Science.gov

Sample records for non-invasive diagnostic techniques

  1. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma.

    PubMed

    Warszawik-Hendzel, Olga; Olszewska, Małgorzata; Maj, Małgorzata; Rakowska, Adriana; Czuwara, Joanna; Rudnicka, Lidia

    2015-12-31

    Squamous cell carcinoma is the second most common cutaneous malignancy after basal cell carcinoma. Although the gold standard of diagnosis for squamous cell carcinoma is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Dermoscopy has become one of the basic diagnostic methods in clinical practice. The most common dermoscopic features of squamous cell carcinoma include clustered vascular pattern, glomerular vessels and hyperkeratosis. Under reflectance confocal microscopy, squamous cell carcinoma shows an atypical honeycomb or disarranged pattern of the spinous-granular layer of the epidermis, round nucleated bright cells in the epidermis and round vessels in the dermis. High frequency ultrasound and optical coherence tomography may be helpful in predominantly in pre-surgical evaluation of tumor size. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of squamous cell carcinoma of the skin, lip, oral mucosa, vulva or other tissues include high-definition optical coherence tomography, in vivo multiphoton tomography, direct oral microscopy, electrical impedance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, elastic scattering spectroscopy, differential path-length spectroscopy, nuclear magnetic resonance spectroscopy, and angle-resolved low coherence interferometry. PMID:26848316

  2. Modern non-invasive diagnostic techniques in the detection of early cutaneous melanoma.

    PubMed

    Kardynal, Agnieszka; Olszewska, Malgorzata

    2014-03-31

    Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Melanoma is a malignant tumor with a high tendency to metastasize. Therefore, an extremely important part of the therapeutic process is to identify the disease at an early stage: in situ or stage I. Many tools for early diagnosis of melanoma are available today, including dermoscopy, videodermoscopy and in vivo reflectance confocal microscopy. Other methods such as high frequency ultrasound, optical coherence tomography and electrical impedance spectroscopy may serve as additional diagnostic aids. Modern imaging techniques also allow the monitoring of melanocytic skin lesions over months or years to detect the moment of malignant transformation. This review summarizes the current knowledge about modern diagnostic techniques, which may aid early diagnosis of melanoma. PMID:24748903

  3. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    NASA Astrophysics Data System (ADS)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  4. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements.

    PubMed

    Alshuhri, Abdullah A; Holsgrove, Timothy P; Miles, Anthony W; Cunningham, James L

    2015-08-01

    Current techniques for diagnosing early loosening of a total hip replacement (THR) are ineffective, especially for the acetabular component. Accordingly, new, accurate, and quantifiable methods are required. The aim of this study was to investigate the viability of vibrational analysis for accurately detecting acetabular component loosening. A simplified acetabular model was constructed using a Sawbones(®) foam block. By placing a thin silicone layer between the acetabular component and the Sawbones block, 2- and 4-mm soft tissue membranes were simulated representing different loosening scenarios. A constant amplitude sinusoidal excitation with a sweep range of 100-1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of observed harmonic frequencies. Both measurement methods were sufficient to measure the output vibration. Vibrational analysis reliably detected loosening corresponding to both 2 and 4 mm tissue membranes at driving frequencies between 100 and 1000 Hz (p < 0.01) using the accelerometer. In contrast, ultrasound detected 2-mm loosening at a frequency range of 850-1050 Hz (p < 0.01) and 4-mm loosening at 500-950 Hz (p < 0.01). PMID:26054805

  5. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  6. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  7. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  8. Non-invasive methodology for diagnostics of bearing impacts

    NASA Astrophysics Data System (ADS)

    Chi, John N.

    2007-04-01

    Various events in reciprocating machinery, such as connecting rod or piston movement, and diesel combustion produce a series of highly transient forces within the machine. These events generate force transients of short duration and broad frequency content. Even though these events may be part of a machine cycle and therefore periodic, it is often more appropriate to treat them on an individual basis because more diagnostics information is available from a single waveform during a cycle than from averages over several cycles. However, it is very rare for one to have direct access to source waveforms because of the expense and reliability problems associated with the required instrumentation, and non-invasive techniques will have to be used. This paper explores the use of cepstral smoothing and minimum phase extraction technique for non-invasive diagnostics of bearing impacts in reciprocating machinery. The methodology is based on extracting diagnostic signals from vibration measurements taken at a "convenient" location such as the crankshaft casing or bearing end-cap, and consists of source identification, diagnostic signature recovery, and diagnostic system decision-making. A dynamic simulation with lumped mass model is developed to analyze bearing impacts for the big end bearings, experimental measurements from accelerometers, transfer functions of vibration, and the structural response are presented.

