Science.gov

Sample records for non-glucose induced insulin

  1. Changes in fetal mannose and other carbohydrates induced by a maternal insulin infusion in pregnant sheep

    PubMed Central

    2014-01-01

    Background The importance of non-glucose carbohydrates, especially mannose and inositol, for normal development is increasingly recognized. Whether pregnancies complicated by abnormal glucose transfer to the fetus also affect the regulation of non-glucose carbohydrates is unknown. In pregnant sheep, maternal insulin infusions were used to reduce glucose supply to the fetus for both short (2-wk) and long (8-wk) durations to test the hypothesis that a maternal insulin infusion would suppress fetal mannose and inositol concentrations. We also used direct fetal insulin infusions (1-wk hyperinsulinemic-isoglycemic clamp) to determine the relative importance of fetal glucose and insulin for regulating non-glucose carbohydrates. Results A maternal insulin infusion resulted in lower maternal (50%, P < 0.01) and fetal (35-45%, P < 0.01) mannose concentrations, which were highly correlated (r2 = 0.69, P < 0.01). A fetal insulin infusion resulted in a 50% reduction of fetal mannose (P < 0.05). Neither maternal nor fetal plasma inositol changed with exogenous insulin infusions. Additionally, maternal insulin infusion resulted in lower fetal sorbitol and fructose (P < 0.01). Conclusions Chronically decreased glucose supply to the fetus as well as fetal hyperinsulinemia both reduce fetal non-glucose carbohydrates. Given the role of these carbohydrates in protein glycosylation and lipid production, more research on their metabolism in pregnancies complicated by abnormal glucose metabolism is clearly warranted. PMID:24917928

  2. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion.

    PubMed

    Omi, Tsubasa; Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Takada, Hiromune; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  3. Paliperidone Induced Hypoglycemia by Increasing Insulin Secretion

    PubMed Central

    Riku, Keisen; Fukumoto, Motoyuki; Kanai, Koji; Omura, Yumi; Matunaga, Hidenori

    2016-01-01

    We report the case of a 41-year-old woman with schizophrenia who developed persistent hypoglycemia following paliperidone administration. After discontinuing paliperidone, the hypoglycemia resolved, but symptoms of diabetes emerged. Therefore, it appears that the hypoglycemia induced by paliperidone may mask symptoms of diabetes. Paliperidone may induce hypoglycemia by increasing insulin secretion. This report could help elucidate the relationship between atypical antipsychotics and glucose metabolism. PMID:27478670

  4. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    PubMed

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. PMID:27094035

  5. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    PubMed

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. PMID:26340929

  6. Methimazole-induced insulin autoimmune syndrome

    PubMed Central

    Jain, Nidhi; Savani, Malvi; Agarwal, Manyoo; Kadaria, Dipen

    2016-01-01

    Background: Hypoglycemia in a critical care setting is often multifactorial with iatrogenic insulin use, sulfonylurea (SU) use, sepsis, adrenal insufficiency and insulinoma among the common causes. Insulin autoimmune syndrome (IAS) is a rare cause of hypoglycemia characterized by the presence of insulin-binding autoantibodies to the sulfhydryl group-containing agents. We report a case of methimazole-induced IAS managed in the intensive care unit. Case presentation: A 76-year-old woman with a history of primary hyperthyroidism was sent from a nursing home for unresponsiveness. Vital signs were significant for hypotension (74/46) and low blood sugars. Fluid resuscitations with normal saline and 50% dextrose stabilized the blood pressure (BP) to 135/75 and her blood glucose to 264. Due to respiratory distress and septic appearance, she required emergency intubation. Nursing home medications were noted for methimazole and absence of any insulin or SU use. Empiric antibiotic treatment was started and fluid resuscitation was continued while home medications were held. Her laboratory values were significant for elevated creatinine, lactic acid, serum cortisol, C-peptide, and insulin. Her cultures, SU screen and computerized tomography (CT) scan were negative for significant findings. On day 2, in addition to 10% dextrose, octreotide was initiated for recurrent hypoglycemia. Her blood glucose (BG) continued to drop throughout the day for which she required glucagon support and a D20 infusion. By day 4, the rate of infusion was titrated up and her BG continued to drop to <60 mg/dl despite D20, octreotide and tube feeds with concentrated calories (1.5 cal/ml). Due to her declining health, her family endorsed palliative care and she was extubated. After day 11, her hypoglycemic episodes resolved and she remained endogenously euglycemic. Conclusions: IAS is associated with methimazole use due to formation of autoantibodies to insulin after its interaction with Sulfhydryl (SH

  7. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    SciTech Connect

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung; Choi, Joo-hee; Jeong, Jieun; Wi, Anjin; Park, Whoashig; Han, Ho-jae; Park, Soo-hyun

    2015-06-05

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1 plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.

  8. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance.

    PubMed

    Dube, John J; Bhatt, Bankim A; Dedousis, Nikolas; Bonen, Arend; O'Doherty, Robert M

    2007-08-01

    Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp ( approximately 15%), and increased SkM Akt ( approximately 30%) and glycogen synthase kinase 3 alpha ( approximately 52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; approximately 61%), elevated ceramides ( approximately 50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity ( approximately 25%) and increased SkM DAG ( approximately 33%) and ceramide ( approximately 60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase C theta (PKC theta), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKC theta and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by

  9. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  10. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells.

    PubMed

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-09-26

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  11. Computational modeling and analysis of insulin induced eukaryotic translation initiation.

    PubMed

    Lequieu, Joshua; Chakrabarti, Anirikh; Nayak, Satyaprakash; Varner, Jeffrey D

    2011-11-01

    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow. PMID:22102801

  12. Effect of Naloxon on Counter Insulin Hormone Secretion in Insulin-Induced Hypoglycemia

    PubMed Central

    Ju, Yeong Shil; Kim, Sung Woon; Yang, In Myung; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1987-01-01

    To investigate the normal physiologic role of endogenous opiates in glucose homeostasis and as a preliminary study for clarifying the association of endogenous opites with pathophysilogy of NIDDM, we obseved the changes in the secretion of counter-insulin hormones in response to insulin-induced hypoglycemia with or without naloxone. The results were as follows: Blood glucose was decreased significantly more rapidly with naloxone infusion than after insulin alone, which seems to play a role in the early responses of ACTH and GH.Not only was the more rapid response of ACTH and GH, but also the prolonged secretion of ACTH and Cortisol were observed after administration of insulin and naloxone. We concluded that endogenous opiates may be involved in the feedback regulation of secretion of ACTH and GH during hypoglycemia either at hypophysis or hypothalamus, and involved in glucose homeostasis via a certain direct mechanism other than regulation of counter hormone secretion. PMID:2856480

  13. Insulin Cannot Induce Adipogenic Differentiation in Primary Cardiac Cultures.

    PubMed

    Parameswaran, Sreejit; Sharma, Rajendra K

    2016-09-01

    Cardiac tissue contains a heterogeneous population of cardiomyocytes and nonmyocyte population especially fibroblasts. Fibroblast differentiation into adipogenic lineage is important for fat accumulation around the heart which is important in cardiac pathology. The differentiation in fibroblast has been observed both spontaneously and due to increased insulin stimulation. The present study aims to observe the effect of insulin in adipogenic differentiation of cardiac cells present in primary murine cardiomyocyte cultures. Oil Red O (ORO) staining has been used for observing the lipid accumulations formed due to adipogenic differentiation in murine cardiomyocyte cultures. The accumulated lipids were quantified by ORO assay and normalized using protein estimation. The lipid accumulation in cardiac cultures did not increase in presence of insulin. However, addition of other growth factors like insulin-like growth factor 1 and epidermal growth factor promoted adipogenic differentiation even in the presence of insulin and other inhibitory molecules such as vitamins. Lipid accumulation also increased in cells grown in media without insulin after an initial exposure to insulin-containing growth media. The current study adds to the existing knowledge that the insulin by itself cannot induce adipogenic induction in the cardiac cultures. The data have significance in the understanding of cardiovascular health especially in diabetic patients. PMID:27574386

  14. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  15. Metabolic acidosis-induced insulin resistance and cardiovascular risk.

    PubMed

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús; Adeva, Maria M

    2011-08-01

    Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosis worsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  16. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Maddaloni, Ernesto; Sørensen, Ditte; Rasmussen, Lars Melholt; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe−/− mice (Irs1/Apoe−/−) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE−/− mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE−/− mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr−/− and Irs1/Ldlr−/− mice decreased NO production and accelerated atherosclerosis, compared with Ldlr−/− mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  17. Role of PTEN in TNFα induced insulin resistance

    SciTech Connect

    Bulger, David A.; Conley, Jermaine; Conner, Spencer H.; Majumdar, Gipsy; Solomon, Solomon S.

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  18. Insulin Resistance Induces Posttranslational Hepatic Sortilin 1 Degradation in Mice*

    PubMed Central

    Li, Jibiao; Matye, David J.; Li, Tiangang

    2015-01-01

    Insulin promotes hepatic apolipoprotein B100 (apoB100) degradation, whereas insulin resistance is a major cause of hepatic apoB100/triglyceride overproduction in type 2 diabetes. The cellular trafficking receptor sortilin 1 (Sort1) was recently identified to transport apoB100 to the lysosome for degradation in the liver and thus regulate plasma cholesterol and triglyceride levels. Genetic variation of SORT1 was strongly associated with cardiovascular disease risk in humans. The major goal of this study is to investigate the effect and molecular mechanism of insulin regulation of Sort1. Results showed that insulin induced Sort1 protein, but not mRNA, in AML12 cells. Treatment of PI3K or AKT inhibitors decreased Sort1 protein, whereas expression of constitutively active AKT induced Sort1 protein in AML12 cells. Consistently, hepatic Sort1 was down-regulated in diabetic mice, which was partially restored after the administration of the insulin sensitizer metformin. LC-MS/MS analysis further revealed that serine phosphorylation of Sort1 protein was required for insulin induction of Sort1 in a casein kinase 2-dependent manner and that inhibition of PI3K signaling or prevention of Sort1 phosphorylation accelerated proteasome-dependent Sort1 degradation. Administration of a PI3K inhibitor to mice decreased hepatic Sort1 protein and increased plasma cholesterol and triglyceride levels. Adenovirus-mediated overexpression of Sort1 in the liver prevented PI3K inhibitor-induced Sort1 down-regulation and decreased plasma triglyceride but had no effect on plasma cholesterol in mice. This study identified Sort1 as a novel target of insulin signaling and suggests that Sort1 may play a role in altered hepatic apoB100 metabolism in insulin-resistant conditions. PMID:25805502

  19. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  20. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  1. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    SciTech Connect

    Liu, Gang; Hitomi, Hirofumi; Hosomi, Naohisa; Lei, Bai; Nakano, Daisuke; Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Griendling, Kathy K.; Nishiyama, Akira

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  2. A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1).

    PubMed

    Boura-Halfon, Sigalit; Shuster-Meiseles, Timor; Beck, Avital; Petrovich, Katia; Gurevitch, Diana; Ronen, Denise; Zick, Yehiel

    2010-11-01

    Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signaling, therefore its degradation is exquisitely regulated. Here, we show that insulin-stimulated degradation of IRS-1 requires the presence of a highly conserved Ser/Thr-rich domain that we named domain involved in degradation of IRS-1 (DIDI). DIDI (amino acids 386-430 of IRS-1) was identified by comparing the intracellular degradation rate of several truncated forms of IRS-1 transfected into CHO cells. The isolated DIDI domain underwent insulin-stimulated Ser/Thr phosphorylation, suggesting that it serves as a target for IRS-1 kinases. The effects of deletion of DIDI were studied in Fao rat hepatoma and in CHO cells expressing Myc-IRS-1(WT) or Myc-IRS-1(Δ386-430). Deletion of DIDI maintained the ability of IRS-1(Δ386-434) to undergo ubiquitination while rendering it insensitive to insulin-induced proteasomal degradation, which affected IRS-1(WT) (80% at 8 h). Consequently, IRS-1(Δ386-434) mediated insulin signaling (activation of Akt and glycogen synthesis) better than IRS-1(WT). IRS-1(Δ386-434) exhibited a significant greater preference for nuclear localization, compared with IRS-1(WT). Higher nuclear localization was also observed when cells expressing IRS-1(WT) were incubated with the proteasome inhibitor MG-132. The sequence of DIDI is conserved more than 93% across species, from fish to mammals, as opposed to approximately 40% homology of the entire IRS-1. These findings implicate DIDI as a novel, highly conserved domain of IRS-1, which mediates its cellular localization, rate of degradation, and biological activity, with a direct impact on insulin signal transduction. PMID:20843941

  3. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  4. Recent advances in obesity-induced inflammation and insulin resistance.

    PubMed

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  5. MondoA Senses Non-glucose Sugars

    PubMed Central

    Stoltzman, Carrie A.; Kaadige, Mohan R.; Peterson, Christopher W.; Ayer, Donald E.

    2011-01-01

    Glucose is required for cell growth and proliferation. The MondoA·Mlx transcription factor is glucose-responsive and accumulates in the nucleus by sensing glucose 6-phosphate. One direct and glucose-induced target of MondoA·Mlx complexes is thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, and hence its regulation by MondoA·Mlx triggers a feedback loop that restricts glucose uptake. This feedback loop is similar to the “hexose transport curb” first described almost 30 years ago. We show here that MondoA responds to the non-glucose hexoses, allose, 3-O-methylglucose, and glucosamine by accumulating in the nucleus and activating TXNIP transcription. The metabolic inhibitor 3-bromopyruvate blocks the transcriptional response to allose and 3-O-methylglucose, indicating that their metabolism, or a parallel pathway, is required to stimulate MondoA activity. Our dissection of the hexosamine biosynthetic pathway suggests that in addition to sensing glucose 6-phosphate, MondoA can also sense glucosamine 6-phosphate. Analysis of glucose uptake in wild-type, MondoA-null, or TXNIP-null murine embryonic fibroblasts indicates a role for the MondoA-TXNIP regulatory circuit in the hexose transport curb, although other redundant pathways also contribute. PMID:21908621

  6. Phosphate depletion impairs leucine-induced insulin secretion.

    PubMed

    Oh, H Y; Fadda, G Z; Smogorzewski, M; Liou, H H; Massry, S G

    1994-11-01

    Phosphate depletion (PD) in vivo causes a sundry of abnormalities in pancreatic islets including a rise in cytosolic calcium, low ATP content, reduced Ca2+ ATPase and Na(+)-K+ ATPase activity, and impaired insulin secretion in response to glucose or potassium. L-Leucine is a strong secretagogue that triggers insulin secretion by deamination to alpha-ketoisocaproic acid (KIC) and the subsequent metabolism of the latter to ATP and by the activation of glutamate dehydrogenase (GLDH), which acts on glutamate to generate alpha-ketoglutarate, the metabolism of which results in ATP production. The generation of ATP triggers events that lead to insulin secretion. It is not known whether PD impairs leucine-induced insulin secretion, and the cellular derangements that are involved in such an abnormality are not defined. These issues were studied in PD rats and in pair-weighed normal animals as controls. D-Leucine uptake by islets from PD rats is normal, but both leucine- and KIC-induced insulin secretions are impaired and the activity of branched-chain keto acid dehydrogenase, which facilitates the metabolism of KIC, is reduced. Both leucine and 2-aminobicyclo (2-2-1) haptene failed to stimulate GLDH and to augment the generation of alpha-ketoglutarate in the islets of PD rats. Also, the concentration of basal alpha-ketoglutarate was significantly higher in the islets of PD rats, suggesting that its metabolism is impaired. In addition, the activity of glutaminase is significantly reduced, an abnormality that would result in decreased production of glutamate, the substrate for GLDH. The data show that PD impairs leucine-induced insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7873737

  7. Insulin absorption and subcutaneous blood flow in normal subjects during insulin-induced hypoglycemia

    SciTech Connect

    Fernqvist-Forbes, E.; Linde, B.; Gunnarsson, R.

    1988-09-01

    We studied the effects of insulin-induced hypoglycemia on the absorption of 10 U /sup 125/I-labeled soluble human insulin injected sc in the thigh in 10 normal subjects. The disappearance of /sup 125/I from the injection site was followed by external gamma-counting. Subcutaneous blood flow (ATBF) was measured concomitantly with the 133Xe washout technique. The plasma glucose nadir (mean, 2.0 +/- 0.1 (+/- SE) mmol/L) occurred at 33 +/- 3 min and resulted in maximal arterial plasma epinephrine concentrations of approximately 6 nmol/L. From 30 min before to 60 min after the glucose nadir the (/sup 125/I)insulin absorption rate was depressed compared to that during normoglycemia. The first order disappearance rate constants were reduced by approximately 50% (P less than 0.01) during the first 30-min interval after the glucose nadir. During the same period ATBF increased by 100% (P less than 0.05). The results suggest that in normal subjects the absorption of soluble insulin from a sc depot is depressed in connection with hypoglycemia, despite considerably elevated ATBF.

  8. Insulin

    MedlinePlus

    ... pump is connected to your body by a flexible tube that has a tip that sticks under your skin. A cartridge of insulin is put in the pump. The insulin flows through the tube into your body. The pump controls how much insulin goes into your body. The ...

  9. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    PubMed

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. PMID:27016579

  10. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2.

    PubMed

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L D M; Heijnen, Cobi J; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-07-21

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  11. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance

    PubMed Central

    Liu, Jiarong; Franklin, John L.; Messina, Joseph L.; Hill, Helliner S.; Moellering, Douglas R.; Walton, R. Grace; Martin, Mitchell; Garvey, W. Timothy

    2009-01-01

    Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes. PMID:19996382

  12. Effects of diet-induced weight gain and turnout to pasture on insulin sensitivity in moderately insulin resistant horses.

    PubMed

    Lindåse, Sanna S; Nostell, Katarina E; Müller, Cecilia E; Jensen-Waern, Marianne; Bröjer, Johan T

    2016-03-01

    OBJECTIVE To quantify insulin sensitivity and monitor glucose, insulin, and lipid concentrations in a group of moderately insulin-resistant horses during induction of obesity by use of a forage diet supplemented with fat and during subsequent turnout to pasture. ANIMALS 9 adult Standardbred mares (11 to 20 years old). PROCEDURES Weight gain of horses was induced during 22 weeks by use of a forage diet supplemented with fat fed in gradually increasing amounts, followed by feeding of that fat-supplemented diet at 2.5 times the daily maintenance requirements. Horses were then turned out to pasture. Insulin sensitivity was measured with the euglycemic hyperinsulinemic clamp method before and after weight gain and after 4 weeks at pasture. Body weight, body condition score, and cresty neck score as well as fasting and postprandial concentrations of plasma insulin, plasma glucose, serum triglyceride, and serum nonesterified fatty acids were measured during the study. RESULTS Body weight typically increased by 10%, and body condition score (scale, 1 to 9) increased by > 1.5 from the start to the end of the weight-gain period. There was no difference in insulin sensitivity or metabolic clearance rate of insulin during the weight-gain period. Four weeks at pasture generally improved insulin sensitivity and metabolic clearance rate of insulin by 54% and 32%, respectively, but there was no change in body weight or body condition score. CONCLUSIONS AND CLINICAL RELEVANCE Findings indicated that dietary composition played a more important role than did short-term weight gain on alterations in insulin sensitivity of horses. PMID:26919602

  13. Aerosol Insulin Induces Regulatory CD8 γδ T Cells That Prevent Murine Insulin-dependent Diabetes

    PubMed Central

    Harrison, Leonard C.; Dempsey-Collier, Majella; Kramer, David R.; Takahashi, Kazuma

    1996-01-01

    Cellular immune hyporesponsiveness can be induced by the presentation of soluble protein antigens to mucosal surfaces. Most studies of mucosa-mediated tolerance have used the oral route of antigen delivery and few have examined autoantigens in natural models of autoimmune disease. Insulin is an autoantigen in humans and nonobese diabetic (NOD) mice with insulindependent diabetes mellitus (IDDM). When we administered insulin aerosol to NOD mice after the onset of subclinical disease, pancreatic islet pathology and diabetes incidence were both significantly reduced. Insulin-treated mice had increased circulating antibodies to insulin, absent splenocyte proliferation to the major epitope, insulin B chain amino acids 9–23, which was associated with increased IL-4 and particularly IL-10 secretion, and reduced proliferation to glutamic acid decarboxylase, another islet autoantigen. The ability of splenocytes from insulin-treated mice to suppress the adoptive transfer of diabetes to nondiabetic mice by T cells of diabetic mice was shown to be caused by small numbers of CD8 γδ T cells. These findings reveal a novel mechanism for suppressing cell-mediated autoimmune disease. Induction of regulatory CD8 γδ T cells by aerosol insulin is a therapeutic strategy with implications for the prevention of human IDDM. PMID:8976172

  14. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  15. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    SciTech Connect

    Niessen, Markus . E-mail: markus.niessen@usz.ch; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.

  16. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance

    PubMed Central

    McNay, Ewan C.; Ong, Cecilia T.; McCrimmon, Rory J.; Cresswell, James; Bogan, Jonathan S.; Sherwin, Robert S

    2010-01-01

    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes. PMID:20176121

  17. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin. PMID:15803960

  18. Intranasal Insulin Prevents Anesthesia-Induced Spatial Learning and Memory Deficit in Mice

    PubMed Central

    Zhang, Yongli; Dai, Chun-ling; Chen, Yanxing; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2016-01-01

    Elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). At present, there is no treatment that can prevent anesthesia-induced postoperative cognitive dysfunction. Here, we treated mice with daily intranasal administration of insulin (1.75 U/day) for one week before anesthesia induced by intraperitoneal injection of propofol and maintained by inhalation of sevoflurane for 1 hr. We found that the insulin treatment prevented anesthesia-induced deficit in spatial learning and memory, as measured by Morris water maze task during 1–5 days after exposure to anesthesia. The insulin treatment also attenuated anesthesia-induced hyperphosphorylation of tau and promoted the expression of synaptic proteins and insulin signaling in the brain. These findings show a therapeutic potential of intranasal administration of insulin before surgery to reduce the risk of anesthesia-induced cognitive decline and AD. PMID:26879001

  19. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    SciTech Connect

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  20. Thyrotropin via cyclic AMP induces insulin receptor expression and insulin Co-stimulation of growth and amplifies insulin and insulin-like growth factor signaling pathways in dog thyroid epithelial cells.

    PubMed

    Burikhanov, R; Coulonval, K; Pirson, I; Lamy, F; Dumont, J E; Roger, P P

    1996-11-15

    Despite the similarity of their receptors and signal transduction pathways, insulin is regarded as a regulator of glucose, protein, and lipid metabolism, whereas insulin-like growth factors (IGF-I and IGF-II) mainly act as mitogenic hormones. In the dog thyroid primary culture model, the triggering of DNA synthesis by thyrotropin (TSH) through cAMP, or by cAMP-independent factors including epidermal growth factor, hepatocyte growth factor and phorbol esters, requires insulin or IGFs as comitogenic factors. In the present study, in TSH-treated cells, IGF-I receptors and insulin receptors were paradoxically equivalent in their capacity to elicit the comitogenic pathway, which, however, was mediated only by IGF-I receptors in dog thyroid cells stimulated by cAMP-independent mitogens. Moreover, prior cell exposure to TSH or forskolin increased their responsiveness to insulin, IGF-I, and IGF-II, as seen on DNA synthesis and activation of a common insulin/IGF signaling pathway. To understand these observations, binding characteristics and expression of insulin and IGF-I receptors were examined. To analyze IGF-I receptor characteristics, the unexpected interference of a huge presence of IGF-binding proteins at the cell membrane was avoided using labeled Long R3 IGF-I instead of IGF-I. Strikingly, TSH, through cAMP, time-dependently induced insulin binding and insulin receptor mRNA and protein accumulation without any effect on IGF-I receptors. These findings constitute a first example of an induction of insulin receptor gene expression by a cAMP-mediated hormone. In dog thyroid cells, this allows low physiological insulin concentrations to act as a comitogenic factor and might explain in part the enhanced responsiveness to IGFs in response to TSH. This raises the possibility that TSH-insulin interactions may play a role in the regulation of thyroid growth and function in vivo. PMID:8910605

  1. Go-6976 reverses hyperglycemia-induced insulin resistance independently of cPKC inhibition in adipocytes.

    PubMed

    Robinson, Katherine A; Hegyi, Krisztina; Hannun, Yusuf A; Buse, Maria G; Sethi, Jaswinder K

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used "specific" inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not -β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  2. Fatty acid-induced NLRP3-PYCARD inflammasome activation interferes with insulin signaling

    PubMed Central

    Wen, Haitao; Gris, Denis; Lei, Yu; Jha, Sushmita; Zhang, Lu; Huang, Max Tze-Han; Brickey, Willie June; Ting, Jenny P.-Y.

    2014-01-01

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1β plays a role in insulin resistance; yet, how IL-1β is induced by fatty acid with HFD, and how this alters insulin signaling is unclear. We show that the saturated fatty acid, palmitate, but not unsaturated oleate, induces the activation of NLRP3-PYCARD inflammasome, causing caspase-1, IL-1β, and IL-18 production. This involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and ULK1 autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1β affects insulin sensitivity via TNF-independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D. PMID:21478880

  3. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    PubMed Central

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  4. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

    PubMed Central

    Pauli, José R; Ropelle, Eduardo R; Cintra, Dennys E; Carvalho-Filho, Marco A; Moraes, Juliana C; De Souza, Cláudio T; Velloso, Lício A; Carvalheira, José B C; Saad, Mario J A

    2008-01-01

    Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l-N6-(1-iminoethyl)lysine; l-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IRβ, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity. PMID:17974582

  5. Long-term fatty liver-induced insulin resistance in orotic acid-induced nonalcoholic fatty liver rats.

    PubMed

    Han, Xiuqing; Liu, Chunhua; Xue, Yong; Wang, Jingfeng; Xue, Changhu; Yanagita, Teruyoshi; Gao, Xiang; Wang, Yuming

    2016-04-01

    We investigated whether fatty liver preceded insulin resistance or vice versa using a long-term orotic acid (OA)-induced nonalcoholic fatty liver disease (NAFLD) model without the confounding effects of obesity and hyperlipidemia and explored the role of the liver in insulin resistance. Male Wistar rats were fed with or without OA supplementation for 30, 60, and 90 days. The NAFLD group showed increased liver lipid at 30, 60, and 90 days; glucose intolerance was noted at 60 and 90 days. Furthermore, partial liver proteins and gene expressions related to upstream signaling of insulin were decreased. However, the liver glycogen content was elevated, and gluconeogenesis genes expressions were obviously decreased at 90 days. The occurrence of fatty liver preceded insulin resistance in OA-induced NAFLD without the interference of obesity and hyperlipidemia, and hepatic insulin resistance may not play a conclusive role in insulin resistance in this model. PMID:26775542

  6. Atorvastatin ameliorates endothelium-specific insulin resistance induced by high glucose combined with high insulin.

    PubMed

    Yang, Ou; Li, Jinliang; Chen, Haiyan; Li, Jie; Kong, Jian

    2016-09-01

    The aim of the present study was to establish an endothelial cell model of endothelium-specific insulin resistance to evaluate the effect of atorvastatin on insulin resistance-associated endothelial dysfunction and to identify the potential pathway responsible for its action. Cultured human umbilical vein endothelial cells (HUVECs) were pretreated with different concentrations of glucose with, or without, 10‑5 M insulin for 24 h, following which the cells were treated with atorvastatin. The tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS‑1), the production of nitric oxide (NO), the activity and phosphorylation level of endothelial NO synthase (eNOS) on serine1177, and the mRNA levels of endothelin‑1 (ET‑1) were assessed during the experimental procedure. Treatment of the HUVECs with 30 mM glucose and 10‑5 M insulin for 24 h impaired insulin signaling, with reductions in the tyrosine phosphorylation of IR and protein expression of IRS‑1 by almost 75 and 65%, respectively. This, in turn, decreased the activity and phosphorylation of eNOS on serine1177, and reduced the production of NO by almost 80%. By contrast, the mRNA levels of ET‑1 were upregulated. All these changes were ameliorated by atorvastatin. Taken together, these results demonstrated that high concentrations of glucose and insulin impaired insulin signaling leading to endothelial dysfunction, and that atorvastatin ameliorated these changes, acting primarily through the phosphatidylinositol 3-kinase/Akt/eNOS signaling pathway. PMID:27484094

  7. Importance of peripheral insulin levels for insulin-induced suppression of glucose production in depancreatized dogs.

    PubMed Central

    Giacca, A; Fisher, S J; Shi, Z Q; Gupta, R; Lickley, H L; Vranic, M

    1992-01-01

    It is generally believed that glucose production (GP) cannot be adequately suppressed in insulin-treated diabetes because the portal-peripheral insulin gradient is absent. To determine whether suppression of GP in diabetes depends on portal insulin levels, we performed 3-h glucose and specific activity clamps in moderately hyperglycemic (10 mM) depancreatized dogs, using three protocols: (a) 54 pmol.kg-1 bolus + 5.4 pmol.kg-1.min-1 portal insulin infusion (n = 7; peripheral insulin = 170 +/- 51 pM); (b) an equimolar peripheral infusion (n = 7; peripheral insulin = 294 +/- 28 pM, P < 0.001); and (c) a half-dose peripheral infusion (n = 7), which gave comparable (157 +/- 13 pM) insulinemia to that seen in protocol 1. Glucose production, use (GU) and cycling (GC) were measured using HPLC-purified 6-[3H]- and 2-[3H]glucose. Consistent with the higher peripheral insulinemia, peripheral infusion was more effective than equimolar portal infusion in increasing GU. Unexpectedly, it was also more potent in suppressing GP (73 +/- 7 vs. 55 +/- 7% suppression between 120 and 180 min, P < 0.001). At matched peripheral insulinemia (protocols 2 and 3), not only stimulation of GU, but also suppression of GP was the same (55 +/- 7 vs. 63 +/- 4%). In the diabetic dogs at 10 mM glucose, GC was threefold higher than normal but failed to decrease with insulin infusion by either route. Glycerol, alanine, FFA, and glucagon levels decreased proportionally to peripheral insulinemia. However, the decrease in glucagon was not significantly greater in protocol 2 than in 1 or 3. When we combined all protocols, we found a correlation between the decrements in glycerol and FFAs and the decrease in GP (r = 0.6, P < 0.01). In conclusion, when suprabasal insulin levels in the physiological postprandial range are provided to moderately hyperglycemic depancreatized dogs, suppression of GP appears to be more dependent on peripheral than portal insulin concentrations and may be mainly mediated by

  8. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  9. Insulin-induced localized lipoatrophy preceded by shingles (herpes zoster): a case report

    PubMed Central

    2014-01-01

    Introduction Localized involutional lipoatrophy of subcutaneous adipose tissue may develop due to subcutaneous injection of pharmaceutical preparations. The pathogenesis of this adverse drug reaction is unknown. The progression of localized involutional lipoatrophy ceases and occasionally it resolves after withdrawing the inducing agent. In case of localized involutional lipoatrophy due to subcutaneous insulin therapy, low-dose systemic corticosteroids may be curative despite ongoing insulin administration. Case presentation We report a recurrence of insulin-induced localized involutional lipoatrophy at the abdominal wall in a 57-year-old Caucasian woman with type-1 diabetes on continuous subcutaneous insulin infusion. The first episode of insulin-induced localized involutional lipoatrophy two years previously had been cured by oral prednisone. The recurrence was treated immediately with 10mg prednisone once daily for five months, and was cured thereafter. The insulin analog preparation (Humalog™) and the insulin pump equipment (Accu-Chek Spirit™) applied were the same during both episodes. Both episodes were preceded by a temporary disturbance of the immune balance (the first episode by vaccination, the second episode through shingles). Conclusions This case confirms that insulin-induced localized involutional lipoatrophy in type-1 diabetes can occur again, and can be cured by systemic corticosteroids. We suggest that temporary disturbance of the immune balance may trigger this transitory idiosyncratic reaction in a susceptible individual. PMID:24961832

  10. Genetic variation in insulin-induced kinase signaling

    PubMed Central

    Wang, Isabel Xiaorong; Ramrattan, Girish; Cheung, Vivian G

    2015-01-01

    Individual differences in sensitivity to insulin contribute to disease susceptibility including diabetes and metabolic syndrome. Cellular responses to insulin are well studied. However, which steps in these response pathways differ across individuals remains largely unknown. Such knowledge is needed to guide more precise therapeutic interventions. Here, we studied insulin response and found extensive individual variation in the activation of key signaling factors, including ERK whose induction differs by more than 20-fold among our subjects. This variation in kinase activity is propagated to differences in downstream gene expression response to insulin. By genetic analysis, we identified cis-acting DNA variants that influence signaling response, which in turn affects downstream changes in gene expression and cellular phenotypes, such as protein translation and cell proliferation. These findings show that polymorphic differences in signal transduction contribute to individual variation in insulin response, and suggest kinase modulators as promising therapeutics for diseases characterized by insulin resistance. PMID:26202599

  11. Endogenous epinephrine protects against obesity induced insulin resistance.

    PubMed

    Ziegler, Michael G; Milic, Milos; Sun, Ping; Tang, Chih-Min; Elayan, Hamzeh; Bao, Xuping; Cheung, Wai Wilson; O'Connor, Daniel T

    2011-07-01

    Epinephrine (E) is a hormone released from the adrenal medulla in response to low blood sugar and other stresses. E and related β2-adrenergic agonists are used to treat asthma, but a side effect is high blood sugar. C57BL/6 mice prone to overfeeding induced type II diabetes had the PNMT gene knocked out to prevent E synthesis. These E deficient mice were very similar to control animals on a 14% fat diet. On a 40.6% fat diet they gained 20 to 33% more weight than control animals and increased their blood glucose response to a glucose tolerance test because they became resistant to insulin. Although the short term effect of β2-agonists such as E is to raise blood glucose, some long acting β2-agonists improve muscle glucose uptake. Endogenous E protects against overfeeding induced diabetes. Since adrenal E release can be impaired with aging and diabetes, endogenous E may help prevent adult onset diabetes. PMID:21354376

  12. Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance

    PubMed Central

    Iovino, Salvatore; Burkart, Alison M.; Warren, Laura; Patti, Mary Elizabeth; Kahn, C. Ronald

    2016-01-01

    Induced pluripotent stem cells (iPS cells) represent a unique tool for the study of the pathophysiology of human disease, because these cells can be differentiated into multiple cell types in vitro and used to generate patient- and tissue-specific disease models. Given the critical role for skeletal muscle insulin resistance in whole-body glucose metabolism and type 2 diabetes, we have created a novel cellular model of human muscle insulin resistance by differentiating iPS cells from individuals with mutations in the insulin receptor (IR-Mut) into functional myotubes and characterizing their response to insulin in comparison with controls. Morphologically, IR-Mut cells differentiated normally, but had delayed expression of some muscle differentiation-related genes. Most importantly, whereas control iPS-derived myotubes exhibited in vitro responses similar to primary differentiated human myoblasts, IR-Mut myotubes demonstrated severe impairment in insulin signaling and insulin-stimulated 2-deoxyglucose uptake and glycogen synthesis. Transcriptional regulation was also perturbed in IR-Mut myotubes with reduced insulin-stimulated expression of metabolic and early growth response genes. Thus, iPS-derived myotubes from individuals with genetically determined insulin resistance demonstrate many of the defects observed in vivo in insulin-resistant skeletal muscle and provide a new model to analyze the molecular impact of muscle insulin resistance. PMID:26831110

  13. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  14. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  15. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats

    PubMed Central

    Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji

    2015-01-01

    Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892

  16. Silymarin Induces Insulin Resistance through an Increase of Phosphatase and Tensin Homolog in Wistar Rats

    PubMed Central

    Cheng, Kai-Chun; Asakawa, Akihiro; Li, Ying-Xiao; Chung, Hsien-Hui; Amitani, Haruka; Ueki, Takatoshi; Cheng, Juei-Tang; Inui, Akio

    2014-01-01

    Background and aims Phosphatase and tensin homolog (PTEN) is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. Methods Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. Results Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. Conclusions Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients. PMID:24404172

  17. Short- and Longterm Glycemic Control of Streptozotocin-Induced Diabetic Rats Using Different Insulin Preparations.

    PubMed

    Luippold, Gerd; Bedenik, Jessica; Voigt, Anke; Grempler, Rolf

    2016-01-01

    The chemical induction of diabetes with STZ has gained popularity because of the relative ease of rendering normal animals diabetic. Insulin substitution is required in STZ-rats in long-term studies to avoid ketoacidosis and consequently loss of animals. Aim of the present studies was to test different insulin preparations and different ways of administration in their ability to reduce blood glucose in STZ-induced diabetic rats. Single dosing of the long-acting insulin analogue glargine was able to dose-dependently reduce blood glucose over 4 h towards normoglycemia in STZ-treated rats. However, this effect was not sustained until 8 h post injection. A more sustained glucose-lowering effect was achieved using insulin-releasing implants. In STZ-rats, 1 insulin implant moderately lowered blood glucose levels 10 days after implantation, while 2 implants induced normoglycemia over the whole day. According to the glucose-lowering effect 1 as well as 2 insulin implants significantly reduced HbA1c measured after 26 days of implantation. In line with the improved glucose homeostasis due to the implants, urinary glucose excretion was also blunted in STZ-treated rats with 2 implants. Since diabetic nephropathy is one of the complications of longterm diabetes, renal function was characterized in the STZ-rat model. Increases in creatinine clearance and urinary albumin excretion resemble early signs of diabetic nephropathy. These functional abnormalities of the kidney could clearly be corrected with insulin-releasing implants 27 days after implantation. The data show that diabetic STZ-rats respond to exogenous insulin with regard to glucose levels as well as kidney parameters and a suitable dose of insulin implants for glucose control was established. This animal model together with the insulin dosing regimen is suitable to address diabetes-induced early diabetic nephropathy and also to study combination therapies with insulin for the treatment of type 1 diabetes. PMID:27253523

  18. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance.

    PubMed

    Talukder, M A Hassan; Preda, Marilena; Ryzhova, Larisa; Prudovsky, Igor; Pinz, Ilka M

    2016-03-01

    Insulin resistance and diabetes are comorbidities of obesity and affect one in 10 adults in the United States. Despite the high prevalence, the mechanisms of cardiac insulin resistance in obesity are still unclear. We test the hypothesis that the insulin receptor localizes to caveolae and is regulated through binding to caveolin-3 (CAV3). We further test whether haploinsufficiency forCAV3 increases the susceptibility to high-fat-induced insulin resistance. We used in vivo and in vitro studies to determine the effect of palmitate exposure on global insulin resistance, contractile performance of the heart in vivo, glucose uptake in the heart, and on cellular signaling downstream of theIR We show that haploinsufficiency forCAV3 increases susceptibility to palmitate-induced global insulin resistance and causes cardiomyopathy. On the basis of fluorescence energy transfer (FRET) experiments, we show thatCAV3 andIRdirectly interact in cardiomyocytes. Palmitate impairs insulin signaling by a decrease in insulin-stimulated phosphorylation of Akt that corresponds to an 87% decrease in insulin-stimulated glucose uptake inHL-1 cardiomyocytes. Despite loss of Akt phosphorylation and lower glucose uptake, palmitate increased insulin-independent serine phosphorylation ofIRS-1 by 35%. In addition, we found lipid induced downregulation ofCD36, the fatty acid transporter associated with caveolae. This may explain the problem the diabetic heart is facing with the simultaneous impairment of glucose uptake and lipid transport. Thus, these findings suggest that loss ofCAV3 interferes with downstream insulin signaling and lipid uptake, implicatingCAV3 as a regulator of theIRand regulator of lipid uptake in the heart. PMID:27033451

  19. Short- and Longterm Glycemic Control of Streptozotocin-Induced Diabetic Rats Using Different Insulin Preparations

    PubMed Central

    Luippold, Gerd; Bedenik, Jessica; Voigt, Anke; Grempler, Rolf

    2016-01-01

    The chemical induction of diabetes with STZ has gained popularity because of the relative ease of rendering normal animals diabetic. Insulin substitution is required in STZ-rats in long-term studies to avoid ketoacidosis and consequently loss of animals. Aim of the present studies was to test different insulin preparations and different ways of administration in their ability to reduce blood glucose in STZ-induced diabetic rats. Single dosing of the long-acting insulin analogue glargine was able to dose-dependently reduce blood glucose over 4 h towards normoglycemia in STZ-treated rats. However, this effect was not sustained until 8 h post injection. A more sustained glucose-lowering effect was achieved using insulin-releasing implants. In STZ-rats, 1 insulin implant moderately lowered blood glucose levels 10 days after implantation, while 2 implants induced normoglycemia over the whole day. According to the glucose-lowering effect 1 as well as 2 insulin implants significantly reduced HbA1c measured after 26 days of implantation. In line with the improved glucose homeostasis due to the implants, urinary glucose excretion was also blunted in STZ-treated rats with 2 implants. Since diabetic nephropathy is one of the complications of longterm diabetes, renal function was characterized in the STZ-rat model. Increases in creatinine clearance and urinary albumin excretion resemble early signs of diabetic nephropathy. These functional abnormalities of the kidney could clearly be corrected with insulin-releasing implants 27 days after implantation. The data show that diabetic STZ-rats respond to exogenous insulin with regard to glucose levels as well as kidney parameters and a suitable dose of insulin implants for glucose control was established. This animal model together with the insulin dosing regimen is suitable to address diabetes-induced early diabetic nephropathy and also to study combination therapies with insulin for the treatment of type 1 diabetes. PMID:27253523

  20. Umbelliferone attenuates unpredictable chronic mild stress induced-insulin resistance in rats.

    PubMed

    Su, Qiang; Tao, Weiwei; Wang, Hanqing; Chen, Yanyan; Huang, Huang; Chen, Gang

    2016-05-01

    The aim of this study was to investigate whether umbelliferone (Umb) could attenuate insulin resistance in unpredictable chronic mild stress (CUMS)-induced rats. Behavioral changes were evaluated through sucrose preference test (SPT), open-field test, forced swimming test, and tail suspension test (TST), suggesting that Umb (20 and 40 mg/kg) could effectively improve depression symptoms. Oral glucose tolerance test and serum insulin indicated that Umb attributed to the control of blood glucose levels. The phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1, glycogen synthase kinase-3β, PI3K, and Akt was increased in Umb (20 and 40 mg/kg) treatment according to Western blot analysis. Taken together, the current results suggested the ameliorative effect of Umb against insulin resistance in the CUMS-induced rats. © 2016 IUBMB Life, 68(5):403-409, 2016. PMID:27027512

  1. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity.

    PubMed

    Solinas, Giovanni; Vilcu, Cristian; Neels, Jaap G; Bandyopadhyay, Gautam K; Luo, Jun-Li; Naugler, Willscott; Grivennikov, Sergei; Wynshaw-Boris, Anthony; Scadeng, Miriam; Olefsky, Jerrold M; Karin, Michael

    2007-11-01

    Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation. PMID:17983584

  2. Glucosamine induces REDD1 to suppress insulin action in retinal Müller cells.

    PubMed

    Moore, Joshua A; Miller, William P; Dennis, Michael D

    2016-05-01

    Resistance to insulin action is a key cause of diabetic complications, yet much remains unknown about the molecular mechanisms that contribute to the defect. Glucose-induced insulin resistance in peripheral tissues such as the retina is mediated in part by the hexosamine biosynthetic pathway (HBP). Glucosamine (GAM), a leading dietary supplement marketed to relieve the discomfort of osteoarthritis, is metabolized by the HBP, and in doing so bypasses the rate-limiting enzyme of the pathway. Thus, exogenous GAM consumption potentially exacerbates the resistance to insulin action observed with diabetes-induced hyperglycemia. In the present study, we evaluated the effect of GAM on insulin action in retinal Müller cells in culture. Addition of GAM to Müller cell culture repressed insulin-induced activation of the Akt/mTORC1 signaling pathway. However, the effect was not recapitulated by chemical inhibition to promote protein O-GlcNAcylation, nor was blockade of O-GlcNAcylation sufficient to prevent the effects of GAM. Instead, GAM induced ER stress and subsequent expression of the protein Regulated in DNA Damage and Development (REDD1), which was necessary for GAM to repress insulin-stimulated phosphorylation of Akt on Thr308. Overall, the findings support a model whereby GAM promotes ER stress in retinal Müller cells, resulting in elevated REDD1 expression and thus resistance to insulin action. PMID:26852666

  3. PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair

    PubMed Central

    Pang, Maoyin; de la Monte, Suzanne M.; Longato, Lisa; Tong, Ming; He, Jiman; Chaudhry, Rajeeve; Duan, Kevin; Ouh, Jiyun; Wands, Jack R.

    2009-01-01

    Background/Aims Chronic ethanol exposure impairs liver regeneration due to inhibition of insulin signaling and oxidative injury. PPAR agonists function as insulin sensitizers and anti-inflammatory agents. We investigated whether treatment with a PPARδ agonist could restore hepatic insulin sensitivity, survival signaling, and regenerative responses vis-a-vis chronic ethanol feeding. Methods Adult rats were fed isocaloric liquid diets containing 0% or 37% ethanol, and administered a PPARδ agonist by i.p. injection. We used liver tissue to examine histopathology, gene expression, oxidative stress, insulin signaling, and regenerative responses to 2/3 hepatectomy. Results Chronic ethanol feeding caused insulin resistance, increased oxidative stress, lipid peroxidation, DNA damage, and hepatocellular injury in liver. These effects were associated with reduced insulin receptor binding and affinity, impaired survival signaling through PI3K/Akt/GSK3β, and reduced expression of insulin responsive genes mediating energy metabolism and tissue remodeling. PPARδ agonist treatment reduced ethanol-mediated hepatic injury, oxidative stress, lipid peroxidation, and insulin resistance, increased signaling through PI3K/Akt/GSK3β, and enhanced the regenerative response to partial hepatectomy. Conclusions PPARδ agonist administration may attenuate the severity of chronic ethanol-induced liver injury and ethanol’s adverse effects on the hepatic repair by restoring insulin responsiveness, even in the context of continued high-level ethanol consumption. PMID:19398227

  4. Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice

    PubMed Central

    Keung, Wendy; Ussher, John R.; Jaswal, Jagdip S.; Raubenheimer, Monique; Lam, Victoria H.M.; Wagg, Cory S.; Lopaschuk, Gary D.

    2013-01-01

    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. PMID:23139350

  5. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.

