the convergence between plasma and condensed matter physics, and the practical need to understand dynamic behavior in the transformation of a cold solid into a high energy density plasma. A recent advance in this emerging field is the single state measurements of optical properties of non-equilibrium warm dense gold created by isochoric laser heating. This unveils for the first time the behavior of intraband and interband transitions in warm dense gold at high energy densities, providing a unique opportunity to examine effects of electron band structure and electron distribution. This talk is a review of the experimental technique and the new findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. [4pt] In collaboration with Andrew Ng, Tadashi Ogitsu, Eric Schwegler, David Prendergast, Byong-ick Cho, Phil Heimann, Tommy Ao, Klaus Widmann, Duncan Hanson, Ingrid Koslow, and Gilbert Collins.

  12. Energy Injection in a Non-Equilibrium Granular Gas Experiment

    NASA Astrophysics Data System (ADS)

    Combs, K.; Olafsen, J. S.

    2009-06-01

    Recent measurements involving a driven, novel bi-layer granular gas experiment demonstrate interesting behaviors in each of two segregated layers comprising the granular media. A lower layer of heavier dimers consisting of two monomers and a connecting rod are driven by a vertically oscillating plate. Above this dimer layer, a lighter layer of Delrin monomers is driven, not by the plate directly, but via collisions with the lower layer. Each layer is driven far from equilibrium and is influenced by particle collisions both within the layer (intralayer) and between layers (interlayer). The steady state dynamics in each layer demonstrate a non-equilibrium balance between the energy input from below and the dissipation through collisions. Interestingly enough, while the velocity statistics of the lower layer are driven strongly non-Gaussian by the energy input from the plate, the upper layer dynamics recapture robust Gaussian velocity statistics over a wide range of shaking parameters. The details of the energy injection into the upper layer are not well understood and could shed light on the conditions necessary to recapture a Maxwell-Boltzmann description in systems driven far from equilibrium. The dynamics of a single Delrin particle free to move on top of a high density lattice of dimers has been studied to evaluate the role of the interlayer collisions on the energy injection into this system. In this paper, the diffusion of the single tracer particle has been examined to better understand the influence of energy injection within the system.

  13. Non-equilibrium control of complex solids by nonlinear phononics.

    PubMed

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode. PMID:27223639

  14. Numerical simulation of non-equilibrium transient flow during inhalation

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf; Magin, Thierry

    2012-11-01

    The flow in human upper airways may be laminar, transitional, or turbulent. Breadth-by-breadth and patient-specific variability is expected to have a significant influence on laminar-turbulent transition. The flow path of therapeutic drug aerosols may be strongly affected by the transition-induced unsteady structures. The unsteady Navier-Stokes equations are solved numerically to simulate the flow through a channel-flow geometry representative of an airway segment. In order to trigger transition, small-amplitude disturbances are forced via wall blowing/suction. We perform multiple simulations with varying phase of the forced disturbances. Ensemble averaging then allows to compute mean and RMS values. A time-dependent channel center-line velocity serves to model the change in flow velocity during inhalation. The uncertainty associated with variability during breathing is quantified using non-intrusive stochastic collocation. Simulation results reveal that we have intervals in time and space with quasi-steady equilibrium and with strong non-equilibrium flow. The uncertainty associated with the breathing pattern may strongly affect the occurrence of laminar-turbulent transition, leading to large uncertainties when RMS values are peaking.

  15. A probability theory for non-equilibrium gravitational systems

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2015-08-01

    This paper uses dynamical invariants to describe the evolution of collisionless systems subject to time-dependent gravitational forces without resorting to maximum-entropy probabilities. We show that collisionless relaxation can be viewed as a special type of diffusion process in the integral-of-motion space. In time-varying potentials with a fixed spatial symmetry the diffusion coefficients are closely related to virial quantities, such as the specific moment of inertia, the virial factor and the mean kinetic and potential energy of microcanonical particle ensembles. The non-equilibrium distribution function is found by convolving the initial distribution function with the Green function that solves Einstein's equation for freely diffusing particles. Such a convolution also yields a natural solution to the Fokker-Planck equations in the energy space. Our mathematical formalism can be generalized to potentials with a time-varying symmetry, where diffusion extends over multiple dimensions of the integral-of-motion space. The new probability theory is in many ways analogous to stochastic calculus, with two significant differences: (i) the equations of motion that govern the trajectories of particles are fully deterministic, and (ii) the diffusion coefficients can be derived self-consistently from microcanonical phase-space averages without relying on ergodicity assumptions. For illustration we follow the cold collapse of N-body models in a time-dependent logarithmic potential. Comparison between the analytical and numerical results shows excellent agreement in regions where the potential evolution does not depart too strongly from the adiabatic regime.

  16. A non-equilibrium neutral model for analysing cultural change.

    PubMed

    Kandler, Anne; Shennan, Stephen

    2013-08-01

    Neutral evolution is a frequently used model to analyse changes in frequencies of cultural variants over time. Variants are chosen to be copied according to their relative frequency and new variants are introduced by a process of random mutation. Here we present a non-equilibrium neutral model which accounts for temporally varying population sizes and mutation rates and makes it possible to analyse the cultural system under consideration at any point in time. This framework gives an indication whether observed changes in the frequency distributions of a set of cultural variants between two time points are consistent with the random copying hypothesis. We find that the likelihood of the existence of the observed assemblage at the end of the considered time period (expressed by the probability of the observed number of cultural variants present in the population during the whole period under neutral evolution) is a powerful indicator of departures from neutrality. Further, we study the effects of frequency-dependent selection on the evolutionary trajectories and present a case study of change in the decoration of pottery in early Neolithic Central Europe. Based on the framework developed we show that neutral evolution is not an adequate description of the observed changes in frequency. PMID:23538207

  17. NON-EQUILIBRIUM IONIZATION IN THE BIFROST STELLAR ATMOSPHERE CODE

    SciTech Connect

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.