  9. Non-invasive diagnostic imaging of colorectal liver metastases

    PubMed Central

    Mainenti, Pier Paolo; Romano, Federica; Pizzuti, Laura; Segreto, Sabrina; Storto, Giovanni; Mannelli, Lorenzo; Imbriaco, Massimo; Camera, Luigi; Maurea, Simone

    2015-01-01

    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs. PMID:26217455

  10. Novel non invasive diagnostic strategies in bladder cancer

    PubMed Central

    TRUTA, ANAMARIA; POPON, TUDOR ADRIAN HODOR; SARACI, GEORGE; GHERVAN, LIVIU; POP, IOAN VICTOR

    2016-01-01

    Bladder cancer is one of the most commonly diagnosed malignancies worldwide, derived from the urothelium of the urinary bladder and defined by long asymptomatic and atypical clinical picture. Its complex etiopathogenesis is dependent on numerous risk factors that can be divided into three distinct categories: genetic and molecular abnormalities, chemical or environmental exposure and previous genitourinary disorders and family history of different malignancies. Various genetic polymorphisms and microRNA might represent useful diagnostic or prognostic biomarkers. Genetic and molecular abnormalities - risk factors are represented by miRNA or genetic polymorphisms proved to be part of bladder carcinogenesis such as: genetic mutations of oncogenes TP53, Ras, Rb1 or p21 oncoproteins, cyclin D or genetic polymorhisms of XPD,ERCC1, CYP1B1, NQO1C609T, MDM2SNP309, CHEK2, ERCC6, NRF2, NQO1Pro187Ser polymorphism and microRNA (miR-143, −145, −222, −210, −10b, 576-3p). The aim of our article is to highlight the most recent acquisitions via molecular biomarkers (miRNAs and genetic polymorphisms) involved in bladder cancer in order to provide early diagnosis, precise therapy according to the molecular profile of bladder tumors, as well as to improve clinical outcome, survival rates and life quality of oncological patients. These molecular biomarkers play a key role in bladder carcinogenesis, clinical evolution, prognosis and therapeutic response and explain the molecular mechanisms involved in bladder carcinogenesis; they can also be selected as therapeutic targets in developing novel therapeutic strategies in bladder malignancies. Moreover, the purpose in defining these molecular non invasive biomarkers is also to develop non invasive screening programs in bladder malignancies with the result of decreasing bladder cancer incidence in risk population. PMID:27152066

  11. Non-invasive techniques for determining musculoskeleton body composition

    SciTech Connect

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  12. Neurophotonics: non-invasive optical techniques for monitoring brain functions.

    PubMed

    Torricelli, Alessandro; Contini, Davide; Dalla Mora, Alberto; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  13. Non-Invasive Techniques for Detection and Diagnosis of Oral Potentially Malignant Disorders.

    PubMed

    Liu, Dongjuan; Zhao, Xin; Zeng, Xin; Dan, Hongxia; Chen, Qianming

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common oral and maxillofacial malignancy, and its morbidity and mortality rates are still high in most countries. Oral potentially malignant disorders (PMDs) are used to refer to a heterogeneous group of conditions that are characterized by increased risk for malignant transformation to OSCC. Currently identified oral PMDs include leukoplakia, erythroplakia, palatal lesions associated with reverse smoking, oral lichen planus, oral submucous fibrosis, actinic keratosis, and discoid lupus erythematosus. The early detection and diagnosis of these lesions are important for cancer prevention and disease management. In recent years, there has been a growing and persistent demand for new non-invasive, practical diagnostic techniques that might facilitate the early detection of oral PMDs. The non-invasive detection techniques evaluated in this review are divided into four categories: vital staining with a solution that can be used as a mouth rinse or applied onto a suspected area of the mouth, light-based detection systems, optical diagnostic technologies that employ returned optical signals to reflect structural and morphological changes within tissues, and salivary biomarkers. Most of these techniques have shown great potential for screening and monitoring oral PMDs. In this review article, the authors critically assess these non-invasive detection techniques for oral PMDs. We also provide a summary of the sensitivity and specificity of each technique in detecting oral PMDs and oral cancer, as well as their advantages, disadvantages, clinical applications, and indications. PMID:26888696