    PubMed

    Keung, Wendy; Ussher, John R; Jaswal, Jagdip S; Raubenheimer, Monique; Lam, Victoria H M; Wagg, Cory S; Lopaschuk, Gary D

    2013-03-01

    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. PMID:23139350

  6. Hexane Extract of Orthosiphon stamineus Induces Insulin Expression and Prevents Glucotoxicity in INS-1 Cells

    PubMed Central

    Lee, Hae-Jung; Choi, Yoon-Jung; Park, So-Young; Kim, Jong-Yeon; Won, Kyu-Chang; Son, Jong-Keun

    2015-01-01

    Background Hyperglycemia, a characteristic feature of diabetes, induces glucotoxicity in pancreatic β-cells, resulting in further impairment of insulin secretion and worsening glycemic control. Thus, preservation of insulin secretory capacity is essential for the management of type 2 diabetes. In this study, we evaluated the ability of an Orthosiphon stamineus (OS) extract to prevent glucotoxicity in insulin-producing cells. Methods We measured insulin mRNA expression and glucose-stimulated insulin secretion (GSIS) in OS-treated INS-1 cells after exposure to a high glucose (HG; 30 mM) concentration. Results The hexane extract of OS elevated mRNA expression of insulin as well as pancreatic and duodenal homeobox-1 of INS-1 cells in a dose-dependent manner. The hexane OS extract also increased the levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) in a concentration-dependent manner. Additionally, Akt phosphorylation was elevated by treatment with 100 and 200 µmol of the hexane OS extract. Three days of HG exposure suppressed insulin mRNA expression and GSIS; these expressions were restored by treatment with the hexane OS extract. HG elevated peroxide levels in the INS-1 cells. These levels were unaffected by OS treatment under both normal and hyperglycemic conditions. Conclusion Our results suggested that the hexane extract of OS elevates insulin mRNA expression and prevents glucotoxicity induced by a 3-day treatment with HG. This was associated with the activation of PI-3K and Akt. PMID:25729713

  7. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    PubMed

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. PMID:26459640

  8. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. PMID:23266210

  9. Insulin-induced hypoglycemia activates the release of adrenocorticotropin predominantly via central and propranolol insensitive mechanisms.

    PubMed

    Jezová, D; Kvetnanský, R; Kovács, K; Oprsalová, Z; Vigas, M; Makara, G B

    1987-01-01

    The dynamic patterns of pituitary-adrenocortical and sympatho-adrenal hormone responses to insulin hypoglycemia as well as the relative importance of central vs. peripheral control of hypoglycemia-induced ACTH secretion were evaluated. In conscious rats bearing indwelling cannulae, the changes in hormone concentrations after insulin injection were dependent on the changes in blood glucose levels with respect to both time course and magnitude. ACTH, corticosterone, epinephrine, and norepinephrine levels were found to be maximal at 60 min after 2.5 IU kg-1 insulin injected ip, whereas earlier (20 min) but smaller increases were obtained in response to 0.5 IU kg-1 insulin injected iv. In rats 6-7 days after lesions of the medial basal hypothalamus (MBH), the rise of ACTH during insulin hypoglycemia was markedly inhibited and corticosterone levels were significantly reduced. Simultaneously, the hypoglycemia-induced increase in plasma epinephrine was unchanged and that in plasma norepinephrine was significantly enhanced in rats with the MBH destroyed. The beta-adrenoreceptor blocker propranolol did not inhibit ACTH and corticosterone responses to hypoglycemia in either sham-operated or MBH-lesioned animals. We conclude that the main factors triggering ACTH release during insulin-induced hypoglycemia are of central rather than peripheral origin. The high concentrations of circulating catecholamines occurring during insulin hypoglycemia are not responsible for pituitary-adrenocortical activation by direct, beta-adrenoreceptor mediated action at the pituitary level. PMID:3023036

  10. Euglycemic Infusion of Insulin Detemir Compared With Human Insulin Appears to Increase Direct Current Brain Potential Response and Reduces Food Intake While Inducing Similar Systemic Effects

    PubMed Central

    Hallschmid, Manfred; Jauch-Chara, Kamila; Korn, Oliver; Mölle, Matthias; Rasch, Björn; Born, Jan; Schultes, Bernd; Kern, Werner

    2010-01-01

    OBJECTIVE In the treatment of diabetic patients, the long-acting insulin analog insulin detemir is less prone to induce weight gain than other insulin formulations. Assuming that because of its pharmacologic properties, detemir displays stronger central nervous anorexigenic efficacy than human insulin, we compared acute effects of human insulin and detemir on electroencephalography (EEG) measures and food intake. RESEARCH DESIGN AND METHODS Frontocortical EEG direct current (DC) potentials were recorded in 15 healthy men during two hyperinsulinemic-euglycemic clamps that included an insulin bolus injection (human insulin, 17.75 mU/kg body wt; detemir, 90 mU/kg body wt) followed by a steady 90-min infusion (1.0 vs. 2.0 mU · kg−1 · min−1). A higher dosage was chosen for detemir to compensate for its delay in impact relative to human insulin and to elicit similar systemic effects. At 20 min after infusion, subjects were allowed to eat ad libitum from a test buffet. RESULTS Mean glucose infusions to maintain euglycemia (P > 0.93) and blood glucose concentrations (P > 0.34) did not differ between conditions. Detemir infusion induced a negative DC-potential shift, averaging −372.2 μV from 21 to 90 min that was not observed during human insulin infusion (146.5 μV, P = 0.02). Detemir, in comparison with human insulin, reduced subsequent food intake by 303 kcal (1,257 vs. 1,560, P < 0.04). CONCLUSIONS While inducing comparable peripheral effects, detemir exerts stronger acute effects on brain functions than human insulin and triggers a relative decrease in food consumption, suggesting an enhanced anorexigenic impact of detemir compared with human insulin on central nervous networks that control nutrient uptake. PMID:20068139

  11. Pid1 induces insulin resistance in both human and mouse skeletal muscle during obesity.

    PubMed

    Bonala, Sabeera; McFarlane, Craig; Ang, Jackie; Lim, Radiance; Lee, Marcus; Chua, Hillary; Lokireddy, Sudarsanareddy; Sreekanth, Patnam; Leow, Melvin Khee Shing; Meng, Khoo Chin; Shyong, Tai E; Lee, Yung Seng; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2013-09-01

    Obesity is associated with insulin resistance and abnormal peripheral tissue glucose uptake. However, the mechanisms that interfere with insulin signaling and glucose uptake in human skeletal muscle during obesity are not fully characterized. Using microarray, we have identified that the expression of Pid1 gene, which encodes for a protein that contains a phosphotyrosine-interacting domain, is increased in myoblasts established from overweight insulin-resistant individuals. Molecular analysis further validated that both Pid1 mRNA and protein levels are increased in cell culture models of insulin resistance. Consistent with these results, overexpression of phosphotyrosine interaction domain-containing protein 1 (PID1) in human myoblasts resulted in reduced insulin signaling and glucose uptake, whereas knockdown of PID1 enhanced glucose uptake and insulin signaling in human myoblasts and improved the insulin sensitivity following palmitate-, TNF-α-, or myostatin-induced insulin resistance in human myoblasts. Furthermore, the number of mitochondria in myoblasts that ectopically express PID1 was significantly reduced. In addition to overweight humans, we find that Pid1 levels are also increased in all 3 peripheral tissues (liver, skeletal muscle, and adipose tissue) in mouse models of diet-induced obesity and insulin resistance. An in silico search for regulators of Pid1 expression revealed the presence of nuclear factor-κB (NF-κB) binding sites in the Pid1 promoter. Luciferase reporter assays and chromatin immunoprecipitation studies confirmed that NF-κB is sufficient to transcriptionally up-regulate the Pid1 promoter. Furthermore, we find that myostatin up-regulates Pid1 expression via an NF-κB signaling mechanism. Collectively these results indicate that Pid1 is a potent intracellular inhibitor of insulin signaling pathway during obesity in humans and mice. PMID:23927930

  12. Insulin-induced hypoglycaemia is co-ordinately regulated by liver and muscle during acute and chronic insulin stimulation in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Polakof, Sergio; Skiba-Cassy, Sandrine; Choubert, Georges; Panserat, Stéphane

    2010-05-01

    The relative glucose intolerance of carnivorous fish species is often proposed to be a result of poor peripheral insulin action or possibly insulin resistance. In the present study, data from aortic cannulated rainbow trout receiving bovine insulin (75 mIU kg(-1)) injections show for the first time their ability to clear glucose in a very efficient manner. In another set of experiments, mRNA transcripts and protein phosphorylation status of proteins controlling glycaemia and glucose-related metabolism were studied during both acute and chronic treatment with bovine insulin. Our results show that fasted rainbow trout are well adapted at the molecular level to respond to increases in circulating insulin levels, and that this hormone is able to potentially improve glucose distribution and uptake by peripheral tissues. After acute insulin administration we found that to counter-regulate the insulin-induced hypoglycaemia, trout metabolism is strongly modified. This short-term, efficient response to hypoglycaemia includes a rapid, coordinated response involving the reorganization of muscle and liver metabolism. During chronic insulin treatment some of the functions traditionally attributed to insulin actions in mammals were observed, including increased mRNA levels of glucose transporters and glycogen storage (primarily in the muscle) as well as decreased mRNA levels of enzymes involved in de novo glucose production (in the liver). Finally, we show that the rainbow trout demonstrates most of the classic metabolic adjustments employed by mammals to efficiently utilize glucose in the appropriate insulin context. PMID:20400628

  13. Inhibition of Src homology 2 domain-containing phosphatase 1 increases insulin sensitivity in high-fat diet-induced insulin-resistant mice.

    PubMed

    Krüger, Janine; Wellnhofer, Ernst; Meyborg, Heike; Stawowy, Philipp; Östman, Arne; Kintscher, Ulrich; Kappert, Kai

    2016-03-01

    Insulin resistance plays a crucial role in the development of type 2 diabetes. Insulin receptor signalling is antagonized and tightly controlled by protein tyrosine phosphatases (PTPs). However, the precise role of the PTP src homology 2 domain-containing phosphatase 1 (SHP-1) in insulin resistance has not been explored. Male C57BL/6J mice were fed a high-fat diet (HFD, 60% kcal from fat), to induce insulin resistance, or a low-fat diet (LFD, 10% kcal from fat) for 10 weeks. Afterwards, HFD-fed mice were pharmacologically treated with the SHP-1 (Ptpn6) inhibitor sodium stibogluconate and the broad spectrum pan-PTP inhibitor bis(maltolato)oxovanadium(IV) (BMOV). Both inhibitors ameliorated the metabolic phenotype, as evidenced by reduced body weight, improved insulin sensitivity and glucose tolerance, which was not due to altered PTP gene expression. In parallel, phosphorylation of the insulin receptor and of the insulin signalling key intermediate Akt was enhanced, and both PTP inhibitors and siRNA-mediated SHP-1 downregulation resulted in an increased glucose uptake in vitro. Finally, recombinant SHP-1 was capable of dephosphorylating the ligand-induced tyrosine-phosphorylated insulin receptor. These results indicate a central role of SHP-1 in insulin signalling during obesity, and SHP-1 inhibition as a potential therapeutic approach in metabolic diseases. PMID:27047746

  14. The effect of thyroidectomy and propylthiouracil-induced hypothyroidism on insulin secretion in male rats.

    PubMed

    Godini, A; Ghasemi, A; Karbalaei, N; Zahediasl, S

    2014-09-01

    Data available on thyroid dysfunction and insulin secretion are inconsistent. The aim of this study was to assess the effect of hypothyroidism on insulin secretion, in vivo and in vitro, in rats. Adult Wistar male rats were divided into 4 groups, the control, the propylthiouracyl (PTU)-treated hypothyroid, the surgically thyroidectomized, and the sham-operated thyroidectomized. After 5 weeks, intravenous glucose tolerance test (IVGTT) was performed and 3 weeks later pancreatic islets were isolated to assess glucose induced insulin secretion and insulin content. Fasting serum glucose and insulin levels did not differ between the groups, but serum glucose concentration during IVGTT in the PTU-induced hypothyroid group was significantly higher as compared to controls, throughout 5-60 min. The serum glucose concentration during IVGTT in the thyroidectomized rats was also significantly higher than in the sham-operated ones, except at 10 and 60 min. The area under the curve of the serum insulin was significantly lower during IVGTT in the PTU-treated (10,010 ± 1,380 pmol/l/60 min) and thyroidectomized (13,930 ± 2,786) groups vs. their comparable groups (19,150 ± 2,110), p<0.01 and (20,650 ± 1,601), p<0.05, respectively. In the PTU-treated, but not in thyroidectomized animals, insulin secretion in response to glucose 8.3 and 16.7 mM was significantly lower than their comparable group. The results show that PTU- and thyroidectomy-induced hypothyroidism leads to impaired glucose tolerance due to reduced glucose stimulated insulin secretion. Islets insulin secretion is positively correlated with serum T3 and T4 concentrations. PMID:24627102

  15. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  16. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance

    PubMed Central

    Zhu, Caihong; Schwarz, Petra; Abakumova, Irina; Aguzzi, Adriano

    2015-01-01

    Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis. PMID:26658276

  17. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    SciTech Connect

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jianying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Llkayeva, Olka; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.; Smith, Richard D.; Qian, Weijun; Lynch, Christopher J.; Newgard, Christopher B.; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity and diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of protein expression and activity of branched-chain alpha keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway in the liver. Selective induction of hypothalamic insulin signaling in rats as well as inducible and lifelong genetic modulation of brain insulin receptor expression in mice both demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Further, short-term overfeeding impairs the ability of brain insulin to lower circulating BCAA levels in rats. Chronic high-fat feeding in primates and obesity and/or type 2 diabetes in humans is associated with reduced BCKDH protein expression in liver, further supporting the concept that decreased hepatic BCKDH is a primary cause of increased plasma BCAA levels in insulin-resistant states. These findings demonstrate that neuroendocrine pathways control BCAA homeostasis and that hypothalamic insulin resistance can be a cause of impaired BCAA metabolism in obesity and diabetes.

  18. Effect of a p38 MAPK inhibitor on FFA-induced hepatic insulin resistance in vivo

    PubMed Central

    Pereira, S; Yu, W Q; Moore, J; Mori, Y; Tsiani, E; Giacca, A

    2016-01-01

    The mechanisms whereby prolonged plasma free fatty acids elevation, as found in obesity, causes hepatic insulin resistance are not fully clarified. We herein investigated whether inhibition of p38 mitogen-activated protein kinase (MAPK) prevented hepatic insulin resistance following prolonged lipid infusion. Chronically cannulated rats were subdivided into one of four intravenous (i.v.) treatments that lasted 48 h: Saline (5.5 μl min−1), Intralipid plus heparin (IH, 20% Intralipid+20 U ml−1 heparin; 5.5 μl min−1), IH+p38 MAPK inhibitor (SB239063) and SB239063 alone. During the last 2 h of treatment, a hyperinsulinemic (5 mU kg−1 min−1) euglycemic clamp together with [3-3H] glucose methodology was carried out to distinguish hepatic from peripheral insulin sensitivity. We found that SB239063 prevented IH-induced hepatic insulin resistance, but not peripheral insulin resistance. SB239063 also prevented IH-induced phosphorylation of activating transcription factor 2 (ATF2), a marker of p38 MAPK activity, in the liver. Moreover, in another lipid infusion model in mice, SB239063 prevented hepatic but not peripheral insulin resistance caused by 48 h combined ethyloleate plus ethylpalmitate infusion. Our results suggest that inhibition of p38 MAPK may be a useful strategy in alleviating hepatic insulin resistance in obesity-associated disorders. PMID:27136448

  19. Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts.

    PubMed

    Fu, Qin; Xu, Bing; Liu, Yongming; Parikh, Dippal; Li, Jing; Li, Ying; Zhang, Yuan; Riehle, Christian; Zhu, Yi; Rawlings, Tenley; Shi, Qian; Clark, Richard B; Chen, Xiongwen; Abel, E Dale; Xiang, Yang K

    2014-08-01

    Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states. PMID:24677713

  20. Effect of a p38 MAPK inhibitor on FFA-induced hepatic insulin resistance in vivo.

    PubMed

    Pereira, S; Yu, W Q; Moore, J; Mori, Y; Tsiani, E; Giacca, A

    2016-01-01

    The mechanisms whereby prolonged plasma free fatty acids elevation, as found in obesity, causes hepatic insulin resistance are not fully clarified. We herein investigated whether inhibition of p38 mitogen-activated protein kinase (MAPK) prevented hepatic insulin resistance following prolonged lipid infusion. Chronically cannulated rats were subdivided into one of four intravenous (i.v.) treatments that lasted 48 h: Saline (5.5 μl min(-1)), Intralipid plus heparin (IH, 20% Intralipid+20 U ml(-1) heparin; 5.5 μl min(-1)), IH+p38 MAPK inhibitor (SB239063) and SB239063 alone. During the last 2 h of treatment, a hyperinsulinemic (5 mU kg(-1) min(-1)) euglycemic clamp together with [3-(3)H] glucose methodology was carried out to distinguish hepatic from peripheral insulin sensitivity. We found that SB239063 prevented IH-induced hepatic insulin resistance, but not peripheral insulin resistance. SB239063 also prevented IH-induced phosphorylation of activating transcription factor 2 (ATF2), a marker of p38 MAPK activity, in the liver. Moreover, in another lipid infusion model in mice, SB239063 prevented hepatic but not peripheral insulin resistance caused by 48 h combined ethyloleate plus ethylpalmitate infusion. Our results suggest that inhibition of p38 MAPK may be a useful strategy in alleviating hepatic insulin resistance in obesity-associated disorders. PMID:27136448

  1. Angiotensin-induced EGF receptor transactivation inhibits insulin signaling in C9 hepatic cells

    PubMed Central

    Arellano-Plancarte, Araceli; Hernandez-Aranda, Judith; Catt, Kevin J.; Olivares-Reyes, J. Alberto

    2014-01-01

    To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr308 and its immediate downstream substrate GSK-3α/β in a time-dependent fashion, with ∼70% reduction at 15min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser636/Ser639 that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser636/Ser639 is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser636/Ser639 via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr308 and GSK-3α/β phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway. PMID:19879250

  2. Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement

    SciTech Connect

    Liu, Rui; Su, Rongxin; Qi, Wei; He, Zhimin

    2011-06-03

    Highlights: {yields} We compare the structures of insulin upon heating with or without laser irradiation. {yields} Laser irradiation inhibits insulin fibrillation and may be of insert for mechanistic disease studies. {yields} Online laser measurements should be carefully used in the study of amyloid proteins. -- Abstract: Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circular dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an {alpha}-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in {beta}-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.

  3. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells.

    PubMed

    Abu Bakar, Mohamad Hafizi; Cheng, Kian-Kai; Sarmidi, Mohamad Roji; Yaakob, Harisun; Huri, Hasniza Zaman

    2015-01-01

    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells. PMID:25961164

  4. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles

    PubMed Central

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P.; Osorio-Fuentealba, Cesar; Antonescu, Costin N.; Bayer, K. Ulrich; Bilan, Philip J.; Klip, Amira

    2012-01-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding–deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  5. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles.

    PubMed

    Boguslavsky, Shlomit; Chiu, Tim; Foley, Kevin P; Osorio-Fuentealba, Cesar; Antonescu, Costin N; Bayer, K Ulrich; Bilan, Philip J; Klip, Amira

    2012-10-01

    GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells. PMID:22918957

  6. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6

    PubMed Central

    Bhat, Uppoor G.; Watanabe, Keiko

    2015-01-01

    Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis. PMID

  7. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes

    PubMed Central

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif

    2014-01-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. PMID:24918199

  8. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  9. Effect of anaesthesia on insulin-induced hypoglycemia in rabbits.

    PubMed

    Haynes, F J; Cheema-Dhadli, S; Halperin, R M; Zettle, R; Robinson, L; Halperin, M L

    1988-12-01

    The aim of this study was to determine how anaesthetized rabbits survive much longer than awake rabbits after receiving an insulin overdose. Insulin appeared to act in both groups of rabbits because there was a prompt fall in circulating glucose, free fatty acids, and beta-hydroxybutyrate concentrations. Carbohydrate appeared to be the principal energy source for anaesthetized rabbits because their respiratory quotient approached unity. Although the fall in glycemia was similar in both groups of rabbits, the circulating lactate concentration rose only in the anaesthetized group. This rise in lactate in the initial 60 min after insulin was given could account for most of the fall in glycemia if the source of lactate was the glucose pool. The decline in hepatic glycogen was close to 100 mumol/g liver; this would account for about one-third of the total energy turnover and close to one-half of the measured glucose appearance in these anaesthetized rabbits. As judged from the rate of oxygen consumption, muscle glycogen seemed to supply two-thirds of the fuel to be oxidized in these rabbits. However, only one-third of the lactate released from muscle was first converted to glucose and the remainder was oxidized directly to CO2. Although insulin provided the metabolic setting for a rapid rate of glucose oxidation, this rate appeared to be diminished when the overall rate of oxygen consumption was lower during anaesthesia. PMID:3067835

  10. Insulin-induced phospho-oligosaccharide stimulates amino acid transport in isolated rat hepatocytes.

    PubMed Central

    Varela, I; Avila, M; Mato, J M; Hue, L

    1990-01-01

    The ability of the insulin-induced phospho-oligosaccharide to stimulate amino acid transport was studied in isolated rat hepatocytes. At low alpha-aminoisobutyric acid concentrations (0.1 mM), both 100 nM-insulin and 10 microM-phospho-oligosaccharide doubled amino acid uptake after 2 h of incubation. This stimulation was prevented by 0.1 mM-cycloheximide or 5 micrograms of actinomycin D/ml, indicating that the phospho-oligosaccharide, like insulin, was acting via the synthesis of a high-affinity transport component. The effects of the phospho-oligosaccharide and of insulin were blocked by Ins2P (2.5 mM), but not by myo-inositol, inositol hexaphosphoric acid or several monosaccharides such as mannose, glucosamine and galactose. Both the temporal effect on amino acid entry and the extent of stimulation of this process by the phospho-oligosaccharide indicate that this molecule mimics, and may mediate, some of the long-term actions of insulin. However, the effects of phospho-oligosaccharide and insulin were not exactly the same, since the effect of insulin, but not of the phospho-oligosaccharide, was additive with that of glucagon. PMID:2185744

  11. Neuropoietin Attenuates Adipogenesis and Induces Insulin Resistance in Adipocytes*

    PubMed Central

    White, Ursula A.; Stewart, William C.; Mynatt, Randall L.; Stephens, Jacqueline M.

    2008-01-01

    Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRα, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic. PMID:18562323

  12. Modulation of insulin/IGFs pathways by sirtuin-7 inhibition in drug-induced chemoreistance

    PubMed Central

    2014-01-01

    Background Insulin and insulin-like growth factors (IGFs) are key regulators of metabolism and growth. Recent evidences suggest a key role of these pathways in non-classical tissues and the metabolic pathways by which these hormones exert their effects in neoplasia is unclear. Aims To study insulin/IGFs pathways in drug sensitive and resistant cancer cells representing breast cancer (MCF-7), osteosarcoma (SaOS-2), and ovarian cancer (A2780) and to examine the effect of Sirtuin-7 (Sirt7) inhibition on insulin/IGFs pathways in MCF-7 cell line. Methods Drug resistant cells were generated by continuous incubation of parental cell lines with stepwise increases in Doxorubicin or Cisplatin over a period of 3 to 6 months. MCF-7 cells were transfected with cloned hairpin siRNA template for Sirt7 using the Amaxa GmbH transfection system. mRNA expression of Sirt7, INSR, IRS-1, IRS-2, IRS-4, IGF-1, IGF-2, MDR-1, MRP-1, BCRP was measured by qPCR and Sirt7 by standard Western blotting. FITC-insulin uptake was imaged with Leica Confocal Microscope. Results Insulin receptor (INSR), insulin receptor substrate-1 (IRS-1) were inhibited in drug-induced resistance, whereas IRS-2 was significantly induced in all the chemoresistant cells tested when compared to their parental counterparts. IGF-1 and IGF-2 were also upregulated in all the drug resistant cells tested. Sirt7 was significantly reduced in all chemoresistant cells tested. Knockdown of Sirt7 expression in human breast MCF-7 cell line by siRNA induced premature senescence-like phenotype and multi-drug resistance, suggesting that this gene may play an active role in regulating cancer cell response to stress. Suppression of Sirt7 selectively inhibited INSR and IRS-1, whereas it had minimal effect on that of IRS-2. Sirt7 suppression in MCF-7 also inhibited insulin uptake. Additionally, Sirt7 inhibition upregulated IGF-1, IGF-2 and IGFR expression. Conclusion Our data demonstrate that stress-induced Sirt7 inhibition significantly

  13. Hypoglycemic effect of aqueous shallot and garlic extracts in rats with fructose-induced insulin resistance.

    PubMed

    Jalal, Razieh; Bagheri, Sayyed Majid; Moghimi, Ali; Rasuli, Morteza Behnam

    2007-11-01

    The present study has been carried out to investigate the effect of aqueous extract of shallot (Allium ascalonicum) and garlic (Allium satium) on the fasting insulin resistance index (FIRI) and intraperitoneal glucose tolerance test (IPGTT) of fructose-induced insulin resistance rats. Male albino Wistar rats were fed either normal or high-fructose diet for a period of eight weeks. Fasting blood glucose level, fasting blood triglyceride level, FIRI, and the area under the glucose tolerance curve were significantly elevated in fructose-fed animals. Fructose-induced insulin resistance rats treated by aqueous shallot or garlic extract (500 mg/kg body weight/day, i.p.) for duration of eight weeks. Control animals only received normal saline (0.9%). The results showed that neither shallot nor garlic extracts significantly altered the FIRI and the IPGTT at the fourth week after treatment. The fasting blood glucose in fructose-induced insulin resistance animals has been significantly decreased in 8-week treated animals by both shallot and garlic extracts. Shallot extract administration, but not garlic extract, for a period of eight weeks can significantly improve the intraperitoneal glucose tolerance and diminish the FIRI. These results indicate that shallot and garlic extracts have a hypoglycemic influence on the fructose-induced insulin resistance animals and aqueous shallot extract is a stronger hypoglycemic agent than the garlic extract. PMID:18299719

  14. Paradoxical Acceleration of Dithiothreitol-Induced Aggregation of Insulin in the Presence of a Chaperone

    PubMed Central

    Bumagina, Zoya; Gurvits, Bella; Artemova, Natalya; Muranov, Konstantin; Kurganov, Boris

    2010-01-01

    The kinetics of dithiothreitol (DTT)-induced aggregation of human recombinant insulin and the effect of α-crystallin, a representative of the family of small heat shock proteins, on the aggregation process have been studied using dynamic light scattering technique. Analysis of the distribution of the particles by size measured in the course of aggregation showed that the initial stage of the aggregation process was the stage of formation of the start aggregates with a hydrodynamic radius (Rh) of about 90 nm. When studying the effect of α-crystallin on the rate of DTT-induced aggregation of insulin, it was demonstrated that low concentrations of α-crystallin dramatically accelerated the aggregation process, whereas high concentrations of α-crystallin suppressed insulin aggregation. In the present study, at the molar stoichiometric ratio (insulin:α-crystallin) less than 1:0.5, a pronounced accelerating effect of α-crystallin was observed; whereas a ratio exceeding the value of 1:0.6 caused suppression of insulin aggregation. The mechanisms underlying the dual effect of α-crystallin have been proposed. It is assumed that heterogeneous nucleation occurring on the surface of the α-crystallin particle plays the key role in the paradoxical acceleration of insulin aggregation by α-crystallin that may provide an alternative biologically significant pathway of the aggregation process. PMID:21151456

  15. Myeloperoxidase Deletion Prevents High-Fat Diet–Induced Obesity and Insulin Resistance

    PubMed Central

    Wang, Qilong; Xie, Zhonglin; Zhang, Wencheng; Zhou, Jun; Wu, Yue; Zhang, Miao; Zhu, Huaiping

    2014-01-01

    Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO−/−) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance. PMID:25024373

  16. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance.

    PubMed

    Zhang, Deling; Zhang, Yemin; Ye, Mao; Ding, Youming; Tang, Zhao; Li, Mingxin; Zhou, Yu; Wang, Changhua

    2016-07-01

    Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes. PMID:27113027

  17. Intermedin Restores Hyperhomocysteinemia-induced Macrophage Polarization and Improves Insulin Resistance in Mice.

    PubMed

    Pang, Yanli; Li, Yang; Lv, Ying; Sun, Lulu; Zhang, Songyang; Li, Yin; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-06-01

    Hyperhomocysteinemia (HHcy) is a condition characterized by an abnormally high level of homocysteine, an inflammatory factor. This condition has been suggested to promote insulin resistance. To date, the underlying molecular mechanism remains largely unknown, and identifying novel therapeutic targets for HHcy-induced insulin resistance is of high priority. It is well known that intermedin (IMD), a calcitonin family peptide, exerts potent anti-inflammatory effects. In this study, the effects of IMD on HHcy-induced insulin resistance were investigated. Glucose tolerance and insulin tolerance tests were performed on mice treated with IMD by minipump implantation (318 ng/kg/h for 4 weeks) or adipocyte-specific IMD overexpression mice (Adipo-IMD transgenic mice). The expression of genes and proteins related to M1/M2 macrophages and endoplasmic reticulum stress (ERS) was evaluated in adipose tissues or cells. The expression of IMD was identified to be lower in the plasma and adipose tissues of HHcy mice. In both IMD treatment by minipump implantation and Adipo-IMD transgenic mice, IMD reversed HHcy-induced insulin resistance, as revealed by glucose tolerance and insulin tolerance tests. Further mechanistic study revealed that IMD reversed the Hcy-elevated ratio of M1/M2 macrophages by inhibiting AMP-activated protein kinase activity. Adipo-IMD transgenic mice displayed reduced ERS and lower inflammation in adipose tissues with HHcy. Soluble factors from Hcy-treated macrophages induced adipocyte ERS, which was reversed by IMD treatment. These findings revealed that IMD treatment restores the M1/M2 balance, inhibits chronic inflammation in adipose tissues, and improves systemic insulin sensitivity of HHcy mice. PMID:27080257

  18. Lipocalin-2 inhibits autophagy and induces insulin resistance in H9c2 cells.

    PubMed

    Chan, Yee Kwan; Sung, Hye Kyoung; Jahng, James Won Suk; Kim, Grace Ha Eun; Han, Meng; Sweeney, Gary

    2016-07-15

    Lipocalin-2 (Lcn2; also known as neutrophil gelatinase associated lipocalin, NGAL) levels are increased in obesity and diabetes and associate with insulin resistance. Correlations exist between Lcn2 levels and various forms or stages of heart failure. Insulin resistance and autophagy both play well-established roles in cardiomyopathy. However, little is known about the impact of Lcn2 on insulin signaling in cardiomyocytes. In this study, we treated H9c2 cells with recombinant Lcn2 for 1 h followed by dose- and time-dependent insulin treatment and found that Lcn2 attenuated insulin signaling assessed via phosphorylation of Akt and p70S6K. We used multiple assays to demonstrate that Lcn2 reduced autophagic flux. First, Lcn2 reduced pULK1 S555, increased pULK1 S757 and reduced LC3-II levels determined by Western blotting. We validated the use of DQ-BSA to assess autolysosomal protein degradation and this together with MagicRed cathepsin B assay indicated that Lcn2 reduced lysosomal degradative activity. Furthermore, we generated H9c2 cells stably expressing tandem fluorescent RFP/GFP-LC3 and this approach verified that Lcn2 decreased autophagic flux. We also created an autophagy-deficient H9c2 cell model by overexpressing a dominant-negative Atg5 mutant and found that reduced autophagy levels also induced insulin resistance. Adding rapamycin after Lcn2 could stimulate autophagy and recover insulin sensitivity. In conclusion, our study indicated that acute Lcn2 treatment caused insulin resistance and use of gain and loss of function approaches elucidated a causative link between autophagy inhibition and regulation of insulin sensitivity by Lcn2. PMID:27090568

  19. Beneficial effects of combined resveratrol and metformin therapy in treating diet-induced insulin resistance.

    PubMed

    Frendo-Cumbo, Scott; MacPherson, Rebecca E K; Wright, David C

    2016-08-01

    The polyphenol compound resveratrol (RSV) has attracted attention due to its reputed beneficial effects on insulin sensitivity. Our lab has previously identified protective effects of RSV against the development of type 2 diabetes in rats. These effects occurred in a manner similar to thiazolidinedione's (TZDs), a class of insulin sensitizing drugs. TZDs are commonly prescribed in combination with metformin (MET) and thus we sought to examine the combined effects of RSV and MET in treating insulin resistance. Male C57BL6 mice were fed a low- (LFD; 10% Kcal from fat) or high-fat diet (HFD; 60% Kcal from fat) for 9 weeks to induce glucose and insulin intolerance. HFD mice were then assigned to control (HFD), MET (231.28 ± 12.24 mg/kg/day), RSV (93.68 ± 3.51 mg/kg/day), or combined (COM; MET 232.01 ± 17.12 mg/kg/day and RSV 92.77 ± 6.92 mg/kg/day) treatment groups. Changes in glucose and insulin tolerance and tissue-specific insulin signaling were measured 4 weeks post-treatment. RSV or MET alone did not have beneficial effects on glucose tolerance, although MET significantly improved insulin tolerance compared to HFD Glucose and insulin tolerance were significantly improved in COM compared to HFD and this was mirrored by enhanced insulin-stimulated AKT phosphorylation in triceps muscle and inguinal subcutaneous adipose tissue in COM compared to HFD mice. Improvements with COM treatment were not explained by differences in body weight, adiposity, or markers of adipose tissue inflammation. In summary, this study provides evidence of beneficial effects of combined RSV and MET therapy in treating impairments in glucose homeostasis. PMID:27482073

  20. Insulin nonattenuation of vasoactive agent-induced responses in mesangial cells from spontaneously hypertensive rats.

    PubMed

    Inishi, Y; Okuda, T; Arakawa, T; Yasuda, C; Ohara, M; Kurokawa, K

    1995-03-01

    We recently found that insulin attenuates intracellular calcium transients and cell contraction caused by vasoactive agents in cultured rat mesangial cells. Because altered glomerular function may be causally related to the evolution of hypertension, we examined in the present study the effects of insulin on the functions of mesangial cells derived from spontaneously hypertensive rats (SHR) of 4- and 8-weeks of age. Age-matched Wistar Kyoto rats (WKY) were used as controls. Intracellular calcium concentration ([Ca2+]i) was measured with Fura-2 method in suspended mesangial cells. Pretreatment of mesangial cells with 5 micrograms/ml insulin for 120 minutes did not affect basal [Ca2+]i in either WKY or SHR mesangial cells. However, insulin pretreatment significantly attenuated [Ca2+]i transients to vasoactive agents in WKY mesangial cells. In contrast, [Ca2+]i transients to these agents were not attenuated by insulin in SHR mesangial cells. Additionally, SHR mesangial cell contraction in response to angiotensin II (Ang II) was not altered by insulin, while WKY mesangial cell contraction to Ang II was, as in normal Wistar rats, significantly reduced by insulin. Since we previously showed the possibility that the attenuation of calcium signal by insulin is via insulin-like growth factor I (IGF-I) receptor, we also examined the effect of IGF-I. In contrast to WKY mesangial cells, IGF-I-induced attenuation of [Ca2+]i responses to platelet activating factor was absent in SHR mesangial cells. [125I]-IGF-I binding in SHR mesangial cells was not significantly different from that in WKY mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7752589

  1. Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR).

    PubMed

    Li, Daliang; Chen, Shiuhwei; Bellomo, Elisa A; Tarasov, Andrei I; Kaut, Callan; Rutter, Guy A; Li, Wen-hong

    2011-12-27

    Current methods of monitoring insulin secretion lack the required spatial and temporal resolution to adequately map the dynamics of exocytosis of native insulin granules in intact cell populations in three dimensions. Exploiting the fact that insulin granules contain a high level of Zn(2+), and that Zn(2+) is coreleased with insulin during secretion, we have developed a fluorescent, cell surface-targeted zinc indicator for monitoring induced exocytotic release (ZIMIR). ZIMIR displayed a robust fluorescence enhancement on Zn(2+) chelation and bound Zn(2+) with high selectivity against Ca(2+) and Mg(2+). When added to cultured β cells or intact pancreatic islets at low micromolar concentrations, ZIMIR labeled cells rapidly, noninvasively, and stably, and it reliably reported changes in Zn(2+) concentration near the sites of granule fusion with high sensitivity that correlated well with membrane capacitance measurement. Fluorescence imaging of ZIMIR-labeled β cells followed the dynamics of exocytotic activity at subcellular resolution, even when using simple epifluorescence microscopy, and located the chief sites of insulin release to intercellular junctions. Moreover, ZIMIR imaging of intact rat islets revealed that Zn(2+)/insulin release occurred largely in small groups of adjacent β cells, with each forming a "secretory unit." Concurrent imaging of ZIMIR and Fura-2 showed that the amplitude of cytosolic Ca(2+) elevation did not necessarily correlate with insulin secretion activity, suggesting that events downstream of Ca(2+) signaling underlie the cell-cell heterogeneity in insulin release. In addition to studying stimulation-secretion coupling in cells with Zn(2+)-containing granules, ZIMIR may find applications in β-cell engineering and screening for molecules regulating insulin secretion on high-throughput platforms. PMID:22160693

  2. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation. PMID:25994118

  3. The Investigation of ADAMTS16 in Insulin-Induced Human Chondrosarcoma Cells

    PubMed Central

    Comertoglu, Ismail; Firat, Ridvan; Erdemli, Haci Kemal; Kursunlu, S. Fatih; Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Adam, Bahattin; Demircan, Kadir

    2015-01-01

    Abstract Objectives: A disintegrin-like metalloproteinase with thrombospondin motifs (ADAMTS) is a group of proteins that have enzymatic activity secreted by cells to the outside extracellular matrix. Insulin induces proteoglycan biosynthesis in chondrosarcoma chondrocytes. The purpose of the present in vitro study is to assess the time course effects of insulin on ADAMTS16 expression in OUMS-27 (human chondrosarcoma) cell line to examine whether insulin regulates ADAMTS16 expression as well as proteoglycan biosynthesis with multifaceted properties or not. Methods: Chondrosarcoma cells were cultured in Dulbecco's modified Eagle's medium having either 10 μg/mL insulin or not. While the experiment was going on, the medium containing insulin had been changed every other day. Cells were harvested at 1st, 3rd, 7th, and 11th days; subsequently, RNA and proteins were isolated in every experimental group according to their time interval. RNA expression of ADAMTS was estimated by quantitative real-time polymerase chain reaction (qRT-PCR) by using primers. Immunoreactive protein levels were encountered by the western blot protein detection technique by using proper anti-ADAMTS16 antibodies. Results: ADAMTS16 mRNA expression level of chondrosarcoma cells was found to be insignificantly decreased in chondrosarcoma cells induced by insulin detected by the qRT-PCR instrument. On the other hand, there was a gradual decrease in immune-reactant ADAMTS16 protein amount by the time course in insulin-treated cell groups when compared with control cells. Conclusion: It has been suggested that insulin might possibly regulate ADAMTS16 levels/activities in OUMS-27 chondrosarcoma cells taking a role in extracellular matrix turnover. PMID:26181853

  4. Regulation of recombinant human insulin-induced maturational events in Clarias batrachus (L.) oocytes in vitro.

    PubMed

    Hajra, Sudip; Das, Debabrata; Ghosh, Pritha; Pal, Soumojit; Nath, Poulomi; Maitra, Sudipta

    2016-04-01

    Regulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2-M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2-M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin

  5. Insulin and hypoxia-inducible factor-1 cooperate in pancreatic cancer cells to increase cell viability

    PubMed Central

    ZHANG, DAPENG; CUI, LIHUA; LI, SHU SHUN; WANG, FENG

    2015-01-01

    The aim of the present study was to investigate whether interstitial insulin and cancer-induced hypoxia-inducible factor-1 (HIF-1) cooperate in pancreatic cancer cells. A population of 45 nude mice were divided into one intact control group and six pancreatic tumor-carrier groups. Pancreatic tumors were generated using HIF-1-positive wild-type MiaPaCa2 (wt-MiaPaCa2) pancreatic cancer cells in three groups of carriers and MiaPaCa2 cells transfected with small interfering RNA against HIF-1α (si-MiaPaCa2 cells) in the other three carrier groups. To vary the intrapancreatic insulin levels, tumor-carrying mice were subjected to one of the following conditions: i) Untreated, ii) single injection of the β-cell toxin streptozotosin prior to cancer cell transplantation and iii) daily injection of insulin following cancer cell transplantation. After 12 weeks, tumor viability was assessed by histological analysis. Western blotting of the tumor grafts was performed to determine the protein expression levels of insulin receptor (IR) and two downstream proteins, hexokinase-II (HK-II) and vascular endothelial growth factor (VEGF). Histologically, the greatest viability was observed in wt-MiaPaCa2 tumors with carriers that remained untreated. These tumors also exhibited greater IR expression than their si-MiaPaCa2 counterparts, indicating that HIF-1 is necessary for basal expression of IR. However, IR expression was increased in wt-MiaPaCa2 and si-MiaPaCa2 tumors when the carriers were treated with exogenous insulin. This indicates that the insulin-induced IR expression was independent of HIF-1. Notably, the insulin-induced IR expression was associated with increased HK-II and VEGF expression in wt-MiaPaCa2 tumors but not si-MiaPaC2 tumors. Therefore, the present study proposes that insulin and HIF-1 may cooperate to increase pancreatic cancer cell viability. Furthermore, the HIF-1 signaling pathway is required for insulin-induced HK-II and VEGF expression, as well as basal IR

  6. Identification of new biomarker candidates for glucocorticoid induced insulin resistance using literature mining

    PubMed Central

    2013-01-01

    Background Glucocorticoids are potent anti-inflammatory agents used for the treatment of diseases such as rheumatoid arthritis, asthma, inflammatory bowel disease and psoriasis. Unfortunately, usage is limited because of metabolic side-effects, e.g. insulin resistance, glucose intolerance and diabetes. To gain more insight into the mechanisms behind glucocorticoid induced insulin resistance, it is important to understand which genes play a role in the development of insulin resistance and which genes are affected by glucocorticoids. Medline abstracts contain many studies about insulin resistance and the molecular effects of glucocorticoids and thus are a good resource to study these effects. Results We developed CoPubGene a method to automatically identify gene-disease associations in Medline abstracts. We used this method to create a literature network of genes related to insulin resistance and to evaluate the importance of the genes in this network for glucocorticoid induced metabolic side effects and anti-inflammatory processes. With this approach we found several genes that already are considered markers of GC induced IR, such as phosphoenolpyruvate carboxykinase (PCK) and glucose-6-phosphatase, catalytic subunit (G6PC). In addition, we found genes involved in steroid synthesis that have not yet been recognized as mediators of GC induced IR. Conclusions With this approach we are able to construct a robust informative literature network of insulin resistance related genes that gave new insights to better understand the mechanisms behind GC induced IR. The method has been set up in a generic way so it can be applied to a wide variety of disease networks. PMID:23379763

  7. Effect of Glucocorticoid-Induced Insulin Resistance on Follicle Development and Ovulation1

    PubMed Central

    Hackbart, Katherine S.; Cunha, Pauline M.; Meyer, Rudelle K.; Wiltbank, Milo C.

    2013-01-01

    ABSTRACT Polycystic ovarian syndrome (PCOS) is characterized by hyperandrogenemia, polycystic ovaries, and menstrual disturbance and a clear association with insulin resistance. This research evaluated whether induction of insulin resistance, using dexamethasone (DEX), in a monovular animal model, the cow, could produce an ovarian phenotype similar to PCOS. In all of these experiments, DEX induced insulin resistance in cows as shown by increased glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). Experiment 1: DEX induced anovulation (zero of five DEX vs. four of four control cows ovulated) and decreased circulating estradiol (E2). Experiment 2: Gonadotropin-releasing hormone (GnRH) was administered to determine pituitary and follicular responses during insulin resistance. GnRH induced a luteinizing hormone (LH) surge and ovulation in both DEX (seven of seven) and control (seven of seven) cows. Experiment 3: E2 was administered to determine hypothalamic responsiveness after induction of an E2 surge in DEX (eight of eight) and control (eight of eight) cows. An LH surge was induced in control (eight of eight) but not DEX (zero of eight) cows. All control (eight of eight) but only two of eight DEX cows ovulated within 60 h of E2 administration. Experiment 4: Short-term DEX was initiated 24 h after induced luteal regression to determine if DEX could acutely block ovulation before peak insulin resistance was induced, similar to progesterone (P4). All control (five of five), no P4-treated (zero of six), and 50% of DEX-treated (three of six) cows ovulated by 96 h after luteal regression. All anovular cows had reduced circulating E2. These data are consistent with DEX creating a lesion in hypothalamic positive feedback to E2 without altering pituitary responsiveness to GnRH or ovulatory responsiveness of follicles to LH. It remains to be determined if the considerable insulin resistance and the reduced follicular E2 production induced by DEX

  8. Effect of glucocorticoid-induced insulin resistance on follicle development and ovulation.

    PubMed

    Hackbart, Katherine S; Cunha, Pauline M; Meyer, Rudelle K; Wiltbank, Milo C

    2013-06-01

    Polycystic ovarian syndrome (PCOS) is characterized by hyperandrogenemia, polycystic ovaries, and menstrual disturbance and a clear association with insulin resistance. This research evaluated whether induction of insulin resistance, using dexamethasone (DEX), in a monovular animal model, the cow, could produce an ovarian phenotype similar to PCOS. In all of these experiments, DEX induced insulin resistance in cows as shown by increased glucose, insulin, and HOMA-IR (homeostasis model assessment of insulin resistance). Experiment 1: DEX induced anovulation (zero of five DEX vs. four of four control cows ovulated) and decreased circulating estradiol (E2). Experiment 2: Gonadotropin-releasing hormone (GnRH) was administered to determine pituitary and follicular responses during insulin resistance. GnRH induced a luteinizing hormone (LH) surge and ovulation in both DEX (seven of seven) and control (seven of seven) cows. Experiment 3: E2 was administered to determine hypothalamic responsiveness after induction of an E2 surge in DEX (eight of eight) and control (eight of eight) cows. An LH surge was induced in control (eight of eight) but not DEX (zero of eight) cows. All control (eight of eight) but only two of eight DEX cows ovulated within 60 h of E2 administration. Experiment 4: Short-term DEX was initiated 24 h after induced luteal regression to determine if DEX could acutely block ovulation before peak insulin resistance was induced, similar to progesterone (P4). All control (five of five), no P4-treated (zero of six), and 50% of DEX-treated (three of six) cows ovulated by 96 h after luteal regression. All anovular cows had reduced circulating E2. These data are consistent with DEX creating a lesion in hypothalamic positive feedback to E2 without altering pituitary responsiveness to GnRH or ovulatory responsiveness of follicles to LH. It remains to be determined if the considerable insulin resistance and the reduced follicular E2 production induced by DEX had any

  9. [Role of the NADH shuttle system in glucose-induced insulin secretion].