    2013-03-15

    The chromosphere and transition region have for the last 20 years been known to be quite dynamic layers of the solar atmosphere, characterized by timescales shorter than the ionization equilibrium timescales of many of the ions dominating emission in these regions. Due to the fast changes in the properties of the atmosphere, long ionization and recombination times can lead these ions to being found far from their equilibrium temperatures. A number of the spectral lines that we observe can therefore not be expected a priori to reflect information about local quantities such as the density or temperature, and interpreting observations requires numerical modeling. Modeling the ionization balance is computationally expensive and has earlier only been done in one dimension. However, one-dimensional models can primarily be used to investigate the possible importance of a physical effect, but cannot verify or disprove the importance of that effect in the fully three-dimensional solar atmosphere. Here, using the atomic database package DIPER, we extend one-dimensional methods and implement a solver for the rate equations of the full three-dimensional problem, using the numerical code Bifrost. We present our implementation and report on a few test cases. We also report on studies of the important C IV and Fe XII ions in a semi-realistic two-dimensional solar atmosphere model, focusing on differences between statistical equilibrium and non-equilibrium ionization results.

  18. Non-equilibrium control of complex solids by nonlinear phononics

    NASA Astrophysics Data System (ADS)

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

  19. Non-Equilibrium Water-Glassy Polymer Dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef

    2012-02-01

    For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.

  20. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  1. Non Equilibrium Transformations of Molecular Compounds Induced Mechanically

    SciTech Connect

    Descamps, M.; Willart, J. F.; Dudognon, E.

    2006-05-05

    Results clarifying the effects of mechanical milling on molecular solids are shortly reviewed. Special attention has been paid to the temperature of milling with regard to the glass transition temperature of the compounds. It is shown that decreasing the grinding temperature has for incidence to increase the amorphization tendency whereas milling above Tg produces a crystal-to-crystal transformation between polymorphic varieties. These observations contradict the usual proposition that grinding transforms the physical state only by a heating effect which induces a local melting. Equilibrium thermodynamics does not seem to be appropriate for describing the process. The driven alloys concept offers a more rational framework to interpret the effect of the milling temperature. Other results are presented which demonstrate the possibility for grinding to realize low temperature solid state alloying which offers new promising ways to stabilize amorphous molecular solids. In a second part the effect of dehydration of a molecular hydrate is described. It is shown that the rate of the dehydration process is a driving force for this other type of mechanical non equilibrium transformation.

  2. Non-equilibrium plasma experiments at The Pennsylvania State University

    NASA Astrophysics Data System (ADS)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  3. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  4. Non-equilibrium Warm Dense Gold: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Ng, Andrew

    2015-11-01

    This talk is an overview of a series of studies of non-equilibrium Warm Dense Matter using a broad range of measured properties of a single material, namely Au, as comprehensive benchmarks for theory. The measurements are made in fs-laser pump-probe experiments. For understanding lattice stability, our investigation reveals a solid phase at high energy density. This leads to the calculation of lattice dynamics using MD simulations and phonon hardening in DFT-MD simulations. For understanding electron transport in two-temperature states, AC conductivity is used to evaluate DFT-MD and Kubo-Greenwood calculations while DC conductivity is used to test Ziman calculations in a DFT average atom model. The electron density is also used to assess electronic structure calculations in DFT simulations. In our latest study of electron kinetics in states with a non-Fermi-Dirac distribution, three-body recombination is found to have a significant effect on electron thermalizaiton time. This is driving an effort to develop electron kinetics simulations using the Boltzmann equation method.

  5. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. The phase-field approach allows calculating, spontaneously, the non-equilibrium growth effects of alloys and the associated time-dependent growth dynamics, without making the assumptions that solute partitioning is an explicit function of velocity, as is the current convention. In the research described here, by utilizing the phase-field model in the thin-interface limit, incorporating the anti-trapping current term, more quantitatively valid interface kinetics and solute diffusion across the interface are calculated. In order to sufficiently resolve the physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings are continually adjusted in calculations. The full trajectories of transient planar growth dynamics under rapid directional solidification conditions with different pulling velocities are described. As a validation of a model, the predicted steady state conditions are consistent with the analytic approach for rapid growth. It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar front when the effect of the non-equilibrium solute partitioning at the interface becomes signi ficant. This is consistent with the previous linear stability analysis for the non-equilibrium interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics was able to be simulated using continually adjusting grid

  6. Application Of Highly Non-Equilibrium Plasma For Modification Of Biomedical Samples

    NASA Astrophysics Data System (ADS)

    Mozetic, M.

    2010-07-01

    Non-equilibrium processing of organic materials enables modification of surface properties without changing bulk characteristics of materials. Heavily nonequilibrium state of gas is obtained in a variety of discharges, but electrode-less high frequency discharges are particularly useful. Such discharges often provide plasma with a low ionization fraction (often below 10^-5), but the dissociation fraction is often close to 100%. Neutral atoms readily react with organic materials even at room temperature. Depending on the type of organic material, both surface morphology and functionality are modified. The technique is particularly suitable for improvement of biocompatibility as well as for controlled degradation of biological cells. Several examples on the functionalization of polymer materials will be presented. Furthermore, extremely high etching selectivity of neutral oxygen atoms allows for modification of the surface roughness which, in combination with extremely high density of polar surface functional groups leads to super-hydrophilic character of some polymers. An interesting application of such technology is for modification of the surface properties of vascular grafts. Plasma treated artificial blood vessels exhibit excellent anti-thrombogenic properties as well as good ability for growing of endothelial cells. The same technique is applied for selective removal of some organic materials from biological cells. Proper treatment allows for revealing the internal structure of biological cells. Examples of treatment of different bacteria are presented.

  7. New non-equilibrium matrix imbibition equation for double porosity model

    NASA Astrophysics Data System (ADS)

    Konyukhov, Andrey; Pankratov, Leonid

    2016-07-01

    The paper deals with the global Kondaurov double porosity model describing a non-equilibrium two-phase immiscible flow in fractured-porous reservoirs when non-equilibrium phenomena occur in the matrix blocks, only. In a mathematically rigorous way, we show that the homogenized model can be represented by usual equations of two-phase incompressible immiscible flow, except for the addition of two source terms calculated by a solution to a local problem being a boundary value problem for a non-equilibrium imbibition equation given in terms of the real saturation and a non-equilibrium parameter.

  8. Modeling of Non-equilibrium Processes in Oil Trunk Pipeline Using Godunov Type Method

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.

    The Article presents the numerical method of solving the system of one-dimensional non-stationary equations describing oil movement in the oil pipeline. The method is aimed at modeling the non-equilibrium and transitional processes in the oil pipelines in the normal and emergency modes. This new developed method can be applied for relaxation non-equilibrium flow case, that can't be modeling using another methods. Also this method is aimed at modeling the non-equilibrium and transitional processes in the liquefied hydrocarbon pipelines in the normal and emergency modes. Phase non-equilibrium flow is considered for boiling liquids transporting pipeline.