  14. Diagnostic and prognostic utility of non-invasive imaging in diabetes management

    PubMed Central

    Barsanti, Cristina; Lenzarini, Francesca; Kusmic, Claudia

    2015-01-01

    Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed. PMID:26131322

  15. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    PubMed Central

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  16. In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. Identification of orcein and indigo in Renaissance tapestries

    NASA Astrophysics Data System (ADS)

    Clementi, C.; Miliani, C.; Romani, A.; Santamaria, U.; Morresi, F.; Mlynarska, K.; Favaro, G.

    2009-01-01

    In this paper, three Renaissance tapestries depicting scenes painted by Raffaello Sanzio, conserved at the Vatican Museum, were investigated using in-situ UV-Visible fluorimetric measurements. The results show that this technique is suitable for the detection of natural organic colorants used for dyeing the threads woven in these tapestries. The emission signals detected on red-purple colours were assigned to the colorant orcein and those on different nuances of blue and green colours to indigo by comparison with data from reference laboratory samples. The assignments were supported by chromatographic experiments carried out on threads taken from the back side of the tapestry in the same points analysed by spectrofluorimentry.

  17. In-situ fluorimetry: a powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. Identification of orcein and indigo in Renaissance tapestries.

    PubMed

    Clementi, C; Miliani, C; Romani, A; Santamaria, U; Morresi, F; Mlynarska, K; Favaro, G

    2009-01-01

    In this paper, three Renaissance tapestries depicting scenes painted by Raffaello Sanzio, conserved at the Vatican Museum, were investigated using in-situ UV-Visible fluorimetric measurements. The results show that this technique is suitable for the detection of natural organic colorants used for dyeing the threads woven in these tapestries. The emission signals detected on red-purple colours were assigned to the colorant orcein and those on different nuances of blue and green colours to indigo by comparison with data from reference laboratory samples. The assignments were supported by chromatographic experiments carried out on threads taken from the back side of the tapestry in the same points analysed by spectrofluorimentry. PMID:19004665

  18. Using Diagnostic Radioentomology for Non-Invasive Observations of Colonies of the Bumblebee, Bombus terrestris

    PubMed Central

    Greco, Mark K.; Sadd, Ben M.

    2012-01-01

    Bumblebees have been the focus of a broad range of scientific research due to their behavior, social life, and a number of other intriguing traits. Current methods for examining their nest structure, such as natal cells and contents of storage cells, are destructive in nature because the cells need to be opened for physical inspections. This research describes how the internal structures of the artificial nests of the bumblebee Bombus terrestris L. (Hymentoptera: Apidae) were non-invasively viewed and assessed by using diagnostic radioentomology. For the first time, B. terrestris nest structures, and their contents such as larvae, pupae and eggs, were non-invaseively viewed and assessed. This technique will enable future experiments to take morphological measurements of egg, larval, and pupal development over time. Moreover, combining these measurements with measures of food-storage will provide a good assessment of colony health. The method will also allow tracking of individually marked adults, to monitor their behaviour and help gain a better understanding of the processes involved in the global declines of B. terrestris, which will in turn promote better management of these valuable pollinators. PMID:23421622

  19. Non-Invasive Health Diagnostics using Eye as a 'Window to the Body'

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.

    2002-01-01

    As a 'window to the body', the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and help develop preventative/therapeutic countermeasures early. The effects of space travel on human body are similar to those of normal aging. For example, radiation exposure in space could lead to formation of cataracts and cancer by damaging the DNA and causing gene mutation. Additionally, the zero-gravity environment causes fluid shifts in the upper extremities of the body and changes the way blood flows and organ system performs. Here on Earth, cataract, age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are major eye diseases and are expected to double in next two decades. To detect, prevent, and treat untoward effects of prolonged space travel in real-time requires the development of non-invasive diagnostic technologies that are compact and powerful. We are developing fiber-optic sensors to evaluate the ocular tissues in health, aging, and disease employing the techniques of dynamic light scattering (cataract, uveitis, Alzheimer's, glaucoma, DR, radiation damage, refractive surgery outcomes), auto-fluorescence (aging, DR), laser-Doppler flowmetry (choroidal blood flow), Raman spectroscopy (AMD), polarimetry (diabetes), and retinal oximetry (occult blood loss). The non-invasive feature of these technologies integrated in a head-mounted/goggles-like device permits frequent repetition of tests, enabling evaluation of the results to therapy that may ultimately be useful in various telemedicine applications on Earth and in space.