    PubMed

    Eto, K; Kadowaki, T

    1999-03-01

    To determine the role of the NADH shuttle system composed of the glycerol phosphate shuttle and malate-aspartate shuttle in glucose-induced insulin secretion from pancreatic beta cells, we have generated mice which lack mitochondrial glycerol-3 phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. When both shuttles were halted in mGPDH-deficient islets treated with aminooxyacetate, an inhibitor of the malate-aspartate shuttle, glucose-induced insulin secretion was almost completely abrogated. Under these conditions, although the flux of glycolysis and supply of glucose-derived pyruvate into mitochondria were unaffected, glucose-induced increases in NAD(P)H autofluorescence, mitochondrial membrane potential, Ca2+ entry into mitochondria, and ATP content were severely attenuated. This study provides the first direct evidence that the NADH shuttle system is essential for coupling glycolysis with the activation of mitochondrial energy metabolism to trigger glucose-induced insulin secretion and thus revises the classical model for the metabolic signals of glucose-induced insulin secretion. PMID:10199125

  10. Antidepressant-like Effect of Insulin in Streptozotocin-induced Type 2 Diabetes Mellitus Rats.

    PubMed

    Sestile, Caio C; Maraschin, Jhonatan C; Rangel, Marcel P; Cuman, Roberto K N; Audi, Elisabeth A

    2016-09-01

    This study evaluated the antidepressant-like effect of insulin compared to sertraline and a combination of insulin and sertraline in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats submitted to the forced swim test (FST). Male Wistar rats were daily treated for 21 days with insulin (1 or 2 IU/kg, i.p.), with the selective serotonin reuptake inhibitor (SSRI), sertraline (10 mg/kg, i.p.), or with a combination of insulin (1 or 2 IU/kg, i.p.) and sertraline (10 mg/kg, i.p.) and submitted to the FST. We also evaluated the water and food intake, urine volume and weight gain of the rats. Rats treated with STZ showed impaired glucose tolerance. Chronic treatment with sertraline showed an antidepressant-like effect in non-diabetic and diabetic rats. Furthermore, sertraline promoted lower weight gain in diabetic rats. Insulin reduced the immobility behaviour in T2DM rats with impaired glucose tolerance. In conclusion, our results showed that insulin has an antidepressant-like effect comparable to that of sertraline. Sertraline is effective as an antidepressant and reduces weight gain, which reinforces its superiority over other SSRIs in the treatment of major depression disorder in patients with T2DM. PMID:26857652

  11. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism

    PubMed Central

    Shin, Andrew C.; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A.; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J.; Lapworth, Amanda L.; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M.; Scheja, Ludger; Grove, Kevin L.; Smith, Richard D.; Qian, Wei-Jun; Lynch, Christopher J.; Newgard, Christopher B.; Buettner, Christoph

    2014-01-01

    Summary Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α keto-acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in non-human primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs, and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. PMID:25307860

  12. Histopathological nerve and skeletal muscle changes in rats subjected to persistent insulin-induced hypoglycemia

    PubMed Central

    Jensen, Vivi Flou Hjorth; Mølck, Anne-Marie; Heydenreich, Annette; Jensen, Karin Juul; Bertelsen, Line Olrik; Alifrangis, Lene; Andersen, Lene; Søeborg, Henrik; Chapman, Melissa; Lykkesfeldt, Jens; Bøgh, Ingrid Brück

    2015-01-01

    New insulin analogues with a longer duration of action and a flatter pharmacodynamic profile are developed to improve convenience and safety for diabetic patients. During the nonclinical development of such analogues, safety studies must be conducted in nondiabetic rats, which consequently are rendered chronically hypoglycemic. A rat comparator model using human insulin would be valuable, as it would enable differentiation between effects related to either persistent insulin-induced hypoglycemia (IIH) or a new analogue per se. Such a model could alleviate the need for an in-study-comparator and thereby reduce the number of animals used during development. Thus, the aims of the present study were i) to develop a preclinical animal model of persistent hypoglycemia in rats using human insulin infusion for four weeks and ii) to investigate histopathological changes in sciatic nerves and quadriceps femoris muscle tissue, as little is known about the response to persistent hypoglycemia in these tissues. Histopathologic changes in insulin-infused animals included axonal degeneration and myofibre degeneration. To our knowledge, this is the first study to show that persistent IIH provokes peripheral nerve and skeletal myofiber degeneration within the same animals. This suggests that the model can serve as a nonclinical comparator model during development of long-acting insulin analogues. PMID:26989298

  13. Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease

    PubMed Central

    Deng, Jing-Na; Li, Juan; Mu, Hong-Na; Liu, Yu-Ying; Wang, Ming-Xia; Pan, Chun-Shui; Fan, Jing-Yu; Ye, Fei; Han, Jing-Yan

    2015-01-01

    This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD) for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2), which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthesis (FAS), and acetyl-CoA carboxylase (ACC) proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC. PMID:26504484

  14. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. PMID:25935538

  15. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling. PMID:24824652

  16. Peroxisome Proliferator-Activated Receptor Agonist Treatment of Alcohol-Induced Hepatic Insulin Resistance

    PubMed Central

    de la Monte, Suzanne M.; Pang, Maoyin; Chaudhry, Rajeeve; Duan, Kevin; Longato, Lisa; Carter, Jade; Ouh, Jiyun; Wands, Jack R.

    2011-01-01

    Chronic ethanol exposure impairs insulin signaling in the liver. Peroxisome-proliferator activated receptor (PPAR) agonists function as insulin sensitizers and are used to treat type 2 diabetes mellitus. We examined the therapeutic effectiveness of PPAR agonists in reducing alcoholic hepatitis and hepatic insulin resistance in a model of chronic ethanol feeding. Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% (control) or 37% ethanol (caloric content; 9.2% v/v) for 8 weeks. After 3 weeks on the diets, the rats were treated with vehicle, or a PPAR-α, PPAR-δ, or PPAR-γ agonist twice weekly by i.p. injection. Livers were harvested for histopathological, gene expression (RT-PCR), protein (Western and ELISA), and receptor binding studies. Ethanol-fed rats developed steatohepatitis with disordered hepatic chord architecture, increased hepatocellular apoptosis, reduced binding to the insulin, IGF-1, and IGF-2 receptors, and decreased expression of glyceraldehyde-3-phosphate dehydrogenase and aspartyl-(asparaginyl)-β-hydroxylase (mediates remodeling), which are regulated by insulin/IGF signaling. PPAR-α, PPAR-δ, or PPAR-γ agonist treatments reduced the severity of ethanol-mediated liver injury, including hepatic architectural disarray and steatosis. In addition, PPAR-δ and PPAR-γ agonists reduced insulin/IGF resistance and increased insulin/IGF-responsive gene expression. In conclusion, PPAR agonists may help reduce the severity of chronic ethanol-induced liver injury and insulin/IGF resistance, even in the context of continued high-level ethanol consumption. PMID:21426453

  17. FOXO1 Mediates Vitamin D Deficiency-induced Insulin Resistance in Skeletal Muscle

    PubMed Central

    Chen, Songcang; Villalta, Armando; Agrawal, Devendra K.

    2015-01-01

    Prospective epidemiological studies have consistently shown a relationship between vitamin D deficiency, insulin resistance, and type 2 diabetes mellitus (DM2). This is supported by recent trials showing that vitamin D supplementation in prediabetic or insulin-resistant patients with inadequate vitamin D levels improves insulin sensitivity. However, the molecular mechanisms underlying vitamin D deficiency-induced insulin resistance and DM2 remain unknown. Skeletal muscle insulin resistance is a primary defect in the majority of patients with DM2. While sustained activation of forkhead box O1 (FOXO1) in skeletal muscle causes insulin resistance, a relationship between vitamin D deficiency and FOXO1 activation in muscle is unknown. We generated skeletal muscle-specific vitamin D receptor (VDR)-null mice and discovered that these mice developed insulin resistance and glucose intolerance accompanied by increased expression and activity of FOXO1. We also found sustained FOXO1 activation in the skeletal muscle of global VDR-null mice. Treatment of C2C12 muscle cells with 1,25-dihydroxyvitamin D (VD3) reduced FOXO1 expression, nuclear translocation, and activity. The VD3-dependent suppression of FOXO1 activation disappeared by knockdown of VDR, indicating that it is VDR-dependent. Taken together, these results suggest that FOXO1 is a critical target mediating VDR-null signaling in skeletal muscle. The novel findings provide the conceptual support that persistent FOXO1 activation may be responsible for insulin resistance and impaired glucose metabolism in vitamin D signaling-deficient mice, as well as evidence for the utility of vitamin D supplementation for intervention in DM2. PMID:26462119

  18. Levocetirizine ameliorates high fructose diet-induced insulin resistance, vascular dysfunction and hepatic steatosis in rats.

    PubMed

    Shawky, Noha M; Shehatou, George S G; Abdel Rahim, Mona; Suddek, Ghada M; Gameil, Nariman M

    2014-10-01

    This study investigates the possible protective effects of levocetirizine against fructose-induced insulin resistance, hepatic steatosis and vascular dysfunction, in comparison to pioglitazone, a standard insulin sensitizer. Male Sprague Dawley rats (150-200 g) were divided into 4 groups. Three groups were fed on high fructose diets (HFD) containing 60% w/w fructose, while the fourth control group was fed on standard laboratory food for 8 weeks. AUCOGTT, AUCITT, fasting glucose, HOMA-IR, hepatic glutathione (GSH) and malondialdehyde (MDA) levels, serum total cholesterol, LDL-C, C-reactive protein (CRP) level and lactate dehydrogenase (LDH) activity and liver steatosis scores were significantly higher in HFD group compared to control group. Moreover, body weight gain, food intake, feeding efficiency, HOMA-β, Emax and pEC50 of acetylcholine-induced relaxations of aortic rings and hepatic superoxide dismutase (SOD) activity were significantly lower in HFD group than in control group. Treatment with levocetirizine caused significant decreases in AUCOGTT, AUCITT, HOMA-IR, hepatic GSH and MDA levels and serum CRP level and LDH activity and significant increases in hepatic SOD activity and HOMA-β when compared with the HFD group. Although levocetirizine failed to alter TC and LDL-C levels, it produced a significant increase in HDL-C level relative to control group. Levocetirizine was also able to improve acetylcholine-induced relaxations of aortic rings, indicating a protective effect against insulin resistance-induced endothelial damage comparable to that offered by pioglitazone. Moreover, levocetirizine substantially attenuated insulin resistance-associated liver macrovesicular steatosis. These findings demonstrate that levocetirizine ameliorates insulin resistance, improves glucose tolerance and attenuates insulin resistance-linked hepatic steatosis and vascular damage. PMID:25064340

  19. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance.

    PubMed

    Moraes-Vieira, Pedro M; Castoldi, Angela; Aryal, Pratik; Wellenstein, Kerry; Peroni, Odile D; Kahn, Barbara B

    2016-05-01

    Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation. PMID:26936962

  20. Insulin Suppresses Endotoxin-Induced Oxidative, Nitrosative, and Inflammatory Stress in Humans

    PubMed Central

    Dandona, Paresh; Ghanim, Husam; Bandyopadhyay, Arindam; Korzeniewski, Kelly; Ling Sia, Chang; Dhindsa, Sandeep; Chaudhuri, Ajay

    2010-01-01

    OBJECTIVE To investigate whether insulin reduces the magnitude of oxidative, nitrosative, and inflammatory stress and tissue damage responses induced by endotoxin (lipopolysaccharide [LPS]). RESEARCH DESIGN AND METHODS Nine normal subjects were injected intravenously with 2 ng/kg LPS prepared from Escherichia coli. Ten others were infused with insulin (2 units/h) for 6 h in addition to the LPS injection along with 100 ml/h of 5% dextrose to maintain normoglycemia. RESULTS LPS injection induced a rapid increase in plasma concentrations of nitric oxide metabolites, nitrite and nitrate (NOM), and thiobarbituric acid–reacting substances (TBARS), an increase in reactive oxygen species (ROS) generation by polymorphonuclear leukocytes (PMNLs), and marked increases in plasma free fatty acids, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage migration inhibition factor (MIF), C-reactive protein, resistin, visfatin, lipopolysaccharide binding protein (LBP), high mobility group-B1 (HMG-B1), and myoglobin concentrations. The coinfusion of insulin led to a total elimination of the increase in NOM, free fatty acids, and TBARS and a significant reduction in ROS generation by PMNLs and plasma MIF, visfatin, and myoglobin concentrations. Insulin did not affect TNF-α, MCP-1, IL-6, LBP, resistin, and HMG-B1 increases induced by the LPS. CONCLUSIONS Insulin reduces significantly several key mediators of oxidative, nitrosative, and inflammatory stress and tissue damage induced by LPS. These effects of insulin require further investigation for its potential use as anti-inflammatory therapy for endotoxemia. PMID:20699433

  1. SIRT1 attenuates high glucose-induced insulin resistance via reducing mitochondrial dysfunction in skeletal muscle cells.

    PubMed

    Zhang, Hao-Hao; Ma, Xiao-Jun; Wu, Li-Na; Zhao, Yan-Yan; Zhang, Peng-Yu; Zhang, Ying-Hui; Shao, Ming-Wei; Liu, Fei; Li, Fei; Qin, Gui-Jun

    2015-05-01

    Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1-SIRT3-mitochondrial complex I pathway. PMID:25710929

  2. Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice

    PubMed Central

    Chen, Yanxing; Run, Xiaoqin; Liang, Zhihou; Zhao, Yang; Dai, Chun-ling; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2014-01-01

    Background: It is well documented that elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). Recent studies suggest that anesthesia may increase the risk for cognitive decline and AD through promoting abnormal hyperphosphorylation of tau, which is crucial to neurodegeneration seen in AD. Methods: We treated 3xTg-AD mice, a commonly used transgenic mouse model of AD, with daily intranasal administration of insulin (1.75 U/day) for one week. The insulin- and control-treated mice were then anesthetized with single intraperitoneal injection of propofol (250 mg/kg body weight). Tau phosphorylation and tau protein kinases and phosphatases in the brains of mice 30 min and 2 h after propofol injection were then investigated by using Western blots and immunohistochemistry. Results: Propofol strongly promoted hyperphosphorylation of tau at several AD-related phosphorylation sites. Intranasal administration of insulin attenuated propofol-induced hyperphosphorylation of tau, promoted brain insulin signaling, and led to up-regulation of protein phosphatase 2A, a major tau phosphatase in the brain. Intranasal insulin also resulted in down-regulation of several tau protein kinases, including cyclin-dependent protein kinase 5, calcium/calmodulin-dependent protein kinase II, and c-Jun N-terminal kinase. Conclusion: Our results demonstrate that pretreatment with intranasal insulin prevents AD-like tau hyperphosphorylation. These findings provide the first evidence supporting that intranasal insulin administration might be used for the prevention of anesthesia-induced cognitive decline and increased risk for AD and dementia. PMID:24910612

  3. Effects of Combination of Thiazolidinediones with Melatonin in Dexamethasone-induced Insulin Resistance in Mice

    PubMed Central

    Ghaisas, M. M.; Ahire, Y. S.; Dandawate, P. R.; Gandhi, S. P.; Mule, M.

    2011-01-01

    In type 2 Diabetes, oxidative stress plays an important role in development and aggregation of insulin resistance. In the present study, long term administration of the dexamethasone led to the development of insulin resistance in mice. The effect of thiazolidinediones pioglitazone and rosiglitazone, with melatonin on dexamethasone-induced insulin resistance was evaluated in mice. Insulin resistant mice were treated with combination of pioglitazone (10 mg/kg/day, p.o.) or rosiglitazone (5 mg/kg/day, p.o.) with melatonin 10 mg/kg/day p.o. from day 7 to day 22. In the biochemical parameters, the serum glucose, triglyceride levels were significantly lowered (P<0.05) in the combination groups as compared to dexamethasone treated group as well as with individual groups of pioglitazone, rosiglitazone, and melatonin. There was also, significant increased (P<0.05) in the body weight gain in combination treated groups as compared to dexamethasone as well as individual groups. The combination groups proved to be effective in normalizing the levels of superoxide dismutase, catalase, glutathione reductase and lipid peroxidation in liver homogenates may be due to antioxidant effects of melatonin and decreased hyperglycemia induced insulin resistance by thiazolidinediones. The glucose uptake in the isolated hemidiaphragm of mice was significantly increased in combination treated groups (PM and RM) than dexamethasone alone treated mice as well as individual (pioglitazone, rosiglitazone, melatonin) treated groups probably via increased in expression of GLUT-4 by melatonin and thiazolidinediones as well as increased in insulin sensitivity by thiazolidinediones. Hence, it can be concluded that combination of pioglitazone and rosiglitazone, thiazolidinediones, with melatonin may reduces the insulin resistance via decreased in oxidative stress and control on hyperglycemia. PMID:23112392

  4. NMR estimation of protective effect of insulin on mouse liver with epinephrine-induced metabolic lesions.

    PubMed

    Yushmanov, V E; Khristianovich, D S; Rozantseva, T V; Sibeldina, L A

    1991-08-01

    In order to study the effects of epinephrine and insulin on liver metabolism, measurements of cellular phosphates and intracellular pH by 31PNMR, of glycogen by 13C NMR and of lactate by 1H NMR were performed in freshly dissected mouse liver at 0-4 degrees C and in ethanolic liver extracts. The injection of epinephrine hydrochloride (0.1 mL of 0.1% solution i.p. per mouse) caused remarkable changes in liver metabolic profiles which were expressed most distinctly in 15-30 min and could not be attributed solely to epinephrine-induced hyperglycemia. Among these metabolic changes are falls in the levels of ATP and uridine diphosphate sugars by 60-70%, possibly related to glycogen depletion, and intracellular acidification by 0.5 units attributed to the release of protons during hydrolysis of ATP rather than to accumulation of lactate in anaerobic glycolysis. Insulin injected prior to epinephrine (4 units i.p.) markedly suppressed epinephrine-induced metabolic alterations, although the effect of the combination of insulin and epinephrine was not the sum of the separate effects of these hormones. The maximum protective effect of insulin was reached when insulin was injected 15 min prior to epinephrine. The results obtained demonstrate the applicability of NMR for evaluating the protective activity of modifiers at various extreme exposures. PMID:1931556

  5. Development of postglucoprivic insulin-induced suckling and feeding in rats.

    PubMed

    Williams, C L; Blass, E M

    1987-07-01

    Increased food or milk intake in response to insulin-induced hypoglycemia cannot be demonstrated in the rat until pups reach weaning age. However, when food and suckling are withheld from insulin-treated 5- to 25-day-old rats until their altered blood glucose levels return to normal, their rate of milk intake via suckling from their anesthetized dam is increased over saline-treated control pups. This postglucoprivic action of insulin could not be demonstrated in rats consuming wet mash until pups reached 25-30 days of age. Nonnutritive oral stimulation from dry suckling during the glucoprivic episode is sufficient to disrupt postglucoprivic suckling in 20-day-old rats. In contrast consuming a small quantity of wet mash became an effective inhibitor of postglucoprivic suckling only when pups reached 25 days of age. These data demonstrate the existence of an insulin-sensitive neural system for suckling and feeding in infant rats and point to the involvement of multiple and changing oral factors during development in insulin-induced postglucoprivic feeding. PMID:3300371

  6. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle

    PubMed Central

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  7. Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway.

    PubMed

    Qiu, Tianming; Chen, Min; Sun, Xiance; Cao, Jun; Feng, Chang; Li, Dandan; Wu, Wei; Jiang, Liping; Yao, Xiaofeng

    2016-09-01

    Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance. PMID:27363333

  8. Palmitate induces insulin resistance without significant intracellular triglyceride accumulation in HepG2 cells.

    PubMed

    Lee, Jin-young; Cho, Hyang-Ki; Kwon, Young Hye

    2010-07-01

    Previous studies showed that increased release of free fatty acids from adipocytes leads to insulin resistance and triglyceride (TG) accumulation in the liver, which may progress into hepatic steatohepatitis. We and other investigators have previously reported that palmitate induces endoplasmic reticulum stress-mediated toxicity in several tissues. This work investigated whether palmitate could induce insulin resistance and steatosis in HepG2 cells. We treated cells with either saturated fatty acid (palmitate) or unsaturated fatty acid (oleate), and observed that palmitate significantly activated c-jun N-terminal kinase and inactivated protein kinase B. Both 4-phenylbutyric acid and glycerol significantly activated protein kinase B, confirming the involvement of endoplasmic reticulum stress in palmitate-mediated insulin resistance. Oleate, but not palmitate, significantly induced intracellular TG deposition and activated sterol regulatory element binding protein-1. Instead, diacylglycerol level and protein kinase C epsilon activity were significantly increased by palmitate, suggesting the possible role of diacylglycerol in palmitate-mediated lipotoxicity. Therefore, the present study clearly showed that palmitate impairs insulin resistance, but does not induce significant TG accumulation in HepG2 cells. PMID:20006364

  9. Continuous administration of an elemental diet induces insulin resistance in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed that total parenteral nutrition (TPN) compared to intermittent enteral feeding of a milk-based formula induces insulin resistance and hepatic steatosis in neonatal pigs. We hypothesized that intravenous (IV) feeding rather than the nature of the diet (elemental vs polymeric) or ...

  10. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  11. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    PubMed Central

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats. PMID:7972005

  12. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells. PMID:8529804

  13. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  14. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells

    PubMed Central

    Rhee, Marie; Lee, Seung-Hwan; Kim, Ji-Won; Ham, Dong-Sik; Park, Heon-Seok; Yang, Hae Kyung; Shin, Ju-Young; Cho, Jae-Hyoung; Kim, Young-Bum; Youn, Byung-Soo; Sul, Hei Sook; Yoon, Kun-Ho

    2016-01-01

    The preadipocyte factor 1 (Pref-1) is involved in the proliferation and differentiation of various precursor cells. However, the intracellular signaling pathways that control these processes and the role of Pref-1 in the pancreas remain poorly understood. Here, we showed that Pref-1 induces insulin synthesis and secretion via two independent pathways. The overexpression of Pref-1 activated MAPK signaling, which induced nucleocytoplasmic translocation of FOXO1 and PDX1 and led to the differentiation of human pancreatic ductal cells into β-like cells and an increase in insulin synthesis. Concurrently, Pref-1 activated Akt signaling and facilitated insulin secretion. A proteomics analysis identified the Rab43 GTPase-activating protein as a downstream target of Akt. A serial activation of both proteins induced various granular protein syntheses which led to enhanced glucose-stimulated insulin secretion. In a pancreatectomised diabetic animal model, exogenous Pref-1 improved glucose homeostasis by accelerating pancreatic ductal and β-cell regeneration after injury. These data establish a novel role for Pref-1, opening the possibility of applying this molecule to the treatment of diabetes. PMID:27044861

  15. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells.

    PubMed

    Rhee, Marie; Lee, Seung-Hwan; Kim, Ji-Won; Ham, Dong-Sik; Park, Heon-Seok; Yang, Hae Kyung; Shin, Ju-Young; Cho, Jae-Hyoung; Kim, Young-Bum; Youn, Byung-Soo; Sul, Hei Sook; Yoon, Kun-Ho

    2016-01-01

    The preadipocyte factor 1 (Pref-1) is involved in the proliferation and differentiation of various precursor cells. However, the intracellular signaling pathways that control these processes and the role of Pref-1 in the pancreas remain poorly understood. Here, we showed that Pref-1 induces insulin synthesis and secretion via two independent pathways. The overexpression of Pref-1 activated MAPK signaling, which induced nucleocytoplasmic translocation of FOXO1 and PDX1 and led to the differentiation of human pancreatic ductal cells into β-like cells and an increase in insulin synthesis. Concurrently, Pref-1 activated Akt signaling and facilitated insulin secretion. A proteomics analysis identified the Rab43 GTPase-activating protein as a downstream target of Akt. A serial activation of both proteins induced various granular protein syntheses which led to enhanced glucose-stimulated insulin secretion. In a pancreatectomised diabetic animal model, exogenous Pref-1 improved glucose homeostasis by accelerating pancreatic ductal and β-cell regeneration after injury. These data establish a novel role for Pref-1, opening the possibility of applying this molecule to the treatment of diabetes. PMID:27044861

  16. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    PubMed

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  17. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  18. Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity

    PubMed Central

    Nixon, Mark; Stewart-Fitzgibbon, Randi; Fu, Jingqi; Akhmedov, Dmitry; Rajendran, Kavitha; Mendoza-Rodriguez, Maria G.; Rivera-Molina, Yisel A.; Gibson, Micah; Berglund, Eric D.; Justice, Nicholas J.; Berdeaux, Rebecca

    2015-01-01

    Objective Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism. Methods We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion. We examined cAMP-dependent regulation of SIK1 and the consequences of SIK1 depletion on primary mouse hepatocytes. We probed metabolic phenotypes in tissue-specific SIK1 knockout mice fed high fat diet through hyperinsulinemic-euglycemic clamps and biochemical analysis of insulin signaling. Results SIK1 knockout mice are viable and largely normoglycemic on chow diet. On high fat diet, global SIK1 knockout animals are strikingly protected from glucose intolerance, with both increased plasma insulin and enhanced peripheral insulin sensitivity. Surprisingly, liver SIK1 is not required for regulation of CRTC2 and gluconeogenesis, despite contributions of SIK1 to hepatocyte CRTC2 and gluconeogenesis regulation ex vivo. Sik1 mRNA accumulates in skeletal muscle of obese high fat diet-fed mice, and knockout of SIK1 in skeletal muscle, but not liver or adipose tissue, improves insulin sensitivity and muscle glucose uptake on high fat diet. Conclusions SIK1 is dispensable for glycemic control on chow diet. SIK1 promotes insulin resistance on high fat diet by a cell-autonomous mechanism in skeletal muscle. Our study establishes SIK1 as a promising therapeutic target to improve skeletal muscle insulin sensitivity in obese individuals without deleterious effects on hepatic glucose production. PMID:26844205

  19. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein.

    PubMed

    Chou, Chia-Hau; Tsai, Yin-Lan; Hou, Chien-Wen; Lee, Hsing-Hao; Chang, Wei-Hsiang; Lin, Tzi-Wen; Hsu, Tung-Hsiung; Huang, Yi-Jen; Kuo, Chia-Hua

    2005-12-01

    To elucidate the role of muscle glycogen storage on regulation of GLUT4 protein expression and whole-body glucose tolerance, muscle glycogen level was manipulated by exercise and insulin administration. Sixty Sprague-Dawley rats were evenly separated into three groups: control (CON), immediately after exercise (EX0), and 16 h after exercise (EX16). Rats from each group were further divided into two groups: saline- and insulin-injected. The 2-day exercise protocol consisted of 2 bouts of 3-h swimming with 45-min rest for each day, which effectively depleted glycogen in both red gastrocnemius (RG) and plantaris muscles. EX0 rats were sacrificed immediately after the last bout of exercise on second day. CON and EX16 rats were intubated with 1 g/kg glucose solution following exercise and recovery for 16 h before muscle tissue collection. Insulin (0.5 microU/kg) or saline was injected daily at the time when glucose was intubated. Insulin injection elevated muscle glycogen levels substantially in both muscles above saline-injected group at CON and EX16. With previous day insulin injection, EX0 preserved greater amount of postexercise glycogen above their saline-injected control. In the saline-injected rats, EX16 significantly increased GLUT4 protein level above CON, concurrent with muscle glycogen supercompensation. Insulin injection for EX16 rats significantly enhanced muscle glycogen level above their saline-injected control, but the increases in muscle GLUT4 protein and whole-body glucose tolerance were attenuated. In conclusion, the new finding of the study was that glycogen overload by postexercise insulin administration significantly abolished the exercise-induced increases in GLUT4 protein and glucose tolerance. PMID:16319996

  20. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism

    PubMed Central

    Efanov, Alexander M.; Fang, Xiankang; Beavers, Lisa S.; Wang, Xuesong; Wang, Jingru; Gonzalez Valcarcel, Isabel C.; Ma, Tianwei

    2016-01-01

    GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes. PMID:27322810

  1. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance

    PubMed Central

    Liu, Li; Zhang, Yiying; Chen, Nancy; Shi, Xiaojing; Tsang, Bonny; Yu, Yi-Hao

    2007-01-01

    Increased fat deposition in skeletal muscle is associated with insulin resistance. However, exercise increases both intramyocellular fat stores and insulin sensitivity, a phenomenon referred to as “the athlete’s paradox”. In this study, we provide evidence that augmenting triglyceride synthesis in skeletal muscle is intrinsically connected with increased insulin sensitivity. Exercise increased diacylglycerol (DAG) acyltransferase (DGAT) activity in skeletal muscle. Channeling fatty acid substrates into TG resulted in decreased DAG and ceramide levels. Transgenic overexpression of DGAT1 in mouse skeletal muscle replicated these findings and protected mice against high-fat diet–induced insulin resistance. Moreover, in isolated muscle, DGAT1 deficiency exacerbated insulin resistance caused by fatty acids, whereas DGAT1 overexpression mitigated the detrimental effect of fatty acids. The heightened insulin sensitivity in the transgenic mice was associated with attenuated fat-induced activation of DAG-responsive PKCs and the stress mediator JNK1. Consistent with these changes, serine phosphorylation of insulin receptor substrate 1 was reduced, and Akt activation and glucose 4 membrane translocation were increased. In conclusion, upregulation of DGAT1 in skeletal muscle is sufficient to recreate the athlete’s paradox and illustrates a mechanism of exercise-induced enhancement of muscle insulin sensitivity. Thus, increasing muscle DGAT activity may offer a new approach to prevent and treat insulin resistance and type 2 diabetes mellitus. PMID:17510710

  2. Reversal of tumor-induced biochemical abnormalities by insulin treatment in rats.

    PubMed

    Chance, W T; Muggia-Sullam, M; Chen, M H; Murphy, R F; Fischer, J E

    1986-08-01

    In F344 rats bearing transplantable 3-methylcholanthrene (CAS: 56-49-5)-induced sarcomas, plasma concentrations of immunoreactive insulin were decreased following the development of mild or severe anorexia. Plasma levels of immunoreactive glucagon and lactate were elevated in severely anorectic tumor-bearing (TB) rats, while plasma glucose concentrations remained normal. Both groups of TB rats exhibited decreased plasma levels of serine, glutamine, citrulline, and tryptophan and increased concentrations of alanine. Plasma levels of proline and phenylalanine were also elevated in the severely anorectic TB rats. In a second experiment, 7 daily treatments with insulin corrected the anorexia for 6 days and increased body weights of TB rats. Plasma concentrations of lactate and immunoreactive glucagon were decreased, and the abnormal plasma concentrations of glutamine, proline, analine, and phenylalanine were altered toward normal following the insulin treatments. Therefore, these data are consistent with insulin treatments benefiting the TB host by increasing feeding, increasing body weight, reducing tumor glycolysis and metabolism, reducing gluconeogenesis, and reducing host catabolism, while not stimulating tumor growth. Thus insulin therapy may have potential benefits in cancer treatment by shifting glucose metabolism toward the host and away from the tumor. PMID:3525958

  3. Bezafibrate Improves Insulin Sensitivity and Metabolic Flexibility in STZ-Induced Diabetic Mice.

    PubMed

    Franko, Andras; Huypens, Peter; Neschen, Susanne; Irmler, Martin; Rozman, Jan; Rathkolb, Birgit; Neff, Frauke; Prehn, Cornelia; Dubois, Guillaume; Baumann, Martina; Massinger, Rebecca; Gradinger, Daniel; Przemeck, Gerhard K H; Repp, Birgit; Aichler, Michaela; Feuchtinger, Annette; Schommers, Philipp; Stöhr, Oliver; Sanchez-Lasheras, Carmen; Adamski, Jerzy; Peter, Andreas; Prokisch, Holger; Beckers, Johannes; Walch, Axel K; Fuchs, Helmut; Wolf, Eckhard; Schubert, Markus; Wiesner, Rudolf J; Hrabě de Angelis, Martin

    2016-09-01

    Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes. PMID:27284107

  4. Insulin Inhibits Low Oxygen-Induced ATP Release from Human Erythrocytes: Implication for Vascular Control

    PubMed Central

    Hanson, Madelyn S.; Ellsworth, Mary L.; Achilleus, David; Stephenson, Alan H.; Bowles, Elizabeth A.; Sridharan, Meera; Adderley, Shaquria; Sprague, Randy S.

    2010-01-01

    Objective ATP released from human erythrocytes in response to reduced oxygen tension (pO2) participates in the matching of oxygen (O2) supply with need in skeletal muscle by stimulating increases in blood flow to areas with increased O2 demand. Here we investigated the hypothesis that hyperinsulinemia inhibits ATP release from erythrocytes and impairs their ability to stimulate dilation of isolated arterioles exposed to decreased extra-luminal pO2. Methods Erythrocyte ATP release was stimulated pharmacologically (mastoparan 7) and physiologically (reduced pO2) in the absence or presence of insulin. We also examined the ability of isolated skeletal muscle arterioles perfused with buffer containing erythrocytes treated with insulin or its vehicle (saline) to dilate in response to decreased extra-luminal pO2. Results Insulin significantly attenuated mastoparan 7– and reduced pO2–induced ATP release. In vessels perfused with untreated erythrocytes, low extra-luminal pO2 resulted in an increase in vessel diameter. In contrast, when erythrocytes were treated with insulin, no vasodilation occurred. Conclusions These studies demonstrate that insulin inhibits ATP release from erythrocytes in response to reduced pO2 and impairs their ability to stimulate dilation of skeletal muscle arterioles. These results suggest that hyperinsulinemia could hinder the matching of O2 supply with need in skeletal muscle. PMID:19412833

  5. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  6. Angiotensin-converting enzyme inhibition increases glucose-induced insulin secretion in response to acute restraint.

    PubMed

    Schweizer, Júnia R O L; Miranda, Paulo A C; Fóscolo, Rodrigo B; Lemos, Joao P M; Paula, Luciano F; Silveira, Warley C; Santos, Robson A S; Pinheiro, Sérgio V B; Coimbra, Candido C; Ribeiro-Oliveira, Antônio

    2012-12-01

    There is increasing evidence suggesting involvement of the renin-angiotensin system (RAS) in carbohydrate metabolism and its response to stress. Thus, the aim of the present study was to evaluate the effects of chronic inhibition of the RAS on glucose and insulin levels during acute restraint stress. Male Holtzman rats were treated with 10 mg/kg per day enalapril solution or vehicle for 14 days. After 14 days, rats were divided into three experimental groups: enalapril + restraint (ER), vehicle + restraint (VR) and enalapril + saline (ES). Rats in the restraint groups were subjected to 30 min restraint stress, whereas rats in the ES groups were given saline infusion instead. Blood samples were collected at baseline and after 5, 10, 20 and 30 min restraint stress or saline infusion. After restraint, a hyperglycaemic response was observed in the ER and VR groups that peaked at 20 and 10 min, respectively (P < 0.05 compared with baseline). The area under the glucose curve was markedly increased in the ER and VR groups compared with that in the ES group (P < 0.05 for both). Importantly, restraint induced a marked increase in insulin secretion in the ER group compared with only a mild elevation in the VR group; insulin secretion in both groups peaked at 20 min (P < 0.05 compared with baseline). Analysis of the area under the insulin curve confirmed an increase in insulin secretion in the ER compared with the VR and ES groups (P < 0.05 for both). The results of the present study reinforce that the RAS is involved in modulating responses to stress and suggest that RAS inhibition with enalapril may increase glucose-induced insulin secretion in response to acute restraint. PMID:23734984

  7. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    PubMed

    Galbo, Thomas; Olsen, Grith Skytte; Quistorff, Bjørn; Nishimura, Erica

    2011-01-01

    In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity. PMID:22087313

  8. Insulin-induced tyrosine dephosphorylation of paxillin and focal adhesion kinase requires active phosphotyrosine phosphatase 1D.

    PubMed Central

    Ouwens, D M; Mikkers, H M; van der Zon, G C; Stein-Gerlach, M; Ullrich, A; Maassen, J A

    1996-01-01

    Insulin stimulation of fibroblasts rapidly induces the tyrosine dephosphorylation of proteins of 68 kDa and 125 kDa, in addition to the tyrosine phosphorylation of the insulin receptor beta-chain, insulin receptor substrates 1 and 2, and Shc. Using specific antibodies, the 68 kDa and 125 kDa proteins were identified as paxillin and focal adhesion kinase (pp125FAK) respectively. We have examined whether dephosphorylation of paxillin and pp125FAK requires interaction of the cells with the extracellular matrix. For this, cells were grown on poly(L-lysine) plates, and the tyrosine phosphorylation of pp125FAK and paxillin was increased by addition of lysophosphatidic acid. Under these conditions, insulin still induced the complete dephosphorylation of pp125FAK and paxillin, indicating that this process can occur independently of the interaction of integrins with extracellular matrix proteins. We also studied whether dephosphorylation of pp125FAK and paxillin results from the action of a phosphotyrosine phosphatase. It was found that phenylarsine oxide, a phosphotyrosine phosphatase inhibitor, prevented the insulin-induced dephosphorylation of pp125FAK and paxillin. Furthermore, this insulin-induced dephosphorylation was also impaired in cells expressing a dominant-negative mutant of phosphotyrosine phosphatase 1D (PTP 1D). Thus we have identified paxillin as a target for dephosphorylation by insulin. In addition, we have obtained evidence that the insulin-mediated dephosphorylation of paxillin and pp125FAK requires active PTP 1D. PMID:8809054

  9. [Differentiation of human amniotic mesenchymal stem cells into insulin-secreting cells induced by regenerating pancreatic extract].

    PubMed

    Zhang, Yanmei; Wang, Dianliang; Zeng, Hongyan; Wang, Lieming; Sun, Jinwei; Zhang, Zhen; Dong, Shasha

    2012-02-01

    In this study, the natural biological inducer, rat regenerating pancreatic extract (RPE), was used to induce human amniotic mesenchymal stem cells (hAMSCs) into insulin-secreting cells. We excised 60% of rat pancreas in order to stimulate pancreatic regeneration. RPE was extracted and used to induce hAMSCs at a final concentration of 20 microg/mL. The experiment methods used were as follows: morphological-identification, dithizone staining, immumofluorescence analysis, reverse transcription-PCR (RT-PCR) and insulin secretion stimulated by high glucose. The results show that the cell morphology of passge3 hAMSCs changed significantly after the induction of RPE, resulting in cluster shape after induction for 15 days. Dithizone staining showed that there were scarlet cell masses in RPE-treated culture. Immumofluorescence analysis indicated that induced cells were insulin-positive expression. RT-PCR showed the positive expression of human islet-related genes Pdx1 and insulin in the induced cells. The result of insulin secretion stimulated by high glucose indicated that insulin increasingly secreted and then kept stable with prolongation of high glucose stimulation. In conclusion, hAMSCs had the potential to differentiate into insulin-secreting cells induced by RPE in vitro. PMID:22667123

  10. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  11. Rescue of Obesity-Induced Infertility in Female Mice due to a Pituitary-Specific Knockout of the Insulin Receptor (IR)

    PubMed Central

    Brothers, Kathryn J.; Wu, Sheng; DiVall, Sara A.; Messmer, Marcus R.; Kahn, C. Ronald; Miller, Ryan S.; Radovick, Sally; Wondisford, Fredric E.; Wolfe, Andrew

    2010-01-01

    Summary Obesity is associated with insulin resistance in metabolic tissues such as adipose, liver, and muscle, but it is unclear whether non-classical target tissues, such as those of the reproductive axis, are also insulin resistant. To determine if the reproductive axis maintains insulin sensitivity in obesity in vivo, murine models of diet-induced obesity with and without intact insulin signaling in pituitary gonadotrophs were created. Diet-induced obese wild type female mice (WT DIO) were infertile and experienced a robust increase in luteinizing hormone (LH) after gonadotropin releasing hormone (GnRH) or insulin stimulation. By contrast, both lean and obese mice with a pituitary-specific knockout of the insulin receptor (PitIRKO) exhibited reproductive competency, indicating that insulin signaling in the pituitary is required for the reproductive impairment seen in diet-induced obesity and that the gonadotroph maintains insulin sensitivity in a setting of peripheral insulin resistance. PMID:20816095

  12. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting.

    PubMed

    Figueroa-Clarevega, Alejandra; Bilder, David

    2015-04-01

    Tumors kill patients not only through well-characterized perturbations to their local environment but also through poorly understood pathophysiological interactions with distant tissues. Here, we use a Drosophila tumor model to investigate the elusive mechanisms underlying such long-range interactions. Transplantation of tumors into adults induces robust wasting of adipose, muscle, and gonadal tissues that are distant from the tumor, phenotypes that resemble the cancer cachexia seen in human patients. Notably, malignant, but not benign, tumors induce peripheral wasting. We identify the insulin growth factor binding protein (IGFBP) homolog ImpL2, an antagonist of insulin signaling, as a secreted factor mediating wasting. ImpL2 is sufficient to drive tissue loss, and insulin activity is reduced in peripheral tissues of tumor-bearing hosts. Importantly, knocking down ImpL2, specifically in the tumor, ameliorates wasting phenotypes. We propose that the tumor-secreted IGFBP creates insulin resistance in distant tissues, thus driving a systemic wasting response. PMID:25850672

  13. Antipsychotic-induced insulin resistance and postprandial hormonal dysregulation independent of weight gain or psychiatric disease.

    PubMed

    Teff, Karen L; Rickels, Michael R; Grudziak, Joanna; Fuller, Carissa; Nguyen, Huong-Lan; Rickels, Karl

    2013-09-01

    Atypical antipsychotic (AAP) medications that have revolutionized the treatment of mental illness have become stigmatized by metabolic side effects, including obesity and diabetes. It remains controversial whether the defects are treatment induced or disease related. Although the mechanisms underlying these metabolic defects are not understood, it is assumed that the initiating pathophysiology is weight gain, secondary to centrally mediated increases in appetite. To determine if the AAPs have detrimental metabolic effects independent of weight gain or psychiatric disease, we administered olanzapine, aripiprazole, or placebo for 9 days to healthy subjects (n = 10, each group) under controlled in-patient conditions while maintaining activity levels. Prior to and after the interventions, we conducted a meal challenge and a euglycemic-hyperinsulinemic clamp to evaluate insulin sensitivity and glucose disposal. We found that olanzapine, an AAP highly associated with weight gain, causes significant elevations in postprandial insulin, glucagon-like peptide 1 (GLP-1), and glucagon coincident with insulin resistance compared with placebo. Aripiprazole, an AAP considered metabolically sparing, induces insulin resistance but has no effect on postprandial hormones. Importantly, the metabolic changes occur in the absence of weight gain, increases in food intake and hunger, or psychiatric disease, suggesting that AAPs exert direct effects on tissues independent of mechanisms regulating eating behavior. PMID:23835329

  14. Quantum dots induce charge-specific amyloid-like fibrillation of insulin at physiological conditions

    NASA Astrophysics Data System (ADS)

    Sukhanova, Alyona; Poly, Simon; Shemetov, Anton; Nabiev, Igor R.

    2012-10-01

    Agglomeration of some proteins may give rise to aggregates that have been identified as the main cause of amyloid diseases. For example, fibrillation of insulin is related to diabetes mellitus. Quantum dots (QDs) are of special interest as tagging agents for diagnostic and therapeutic studies due to their broad absorption spectra, narrow emission spectra, and high photostability. In this study, PEGylated CdSe/ZnS QDs have been shown to induce the formation of amyloid-like fibrils of human insulin under physiological conditions, this process being dependent on the variation of the surface charge of the nanoparticles (NPs) used. Circular dichroism (CD), protein secondary structure analysis, thioflavin T (ThT) fluorescence assay, and the dynamic light scattering (DLS) technique have been used for comparative analysis of different stages of the fibrillation process. In particular, insulin secondary structure remodelling accompanied by a considerable increase in the rate of amyloid fiber formation have been observed after insulin was mixed with PEGylated QDs. Nanoparticles may significantly influence the rate of protein fibrillation and induce new mechanisms of amyloid diseases, as well as offer opportunities for their treatment.

  15. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.

    PubMed

    Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N

    2015-11-01

    The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical

  16. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. PMID:23872130

  17. The effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation.

    PubMed

    Gagnon, A; Sorisky, A

    1998-03-01

    We examined the effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Oil Red O staining of neutral lipid, cellular triglyceride mass, and glycerol phosphate dehydrogenase (GPDH) activity, were greater in 3T3-L1 cells cultured at 5 mM vs. 25 mM glucose. GPDH activity was 2- to 4-fold higher at 5 mM vs. 25 mM glucose over a range of insulin concentrations (0.1 to 100 nM). Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was 1.7-fold greater, and insulin-stimulated phosphoinositide 3-kinase association with IRS-1 was 2.3-fold higher, at 5 mM vs. 25 mM glucose. These effects of glucose were not caused by alterations in IRS-1 mass or cell-surface insulin binding. In preadipose cells at 5 mM glucose, expression of the leukocyte antigen-related (LAR) protein tyrosine phosphatase (negative regulator of insulin signaling) was 63% of the level at 25 mM glucose. Our data demonstrate that glucose concentration affects insulin-induced 3T3-L1 adipose cell differentiation as well as differentiation-directed insulin signaling pathways. Alterations in LAR expression potentially may be involved in modulating these responses. PMID:9545023

  18. TNF-α Involvement in Insulin Resistance Induced by Experimental Scorpion Envenomation

    PubMed Central

    Ait-Lounis, Aouatef; Laraba-Djebari, Fatima

    2012-01-01

    Background Scorpion venom induces systemic inflammation characterized by an increase in cytokine release and chemokine production. There have been few experimental studies assessing the effects of scorpion venom on adipose tissue function in vivo. Methodology/Principal Findings To study the adipose tissue inflammation (ATI) induced by Androctonus australis hector (Aah) venom and to assess possible mechanisms of ATI, mice (n = 6, aged 1 month) were injected with Aah (0.45 mg/kg), toxic fraction of Aah (FTox-G50; 0.2 mg/kg) or saline solution (control). Inflammatory responses were evaluated by ELISA and cell sorting analyses in adipose tissue 45 minutes and 24 hours after injection. Quantitative real-time PCR was used to assess the regulation of genes implicated in glucose uptake. The titers of selected inflammatory cytokines (IL-1β, IL-6 and TNF-α) were also determined in sera and in insulin target tissues. The serum concentration of IL-1β rose 45 minutes after envenomation and returned to basal level after 24 hours. The pathophysiological effects of the venom after 24 hours mainly involved M1-proinflammatory macrophage infiltration in adipose tissue combined with high titers of IL-1β, IL-6 and TNF-α. Indeed, TNF-α was strongly induced in both adipose tissue and skeletal muscle. We studied the effects of Aah venom on genes implicated in insulin-stimulated glucose uptake. Insulin induced a significant increase in the expression of the mRNAs for hexokinase 2 and phosphatidylinositol 3-kinase in both skeletal muscle and adipose tissue in control mice; this upregulation was completely abolished after 24 hours in mice envenomed with Aah or FTox-G50. Conclusions/Significance Our findings suggest that Aah venom induces insulin resistance by mechanisms involving TNF-α-dependent Map4k4 kinase activation in the adipose tissue. PMID:22816003

  19. Polydatin supplementation ameliorates diet-induced development of insulin resistance and hepatic steatosis in rats.

    PubMed

    Zhang, Qi; Tan, Yingying; Zhang, Nan; Yao, Fanrong

    2015-01-01

    The pathophysiology of non-alcoholic fatty liver disease remains to be elucidated, and the currently available treatments are not entirely effective. Polydatin, a stilbenoid compound derived from the rhizome of Polygonum cuspidatum, has previously been demonstrated to possess hepatoprotective effects. The present study aimed to determine the effects of polydatin supplementation on hepatic fat accumulation and injury in rats fed a high-fat diet. In addition, the mechanisms underlying the protective effects of polydatin were examined. Male Sprague Dawley rats were randomly divided into four groups and received one of four treatment regimes for 12 weeks: Control diet, control diet supplemented with polydatin, high-fat diet, or high-fat diet supplemented with polydatin. Polydatin was supplemented in the drinking water at a concentration of 0.3% (wt/vol). The results of the present study showed that long-term high-fat feeding resulted in fatty liver in rats, which was manifested by excessive hepatic neutral fat accumulation and elevated plasma alanine aminotransferase and aspartate aminotransferase levels. Polydatin supplementation alleviated the hepatic pathological changes, and attenuated the insulin resistance, as shown by an improved homeostasis model assessment of basal insulin resistance values and a glucose tolerance test. Polydatin supplementation also corrected abnormal leptin and adiponectin levels. Specifically, polydatin supplementation enhanced insulin sensitivity in the liver, as shown by improved insulin receptor substrate 2 expression levels and Akt phosphorylation in the rat liver, following high-fat diet feeding. The results of the present study suggest that polydatin protects rats against high-fat feeding-induced insulin resistance and hepatic steatosis. Polydatin may be an effective hepatoprotective agent and a potential candidate for the prevention of fatty liver disease and insulin resistance. PMID:25333896

  20. Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice

    PubMed Central

    Lee, Dae Ho; Huang, Hu; Choi, Kangduk; Mantzoros, Christos

    2012-01-01

    INT131 is a potent non-thiazolidinedione (TZD)-selective peroxisome proliferator-activated receptor-γ modulator being developed for the treatment of type 2 diabetes. In preclinical studies and a phase II clinical trial, INT131 has been shown to lower glucose levels and ameliorate insulin resistance without typical TZD side effects. To determine whether the insulin-sensitizing action of INT131 is mediated by effects on insulin-mediated glucose homeostasis and insulin signaling, high-fat diet-induced obese (DIO) insulin-resistant mice treated with INT131 were studied. INT131's effects on bone density were also investigated. Treatment with INT131 enhanced systemic insulin sensitivity, as revealed by lower insulin levels in the fasted state and an increase in the area above the curve during an insulin tolerance test. These effects were independent of changes in adiposity. Insulin-stimulated PI3K activity in skeletal muscle and adipose tissue of DIO mice was significantly reduced ∼50–65%, but this was restored completely by INT131 therapy. The INT131 effects on PI3K activity are most likely due to increased IRS-1 tyrosine phosphorylation. Concurrently, insulin-mediated Akt phosphorylation also increased after INT131 treatment in DIO mice. Importantly, INT131 therapy caused a significant increase in bone mineral density without alteration in circulating osteocalcin in these mice. These data suggest that a newly developed insulin-sensitizing agent, INT131, normalizes obesity-related defects in insulin action on PI3K signaling in insulin target tissues by a mechanism involved in glycemic control. If these data are confirmed in humans, INT131 could be used for treating type 2 diabetes without loss in bone mass. PMID:22215652

  1. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance.