  9. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  10. Step-wise pulling protocols for non-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far

  11. A comparison of Coulombic interaction methods in non-equilibrium studies of heat transfer in water

    NASA Astrophysics Data System (ADS)

    Muscatello, Jordan; Bresme, Fernando

    2011-12-01

    We investigate the impact of the treatment of electrostatic interactions on the heat conduction of liquid water. With this purpose, we report a series of non-equilibrium molecular dynamics computer simulations of the Modified Central Force Model of water. We consider both the Ewald summation approach, which includes the full range of the electrostatic interactions, and the Wolf method, which uses a cutoff to truncate the long range contributions. It is shown that the relaxation of the temperature profiles towards the stationary state solution and the equation of state of the liquid are not affected by the treatment of the electrostatic interactions. However, the truncation of the interactions results in lower internal energy fluxes as well as lower thermal conductivities. We also find that the anomalous increase of the thermal conductivity of water with temperature is reproduced by the different methods considered in this work, showing that this physical behavior is independent of the treatment of the long range electrostatic interactions.

  12. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A.; Murray, Christopher B.; Su, Dong

    2016-05-01

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance.

  13. Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics

    NASA Astrophysics Data System (ADS)

    Borchers, Nick; Pleimling, Michel; Zia, R. K. P.

    2013-03-01

    From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666

  14. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu2+

    NASA Astrophysics Data System (ADS)

    Ait Oumeziane, Amina; Liani, Bachir; Parisse, Jean-Denis

    2016-03-01

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu2+ species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu2+) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e., temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.

  15. The unsaturated hydraulic conductivity: measurement and non-equilibrium effects

    NASA Astrophysics Data System (ADS)

    Weller, U.; Vogel, H.

    2010-12-01

    potential and water content shows hysteretic behavior, this is the fact not only for the initial relations, but also for the long-term, stable conditions. The non-equilibrium at transitional conditions has been observed before. It can be explained by a rearrangement of the liquid/gas interfaces: first these are dominated by the dynamic behavior and the accessibility of the pore space. The long term equilibrium then is more towards an energetic more favorable configuration. With our measurements we have now an easy tool to quantify it over a wide range of water saturation, and to describe quantitatively the dynamic of the process.

  16. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-04-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466, 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N} , where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0 . In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example of mean field diffusions: the Shinomoto-Kuramoto model of coupled rotators (Prog Theoret Phys 75:1105-1110, [74]). This

  17. Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Gawȩdzki, Krzysztof; Nardini, Cesare

    2016-06-01

    In stochastic systems with weak noise, the logarithm of the stationary distribution becomes proportional to a large deviation rate function called the quasi-potential. The quasi-potential, and its characterization through a variational problem, lies at the core of the Freidlin-Wentzell large deviations theory (Freidlin and Wentzell, Random perturbations of dynamical systems, 2012). In many interacting particle systems, the particle density is described by fluctuating hydrodynamics governed by Macroscopic Fluctuation Theory (Bertini et al., arXiv:1404.6466 , 2014), which formally fits within Freidlin-Wentzell's framework with a weak noise proportional to 1/√{N}, where N is the number of particles. The quasi-potential then appears as a natural generalization of the equilibrium free energy to non-equilibrium particle systems. A key physical and practical issue is to actually compute quasi-potentials from their variational characterization for non-equilibrium systems for which detailed balance does not hold. We discuss how to perform such a computation perturbatively in an external parameter λ , starting from a known quasi-potential for λ =0. In a general setup, explicit iterative formulae for all terms of the power-series expansion of the quasi-potential are given for the first time. The key point is a proof of solvability conditions that assure the existence of the perturbation expansion to all orders. We apply the perturbative approach to diffusive particles interacting through a mean-field potential. For such systems, the variational characterization of the quasi-potential was proven by Dawson and Gartner (Stochastics 20:247-308, 1987; Stochastic differential systems, vol 96, pp 1-10, 1987). Our perturbative analysis provides new explicit results about the quasi-potential and about fluctuations of one-particle observables in a simple example

  18. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. I. NON-EQUILIBRIUM COOLANT FORMATION

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2010-07-20

    We use high-resolution three-dimensional adaptive mesh refinement simulations to investigate the interaction of high-redshift galaxy outflows with low-mass virialized clouds of primordial composition. While atomic cooling allows star formation in objects with virial temperatures above 10{sup 4} K, 'minihalos' below this threshold are generally unable to form stars by themselves. However, these objects are highly susceptible to triggered star formation, induced by outflows from neighboring high-redshift starburst galaxies. Here, we conduct a study of these interactions, focusing on cooling through non-equilibrium molecular hydrogen (H{sub 2}) and hydrogen deuteride (HD) formation. Tracking the non-equilibrium chemistry and cooling of 14 species and including the presence of a dissociating background, we show that shock interactions can transform minihalos into extremely compact clusters of coeval stars. Furthermore, these clusters are all less than {approx}10{sup 6} M {sub sun}, and they are ejected from their parent dark matter halos: properties that are remarkably similar to those of the old population of globular clusters.

  19. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  20. Non-equilibrium dynamics of ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Chen, David

    This thesis describes experiments focused on investigating out-of-equilibrium phenomena in the Bose-Hubbard Model and exploring novel cooling techniques for ultracold gases in optical lattices. In the first experiment, we study quenches across the Mott-insulator-to-superfluid quantum phase transition in the 3D Bose-Hubbard Model. The quench is accomplished by continuously tuning the ratio of the Hubbard energies. We observe that the degree of excitation is proportional to the fraction of atoms that cross the phase boundary, and that the amount of excitations and energy produced during the quench have a power-law dependence on the quench rate. These phenomena suggest an excitation process analogous to the mechanism for defect generation in non-equilibrium classical phase transitions. This experiment constitutes the first observation of the Kibble-Zurek mechanism in a quantum quench. We have reported our findings in Ref. [1]. In a second experiment, published in Ref. [2], we investigate dissipation as a method for cooling a strongly interacting gas. We introduce dissipation via a bosonic reservoir to a strongly interacting bosonic gas in the Mott-insulator regime of a 3D spin-dependent optical lattice. The lattice atoms are excited to a higher energy band using laser-induced Bragg transitions. A weakly interacting superfluid comprised of atoms in a state that does not experience the lattice potential acts as a dissipative bath that interacts with the lattice atoms through collisions. We measure the resulting bath-induced decay using the atomic quasimomentum distribution, and we compare the decay rate with predictions from a weakly interacting model with no free parameters. A competing intrinsic decay mechanism arising from collisions between lattice atoms is also investigated. The presence of intrinsic decay can not be accommodated within a non-interacting framework and signals that strong interactions may play a central role in the lattice-atom dynamics. The

  1. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    NASA Astrophysics Data System (ADS)

    Amouroux, J.; Cavadias, S.; Doubla, A.