  20. The Book of Kells: a non-invasive MOLAB investigation by complementary spectroscopic techniques.

    PubMed

    Doherty, B; Daveri, A; Clementi, C; Romani, A; Bioletti, S; Brunetti, B; Sgamellotti, A; Miliani, C

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure. PMID:23850791

  1. The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Doherty, B.; Daveri, A.; Clementi, C.; Romani, A.; Bioletti, S.; Brunetti, B.; Sgamellotti, A.; Miliani, C.

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure.

  2. Non-invasive diagnostics in pathological fossils by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-03-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows to non-invasively study anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly in soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological scenarios directly derived from 3D Magnetic Resonance images with microscopic resolution. These syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. Finally, the potential of Magnetic Resonance techniques for further paleontological applications is being discussed.

  3. Non-invasive diagnostics in fossils - Magnetic Resonance Imaging of pathological belemnites

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-06-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.

  4. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance

    PubMed Central

    Desai, Gauri S; Mathews, Suresh T

    2014-01-01

    Saliva has been progressively studied as a non-invasive and relatively stress-free diagnostic alternative to blood. Currently, saliva testing is used for clinical assessment of hormonal perturbations, detection of HIV antibodies, DNA analysis, alcohol screening, and drug testing. Recently, there has been increasing interest in evaluating the diagnostic potential of saliva in obesity, inflammation, and insulin-resistance. Current literature has demonstrated elevated levels of inflammatory biomarkers including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva of obese/overweight children and adults. Salivary antioxidant status has also been studied as a measure of oxidative stress in individuals with type 2 diabetes. Further, several studies have demonstrated correlations of salivary markers of stress and insulin resistance including cortisol, insulin, adiponectin, and resistin with serum concentrations. These findings suggest the potential diagnostic value of saliva in health screening and risk stratification studies, particularly in the pediatric population, with implications for inflammatory, metabolic and cardiovascular conditions. However, additional studies are required to standardize saliva collection and storage procedures, validate analytical techniques for biomarker detection, and establish reference ranges for routine clinical use. The purpose of this review is to summarize and evaluate recent advancements in using saliva as a diagnostic tool for inflammation and insulin-resistance. PMID:25512775

  5. SQUID magnetometry applied as non-invasive electroanalytic chemical technique

    SciTech Connect

    Jette, B.D.; MacVicar, M.L.A. )

    1991-03-01

    This paper reports on a SQUID magnetometer, employed as a highly sensitive ammeter, used to perform standard electroanalytic chemical measurements non- invasively. Specifically, the magnetic fields generated by the net ionic movement in the solution of a driven electrochemical system is detected by the gradiometer coils. The SQUID signal can then be compared to conventional current measurements. One such standard measurement investigated is Cyclic Voltametry (CV) which determines the I-V characteristics of an electrochemical system yielding critical kinetic parameters.

  6. Rapid non-invasive tests for diagnostics of infectious diseases

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2014-06-01

    A rapid test for an infectious disease that can be used at point-of-care at a physician's office, a pharmacy, or in the field is critical for the prompt and appropriate therapeutic intervention. Ultimately by treating infections early on will decrease transmission of the pathogen. In contrast to metabolic diseases or cancer where multiple biomarkers are required, infectious disease targets (e.g. antigen, antibody, nucleic acid) are simple and specific for the pathogen causing the disease. Our laboratory has focused on three major infectious disease; HIV, Tuberculosis, and Malaria. These diseases are pandemic in much of the world thus putting natives, tourists and military personnel at risk for becoming infected, and upon returning to the U.S., transmitting these diseases to their contacts. Our devices are designed to detect antigens, antibodies or nucleic acids in blood or saliva samples in less than 30 minutes. An overview describing the current status of each of the three diagnostic platforms is presented. These microfluidic point-of-care devices will be relatively inexpensive, disposable, and user friendly.