    PubMed

    Zhang, Wei; Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H; Garvey, W John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang; Garvey, W Timothy

    2016-08-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  2. Integrin-Linked Kinase in Muscle Is Necessary for the Development of Insulin Resistance in Diet-Induced Obese Mice.

    PubMed

    Kang, Li; Mokshagundam, Shilpa; Reuter, Bradley; Lark, Daniel S; Sneddon, Claire C; Hennayake, Chandani; Williams, Ashley S; Bracy, Deanna P; James, Freyja D; Pozzi, Ambra; Zent, Roy; Wasserman, David H

    2016-06-01

    Diet-induced muscle insulin resistance is associated with expansion of extracellular matrix (ECM) components, such as collagens, and the expression of collagen-binding integrin, α2β1. Integrins transduce signals from ECM via their cytoplasmic domains, which bind to intracellular integrin-binding proteins. The integrin-linked kinase (ILK)-PINCH-parvin (IPP) complex interacts with the cytoplasmic domain of β-integrin subunits and is critical for integrin signaling. In this study we defined the role of ILK, a key component of the IPP complex, in diet-induced muscle insulin resistance. Wild-type (ILK(lox/lox)) and muscle-specific ILK-deficient (ILK(lox/lox)HSAcre) mice were fed chow or a high-fat (HF) diet for 16 weeks. Body weight was not different between ILK(lox/lox) and ILK(lox/lox)HSAcre mice. However, HF-fed ILK(lox/lox)HSAcre mice had improved muscle insulin sensitivity relative to HF-fed ILK(lox/lox) mice, as shown by increased rates of glucose infusion, glucose disappearance, and muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. Improved muscle insulin action in the HF-fed ILK(lox/lox)HSAcre mice was associated with increased insulin-stimulated phosphorylation of Akt and increased muscle capillarization. These results suggest that ILK expression in muscle is a critical component of diet-induced insulin resistance, which possibly acts by impairing insulin signaling and insulin perfusion through capillaries. PMID:27207548

  3. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects.

    PubMed

    Hulston, Carl J; Churnside, Amelia A; Venables, Michelle C

    2015-02-28

    The purpose of the present study was to determine whether probiotic supplementation (Lactobacillus casei Shirota (LcS)) prevents diet-induced insulin resistance in human subjects. A total of seventeen healthy subjects were randomised to either a probiotic (n 8) or a control (n 9) group. The probiotic group consumed a LcS-fermented milk drink twice daily for 4 weeks, whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65 % of energy), high-energy (50 % increase in energy intake) diet for 7 d. Whole-body insulin sensitivity was assessed by an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0·6 (SE 0·2) kg in the control group (P< 0·05) and by 0·3 (SE 0·2) kg in the probiotic group (P>0·05). Fasting plasma glucose concentrations increased following 7 d of overeating (control group: 5·3 (SE 0·1) v. 5·6 (SE 0·2) mmol/l before and after overfeeding, respectively, P< 0·05), whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC values increased by 10 % (from 817 (SE 45) to 899 (SE 39) mmol/l per 120 min, P< 0·05) and whole-body insulin sensitivity decreased by 27 % (from 5·3 (SE 1·4) to 3·9 (SE 0·9), P< 0·05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4·4 (SE 0·8) and 4·5 (SE 0·9) before and after overeating, respectively (P>0·05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type 2 diabetes. PMID:25630516

  4. Probiotic supplementation prevents high-fat, overfeeding-induced, insulin resistance in humans

    PubMed Central

    Hulston, Carl J.; Churnside, Amelia A.; Venables, Michelle C.

    2015-01-01

    The purpose of this study was to determine whether probiotic supplementation (Lactobacillus casei Shirota [LcS]) prevents diet-induced insulin resistance in humans. Seventeen healthy individuals were randomised to probiotic (n = 8) or control (n = 9) groups. The probiotic group consumed an LcS-fermented milk drink twice daily for 4 weeks whereas the control group received no supplementation. Subjects maintained their normal diet for the first 3 weeks of the study, after which they consumed a high-fat (65% energy) high-energy (+50% kcal) diet for 7 days. Whole body insulin sensitivity was assessed via an oral glucose tolerance test conducted before and after overfeeding. Body mass increased by 0.6 ± 0.2 kg in the control group (p < 0.05) and 0.3 ± 0.2 kg in the probiotic group (p > 0.05). Fasting plasma glucose concentrations increased following 7 days of overeating (control group only; 5.3 ± 0.1 vs. 5.6 ± 0.2 mmol/L, p < 0.05) whereas fasting serum insulin concentrations were maintained in both groups. Glucose AUC increased by 10% (from 817 ± 45 to 899 ± 39 mmol/L/120 min, p < 0.05) and whole body insulin sensitivity decreased by 27% (from 5.3 ± 1.4 to 3.9 ± 0.9, p < 0.05) in the control group, whereas normal insulin sensitivity was maintained in the probiotic group (4.4 ± 0.8 and 4.5 ± 0.9 before and after overeating, respectively, p > 0.05). These results suggest that probiotic supplementation may be useful in the prevention of diet-induced metabolic diseases such as type II diabetes. PMID:25630516

  5. Association of Bactericidal Dysfunction of Paneth Cells in Streptozocin-Induced Diabetic Mice with Insulin Deficiency.

    PubMed

    Yu, Tao; Yang, Hong-Sheng; Lu, Xi-Ji; Xia, Zhong-Sheng; Ouyang, Hui; Shan, Ti-Dong; Huang, Can-Ze; Chen, Qi-Kui

    2016-01-01

    BACKGROUND Type 1 diabetes mellitus (T1DM) is associated with increased risks of enteric infection. Paneth cells constitute the first line of the gut defense. Little is known about the impact of T1DM on the bactericidal function of intestinal Paneth cells. MATERIAL AND METHODS A T1DM mouse model was induced by intraperitoneal injection of streptozocin. The analysis of intestinal microbiota and the mucosal bactericidal assay were conducted to evaluate intestinal innate defense. Numbers of Paneth cells and their expression of related antimicrobial peptides were analyzed. Expression of total insulin receptor (IR) mRNA and relative levels of IR-A/IR-B were analyzed. The primary mouse small intestinal crypt culture was used to analyze the effect of insulin and glucose on the expression of related antimicrobial peptides of Paneth cells. RESULTS In T1DM mice, bacterial loads were increased and there was an alteration in the composition of the intestinal microflora. Exogenous bacteria had better survival in the small bowel of the T1DM mice. The expression of Paneth cell-derived antimicrobial peptides was significantly decreased in the T1DM mice, although the number of Paneth cells was increased. Relative levels of IR-A/IR-B in Paneth cells of diabetic mice were elevated, but the total IR mRNA did not change. Insulin treatment restored the expression of antimicrobial peptides and normalized the microbiota in the gut of T1DM mice. Subsequently, in vitro culture assay demonstrated that insulin rather than glucose was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. CONCLUSIONS The bactericidal function of intestinal Paneth cells was impaired in STZ-induced diabetic mice, resulting in the altered intestinal flora, and insulin was essential for the optimal expression of Paneth cell-derived antimicrobial peptides. PMID:27572949

  6. Insulin and insulin-like growth factor-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet

    1990-01-01

    Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.

  7. Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus.

    PubMed

    He, Junhua; Yang, Zhiming; Yang, Huiyu; Wang, Li; Wu, Huilu; Fan, Yunjuan; Wang, Wei; Fan, Xin; Li, Xing

    2015-02-01

    The aim of this study is to determine the antidiabetic activity of Ang-(1-7), an important component of the renin-angiotensin system, in a rat model of streptozotocin (STZ)-induced type 2 diabetes mellitus (DM). A total of 36 male Wistar rats were randomly divided into 3 groups: control group fed standard laboratory diet, DM group fed high-fat diet and injected with STZ, and Ang-(1-7) group receiving injection of STZ followed by Ang-(1-7) treatment. Body weight, blood glucose levels, fasting serum Ang II and insulin levels, and homeostasis model assessment of insulin resistance (HOMA-IR) were measured. The pancreas was collected for histological examination and gene expression analysis. Notably, the Ang-(1-7) group showed a significant decrease in fasting blood glucose and serum Ang II levels and HOMA-IR values and increase in fasting serum insulin levels. Pancreatic β cells in the control and Ang-(1-7) groups were normally distributed in the center of pancreatic islets with large clear nuclei. In contrast, pancreatic β cells in the DM group had a marked shrinkage of the cytoplasm and condensation of nuclear chromatin. Ang-(1-7) treatment significantly facilitated insulin production by β cells in diabetic rats. The DM-associated elevation of inducible nitric oxide synthase (iNOS), caspase-3, caspase-9, caspase-8, and Bax and reduction of Bcl-2 was significantly reversed by Ang-(1-7) treatment. Taken together, Ang-(1-7) protects against STZ-induced DM through improvement of insulin resistance, insulin secretion, and pancreatic β cell survival, which is associated with reduction of iNOS expression and alteration of the Bcl-2 family. PMID:25576844

  8. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress

  9. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    PubMed

    Liu, Zhigang; Patil, Ishan Y; Jiang, Tianyi; Sancheti, Harsh; Walsh, John P; Stiles, Bangyan L; Yin, Fei; Cadenas, Enrique

    2015-01-01

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  10. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications. PMID:26767366

  11. ATF7 ablation prevents diet-induced obesity and insulin resistance.

    PubMed

    Liu, Yang; Maekawa, Toshio; Yoshida, Keisuke; Furuse, Tamio; Kaneda, Hideki; Wakana, Shigeharu; Ishii, Shunsuke

    2016-09-16

    The activating transcription factor (ATF)2 family of transcription factors regulates a variety of metabolic processes, including adipogenesis and adaptive thermogenesis. ATF7 is a member of the ATF2 family, and mediates epigenetic changes induced by environmental stresses, such as social isolation and pathogen infection. However, the metabolic role of ATF7 remains unknown. The aim of the present study is to examine the role of ATF7 in metabolism using ATF7-dificeint mice. Atf7(-/-) mice exhibited lower body weight and resisted diet-induced obesity. Serum triglycerides, resistin, and adipose tissue mass were all significantly lower in ATF7-deficient mice. Fasting glucose levels and glucose tolerance were unaltered, but systemic insulin sensitivity was increased, by ablation of ATF7. Indirect calorimetry revealed that oxygen consumption by Atf7(-/-) mice was comparable to that of wild-type littermates on a standard chow diet, but increased energy expenditure was observed in Atf7(-/-) mice on a high-fat diet. Hence, ATF7 ablation may impair the development and function of adipose tissue and result in elevated energy expenditure in response to high-fat-feeding obesity and insulin resistance, indicating that ATF7 is a potential therapeutic target for diet-induced obesity and insulin resistance. PMID:27498002

  12. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice.

    PubMed

    Karaman, Sinem; Hollmén, Maija; Yoon, Sun-Young; Alkan, H Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael

    2016-01-01

    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance. PMID:27511834

  13. Canavanine induces insulin release via activation of imidazoline I3 receptors.

    PubMed

    Yang, Ting-Ting; Niu, Ho-Shan; Chen, Li-Jen; Ku, Po-Ming; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-03-01

    The aim of the present study was to identify the effect of canavanine on the imidazoline receptor because canavanine is a guanidinium derivative that has a similar structure to imidazoline receptor ligands. Transfected Chinese hamster ovary-K1 cells expressing imidazoline receptors (nischarin (NISCH)-CHO-K1 cells) were used to elucidate the direct effects of canavanine on imidazoline receptors. In addition, the imidazoline I3 receptor has been implicated in stimulation of insulin secretion from pancreatic β-cells. Wistar rats were used to investigate the effects of canavanine (0.1, 1 and 2.5 mg/kg, i.v.) on insulin secretion. In addition the a specific I3 receptor antagonist KU14R (4 or 8 mg/kg, i.v.) was used to block I3 receptors. Canavanine decreased blood glucose by increasing plasma insulin in rats. In addition, canavanine increased calcium influx into NISCH-CHO-K1 cells in a manner similar to agmatine, the endogenous ligand of imidazoline receptors. Moreover, KU12R dose-dependently attenuated canavanine-induced insulin secretion in HIT-T15 pancreatic β-cells and in the plasma of rats. The data suggest that canavanine is an agonist of I3 receptors both in vivo and in vitro. Thus, canavanine would be a useful tool in imidazoline receptor research. PMID:25482045

  14. Decreased pituitary response to insulin-induced hypoglycaemia in young lean male patients with essential hypertension.

    PubMed

    Radikova, Z; Penesova, A; Cizmarova, E; Huckova, M; Kvetnansky, R; Vigas, M; Koska, J

    2006-07-01

    Essential hypertension is associated with changes in central catecholaminergic pathways which might also be reflected in the pituitary response to stress stimuli. The aim of this study was to determine whether the response of pituitary hormones, cortisol, plasma renin activity, aldosterone and catecholamines to insulin-induced hypoglycaemia is changed in hypertension. We studied 22 young lean male patients with newly diagnosed untreated essential hypertension and 19 healthy normotensive, age- and body mass index (BMI)-matched controls. All subjects underwent an insulin tolerance test (0.1 IU insulin/kg body weight intravenously) with blood sampling before and 15, 30, 45, 60 and 90 min after insulin administration. Increased baseline levels of norepinephrine (P<0.05), increased response of norepinephrine (P<0.001) and decreased response of growth hormone (P<0.001), prolactin (P<0.001), adrenocorticotropic hormone (P<0.05) and cortisol (P<0.001) were found in hypertensive patients when compared to normotensive controls. Increased norepinephrine levels and a decreased pituitary response to metabolic stress stimuli may represent another manifestation of chronically increased sympathetic tone in early hypertension. PMID:16617309

  15. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice

    PubMed Central

    Karaman, Sinem; Hollmén, Maija; Yoon, Sun-Young; Alkan, H. Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael

    2016-01-01

    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance. PMID:27511834

  16. Lactobacillus rhamnosus GG Reverses Insulin Resistance but Does Not Block Its Onset in Diet-Induced Obese Mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Recently, Lactobacillus rhamnosus GG (LGG) was shown to exert insulin-sensitizing and adiposity-reducing effects in high-fat (HF) diet-fed mice. In the present study, we observed that the effects were correlated with the extent of dysbiosis induced by HF diet feeding before LGG administration. LGG-treated mice were protected from HF diet-induced adiposity and/ or insulin resistance when LGG was treated after, not along with, HF diet feeding. Results indicate that, under HF dietary condition, supplemented LGG reverses insulin resistance, but does not block its onset. PMID:25433553

  17. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    NASA Astrophysics Data System (ADS)

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-06-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.

  18. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    PubMed Central

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  19. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes.

    PubMed

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  20. Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    We recently exploited a transgenic approach to coerce macrophage anti-inflammatory M2 polarization in vivo by lowering Receptor Interacting Protein 140 (RIP140) level in macrophages (mφRIP140KD), which induced browning of white adipose tissue (WAT). In vitro, conditioned medium from cultured adipose tissue macrophages (ATMs) of mφRIP140KD mice could trigger preadipocytes' differentiation into beige cells. Here we describe a cell therapy for treating high fat diet (HFD)-induced insulin resistance (IR). Injecting M2 ATMs retrieved from the WAT of mφRIP140KD mice into HFD-fed obese adult wild-type mice effectively triggers their WAT browning, reduces their pro-inflammatory responses, and improves their insulin sensitivity. These data provide a proof-of-concept that delivering engineered anti-inflammatory macrophages can trigger white fat browning, stimulate whole-body thermogenesis, and reduce obesity-associated IR. PMID:26167415

  1. Carnitine Palmitoyltransferase 1b Deficiency Protects Mice from Diet-Induced Insulin Resistance

    PubMed Central

    Kim, Teayoun; He, Lan; Johnson, Maria S.; Li, Yan; Zeng, Ling; Ding, Yishu; Long, Qinqiang; Moore, John F.; Sharer, Jon D.; Nagy, Tim R.; Young, Martin E.; Wood, Philip A.; Yang, Qinglin

    2014-01-01

    Background Carnitine Palmitoyl Transferase 1 (CPT1) is the rate-limiting enzyme governing long-chain fatty acid entry into mitochondria. CPT1 inhibitors have been developed and exhibited beneficial effects against type II diabetes in short-term preclinical animal studies. However, the long-term effects of treatment remain unclear and potential non-specific effects of these CPT1 inhibitors hamper in-depth understanding of the potential molecular mechanisms involved. Methods We investigated the effects of restricting the activity of the muscle isoform CPT1b in mice using heterozygous CPT1b deficient (Cpt1b+/−) and Wild Type (WT) mice fed with a High Fat Diet (HFD) for 22 weeks. Insulin sensitivity was assessed using Glucose Tolerance Test (GTT), insulin tolerance test and hyperinsulinemic euglycemic clamps. We also examined body weight/composition, tissue and systemic metabolism/energetic status, lipid profile, transcript analysis, and changes in insulin signaling pathways. Results We found that Cpt1b+/− mice were protected from HFD-induced insulin resistance compared to WT littermates. Cpt1b+/− mice exhibited elevated whole body glucose disposal rate and skeletal muscle glucose uptake. Furthermore, Cpt1b+/− skeletal muscle showed diminished ex vivo palmitate oxidative capacity by ~40% and augmented glucose oxidation capacity by ~50% without overt change in whole body energy metabolism. HFD feeding Cpt1b+/− but not WT mice exhibited well-maintained insulin signaling in skeletal muscle, heart, and liver. Conclusion The present study on a genetic model of CPT1b restriction supports the concept that partial CPT1b inhibition is a potential therapeutic strategy. PMID:25309812

  2. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity.

    PubMed

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  3. SIRT3 Deficiency Induces Endothelial Insulin Resistance and Blunts Endothelial-Dependent Vasorelaxation in Mice and Human with Obesity

    PubMed Central

    Yang, Lu; Zhang, Julei; Xing, Wenjuan; Zhang, Xing; Xu, Jie; Zhang, Haifeng; Chen, Li; Ning, Xiaona; Ji, Gang; Li, Jia; Zhao, Qingchuan; Gao, Feng

    2016-01-01

    Recent evidence implicates the critical role of Sirtuin 3 (SIRT3) in the development of many metabolic diseases, but the contribution of SIRT3 to vascular homeostasis remains largely unknown. The aim of this study was to investigate the role of SIRT3 in endothelial insulin resistance and vascular dysfunction in obesity. We found an impaired insulin-induced mesenteric vasorelaxation and concomitant reduced vascular SIRT3 expression in morbid obese human subjects compared with the non-obese subjects. Downregulation of SIRT3 in cultured human endothelial cells increased mitochondrial reactive oxygen species (mtROS) and impaired insulin signaling as evidenced by decreased phosphorylation of Akt and endothelial nitric oxide synthase and subsequent reduced nitric oxide (NO) release. In addition, obese mice induced by 24-week high-fat diet (HFD) displayed an impaired endothelium-dependent vasorelaxation to both insulin and acetylcholine, which was further exacerbated by the gene deletion of Sirt3. Scavenging of mtROS not only restored insulin-stimulated NO production in SIRT3 knockdown cells, but also improved insulin-induced vasorelaxation in SIRT3 knockout mice fed with HFD. Taken together, our findings suggest that SIRT3 positively regulates endothelial insulin sensitivity and show that SIRT3 deficiency and resultant increased mtROS contribute to vascular dysfunction in obesity. PMID:27000941

  4. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  5. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice.

    PubMed

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  6. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    PubMed Central

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  7. Brain glycogen supercompensation in the mouse after recovery from insulin-induced hypoglycemia.

    PubMed

    Canada, Sarah E; Weaver, Staci A; Sharpe, Shannon N; Pederson, Bartholomew A

    2011-04-01

    Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established. PMID:21259334

  8. BRAIN GLYCOGEN SUPERCOMPENSATION IN THE MOUSE AFTER RECOVERY FROM INSULIN-INDUCED HYPOGLYCEMIA

    PubMed Central

    Canada, Sarah E.; Weaver, Staci A.; Sharpe, Shannon N.; Pederson, Bartholomew A.

    2010-01-01

    Brain glycogen is proposed to function in both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed “supercompensation”. We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/L for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. Following these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hrs. After 6 hrs, blood and brain glucose levels were restored while brain glycogen levels were elevated 25% in mice that were previously subjected to either acute or recurrent hypoglycemia as compared with saline-treated controls. Following a 27 hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice but its functional significance remains to be established. PMID:21259334

  9. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    PubMed Central

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-01-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice. PMID:26066376

  10. [Hypertriglyceridemia-induced pancreatitis treated with insulin in a nondiabetic patient].

    PubMed

    Park, Seon Young; Chung, Jin Ook; Cho, Dong Keun; Lee, Wan Sik; Kim, Hyun Soo; Choi, Sung-Kyu; Rew, Jong-Sun; Chung, Min Young

    2010-06-01

    Heparin and/or insulin stimulate lipoprotein lipase and are known to decrease serum triglyceride level. However, their efficacy in hypertriglyceridemia-induced acute pancreatitis in nondiabetic patients is not well documented. We report a case of hypertriglyceridemia-induced pancreatitis in 43-year-old nondiabetic woman in whom treatment with insulin was accompanied by reduction in serum triglyceride level and the resolution of pancreatitis. She presented to the emergency department with abdominal pain and biochemical evidence of acute pancreatitis. Her medical history was unremarkable. There was no history of alcohol consumption, and biliary imaging was not remarkable. Subsequent laboratory investigation revealed marked hypertriglyceridemia (1,951 mg/dL), impaired fasting glucose, and normal HbAlc level. The Ransons score and APATCH II score were 1 and 4. Abdominal CT showed diffuse enlargement of pancreas, peripancreatic fat infiltration, and multiple fluid collections around the pancreas. We treated the patient with the infusion of 5% dextrose and 1.5 unit/hr regular insulin to reduce serum triglyceride level. The level of serum triglyceride was decreased to 305 mg/dL on day 5. During the remainder of hospitalization, her clinical symptoms and laboratory values gradually improved. PMID:20571309

  11. Biosimilar insulins.

    PubMed

    Heinemann, Lutz

    2012-08-01

    Until now most insulin used in developed countries is manufactured and distributed by a small number of multinational companies. Other pharmaceutical companies - many of these are located in countries such as India or China - are also able to manufacture insulin with modern biotechnological methods. Additionally, the patents for many insulin formulations have expired or are going to expire soon. This enables such companies to produce insulins and to apply for market approval of these as biosimilar insulins (BIs) in highly regulated markets such as the EU or the US. To understand the complexity of BIs' approval and usage, scientific and regulatory aspects have to be discussed. Differences in the manufacturing process (none of the insulin-manufacturing procedures are identical) result in the fact that all insulin that might become BIs differ from the originator insulin to some extent. The question is, have such differences in the structure of the insulin molecule and or the purity and so on clinically relevant consequences for the biological effects induced or not. The guidelines already in place in the EU for market approval require that the manufacturer demonstrates that his insulin has a safety and efficacy profile that is similar to that of the 'original' insulin formulation. Recently guidelines for biosimilars were issued in the US; however, these do not cover insulin. Although a challenging approval process for insulins to become BI might be regarded as a hurdle to keep companies out of certain markets, it is fair to say that the potential safety and efficacy issues surrounding BI are substantial and relevant, and do warrant a careful and evidence-driven approval process. Nevertheless, it is very likely that in the next years, BIs will come to the market also in highly regulated markets. PMID:22583127

  12. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

    PubMed Central

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  13. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    PubMed

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  14. Protein Fractions from Korean Mistletoe (Viscum Album coloratum) Extract Induce Insulin Secretion from Pancreatic Beta Cells

    PubMed Central

    Kim, Jong-Bae

    2014-01-01

    Mistletoe (Viscum Album coloratum) has been known as a medicinal plant in European and Asian countries. Recent data show that biological activity of mistletoe alleviates hypertension, heart disease, renal failure, and cancer development. In this study, we report the antidiabetic effect of Korean mistletoe extract (KME). KME treatments enhanced the insulin secretion from the pancreatic β-cell without any effects of cytotoxicity. PDX-1 and beta2/neuroD known as transcription factors that regulate the expression of insulin gene were upregulated by treatment of the KME protein fractions isolated by ion-exchange chromatography after ammonium sulfate precipitation. Furthermore, these KME protein fractions significantly lowered the blood glucose level and the volume of drinking water in alloxan induced hyperglycemic mice. Taken together with the findings, it provides new insight that KME might be served as a useful source for the development of medicinal reagent to reduce blood glucose level of type I diabetic patients. PMID:24959189

  15. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies.

    PubMed

    Jensen, V F H; Bøgh, I B; Lykkesfeldt, J

    2014-03-01

    Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma. PMID:24428753

  16. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  17. Insulin improves β-cell function in glucose-intolerant rat models induced by feeding a high-fat diet.

    PubMed

    Li, Hui-qing; Wang, Bao-ping; Deng, Xiu-Ling; Zhang, Jiao-yue; Wang, Yong-bo; Zheng, Juan; Xia, Wen-fang; Zeng, Tian-shu; Chen, Lu-lu

    2011-11-01

    Insulin therapy has been shown to contribute to extended glycemia remission in newly diagnosed patients with type 2 diabetes mellitus. This study investigated the effects of insulin treatment on pancreatic lipid content, and β-cell apoptosis and proliferation in glucose-intolerant rats to explore the protective role of insulin on β-cell function. A rat glucose-intolerant model was induced by streptozotocin and a high-fat diet. Plasma and pancreatic triglycerides, free fatty acids, and insulin were measured; and pancreatic β-cell cell apoptosis and proliferation were detected by a propidium iodide cell death assay and immunofluorescence for proliferating cell nuclear antigen. Relative β-cell area was determined by immunohistochemistry for insulin, whereas insulin production in pancreas was assessed by reverse transcriptase polymerase chain reaction. Islet β-cell secreting function was assessed by the index ΔI30/ΔG30. Glucose-intolerant rats had higher pancreatic lipid content, more islet β-cell apoptosis, lower β-cell proliferation, and reduced β-cell area in pancreas when compared with controls. Insulin therapy reduced blood glucose, inhibited pancreatic lipid accumulation and islet β-cell apoptosis, and increased β-cell proliferation and β-cell area in glucose-intolerant rats. Furthermore, impaired insulin secretion and insulin production in glucose-intolerant rats were improved by insulin therapy. Insulin can preserve β-cell function by protecting islets from glucotoxicity and lipotoxicity. It can also ameliorate β-cell area by enhancing β-cell proliferation and reducing β-cell apoptosis. PMID:21550078

  18. Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle

    PubMed Central

    Tanaka, Tomokazu; Kramer, Joshua; Yu, Yong-Ming; Fischman, Alan J.; Martyn, J. A. Jeevendra; Tompkins, Ronald G.; Kaneki, Masao

    2015-01-01

    Objective Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. Methods A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. Results Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. Conclusions Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn-induced

  19. Mechanisms of cinnamon extract-induced suppression of the intestinal overproduction of apolipoprotein B48-containing lipoproteins in insulin resistant high-fructose fed animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported previously that cinnamon extract (CE) prevents high-fructose (HF) feeding-induced whole-body insulin resistance by enhancing insulin signaling in skeletal muscle. In this study, we investigated whether intestinal apolipoprotein overproduction is inhibited by CE in this insulin-resis...

  20. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  1. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    PubMed

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  2. The Neuroprotective Role of Insulin Against MPP(+) -Induced Parkinson's Disease in Differentiated SH-SY5Y Cells.

    PubMed

    Ramalingam, Mahesh; Kim, Sung-Jin

    2016-04-01

    Parkinson's disease (PD) is a common chronic neurodegenerative disorder associated with aging that primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SN). Retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells (SH-SY5Y+RA) have been broadly utilized in studies of mechanisms of the pathogenesis underlying 1-Methyl-4-phenyl pyridinium (MPP(+) )-induced PD models. Here, we investigated the neuroprotective mechanisms of insulin on MPP(+) -induced neurotoxicity on SH-SY5Y+RA cells. Recent studies suggest that insulin has a protective effect against oxidative stress but not been elucidated for PD. In this study, pretreatment of insulin prevented the cell death in a dose dependent manner and lowered nitric oxide (NO) release, reactive oxygen species (ROS), and calcium ion (Ca(2+) ) influx induced by MPP(+) . Insulin also elevated tyrosine hydroxylase (TH) and insulin signaling pathways in dopaminergic neuron through activating PI3K/Akt/GSK-3 survival pathways which in turn inhibits MPP(+) -induced iNOS and ERK activation, and Bax to Bcl-2 ratio. These results suggest that insulin has a protective effect on MPP(+) -neurotoxicity in SH-SY5Y+RA cells. J. Cell. Biochem. 117: 917-926, 2016. © 2015 Wiley Periodicals, Inc. PMID:26364587

  3. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes.

    PubMed

    Zhang, Song-Yang; Lv, Ying; Zhang, Heng; Gao, Song; Wang, Ting; Feng, Juan; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-08-01

    MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance. PMID:27207558

  4. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    SciTech Connect

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} activates the insulin signaling pathway and glucose uptake in podocytes. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} induces time-dependent changes in AMPK phosphorylation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} enhances insulin signaling pathways via AMPK activation. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H{sub 2}O{sub 2}) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H{sub 2}O{sub 2}-induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H{sub 2}O{sub 2} (100 {mu}M) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min ({Delta} 183%, P < 0.05), 3 min ({Delta} 414%, P < 0.05), and 10 min ({Delta} 35%, P < 0.05), respectively. Immunostaining cells with an Akt-specific antibody showed increased intensity at the plasma membrane after treatment with H{sub 2}O{sub 2}>. Furthermore, H{sub 2}O{sub 2} inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; {Delta} -32%, P < 0.05) and stimulated phosphorylation of the AMP-dependent kinase alpha subunit (AMPK{alpha}; 78% at 3 min and 244% at 10 min). The stimulation of AMPK was abolished with an AMPK inhibitor, Compound C (100 {mu}M, 2 h). Moreover, Compound C significantly reduced the effect of H{sub 2}O{sub 2} on IR phosphorylation by about 40% (from 2.07 {+-} 0.28 to 1.28 {+-} 0.12, P < 0.05). In addition, H{sub 2}O{sub 2} increased glucose uptake in podocytes

  5. Somatotropic, lactotropic and adrenocortical responses to insulin-induced hypoglycemia in patients with rheumatoid arthritis.

    PubMed

    Rovensky, Jozef; Bakosová, Jana; Koska, Juraj; Ksinantová, Lucia; Jezová, Daniela; Vigas, Milan

    2002-06-01

    Neuroendocrine mechanisms have been suggested to play an important role in the onset and progression of rheumatoid arthritis (RA). The aim of this study was to evaluate hypothalamic-pituitary functions in RA patients by measurement of hormone responses to insulin-induced hypoglycemia. Insulin-hypoglycemia (Actrapid HM 0.1 IU/kg, i.v. as a bolus) was induced in 17 male patients and in 11 age-, gender-, and weight-matched healthy subjects. Concentrations of growth hormone (GH), prolactin (PRL) and cortisol were analyzed in plasma. PRL release after thyreoliberin stimulation (TRH, 200 g, i.v.) was determined in 21 patients with active forms of RA and in 12 control subjects to evaluate pituitary lactotropic response. In RA patients, basal concentrations of glucose, GH, PRL, and cortisol were in the normal range and they were comparable to those in the control group. Stress of hypoglycemia induced significant elevation of GH, PRL, and cortisol concentrations in all groups. Cortisol responses to hypoglycemia were comparable in patients and in control subjects. GH release during hypoglycemia was increased (p < 0.05) and PRL response was attenuated (p < 0.05) in RA patients versus control subjects. After TRH administration, PRL response was the same in patients as in healthy subjects. In conclusion, the present study revealed an altered hypothalamic-pituitary function in patients with RA, namely, an enhanced somatotropic and reduced lactotropic activation in response to insulin-induced hypoglycemia. Basal hormone levels and cortisol release during hypoglycemia were similar to those in healthy subjects. PMID:12114282

  6. Palmitate-induced impairment of glucose-stimulated insulin secretion precedes mitochondrial dysfunction in mouse pancreatic islets.

    PubMed

    Barlow, Jonathan; Jensen, Verena Hirschberg; Jastroch, Martin; Affourtit, Charles

    2016-02-15

    It has been well established that excessive levels of glucose and palmitate lower glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells. This β-cell 'glucolipotoxicity' is possibly mediated by mitochondrial dysfunction, but involvement of bioenergetic failure in the pathological mechanism is the subject of ongoing debate. We show in the present study that increased palmitate levels impair GSIS before altering mitochondrial function. We demonstrate that GSIS defects arise from increased insulin release under basal conditions in addition to decreased insulin secretion under glucose-stimulatory conditions. Real-time respiratory analysis of intact mouse pancreatic islets reveals that mitochondrial ATP synthesis is not involved in the mechanism by which basal insulin is elevated. Equally, mitochondrial lipid oxidation and production of reactive oxygen species (ROS) do not contribute to increased basal insulin secretion. Palmitate does not affect KCl-induced insulin release at a basal or stimulatory glucose level, but elevated basal insulin release is attenuated by palmitoleate and associates with increased intracellular calcium. These findings deepen our understanding of β-cell glucolipotoxicity and reveal that palmitate-induced GSIS impairment is disconnected from mitochondrial dysfunction, a notion that is important when targeting β-cells for the treatment of diabetes and when assessing islet function in human transplants. PMID:26621874

  7. Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells.

    PubMed

    Nickerson, T; Huynh, H; Pollak, M

    1997-08-28

    Insulin-like growth factors (IGFs) are known to have potent antiapoptotic activity. The antiestrogen ICI 182,780 (ICI) is a potent inhibitor of MCF7 human breast cancer cell growth and has recently been reported to act as an antiproliferative agent in part via upregulation of expression of insulin-like growth factor binding proteins (IGFBPs) -3 and -5, which attenuate the bioactivity of IGFs in many experimental systems. We show here that ICI and IGFBP-3 induce apoptosis in MCF7 cells. Treatment of MCF7 cells with 10 nM ICI or 36 nM recombinant human IGFBP. 3 for 72 hours increased apoptosis approximately 3.5-fold relative to control as quantitated by a cell death ELISA which measures DNA fragmentation. Long R3 IGF-I, an IGF-I analogue with greatly reduced affinity for IGFBPs yet similar affinity for IGF-I receptors, was a more potent inhibitor of IGFBP-3-induced and ICI-induced apoptosis than IGF-I. These results suggest that IGFBP-3 enhances apoptosis by reducing bioavailability of ligands for the IGF-I receptor and suggest that modulation of IGFBP-3 expression by ICI contributes to apoptosis induced by this compound. More generally, the data suggest that IGFBPs are regulators of apoptosis. PMID:9299428

  8. A single prior bout of exercise protects against palmitate-induced insulin resistance despite an increase in total ceramide content.

    PubMed

    Thrush, A Brianne; Harasim, Ewa; Chabowski, Adrian; Gulli, Roberto; Stefanyk, Leslie; Dyck, David J

    2011-05-01

    Ceramide accumulation has been implicated in the impairment of insulin-stimulated glucose transport in skeletal muscle following saturated fatty acid (FA) exposure. Importantly, a single bout of exercise can protect against acute lipid-induced insulin resistance. The mechanism by which exercise protects against lipid-induced insulin resistance is not completely known but may occur through a redirection of FA toward triacylglycerol (TAG) and away from ceramide and diacylglycerol (DAG). Therefore, in the current study, an in vitro preparation was used to examine whether a prior bout of exercise could confer protection against palmitate-induced insulin resistance and whether the pharmacological [50 μM fumonisin B(1) (FB1)] inhibition of ceramide synthesis in the presence of palmitate could mimic the protective effect of exercise. Soleus muscle of sedentary (SED), exercised (EX), and SED in the presence of FB1 (SED+FB1) were incubated with or without 2 mM palmitate for 4 h. This 2-mM palmitate exposure impaired insulin-stimulated glucose transport (-28%, P < 0.01) and significantly increased ceramide, DAG, and TAG accumulation in the SED group (P < 0.05). A single prior bout of exercise prevented the detrimental effects of palmitate on insulin signaling and caused a partial redistribution of FA toward TAG (P < 0.05). However, the net increase in ceramide content in response to palmitate exposure in the EX group was not different compared with SED, despite the maintenance of insulin sensitivity. The incubation of soleus from SED rats with FB1 (SED+FB1) prevented the detrimental effects of palmitate and caused a redirection of FA toward TAG accumulation (P < 0.05). Therefore, this research suggests that although inhibiting ceramide accumulation can prevent the detrimental effects of palmitate, a single prior bout of exercise appears to protect against palmitate-induced insulin resistance, which may be independent of changes in ceramide content. PMID:21325642

  9. Insulin Resistance Increases the Risk of Contrast-Induced Nephropathy in Patients Undergoing Elective Coronary Intervention.

    PubMed

    Li, Yueping; Liu, Yuyang; Shi, Dongmei; Yang, Lixia; Liang, Jing; Zhou, Yujie

    2016-02-01

    We assessed the influence of insulin resistance (IR) on the development of contrast-induced nephropathy (CIN) in patients (n = 719) undergoing elective percutaneous coronary intervention (PCI). Patients were divided into diabetes mellitus (DM = 242), nondiabetic IR (IR = 120), and nondiabetic insulin sensitivity (IS = 357) groups according to medical history and homeostasis model assessment insulin resistance index. Serum creatinine (SCr) and estimated glomerular filtration rate (eGFR) were measured before and 72 hours after PCI. There were no differences in SCr and eGFR among the groups before PCI; SCr increased and eGFR decreased significantly in the DM and IR groups post-PCI (P < .001). The incidence of CIN in the IR group was as high as in the DM group and were both significantly higher than in the IS group (6.7% vs 8.7% vs 2.2%, P < .05). Multivariate logistic regression analysis showed DM (odds ratio [OR] = 1.19, 95%CI = 1.08-1.510, P < .001), HOMA-IR (OR = 1.39, 95%CI = 1.23-1.58, P < 0.001), and eGFR (OR = 0.88, 95%CI = 0.84-0.92, P < .001) were independent risk factors in predicting CIN. Screening IR patients and taking appropriate prophylactic strategy before PCI may reduce the incidence of CIN. PMID:25843952

  10. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    PubMed

    Heijnen, Harry F; van Wijk, Richard; Pereboom, Tamara C; Goos, Yvonne J; Seinen, Cor W; van Oirschot, Brigitte A; van Dooren, Rowie; Gastou, Marc; Giles, Rachel H; van Solinge, Wouter; Kuijpers, Taco W; Gazda, Hanna T; Bierings, Marc B; Da Costa, Lydie; MacInnes, Alyson W

    2014-01-01

    Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies. PMID:24875531

  11. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  12. Maternal fructose intake induces insulin resistance and oxidative stress in male, but not female, offspring.

    PubMed

    Rodríguez, Lourdes; Otero, Paola; Panadero, María I; Rodrigo, Silvia; Álvarez-Millán, Juan J; Bocos, Carlos

    2015-01-01

    Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol) throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity) were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers) were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny. PMID:25763281

  13. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion

    PubMed Central

    Ravassard, Philippe; Hazhouz, Yasmine; Pechberty, Séverine; Bricout-Neveu, Emilie; Armanet, Mathieu; Czernichow, Paul; Scharfmann, Raphael

    2011-01-01

    Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell–specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type–specific promoter is available. PMID:21865645

  14. Maternal Fructose Intake Induces Insulin Resistance and Oxidative Stress in Male, but Not Female, Offspring

    PubMed Central

    Rodríguez, Lourdes; Otero, Paola; Panadero, María I.; Rodrigo, Silvia; Álvarez-Millán, Juan J.; Bocos, Carlos

    2015-01-01

    Objective. Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10% wt/vol) throughout gestation produces an impaired fetal leptin signalling. Therefore, we have investigated whether maternal fructose intake produces subsequent changes in their progeny. Methods. Blood samples from fed and 24 h fasted female and male 90-day-old rats born from fructose-fed, glucose-fed, or control mothers were used. Results. After fasting, HOMA-IR and ISI (estimates of insulin sensitivity) were worse in male descendents from fructose-fed mothers in comparison to the other two groups, and these findings were also accompanied by a higher leptinemia. Interestingly, plasma AOPP and uricemia (oxidative stress markers) were augmented in male rats from fructose-fed mothers compared to the animals from control or glucose-fed mothers. In contrast, female rats did not show any differences in leptinemia between the three groups. Further, insulin sensitivity was significantly improved in fasted female rats from carbohydrate-fed mothers. In addition, plasma AOPP levels tended to be diminished in female rats from carbohydrate-fed mothers. Conclusion. Maternal fructose intake induces insulin resistance, hyperleptinemia, and plasma oxidative stress in male, but not female, progeny. PMID:25763281

  15. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways.

    PubMed

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-12-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  16. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

    PubMed Central

    Jung, Jong Gab; Yi, Sang-A; Choi, Sung-E; Kang, Yup; Kim, Tae Ho; Jeon, Ja Young; Bae, Myung Ae; Ahn, Jin Hee; Jeong, Hana; Hwang, Eun Sook; Lee, Kwan-Woo

    2015-01-01

    The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2′-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance. PMID:26537193

  17. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice.

    PubMed

    Naowaboot, Jarinyaporn; Wannasiri, Supaporn; Pannangpetch, Patchareewan

    2016-06-01

    Morin is a natural bioflavonoid that exhibits antioxidant and anti-inflammatory properties. The present study was designed to evaluate the effect of morin on insulin resistance, oxidative stress, and inflammation in a high-fat-diet (HFD)-induced obese mice. Obesity was induced in ICR mice by feeding a HFD (60 % kcal from fat) for 12 weeks. After the first 6 weeks, obese mice were treated with morin (50 or 100 mg/kg/day) once daily for further 6 weeks. Blood glucose, lipid profile, insulin, leptin, adiponectin, and markers of oxidative stress and inflammation were then measured. Liver was excised, subjected to histopathology, glycogen determination, and gene and protein expression analysis. Morin administration reduced blood glucose, serum insulin, leptin, malondialdehyde, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) levels and increased serum adiponectin levels. Moreover, there was a reduction in serum lipid and liver triglyceride levels. Liver histology indicated that morin limited accumulation of lipid droplets. Interestingly, morin reduced expression of hepatic sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) and up-regulated hepatic carnitine palmitoyltransferase 1a (CPT1a) expression. Morin also stimulated glycogen storage and suppressed phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) protein expression. Furthermore, hepatic superoxide dismutase (SOD) and catalase (CAT) expression were increased after morin treatment. These findings indicate that morin has a positive effect in the HFD-induced obesity condition by suppressing lipogenesis, gluconeogenesis, inflammation, and oxidative stress activities. PMID:26976296

  18. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion.

    PubMed

    Lee, Soh-Hyun; Jouihan, Hani A; Cooksey, Robert C; Jones, Deborah; Kim, Hyung J; Winge, Dennis R; McClain, Donald A

    2013-03-01

    Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress. PMID:23372018

  19. Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway

    PubMed Central

    Zhang, Dong-Yan; Gao, Xue-Jiao; Zhou, Ling; Qin, Xiao-Ying; Xie, Guo-Yong; Liu, Kang; Qin, Yong; Liu, Bao-Lin; Qin, Min-Jian

    2013-01-01

    Tectorigenin is a plant isoflavonoid originally isolated from the dried flower of Pueraria thomsonii Benth. Although its anti-inflammatory and anti-hyperglycosemia effects have been well documented, the effect of tectorigenin on endothelial dysfunction insulin resistance involved has not yet been reported. Herein, this study aims to investigate the action of tectorigenin on amelioration of insulin resistance in the endothelium. Palmitic acid (PA) was chosen as a stimulant to induce ROS production in endothelial cells and successfully established insulin resistance evidenced by the specific impairment of insulin PI3K signaling. Tectorigenin effectively inhibited the ability of PA to induce the production of reactive oxygen species and collapse of mitochondrial membrane potential. Moreover, tectorigenin presented strong inhibition effect on ROS-associated inflammation, as TNF-α and IL-6 production in endothelial cells was greatly reduced with suppression of IKKβ/NF-κB phosphorylation and JNK activation. Tectorigenin also can inhibit inflammation-stimulated IRS-1 serine phosphorylation and restore the impaired insulin PI3K signaling, leading to a decreased NO production. These results demonstrated its positive regulation of insulin action in the endothelium. Meanwhile, tectorigenin down-regulated endothelin-1 and vascular cell adhesion molecule-1 overexpression, and restored the loss of insulin-mediated vasodilation in rat aorta. These findings suggested that tectorigenin could inhibit ROS-associated inflammation and ameliorated endothelial dysfunction implicated in insulin resistance through regulating IRS-1 function. Tectorigenin might have potential to be applied for the management of cardiovascular diseases involved in diabetes and insulin resistance. PMID:23840461

  20. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster.