    2011-03-01

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO2 reduction, with formation of molecules such as CH3OH or syngas, is the reaction with H2 (exothermic reaction needing catalytic activation), or CH4 (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH3OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al2O3. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO2, H2 or CH4 through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH3OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  2. Physics and chemistry of non-equilibrium, atmospheric pressure plasmas containing fluorine

    NASA Astrophysics Data System (ADS)

    Yang, Xiawan

    The physics and chemistry of low temperature, atmospheric pressure plasmas containing fluorine have been investigated with current, voltage, and power measurements, infrared absorption spectroscopy, and optical emission spectroscopy. The plasma source consisted of two closely spaced metal electrodes, supplied with radio-frequency power at 13.56 MHz. The fluorine atom concentration was measured in the downstream region of a carbon tetrafluoride and helium plasma using infrared spectroscopy. The gas discharge generated 1.2 x 10 15 cm-3 of F atoms, which is ˜100 times higher than that found in low-pressure plasmas. A numerical model of the plasma indicated that most of the F atoms were generated by the reaction of CF4 with metastable helium atoms. It was discovered that the atmospheric pressure, radio-frequency plasma could be made to undergo sheath breakdown with conversion from an alpha- to a gamma-mode discharge. With 0.4 vol% nitrogen in helium, this transition was accompanied by a 40% drop in voltage, a 12% decrease in current, and a surge in power density from 25 to 2083 W/cm3. The shift in intense plasma emission from the bulk gas to the surface of the electrodes was documented by optical techniques. When the plasma was operated in the alpha and gamma modes, 5.2% and 15.2% of the N2 was dissociated into atoms, respectively. In the latter case, the low dissociation efficiency was ascribed to the nonuniform structure of the plasma across the gap. In plasmas containing 1.0 vol% carbon tetrafluoride and sulfur hexafluoride, the alpha to gamma transition occurred smoothly with no discharge contraction. The electron density in these plasmas equaled 6.0 x 1011 cm-3, compared to 1.9 x 1013 cm -3 in pure helium. The drop in plasma density was due to fast electron attachment processes caused by the electronegative molecules, which also resulted in a high density of negative ions, up to 1013 cm-3. In addition, the non-equilibrium, atmospheric pressure plasma was used to

  3. Scattering matrix approach to the dissociative recombination of HCO+ and N2H+.

    PubMed

    Fonseca dos Santos, S; Douguet, N; Kokoouline, V; Orel, A E

    2014-04-28

    We present a theoretical study of the indirect dissociative recombination of linear polyatomic ions at low collisional energies. The approach is based on the computation of the scattering matrix just above the ionization threshold and enables the explicit determination of all diabatic electronic couplings responsible for dissociative recombination. In addition, we use the multi-channel quantum-defect theory to demonstrate the precision of the scattering matrix by reproducing accurately ab initio Rydberg state energies of the neutral molecule. We consider the molecular ions N2H(+) and HCO(+) as benchmark systems of astrophysical interest and improve former theoretical studies, which had repeatedly produced smaller cross sections than experimentally measured. Specifically, we demonstrate the crucial role of the previously overlooked stretching modes for linear polyatomic ions with large permanent dipole moment. The theoretical cross sections for both ions agree well with experimental data over a wide energy range. Finally, we consider the potential role of the HOC(+) isomer in the experimental cross sections of HCO(+) at energies below 10 meV. PMID:24784271

  4. Synthesis of Silane and Silicon in a Non-equilibrium Plasma Jet

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1978-01-01

    The original objective of this program was to determine the feasibility of high volume, low-cost production of high purity silane or solar cell grade silicon using a non equilibrium plasma jet. The emphasis was changed near the end of the program to determine the feasibility of preparing photovoltaic amorphous silicon films directly using this method. The non equilibrium plasma jet should be further evaluated as a technique for producing high efficiency photovoltaic amorphous silicon films.

  5. Non-equilibrium Steady States in Kac's Model Coupled to a Thermostat

    NASA Astrophysics Data System (ADS)

    Evans, Josephine

    2016-09-01

    This paper studies the existence, uniqueness and convergence to non-equilibrium steady states in Kac's model with an external coupling. We work in both Fourier distances and Wasserstein distances. Our methods work in the case where the external coupling is not a Maxwellian equilibrium. This provides an example of a non-equilibrium steady state. We also study the behaviour as the number of particles goes to infinity and show quantitative estimates on the convergence rate of the first marginal.

  6. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry – Physical versus non-equilibrium model

    SciTech Connect

    Greskowiak, Janek; Hay, Michael B.; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Davis, James A.; Zheng, Chunmiao; Zachara, John M.

    2011-08-03

    Coupled intra-grain diffusional mass-transfer and non-linear surface complexation processes play an important role for the transport behaviour of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes have been analysed and compared: (i) the physical non-equilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intra-grain regions and approximates the diffusive mass exchange between the immobile intra-grain pore water and the advective pore water as multi-rate 1st-order mass transfer and (ii) the chemical non-equilibrium approach that approximates the diffusion-limited intra-grain surface complexation reactions by a set of multiple 1st-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intra grain pore water. Model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of apparent U(VI) adsorption/desorption kinetic behaviour to hydrogeochemically induced changes in U(VI) sorption strength is more pronounced in the physical than in the chemical non-equilibrium model. The magnitude of the differences in model behaviour depends particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behaviour between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of high frequent groundwater flow reversals.

  7. Non-equilibrium statistical mechanics theory for the large scales of geophysical flows

    NASA Astrophysics Data System (ADS)

    Eric, S.; Bouchet, F.