  7. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Deng, H.; Potylitsyn, A.; Naumenko, G.; Zhang, J.; Lu, Sh; Gogolev, S.; Shkitov, D.

    2012-05-01

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20~30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  8. Pulmonary infiltrates in non-HIV immunocompromised patients: a diagnostic approach using non-invasive and bronchoscopic procedures

    PubMed Central

    Rano, A; Agusti, C; Jimenez, P; Angrill, J; Benito, N; Danes, C; Gonzalez, J; Rovira, M; Pumarola, T; Moreno, A; Torres, A

    2001-01-01

    BACKGROUND—The development of pulmonary infiltrates is a frequent life threatening complication in immunocompromised patients, requiring early diagnosis and specific treatment. In the present study non-invasive and bronchoscopic diagnostic techniques were applied in patients with different non-HIV immunocompromised conditions to determine the aetiology of the pulmonary infiltrates and to evaluate the impact of these methods on therapeutic decisions and outcome in this population.
METHODS—The non-invasive diagnostic methods included serological tests, blood antigen detection, and blood, nasopharyngeal wash (NPW), sputum and tracheobronchial aspirate (TBAS) cultures. Bronchoscopic techniques included fibrobronchial aspirate (FBAS), protected specimen brush (PSB), and bronchoalveolar lavage (BAL). Two hundred consecutive episodes of pulmonary infiltrates were prospectively evaluated during a 30 month period in 52 solid organ transplant recipients, 53 haematopoietic stem cell transplant (HSCT) recipients, 68 patients with haematological malignancies, and 27 patients requiring chronic treatment with corticosteroids and/or immunosuppressive drugs.
RESULTS—An aetiological diagnosis was obtained in 162 (81%) of the 200 patients. The aetiology of the pulmonary infiltrates was infectious in 125 (77%) and non-infectious in 37 (23%); 38 (19%) remained undiagnosed. The main infectious aetiologies were bacterial (48/125, 24%), fungal (33/125, 17%), and viral (20/125, 10%), and the most frequent pathogens were Aspergillus fumigatus (n=29), Staphylococcus aureus (n=17), and Pseudomonas aeruginosa (n=12). Among the non-infectious aetiologies, pulmonary oedema (16/37, 43%) and diffuse alveolar haemorrhage (10/37, 27%) were the most common causes. Non-invasive techniques led to the diagnosis of pulmonary infiltrates in 41% of the cases in which they were used; specifically, the diagnostic yield of blood cultures was 30/191 (16%); sputum cultures 27/88 (31%); NPW 9/50 (18

  9. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    PubMed

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications. PMID:25990929

  10. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid:
a systematic review

    PubMed Central

    Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda

    2015-01-01

    This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030

  11. Innovative non-invasive analysis techniques for cultural heritage using terahertz technology

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Hosako, I.

    2010-08-01

    Terahertz (THz) spectroscopy and THz imaging techniques are expected to have great potential for carrying out the non-invasive analysis of artworks. THz waves can penetrate opaque materials and they can perform three-dimensional material mapping non-destructively by spectroscopic imaging. Several attempts have been made to analyse artworks. Clear results, such as imaging of hidden art by using model paintings, have been obtained by many institutions. We succeeded to observe the first ever non-invasive cross-sectional image of a tempera masterpiece by Giotto. These results prove that THz technology can yield useful information in art conservation science.

  12. Non-invasive medical diagnostics by nanoparticle-based solid-state gas sensors

    NASA Astrophysics Data System (ADS)

    Tricoli, Antonio

    2013-08-01

    Chemical sensors made of tailored nanoparticles offer excellent miniaturization capability and are able to rapidly and continuously detect trace amounts of important analytes down to trace concentrations. Application of these sensing materials to non-invasive medical diagnostics by breath analysis has the potential to drastically reduce diagnostics costs while offering better service quality to the patients and enabling very early-stage detection of severe illnesses such as lung cancer. Here, we present a flexible approach to synthesize advanced solid-state gas sensor materials that have demonstrated reliable detection of important breath markers. In particular, the feasibility of capturing highly performing, meta-stable sensing nanoparticles by flame-synthesis of multi component metal-oxides is critically discussed.

  13. [Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].