    PubMed

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we found that lifespan significantly declined with exposure to males. However, mNSC-ablated females maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual conflict, and may also protect females when mating opportunities are sub-optimally low. PMID:27457757

  1. Insulin signalling mediates the response to male-induced harm in female Drosophila melanogaster

    PubMed Central

    Sepil, Irem; Carazo, Pau; Perry, Jennifer C.; Wigby, Stuart

    2016-01-01

    Genetic manipulations in nutrient-sensing pathways are known to both extend lifespan and modify responses to environmental stressors (e.g., starvation, oxidative and thermal stresses), suggesting that similar mechanisms regulate lifespan and stress resistance. However, despite being a key factor reducing female lifespan and affecting female fitness, male-induced harm has rarely been considered as a stressor mediated by nutrient sensing pathways. We explored whether a lifespan-extending manipulation also modifies female resistance to male-induced harm. To do so, we used long-lived female Drosophila melanogaster that had their insulin signalling pathway downregulated by genetically ablating the median neurosecretory cells (mNSC). We varied the level of exposure to males for control and ablated females and tested for interacting effects on female lifespan and fitness. As expected, we found that lifespan significantly declined with exposure to males. However, mNSC-ablated females maintained significantly increased lifespan across all male exposure treatments. Furthermore, lifespan extension and relative fitness of mNSC-ablated females were maximized under intermediate exposure to males, and minimized under low and high exposure to males. Overall, our results suggest that wild-type levels of insulin signalling reduce female susceptibility to male-induced harm under intense sexual conflict, and may also protect females when mating opportunities are sub-optimally low. PMID:27457757

  2. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    SciTech Connect

    Chen Guoxun

    2007-09-28

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver.

  3. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression.

    PubMed

    Hong, Seung-Hyun; Kang, Moonyoung; Lee, Kyu-Sun; Yu, Kweon

    2016-01-01

    Hyperglycemia, hyperlipidemia, and insulin resistance are hallmarks of obesity-induced type 2 diabetes, which is often caused by a high-fat diet (HFD). However, the molecular mechanisms underlying HFD-induced insulin resistance have not been elucidated in detail. In this study, we established a Drosophila model to investigate the molecular mechanisms of HFD-induced diabetes. HFD model flies recapitulate mammalian diabetic phenotypes including elevated triglyceride and circulating glucose levels, as well as insulin resistance. Expression of glass bottom boat (gbb), a Drosophila homolog of mammalian transforming growth factor-β (TGF-β), is elevated under HFD conditions. Furthermore, overexpression of gbb in the fat body produced obese and insulin-resistant phenotypes similar to those of HFD-fed flies, whereas inhibition of Gbb signaling significantly ameliorated HFD-induced metabolic phenotypes. We also discovered that tribbles, a negative regulator of AKT, is a target gene of Gbb signaling in the fat body. Overexpression of tribbles in flies in the fat body phenocopied the metabolic defects associated with HFD conditions or Gbb overexpression, whereas tribbles knockdown rescued these metabolic phenotypes. These results indicate that HFD-induced TGF-β/Gbb signaling provokes insulin resistance by increasing tribbles expression. PMID:27484164

  4. High fat diet-induced TGF-β/Gbb signaling provokes insulin resistance through the tribbles expression

    PubMed Central

    Hong, Seung-Hyun; Kang, Moonyoung; Lee, Kyu-Sun; Yu, Kweon

    2016-01-01

    Hyperglycemia, hyperlipidemia, and insulin resistance are hallmarks of obesity-induced type 2 diabetes, which is often caused by a high-fat diet (HFD). However, the molecular mechanisms underlying HFD-induced insulin resistance have not been elucidated in detail. In this study, we established a Drosophila model to investigate the molecular mechanisms of HFD-induced diabetes. HFD model flies recapitulate mammalian diabetic phenotypes including elevated triglyceride and circulating glucose levels, as well as insulin resistance. Expression of glass bottom boat (gbb), a Drosophila homolog of mammalian transforming growth factor-β (TGF-β), is elevated under HFD conditions. Furthermore, overexpression of gbb in the fat body produced obese and insulin-resistant phenotypes similar to those of HFD-fed flies, whereas inhibition of Gbb signaling significantly ameliorated HFD-induced metabolic phenotypes. We also discovered that tribbles, a negative regulator of AKT, is a target gene of Gbb signaling in the fat body. Overexpression of tribbles in flies in the fat body phenocopied the metabolic defects associated with HFD conditions or Gbb overexpression, whereas tribbles knockdown rescued these metabolic phenotypes. These results indicate that HFD-induced TGF-β/Gbb signaling provokes insulin resistance by increasing tribbles expression. PMID:27484164

  5. Swimming improves high-fat induced insulin resistance by regulating lipid and energy metabolism and the insulin pathway in rats.

    PubMed

    Song, An; Wang, Chao; Ren, Luping; Zhao, Jiajun

    2014-06-01

    In this study, we aimed to determine the preventive and therapeutic effects of swimming on insulin resistance in high-fat-fed rats. Sprague-Dawley rats were divided into 4 groups and fed for 8 weeks as follows: i) the control (Con) group fed a control diet; ii) the high-fat (HF) group fed a high-fat diet; iii) the treatment (ST) group fed a high-fat diet and trained with swimming from the 4th week; and iv) the prevention (SP) group fed a high-fat diet and trained with swimming from the 1st week of the experiment. A hyperinsulinemic-euglycemic clamp was used to evaluate the insulin sensitivity of the rats. The ultrastructure of the liver cells was observed by electron microscopy. Hepatic lipid accumulation was observed by Oil Red O staining. Quantitative RT-PCR and western blot analysis were performed to detect the expression of proteins related to lipid metabolism, energy metabolism and insulin signaling transduction. After 8 weeks of feeding, compared with the Con group, the glucose infusion rate (GIR) was significantly decreased; a significant lipid accumulation was observed in the liver, while the ultrastructure of the liver cells was damaged in the HF group. Proteins related to lipid metabolism in the liver and skeletal muscle, including FAT and FABP were upregulated, while CPT1 and PPAR levels were downregulated in the HF group. The levels of the energy-metabolism-related molecules, AMPKα2, PGC1α, PGC1β and MFN2 were downregulated in skeletal muscle in the HF group. The expression levels of insulin signaling transduction molecules, INSR, IRS1, PI3K/p85, AKT2 and GLUT4, as well as the phosphorylation levels of INSR, IRS1, PI3K/p85 and AKT2 were lower in skeletal muscles in the HF rats. Compared with HF group, the GIR levels were significantly increased in the ST and SP groups. Lipid accumulation and damage to the ultrastructure of the liver cells were improved in both groups. The expression of molecules related to lipid metabolism in the liver and skeletal

  6. Involvement of PKC{alpha} in insulin-induced PKC{delta} expression: Importance of SP-1 and NF{kappa}B transcription factors

    SciTech Connect

    Horovitz-Fried, Miriam; Sampson, Sanford R. . E-mail: sampsos@mail.biu.ac.il

    2007-01-05

    Protein kinase C delta (PKC{delta}) is a key molecule in insulin signaling essential for insulin-induced glucose transport in skeletal muscle. Recent studies in our laboratory have shown that insulin rapidly stimulates PKC{delta} activity and increases PKC{delta} protein and RNA levels, and that the SP-1 transcription factor is involved in insulin-induced transcription of the PKC{delta} gene. Activation of SP-1 involves serine phosphorylation and translocation to the nucleus. In this study we examined the possibility that PKC{alpha} might be involved in serine phosphorylation and activation of SP-1. We found that insulin rapidly phosphorylates and translocates SP-1. In the cytoplasm, SP-1 was constitutively associated with PKC{alpha}, and insulin stimulation caused these proteins to dissociate. In contrast, in the nucleus insulin induced an increase in association between PKC{alpha} and SP-1. PKC{alpha} inhibition blocked insulin-induced serine phosphorylation of SP-1 and its association with PKC{alpha} in the nucleus. Inhibition of PKC{alpha} also reduced the insulin-induced increase in PKC{delta} RNA and protein in the cytoplasmic and nuclear fractions. We also attempted to determine if another transcription factor might be involved in regulation of PKC{delta} expression. We earlier showed that insulin did not affect nuclear NF{kappa}B levels. Inhibition of NF{kappa}B, however, increased insulin-induced increase in PKC{delta} RNA and protein in the cytoplasmic and nuclear fractions. Surprisingly, this inhibition reduced the insulin-induced increase in cytoplasmic and nuclear PKC{alpha} RNA and protein. Inhibition of PKC{delta} reduced I{kappa}B{alpha} phosphorylation as well as NF{kappa}B activation. Thus, PKC{alpha} regulates insulin-induced PKC{delta} expression levels and this regulation involves activation of SP-1 and NF{kappa}B.

  7. Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK

    PubMed Central

    Kobayashi, T; Nogami, T; Taguchi, K; Matsumoto, T; Kamata, K

    2008-01-01

    Background and purpose: Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. Experimental approach: Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ETA receptors and ERK/MEK expression were measured by western blotting. Key results: Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ETA and ETB receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. Conclusions and implications: These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ETA receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes

  8. IRS1Ser³⁰⁷ phosphorylation does not mediate mTORC1-induced insulin resistance.

    PubMed

    Herrema, Hilde; Lee, Jaemin; Zhou, Yingjiang; Copps, Kyle D; White, Morris F; Ozcan, Umut

    2014-01-10

    Increased mammalian target of rapamycin complex 1 (mTORC1) activity has been suggested to play important roles in development of insulin resistance in obesity. mTORC1 hyperactivity also increases endoplasmic reticulum (ER) stress, which in turn contributes to development of insulin resistance and glucose intolerance. Increased IRS1 phosphorylation at Ser307 in vitro is correlated with mTORC1- and ER stress-induced insulin resistance. This phosphorylation site correlates strongly with impaired insulin receptor signaling in diabetic mice and humans. In contrast, evidence from knock-in mice suggests that phosphorylation of IRS1 at Ser307 is actually required to maintain insulin sensitivity. To study the involvement of IRS1(Ser307) phosphorylation in mTORC1-mediated glucose intolerance and insulin sensitivity in vivo, we investigated the effects of liver specific TSC1 depletion in IRS1(Ser307Ala) mice and controls. Our results demonstrate that blockade of IRS1(Ser307) phosphorylation in vivo does not prevent mTORC1-mediated glucose intolerance and insulin resistance. PMID:24333417

  9. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  10. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells.

    PubMed

    Salunkhe, Vishal A; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24-48 h inhibited voltage-gated Ca(2+) channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  11. Rosuvastatin Treatment Affects Both Basal and Glucose-Induced Insulin Secretion in INS-1 832/13 Cells

    PubMed Central

    Salunkhe, Vishal A.; Elvstam, Olof; Eliasson, Lena; Wendt, Anna

    2016-01-01

    Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable

  12. MicroRNA-29a induces insulin resistance by targeting PPARδ in skeletal muscle cells

    PubMed Central

    ZHOU, YUEHUA; GU, PINGQING; SHI, WEIJIE; LI, JINGYUN; HAO, QUN; CAO, XIAOMEI; LU, QIN; ZENG, YU

    2016-01-01

    Intrauterine growth retardation (IUGR) induces metabolic syndrome, which is often characterized by insulin resistance (IR), in adults. Previous research has shown that microRNAs (miRNAs or miRs) play a role in the target genes involved in this process, but the mechanisms remain unclear. In the present study, we examined miRNA profiles using samples of skeletal muscles from both IUGR and control rat offspring whose mothers were fed either a protein-restricted diet or a diet which involved normal amounts of protein during pregnancy, respectively. miR-29a was found to be upregulated in the skeletal muscles of IUGR offspring. The luciferase reporter assay confirmed the direct interaction between miR-29a and peroxisome proliferator-activated receptor δ (PPARδ). Overexpression of miR-29a in the skeletal muscle cell line C2C12 suppressed the expression of its target gene PPARδ, which, in turn, influenced the expression of its coactivator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thus, PPARδ/PGC-1α-dependent signals together reduced insulin-dependent glucose uptake and adenosine triphosphate (ATP) production. Overexpression of miR-29a also caused a decrease in levels of glucose transporter 4 (GLUT4), the most important glucose transporter in skeletal muscle, which partially induced a decrease insulin-dependent glucose uptake. These findings provide evidence for a novel micro-RNA-mediated mechanism of PPARδ regulation, and we also noted the IR-promoting actions of miR-29a in skeletal muscles of IUGR. PMID:26936652

  13. The effect of oxytocin on the plasma glucagon response to insulin-induced hypoglycaemia in man.

    PubMed

    Page, S R; Ang, V T; Jackson, R; Nussey, S S

    1990-01-01

    The presence of the classical neurohypophyseal hormone oxytocin has recently been described in the human pancreas in considerably higher concentrations than those found in peripheral plasma. Evidence in animals and man suggests that oxytocin can directly stimulate the secretion of glucagon from pancreatic islets. In order to investigate a possible paracrine role for oxytocin in the regulation of glucagon secretion we have studied the effect of oxytocin on the plasma glucagon response to insulin-induced hypoglycaemia in 10 lean fasted male subjects. Intravenous insulin tests were performed in random order with or without oxytocin infusion (2 U bolus injection; 111 mU/min for 2 hours). Blood sugar nadir occurred at the onset of symptoms (time S) with no significant differences between oxytocin and saline infusions (saline S = 24 +/- 2.3 min; oxytocin S = 23.3 +/- 2.7 min). There was no significant change in peripheral plasma oxytocin concentrations during saline infusion. During the oxytocin infusion plasma oxytocin concentrations rose from 1.05 +/- 0.1 (mean +/- SEM) pmol/l to a peak of 632 +/- 179 pmol/l and remained elevated throughout the study. Peak plasma glucagon concentrations occurred at S + 10 mins with no significant differences in peak values (saline 200 +/- 26.3 pg/ml; oxytocin 207 +/- 23.6 pg/ml) between saline and oxytocin infusions. The data suggest that oxytocin at concentrations up to 6.3 X 10(-10) M has no effect on the decline or recovery of blood glucose concentrations or on the plasma glucagon response to insulin-induced hypoglycaemia. PMID:2210021

  14. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

    PubMed

    Sun, Yu B Y; Qu, Xinli; Howard, Victor; Dai, Lie; Jiang, Xiaoyun; Ren, Yi; Fu, Ping; Puelles, Victor G; Nikolic-Paterson, David J; Caruana, Georgina; Bertram, John F; Sleeman, Mark W; Li, Jinhua

    2015-08-01

    Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target. PMID:25945408

  15. Para-Tyrosine Supplementation Improves Insulin- and Liraglutide- Induced Vasorelaxation in Cholesterol-Fed Rats.

    PubMed

    Sélley, Eszter; Kun, Szilárd; Kürthy, Mária; Kovács, Tibor; Wittmann, István; Molnár, Gergo A

    2015-01-01

    Former data of our workgroup indicated that the accumulation of oxidized amino acids (meta- and ortho-tyrosine) due to oxidative stress may play an important role in the impaired insulininduced vasoactive properties of different arterial segments. There are evidences, that incorporation of these amino acids into cellular proteins leads to certain hormonal resistances, which might be restored by supplementation with the physiologic isoform, para-tyrosine. Rats in the control group were kept on a regular diet, rats in the cholesterol-fed group received high-fat diet, while the third group of rats received high-fat diet with para-tyrosine supplementation for 16 weeks. Plasma cholesterol level was significantly higher in the cholesterol-fed group, while the level of cholesterol in the cholesterol+para-tyrosine group did not differ significantly from that of the controls. Plasma level of insulin after glucose stimulation was decreased in the cholesterol-fed group, while that in the para-tyrosine supplemented group did not differ significantly from the controls. Vascular para-, meta- and ortho-tyrosine content was measured with HPLC. Elevated vascular meta-tyrosine/para-tyrosine ratio of cholesterol fed rats could be avoided by para-tyrosine supplementation. Vascular response of the thoracic aorta to insulin and liraglutide was assessed by a DMT multi-myograph. Cholesterol feeding resulted in vascular insulin-and liraglutide resistance, which was restored by para-tyrosine supplementation. Incorporation of the oxidative stress induced pathological tyrosine isoforms leads to vascular-hormone-resistances. We show that the physiological amino acid para-tyrosine is capable of restoring hypercholesterolemia-induced increased meta-tyrosine content of the vascular wall, thus attenuating functional vascular damage. PMID:26202368

  16. Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy

    PubMed Central

    Ikeda, Hiroyuki; Shiojima, Ichiro; Ozasa, Yukako; Yoshida, Masashi; Holzenberger, Martin; Kahn, C Ronald; Walsh, Kenneth; Igarashi, Takashi; Abel, E Dale; Komuro, Issei

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) signaling has recently been implicated in the development of cardiac hypertrophy after long-term endurance training, via mechanisms that may involve energetic stress. Given the potential overlap of insulin and IGF-1 signaling we sought to determine if both signaling pathways could contribute to exercise-induced cardiac hypertrophy following shorter-term exercise training. Studies were performed in mice with cardiac-specific IGF-1 receptor (IGF1R) knockout (CIGFRKO), mice with cardiac-specific insulin receptor (IR) knockout (CIRKO), CIGFRKO mice that lacked one IR allele in cardiomyocytes (IGFR−/−IR+/−), and CIRKO mice that lacked one IGF1R allele in cardiomyocytes (IGFR+/−IR−/−). Intravenous administration of IGF-1 or 75 hours of swimming over 4 weeks increased IGF1R tyrosine phosphorylation in the heart in control and CIRKO mice but not in CIGFRKO mice. Intriguingly, IR tyrosine phosphorylation in the heart was also increased following IGF-1 administration or exercise training in control and CIGFRKO mice but not in CIRKO mice. The extent of cardiac hypertrophy following exercise training in CIGFRKO and CIRKO mice was comparable to that in control mice. In contrast, exercise-induced cardiac hypertrophy was significantly attenuated in IGFR−/−IR+/− and IGFR+/−IR−/− mice. Thus, IGF-1 and exercise activates both IGF1R and IR in the heart, and IGF1R- and IR-mediated signals may serve redundant roles in the hypertrophic responses of the heart to exercise training. PMID:19744489

  17. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice.

    PubMed

    Hu, Hailong; Guo, Qian; Wang, Changlin; Ma, Xiao; He, Hongjuan; Oh, Yuri; Feng, Yujie; Wu, Qiong; Gu, Ning

    2015-10-01

    There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice. PMID:25826740

  18. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    PubMed

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. PMID:24486395

  19. N-Acetylneuraminic Acid Supplementation Prevents High Fat Diet-Induced Insulin Resistance in Rats through Transcriptional and Nontranscriptional Mechanisms.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Azmi, Nur Hanisah; Wong, Waiteng; Altine Adamu, Hadiza; Md Zamri, Nur Diyana; Ideris, Aini; Abdullah, Maizaton Atmadini

    2015-01-01

    N-Acetylneuraminic acid (Neu5Ac) is a biomarker of cardiometabolic diseases. In the present study, we tested the hypothesis that dietary Neu5Ac may improve cardiometabolic indices. A high fat diet (HFD) + Neu5Ac (50 or 400 mg/kg BW/day) was fed to rats and compared with HFD + simvastatin (10 mg/kg BW/day) or HFD alone for 12 weeks. Weights and serum biochemicals (lipid profile, oral glucose tolerance test, leptin, adiponectin, and insulin) were measured, and mRNA levels of insulin signaling genes were determined. The results indicated that low and high doses of sialic acid (SA) improved metabolic indices, although only the oral glucose tolerance test, serum triglycerides, leptin, and adiponectin were significantly better than those in the HFD and HFD + simvastatin groups (P < 0.05). Furthermore, the results showed that only high-dose SA significantly affected the transcription of hepatic and adipose tissue insulin signaling genes. The data suggested that SA prevented HFD-induced insulin resistance in rats after 12 weeks of administration through nontranscriptionally mediated biochemical changes that may have differentially sialylated glycoprotein structures at a low dose. At higher doses, SA induced transcriptional regulation of insulin signaling genes. These effects suggest that low and high doses of SA may produce similar metabolic outcomes in relation to insulin sensitivity through multiple mechanisms. These findings are worth studying further. PMID:26688813

  20. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats.

    PubMed

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples. PMID:24745031

  1. The Protective Effects of Insulin and Natural Honey against Hippocampal Cell Death in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, “H & E” staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples. PMID:24745031

  2. N-Acetylneuraminic Acid Supplementation Prevents High Fat Diet-Induced Insulin Resistance in Rats through Transcriptional and Nontranscriptional Mechanisms

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Azmi, Nur Hanisah; Wong, Waiteng; Altine Adamu, Hadiza; Md Zamri, Nur Diyana; Ideris, Aini; Abdullah, Maizaton Atmadini

    2015-01-01

    N-Acetylneuraminic acid (Neu5Ac) is a biomarker of cardiometabolic diseases. In the present study, we tested the hypothesis that dietary Neu5Ac may improve cardiometabolic indices. A high fat diet (HFD) + Neu5Ac (50 or 400 mg/kg BW/day) was fed to rats and compared with HFD + simvastatin (10 mg/kg BW/day) or HFD alone for 12 weeks. Weights and serum biochemicals (lipid profile, oral glucose tolerance test, leptin, adiponectin, and insulin) were measured, and mRNA levels of insulin signaling genes were determined. The results indicated that low and high doses of sialic acid (SA) improved metabolic indices, although only the oral glucose tolerance test, serum triglycerides, leptin, and adiponectin were significantly better than those in the HFD and HFD + simvastatin groups (P < 0.05). Furthermore, the results showed that only high-dose SA significantly affected the transcription of hepatic and adipose tissue insulin signaling genes. The data suggested that SA prevented HFD-induced insulin resistance in rats after 12 weeks of administration through nontranscriptionally mediated biochemical changes that may have differentially sialylated glycoprotein structures at a low dose. At higher doses, SA induced transcriptional regulation of insulin signaling genes. These effects suggest that low and high doses of SA may produce similar metabolic outcomes in relation to insulin sensitivity through multiple mechanisms. These findings are worth studying further. PMID:26688813

  3. Effect of simulated microgravity on endocrine response to insulin-induced hypoglycemia in physically fit men.

    PubMed

    Ksinantova, L; Koska, J; Kvetnansky, R; Marko, M; Hamar, D; Vigas, M

    2002-03-01

    Adaptation to microgravity is associated with alteration in some endocrine functions. In the present longitudinal study, the counterregulatory hormonal response to insulin-induced hypoglycemia (ITT, 0.1 IU/kg short acting insulin i. v.) was evaluated under simulated microgravity conditions in 15 physically fit subjects. ITT was performed at the beginning of the investigation, and again after completion of 6 weeks of endurance training and after a subsequent period of 4 days of head-down bed rest at a backward tilt of 6 degrees from the horizontal. Endurance training showed a significant increase in maximal aerobic capacity in previously well-trained subjects (increase by 12 %), as well as on attenuation of counterregulatory response of epinephrine to hypoglycemia. After 4 days of bed rest, basal concentrations of plasma norepinephrine was diminished (p < 0.002) and plasma renin activity was enhanced (p < 0.02). After bed rest, decreased responses of the two catecholamines (norepinephrine, p < 0.001; epinephrine, p < 0.001), growth hormone (p < 0.001), and cortisol (p < 0.05) were observed. Response of plasma renin activity after bed rest was increased (p < 0.01). This longitudinal study indicated that 4 days of bed rest in endurance-trained subjects induced increased response of PRA to hypoglycemia and attenuation of other counterregulatory neuroendocrine responses. PMID:11972306

  4. Low intensity exercise prevents disturbances in rat cardiac insulin signaling and endothelial nitric oxide synthase induced by high fructose diet.

    PubMed

    Stanišić, Jelena; Korićanac, Goran; Ćulafić, Tijana; Romić, Snježana; Stojiljković, Mojca; Kostić, Milan; Pantelić, Marija; Tepavčević, Snežana

    2016-01-15

    Increase in fructose consumption together with decrease in physical activity contributes to the development of metabolic syndrome and consequently cardiovascular diseases. The current study examined the preventive role of exercise on defects in cardiac insulin signaling and function of endothelial nitric oxide synthase (eNOS) in fructose fed rats. Male Wistar rats were divided into control, sedentary fructose (received 10% fructose for 9 weeks) and exercise fructose (additionally exposed to low intensity exercise) groups. Concentration of triglycerides, glucose, insulin and visceral adipose tissue weight were determined to estimate metabolic syndrome development. Expression and/or phosphorylation of cardiac insulin receptor (IR), insulin receptor substrate 1 (IRS1), tyrosine-specific protein phosphatase 1B (PTP1B), Akt, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and eNOS were evaluated. Fructose overload increased visceral adipose tissue, insulin concentration and homeostasis model assessment index. Exercise managed to decrease visceral adiposity and insulin level and to increase insulin sensitivity. Fructose diet increased level of cardiac PTP1B and pIRS1 (Ser307), while levels of IR and ERK1/2, as well as pIRS1 (Tyr 632), pAkt (Ser473, Thr308) and pERK1/2 were decreased. These disturbances were accompanied by reduced phosphorylation of eNOS at Ser1177. Exercise managed to prevent most of the disturbances in insulin signaling caused by fructose diet (except phosphorylation of IRS1 at Tyr 632 and phosphorylation and protein expression of ERK1/2) and consequently restored function of eNOS. Low intensity exercise could be considered as efficient treatment of cardiac insulin resistance induced by fructose diet. PMID:26644274

  5. Effect of a polyphenol-rich extract from Aloe vera gel on experimentally induced insulin resistance in mice.

    PubMed

    Pérez, Yolanda Y; Jiménez-Ferrer, Enrique; Zamilpa, Alejandro; Hernández-Valencia, Marcelino; Alarcón-Aguilar, Francisco J; Tortoriello, Jaime; Román-Ramos, Rubén

    2007-01-01

    Insulin resistance, which precedes type 2 diabetes mellitus (T2DM), is a widespread pathology associated with the metabolic syndrome, myocardial ischemia, and hypertension. Finding an adequate treatment for this pathology is an important goal in medicine. The purpose of the present research was to investigate the effect of an extract from Aloe vera gel containing a high concentration of polyphenols on experimentally induced insulin resistance in mice. A polyphenol-rich Aloe vera extract (350 mg/kg) with known concentrations of aloin (181.7 mg/g) and aloe-emodin (3.6 mg/g) was administered orally for a period of 4 weeks to insulin resistant ICR mice. Pioglitazone (50 mg/kg) and bi-distilled water were used as positive and negative controls respectively. Body weight, food intake, and plasma concentrations of insulin and glucose were measured and insulin tolerance tests were performed. The insulin resistance value was calculated using the homeostasis model assessment for insulin resistance (HOMA-IR) formula. Results showed that the polyphenol-rich extract from Aloe vera was able to decrease significantly both body weight (p < 0.008) and blood glucose levels (p < 0.005) and to protect animals against unfavorable results on HOMA-IR, which was observed in the negative control group. The highest glucose levels during the insulin tolerance curve test were in the negative control group when compared to the Aloe vera extract and pioglitazone treated mice (p < 0.05). In conclusion, Aloe vera gel could be effective for the control of insulin resistance. PMID:18186589

  6. Insulin induced translocation of Na+/K+-ATPase is decreased in the heart of streptozotocin diabetic rats

    PubMed Central

    Rosta, Klara; Tulassay, Eszter; Enzsoly, Anna; Ronai, Katalin; Szantho, Ambrus; Pandics, Tamas; Fekete, Andrea; Mandl, Peter; Ver, Agota

    2009-01-01

    Aim: To investigate the effect of acute insulin administration on the subcellular localization of Na+/K+-ATPase isoforms in cardiac muscle of healthy and streptozotocin-induced diabetic rats. Methods: Membrane fractions were isolated with subcellular fractionation and with cell surface biotinylation technique. Na+/K+-ATPase subunit isoforms were analysed with ouabain binding assay and Western blotting. Enzyme activity was measured using 3-O-methylfluorescein-phosphatase activity. Results: In control rat heart muscle α1 isoform of Na+/K+ ATPase resides mainly in the plasma membrane fraction, while α2 isoform in the intracellular membrane pool. Diabetes decreased the abundance of α1 isoform (25 %, P<0.05) in plasma membrane and α2 isoform (50%, P<0.01) in the intracellular membrane fraction. When plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of α2- but not α1-subunits was detected. α1-Subunit translocation was only detectable by cell surface biotinylation technique. After insulin administration protein level of α2 increased by 3.3-fold, α1 by 1.37-fold and β1 by 1.51-fold (P<0.02) in the plasma membrane of control, and less than 1.92-fold (P<0.02), 1.19-fold (not significant) and 1.34-fold (P<0.02) in diabetes. The insulin-induced translocation was wortmannin sensitive. Conclusion: This study demonstrate that insulin influences the plasma membrane localization of Na+/K+-ATPase isoforms in the heart. α2 isoform translocation is the most vulnerable to the reduced insulin response in diabetes. α1 isoform also translocates in response to insulin treatment in healthy rat. Insulin mediates Na+/K+-ATPase α1- and α2-subunit translocation to the cardiac muscle plasma membrane via a PI3-kinase-dependent mechanism. PMID:19915586

  7. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea. PMID:25406018

  8. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  9. Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents diet-induced obesity and insulin resistance.

    PubMed

    Friedline, Randall H; Ko, Hwi Jin; Jung, Dae Young; Lee, Yongjin; Bortell, Rita; Dagdeviren, Sezin; Patel, Payal R; Hu, Xiaodi; Inashima, Kunikazu; Kearns, Caitlyn; Tsitsilianos, Nicholas; Shafiq, Umber; Shultz, Leonard D; Lee, Ki Won; Greiner, Dale L; Kim, Jason K

    2016-03-01

    Obesity is characterized by a dysregulated immune system, which may causally associate with insulin resistance and type 2 diabetes. Despite widespread use of nonobese diabetic (NOD) mice, NOD with severe combined immunodeficiency (scid) mutation (SCID) mice, and SCID bearing a null mutation in the IL-2 common γ chain receptor (NSG) mice as animal models of human diseases including type 1 diabetes, the underlying metabolic effects of a genetically altered immune system are poorly understood. For this, we performed a comprehensive metabolic characterization of these mice fed chow or after 6 wk of a high-fat diet. We found that NOD mice had ∼50% less fat mass and were 2-fold more insulin sensitive, as measured by hyperinsulinemic-euglycemic clamp, than C57BL/6 wild-type mice. SCID mice were also more insulin sensitive with increased muscle glucose metabolism and resistant to diet-induced obesity due to increased energy expenditure (∼10%) and physical activity (∼40%) as measured by metabolic cages. NSG mice were completely protected from diet-induced obesity and insulin resistance with significant increases in glucose metabolism in peripheral organs. Our findings demonstrate an important role of genetic background, lymphocytes, and cytokine signaling in diet-induced obesity and insulin resistance. PMID:26644351

  10. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  11. beta3-Adrenergic-dependent and -independent mechanisms participate in cold-induced modulation of insulin signal transduction in brown adipose tissue of rats.

    PubMed

    Gasparetti, Alessandra L; Alvarez-Rojas, Fernanda; de Araujo, Eliana P; Hirata, Aparecida E; Saad, Mário J A; Velloso, Lício A

    2005-03-01

    During cold exposure, homeothermic animals mobilize glucose with higher efficiency than at thermoneutrality. An interaction between the insulin signal transduction machinery and high sympathetic tonus is thought to play an important role in this phenomenon. In the present study, rats were exposed to cold during 8 days and treated, or not, with a beta3-adrenergic agonist, BRL37344 sodium 4-2-2-(3-chlorophenyl)-2-hydroxyethyl amino propyl phenoxy-acetic acid sodium (BRL37344), or antagonist, SR59230A 3-(2-ethylphenoxy)-[(1S)-1,2,3,4-tetrahydronaphth-1-ylamino]-(2S)-2-propanol oxalate (SR59230A), to evaluate the cross-talk between insulin and beta3-adrenergic intracellular signaling in brown adipose tissue. The drugs did not modify food ingestion, body temperature, and body weight in control and cold-exposed rats. Treatment of control rats with BRL37344 led to higher insulin-induced tyrosine phosphorylation of the insulin receptors, insulin receptor substrate (IRS)-1 and ERK, higher insulin-induced IRS-1/PI3-kinase association, and higher [Ser(473)] phosphorylation of Akt. Cold exposure alone promoted higher insulin-induced tyrosine phosphorylation of the insulin receptors, IRS-1, IRS-2, and ERK, and higher insulin-induced IRS-1 and IRS-2/PI3-kinase association. Except for the regulation of ERK, SR59230A abolished all the cold-induced effects upon the insulin signal transduction pathway. However, this antagonist only partially inhibited the cold-induced increase of glucose uptake. Thus, the sympathetic tonus generated during cold-exposure acts, in brown adipose tissue, through the beta3-adrenergic receptor and modulates insulin signal transduction, with the exception of ERK. However, insulin-independent mechanisms other than beta3-adrenergic activation participate in cold-induced glucose uptake in brown adipose tissue of rats. PMID:15750837

  12. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    PubMed

    Bhasin, Manoj K; Dusek, Jeffery A; Chang, Bei-Hung; Joseph, Marie G; Denninger, John W; Fricchione, Gregory L; Benson, Herbert; Libermann, Towia A

    2013-01-01

    The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress. PMID:23650531

  13. Autoantibodies against β1-adrenoceptor induce blood glucose enhancement and insulin insufficient via T lymphocytes.

    PubMed

    Gong, Yulin; Xiong, Haiyan; Du, Yunhui; Wu, Ye; Zhang, Suli; Li, Xiao; Liu, Huirong

    2016-04-01

    Diabetes mellitus is a chronic metabolic disorder with a high morbidity and mortality, but its pathogenesis is not fully understood. An increasing amount of evidence indicates that an immune mechanism plays an important role in the pathogenesis of diabetes. We demonstrated previously that the long-term presence of autoantibodies against the second extracellular loop of the β1-adrenoceptor (β1-AA) could change the ratio of peripheral CD4+T/CD8+T in rats, which was accompanied by lymphocytes infiltration in the rat heart, liver, and kidneys. To investigate whether β1-AA is involved in the pathogenesis of diabetes, BALB/c or nude mice were passively immunized with monoclonal antibodies against β1-AR (β1-AR mAb). Compared with vehicle control mice, β1-AA-positive BALB/c mice exhibited significantly increased blood glucose (P < 0.01) and increased fasting insulin (P < 0.05). However, the same changes did not occur in the nude mice. And altered islet morphology was found at week 28 in β1-AA immunization group compared with vehicle control. The basal insulin level of NIT-1 β-cells was decreased markedly (P < 0.01), and the lactate dehydrogenase level was increased (P < 0.01) after the administration of conditioned media from T lymphocytes that had been treated with β1-AA alone. However, these effects were reversed by treatment with metoprolol or peptides of the second extracellular loop of β1-adrenoceptor (β1-AR-ECII). These results suggest that β1-AA could induce hyperglycemia in both rats and mice, and also impair insulin secretion and change islet structure. T lymphocytes may play a key role in the pathogenesis of these changes in the islets. PMID:26639354

  14. Cholesterol-Induced Hepatic Inflammation Does Not Underlie the Predisposition to Insulin Resistance in Dyslipidemic Female LDL Receptor Knockout Mice

    PubMed Central

    Gruben, Nanda; Funke, Anouk; Kloosterhuis, Niels J.; Schreurs, Marijke; Sheedfar, Fareeba; Havinga, Rick; Houten, Sander M.; van de Sluis, Bart; Kuivenhoven, Jan Albert; Koonen, Debby P. Y.; Hofker, Marten H.

    2015-01-01

    Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr−/−) mice. For this, wild type (WT) and Ldlr−/− mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr−/− mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr−/− mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr−/− mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr−/− mice suffered from hepatic insulin resistance. While HFC-fed Ldlr−/− mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr−/− mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se. PMID:25815343

  15. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  16. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice.

    PubMed

    Bank, Sarbashri; Ghosh, Arjun; Bhattacharya, Suman; Maiti, Smarajit; Khan, Gausal A; Sinha, Asru K

    2016-01-01

    A trypsin resistant oral insulin preparation was made by incubating insulin for 2 h at 23 °C with previously boiled cow milk at 100 °C that was coagulated with 0.6 M acetic acid. The precipitate was resuspended in the same volume of milk. The immunoblot analysis of the suspended proteins treated with 200 ng of trypsin/ml for 3 h demonstrated that the 80.1% of the insulin in the suspension survived the proteolytic degradation compared to 0% of the hormone survived in the control. The feeding of 0.4 ml (0.08 unit of insulin) of the resuspended proteins followed by 0.2 ml of the same protein to alloxan induced diabetic mice maximally decreased the blood glucose level from 508 ± 10 mg/dl to 130 ± 10 mg/dl in 7 h with simultaneous increase of the basal plasma concentration of insulin from 3 ± 1.1 μunits/ml to 18 ± 1.5 μunits/ml. In control experiment the absence of insulin in the identical milk suspension produced no hypoglycemic effect suggesting milk was not responsible for the hypoglycemic effect of milk-insulin complex. Coming out of insulin-casein complex from the intestinal gut to the circulation was spontaneous and facilitated diffusion transportation which was found from Gibbs free energy reaction. PMID:27226415

  17. The control of hyperglycemia by a novel trypsin resistant oral insulin preparation in alloxan induced type I diabetic mice

    PubMed Central

    Bank, Sarbashri; Ghosh, Arjun; Bhattacharya, Suman; Maiti, Smarajit; Khan, Gausal A.; Sinha, Asru K

    2016-01-01

    A trypsin resistant oral insulin preparation was made by incubating insulin for 2 h at 23 °C with previously boiled cow milk at 100 °C that was coagulated with 0.6 M acetic acid. The precipitate was resuspended in the same volume of milk. The immunoblot analysis of the suspended proteins treated with 200 ng of trypsin/ml for 3 h demonstrated that the 80.1% of the insulin in the suspension survived the proteolytic degradation compared to 0% of the hormone survived in the control. The feeding of 0.4 ml (0.08 unit of insulin) of the resuspended proteins followed by 0.2 ml of the same protein to alloxan induced diabetic mice maximally decreased the blood glucose level from 508 ± 10 mg/dl to 130 ± 10 mg/dl in 7 h with simultaneous increase of the basal plasma concentration of insulin from 3 ± 1.1 μunits/ml to 18 ± 1.5 μunits/ml. In control experiment the absence of insulin in the identical milk suspension produced no hypoglycemic effect suggesting milk was not responsible for the hypoglycemic effect of milk-insulin complex. Coming out of insulin-casein complex from the intestinal gut to the circulation was spontaneous and facilitated diffusion transportation which was found from Gibbs free energy reaction. PMID:27226415

  18. Insulin/glucose induces natriuretic peptide clearance receptor in human adipocytes: a metabolic link with the cardiac natriuretic pathway.

    PubMed

    Bordicchia, M; Ceresiani, M; Pavani, M; Minardi, D; Polito, M; Wabitsch, M; Cannone, V; Burnett, J C; Dessì-Fulgheri, P; Sarzani, R

    2016-07-01

    Cardiac natriuretic peptides (NP) are involved in cardiorenal regulation and in lipolysis. The NP activity is largely dependent on the ratio between the signaling receptor NPRA and the clearance receptor NPRC. Lipolysis increases when NPRC is reduced by starving or very-low-calorie diet. On the contrary, insulin is an antilipolytic hormone that increases sodium retention, suggesting a possible functional link with NP. We examined the insulin-mediated regulation of NP receptors in differentiated human adipocytes and tested the association of NP receptor expression in visceral adipose tissue (VAT) with metabolic profiles of patients undergoing renal surgery. Differentiated human adipocytes from VAT and Simpson-Golabi-Behmel Syndrome (SGBS) adipocyte cell line were treated with insulin in the presence of high-glucose or low-glucose media to study NP receptors and insulin/glucose-regulated pathways. Fasting blood samples and VAT samples were taken from patients on the day of renal surgery. We observed a potent insulin-mediated and glucose-dependent upregulation of NPRC, through the phosphatidylinositol 3-kinase pathway, associated with lower lipolysis in differentiated adipocytes. No effect was observed on NPRA. Low-glucose medium, used to simulate in vivo starving conditions, hampered the insulin effect on NPRC through modulation of insulin/glucose-regulated pathways, allowing atrial natriuretic peptide to induce lipolysis and thermogenic genes. An expression ratio in favor of NPRC in adipose tissue was associated with higher fasting insulinemia, HOMA-IR, and atherogenic lipid levels. Insulin/glucose-dependent NPRC induction in adipocytes might be a key factor linking hyperinsulinemia, metabolic syndrome, and higher blood pressure by reducing NP effects on adipocytes. PMID:27101299

  19. Stimulation of insulin secretion by Viscum album (mistletoe) leaf extract in streptozotocin-induced diabetic rats.

    PubMed

    Eno, A E; Ofem, O E; Nku, C O; Ani, E J; Itam, E H

    2008-06-01

    Twenty male white rats (250-300 g) of Wistar strain were randomly divided into two batches, the normoglycaemic batch and the streptozotocin-induced diabetic batch often rats each. Animals in each batch were further divided into two groups of five rats per group. After an overnight fast (12 hrs), animals in each group received D-glucose load (2.0 g/kg.i.v) under pentobarbital anaesthesia, with or without the crude extract (100 mg/kg/iv). Blood samples were collected intravenously at 15 min intervals for 3 hrs. for analysis of glucose, insulin and glucagon levels. From the results, the extract (100 mg/kg) did not appear to have any significant effect on the blood glucose level of normal rats, but produced about 35.3% decrease in the diabetic rats. Despite the apparent lack of action on glucose level of normal rats, the extract stimulated insulin secretion by about 92.9% (% control) in this group, and about 81.5% in the diabetic group (% control). The glucagon level was not altered by the extract in the normal rats. In the diabetic group, there was mild but significant suppression ofglucagon level after the first 1 hr. which lasted for about 50 min. We suggest that this extract from V. album leaves may possess antihyperglycaemic, insulinotropic, and possibly, mild glucagonostatic agent(s) and may therefore be a candidate for the anti-diabetic drugs. PMID:18939397

  20. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    PubMed Central

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.; Krycer, James R.; Thomas, Kristen C.; Oxbøll, Anne-Julie; Jordy, Andreas B.; Jensen, Thomas E.; Yang, Guang; Schjerling, Peter; Kiens, Bente; James, David E.; Ruegg, Markus A.; Richter, Erik A.

    2014-01-01

    The effect of acute inhibition of both mTORC1 and mTORC2 on metabolism is unknown. A single injection of the mTOR kinase inhibitor, AZD8055, induced a transient, yet marked increase in fat oxidation and insulin resistance in mice, whereas the mTORC1 inhibitor rapamycin had no effect. AZD8055, but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose homeostasis in part by blocking muscle mTORC2, indicating its importance in muscle metabolism in vivo. PMID:25161886

  1. Body position and the neuroendocrine response to insulin-induced hypoglycemia in healthy subjects.

    PubMed

    Radikova, Z; Penesova, A; Jezova, D; Kvetnansky, R; Vigas, M; Macho, L; Koska, J

    2003-10-01

    Changes in body fluid distribution are known to influence neuroendocrine function. The aim of the present study was to test the hypothesis that changes in plasma volume affect the counterregulatory neuroendocrine response to hypoglycemia. The tests were performed in 12 subjects in two situations: 'head-up' (+60 degrees head-up tilt standing for 30 min and hypoglycemia in sitting position afterwards) and 'leg-up' (leg-up position for 30 min and hypoglycemia in leg-up position afterwards) in a random order. Insulin-induced hypoglycemia was adjusted to 2.7 mmol/l for 15 min by glucose infusion. Plasma volume was greater by 2.2% (p < 0.001) in leg-up and lower by 9.6% (p < 0.001) in head-up position compared to the basal value in sitting position. Head-up position was associated with increases in ACTH, aldosterone, norepinephrine levels and plasma renin activity (p < 0.01). Leg-up position resulted in decreases in plasma growth hormone and epinephrine concentrations (p < 0.05). Except epinephrine, the neuroendocrine response to hypoglycemia, if any, was mild. Hypoglycemia failed to activate ACTH release after head-up position. Body fluid redistribution did not modify hormonal changes during insulin hypoglycemia. In conclusion, we suggest that body position and accompanying plasma volume changes do not appear to affect neuroendocrine and counterregulatory responses to moderate, short duration hypoglycemia in healthy subjects. PMID:15764080

  2. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  3. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats.

    PubMed

    Yang, Wenqing; Ma, Jing; Liu, Zheng; Lu, Yongliang; Hu, Bin; Yu, Huarong

    2014-05-01

    Recent evidence indicates that severe abnormalities in brain glucose/energy metabolism and insulin signaling have been documented to take a pivotal role in early sporadic Alzheimer's disease pathology. It has been reported that naringenin (NAR), derived from citrus aurantium, exhibits antioxidant potential and protects the brain against neurodegeneration. The current study was designed to further investigate the protective effect of the NAR on neurodegeneration in a rat model of AD induced by an intracerebroventricular (ICV) injection of streptozotocin (STZ), and to determine whether this neuroprotective effect was associated with brain insulin signaling. Rats were injected bilaterally with ICV-STZ (3 mg/kg), while sham rats received the same volume of vehicle and then supplemented with NAR (25, 50 mg, 100 mg/kg, respectively) for 3 weeks. The ICV-STZ injected rats did not have elevated blood glucose levels. 21 days following ICV-STZ injection, rats treated with NAR had better learning and memory performance in the Morris water maze test compared with rats treated with saline. We demonstrated that NAR increased the mRNA expression of INS and INSR in cerebral cortex and hippocampus. In addition, NAR reversed ICV-STZ induced Tau hyper-phosphorylation in both hippocampus and cerebral cortex through downregulation of glycogen synthase kinase-3β (GSK-3β) activity, a key kinase in the insulin signaling. Brain levels of Abeta, which were elevated in ICV-STZ rats, were significantly reduced in NAR-treated rats via upregulation of insulin degrading enzyme. These effects were mediated by increased insulin and insulin receptors expression in the brain, suggesting that insulin sensitizer agents might have therapeutic efficacy in early AD. PMID:24337945

  4. Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome.