    2010-12-01

    The aim of any theory of turbulence is to understand the statistical properties of the velocity field. As a huge number of degrees of freedom is involved, statistical mechanics is a natural approach. The self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. We discuss classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations, mean field approach) and thermodynamic concepts (ensemble inequivalence, negative heat capacity) are briefly explained and used to predict statistical equilibria for turbulent flows. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations will be discussed. We also present recent results for non-equilibrium situations, for which forces and dissipation are in a statistical balance. As an example, the concept of phase transition allows us to describe drastic changes of the whole system when a few external parameters are changed. F. Bouchet and E. Simonnet, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. Venaille and F. Bouchet, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. Bouchet and A. Venaille, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions for the 2D Navier-Stokes equations with

  8. Applications of finite-size scaling for atomic and non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin A.

    We apply the theory of Finite-size scaling (FSS) to an atomic and a non-equilibrium system in order to extract critical parameters. In atomic systems, we look at the energy dependence on the binding charge near threshold between bound and free states, where we seek the critical nuclear charge for stability. We use different ab initio methods, such as Hartree-Fock, Density Functional Theory, and exact formulations implemented numerically with the finite-element method (FEM). Using Finite-size scaling formalism, where in this case the size of the system is related to the number of elements used in the basis expansion of the wavefunction, we predict critical parameters in the large basis limit. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that this combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. In the second part we look at non-equilibrium one-dimensional model known as the raise and peel model describing a growing surface which grows locally and has non-local desorption. For a specific values of adsorption ( ua) and desorption (ud) the model shows interesting features. At ua = ud, the model is described by a conformal field theory (with conformal charge c = 0) and its stationary probability can be mapped to the ground state of a quantum chain and can also be related a two dimensional statistical model. For ua ≥ ud, the model shows a scale invariant phase in the avalanche distribution. In this work we study the surface dynamics by looking at avalanche distributions using FSS formalism and explore the effect of changing the boundary conditions of the model. The model shows the same universality for the cases with and with our the wall for an odd number of tiles removed, but we find a new exponent in the presence of a wall for an even number of avalanches released. We provide new conjecture for the probability distribution of

  9. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  10. Recent Advancements In The Numerical Simulation Of Non-Equilibrium Flows With Application To Monatomic Gases

    NASA Astrophysics Data System (ADS)

    Kapper, M. G.; Cambier, J.-L.; Bultel, A.; Magin, T. E.

    2011-05-01

    This paper summarizes our current efforts in developing numerical methods for the study of non- equilibrium, high-enthalpy plasma. We describe the general approach used in the model development, some of the problems to be solved and benchmarks showing current capabilities. In particular, we review the recent development of a collisional-radiative model coupled with a single-fluid, two-temperature convection model for the transport of shock-heated argon along with extensions to krypton and xenon. The model is used in a systematic approach to examine the effects of the collision cross sections on the shock structure, including the relaxation layer and subsequent radiative-cooling regime. We review recent results obtained and comparisons with previous experimental results obtained at the University of Toronto’s Institute of Aerospace Studies (UTIAS) and the Australian National University (ANU), which serve as benchmarks to the model. We also show results when unsteady and multi-dimensional effects are included, highlighting the importance of coupling between convective transport and kinetic processes in nonequilibrium flows. We then look at extending the model to both nozzle and external flows to study expansion regimes.

  11. Non-equilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology

    PubMed Central

    Kemp, Melissa; Go, Young-Mi; Jones, Dean P.

    2008-01-01

    Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend upon redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but non-equilibrium steady states, are largely independently regulated in different subcellular compartments and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention. PMID:18155672

  12. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    This special issue of Journal of Physics: Condensed Matter presents the Proceedings of the Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, held in Pisa from 17-22 September 2006. This was the fourth of a series of workshops on this theme started in 1995 as a joint initiative of the Università di Pisa and the Scuola Normale Superiore. The 2006 edition was attended by about 200 participants from Europe, Asia and the Americas. As for the earlier workshops, the main objective was to bring together scientists from different areas of science, technology and engineering, to comparatively discuss experimental facts and theoretical predictions on the dynamical processes that occur in supercooled fluids and other disordered materials in non-equilibrium states. The underlying conceptual unity of the field provides a common background for the scientific community working in its various areas. In this edition the number of sessions was increased to cover a wider range of topics of general and current interest, in a larger number of stimulating lectures. The core of the workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. The sessions were in sequence devoted to: non-equilibrium dynamics, aging and secondary relaxations, biomaterials, polyamorphism and water, polymer dynamics I, complex systems, pressure-temperature scaling, thin films, nanometre length-scale studies, folded states of proteins and polymer crystals, theoretical aspects and energy landscape approaches, relaxation and heterogeneous dynamics, rheology in fluids and entangled polymers, biopolymers, and polymer dynamics II. We thank the session chairmen and all speakers for the high quality of their contributions. The structure of this issue of the proceedings follows the sequence of the oral presentations in the workshop, complemented by some papers selected from the poster sessions. Two

  13. Revision of the nonequilibrium thermal dissociation and stringent washing approaches for identification of mixed nucleic acid targets by microarrays

    PubMed Central

    Pozhitkov, Alex E.; Stedtfeld, Robert D.; Hashsham, Syed A.; Noble, Peter A.

    2007-01-01

    Microarray experiments typically involve washing steps that remove hybridized nonspecific targets with the purpose of improving the signal-to-noise ratio. The quality of washing ultimately affects downstream analysis of the microarray and interpretation. The paucity of fundamental studies directed towards understanding the dissociation of mixed targets from microarrays makes the development of meaningful washing/dissociation protocols difficult. To fill the void, we examined activation energies and preexponential coefficients of 47 perfect match (PM) and double-mismatch (MM) duplex pairs to discover that there was no statistical difference between the kinetics of the PM and MM duplexes. Based on these findings, we evaluated the nonequilibrium thermal dissociation (NTD) approach, which has been used to identify specific microbial targets in mixed target samples. We found that the major premises for various washing protocols and the NTD approach might be seriously compromised because: (i) nonspecific duplexes do not always dissociate before specific ones, and (ii) the relationship between dissociation rates of the PM and MM duplexes depends on temperature and duplex sequence. Specifically for the NTD, we show that previously suggested use of reference curves, indices of curves and temperature ramps lead to erroneous conclusions. PMID:17430966

  14. Numerical solution of 2D wet steam flow with non-equilibrium condensation and real thermodynamics

    SciTech Connect

    Hric, V.; Halama, J.

    2015-03-10

    An approach to modeling of wet steam flow with non-equilibrium condensation phenomenon is presented. The first part of our flow model is homogeneous Euler system of transport equations for mass, momentum and total energy of wet steam (mixture). The additional second part describes liquid phase via non-homogeneous system of transport equations for moments of droplets number distribution function and relies on corrected classical nucleation theory. Moment equations are closed by linearization of droplet growth rate model. All necessary relations for thermodynamic properties of steam are provided by IAPWS set of equations. However, properties of condensate are simply modeled by liquid saturation data. Two real equations of state are implemented. Recently developed CFD formulation for entropy (does not require iteration process) and so-called IAPWS special gas equation for Helmholtz energy (one iteration loop is necessary). Flow model is validated on converging-diverging supersonic nozzle with Barschdorff geometry. Simulations were performed by in-house CFD code based on finite volume method and stiff character of equations was solved by symmetrical time operator splitting. Achieved results satisfactorily agreed with experimental data.

  15. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's functions

    NASA Astrophysics Data System (ADS)

    Lin, Haiping; Rauba, Janosch M. C.; Thygesen, Kristian S.; Jacobsen, Karsten W.; Simmons, Michelle Y.; Hofer, Werner A.

    2010-12-01

    The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy (STM) techniques. The theoretical treatment of the STM operation has traditionally been based on the Bardeen and Tersoff-Hamann methods which take as input the single-particle wave functions and eigenvalues obtained from finite cluster or slabs models of the surface-tip interface. Here, we present a novel STM simulation scheme based on non-equilibrium Green’s functions (NEGF) and Wannier functions which is both accurate and very efficient. The main novelty of the scheme compared to the Bardeen and Tersoff-Hamann approaches is that the coupling to the infinite (macroscopic) electrodes is taken into account. As an illustrating example we apply the NEGF-STM method to the Si(001)-(2×1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods.

  16. Non-equilibrium Statistical Mechanics and the Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Wettlaufer, John; Toppaladoddi, Srikanth

    We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the ice thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the ice pack using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.

  17. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy.

    PubMed

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A; Murray, Christopher B; Su, Dong

    2016-01-01

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance. PMID:27157119

  18. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy

    PubMed Central

    He, Kai; Zhang, Sen; Li, Jing; Yu, Xiqian; Meng, Qingping; Zhu, Yizhou; Hu, Enyuan; Sun, Ke; Yun, Hongseok; Yang, Xiao-Qing; Zhu, Yimei; Gan, Hong; Mo, Yifei; Stach, Eric A.; Murray, Christopher B.; Su, Dong

    2016-01-01

    Spinel transition metal oxides are important electrode materials for lithium-ion batteries, whose lithiation undergoes a two-step reaction, whereby intercalation and conversion occur in a sequential manner. These two reactions are known to have distinct reaction dynamics, but it is unclear how their kinetics affects the overall electrochemical response. Here we explore the lithiation of nanosized magnetite by employing a strain-sensitive, bright-field scanning transmission electron microscopy approach. This method allows direct, real-time, high-resolution visualization of how lithiation proceeds along specific reaction pathways. We find that the initial intercalation process follows a two-phase reaction sequence, whereas further lithiation leads to the coexistence of three distinct phases within single nanoparticles, which has not been previously reported to the best of our knowledge. We use phase-field theory to model and describe these non-equilibrium reaction pathways, and to directly correlate the observed phase evolution with the battery's discharge performance. PMID:27157119

  19. Non-Equilibrium Dynamics of Nano-channel Confined DNA: A Brownian Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aniket; Huang, Aiqun; Reisner, Walter

    We carry out Brownian dynamics (BD) simulation for a semi-flexible polymer chain characterized by a contour length Na and a persistence length lp confined inside a rectangular nanochannel to study its compression and retraction dynamics while being pushed on one end at a constant velocity by a ``nano-dozer''. We study the evolution of one dimensional concentration profile c (x , t) and the chain extension R along the channel axis (x-axis) during both the contracting as well as the retracting phases as a function of the velocity of the nano-dozer, both in steady states and in transients. Furthermore, we measure the transverse fluctuations of the chain under contraction and retraction, and the amplitude of the density profile, and compare these simulation results with those obtained from an analytical model proposed by Khorshid et al. Our studies are guided by recent experimental results by Khorshid et al. (Phys. Rev. Lett, 113, 268104 (2014)) and provide further justification to use a one dimensional PDE approach to understand the non-equilibrium dynamics of confined polymers.

  20. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    SciTech Connect

    Mac Low, Mordecai-Mark; Glover, Simon C. O. E-mail: glover@uni-heidelberg.de

    2012-02-20

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  1. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  2. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  3. The Principle of Minimal Resistance in Non-equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto

    2016-04-01

    Analytical models describing the motion of colloidal particles in given force fields are presented. In addition to local approaches, leading to well known master equations such as the Langevin and the Fokker-Planck equations, a global description based on path integration is reviewed. A new result is presented, showing that under very broad conditions, during its evolution a dissipative system tends to minimize its energy dissipation in such a way to keep constant the Hamiltonian time rate, equal to the difference between the flux-based and the force-based Rayleigh dissipation functions. In fact, the Fokker-Planck equation can be interpreted as the Hamilton-Jacobi equation resulting from such minumum principle. At steady state, the Hamiltonian time rate is maximized, leading to a minimum resistance principle. In the unsteady case, we consider the relaxation to equilibrium of harmonic oscillators and the motion of a Brownian particle in shear flow, obtaining results that coincide with the solution of the Fokker-Planck and the Langevin equations.

  4. Dissociable hippocampal and amygdalar D1-like receptor contribution to discriminated Pavlovian conditioned approach learning.

    PubMed

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-02-15

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  5. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  6. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  7. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    PubMed

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  8. Non-equilibrium Ionization Modeling of Simulated Pseudostreamers in a Solar Corona Model

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon; Reeves, Katharine K.; Murphy, Nicholas A.

    2015-04-01

    Time-dependent ionization is important for diagnostics of coronal streamers, where the thermodynamic time scale could be shorter than the ionization or recombination time scales, and ions are therefor in non-equilibrium ionization states. In this work, we perform post-processing time-dependent ionization calculations for a three dimensional solar corona and inner heliosphere model from Predictive Sciences Inc. (Mikić & Linker 1999) to analyze the influence of non-equilibrium ionization on emission from coronal streamers. Using the plasma temperature, density, velocity and magnetic field distributions provided by the 3D MHD simulation covering the Whole Sun Month (Carrington rotation CR1913, 1996 August 22 to September 18), we calculate non-equilibrium ionization states in the region around a pseudostreamer. We then obtain the synthetic emissivities with the non-equilibrium ion populations. Under the assumption that the corona is optically thin, we also obtain intensity profiles of several emission lines. We compare our calculations with intensities of Lyman-alpha lines and OVI lines from SOHO/Ultraviolet Coronagraph Spectrometer (UVCS) observations at 14 different heights. The results show that intensity profiles of both Lyman-alpha and OVI lines match well UVCS observations at low heights. At large heights, OVI intensites are higher for non-equilibrium ionization than equilibrium ionization inside this pseudostreamer. The assumption of ionization equilibrium would lead to a underestimate of the OVI intensity by about ten percent at a height of 2 solar radii, and the difference between these two ionization cases increases with height. The intensity ratio of OVI 1032 line to OVI 1037 lines is also obtained for non-equilibrium ionization modeling.