    PubMed

    Rodriguez Lanzi, Cecilia; Perdicaro, Diahann Jeanette; Antoniolli, Andrea; Fontana, Ariel Ramón; Miatello, Roberto Miguel; Bottini, Rubén; Vazquez Prieto, Marcela Alejandra

    2016-03-01

    In this study the effect of diet supplementation with grape pomace (GP) and grape pomace extract (GPE) on insulin sensitive tissues (adipose, liver and muscle) was evaluated in an experimental model of metabolic syndrome (MetS). MetS was developed by giving a high-fat-fructose (HFF) diet to Wistar rats. Six weeks of HFF diet induced weight gain, which was partially attenuated by GP (1 g per kg per day) and GPE (300 mg per kg per day) supplementation. HFF diet increased systolic blood pressure, triglycerides, insulin resistance (HOMA:IR) and inflammation (c-reactive protein (CRP)). Supplementation with GP prevented SBP, triglycerides and CRP increased and partially attenuated insulin resistance. On the other hand, GPE partially reduced SBP and triglycerides and significantly prevented insulin resistance and inflammation. Also, HFF diet induced higher triglycerides content and enhanced NADPH oxidase activity in the liver. Also, HFF diet increased the epididymal adipose tissue weight, enlarged adipocyte size, and c-jun N-terminal kinase (JNK) activation, probably contributing to a pro-inflammatory cytokine pattern (higher resistin) and lower adiponectin protein expression. These alterations may result in an impairment of insulin signaling cascade observed in adipose, liver and muscle tissue (IRS1, Akt, and extracellular signal-regulated kinases (ERK1/2)) from HFF rats. Supplementation with GP and to a greater extent GPE attenuated liver triglyceride content and adiposity and restored adipose, liver and muscle response to insulin. These findings show that supplementation with GP and GPE to a greater extent can counteract adiposity, inflammation, liver damage and impaired insulin signaling associated to MetS, supporting the utilization of winemaking residues in food industry/human health due to their high amount of bioactive compounds. PMID:26901521

  5. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  6. Prep1 deficiency induces protection from diabetes and increased insulin sensitivity through a p160-mediated mechanism.

    PubMed

    Oriente, Francesco; Fernandez Diaz, Luis Cesar; Miele, Claudia; Iovino, Salvatore; Mori, Silvia; Diaz, Victor Manuel; Troncone, Giancarlo; Cassese, Angela; Formisano, Pietro; Blasi, Francesco; Beguinot, Francesco

    2008-09-01

    We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1(i/i)) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1(i/i) muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1alpha, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1(i/i) mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway. PMID:18644868

  7. Prep1 Deficiency Induces Protection from Diabetes and Increased Insulin Sensitivity through a p160-Mediated Mechanism▿

    PubMed Central

    Oriente, Francesco; Fernandez Diaz, Luis Cesar; Miele, Claudia; Iovino, Salvatore; Mori, Silvia; Diaz, Victor Manuel; Troncone, Giancarlo; Cassese, Angela; Formisano, Pietro; Blasi, Francesco; Beguinot, Francesco

    2008-01-01

    We have examined glucose homeostasis in mice hypomorphic for the homeotic transcription factor gene Prep1. Prep1-hypomorphic (Prep1i/i) mice exhibit an absolute reduction in circulating insulin levels but normal glucose tolerance. In addition, these mice exhibit protection from streptozotocin-induced diabetes and enhanced insulin sensitivity with improved glucose uptake and insulin-dependent glucose disposal by skeletal muscle. This muscle phenotype does not depend on reduced expression of the known Prep1 transcription partner, Pbx1. Instead, in Prep1i/i muscle, we find normal Pbx1 but reduced levels of the recently identified novel Prep1 interactor p160. Consistent with this reduction, we find a muscle-selective increase in mRNA and protein levels of PGC-1α, accompanied by enhanced expression of the GLUT4 transporter, responsible for insulin-stimulated glucose uptake in muscle. Indeed, using L6 skeletal muscle cells, we induced the opposite effects by overexpressing Prep1 or p160, but not Pbx1. In vivo skeletal muscle delivery of p160 cDNA in Prep1i/i mice also reverses the molecular phenotype. Finally, we show that Prep1 controls the stability of the p160 protein. We conclude that Prep1 controls insulin sensitivity through the p160-GLUT4 pathway. PMID:18644868

  8. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance.

    PubMed

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-07-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet-induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  9. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-01-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet–induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  10. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells.

    PubMed

    Chand, Hitendra S; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S; Randell, Scott H; Tesfaigzi, Yohannes

    2012-05-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  11. Anesthetic agents modulate ECoG potentiation after spreading depression, and insulin-induced hypoglycemia does not modify this effect.

    PubMed

    de Souza, Thays Kallyne Marinho; E Silva-Gondim, Mariana Barros; Rodrigues, Marcelo Cairrão Araújo; Guedes, Rubem Carlos Araújo

    2015-04-10

    Cortical spreading depression (CSD) is characterized by reversible reduction of spontaneous and evoked electrical activity of the cerebral cortex. Experimental evidence suggests that CSD may modulate neural excitability and synaptic activity, with possible implications for long-term potentiation. Systemic factors like anesthetics and insulin-induced hypoglycemia can influence CSD propagation. In this study, we examined whether the post-CSD ECoG potentiation can be modulated by anesthetics and insulin-induced hypoglycemia. We found that awake adult rats displayed increased ECoG potentiation after CSD, as compared with rats under urethane+chloralose anesthesia or tribromoethanol anesthesia. In anesthetized rats, insulin-induced hypoglycemia did not modulate ECoG potentiation. Comparison of two cortical recording regions in awake rats revealed a similarly significant (p<0.05) potentiation effect in both regions, whereas in the anesthetized groups the potentiation was significant only in the recording region nearer to the stimulating point. Our data suggest that urethane+chloralose and tribromoethanol anesthesia modulate the post-CSD potentiation of spontaneous electrical activity in the adult rat cortex, and insulin-induced hypoglycemia does not modify this effect. Data may help to gain a better understanding of excitability-dependent mechanisms underlying CSD-related neurological diseases. PMID:25681772

  12. CHRONIC FEEDING ALCOHOL-CONTAINING DIETS VIA TOTAL ENTERAL NUTRITION INDUCES ALCOHOL DEHYDROGENASE (ADH) AND INSULIN RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of Class 1 ADH occurs in rats fed alcohol chronically, and we have reported that C/EBPs and SREBP-1 are important signaling factors in this process. Chronic alcohol intake in humans can result in alcohol-induced diabetes. We have studied insulin signaling pathways in adult male Sprague-D...

  13. [Actions of sodium dichloroacetate in combination with insulin on hyperlactatemia and hyperpyruvicemia induced in dogs by phenformin].

    PubMed

    Loubatières, A; Ribes, G; Valette, G; Lignon, F; Rondot, A M

    1977-01-01

    In the normal anesthetized dog the combination of insulin, whether of exogenous or endogenous origin, with sodium dichloroacetate provoke a rapid and important reduction of the hyperlactatemia and hyperpyruvicemia induced by the intraduodenal injection of high doses of phenformin. Furthermore this combination prevents the progressive and important lowering of the arterial pH provoked by phenformin. PMID:20198

  14. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated ...

  15. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  16. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  17. Resistin Induces Hypertension and Insulin Resistance in Mice via a TLR4-Dependent Pathway.

    PubMed

    Jiang, Yun; Lu, Linfang; Hu, Youtao; Li, Qiang; An, Chaoqiang; Yu, Xiaolan; Shu, Le; Chen, Ao; Niu, Congcong; Zhou, Lei; Yang, Zaiqing

    2016-01-01

    Resistin, an adipokine involved in insulin resistance (IR) and diabetes, has recently been reported to play a role in cardiovascular events. However, its effect on blood pressure (BP) and the underlying mechanisms remain unclear. In the present study, we showed that resistin induces hypertension and IR in wild type (WT) mice, but not in tlr4(-/-) mice. Resistin upregulated angiotensinogen (Agt) expression in WT mice, whereas it had no effect on tlr4(-/-) mice, or in mice treated with the angiotensin-converting enzyme inhibitor perindopril. Real-time PCR and chromatin immunoprecipitation further confirmed that resistin activates the renin-angiotensin system (RAS) via the TLR4/P65/Agt pathway. This finding suggested an essential role of resistin in linking IR and hypertension, which may offer a novel target in clinic on the study of the association between diabetes and hypertension. PMID:26917360

  18. Resistin Induces Hypertension and Insulin Resistance in Mice via a TLR4-Dependent Pathway

    PubMed Central

    Jiang, Yun; Lu, Linfang; Hu, Youtao; Li, Qiang; An, Chaoqiang; Yu, Xiaolan; Shu, Le; Chen, Ao; Niu, Congcong; Zhou, Lei; Yang, Zaiqing

    2016-01-01

    Resistin, an adipokine involved in insulin resistance (IR) and diabetes, has recently been reported to play a role in cardiovascular events. However, its effect on blood pressure (BP) and the underlying mechanisms remain unclear. In the present study, we showed that resistin induces hypertension and IR in wild type (WT) mice, but not in tlr4−/− mice. Resistin upregulated angiotensinogen (Agt) expression in WT mice, whereas it had no effect on tlr4−/− mice, or in mice treated with the angiotensin-converting enzyme inhibitor perindopril. Real-time PCR and chromatin immunoprecipitation further confirmed that resistin activates the renin-angiotensin system (RAS) via the TLR4/P65/Agt pathway. This finding suggested an essential role of resistin in linking IR and hypertension, which may offer a novel target in clinic on the study of the association between diabetes and hypertension. PMID:26917360

  19. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism.

    PubMed

    Mao, Xian-qing; Yu, Feng; Wang, Nian; Wu, Yong; Zou, Feng; Wu, Ke; Liu, Min; Ouyang, Jing-ping

    2009-05-01

    Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement of insulin resistance in vivo and in vitro. Diet-induced insulin resistant C57BL/6J mice treated with or without APS (orally, 700 mg/kg/d) for 8 weeks were analyzed and compared. Simultaneously, an insulin resistant C(2)C(12) cell model and an ER stressed HepG2 cell model were established and incubated with or without APS (200 microg/ml) for 24h respectively. Systematic insulin sensitivity was measured with an insulin-tolerance test (ITT) and an homeostasis model assessment (HOMA IR) index. Metabolic stress variation was analyzed for biochemical parameters and pathological variations. The expression and activity of protein tyrosine phosphatase 1B (PTP1B), which plays a very important role in insulin signaling and in the ER stress response, was measured by immunoprecipitation and Western blot. The ER stress response was analyzed through XBP1 transcription and splicing by real-time PCR. APS could alleviate insulin resistance and ER stress induced by high glucose in vivo and in vitro, respectively. The hyperglycemia, hypolipemia, and hyperinsulinemia status were controlled with APS therapy. Insulin action in the liver of insulin resistant mice was restored significantly with APS administration. APS enhanced adaptive capacity of the ER and promoted insulin signaling by the inhibition of the expression and activity of PTP1B. Furthermore, the anti-obesity effect and hypolipidemia effects of APS were probably due partly to decreasing the leptin resistance of mice, which would positively couple with the normalization of plasma insulin levels. We have shown that APS has beneficial effects on insulin resistance and hyperglycemia. The mechanism is related to the alleviation of ER

  20. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice

    PubMed Central

    Zhu, Huijuan; Wang, Xiangqing; Pan, Hui; Dai, Yufei; Li, Naishi; Wang, Linjie; Yang, Hongbo; Gong, Fengying

    2016-01-01

    Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD)-induced obese mice. Methods: HFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg−1) daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT), and intraperitoneal glucose tolerance test (IPGTT) were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT) were determined by RT-qPCR and western blot technologies. Results: The administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P < 0.05). IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1), PKB protein kinase (AKT), glycogen synthase kinase 3β (GSK3β) and forkhead box protein O1(FOXO1) in mesenteric WAT of SY treated mice were significantly increased to 1.9- , 2.8- , 3.3- , and 5.9-folds of that in HFD-induced control obese mice, respectively (P < 0.05). The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2-folds of that in HFD-induced control obese mice, respectively (P < 0.05). Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α) in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0-folds of that in HFD-induced control obese mice (P < 0.05). Conclusions: SY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The

  1. Non-glucose metabolism in cancer cells--is it all in the fat?

    PubMed

    Biswas, Swethajit; Lunec, John; Bartlett, Kim

    2012-12-01

    Cancer biologists seem to have overlooked tumor metabolism in their research endeavors over the last 80 years of the last century, only to have "rediscovered Warburg" (Warburg et al. 1930; Warburg, Science 123(3191):309-314, 1956) within the first decade of the twenty-first century, as well as to suggest the importance of other, non-glucose-dependent, metabolic pathways such as such as fatty acid de novo synthesis and catabolism (β-oxidation) (Mashima et al., Br J Cancer 100:1369-1372, 2009) and glutamine catabolism (glutaminolysis) (DeBerardinis et al., Proc Nat Acad Sci 104(49):19345-19350, 2007). These non-glucose metabolic pathways seem to be just as important as the Warburg effect, if not potentially more so in human cancer. The purpose of this review is to highlight the importance of fatty acid metabolism in cancer cells and, where necessary, identify gaps in current knowledge and postulate hypothesis based upon findings in the cellular physiology of metabolic diseases and normal cells. PMID:22706846

  2. Vitamin D induces autophagy of pancreatic β-cells and enhances insulin secretion.

    PubMed

    Wang, Yubin; He, Dawei; Ni, Chengpei; Zhou, Huiying; Wu, Shuyan; Xue, Zhimou; Zhou, Zhengyu

    2016-09-01

    Epidemiological evidence indicates that vitamin D is involved in defense against diabetes; however, the precise underlying mechanism remains to be elucidated. In the present study, the effect of vitamin D on the pathogenesis of diabetes was investigated, with an emphasis on its direct effect on pancreatic β‑cells. A streptozotocin (STZ)‑induced type 1 diabetes mellitus (T1DM) mouse model and MIN6 mouse insulinoma β‑cells were subjected to vitamin D treatment. Histopathological analysis of pancreatic islets was performed to investigate insulitis, and reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the mRNA and protein expression levels of markers of autophagy [microtubule-associated protein 1A/1B‑light chain 3 (LC3) and Beclin 1] and regulation of apoptosis [B-cell lymphoma 2 (Bcl-2)]. Apoptosis of MIN6 cells was examined by flow cytometry following annexin V/propidium iodide labeling. The secretion of insulin was measured by ELISA. The results revealed that vitamin D reduced the incidence of T1DM, enhanced insulin secretion and relieved pancreatic inflammation in STZ‑treated mice. Furthermore, vitamin D increased the mRNA expression levels of LC3 and Beclin 1, and increased Bcl‑2 protein expression levels in STZ‑treated MIN6 cells, while decreasing the apoptosis rate. The results of the present study demonstrated, for the first time to the best of our knowledge, that vitamin D induces autophagy and suppresses apoptosis of pancreatic β‑cells, as well as preventing insulitis. These findings regarding vitamin D provide insights into its involvement in diabetes, and suggest a potential novel strategy for the treatment of diabetes via agents enhancing autophagy in pancreatic β-cells. PMID:27430408

  3. Chronic heart failure selectively induces regional heterogeneity of insulin-responsive glucose transporters

    PubMed Central

    Ware, Bruce; Bevier, Marie; Nishijima, Yoshinori; Rogers, Suzanne; Carnes, Cynthia A.

    2011-01-01

    Glucose uptake across the sarcolemma is regulated by a family of membrane proteins called glucose transporters (GLUTs), which includes GLUT4 (the major cardiac isoform) and GLUT12 (a novel, second insulin-sensitive isoform). Potential regional patterns in glucose transport across the cardiac chambers have not been examined; thus, we hypothesized that insulin-responsive GLUT4 and -12 protein and gene expression would be chamber specific in healthy subjects and during chronic heart failure (HF). Using a canine model of tachypacing-induced, progressive, chronic HF, total GLUT protein and messenger RNA in both ventricles and atria (free wall and appendage) were investigated by immunoblotting and real-time PCR. In controls, GLUT4, but not GLUT12, protein content was significantly higher in the atria compared with the ventricles, with the highest content in the right atrium (RA; P < 0.001). GLUT4 and GLUT12 mRNA levels were similar across the cardiac chambers. During chronic HF, GLUT4 and GLUT12 protein content was highest in the left ventricle (LV; by 2.5- and 4.2-fold, respectively, P < 0.01), with a concomitant increase in GLUT4 and GLUT12 mRNA (P < 0.001). GLUT4, but not GLUT12, protein content was decreased in RA during chronic HF (P = 0.001). In conclusion, GLUT4 protein was differentially expressed across the chambers in the healthy heart, and this regional pattern was reversed during HF. Our data suggest that LV was the primary site dependent on both GLUT4 and GLUT12 during chronic HF. In addition, the paradoxical decrease in GLUT4 content in RA may induce perturbations in atrial energy production during chronic HF. PMID:21849635

  4. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb.

    PubMed

    Stoltzman, Carrie A; Kaadige, Mohan R; Peterson, Christopher W; Ayer, Donald E

    2011-11-01

    Glucose is required for cell growth and proliferation. The MondoA·Mlx transcription factor is glucose-responsive and accumulates in the nucleus by sensing glucose 6-phosphate. One direct and glucose-induced target of MondoA·Mlx complexes is thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, and hence its regulation by MondoA·Mlx triggers a feedback loop that restricts glucose uptake. This feedback loop is similar to the "hexose transport curb" first described almost 30 years ago. We show here that MondoA responds to the non-glucose hexoses, allose, 3-O-methylglucose, and glucosamine by accumulating in the nucleus and activating TXNIP transcription. The metabolic inhibitor 3-bromopyruvate blocks the transcriptional response to allose and 3-O-methylglucose, indicating that their metabolism, or a parallel pathway, is required to stimulate MondoA activity. Our dissection of the hexosamine biosynthetic pathway suggests that in addition to sensing glucose 6-phosphate, MondoA can also sense glucosamine 6-phosphate. Analysis of glucose uptake in wild-type, MondoA-null, or TXNIP-null murine embryonic fibroblasts indicates a role for the MondoA-TXNIP regulatory circuit in the hexose transport curb, although other redundant pathways also contribute. PMID:21908621

  5. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    PubMed

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy. PMID:26514092

  6. Effect of eprosartan on catecholamines and peripheral haemodynamics in subjects with insulin-induced hypoglycaemia.

    PubMed

    Christensen, Marina; Ibsen, Hans; Worck, René

    2005-02-01

    ANG II (angiotensin II) facilitates catecholamine release from the adrenal medulla and neuronal NE (noradrenaline) release. Since animal experiments point to specific sympatho-inhibitory properties of the AT1 (ANG II type 1)-receptor blocker EPRO (eprosartan), the primary aim of this study was to clarify if EPRO inhibits sympathetic reactivity in humans as determined by the effect of EPRO on insulin-induced catecholamine release. Sixteen healthy male volunteers were randomized in a double-blind cross-over study to receive a single dose of EPRO (600 mg) compared with placebo, followed by insulin-induced hypoglycaemia [0.15 IU (international unit)/kg of body weight; intravenous bolus] on two study days 1 week apart. From baseline to the end of hypoglycaemia (170 min), the sympatho-adrenal reactivity was mapped by invasive continuous blood pressure monitoring and repeated measurements of FBF (forearm blood flow), arterial and venous concentrations of glucose, catecholamines [EPI (adrenaline) and NE (noradrenaline)], renin, ANG II and aldosterone. EPRO induced an 8-10-fold increase in plasma renin and ANG II concentrations compared with placebo. Plasma glucose decreased equally during placebo and EPRO from baseline 5.9 mmol/l to 1.9 mmol/l and 2.1 mmol/l respectively, inducing a 17-fold increase in arterial EPI concentration at peak. The AUC (area under the curve) during hypoglycaemia for arterial EPI concentrations was 314+/-48 nmol.min.l-1 in placebo compared with 254+/-26 nmol.min.l-1 following EPRO treatment (P=0.14). EPRO attenuated the corresponding AUC for the EPI-induced pulse pressure response (4670+/-219 mmHg.min in EPRO compared with 5004+/-266 mmHg.min in placebo; P=0.02). Moreover, EPRO caused a less pronounced increase in FBF compared with placebo (402+/-30 compared with 479+/-46 ml.100 g-1 of body weight; P=0.04). Musculocutaneous NE release was not affected by EPRO and the AUC for NE release was 51.69+/-15.5 pmol.min-1.100 g-1 of body weight in placebo

  7. l-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2

    PubMed Central

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-01-01

    Increase in the concentration of plasma l-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged l-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged l-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued l-cysteine–induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, l-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. l-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N′-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in l-cysteine–treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to l-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D. PMID:25713368

  8. Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells

    PubMed Central

    2014-01-01

    Background Diabetes mellitus (DM) is an incurable metabolic disease constituting a major threat to human health. Insulin-producing cells (IPCs) differentiated from mesenchymal stem cells (MSCs) hold great promise in the treatment of DM. The development of an efficient IPC induction system is a crucial step for the clinical application of IPCs for DM. Laminin 411 is a key component of the basement membrane and is involved in the regulation of cell differentiation; however, little is known about a role of laminin 411 in the regulation of IPC differentiation from human MSCs. Methods MSCs were isolated from human umbilical cord (UC-MSCs) and expanded in an in vitro culture system. UC-MSCs were then cultured in the IPC induction and differentiation medium in the presence of laminin 411. Flow cytometry, Quantitative realtime PCR, immunofluorescence staining, ELISA, Western blotting and other techniques were applied to determine IPC generation, insulin expression and related mechanisms. To evaluate potential therapeutic efficacy of IPCs induced from UC-MSCs, a type-1 diabetes (T1DM) rat model was generated using streptozotocin. Blood glucose, insulin levels, and survival of rats were monitored periodically following intravenous injection of the tested cells. Results Laminin 411 markedly induced the expression of the genes Foxa2 and Sox17, markers for pancreatic precursor cells, efficiently induced IPC differentiation from MSCs, and up-regulated insulin expression at both mRNA and protein levels. Furthermore, the expression of the genes known to govern insulin expression including Pdx1 and Ngn3 was markedly induced by laminin 411, which suggests that Pdx1 and Ngn3 signaling pathways are involved in laminin 411 induced-insulin expression machinery. More importantly, administration of laminin 411-induced IPCs rapidly and significantly down-regulated fasting blood glucose levels, significantly reduced the HbA1c concentration and markedly improved the symptoms and survival of

  9. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance

    PubMed Central

    Kim, A. Young; Park, Yoon Jeong; Pan, Xuebo; Shin, Kyung Cheul; Kwak, Soo-Heon; Bassas, Abdulelah F.; Sallam, Reem M.; Park, Kyong Soo; Alfadda, Assim A.; Xu, Aimin; Kim, Jae Bum

    2015-01-01

    Adiponectin plays a key role in the regulation of the whole-body energy homeostasis by modulating glucose and lipid metabolism. Although obesity-induced reduction of adiponectin expression is primarily ascribed to a transcriptional regulation failure, the underlying mechanisms are largely undefined. Here we show that DNA hypermethylation of a particular region of the adiponectin promoter suppresses adiponectin expression through epigenetic control and, in turn, exacerbates metabolic diseases in obesity. Obesity-induced, pro-inflammatory cytokines promote DNMT1 expression and its enzymatic activity. Activated DNMT1 selectively methylates and stimulates compact chromatin structure in the adiponectin promoter, impeding adiponectin expression. Suppressing DNMT1 activity with a DNMT inhibitor resulted in the amelioration of obesity-induced glucose intolerance and insulin resistance in an adiponectin-dependent manner. These findings suggest a critical role of adiponectin gene epigenetic control by DNMT1 in governing energy homeostasis, implying that modulating DNMT1 activity represents a new strategy for the treatment of obesity-related diseases. PMID:26139044

  10. Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats.

    PubMed

    Foletto, Kelly Carraro; Melo Batista, Bruna Aparecida; Neves, Alice Magagnin; de Matos Feijó, Fernanda; Ballard, Cíntia Reis; Marques Ribeiro, Maria Flávia; Bertoluci, Marcello Casaccia

    2016-01-01

    In a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state. In a 14 week experiment, 16 male Wistar rats received either saccharin-sweetened yogurt or non-sweetened yogurt daily in addition to chow and water ad lib. We measured daily food intake and weight gain weekly. At the end of the experiment, we evaluated fasting leptin, glucose, insulin, PYY and determined insulin resistance through HOMA-IR. Cumulative weight gain and food intake were evaluated through linear mixed models. Results showed that saccharin induced greater weight gain when compared with non-sweetened control (p = 0.027) despite a similar total caloric intake. There were no differences in HOMA-IR, fasting leptin or PYY levels between groups. We conclude that saccharin sweet taste can induce mild weight gain in Wistar rats without increasing total caloric intake. This weight gain was not related with insulin-resistance nor changes in fasting leptin or PYY in Wistar rats. PMID:26555482

  11. Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle.

    PubMed

    Ikeda, Shin-Ichi; Tamura, Yoshifumi; Kakehi, Saori; Sanada, Hiromi; Kawamori, Ryuzo; Watada, Hirotaka

    2016-05-13

    A single bout of exercise is known to increase the insulin sensitivity of skeletal muscle; however, the underlying mechanism of this phenomenon is not fully understood. Because a single bout of exercise induces a transient increase in blood interleukin-6 (IL-6) level, we hypothesized that the enhancement of insulin sensitivity after a single bout of exercise in skeletal muscle is mediated at least in part through IL-6-dependent mechanisms. To test this hypothesis, C57BL6J mice were intravenously injected with normal IgG or an IL-6 neutralizing antibody before exercise. Twenty-four hours after a single bout of exercise, the plantaris muscle was harvested to measure insulin sensitivity and glucose transporter (GLUT)-4 expression levels by ex-vivo insulin-stimulated 2-deoxyglucose (2-DG) uptake and Western blotting, respectively. Compared with sedentary mice, mice that performed exercise showed enhanced IL-6 concentration, insulin-stimulated 2-DG uptake, and GLUT-4 expression in the plantaris muscle. The enhanced insulin sensitivity and GLUT4 expression were canceled by injection of the IL-6 neutralizing antibody before exercise. In addition, IL-6 injection increased GLUT4 expression, both in the plantaris muscle and the soleus muscle in C57BL6J mice. Furthermore, a short period of incubation with IL-6 increased GLUT4 expression in differentiated C2C12 myotubes. In summary, these results suggested that IL-6 increased GLUT4 expression in muscle and that this phenomenon may play a role in the post-exercise enhancement of insulin sensitivity in skeletal muscle. PMID:27040770

  12. CB1 antagonism restores hepatic insulin sensitivity without normalization of adiposity in diet-induced obese dogs

    PubMed Central

    Woolcott, Orison O.; Hsu, Isabel R.; Stefanoski, Darko; Harrison, L. Nicole; Zheng, Dan; Lottati, Maya; Kolka, Cathryn; Catalano, Karyn J.; Chiu, Jenny D.; Kabir, Morvarid; Ionut, Viorica; Bergman, Richard N.; Richey, Joyce M.

    2012-01-01

    The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB1 receptor improves insulin sensitivity (SI). However, it is unknown whether this improvement is due to the direct effect of CB1 blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in SI and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB1 antagonist rimonabant. SI was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg−1·day−1 RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week −6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in SI. Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB1 receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass. PMID:22374758

  13. Increased glutamate receptor gene expression in the cerebral cortex of insulin induced hypoglycemic and streptozotocin-induced diabetic rats.

    PubMed

    Joseph, A; Antony, S; Paulose, C S

    2008-10-01

    Hypoglycemia causes brain fuel deprivation, resulting in functional brain failure and brain death. It is a serious complication of insulin therapy in diabetic patients. A single intrafemoral dose of streptozotocin was administered to induce diabetes. Hypoglycemia was induced by appropriate doses of insulin s.c. in control and diabetic rats. Glutamate content and glutamate receptor kinetics were studied using [3H]glutamate. [3H]MK 801 was used to study the NMDA receptor kinetics. NMDA2B and metabotropic glutamate receptor (mGluR) 5 subunits receptor gene expressions were done using real time PCR. There was a significant (P<0.001) increase in the glutamate content in the cerebral cortex of hypoglycemic and diabetic rats when compared with control with more glutamate content in the hypoglycemic group. Scatchard analysis using [3H]glutamate and [3H]MK 801 in the cerebral cortex showed a significant (P<0.001) increase in the maximal binding (Bmax) in both hypoglycemic and diabetic rats when compared with control with no significant change in equilibrium dissociation constant. The glutamate and NMDA receptor binding parameters were significantly (P<0.001) enhanced in the hypoglycemic rats compared with hyperglycemic rats. Real time PCR analysis also showed a significant increase (P<0.001) in the gene expression of NMDA2B and mGluR5 subunits of glutamate receptor. This increased gene expression of NMDA2B and mGluR5 glutamate receptor subunits confirmed the enhanced mRNA of receptor subunits and subsequently at the protein level from the receptor kinetic studies. The enhanced glutamate receptors were more prominent in hypoglycemic group which is of significance in this study. Up-regulation of glutamate leads to Ca2+ overload in cells, potentially leading to cell damage and death. This functional damage during hypoglycemia is suggested to contribute to cognitive and memory deficits which has immense clinical relevance in the therapeutic management of diabetes. PMID:18761060

  14. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism.

    PubMed

    Kwak, Hyun Jeong; Choi, Hye-Eun; Jang, Jinsun; Park, Soo Kyung; Bae, Young-An; Cheon, Hyae Gyeong

    2016-08-01

    Bortezomib is an anti-cancer agent that induces ER stress by inhibiting proteasomal degradation. However, the effects of bortezomib appear to be dependent on its concentration and cellular context. Since ER stress is closely related to type 2 diabetes, the authors examined the effects of bortezomib on palmitic acid (PA)-induced ER stress in C2C12 murine myotubes. At low concentrations (<20nM), bortezomib protected myotubes from PA (750μM)-induced ER stress and inflammation. Either tunicamycin or thapsigargin-induced ER stress was also reduced by bortezomib. In addition, reduced glucose uptake and Akt phosphorylation induced by PA were prevented by co-treating bortezomib (10nM) both in the presence or absence of insulin. These protective effects of bortezomib were found to be associated with reduced JNK phosphorylation. Furthermore, bortezomib-induced AMPK phosphorylation, and the protective effects of bortezomib were diminished by AMPK knockdown, suggesting that AMPK activation underlies the effects of bortezomib. The in vivo administration of bortezomib at nontoxic levels (at 50 or 200μg/kg, i.p.) twice weekly for 5weeks to ob/ob mice improved insulin resistance, increased AMPK phosphorylation, reduced ER stress marker levels, and JNK inhibition in skeletal muscle. The study shows that bortezomib reduces ER stress, inflammation, and insulin resistance in vitro and in vivo, and suggests that bortezomib has novel applications for the treatment of metabolic disorders. PMID:27049873

  15. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase.

    PubMed

    Llagostera, Esther; Carmona, Mari Carmen; Vicente, Meritxell; Escorihuela, Rosa María; Kaliman, Perla

    2009-06-18

    Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients. PMID:19482024

  16. Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats.

    PubMed

    Haider, Saida; Ahmed, Saara; Tabassum, Saiqa; Memon, Zahida; Ikram, Mehwish; Haleem, Darakhshan J

    2013-03-01

    Diabetes mellitus is one of the most common serious metabolic disorders in humans that develops due to diminished production of insulin (type I) or resistance to its effect (type II and gestational). The present study was designed to determine the neuropsychological deficits produced following streptozotocin-induced diabetes in rats. Rats were made diabetic by the intra-peritoneal administration of 60 mg/kg streptozotocin (STZ) which induces type-1 diabetes by the destruction "β-cells" of pancreas. Body weight, food and water intake was monitored daily. Open field test (OFT) model, forced swim test (FST) and Morris water maze (MWM) model were performed for the evaluation of ambulation, depression-like symptoms and memory effects, respectively. After 10 days of diabetes induction the exploratory activity of rats was monitored by OFT while depression-like symptoms and memory effects in rats were analyzed by FST and MWM. Results showed that there was no significant effect of STZ-induced diabetes on body weight but food and water intake of STZ-induced diabetic rats was significantly increased. Exploratory activity was significantly decreased and short-term and long-term memory was significantly impaired while the depression-like symptoms was significantly increased in STZ diabetic rats. Thus, it may be suggested that STZ-induced diabetes alters the brain functions and may play an important role in the pathophysiology of certain behavioral deficits like depression, impaired learning and memory functions related to diabetes. This finding may be of relevance in the pathophysiology and in the clinical picture, which could be related to an altered brain serotonin metabolism and neurotransmission and may possibly be related to neuropsychiatric disorders in diabetic patients. PMID:22878975

  17. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes.

    PubMed

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  18. Insulin-induced alterations in the lactoperoxidase-catalyzed radioiodination of membrane proteins of the toad bladder epithelium

    SciTech Connect

    Scott, W.N.; Slatin, S.L.; Cobb, M.H.; Reich, I.M.

    1981-11-01

    Insulin-stimulated sodium transport in the toad urinary bladder consists of two components, a brief element of rapid onset that is independent of protein synthesis, and a sustained increase, slower in onset, that is dependent upon RNA and protein synthesis. The mucosal epithelium of the toad bladder was labeled by lactoperoxidase-catalyzed radioiodination (125I) following 15 min and 3 h exposure to insulin. The membrane of ''mitochondria-rich'' and ''granular'' mucosal cells from these tissues were analyzed by electrophoresis in SDS-urea. Compared to untreated tissues, membranes of ''granular'' mucosal cells from tissues exposed to insulin for 15 min contained a band (Mr . 15,000) with significantly increased labeling. Bladders exposed to insulin for 3 h showed no consistent increase in labeling. These data suggest that there are differences in the conformation of apical membrane proteins during the two phases of hormone-induced sodium transport. The technique may also offer an opportunity to identify ''effector'' proteins mediating this and other insulin responses.

  19. Antidiabetic Effect of Hydroalcholic Urtica dioica Leaf Extract in Male Rats with Fructose-Induced Insulin Resistance

    PubMed Central

    Ahangarpour, Akram; Mohammadian, Maryam; Dianat, Mahin

    2012-01-01

    Background: Urtica dioica has been used as antihypertensive, antihyperlipidemic and antidiabetic herbal medicine. The purpose of this study was to study the effect of hydroalcoholic extract of Urtica dioica on fructose-induced insulin resistance rats. Methods: Forty male Wistar rats were randomly divided into five groups including control, fructose, extract 50, extract 100 and extract 200. The control rat received vehicle, the fructose and extract groups received fructose 10% for eight weeks. The extract groups received single daily injection of vehicle, 50, 100 or 200 mg/kg/day for the two weeks. Blood glucose, insulin, last fasting insulin resistance index (FIRI), serum triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), alanin trasaminase (AST) and alkaline phosphatase (ALP), leptin and LDL/HDL ratio were determined. Results: Compared to control group, daily administration of fructose was associated with significant increase in FIRI, blood glucose and insulin, significant decrease in lepin, and no significant change in TG, HDL, LDL, LDL/HDL ratio, VLDL, ALT, and ALP. The extract significantly decreased serum glucose, insulin, LDL and leptin, and LDL/HDL ratio and FIRI. It also significantly increased serum TG, VLDL, and AST, but did not change serum ALP. Conclusion: We suggest that Urtica dioica extract, by decreasing serum glucose, and FIRI, may be useful to improve type 2 diabetes mellitus. Also, by positive effect on lipid profile and by decreasing effect on leptin, it may improve metabolic syndrome. PMID:23115450

  20. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    PubMed Central

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  1. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia

    PubMed Central

    Xin, Ying; Jiang, Xin; Wang, Yishu; Su, Xuejin; Sun, Meiyu; Zhang, Lihong; Tan, Yi; Wintergerst, Kupper A.; Li, Yan; Li, Yulin

    2016-01-01

    Background The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) into insulin-producing cells (IPCs) for autologous transplantation may alleviate those limitations. Methods hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 106 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ)-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice. Results The differentiated IPCs were characterized by Dithizone (DTZ) positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo. Conclusions IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation. PMID:26756576

  2. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. PMID:27233828

  3. Nasal administration of CTB-insulin induces active tolerance against autoimmune diabetes in non-obese diabetic (NOD) mice

    PubMed Central

    Aspord, C; Thivolet, C

    2002-01-01

    Nasal administration of beta cell-derived auto-antigens has been reported to suppress the development of autoimmune diabetes. We investigated the tolerogenic effects of insulin conjugated to the B subunit of cholera toxin (CTB). Nasal administration of 1 µg of CTB-insulin significantly delayed the incidence of diabetes in comparison to CTB treated mice. However, administration of 4 or 8 µg of the conjugate had no protective effect. Protection induced by CTB-insulin was transferred to naive recipients by splenic CD4+ T cells. This result favours an active cellular mechanism of regulation, which was lost using higher (4–8 µg) or lower (0·1–0·5 µg) amounts of the conjugate. When co-administered with diabetogenic T cells, splenic T cells from CTB-insulin-treated mice reduced the lymphocytic infiltration of the islets. Reverse transcription-polymerase chain reaction analysis of recipients’ pancreatic glands revealed an increase of TGF-β and IL-10 transcripts after donor mice tolerization, while levels of IFN-γ and IL-4 RNAs were unchanged. We observed a significant increase of T cell proliferation after unspecific stimulation in the spleen and pancreatic lymph nodes 24 h after CTB-insulin administration in comparison to control treatment. Higher amounts of IL-4 and IFN-γ were noticed in pancreatic lymph nodes of tolerized mice upon in vitro stimulation. Antigen-specific unresponsiveness after immunization and upon subsequent in vitro exposure to homologous antigen was obtained in nasally treated animals. Our results underlined the importance of nasal mucosa as an inducing site of tolerance and provided evidence for similar mechanisms of action to what has been described for the oral route, which favoured a CTB-insulin specific effect. PMID:12390307

  4. Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev

    2016-06-01

    Insulin resistance has been reported as a strong risk factor for Alzheimer's disease. However the molecular mechanisms of association between these still remain elusive. Various studies have highlighted the involvement of histone deacetylases (HDACs) in insulin resistance and cognitive deficits. Thus, the present study was designed to investigate the possible neuroprotective role of HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) in insulin resistance induced cognitive impairment in mice. Mice were subjected to either normal pellet diet (NPD) or high fat diet (HFD) for 8 weeks. HFD fed mice were treated with SAHA at 25 and 50 mg/kg i.p. once daily for 2 weeks. Serum insulin, glucose, triglycerides, total cholesterol and HDL-cholesterol levels were measured. A battery of behavioral parameters was performed to assess cognitive functions. Level of tumour necrosis factor (TNF-α) was measured in hippocampus to assess neuroinflammation. To further explore the molecular mechanisms we measured the histone H3 acetylation and brain derived neurotrophic factor (BDNF) level. HFD fed mice exhibit characteristic features of insulin resistance. These mice also showed a severe deficit in learning and memory along with reduced histone H3 acetylation and BDNF levels. In contrast, the mice treated with SAHA showed significant and dose dependent improvement in insulin resistant condition. These mice also showed improved learning and memory performance. SAHA treatment ameliorates the HFD induced reduction in histone H3 acetylation and BDNF levels. Based upon these results, it could be suggested that HDAC inhibitors exert neuroprotective effects by increasing H3 acetylation and subsequently BDNF level. PMID:26805421

  5. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial.

    PubMed Central

    Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Holloszy, John O.

    2006-01-01

    Background Weight loss, through caloric restriction (CR) or increases in exercise energy expenditure (EX), improves glucose tolerance and insulin action. However, EX may further improve glucoregulation through weight-loss independent mechanisms. Objective To assess the hypothesis that weight loss through EX improves glucoregulation and circulating factors involved in insulin action, to a greater extent than does similar weight loss through CR. Design Sedentary 50- to 60-year-old men and women (body mass index=23.5–29.9 kg/m2) were randomized to 12-month EX (n=18) or CR (n=18) weight loss interventions or to a healthy lifestyle (HL) control group (n=10). Insulin sensitivity index (ISI) and the glucose and insulin areas under the curve (AUCs) were assessed by oral glucose tolerance test (OGTT). Adiponectin and tumor necrosis factor-α (TNFα) were assessed in fasting serum. Fat mass was determined by DXA. Results Yearlong energy deficits were not different between EX and CR as evidenced by body weight and fat mass changes. ISI increased, and the glucose and insulin AUCs decreased in the EX and CR groups and remained unchanged in the HL group but did not differ between EX and CR. Marginally significant increases in adiponectin, and decreases in the TNFα-to-adiponectin ratio, occurred in the EX and CR groups but not in the HL group. Conclusions EX- and CR-induced weight losses are both effective for improving glucose tolerance and insulin action in non-obese, healthy, middle-aged men and women; however, it does not appear that exercise training-induced weight loss results in greater improvements than those that result from CR. PMID:17093155

  6. Ultra-Rapid Absorption of Recombinant Human Insulin Induced by Zinc Chelation and Surface Charge Masking

    PubMed Central

    Pohl, Roderike; Hauser, Robert; Li, Ming; De Souza, Errol; Feldstein, Robert; Seibert, Richard; Ozhan, Koray; Kashyap, Nandini; Steiner, Solomon

    2012-01-01

    Background In order to enhance the absorption of insulin following subcutaneous injection, excipients were selected to hasten the dissociation rate of insulin hexamers and reduce their tendency to reassociate postinjection. A novel formulation of recombinant human insulin containing citrate and disodium ethylenediaminetetraacetic acid (EDTA) has been tested in clinic and has a very rapid onset of action in patients with diabetes. In order to understand the basis for the rapid insulin absorption, in vitro experiments using analytical ultracentrifugation, protein charge assessment, and light scattering have been performed with this novel human insulin formulation and compared with a commercially available insulin formulation [regular human insulin (RHI)]. Method Analytical ultracentrifugation and dynamic light scattering were used to infer the relative distributions of insulin monomers, dimers, and hexamers in the formulations. Electrical resistance of the insulin solutions characterized the overall net surface charge on the insulin complexes in solution. Results The results of these experiments demonstrate that the zinc chelating (disodium EDTA) and charge-masking (citrate) excipients used in the formulation changed the properties of RHI in solution, making it dissociate more rapidly into smaller, charge-masked monomer/dimer units, which are twice as rapidly absorbed following subcutaneous injection than RHI (Tmax 60 ± 43 versus 120 ± 70 min). Conclusions The combination of rapid dissociation of insulin hexamers upon dilution due to the zinc chelating effects of disodium EDTA followed by the inhibition of insulin monomer/dimer reassociation due to the charge-masking effects of citrate provides the basis for the ultra-rapid absorption of this novel insulin formulation. PMID:22920799

  7. Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats.

    PubMed

    Huisamen, Barbara; Dietrich, Daneel; Bezuidenhout, Nicole; Lopes, John; Flepisi, Brian; Blackhurst, Dee; Lochner, Amanda

    2012-09-01

    The metabolic syndrome is recognized as a cluster of disturbances associated with obesity, type 2 diabetes and hypertension. Over the past two decades, the number of people with the metabolic syndrome has increased at an alarming rate. This increase is associated with the global epidemic of both obesity and diabetes. Cardiovascular mortality is increased among diabetics and obesity-related insulin-resistant patients, and obesity is currently recognized as independent risk factor for cardiovascular disease. We aimed to establish the effects of a short period of an altered diet on the heart using a rat model of hyperphagia-induced obesity (diet supplemented with sucrose and condensed milk for 8 weeks = DIO) compared to age-matched controls. Isolated, perfused hearts were subjected to global or regional ischaemia/reperfusion. Function on reperfusion was recorded and infarct size determined. A plasma lipid profile was established via HPLC-based methods and proteins involved in metabolic signalling determined either by western blotting or RT-PCR. 8 weeks of diet resulted in whole-body but not myocardial insulin resistance, increased plasma triglyceride and phospholipid levels as well as increased lipid peroxidation. Despite the similar baseline function, hearts from DIO animals showed significantly poorer postischaemic recovery than controls (41.9 % RPP recovery vs 57.9 %, P < 0.05, n = 7-11/group) but surprisingly, smaller infarct size (24.95 ± 1.97 vs 47.26 ± 4.05 % of the area at risk, P < 0.005, n = 8/group). Basal phosphorylation of PKB/Akt was elevated but IRS-1 and SERCA-2 expression severely downregulated. In conclusion, after only 8 weeks of a slight change in diet, the rat heart shows signs of metabolic remodelling. Some of these changes may be protective but others may be detrimental and eventually lead to maladaptation. PMID:22638648

  8. Characterization of the Human Insulin-induced Gene 2 (INSIG2) Promoter

    PubMed Central

    Fernández-Alvarez, Ana; Soledad Alvarez, María; Cucarella, Carme; Casado, Marta

    2010-01-01

    Insulin-induced gene 2 (INSIG2) and its homolog INSIG1 encode closely related endoplasmic reticulum proteins that regulate the proteolytic activation of sterol regulatory element-binding proteins, transcription factors that activate the synthesis of cholesterol and fatty acids in animal cells. Several studies have been carried out to identify INSIG2 genetic variants associated with metabolic diseases. However, few data have been published regarding the regulation of INSIG2 gene expression. Two Insig2 transcripts have been described in rodents through the use of different promoters that produce different noncoding first exons that splice into a common second exon. Herein we report the cloning and characterization of the human INSIG2 promoter and the detection of an INSIG2-specific transcript homologous to the Insig2b mouse variant in human liver. Deletion analyses on 3 kb of 5′-flanking DNA of the human INSIG2 gene revealed the functional importance of a 350-bp region upstream of the transcription start site. Mutated analyses, chromatin immunoprecipitation assays, and RNA interference analyses unveiled the significance of an Ets-consensus motif in the proximal region and the interaction of the Ets family member SAP1a (serum response factor (SRF) accessory protein-1a) with this region of the human INSIG2 promoter. Moreover, our findings suggest that insulin activated the human INSIG2 promoter in a process mediated by phosphorylated SAP1a. Overall, these results map the functional elements in the human INSIG2 promoter sequence and suggest an unexpected regulation of INSIG2 gene expression in human liver. PMID:20145255

  9. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings

    SciTech Connect

    Samadder, Asmita; Das, Jayeeta; Das, Sreemanti; De, Arnab; Saha, Santu Kumar; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman

    2013-02-15

    Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood–brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenic were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPARγ, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form. - Highlights: ► PLGA encapsulated nano-insulin

  10. PINK1 alleviates palmitate induced insulin resistance in HepG2 cells by suppressing ROS mediated MAPK pathways.

    PubMed

    Cang, Xiaomin; Wang, Xiaohua; Liu, Pingli; Wu, Xue; Yan, Jin; Chen, Jinfeng; Wu, Gang; Jin, Yan; Xu, Feng; Su, Jianbin; Wan, Chunhua; Wang, Xueqin

    2016-09-01

    Oxidative stress is an important pathogenesis of insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). Studies have shown that knockdown of PTEN-induced putative kinase 1 (PINK1) causes oxidative stress and mitophagy. In db/db mice, PINK1 protein level is down-regulated. However, little is known regarding the mechanism by which PINK1 modulates IR in response to reactive oxygen species (ROS) induced stress. In our study, PINK1 expression decreased during palmitate (PA) induced IR in HepG2 cells and the hepatic tissues of high fat diet (HFD) fed mice. Additionally, free fatty acids (FFAs) could increase ROS and suppress insulin signaling pathway, which was indicated by reduced phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β). In addition, insulin induced glucose uptake decreased and the expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), two key gluconeogenic enzymes, was up-regulated after PA treatment. Intriguingly, PINK1 overexpression could lead to opposite results. Moreover, PA induced hepatic IR through C-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways, which were rescued by PINK1 overexpression. In summary, our results demonstrate that PINK1 promoted hepatic IR via JNK and ERK pathway in PA treated HepG2 cells, implying a novel molecular target for the therapy of diabetes. PMID:27423393

  11. Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans.