  9. Non-equilibrium phase transition in reconstituted acto-myosin cortices

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta; Abu Shah, Enas; Malik-Garbi, Maya; Mackintosh, Fred C.; Keren, Kinneret; Schmidt, Christoph F.

    2015-03-01

    The cortical actin cytoskeleton is a quasi 2-D active material in which dynamics are dominated by rapid actin turnover and myosin-driven contractility. Here we present a reconstituted model system that emulates these processes in artificial cell-like compartments. By tuning physical and chemical parameters, we induce a non-equilibrium phase transition. We characterize the local dynamics of these reconstituted cortices by tracking embedded single-walled carbon nanotubes (SWNTs). We create high-resolution maps of the contractile actomyosin flows in a homogenous and during transition to an inhomogeneous steady state. We find evidence that connectivity percolation drives the non-equilibrium phase transition.

  10. Non-equilibrium spin-transfer torque in voltage-biased SFS and SFNFS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Zhao, Erhai

    2005-03-01

    We report theoretical results for the non-equilibrium spin current and spin-transfer torque in voltage biased SFS and SFNFS Josephson structures. We discuss the role and interplay of spin filtering, spin rotation and Andreev scattering. These processes lead to identifiable structures in the d.c. and a.c. components of the spin current and the spin-transfer torque. Our calculations are based on a recent formulation of the boundary conditions for non-equilibrium quasiclassical Riccati equations.^ ^ E. Zhao, T. Löfwander, and J. A. Sauls, Phys. Rev. B 70, 134510 (2004).

  11. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    SciTech Connect

    Bresme, F.; Armstrong, J.

    2014-01-07

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.

  12. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    SciTech Connect

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  13. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films

    SciTech Connect

    Zakutayev, Andriy Ginley, David S.; Lany, Stephan; Perry, Nicola H.; Mason, Thomas O.

    2013-12-02

    Non-equilibrium state defines physical properties of materials in many technologies, including architectural, metallic, and semiconducting amorphous glasses. In contrast, crystalline electronic and energy materials, such as transparent conductive oxides (TCO), are conventionally thought to be in equilibrium. Here, we demonstrate that high electrical conductivity of crystalline Ga-doped ZnO TCO thin films occurs by virtue of metastable state of their defects. These results imply that such defect metastability may be important in other functional oxides. This finding emphasizes the need to understand and control non-equilibrium states of materials, in particular, their metastable defects, for the design of novel functional materials.

  14. Application of Non-Equilibrium Thermo Field Dynamics to quantum teleportation under the environment

    NASA Astrophysics Data System (ADS)

    Kitajima, S.; Arimitsu, T.; Obinata, M.; Yoshida, K.

    2014-06-01

    Quantum teleportation for continuous variables is treated by Non-Equilibrium Thermo Field Dynamics (NETFD), a canonical operator formalism for dissipative quantum systems, in order to study the effect of imperfect quantum entanglement on quantum communication. We used an entangled state constructed by two squeezed states. The entangled state is imperfect due to two reasons, i.e., one is the finiteness of the squeezing parameter r and the other comes from the process that the squeezed states are created under the dissipative interaction with the environment. We derive the expressions for one-shot fidelity (OSF), probability density function (PDF) associated with OSF and (averaged) fidelity by making full use of the algebraic manipulation of operator algebra within NETFD. We found that OSF and PDF are given by Gaussian forms with its peak at the original information α to be teleported, and that for r≫1 the variances of these quantities blow up to infinity for κ/χ≤1, while they approach to finite values for κ/χ>1. Here, χ represents the intensity of a degenerate parametric process, and κ the relaxation rate due to the interaction with the environment. The blow-up of the variances for OSF and PDF guarantees higher security against eavesdropping. With the blow-up of the variances, the height of PDF reduces to small because of the normalization of probability, while the height of OSF approaches to 1 indicating a higher performance of the quantum teleportation. We also found that in the limit κ/χ≫1 the variances of both OSF and PDF for any value of r (>0) reduce to 1 which is the same value as the case r=0, i.e., no entanglement.

  15. Tropical forests are non-equilibrium ecosystems governed by interspecific competition based on universal 1/6 niche width.

    PubMed

    Fort, Hugo; Inchausti, Pablo

    2013-01-01

    Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield observed spatial patterns that classical niche-based and neutral theories cannot. PMID:24386115

  16. Dual-Regge approach to high-energy, low-mass diffraction dissociation

    NASA Astrophysics Data System (ADS)

    Jenkovszky, L. L.; Kuprash, O. E.; Lämsä, J. W.; Magas, V. K.; Orava, R.

    2011-03-01

    A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.

  17. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    SciTech Connect

    Zhang XiaoNing; Xia WeiDong; Li HePing; Murphy, Anthony B.

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  18. Construction of Low Dissipative High Order Well-Balanced Filter Schemes for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Wang, Wei; Yee, H. C.; Sjogreen, Bjorn; Magin, Thierry; Shu, Chi-Wang

    2009-01-01

    The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. [26] to a class of low dissipative high order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. The class of filter schemes developed by Yee et al. [30], Sjoegreen & Yee [24] and Yee & Sjoegreen [35] consist of two steps, a full time step of spatially high order non-dissipative base scheme and an adaptive nonlinear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e., choosing a well-balanced base scheme with a well-balanced filter (both with high order). A typical class of these schemes shown in this paper is the high order central difference schemes/predictor-corrector (PC) schemes with a high order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady state solutions exactly; it is able to capture small perturbations, e.g., turbulence fluctuations; it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.