    PubMed

    Wescott, Seth A; Ronan, Elizabeth A; Xu, X Z Shawn

    2016-02-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling. PMID:26317299

  12. Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina

    PubMed Central

    Emery, Martine; Nanchen, Natacha; Preitner, Frédéric; Ibberson, Mark; Roduit, Raphaël

    2016-01-01

    Glucose is the most important metabolic substrate of the retina and maintenance of normoglycemia is an essential challenge for diabetic patients. Chronic, exaggerated, glycemic excursions could lead to cardiovascular diseases, nephropathy, neuropathy and retinopathy. We recently showed that hypoglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression was modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we identify by gene set enrichment analysis, three important pathways, including lysosomal function, GSH metabolism and apoptotic pathways. Then we tested the effect of recurrent hypoglycemia (three successive 4h periods of hypoglycemia spaced by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevented GSH decrease and retinal cell death, or adapted the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining “normal” GSH level, as well as a strict glycemic control, represents a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy. PMID:26918849

  13. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    SciTech Connect

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  14. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity.

    PubMed

    Samane, Samira; Christon, Raymond; Dombrowski, Luce; Turcotte, Stéphane; Charrouf, Zoubida; Lavigne, Charles; Levy, Emile; Bachelard, Hélène; Amarouch, Hamid; Marette, André; Haddad, Pierre Selim

    2009-07-01

    We investigated the potential metabolic benefits of fish oil (FO) or vegetable argan oil (AO) intake in a dietary model of obesity-linked insulin resistance. Rats were fed a standard chow diet (controls), a high-fat/high-sucrose (HFHS) diet, or an HFHS diet in which 6% of the fat was replaced by either FO or AO feeding, respectively. The HFHS diet increased adipose tissue weight and insulin resistance as revealed by increased fasting glucose and exaggerated glycemic and insulin responses to a glucose tolerance test (intraperitoneal glucose tolerance test). Fish oil feeding prevented fat accretion, reduced fasting glycemia, and normalized glycemic or insulin responses to intraperitoneal glucose tolerance test as compared with HFHS diet. Unlike FO consumption, AO intake failed to prevent obesity, yet restored fasting glycemia back to chow-fed control values. Insulin-induced phosphorylation of Akt and Erk in adipose tissues, skeletal muscles, and liver was greatly attenuated in HFHS rats as compared with chow-fed controls. High-fat/high-sucrose diet-induced insulin resistance was also confirmed in isolated hepatocytes. Fish oil intake prevented insulin resistance by improving or fully restoring insulin signaling responses in all tissues and isolated hepatocytes. Argan oil intake also improved insulin-dependent phosphorylations of Akt and Erk; and in adipose tissue, these responses were increased even beyond values observed in chow-fed controls. Taken together, these results strongly support the beneficial action of FO on diet-induced insulin resistance and glucose intolerance, an effect likely explained by the ability of FO to prevent HFHS-induced adiposity. Our data also show for the first time that AO can improve some of the metabolic and insulin signaling abnormalities associated with HFHS feeding. PMID:19394055

  15. Tacrolimus Induces Insulin Resistance and Increases the Glucose Absorption in the Jejunum: A Potential Mechanism of the Diabetogenic Effects

    PubMed Central

    Zhang, Yaohui; Chen, Hao; He, Ningning; Chen, Hui; Song, Penghong; Wang, Yan; Yan, Sheng; Zheng, Shusen

    2015-01-01

    Background The use of the immunosuppressive drug tacrolimus (TAC) is related to new onset diabetes after transplantation. Herein, we examined the effect of intraperitoneal administered TAC on intestinal glucose absorption in mice. Methods Animals received low, medium, or high dose TAC (0.5, 1, or 5 mg/kg/d, respectively), or 0.9% saline solution (control) for 14 days. Oral glucose tolerance test (OGTT), insulin concentration test, and serum TAC concentration measurements was performed after 14 days of TAC exposure. Plasma insulin was assessed and electrogenic glucose absorption were measured by the sodium-dependent increase of the short-circuit current. Expression levels of the glucose transporters sodium glucose co-transporter (SGLT) 1, glucose transporter (GLUT) 2, and GLUT5 were also determined. Results Oral glucose absorption assessed by OGTT was significantly enhanced in the low, medium, and high groups. Serum insulin was elevated in the medium and high group compared with the control. Moreover, glucose-induced Isc was significantly higher in TAC administrated groups, which indicates that SGLT1 activity increased. Transcription levels and protein abundance of SGLT1 in the experimental groups also increased compared with the control. Conclusions TAC induced insulin resistance and strengthened intestinal glucose absorption by increasing the activity and expression of the glucose transporter, SGLT1. PMID:26599323

  16. [Psychological aspects of remission induced by intensive insulin therapy in type I diabetes. A retrospective study of 44 patients].

    PubMed

    Ziegler, O; Kolopp, M; Kahn, J P; Floquet, B; Goudot, C; Beyel, P; Drouin, P; Debry, G

    1991-01-01

    The psychological consequences of induced remission of type 1 diabetes, have not yet been investigated thoroughly. We studied the psychological status of 44 patients (16 women, 28 men), age 21 years +/- 8 months (mean +/- SD), whose remission lasted 12 +/- 9 months. Patients' psychological reactions were analyzed retrospectively, using a 20 items standardized questionnaire, investigating 3 successive periods: 1) initial intensive insulin therapy; 2) remission; 3) permanent insulin therapy. 8% of the subjects only considered the remission phase useless, whereas 49% expressed a positive appraisal. Hope was predominant feeling, 25% of the patients believing in a completed recovery of diabetes. Perceived therapeutic constraints were, in decreasing order: regimen, way of life's regularity, self monitoring of blood glucose. When starting permanent insulin therapy, opposite answers were given: 49% negative feelings, 33% positive feelings and 18% ambivalent feelings. During this period, insulin injections represented the major therapeutic constraint, followed by self monitoring of blood glucose. To summarize, induced remission does not appear to be psychologically harmful and is considered useful by a large majority of patients. Effective psychological support has to be offered to help those patients to cope with their irrational hopes of healing and to dampen their deception at the end of the remission period. PMID:1752345

  17. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    PubMed

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  18. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    PubMed Central

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  19. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance.

    PubMed

    Bonner, Jeffrey S; Lantier, Louise; Hasenour, Clinton M; James, Freyja D; Bracy, Deanna P; Wasserman, David H

    2013-02-01

    Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF(-/-)) and wild-type littermates (mVEGF(+/+)) on a C57BL/6 background. The mVEGF(-/-) mice had an ~60% and ~50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF(-/-) mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF(-/-) mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035

  20. Comparative Study of Protective Effects of Salbutamol and Beclomethasone against Insulin Induced Airway Hyper-reactivity on Isolated Tracheal Smooth Muscle of Guinea Pig

    PubMed Central

    Sharif, Mahjabeen; Tayyaba Khan, Bushra; Bakhtiar, Salman; Anwar, Mohammad Asim

    2015-01-01

    Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and beclomethasone against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. Effects of varying concentrations of insulin (10-7 to 10-3 M), insulin pretreated with fixed concentration of salbutamol (10-7 M) and beclomethasone (10-6 M) were studied on isolated tracheal tissue of guinea pig by constructing cumulative concentration response curves. Changes in tracheal smooth muscle contractions were recorded on four channel oscillograph. The mean ± SEM of maximum amplitudes of contraction with increasing concentrations of insulin, insulin pretreated with fixed concentration of salbutamol and beclomethasone were 35 ± 1.13 mm, 14.55 ± 0.62 mm and 22 ± 1.154 mm respectively. Although salbutamol and beclomethasone both had a profound inhibitory effect on insulin induced airway hyper-reactivity, yet salbutamol is more efficacious than beclomethasone. So we suggest that pretreatment of inhaled insulin with salbutamol may be preferred over beclomethasone in amelioration of its potential respiratory adverse effects such as bronchoconstriction. PMID:25901165

  1. Thrombospondin 1 Mediates High-Fat Diet-Induced Muscle Fibrosis and Insulin Resistance in Male Mice

    PubMed Central

    Jiang, Yibin; Barnes, Richard H.; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N.; Buchner, David A.

    2013-01-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression. PMID:24140711

  2. Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice.

    PubMed

    Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N; Buchner, David A; Chun, Tae-Hwa

    2013-12-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression. PMID:24140711

  3. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.

    PubMed

    Hu, Yuanyuan; Hou, Zuoxu; Liu, Dongyang; Yang, Xingbin

    2016-03-01

    Oxidative stress plays a crucial role in chronic complication of diabetes. In this study, the protective effect of purified tartary buckwheat flavonoids (TBF) fraction against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser307)-IRS-1 expression, and glucose uptake were evaluated. Results suggest that treatment of HepG2 cells with TBF alone improved glucose uptake and antioxidant enzymes, and activated Nrf2, and attenuated the IRS-1 Ser307 phosphorylation, and enhanced total levels of IRS-1. Furthermore, the high glucose-induced changes in antioxidant defences, Nrf2, p-MAPKs, p-IRS1 Ser307, and IRS-1 levels, and glucose uptake were also significantly inhibited by pre-treatment with TBF. Interestingly, the selective MAPK inhibitors significantly enhanced the TBF-mediated protection by inducing changes in the redox status, glucose uptake, p-(Ser307) and total IRS-1 levels. This report firstly showed that TBF could recover the redox status of insulin-resistant HepG2 cells, suggesting that TBF significantly protected the cells against high glucose-induced oxidative stress, and these beneficial effects of TBF on redox balance and insulin resistance were mediated by targeting MAPKs. PMID:26899161

  4. Blood glucose lowering activity of aloe based composition, UP780, in alloxan induced insulin dependent mouse diabetes model

    PubMed Central

    2014-01-01

    Background There are a few nutritional approaches to address the increased needs of managing diabetic conditions. Previously it has been reported that UP780, a standardized composition of aloe chromone formulated with an aloe polysaccharide, has a significant impact in reducing HbA1C, fasting blood glucose, fructosamine and plasma insulin level in humans and improved impaired glucose and insulin resistance in high-fat diet-induced and db/db non-insulin dependent diabetic mouse models. Here we describe activity of UP780 and its constituents to improve insulin sensitivity in alloxan induced insulin dependent diabetic mouse model. Materials and method Insulin dependent diabetes was induced by administering a single intraperitoneal injection of alloxan monohydrate at a dose of 150 mg/kg to CD-1 mice. Aloesin (UP394) was formulated with an Aloe vera inner leaf gel powder polysaccharide (Qmatrix) to yield a composition designated UP780. Efficacy of oral administration of UP780 at 2000 mg/kg and its constituents (aloesin at 80 mg/kg and Qmatrix at 1920 mg/kg) were evaluated in this model. Glyburide, a sulfonylurea drug used in the treatment of type 2 diabetes, was used at 5 mg/kg as a positive control. Effect of UP780 on non-diabetic normal mice was also addressed. Results Mice administered intraperitoneal alloxan monohydrate developed progressive type-1 diabetes like symptom. After 4 weeks of daily oral administration, reductions of 35.9%, 17.2% and 11.6% in fasting blood glucose levels were observed for UP780, the UP780 Aloe vera inner leaf gel polysaccharide preparation without chromone (Qmatrix), and Aloesin (UP394), treated animals respectively, compared to vehicle treated animals. UP780 has no impact on blood glucose level of non-diabetic healthy mice. UP780 showed statistically significant improvement for blood glucose clearance in oral glucose tolerance tests. Similarly, enhanced improvement in plasma insulin level and statistically significant reduction in

  5. Potentiation of stimulus-induced insulin secretion in protein kinase C-deficient RINm5F cells.

    PubMed Central

    Li, G D; Regazzi, R; Ullrich, S; Pralong, W F; Wollheim, C B

    1990-01-01

    The role of protein kinase C (PKC) in stimulus recognition and insulin secretion was investigated after long-term (24 h) treatment of RINm5F cells with phorbol 12-myristate 13-acetate (PMA). Three methods revealed that PKC was no longer detectable, and PMA-induced insulin secretion was abolished. Such PKC-deficient cells displayed enhanced insulin secretion (2-6-fold) in response to vasopressin and carbachol (activating phospholipase C) as well as to D-glyceraldehyde and alanine (promoting membrane depolarization and voltage-gated Ca2+ influx). Insulin release stimulated by 1-oleoyl-2-acetylglycerol (OAG) was also greater in PKC-deficient cells. OAG caused membrane depolarization and raised the cytosolic Ca2+ concentration ([Ca2+]i), both of which were unaffected by PKC down-regulation. Except for that caused by vasopressin, the secretagogue-induced [Ca2+]i elevations were similar in control and PKC-depleted cells. The [Ca2+]i rise evoked by vasopressin was enhanced during the early phase (observed both in cell suspensions and at the single cell level) and the stimulation of diacylglycerol production was also augmented. These findings suggest more efficient activation of phospholipase C by vasopressin after PKC depletion. Electrically permeabilized cells were used to test whether the release process is facilitated after long-term PMA treatment. PKC deficiency was associated with only slightly increased responsiveness to half-maximally (2 microM) but not to maximally stimulatory Ca2+ concentrations. At 2 microM-Ca2+ vasopressin caused secretion, which was also augmented by PMA pretreatment. The difference between intact and permeabilized cells could indicate the loss in the latter of soluble factors which mediate the enhanced secretory responses. However, changes in cyclic AMP production could not explain the difference. These results demonstrate that PKC not only exerts inhibitory influences on the coupling of receptors to phospholipase C but also interferes with

  6. Inflammation and Insulin Resistance

    PubMed Central

    de Luca, Carl; Olefsky, Jerrold M.

    2008-01-01

    Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state. PMID:18053812

  7. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells.

    PubMed

    Yuzefovych, Larysa V; Solodushko, Viktoriya A; Wilson, Glenn L; Rachek, Lyudmila I

    2012-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance. PMID:22128025

  8. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  9. Analyzing EEG signals under insulin-induced hypoglycemia in type 1 diabetes patients.

    PubMed

    Nguyen, Lien B; Nguyen, Anh V; Ling, Sai Ho; Nguyen, Hung T

    2013-01-01

    Hypoglycemia is dangerous and considered as a limiting factor of the glycemic control therapy for patients with type 1 diabetes mellitus (T1DM). Nocturnal hypoglycemia is especially feared because early warning symptoms are unclear during sleep so an episode of hypoglycemia may lead to a fatal effect on patients. The main objective of this paper is to explore the correlation between hypoglycemia and electroencephalography (EEG) signals. To do this, the EEG of five T1DM adolescents from an overnight insulin-induced study is analyzed by spectral analysis to extract four different parameters. We aim to explore the response of these parameters during the clamp study which includes three main phases of normal, hypoglycemia and recovery. We also look at data at the blood glucose level (BGL) of 3.3-3.9 mmol/l to find a threshold to distinguish between non-hypoglycemia and hypoglycemia states. The results show that extracted EEG parameters are highly correlated with patients' conditions during the study. It is also shown that at the BGL of 3.3 mmol/l, responses to hypoglycemia in EEG signals start to significantly occur. PMID:24110104

  10. Zingiber mioga reduces weight gain, insulin resistance and hepatic gluconeogenesis in diet-induced obese mice

    PubMed Central

    LEE, DA-HYE; AHN, JIYUN; JANG, YOUNG JIN; HA, TAE-YOUL; JUNG, CHANG HWA

    2016-01-01

    Zingiber mioga is a perennial herb belonging to the ginger family (Zingiberaceae) that is used medicinally to treat cough and rheumatism in China and consumed throughout Japan. The aim of the present study was to investigate the anti-obesity effects of Z. mioga following extraction with distilled water or 70% ethanol. In 3T3-L1 preadipocyte cells, Z. mioga water extract (ZMW) markedly inhibited adipogenesis, whereas the ethanol extract had no effect. In addition, we conducted ZMW feeding experiments (0.25 or 0.5% ZMW) in high-fat diet (HFD)-fed mice to examine the anti-obesity effects of Z. mioga in vivo. Body weight and serum triglyceride and cholesterol levels significantly decreased in the HFD + ZMW 0.5% group. Notably, ZMW decreased liver weight but not adipose tissue weight. Furthermore, insulin resistance and hepatic mRNA expression of gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and G6Pase, were improved in the HFD + ZMW 0.5% group. Furthermore, ZMW treatment decreased hepatic lipogenic gene expression; however, it did not alter adipogenesis in fat tissue, suggesting that ZMW inhibits hepatosteatosis through the suppression of lipogenesis. ZMW improved HFD-induced hepatic inflammation. Collectively, the present findings suggest that ZMW may serve as a new and promising strategy for the treatment of hepatosteatosis. PMID:27347064

  11. Activation of Aryl Hydrocarbon Receptor Dissociates Fatty Liver from Insulin Resistance by Inducing FGF21

    PubMed Central

    Lu, Peipei; Yan, Jiong; Liu, Ke; Garbacz, Wojciech G.; Wang, Pengcheng; Xu, Meishu; Ma, Xiaochao; Xie, Wen

    2015-01-01

    The aryl hydrocarbon receptor (AHR), also known as the dioxin receptor, was originally characterized as a xenobiotic receptor that senses xenotoxicants. Here we investigated the endobiotic and hepatic role of AHR in fatty liver and energy metabolism, and identified the endocrine factor that mediates the metabolic function of AHR. Wild type and liver-specific constitutively activated human AHR transgenic (TG) mice were used to investigate the role of AHR in fatty liver and energy homeostasis. Adenovirus expressing short hairpin RNA targeting the fibroblast growth factor 21 (FGF21) were used to determine the involvement of FGF21 in the metabolic effect of AHR. We showed that despite their severe fatty liver, the TG mice were protected from diet-induced obesity and type 2 diabetes. We identified the endocrine hormone FGF21 as a mediator for the metabolic benefit of AHR and established FGF21 as a direct transcriptional target of AHR. Interestingly, the transactivation of FGF21 by AHR contributed to both hepatic steatosis and systemic insulin hypersensitivity, both of which were largely abolished upon FGF21 knockdown. Conclusions The AHR-FGF21 endocrine signaling pathway establishes AHR as a pivotal environmental modifier that integrates signals from chemical exposure in the regulation of lipid and energy metabolism. PMID:25614121

  12. ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis

    PubMed Central

    Abderrahmani, Amar; Cheviet, Séverine; Ferdaoussi, Mourad; Coppola, Thierry; Waeber, Gérard; Regazzi, Romano

    2006-01-01

    The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic β-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of β-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic β-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes. PMID:16498408

  13. ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis.

    PubMed

    Abderrahmani, Amar; Cheviet, Séverine; Ferdaoussi, Mourad; Coppola, Thierry; Waeber, Gérard; Regazzi, Romano

    2006-03-01

    The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes. PMID:16498408

  14. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-04-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms.

  15. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans.

    PubMed

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-01-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms. PMID:27040644

  16. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans

    PubMed Central

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-01-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms. PMID:27040644

  17. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. PMID:27377964

  18. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    PubMed Central

    El-Zeftawy, Marwa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling. PMID:27579151

  19. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    PubMed

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling. PMID:27579151

  20. Glucose Transporter Type 4 Redistribution on the Membrane Induced by Insulin through Akt in Hydrocortisone Treatment in Rat Skeletal Muscles.

    PubMed

    Chen, Chien-Min; Chiu, Lian; Chen, Hung-Chi; Cheng, Chun-Yuan; Shyu, Woei-Cherng; Chou, Chii-Wen; Lu, Cheng-You; Lin, Chung-Tien

    2015-10-31

    Hydrocortisone is a growth hormone frequently used in the treatment of low back pain. Hydrocortisone treatment has an anti-inflammation effect, which also inactivates glucose transporter type 4 (GLUT4) by p38 mitogen-activated protein kinase (MAPK) inhibition. Translocation of GLUT4 regulates body glucose homeostasis and muscle repair and is induced by insulin. In this study, 56 SD rats were divided into seven groups, and were treated with insulin or hydrocortisone in sedentary or exercise training groups. The muscle proteins and biochemical blood parameters were analyzed after 7 days of treatments. The results showed that the serum glucose increased in hydrocortisone treatment accompanied by GLUT4 inactivation in both the sedentary and exercise training rats. In the exercise training groups, GLUT4 was redistributed on the plasma membrane on co-treatment with insulin and hydrocortisone through Akt phosphorylation. Insulin treatment exerted a compensatory feedback effect on the GLUT4 translocation on hydrocortisone co-treatment, which was the cause of GLUT4 inactivation. PMID:26387653

  1. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    PubMed

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  2. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    PubMed Central

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr308 and Ser473 phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  3. Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion.

    PubMed

    Tang, Nie; Matsuzaka, Takashi; Suzuki, Marii; Nakano, Yuta; Zao, Hui; Yokoo, Tomotaka; Suzuki-Kemuriyama, Noriko; Kuba, Motoko; Okajima, Yuka; Takeuchi, Yoshinori; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Takahashi, Akimitsu; Suzuki, Hiroaki; Sone, Hirohito; Shimada, Masako; Nakagawa, Yoshimi; Yahagi, Naoya; Yamada, Nobuhiro; Shimano, Hitoshi

    2014-07-18

    ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6(-/-) mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6(-/-) mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6(-/-) islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes. PMID:24938128

  4. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Viscarra, Jose A; Jaques, John T; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2016-03-15

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649

  5. Thioredoxin-mimetic peptides (TXM) reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells.

    PubMed

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Aisner, Yonatan; Niv, Masha Y; Benhar, Moran; Atlas, Daphne

    2013-04-01

    The thioredoxin reductase/thioredoxin system (TrxR/Trx1) plays a major role in protecting cells from oxidative stress. Disruption of the TrxR-Trx1 system keeps Trx1 in the oxidized state leading to cell death through activation of the ASK1-Trx1 apoptotic pathway. The potential mechanism and ability of tri- and tetra-oligopeptides derived from the canonical -CxxC- motif of the Trx1-active site to mimic and enhance Trx1 cellular activity was examined. The Trx mimetics peptides (TXM) protected insulinoma INS 832/13 cells from oxidative stress induced by selectively inhibiting TrxR with auranofin (AuF). TXM reversed the AuF-effects preventing apoptosis, and increasing cell-viability. The TXM peptides were effective in inhibiting AuF-induced MAPK, JNK and p38(MAPK) phosphorylation, in correlation with preventing caspase-3 cleavage and thereby PARP-1 dissociation. The ability to form a disulfide-bridge-like conformation was estimated from molecular dynamics simulations. The TXM peptides restored insulin secretion and displayed Trx1 denitrosylase activity. Their potency was 10-100-fold higher than redox reagents like NAC, AD4, or ascorbic acid. Unable to reverse ERK1/2 phosphorylation, TXM-CB3 (NAc-Cys-Pro-Cys amide) appeared to function in part, through inhibiting ASK1-Trx dissociation. These highly effective anti-apoptotic effects of Trx1 mimetic peptides exhibited in INS 832/13 cells could become valuable in treating adverse oxidative-stress related disorders such as diabetes. PMID:23327993

  6. High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice

    PubMed Central

    Mosser, Rockann E.; Maulis, Matthew F.; Moullé, Valentine S.; Dunn, Jennifer C.; Carboneau, Bethany A.; Arasi, Kavin; Pappan, Kirk; Poitout, Vincent

    2015-01-01

    Both short- (1 wk) and long-term (2–12 mo) high-fat diet (HFD) studies reveal enhanced β-cell mass due to increased β-cell proliferation. β-Cell proliferation following HFD has been postulated to occur in response to insulin resistance; however, whether HFD can induce β-cell proliferation independent of insulin resistance has been controversial. To examine the kinetics of HFD-induced β-cell proliferation and its correlation with insulin resistance, we placed 8-wk-old male C57Bl/6J mice on HFD for different lengths of time and assayed the following: glucose tolerance, insulin secretion in response to glucose, insulin tolerance, β-cell mass, and β-cell proliferation. We found that β-cell proliferation was significantly increased after only 3 days of HFD feeding, weeks before an increase in β-cell mass or peripheral insulin resistance was detected. These results were confirmed by hyperinsulinemic euglycemic clamps and measurements of α-hydroxybutyrate, a plasma biomarker of insulin resistance in humans. An increase in expression of key islet-proliferative genes was found in isolated islets from 1-wk HFD-fed mice compared with chow diet (CD)-fed mice. These data indicate that short-term HFD feeding enhances β-cell proliferation before insulin resistance becomes apparent. PMID:25628421

  7. Insulin induces a transcriptional activation of epiregulin, HB-EGF and amphiregulin, by a PI3K-dependent mechanism: Identification of a specific insulin-responsive promoter element

    SciTech Connect

    Ornskov, Dorthe; Nexo, Ebba; Sorensen, Boe S. . E-mail: boess@as.aaa.dk

    2007-03-23

    Previously we have shown that insulin-stimulation of RT4 bladder cancer cells leads to increased proliferation, which require HER1 activation, and is accompanied by increased mRNA expression of the EGF-ligands heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), and epiregulin (EPI) [D. Ornskov, E. Nexo, B.S. Sorensen, Insulin-induced proliferation of bladder cancer cells is mediated through activation of the epidermal growth factor system, FEBS J. 273 (2006) 5479-5489]. In the present paper, we have investigated the molecular mechanism leading to this insulin-induced expression. We monitored the decay of mRNA after inhibiting transcription with Actinomycin D and demonstrated that the insulin-mediated increase was not caused by enhanced mRNA stability. In untreated cells, HB-EGF mRNA was the least stable, whereas AR and EPI mRNA decayed with slower kinetics. However, promoter analysis of HB-EGF and EPI demonstrated that insulin stimulated transcription. Studies on the EPI promoter identified the insulin-responsive element to be located in the region -564 to -365 bp. This region contains potential binding sites for the transcription factors SP1, AP1, and NF-{kappa}B. Interestingly, all three transcription factors can be activated by PI3K. We demonstrate that the insulin-induced expression of HB-EGF, AR, and EPI mRNA is completely prevented by the specific PI3K inhibitor Wortmannin, suggesting an involvement of the PI3K.

  8. SPARC is over-expressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Shen, Yang; Zhao, Yuyan; Yuan, Lizhi; Yi, Wei; Zhao, Rui; Yi, Qianru; Yong, Tongwu

    2014-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a secretory multifunctional matricellular glycoprotein. High circulating levels of SPARC have been reported to be associated with obesity and insulin resistance. The aim of the present study was to investigate whether SPARC induces insulin resistance and mitochondrial dysfunction in adipocytes. Our results showed that feeding high fat diet to rats for 12 weeks significantly increased SPARC expression in adipose tissues at both mRNA and protein levels. Moreover, SPARC overexpression in stably transfected 3T3-L1 cells induced insulin resistance and mitochondrial dysfunction, as evidenced by inhibition of insulin-stimulated glucose transport, lower ATP synthesis and mitochondrial membrane potential, reduced expression of glucose transporter 4 (GLUT4), and increased levels of reactive oxygen species (ROS) in mature adipocytes. Finally, overexpression of SPARC also modulated the expression levels of several inflammatory cytokines, which play important roles in insulin resistance, glucose and lipid metabolism during adipogenesis. In conclusion, our data suggest that SPARC is involved in obesity-induced adipose insulin resistance and may serve as a potential target in the treatment of obesity and obesity-related insulin resistance. PMID:23910024

  9. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  10. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  11. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source.

    PubMed

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2015-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  12. Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.

    PubMed

    Chowdhury, Helena H; Kreft, Marko; Jensen, Jørgen; Zorec, Robert

    2014-01-01

    Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

  13. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages

    PubMed Central

    Zheng, Chunxing; Yang, Qian; Xu, Chunliang; Cao, Jianchang; Jiang, Menghui; Chen, Qing; Cao, Gang; Han, Yanyan; Li, Fengying; Cao, Wei; Zhang, Liying; Zhang, Li; Shi, Yufang; Wang, Ying

    2015-01-01

    Obesity-associated inflammation is accompanied by the accumulation of adipose tissue macrophages (ATMs), which is believed to predispose obese individuals to insulin resistance. CD11b (integrin αM) is highly expressed on monocytes and macrophages and is critical for their migration and function. We found here that high-fat diet–induced insulin resistance was significantly reduced in CD11b-deficient mice. Interestingly, the recruitment of monocytes to adipose tissue is impaired when CD11b is deficient, although the cellularity of ATMs in CD11b-deficient mice is higher than that in wild-type mice. We further found that the increase in ATMs is caused mainly by their vigorous proliferation in the absence of CD11b. Moreover, the proliferation and alternative activation of ATMs are regulated by the IL-4/STAT6 axis, which is inhibited by CD11b through the activity of phosphatase SHP-1. Thus, CD11b plays a critical role in obesity-induced insulin resistance by limiting the proliferation and alternative activation of ATMs. PMID:26669445

  14. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway.

    PubMed

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Zhang, Binfeng; Qi, Meng; Huang, Wendong; Yang, Li; Wang, Zhengtao

    2016-08-01

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. PMID:27208389

  15. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source

    PubMed Central

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2016-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  16. Rice bran protein hydrolysates prevented interleukin-6- and high glucose-induced insulin resistance in HepG2 cells.

    PubMed

    Boonloh, Kampeebhorn; Kukongviriyapan, Upa; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Senggunprai, Laddawan; Prawan, Auemduan; Thawornchinsombut, Supawan; Kukongviriyapan, Veerapol

    2015-02-01

    Rice bran, which is a byproduct of rice milling process, contains various nutrients and biologically active compounds. Rice bran protein hydrolysates have various pharmacological activities such as antidiabetic and antidyslipidemic effects. However, there are limited studies about the mechanisms of rice bran protein hydrolysates (RBP) on insulin resistance and lipid metabolism. RBP used in this study were prepared from Thai Jasmine rice. When HepG2 cells were treated with IL-6, the IRS-1 expression and Akt phosphorylation were suppressed. This effect of IL-6 was prevented by RBP in association with inhibition of STAT3 phosphorylation and SOCS3 expression. RBP could increase the phospho-AMPK levels and inhibit IL-6- or high glucose-induced suppression of AMPK and Akt activation. High glucose-induced dysregulation of the expression of lipogenic genes, including SREBP-1c, FASN and CPT-1, was normalized by RBP treatment. Moreover, impaired glucose utilization in insulin resistant HepG2 cells was significantly alleviated by concurrent treatment with RBP. Our results suggested that RBP suppresses inflammatory cytokine signaling and activates AMPK, and thereby these effects may underlie the insulin sensitizing effect. PMID:25518891

  17. Hypoglycemic coma due to insulin autoimmune syndrome induced by methimazole: A rare case report.

    PubMed

    Zhang, Yiyi; Zhao, Tieyun

    2014-11-01

    Insulin autoimmune syndrome (IAS) is a rare cause of hypoglycemia characterized by the presence of insulin-binding autoantibodies and fasting or late postprandial hypoglycemia. The number of reports on the association of human leukocyte antigen (HLA) genotype with this disease in adolescents in China is limited. This is the case report of a 17-year-old female patient with Graves' disease who was treated with methimazole (MTZ). After 4 weeks of continuous MTZ treatment, the patient suffered an episode of unconsciousness during the late postprandial phase and was admitted to the hospital, where the blood glucose level was found to be 2.88 mmol/l. The symptoms were relieved following intravenous glucose administration. Imaging studies of the pancreas were unremarkable, but the laboratory investigations on admission revealed high serum levels of total insulin, associated with relatively low levels of free insulin and markedly elevated insulin autoantibody (IAB) levels. HLA testing revealed DRB1(*)0406/0901 and the patient discontinued MTZ and was prescribed propylthiouracil. During the long-term follow-up, the total insulin and IAB levels gradually declined. There was no other episode of hypoglycemia. Therefore, in adolescents with Graves' disease receiving antithyroid treatment with MTZ who experience hypoglycemia, the IAB levels should be assessed to exclude or confirm IAS as the underlying cause. PMID:25289063

  18. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. PMID:23707515

  19. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor.

    PubMed

    Zhang, Chongben; Cooper, Daniel E; Grevengoed, Trisha J; Li, Lei O; Klett, Eric L; Eaton, James M; Harris, Thurl E; Coleman, Rosalind A

    2014-08-01

    Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance. PMID:24939733

  20. A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration.

    PubMed

    Rosen, Ohad; Manor, Rivka; Weil, Simy; Gafni, Ohad; Linial, Assaf; Aflalo, Eliahu D; Ventura, Tomer; Sagi, Amir

    2010-01-01

    In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters, along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing, accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover, contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related link to the evolution of insulins. PMID:21151555

  1. A Sexual Shift Induced by Silencing of a Single Insulin-Like Gene in Crayfish: Ovarian Upregulation and Testicular Degeneration

    PubMed Central

    Rosen, Ohad; Manor, Rivka; Weil, Simy; Gafni, Ohad; Linial, Assaf; Aflalo, Eliahu D.; Ventura, Tomer; Sagi, Amir

    2010-01-01

    In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters, along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing, accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover, contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related link to the evolution of insulins. PMID:21151555

  2. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice.

    PubMed

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  3. Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance

    PubMed Central

    2010-01-01

    Background High intake of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Methods Oral glucose tolerance tests (OGTT) were carried out, homeostasis model assessment of insulin resistance (HOMA) was calculated, homocysteine (Hcy), lipid concentrations and markers of oxidative stress were measured in male Wistar rats weighing 170-190 g. The rats were divided into four groups, kept on either control diet or high fructose diet (HFD), and simultaneously supplemented with 300 mg/kg/day taurine via intra-peritoneal (i.p.) route for 35 days. Results Fructose-fed rats showed significantly impaired glucose tolerance, impaired insulin sensitivity, hypertriglyceridemia, hypercholesterolemia, hyperhomocysteinemia (HHcy), lower total antioxidant capacity (TAC), lower paraoxonase (PON) activity, and higher nitric oxide metabolites (NOx) concentration, when compared to rats fed on control diet. Supplementing the fructose-fed rats with taurine has ameliorated the rise in HOMA by 56%, triglycerides (TGs) by 22.5%, total cholesterol (T-Chol) by 11%, and low density lipoprotein cholesterol (LDL-C) by 21.4%. Taurine also abolished any significant difference of TAC, PON activity and NOx concentration among treated and control groups. TAC positively correlated with PON in both rats fed on the HFD and those received taurine in addition to the HFD. Fructose-fed rats showed 34.7% increase in Hcy level. Taurine administration failed to prevent the observed HHcy in the current dosage and duration. Conclusion Our results indicate that HFD could induce IR which could further result in metabolic syndrome (MS), and that taurine has a protective role against the metabolic

  4. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice

    PubMed Central

    Dinger, Katharina; Kasper, Philipp; Hucklenbruch-Rother, Eva; Vohlen, Christina; Jobst, Eva; Janoschek, Ruth; Bae-Gartz, Inga; van Koningsbruggen-Rietschel, Silke; Plank, Christian; Dötsch, Jörg; Alejandre Alcázar, Miguel Angel

    2016-01-01

    Childhood obesity is a risk factor for asthma, but the molecular mechanisms linking both remain elusive. Since obesity leads to chronic low-grade inflammation and affects metabolic signaling we hypothesized that postnatal hyperalimentation (pHA) induced by maternal high-fat-diet during lactation leads to early-onset obesity and dysregulates pulmonary adipocytokine/insulin signaling, resulting in metabolic programming of asthma-like disease in adult mice. Offspring with pHA showed at postnatal day 21 (P21): (1) early-onset obesity, greater fat-mass, increased expression of IL-1β, IL-23, and Tnf-α, greater serum leptin and reduced glucose tolerance than Control (Ctrl); (2) less STAT3/AMPKα-activation, greater SOCS3 expression and reduced AKT/GSK3β-activation in the lung, indicative of leptin resistance and insulin signaling, respectively; (3) increased lung mRNA of IL-6, IL-13, IL-17A and Tnf-α. At P70 body weight, fat-mass, and cytokine mRNA expression were similar in the pHA and Ctrl, but serum leptin and IL-6 were greater, and insulin signaling and glucose tolerance impaired. Peribronchial elastic fiber content, bronchial smooth muscle layer, and deposition of connective tissue were not different after pHA. Despite unaltered bronchial structure mice after pHA exhibited significantly increased airway reactivity. Our study does not only demonstrate that early-onset obesity transiently activates pulmonary adipocytokine/insulin signaling and induces airway hyperreactivity in mice, but also provides new insights into metabolic programming of childhood obesity-related asthma. PMID:27087690

  5. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  6. Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation

    PubMed Central

    Smith, Gordon I.; Yoshino, Jun; Stromsdorfer, Kelly L.; Klein, Seth J.; Magkos, Faidon; Reeds, Dominic N.; Klein, Samuel

    2015-01-01

    Increased plasma branched-chain amino acid concentrations are associated with insulin resistance, and intravenous amino acid infusion blunts insulin-mediated glucose disposal. We tested the hypothesis that protein ingestion impairs insulin-mediated glucose disposal by leucine-mediated mTOR signaling, which can inhibit AKT. We measured glucose disposal and muscle p-mTORSer2448, p-AKTSer473, and p-AKTThr308 in 22 women during a hyperinsulinemic-euglycemic clamp procedure with and without concomitant ingestion of whey protein (0.6 g/kg fat-free mass; n = 11) or leucine that matched the amount given with whey protein (n = 11). Both whey protein and leucine ingestion raised plasma leucine concentration by approximately twofold and muscle p-mTORSer2448 by ∼30% above the values observed in the control (no amino acid ingestion) studies; p-AKTSer473 and p-AKTThr308 were not affected by whey protein or leucine ingestion. Whey protein ingestion decreased insulin-mediated glucose disposal (median 38.8 [quartiles 30.8, 61.8] vs. 51.9 [41.0, 77.3] µmol glucose/µU insulin · mL−1 · min−1; P < 0.01), whereas ingestion of leucine did not (52.3 [43.3, 65.4] vs. 52.3 [43.9, 73.2]). These results indicate that 1) protein ingestion causes insulin resistance and could be an important regulator of postprandial glucose homeostasis and 2) the insulin-desensitizing effect of protein ingestion is not due to inhibition of AKT by leucine-mediated mTOR signaling. PMID:25475435

  7. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  8. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. PMID:26394662

  9. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice.

    PubMed

    Chen, Shu; Okahara, Fumiaki; Osaki, Noriko; Shimotoyodome, Akira

    2015-03-01

    Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted in response to dietary fat and glucose. The blood GIP level is elevated in obesity and diabetes. GIP stimulates proinflammatory gene expression and impairs insulin sensitivity in cultured adipocytes. In obesity, hypoxia within adipose tissue can induce inflammation. The aims of this study were 1) to examine the proinflammatory effect of increased GIP signaling in adipose tissues in vivo and 2) to clarify the association between GIP and hypoxic signaling in adipose tissue inflammation. We administered GIP intraperitoneally to misty (lean) and db/db (obese) mice and examined adipose tissue inflammation and insulin sensitivity. We also examined the effects of GIP and hypoxia on expression of the GIP receptor (GIPR) gene and proinflammatory genes in 3T3-L1 adipocytes. GIP administration increased monocyte chemoattractant protein-1 (MCP-1) expression and macrophage infiltration into adipose tissue and increased blood glucose in db/db mice. GIPR and hypoxia-inducible factor-1α (HIF-1α) expressions were positively correlated in the adipose tissue in mice. GIPR expression increased dramatically in differentiated adipocytes. GIP treatment of adipocytes increased MCP-1 and interleukin-6 (IL-6) production. Adipocytes cultured either with RAW 264 macrophages or under hypoxia expressed more GIPR and HIF-1α, and GIP treatment increased gene expression of plasminogen activator inhibitor 1 and IL-6. HIF-1α gene silencing diminished both macrophage- and hypoxia-induced GIPR expression and GIP-induced IL-6 expression in adipocytes. Thus, increased GIP signaling plays a significant role in adipose tissue inflammation and thereby insulin resistance in obese mice, and HIF-1α may contribute to this process. PMID:25537494

  10. Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression.

    PubMed

    Ou, Yu; Ren, Zhiheng; Wang, Jianhui; Yang, Xuegan

    2016-03-01

    The therapeutic potential and molecular mechanism of phycocyanin from Spirulina on alloxan-induced diabetes mice was investigated. In the experiment, 4-week treatment of phycocyanin at the dose of 100 and 200 mg/kg body weight in alloxan-induced diabetes mice resulted in improved metrics in comparison with alloxan-induced diabetes group. These metrics include blood glucose levels, glycosylated serum protein (GSP), glycosylated hemoglobin (GHb) and fasting serum insulin (FINS) levels. As its molecular mode of action, phycocyanin leads to the increase of IRS-1 tyrosine phosphorylation and the decrease of IRS-1 serine phosphorylation, also accompany with increased level of Akt phosphorylation on Ser473 in the liver and pancreas in diabetic mice. In addition, phycocyanin treatment enhanced the glucokinase (GK) level in the liver and pancreas, and the glucokinase regulatory protein (GKRP) level in the liver in diabetic mice. The results suggest that phycocyanin ameliorates alloxan-induced diabetes mellitus in mice by activating insulin signaling pathway and GK expression in pancreas and liver in diabetic mice. PMID:26827782

  11. Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces β Cell Proliferation.

    PubMed

    Szabat, Marta; Page, Melissa M; Panzhinskiy, Evgeniy; Skovsø, Søs; Mojibian, Majid; Fernandez-Tajes, Juan; Bruin, Jennifer E; Bround, Michael J; Lee, Jason T C; Xu, Eric E; Taghizadeh, Farnaz; O'Dwyer, Shannon; van de Bunt, Martijn; Moon, Kyung-Mee; Sinha, Sunita; Han, Jun; Fan, Yong; Lynn, Francis C; Trucco, Massimo; Borchers, Christoph H; Foster, Leonard J; Nislow, Corey; Kieffer, Timothy J; Johnson, James D

    2016-01-12

    Pancreatic β cells are mostly post-mitotic, but it is unclear what locks them in this state. Perturbations including uncontrolled hyperglycemia can drive β cells into more pliable states with reduced cellular insulin levels, increased β cell proliferation, and hormone mis-expression, but it is unknown whether reduced insulin production itself plays a role. Here, we define the effects of ∼50% reduced insulin production in Ins1(-/-):Ins2(f/f):Pdx1Cre(ERT):mTmG mice prior to robust hyperglycemia. Transcriptome, proteome, and network analysis revealed alleviation of chronic endoplasmic reticulum (ER) stress, indicated by reduced Ddit3, Trib3, and Atf4 expression; reduced Xbp1 splicing; and reduced phospho-eIF2α. This state was associated with hyper-phosphorylation of Akt, which is negatively regulated by Trib3, and with cyclinD1 upregulation. Remarkably, β cell proliferation was increased 2-fold after reduced insulin production independently of hyperglycemia. Eventually, recombined cells mis-expressed glucagon in the hyperglycemic state. We conclude that the normally high rate of insulin production suppresses β cell proliferation in a cell-autonomous manner. PMID:26626461

  12. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    PubMed

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  13. Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice.

    PubMed

    Vitto, M F; Luz, G; Luciano, T F; Marques, S O; Souza, D R; Pinho, R A; Lira, F S; Cintra, D E; De Souza, C T

    2012-11-01

    The literature has associated hepatic insulin action with NAFLD. In this sense, treatments to revert steatosis and improve hepatic insulin action become important. Our group has demonstrated that inhibition of Sterol Regulatory Element Binding Proteins-1c (SREBP-1c) reverses hepatic steatosis. However, insulin signals after NAFLD reversion require better investigation. Thus, in this study, we investigated if the reversal of NAFLD by SREBP-1c inhibitor results in improvement in the hepatic insulin signal in obesity mice. After installation/achievement of diet-induced obesity and insulin resistance, Swiss mice were divided into 3 groups: i) Lean, ii) D-IHS, diet-induced hepatic steatosis [no treatment with antisense oligonucleotide (ASO)], and iii) RD-IHS, reversion of diet-induced hepatic steatosis (treated with ASO). The mice were treated with ASO SREBP-1c as previously described by our group. After ASO treatment, one set of animals was anesthetized and used for in vivo test, and another mice set was anesthetized and used for histology and Western blot analysis. Reversion of diet-induced hepatic steatosis did not change blood glucose, glucose decay constant (k(ITT)), body weight, or serum insulin levels. In addition, results showed that the protocol did not improve insulin pathway signaling, as confirmed by the absence of changes in IR, IRS1, Akt and Foxo1 phosphorylation in hepatic tissue. In parallel, no alterations were observed in proinflammatory molecules. Thus, our results suggest that the inhibition of SREBP-1c reverts steatosis, but without improving insulin hepatic resistance. PMID:22932913

  14. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2.