  19. Non-equilibrium self-assembly of metals on diblock copolymer templates

    NASA Astrophysics Data System (ADS)

    Lopes, Ward Antone

    Typically, the most perfectly ordered, self-assembled structures correspond to equilibrium states of the system. Here, I show that a high degree of order can arise out of strongly non-equilibrium conditions. I report on a systematic study of non-equilibrium aspects of the decoration of diblock copolymer ultrathin films by evaporated metals. I observe two distinct behaviors for selectively decorating the diblock copolymer: either the metal decorates the diblock copolymer template with nanoparticles or the metal decorates the template with nanowires. Remarkably, these nanowires remain stable under non-equilibrium conditions. I focus on results obtained with evaporated gold and silver on asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA). Gold and a number of other metals (indium, tin, lead, bismuth, aluminum) decorate the diblock copolymer with chains of nanoparticles and don't form wires. Silver forms chains of nanoparticles at low coverage (<30 A), but at high coverage (>100 A), silver forms nanowires. One can understand the formation of the chains of nanoparticles by understanding the equilibrium state of the system (metal + polymer). The silver nanowires, however, are highly non-equilibrium structures. To understand their formation, I modeled the self-assembly of the nanowires with a Monte Carlo simulation. This Monte Carlo simulation qualitatively agrees with the formation of the silver nanowires and their relaxation to equilibrium upon moderate heating.

  20. A grain scale non-equilibrium sediment transport model for unsteady flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A one dimensional (1-D) finite-volume model was developed for simulating non-equilibrium sediment transport in unsteady flow. The governing equations are the 1-D St. Venant equations for sediment-laden flow and the Exner equation including both bed load and suspended-load transport. The Rouse profil...

  1. Numerical analysis of the non-equilibrium plasma flow in the gaseous electronics conference reference reactor

    NASA Astrophysics Data System (ADS)

    Bijie, Yang; Ning, Zhou; Quanhua, Sun

    2016-01-01

    The capacitively coupled plasma in the gaseous electronics conference reference reactor is numerically investigated for argon flow using a non-equilibrium plasma fluid model. The finite rate chemistry is adopted for the chemical non-equilibrium among species including neutral metastable, whereas a two-temperature model is employed to resolve the thermal non-equilibrium between electrons and heavy species. The predicted plasma density agrees very well with experimental data for the validation case. A strong thermal non-equilibrium is observed between heavy particles and electrons due to its low collision frequency, where the heavy species remains near ambient temperature for low pressure and low voltage conditions (0.1 Torr, 100 V). The effects of the operating parameters on the ion flux are also investigated, including the electrode voltage, chamber pressure, and gas flow rate. It is found that the ion flux can be increased by either elevating the electrode voltage or lowering the gas pressure. Project supported by the National Natural Science Foundation of China (Nos. 11372325, 11475239).

  2. A non-equilibrium potential function to study competition in neural systems

    SciTech Connect

    Mejias, Jorge F.

    2011-03-24

    In this work, I overview some novel results concerning the theoretical calculation of a non-equilibrium potential function for a biologically motivated model of a neural network. Such model displays competition between different populations of excitatory and inhibitory neurons, which is known to originate synchronous dynamics, fast activity oscillations, and other nontrivial behavior in more sophisticated models of neural media.

  3. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through th...

  4. NON-EQUILIBRIUM EFFECTS IN THE VAPORIZATION OF MULTICOMPONENT FUEL DROPLETS

    EPA Science Inventory

    The paper reports results of a study of non-equilibrium effects in the vaporization of multicomponent fuel droplets. he effect of diffusional limitations on vaporization was studies for model systems consisting of n-dodecane doped with pyridine, quinoline, or acridine, which are ...

  5. A non-equilibrium potential function to study competition in neural systems

    NASA Astrophysics Data System (ADS)

    Mejías, Jorge F.

    2011-03-01

    In this work, I overview some novel results concerning the theoretical calculation of a non-equilibrium potential function for a biologically motivated model of a neural network. Such model displays competition between different populations of excitatory and inhibitory neurons, which is known to originate synchronous dynamics, fast activity oscillations, and other nontrivial behavior in more sophisticated models of neural media.

  6. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  7. Rarefied hypersonic flow simulations using the Navier-Stokes equations with non-equilibrium boundary conditions

    NASA Astrophysics Data System (ADS)

    Greenshields, Christopher J.; Reese, Jason M.

    2012-07-01

    This paper investigates the use of Navier-Stokes-Fourier equations with non-equilibrium boundary conditions (BCs) for simulation of rarefied hypersonic flows. It revisits a largely forgotten derivation of velocity slip and temperature jump by Patterson, based on Grad's moment method. Mach 10 flow around a cylinder and Mach 12.7 flow over a flat plate are simulated using both computational fluid dynamics using the temperature jump BCs of Patterson and Smoluchowski and the direct simulation Monte-Carlo (DSMC) method. These flows exhibit such strongly non-equilibrium behaviour that, following Patterson's analysis, they are strictly beyond the range of applicability of the BCs. Nevertheless, the results using Patterson's temperature jump BC compare quite well with the DSMC and are consistently better than those using the standard Smoluchowski temperature jump BC. One explanation for this better performance is that an assumption made by Patterson, based on the flow being only slightly non-equilibrium, introduces an additional constraint to the resulting BC model in the case of highly non-equilibrium flows.

  8. CELL DENSITY AND NON-EQUILIBRIUM SORPTION EFFECTS ON BACTERIAL DISPERSAL IN GROUNDWATER MICROCOSMS

    EPA Science Inventory

    The relative importance of dispersion, physical straining, non-equilibrium sorption, and cell density on the dispersal of bacteria was examined in saturated, flow-dynamic sand columns. The bacterial breakthrough as a was followed by measuring the effluent concentration of 3H-aden...

  9. Analysis of H atoms in a negative ion source plasma with the non-equilibrium electron energy distribution function

    SciTech Connect

    Koga, S.; Shibata, T.; Terasaki, R.; Kameyama, N.; Hatayama, A.; Bacal, M.; Tsumori, K.

    2012-02-15

    In negative ion sources for the neutral beam injection, it is important to calculate H atom flux onto the plasma grid (PG) surface for the evaluation of H{sup -} production on the PG surface. We have developed a neutral (H{sub 2} molecules and H atoms) transport code. In the present study, the neutral transport code is applied to the analysis of the H{sub 2} and H transport in a NIFS-R and D ion source in order to calculate the flux onto the PG surface. Taking into account non-equilibrium feature of the electron energy distribution function (EEDF), i.e., the fast electron component, we have done the neutral transport simulation. The results suggest that the precise evaluation of the EEDF, especially in the energy range 15 eV < E < 30 eV is important for the dissociation rate of H{sub 2} molecules by the electron impact collision and the resultant H atom flux on the PG.

  10. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.