    PubMed

    Kwon, Young; Song, Wei; Droujinine, Ilia A; Hu, Yanhui; Asara, John M; Perrimon, Norbert

    2015-04-01

    Organ wasting, related to changes in nutrition and metabolic activity of cells and tissues, is observed under conditions of starvation and in the context of diseases, including cancers. We have developed a model for organ wasting in adult Drosophila, whereby overproliferation induced by activation of Yorkie, the Yap1 oncogene ortholog, in intestinal stem cells leads to wasting of the ovary, fat body, and muscle. These organ-wasting phenotypes are associated with a reduction in systemic insulin/IGF signaling due to increased expression of the secreted insulin/IGF antagonist ImpL2 from the overproliferating gut. Strikingly, expression of rate-limiting glycolytic enzymes and central components of the insulin/IGF pathway is upregulated with activation of Yorkie in the gut, which may provide a mechanism for this overproliferating tissue to evade the effect of ImpL2. Altogether, our study provides insights into the mechanisms underlying organ-wasting phenotypes in Drosophila and how overproliferating tissues adapt to global changes in metabolism. PMID:25850671

  15. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E

    PubMed Central

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4+ and CD8+ T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. PMID:26603489

  16. Consumption of Clarified Grapefruit Juice Ameliorates High-Fat Diet Induced Insulin Resistance and Weight Gain in Mice

    PubMed Central

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L.; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25–50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13–17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet. PMID:25296035

  17. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    PubMed

    Chudnovskiy, Rostislav; Thompson, Airlia; Tharp, Kevin; Hellerstein, Marc; Napoli, Joseph L; Stahl, Andreas

    2014-01-01

    To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet. PMID:25296035

  18. Polyunsaturated Fatty Acids Attenuate Diet Induced Obesity and Insulin Resistance, Modulating Mitochondrial Respiratory Uncoupling in Rat Skeletal Muscle

    PubMed Central

    Bergamo, Paolo; De Filippo, Chiara; Mattace Raso, Giuseppina; Gifuni, Giorgio; Putti, Rosalba; Moni, Bottu Heleena; Canani, Roberto Berni; Meli, Rosaria; Mollica, Maria Pina

    2016-01-01

    Objectives Omega (ω)-3 polyunsaturated fatty acids (PUFA) are dietary compounds able to attenuate insulin resistance. Anyway, the precise actions of ω-3PUFAs in skeletal muscle are overlooked. We hypothesized that PUFAs, modulating mitochondrial function and efficiency, would ameliorate pro-inflammatory and pro-oxidant signs of nutritionally induced obesity. Study Design To this aim, rats were fed a control diet (CD) or isocaloric high fat diets containing either ω-3 PUFA (FD) or lard (LD) for 6 weeks. Results FD rats showed lower weight, lipid gain and energy efficiency compared to LD-fed animals, showing higher energy expenditure and O2 consumption/CO2 production. Serum lipid profile and pro-inflammatory parameters in FD-fed animals were reduced compared to LD. Accordingly, FD rats exhibited a higher glucose tolerance revealed by an improved glucose and insulin tolerance tests compared to LD, accompanied by a restoration of insulin signalling in skeletal muscle. PUFAs increased lipid oxidation and reduced energy efficiency in subsarcolemmal mitochondria, and increase AMPK activation, reducing both endoplasmic reticulum and oxidative stress. Increased mitochondrial respiration was related to an increased mitochondriogenesis in FD skeletal muscle, as shown by the increase in PGC1-α and -β. Conclusions our data strengthened the association of high dietary ω3-PUFA intake with reduced mitochondrial energy efficiency in the skeletal muscle. PMID:26901315

  19. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    PubMed

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  20. Carrageenan Inhibits Insulin Signaling through GRB10-mediated Decrease in Tyr(P)-IRS1 and through Inflammation-induced Increase in Ser(P)307-IRS1

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2015-01-01

    Inflammation induced by exposure to the common food additive carrageenan leads to insulin resistance by increase in Ser(P)307-insulin receptor substrate 1 (IRS1) and subsequent decline in the insulin-stimulated increase in Ser(P)473-AKT. Inhibition of carrageenan-induced inflammation reversed the increase in Ser(P)307-IRS1 but did not completely reverse the carrageenan-induced decline in Ser(P)473-AKT. To identify the additional mechanism responsible for the decrease in Ser(P)473-AKT, studies were performed in human HepG2 cells and in C57BL/6J mice. Following carrageenan, expression of GRB10 (growth factor receptor-bound 10 protein), an adaptor protein that binds to the insulin receptor and inhibits insulin signaling, increased significantly. GRB10 silencing blocked the carrageenan-induced reduction of the insulin-stimulated increase in Tyr(P)-IRS1 and partially reversed the decline in Ser(P)473-AKT. The combination of GRB10 silencing with BCL10 silencing and the reactive oxygen species inhibitor Tempol completely reversed the decline in Ser(P)473-AKT. After carrageenan, GRB10 promoter activity was enhanced because of activation by GATA2. A direct correlation between Ser(P)473-AKT and Ser(P)401-GATA2 was evident, and inhibition of AKT phosphorylation by the PI3K inhibitor LY294002 blocked Ser401-GATA2 phosphorylation and the increase in GRB10 expression. Studies indicated that carrageenan inhibited insulin signaling by two mechanisms: through the inflammation-mediated increase in Ser(P)307-IRS1, a negative regulator of insulin signaling, and through a transcriptional mechanism leading to increase in GRB10 expression and GRB10-inhibition of Tyr(P)-IRS1, a positive regulator of insulin signaling. These mechanisms converge to inhibit the insulin-induced increase in Ser(P)473-AKT. They provide internal feedback, mediated by Ser(P)473-AKT, Ser(P)401-GATA2, and nuclear GATA2, which links the opposing effects of serine and tyrosine phosphorylations of IRS1 and can

  1. Different effects of bombesin on glucose- and tolbutamide-induced insulin release in man.

    PubMed Central

    Scarpignato, C.; Gioffré, M.; Gulino, F. M.; Micali, B.

    1988-01-01

    1. The effect of bombesin, a neurogastrointestinal peptide, on basal and stimulated insulin release was studied in man. 2. Two different stimuli were used, hyperglycaemic (20 g glucose) and hypoglycaemic (1 g tolbutamide). They were injected intravenously to two groups of male healthy volunteers during saline or bombesin (5 ng kg-1 min-1 for 60 min) infusion. 3. The peptide had no significant effect on basal levels of glucose and insulin. However, the insulin response to intravenous glucose was strongly potentiated by bombesin, the integrated insulin response being 2.23 +/- 0.59 mu ml-1 . 90 min and 0.98 +/- 0.19 mu ml-1 . 90 min during infusion of bombesin and saline, respectively (P less than 0.05). The behaviour of plasma glucose was not significantly modified by the peptide. Indeed, the glucose disappearance rate (K of Conard, mg min 10(-2)) changed from 2.5 +/- 0.3 during saline to 2.4 +/- 0.4 during bombesin infusion. 4. When the hypoglycaemic stimulus (i.e. tolbutamide) was used, no effect of the peptide on insulin release could be detected. Here again, the drop in plasma glucose (expressed as Marigo's coefficient) was not affected by the peptide, with a value of 92.8 +/- 12.6 and 84.0 +/- 10.9 during bombesin and saline administration. 5. These data therefore show that, at normal or low blood glucose levels, the dose of bombesin used is unable to modify insulin release and suggest that this peptide might be regarded as a glucose-dependent insulinotropic peptide. PMID:3061541

  2. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    PubMed Central

    Seyedi, Fatemeh; Farsinejad, Alireza; Nematollahi-Mahani, Seyed Amirmahdi; Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin

    2016-01-01

    Objective Worldwide, diabetes mellitus (DM) is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC) that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs) into IPCs and measured insulin production. Materials and Methods In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12) medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC) and the chemiluminesence immunoassay (CLIA). Results Reverse transcription-polymerase chain reaction (RT-PCR) showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation. PMID:27054119

  3. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle.

    PubMed

    Gniadek, Thomas J; Carroll, Karen C; Simner, Patricia J

    2016-07-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  4. Metabolic disorders and adipose tissue insulin responsiveness in neonatally STZ-induced diabetic rats are improved by long-term melatonin treatment.

    PubMed

    de Oliveira, Ariclécio C; Andreotti, Sandra; Farias, Talita da S M; Torres-Leal, Francisco L; de Proença, André R G; Campaña, Amanda B; de Souza, Arnaldo H; Sertié, Rogério A L; Carpinelli, Angelo R; Cipolla-Neto, José; Lima, Fábio B

    2012-05-01

    Diabetes mellitus is a product of low insulin sensibility and pancreatic β-cell insufficiency. Rats with streptozotocin-induced diabetes during the neonatal period by the fifth day of age develop the classic diabetic picture of hyperglycemia, hypoinsulinemia, polyuria, and polydipsia aggravated by insulin resistance in adulthood. In this study, we investigated whether the effect of long-term treatment with melatonin can improve insulin resistance and other metabolic disorders in these animals. At the fourth week of age, diabetic animals started an 8-wk treatment with melatonin (1 mg/kg body weight) in the drinking water at night. Animals were then killing, and the sc, epididymal (EP), and retroperitoneal (RP) fat pads were excised, weighed, and processed for adipocyte isolation for morphometric analysis as well as for measuring glucose uptake, oxidation, and incorporation of glucose into lipids. Blood samples were collected for biochemical assays. Melatonin treatment reduced hyperglycemia, polydipsia, and polyphagia as well as improved insulin resistance as demonstrated by constant glucose disappearance rate and homeostasis model of assessment-insulin resistance. However, melatonin treatment was unable to recover body weight deficiency, fat mass, and adipocyte size of diabetic animals. Adiponectin and fructosamine levels were completely recovered by melatonin, whereas neither plasma insulin level nor insulin secretion capacity was improved in diabetic animals. Furthermore, melatonin caused a marked delay in the sexual development, leaving genital structures smaller than those of nontreated diabetic animals. Melatonin treatment improved the responsiveness of adipocytes to insulin in diabetic animals measured by tests of glucose uptake (sc, EP, and RP), glucose oxidation, and incorporation of glucose into lipids (EP and RP), an effect that seems partially related to an increased expression of insulin receptor substrate 1, acetyl-coenzyme A carboxylase and fatty acid

  5. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirnik, Zdenko; Zemenová, Jana; Haluzík, Martin; Železná, Blanka; Galas, Marie-Christine; Maletínská, Lenka

    2015-01-01

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation. PMID:25624414

  6. CD44 Plays a Critical Role in Regulating Diet-Induced Adipose Inflammation, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Kang, Hong Soon; Liao, Grace; DeGraff, Laura M.; Gerrish, Kevin; Bortner, Carl D.; Garantziotis, Stavros; Jetten, Anton M.

    2013-01-01

    CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance. PMID:23505504

  7. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway

    PubMed Central

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. [Methods] Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. [Results] Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p <.05). Protein levels of insulin receptor subunit-1 (IRS-1), IRS-2, and p-Akt were significantly higher in the HFT, HFND, and HFNDT groups, as compared with HF group. In addition, the protein levels of the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal S6 protein kinase 1 were significantly decreased by exercise and dietary change (p <.05). However, mTORC2 and phosphoinositide 3-kinase were significantly increased (p <.05). [Conclusion] In summary, despite the negative impact of continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels. PMID:27508151

  8. Cashew apple extract inhibition of fat storage and insulin resistance in the diet-induced obesity mouse model.

    PubMed

    Beejmohun, Vickram; Mignon, Cyril; Mazollier, Aude; Peytavy-Izard, Marie; Pallet, Dominique; Dornier, Manuel; Chapal, Nicolas

    2015-01-01

    The cashew apple is an unvalued by-product from the cashew nut industry, of which millions of tonnes are simply discarded globally. Interestingly, however, cashew apple nutrients may have beneficial effects for health even if these are still poorly described. The present study was designed to evaluate the effect of a hydro-alcoholic extract of cashew apple (cashew apple extract; CAE; Cashewin(™)) on obesity and diabetes, in two experimental designs using the diet-induced obesity (DIO) mouse model. First, in the preventive design, mice were treated orally with the CAE at the dose of 200 mg/kg body weight from the first day under a high-fat diet (HFD) and during 8 weeks thereafter. Second, in the curative design, the animals were first maintained under the HFD for 4 weeks and then treated with the CAE for a further 4 weeks under the same regimen. For both experimental designs, body weight, peri-epididymal adipose tissue, liver weight, food consumption, glycaemia, insulinaemia and insulin resistance were assessed. In both designs, the CAE significantly reduced body-weight gain and fat storage in both the peri-epididymal adipose tissue and the liver for mice under the HFD. This was achieved without modifying their energy consumption. Furthermore, glycaemia, insulinaemia and insulin resistance (homeostasis model assessment-insulin resistance) of the DIO mice were significantly lowered compared with the control group. Thus, a well-designed hydro-alcoholic extract of cashew apple could provide an attractive nutritional food ingredient to help support the management of body weight and associated metabolic parameters such as blood glucose and insulin levels. PMID:26688724

  9. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-01

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. PMID:27020550

  10. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

    PubMed Central

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A.; Averill, Michelle M.; Becker, Lev; Larson, Ilona; Hagman, Derek K.; Foster-Schubert, Karen E.; van Yserloo, Brian; Bornfeldt, Karin E.; LeBoeuf, Renee C.; Kratz, Mario

    2014-01-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14+CD206+ macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b+F4/80+CD11c−macrophages accumulated to a greater extent in MMP12-deficient (Mmp12−/−) mice than in wild-type mice (Mmp12+/+). Despite being markedly more obese, fat-fed Mmp12−/− mice were more insulin sensitive than fat-fed Mmp12+/+ mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12−/− macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion. PMID:24914938

  11. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues.

    PubMed

    Watt, Matthew J; Hevener, Andrea; Lancaster, Graeme I; Febbraio, Mark A

    2006-05-01

    Ciliary neurotrophic factor (CNTF) is a member of the gp130 receptor cytokine family recently identified as an antiobesity agent in rodents and humans by mechanisms that remain unclear. We investigated the impact of acute CNTF treatment on insulin action in the presence of lipid oversupply. To avoid confounding effects of long-term high-fat feeding or genetic manipulation on whole-body insulin sensitivity, we performed a 2-h Intralipid infusion (20% heparinized Intralipid) with or without recombinant CNTF pretreatment (Axokine 0.3 mg/kg), followed by a 2-h hyperinsulinemic-euglycemic clamp (12 mU/kg.min) in fasted, male Wistar rats. Acute Intralipid infusion increased plasma free fatty acid levels from 1.0 +/- 0.1 to 2.5 +/- 0.3 mM, which subsequently caused reductions in skeletal muscle (insulin-stimulated glucose disposal rate) and liver (hepatic glucose production) insulin sensitivity by 30 and 45%, respectively. CNTF pretreatment completely prevented the lipid-mediated reduction in insulin-stimulated glucose disposal rate and the blunted suppression of hepatic glucose production by insulin. Although lipid infusion increased triacylglycerol and ceramide accumulation and phosphorylation of mixed linage kinase 3 and c-Jun N-terminal kinase 1 in skeletal muscle, CNTF pretreatment prevented these lipid-induced effects. Alterations in hepatic and muscle insulin signal transduction as well as phosphorylation of c-Jun N-terminal kinase 1/2 paralleled alterations in insulin sensitivity. These data support the use of CNTF as a potential therapeutic means to combat lipid-induced insulin resistance. PMID:16396984

  12. Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    PubMed Central

    2010-01-01

    Background Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows. Methods The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days post partum during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds. Results There was a breed effect on blood NEFA (P < 0.05) and a time effect on all metabolites concentration (P < 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (P < 0.05), higher glucose concentration 20 (P < 0.01) and 30 min (P < 0.05) after infusion, and higher NEFA concentration before (P < 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40th min nadir (P < 0.01), followed by an increase to the 60th min postinfusion (P < 0.01). Conclusion Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows. PMID:20089161

  13. Insulin-induced oxidative stress up-regulates heme oxygenase-1 via diverse signaling cascades in the C2 skeletal myoblast cell line.

    PubMed

    Aggeli, Ioanna-Katerina; Theofilatos, Dimitris; Beis, Isidoros; Gaitanaki, Catherine

    2011-04-01

    Impaired insulin sensitivity (insulin resistance) is a common denominator in many metabolic disorders, exerting pleiotropic effects on skeletal muscle, liver, and adipose tissue function. Heme oxygenase-1 (HOX-1), the rate-limiting enzyme in heme catabolism, has recently been shown to confer an antidiabetic effect while regulating cellular redox-buffering capacity. Therefore, in the present study, we probed into the mechanisms underlying the effect of insulin on HOX-1 in C2 skeletal myoblasts. Hence, insulin was found to suppress C2 myoblasts viability via stimulation of oxidative stress, with HOX-1 counteracting this action. Insulin induced HOX-1 expression in a time- and dose-dependent manner, an effect attenuated by selective inhibitors of ERK1/2 (PD98059), Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine), and c-Jun terminal kinases 1 and 2 (SP600125) pathways. Furthermore, nuclear factor-κB role in insulin-induced HOX-1 up-regulation was verified, with ERK1/2, Src, and c-Jun terminal kinases 1 and 2 mediating p65-nuclear factor-κB subunit phosphorylation. Overall, our novel findings highlight for the first time the transduction mechanisms mediating HOX-1 induction in insulin-treated C2 myoblasts. This effect was established to be cell type specific because insulin failed to promote HOX-1 expression in HepG2 hepatoma cells. Deciphering the signaling networks involved in insulin-stimulated HOX-1 up-regulation is of prominent significance because it may potentially contribute to elucidation of the mechanisms involved in associated metabolic pathologies. PMID:21325398

  14. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  15. Involvement of calcitonin gene-related peptide (CGRP) receptors in insulin-induced vasodilatation in mesenteric resistance blood vessels of rats.

    PubMed

    Mimaki, Y; Kawasaki, H; Okazaki, M; Nakatsuma, A; Araki, H; Gomita, Y

    1998-04-01

    1. The vascular effect of insulin in the mesenteric resistance blood vessel and the role of calcitonin generelated peptide (CGRP)-receptor in insulin-induced vascular responsiveness were investigated in rats. 2. The mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations contracted by perfusion with Krebs solution containing methoxamine in the presence of guanethidine, the perfusion of insulin (from 0.1 to 3000 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation. The pD2 value and maximum relaxation (%) were 6.94+/-0.22 and 43.9+/-5.2, respectively. 3. This vasodilator response to insulin was unaffected by 100 nM propranolol (beta-adrenoceptor antagonist) plus 100 nM atropine (muscarinic cholinoceptor antagonist), 100 microM L-NG-nitroarginine (nitric oxide synthase inhibitor), 1 microM ouabain (Na+-K+ ATPase inhibitor), or 1 microM glibenclamide (ATP sensitive K+-channel inhibitor). 4. In preparations without endothelium, perfusion of insulin produced a marked vasodilatation. The pD2 value and maximum relaxation (%) were 7.62+/-0.21 and 81.0+/-4.6, respectively, significantly greater than in preparations with intact endothelium. 5. The vasodilator responses to insulin in the preparations without endothelium were significantly inhibited by CGRP[8 37], a CGRP receptor antagonist, whereas pretreatment with capsaisin, a toxin for CGRP-containing nerves, did not affect insulin-induced vasodilatation. 6. These results suggest that insulin induces non-adrenergic, non-cholinergic and endothelium-independent vasodilatation, which is partially mediated by CGRP receptors. PMID:9605576

  16. Involvement of calcitonin gene-related peptide (CGRP) receptors in insulin-induced vasodilatation in mesenteric resistance blood vessels of rats

    PubMed Central

    Mimaki, Yuichi; Kawasaki, Hiromu; Okazaki, Masatoshi; Nakatsuma, Akira; Araki, Hiroaki; Gomita, Yutaka

    1998-01-01

    The vascular effect of insulin in the mesenteric resistance blood vessel and the role of calcitonin gene-related peptide (CGRP)-receptor in insulin-induced vascular responsiveness were investigated in rats.The mesenteric vascular beds isolated from Wistar rats were perfused with Krebs solution, and perfusion pressure was measured with a pressure transducer. In preparations contracted by perfusion with Krebs solution containing methoxamine in the presence of guanethidine, the perfusion of insulin (from 0.1 to 3000 nM) caused a concentration-dependent decrease in perfusion pressure due to vasodilatation. The pD2 value and maximum relaxation (%) were 6.94±0.22 and 43.9±5.2, respectively.This vasodilator response to insulin was unaffected by 100 nM propranolol (β-adrenoceptor antagonist) plus 100 nM atropine (muscarinic cholinoceptor antagonist), 100 μM L-NG-nitroarginine (nitric oxide synthase inhibitor), 1 μM ouabain (Na+-K+ ATPase inhibitor), or 1 μM glibenclamide (ATP sensitive K+-channel inhibitor).In preparations without endothelium, perfusion of insulin produced a marked vasodilatation. The pD2 value and maximum relaxation (%) were 7.62±0.21 and 81.0±4.6, respectively, significantly greater than in preparations with intact endothelium.The vasodilator responses to insulin in the preparations without endothelium were significantly inhibited by CGRP[8–37], a CGRP receptor antagonist, whereas pretreatment with capsaisin, a toxin for CGRP-containing nerves, did not affect insulin-induced vasodilatation.These results suggest that insulin induces non-adrenergic, non-cholinergic and endothelium-independent vasodilatation, which is partially mediated by CGRP receptors. PMID:9605576

  17. The Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil Ameliorates Insulin Resistance Induced by Chronic Angiotensin II Treatment in Rat Skeletal Muscle

    PubMed Central

    Lastra, Guido; Santos, Fernando R.; Hooshmand, Payam; Hooshmand, Paria; Mugerfeld, Irina; Aroor, Annayya R.; DeMarco, Vincent G.; Sowers, James R.; Henriksen, Erik J.

    2013-01-01

    Angiotensin receptor (type 1) blockers (ARBs) can reduce both hypertension and insulin resistance induced by local and systemic activation of the renin-angiotensin-aldosterone system. The effectiveness of azilsartan medoxomil (AZIL-M), a novel imidazole-based ARB, to facilitate metabolic improvements in conditions of angiotensin II (Ang II)-associated insulin resistance is currently unknown. The aim of this study was to determine the impact of chronic AZIL-M treatment on glucose transport activity and key insulin signaling elements in red skeletal muscle of Ang II-treated rats. Male Sprague-Dawley rats were treated for 8 weeks with or without Ang II (200 ng/kg/min) combined with either vehicle or AZIL-M (1 mg/kg/day). Ang II induced significant (p < 0.05) increases in blood pressure, which were completely prevented by AZIL-M. Furthermore, Ang II reduced insulin-mediated glucose transport activity in incubated soleus muscle, and AZIL-M co-treatment increased this parameter. Moreover, AZIL-M treatment of Ang II-infused animals increased the absolute phosphorylation of insulin signaling molecules, including Akt [both Ser473 (81%) and Thr308 (23%)] and AS160 Thr642 (42%), in red gastrocnemius muscle frozen in situ. Absolute AMPKα (Thr172) phosphorylation increased (98%) by AZIL-M treatment, and relative Thr389 phosphorylation of p70 S6K1, a negative regulator of insulin signaling, decreased (51%) with AZIL-M treatment. These results indicate that ARB AZIL-M improves the in vitro insulin action on glucose transport in red soleus muscle and the functionality of the Akt/AS160 axis in red gastrocnemius muscle in situ in Ang II-induced insulin-resistant rats, with the latter modification possibly associated with enhanced AMPKα and suppressed p70 S6K1 activation. PMID:23922555

  18. Cinnamon Administration Enhances Glucose-Induced Insulin Secretion in Diabetic Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of these studies was to measure the effects of orally administered cinnamon on glucose tolerance and insulin secretion in vivo. Young male Wistar strain rats were rendered diabetic by intravenous administration of streptozotocin (40 mg/Kg body weight) to produce animals with Type 2 di...

  19. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS con...

  20. Augmented insulin effects on plasma glucose by cranberry procyanidins in streptozotocin-induced diabetic rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of this study were to determine if cranberry proanthocyanidins (CPACs) had an antihyperglycemic effect in the presence or absence of insulin in male diabetic Sprague-Dawley rats. Rats (approximately 250 g)(n=6-10/ trt) were given a single intraperitoneal (ip) injection of freshly prepared...

  1. Chronic parenteral nutrition reduces lean tissue growth and induces insulin resistance in neonatal piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most very low birthweight infants receive their nutrition parenterally prior to achieving full enteral feedings. Recent studies indicate that infants born less than 32 weeks gestation showed evidence of insulin resistance at 4 to 10 years. However, there is little information regarding the effect of...

  2. CHRONIC ALCOHOL CONSUMPTION INDUCES TRB3 AND DISRUPTS INSULIN SIGNALING THROUGH INCREASED ER STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prospective cohort studies have shown that chronic and excessive alcohol consumption is an important and modifiable risk factor for type 2 diabetes. Alcohol consumption alters insulin signaling, but the molecular mechanisms underlying this effect are not well understood. We previously reported that ...

  3. Chronic parenteral nutrition induces hepatic inflammation, steatosis and insulin resistance in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prematurity and overfeeding in infants are associated with insulin resistance in childhood and may increase the risk of adult disease. Total parenteral nutrition (TPN) is a major source of infant nutrition support and may influence neonatal metabolic function. Our aim was to test the hypothesis that...

  4. CB1 receptor blockade counters age-induced insulin resistance and metabolic dysfunction.

    PubMed

    Lipina, Christopher; Vaanholt, Lobke M; Davidova, Anastasija; Mitchell, Sharon E; Storey-Gordon, Emma; Hambly, Catherine; Irving, Andrew J; Speakman, John R; Hundal, Harinder S

    2016-04-01

    The endocannabinoid system can modulate energy homeostasis by regulating feeding behaviour as well as peripheral energy storage and utilization. Importantly, many of its metabolic actions are mediated through the cannabinoid type 1 receptor (CB1R), whose hyperactivation is associated with obesity and impaired metabolic function. Herein, we explored the effects of administering rimonabant, a selective CB1R inverse agonist, upon key metabolic parameters in young (4 month old) and aged (17 month old) adult male C57BL/6 mice. Daily treatment with rimonabant for 14 days transiently reduced food intake in young and aged mice; however, the anorectic response was more profound in aged animals, coinciding with a substantive loss in body fat mass. Notably, reduced insulin sensitivity in aged skeletal muscle and liver concurred with increased CB1R mRNA abundance. Strikingly, rimonabant was shown to improve glucose tolerance and enhance skeletal muscle and liver insulin sensitivity in aged, but not young, adult mice. Moreover, rimonabant-mediated insulin sensitization in aged adipose tissue coincided with amelioration of low-grade inflammation and repressed lipogenic gene expression. Collectively, our findings indicate a key role for CB1R in aging-related insulin resistance and metabolic dysfunction and highlight CB1R blockade as a potential strategy for combating metabolic disorders associated with aging. PMID:26757949

  5. Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance.

    PubMed

    Ojo, Opeolu O; Srinivasan, Dinesh K; Owolabi, Bosede O; McGahon, Mary K; Moffett, R Charlotte; Curtis, Tim M; Conlon, J Michael; Flatt, Peter R; Abdel-Wahab, Yasser H A

    2016-08-01

    The frog skin host-defense peptide tigerinin-1R stimulates insulin release in vitro and improves glucose tolerance and insulin sensitivity in animal models of type 2 diabetes. This study extends these observations by investigating the molecular mechanisms of action underlying the beneficial metabolic effects of the analogue [Arg4]tigerinin-1R in mice with diet-induced obesity, glucose intolerance and insulin resistance. The study also investigates the electrophysiological effects of the peptide on KATP and L-type Ca2+ channels in BRIN-BD11 clonal β cells. Non-fasting plasma glucose and glucagon concentrations were significantly (p<0.05) decreased and plasma insulin increased by twice daily treatment with [Arg4]tigerinin-1R (75 nmol/kg body weight) for 28 days. Oral and intraperitoneal glucose tolerance were significantly (p<0.05) improved accompanied by enhanced secretion and action of insulin. The peptide blocked KATP channels and, consistent with this, improved beta cell responses of isolated islets to a range of secretagogues. Peptide administration resulted in up-regulation of key functional genes in islets involved insulin secretion (Abcc8, Kcnj11, Cacna1c and Slc2a2) and in skeletal muscle involved with insulin action (Insr, Irs1, Pdk1, Pik3ca, and Slc2a4). These observations encourage further development of tigerinin-1R analogues for the treatment of patients with type 2 diabetes. PMID:26966929

  6. MyomiRs as Markers of Insulin Resistance and Decreased Myogenesis in Skeletal Muscle of Diet-Induced Obese Mice

    PubMed Central

    Frias, Flávia de Toledo; de Mendonça, Mariana; Martins, Amanda Roque; Gindro, Ana Flávia; Cogliati, Bruno; Curi, Rui; Rodrigues, Alice Cristina

    2016-01-01

    High-fat diet (HFD) feeding causes insulin resistance (IR) in skeletal muscle of mice, which affects skeletal muscle metabolism and function. The involvement of muscle-specific microRNAs in the evolution of skeletal muscle IR during 4, 8, and 12 weeks in HFD-induced obese mice was investigated. After 4 weeks in HFD, mice were obese, hyperglycemic, and hyperinsulinemic; however, their muscles were responsive to insulin stimuli. Expressions of MyomiRs (miR-1, miR-133a, and miR-206) measured in soleus muscles were not different from those found in control mice. After 8 weeks of HFD feeding, glucose uptake was lower in skeletal muscle from obese mice compared to control mice, and we observed a significant decrease in miR-1a in soleus muscle when compared to HFD for 4 weeks. miR-1a expression continued to decay within time. After 12 weeks of HFD, miR-133a expression was upregulated when compared to the control group. Expression of miR-1a was negatively correlated with glycemia and positively correlated with the constant rate of plasma glucose disappearance. Pioglitazone treatment could not reverse decreases of miR-1a levels induced by HFD. Targets of myomiRs involved in insulin-growth factor (IGF)-1 pathway, such as Igf-1, Irs-1, Rheb, and follistatin, were reduced after 12 weeks in HFD and Mtor increased, when compared to the control or HFD for 4 or 8 weeks. These findings suggest for the first time that miR-1 may be a marker of the development of IR in skeletal muscle. Evidence was also presented that impairment in myomiRs expression contributes to decreased myogenesis and skeletal muscle growth reported in diabetes. PMID:27445979

  7. Albert Renold Memorial Lecture: Molecular Background of Nutritionally Induced Insulin Resistance Leading to Type 2 Diabetes – From Animal Models to Humans

    PubMed Central

    Shafrir, Eleazar

    2001-01-01

    Albert Renold strived to gain insight into the abnormalities of human diabetes by defining the pathophysiology of the disease peculiar to a given animal. He investigated the Israeli desert-derived spiny mice (Acomys cahirinus), which became obese on fat-rich seed diet. After a few months hyperplasia and hypertrophy of β-cells occurred leading to a sudden rupture, insulin loss and ketosis. Spiny mice were low insulin responders, which is probably a characteristic of certain desert animals, protecting against insulin oversecretion when placed on an abundant diet. We have compared the response to overstimulation of several mutant diabetic species and nutritionally induced nonmutant animals when placed on affluent diet. Some endowed with resilient β-cells sustain long-lasting oversecretion, compensating for the insulin resistance, without lapsing into overt diabetes. Some with labile beta cells exhibit apoptosis and lose their capacity of coping with insulin resistance after a relatively short period. The wide spectrum of response to insulin resistance among different diabetes prone species seems to represent the varying response of human beta cells among the populations. In search for the molecular background of insulin resistance resulting from overnutrition we have studied the Israeli desert gerbil Psammomys obesus (sand rat), which progresses through hyperinsulinemia, followed by hyperglycemia and irreversible beta cell loss. Insulin resistance was found to be the outcome of reduced activation of muscle insulin receptor tyrosine kinase by insulin, in association with diminished GLUT4 protein and DNA content and overexpression of PKC isoenzymes, notably of PKCε. This overexpression and translocation to the membrane was discernible even prior to hyperinsulinemia and may reflect the propensity to diabetes in nondiabetic species and represent a marker for preventive action. By promoting the phosphorylation of serine/threonine residues on certain proteins of the

  8. 18-carbon polyunsaturated fatty acids ameliorate palmitate-induced inflammation and insulin resistance in mouse C2C12 myotubes.

    PubMed

    Chen, Pei-Yin; Wang, John; Lin, Yi-Chin; Li, Chien-Chun; Tsai, Chia-Wen; Liu, Te-Chung; Chen, Haw-Wen; Huang, Chin-Shiu; Lii, Chong-Kuei; Liu, Kai-Li

    2015-05-01

    Skeletal muscle is a major site of insulin action. Intramuscular lipid accumulation results in inflammation, which has a strong correlation with skeletal muscle insulin resistance (IR). The aim of this study was to explore the effects of linoleic acid, alpha-linolenic acid, and gamma-linolenic acid (GLA), 18-carbon polyunsaturated fatty acids (PUFAs), on palmitic acid (PA)-induced inflammatory responses and IR in C2C12 myotubes. Our data demonstrated that these three test 18-carbon PUFAs can inhibit PA-induced interleukin-6 and tumor necrosis factor-α messenger RNA (mRNA) expression and IR as evidenced by increases in phosphorylated AKT and the 160-kD AKT substrate, mRNA and plasma membrane protein expression of glucose transporter 4, and glucose uptake. Moreover, the 18-carbon PUFAs blocked the effects of PA on activation of mitogen-activated protein kinases (MAPKs), protein kinase C-θ (PKC-θ), AMP-activated protein kinase (AMPK) and nuclear factor-κB (NF-κB). Of note, supplementation with GLA-rich borage oil decreased proinflammatory cytokine production and hindered the activation of MAPKs, PKC-θ and NF-κB in the skeletal muscles of diabetic mice. The 18-carbon PUFAs did not reverse PA-induced inflammation or IR in C2C12 myotubes transfected with a constitutively active mutant IκB kinase-β plasmid, which suggests the importance of the inhibition of NF-κB activation by the 18-carbon PUFAs. Moreover, blockade of AMPK activation by short hairpin RNA annulled the inhibitory effects of the 18-carbon PUFAs on PA-induced IR but not inflammation. Our findings suggest that the 18-carbon PUFAs may be useful in the management of PA-induced inflammation and IR in myotubes. PMID:25687616

  9. Endoplasmic Reticulum Oxidoreductin-1-Like β (ERO1lβ) Regulates Susceptibility to Endoplasmic Reticulum Stress and Is Induced by Insulin Flux in β-Cells

    PubMed Central

    Khoo, Cynthia; Yang, Juxiang; Rajpal, Gautam; Wang, You; Liu, Jiangying; Arvan, Peter

    2011-01-01

    Hyperglycemia increases insulin flux through the endoplasmic reticulum (ER) of pancreatic β-cells, and the unfolded protein response pathway is required to enhance insulin processing. Pancreatic and duodenal homeobox 1 (PDX1), a key pancreatic transcription factor, regulates insulin along with targets involved in insulin processing and secretion. Here we find that PDX1 is a direct transcriptional regulator of ER oxidoreductin-1-like β (Ero1lβ), which maintains the oxidative environment of the ER to facilitate disulfide bond formation. PDX1 deficiency reduced Ero1lβ transcript levels in mouse islets and mouse insulinoma (MIN6) cells; moreover, PDX1 occupied the Ero1lβ promoter in β-cells. ERO1lβ levels were induced by high glucose concentrations and by the reducing agent dithiothreitol, indicating potential roles in adaptation to increased oxidative protein folding load in the β-cell ER. In MIN6 cells, small interfering RNA-mediated silencing of Ero1lβ decreased insulin content and increased susceptibility to ER stress-induced apoptosis. These findings demonstrate roles for the PDX1 target ERO1lβ in maintaining insulin content and regulating cell survival during ER stress. PMID:21540283

  10. Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice.

    PubMed

    Liu, Yanjun; Xu, Jie; Guo, Yongli; Xue, Yong; Wang, Jingfeng; Xue, Changhu

    2015-10-01

    There is mounting evidence demonstrating causative links between hyperglycemia, oxidative stress, and insulin resistance, the core pathophysiological features of type 2 diabetes mellitus. Using a combinational approach, we synthesized a vanadium-antioxidant (i.e., l-ascorbic acid) complex and examined its effect on insulin resistance and oxidative stress. This study was designed to examine whether vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia, and insulin resistance in high-fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. Male C57BL/6J mice were fed a HFSD for 12 weeks to induce insulin resistance, rendering them diabetic. Diabetic mice were treated with rosiglitazone, sodium l-ascorbate, or VOAsc. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index, and serum adipocytokine levels were measured. Serum levels of nitric oxide (NO) parameters were also determined. The liver was isolated and used for determination of malondialdehyde, reduced glutathione, and catalase levels, and superoxide dismutase and glutathione peroxidase activities. VOAsc groups exhibited significant reductions in serum adipocytokine and NO levels, and oxidative stress parameters compared to the corresponding values in the untreated diabetic mice. The results indicated that VOAsc is non-toxic. In conclusion, we identified VOAsc as a potentially effective adjunct therapy for the management of type 2 diabetes. PMID:26302923

  11. Urotensin II-induced insulin resistance is mediated by NADPH oxidase-derived reactive oxygen species in HepG2 cells

    PubMed Central

    Li, Ying-Ying; Shi, Zheng-Ming; Yu, Xiao-Yong; Feng, Ping; Wang, Xue-Jiang

    2016-01-01

    AIM: To investigated the effects of urotensin II (UII) on hepatic insulin resistance in HepG2 cells and the potential mechanisms involved. METHODS: Human hepatoma HepG2 cells were cultured with or without exogenous UII for 24 h, in the presence or absence of 100 nmol/L insulin for the last 30 min. Glucose levels were detected by the glucose-oxidase method and glycogen synthesis was analyzed by glycogen colorimetric/fluorometric assay. Reactive oxygen species (ROS) levels were detected with a multimode reader using a 2′,7′-dichlorofluorescein diacetate probe. The protein expression and phosphorylation levels of c-Jun N-terminal kinase (JNK), insulin signal essential molecules such as insulin receptor substrate -1 (IRS-1), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and glucose transporter-2 (Glut 2), and NADPH oxidase subunits such as gp91phox, p67phox, p47phox, p40phox, and p22phox were evaluated by Western blot. RESULTS: Exposure to 100 nmol/L UII reduced the insulin-induced glucose consumption (P < 0.05) and glycogen content (P < 0.01) in HepG2 cells compared with cells without UII. UII also abolished insulin-stimulated protein expression (P < 0.01) and phosphorylation of IRS-1 (P < 0.05), associated with down-regulation of Akt (P < 0.05) and GSK-3β (P < 0.05) phosphorylation levels, and the expression of Glut 2 (P < 0.001), indicating an insulin-resistance state in HepG2 cells. Furthermore, UII enhanced the phosphorylation of JNK (P < 0.05), while the activity of JNK, insulin signaling, such as total protein of IRS-1 (P < 0.001), phosphorylation of IRS-1 (P < 0.001) and GSK-3β (P < 0.05), and glycogen synthesis (P < 0.001) could be reversed by pretreatment with the JNK inhibitor SP600125. Besides, UII markedly improved ROS generation (P < 0.05) and NADPH oxidase subunit expression (P < 0.05). However, the antioxidant/NADPH oxidase inhibitor apocynin could decrease UII-induced ROS production (P < 0.05), JNK phosphorylation (P < 0

  12. Transdermal Delivery of Insulin by Amidated Pectin Hydrogel Matrix Patch in Streptozotocin-Induced Diabetic Rats: Effects on Some Selected Metabolic Parameters

    PubMed Central

    Hadebe, Silindile I.; Ngubane, Phikelelani S.; Serumula, Metse R.; Musabayane, Cephas T.

    2014-01-01

    Purpose Studies in our laboratory are concerned with developing optional insulin delivery routes based on amidated pectin hydrogel matrix gel. We therefore investigated whether the application of pectin insulin (PI)-containing dermal patches of different insulin concentrations sustain controlled release of insulin into the bloodstream of streptozotocin (STZ)-induced diabetic rats with concomitant alleviation of diabetic symptoms in target tissues, most importantly, muscle and liver. Methods Oral glucose test (OGT) responses to PI dermal matrix patches (2.47, 3.99, 9.57, 16.80 µg/kg) prepared by dissolving pectin/insulin in deionised water and solidified with CaCl2 were monitored in diabetic rats given a glucose load after an 18-h fast. Short-term (5 weeks) metabolic effects were assessed in animals treated thrice daily with PI patches 8 hours apart. Animals treated with drug-free pectin and insulin (175 µg/kg, sc) acted as untreated and treated positive controls, respectively. Blood, muscle and liver samples were collected for measurements of selected biochemical parameters. Results After 5 weeks, untreated diabetic rats exhibited hyperglycaemia and depleted hepatic and muscle glycogen concentrations. Compared to untreated STZ-induced diabetic animals, OGT responses of diabetic rats transdermally applied PI patches exhibited lower blood glucose levels whilst short-term treatments restored hepatic and muscle glycogen concentrations. Plasma insulin concentrations of untreated diabetic rats were low compared with control non-diabetic rats. All PI treatments elevated plasma insulin concentrations of diabetic rats although the levels induced by high doses (9.57 and 16.80 µg/kg) were greater than those caused by low doses (2.47 and 3.99 µg/kg) but comparable to those in sc insulin treated animals. Conclusions The data suggest that the PI hydrogel matrix patch can deliver physiologically relevant amounts of pharmacologically active insulin. Novelty of the Work A new

  13. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

    PubMed

    Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. PMID:26498906

  14. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  15. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice.

    PubMed

    Tsai, Shih-Yin; Rodriguez, Ariana A; Dastidar, Somasish G; Del Greco, Elizabeth; Carr, Kaili Lia; Sitzmann, Joanna M; Academia, Emmeline C; Viray, Christian Michael; Martinez, Lizbeth Leon; Kaplowitz, Brian Stephen; Ashe, Travis D; La Spada, Albert R; Kennedy, Brian K

    2016-08-16

    Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism. PMID:27498874

  16. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice.

    PubMed

    Buras, Eric Dale; Yang, Lina; Saha, Pradip; Kim, Jongoh; Mehta, Pooja; Yang, Yisheng; Hilsenbeck, Susan; Kojima, Hideto; Chen, Wenhao; Smith, C Wayne; Chan, Lawrence

    2015-08-01

    Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance. PMID:25953849

  17. Effects of keishi-ka-jutsubu-to (traditional herbal medicine: Gui-zhi-jia-shu-fu-tang) on in vivo insulin action in streptozotocin-induced diabetic rats.

    PubMed

    Qin, Bolin; Nagasaki, Masaru; Ren, Ming; Bajotto, Gustavo; Oshida, Yoshiharu; Sato, Yuzo

    2003-10-10

    This study investigated the effects of the traditional herbal medicine, Keishi-ka-jutsubu-to (KJT) on insulin action in vivo and insulin signaling in skeletal muscle in STZ-induced diabetes. Rats were divided into single and 7-days oral administration groups. Euglycemic clamp (insulin infusion rates: 3 and 30 mU/kg/min) was used in awaked rats and the insulin signaling in skeletal muscle was evaluated. At low-dose insulin infusion, the decreased metabolic clearance rates of glucose (MCR) in diabetic rats were improved by a single and 7-days administration of KJT (800 mg/kg BW, p.o.; acute effect: 6.7 +/- 0.6 vs. 12.3 +/- 1.2, and 7-days effect: 6.3 +/- 0.5 vs. 13.9 +/- 1.0 ml/kg/min, P<0.001, respectively). During high-dose insulin infusion, the MCR was increased in 7-days KJT treated diabetes compared with saline diabetes, but, these changes were not observed after a single KJT treatment. About 90% of the increasing effect in MCR induced by the 7-days KJT treatment was blocked by L-NMMA. However, no further additive effects were seen in KJT + SNP treatment. IRbeta protein increase and decreased IRS-1 protein expression in diabetes were significantly improved by KJT treatment. KJT had no effect on the GLUT4 protein content. The increased tyrosine phosphorylation level of IRbeta, IRS-1, and IRS-1 associated with PI 3-kinase were significantly inhibited in KJT treated diabetes. The present study suggests that the improvement of impaired insulin action in STZ-diabetes by administration of KJT may be due, at least in part, to enhanced insulin signaling, which may be involved with production of nitric oxide (NO). PMID:13679237

  18. The Control of Hyperglycemia by Estriol and Progesterone in Alloxan induced Type I Diabetes Mellitus Mice Model through Hepatic Insulin Synthesis

    PubMed Central

    Bhattacharya, Suman; Bank, Sarbashri; Maiti, Smarajit; Sinha, Asru K.

    2014-01-01

    As much as 20% of the women in menopause are reported to develop type I diabetes mellitus. The cessation of the ovarian syntheses of the female sex hormones is known to cause menopause in women, and the roles of estriol (one of the most abundant estrogens) and progesterone were investigated for hepatic insulin synthesis through estriol and progesterone induced synthesis of nitric oxide in the liver cells. Type 1 Diabetic mellitus mice were prepared by alloxan treatment, Nitric oxide was determined by methemoglobin method. Insulin was determined by enzyme linked immunosorbant assay. Injection of either 3.5 µM estriol or 3.5 nM progesterone to the diabetic mice which cannot synthesize pancreatic insulin, reduced the blood glucose level from 600 mg/dl to 120 mg/dl and 500 ± 25 mg/dl to 120 ± 6 mg/dl in 6 and 10 h respectively with simultaneous increase of the plasma insulin from 0 µunits/ml to 40 µunits/ml and 0 µunits/ml to 9.5 µunits/ml in the case of estriol and progesterone respectively with stimulated NO synthesis. The inhibition of the steroids induced NO synthesis by using NAME (NG-methyl-l-arginine acetate ester) in the reaction mixture resulted in the inhibition of hepatic insulin synthesis. Use of pure NO solution in 0.9% NaCl instead of either estriol or progesterone in the reaction mixture was found to stimulate the hepatic insulin synthesis. Both estriol and progesterone might be involved in the prevention of type 1 diabetes mellitus through the hepatic insulin synthesis even when the pancreatic insulin synthesis was impaired. PMID:24711743

  19. Indomethacin Treatment Prevents High Fat Diet-induced Obesity and Insulin Resistance but Not Glucose Intolerance in C57BL/6J Mice*

    PubMed Central

    Fjære, Even; Aune, Ulrike L.; Røen, Kristin; Keenan, Alison H.; Ma, Tao; Borkowski, Kamil; Kristensen, David M.; Novotny, Guy W.; Mandrup-Poulsen, Thomas; Hudson, Brian D.; Milligan, Graeme; Xi, Yannan; Newman, John W.; Haj, Fawaz G.; Liaset, Bjørn; Kristiansen, Karsten; Madsen, Lise

    2014-01-01

    Chronic low grade inflammation is closely linked to obesity-associated insulin resistance. To examine how administration of the anti-inflammatory compound indomethacin, a general cyclooxygenase inhibitor, affected obesity development and insulin sensitivity, we fed obesity-prone male C57BL/6J mice a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose output was significantly increased. Indomethacin had no effect on adipose tissue mass, glucose tolerance, or GSIS when included in a regular diet. Indomethacin administration to obese mice did not reduce adipose tissue mass, and the compensatory increase in GSIS observed in obese mice was not affected by treatment with indomethacin. We demonstrate that indomethacin did not inhibit GSIS per se, but activation of GPR40 in the presence of indomethacin inhibited glucose-dependent insulin secretion in MIN6 cells. We conclude that constitutive high hepatic glucose output combined with impaired GSIS in response to activation of GPR40-dependent signaling in the HF/HS+INDO-fed mice contributed to the impaired glucose clearance during a glucose challenge and that the resulting lower levels of plasma insulin prevented the obesogenic action of the HF/HS diet. PMID:24742673

  20. A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats.

    PubMed

    Pillai, Subramanian Iyyam; Subramanian, Sorimuthu Pillai; Kandaswamy, Muthusamy

    2013-05-01

    Since 1985, when Heyliger et al., first demonstrated a serendipitous discovery that oral administration of 0.8 mg/ml of sodium orthovanadate in drinking water to streptozotocin-induced diabetic rats resulted in normoglycemia, numerous extensive studies have been pursued on the anti-diabetic and insulinomimetic actions of vanadium. The acceptance of vanadium compounds as promising therapeutic antidiabetic agents has been slowed due to the concern for chronic toxicity associated with vanadium accumulation. In order to circumvent the toxic effects of vanadium, we have taken up a combinational approach wherein a novel vanadium-flavonol complex was synthesized, characterized and its toxic as well as insulin mimetic potential was evaluated in STZ-induced experimental diabetes in rats. The results indicate that the complex is non-toxic and possess anti-diabetic activity. PMID:23466606

  1. Desensitization of sulphonylurea- and nutrient-induced insulin secretion following prolonged treatment with glibenclamide.

    PubMed

    Ball, A J; Flatt, P R; McClenaghan, N H

    2000-11-24

    Functional effects of prolonged exposure to the sulphonylurea glibenclamide were examined in a popular clonal pancreatic beta-cell line, denoted as BRIN-BD11. In acute 20-min incubations, 200 microM of tolbutamide or glibenclamide stimulated insulin release from non-depolarized and depolarized cells, which was dramatically reduced following 18-h culture with 100 microM glibenclamide. Sulphonylurea desensitization in non-depolarized cells was reversed following 6-36-h subsequent culture in the absence of glibenclamide. However, desensitization of insulinotropic effects of sulphonylureas in depolarized cells following glibenclamide culture and associated decline in cellular insulin content was not fully reversible. Culture with 100 microM glibenclamide also markedly reduced the acute insulinotropic actions of glucose, L-alanine, L-arginine, 2-ketoisocaproic acid (KIC) and KCl. These effects were almost completely reversed following 18-h culture in the absence of the sulphonylurea. PMID:11090651

  2. Fagopyrum tataricum (Buckwheat) Improved High-Glucose-Induced Insulin Resistance in Mouse Hepatocytes and Di