    PubMed

    Shin, Jung Woo; Park, Neung Hwa

    2016-07-25

    The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis. PMID:27443617

  14. Towards novel compact laser sources for non-invasive diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  15. Graft complications following orthotopic liver transplantation: Role of non-invasive cross-sectional imaging techniques.

    PubMed

    Boraschi, Piero; Della Pina, Maria Clotilde; Donati, Francescamaria

    2016-07-01

    Orthotopic liver transplantation is the treatment of choice in adult patients with endstage liver disease. Survival of both graft and patient has progressively improved over time due to improvements in surgical and medical treatment. However, post-transplant complications still have a significant impact on morbidity and mortality associated with transplant surgery. The most common adverse events of the graft include vascular (arterial and venous stenosis and thrombosis), biliary (leakage, strictures, stones) and parenchymal complications (hepatitis virus C infection, HCC recurrence, liver abscesses). The diagnosis of these adverse events is often challenging because of the low specificity of clinical and biologic findings. Different diagnostic algorithms have been proposed for the detection of graft complications and, in this setting, radiological evaluation plays a key role in differential diagnosis of graft complications and the exclusion of other adverse events. Ultrasound examination is established the first-line method of identifying adverse events in liver transplant recipients but a normal or a technically unsatisfactory study cannot exclude the presence of biliary, vascular and/or parenchymal complications. In these circumstances, before planning any treatment, multi-detector CT and/or MR imaging and MR cholangiography should be performed for the evaluation of vascular structures, biliary system, liver parenchyma and fluid collections. The aim of this review is to illustrate the role and state-of-the-art of non-invasive cross-sectional imaging techniques in the diagnosis and management of complications which primarily affect the graft in patients after liver transplantation. PMID:27235874

  16. [Cerebral arteriovenous malformations: value of the non invasive vascular imaging techniques].

    PubMed

    Leclerc, X; Gauvrit, J Y; Trystram, D; Reyns, N; Pruvo, J P; Meder, J F

    2004-12-01

    Imaging evaluation of cerebral arteriovenous malformations (AVM) requires selective visualization of the different compartments of the malformation in order to select the therapeutic management. Conventional angiography remains the reference to analyze intracranial vessel conspicuity but non-invasive methods constitute an excellent alternative. Among these techniques, CT angiography is rarely used because of the need to inject iodinated contrast material and because of irradiation. MR angiography provides useful information and can be performed using several techniques: time of flight with or without contrast material injection, phase contrast, three-dimensional (3D) gradient echo acquisition after contrast material injection and, more recently, MR digital subtraction angiography. The purpose of this review article is to summarize the different non-invasive techniques for vascular imaging and to analyze the usefulness of these techniques for the assessment of brain AVMs. PMID:15687950

  17. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  18. A non-invasive technique for rapid extraction of DNA from fish scales.

    PubMed

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales. PMID:18072545

  19. Aero-acoustic Properties of Eroded Airfoils of Compressor Blades for Use in Non-invasive Diagnostics

    NASA Astrophysics Data System (ADS)

    Drãgan, Valeriu; Grad, Danuţa

    2013-09-01

    The current techniques for investigating the erosion of turbo machineries rely on visual inspections trough boroscopy. However this implies shutting down the power plant in order to make the assessment which leads to operational costs and difficulties. This paper aims to provide a method for monitoring the erosion state of a bladed power plant operated in dusty environments such as the desert by measuring the changes in its acoustic spectrum. The method used for this study is numerical and the findings suggest that there are significant modifications to both the flow field and the acoustic parameters as the blade gets progressively eroded. This paves the way for the development of non-invasive permanent real time diagnostics for turbine engines and power plants.

  20. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  1. Intercomparison of techniques for the non-invasive measurement of bone mass

    SciTech Connect

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  2. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  3. Non-invasive physiological measurements

    SciTech Connect

    Rolfe, P.

    1983-01-01

    This book discusses the diagnostic techniques of nondestructive type for monitoring the physiology of various organ systems. The topics covered are: non-invasive assessment of gastric activity; uterine activity, intestinal activity; monitoring of fetal cardiovascular system and bilirubin physiology of infants. Respiratory system of infants is monitored and ultrasonography of heart is discussed.

  4. A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring

    PubMed Central

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2016-01-01

    We have developed a range of glucose sensing contact lenses, using a daily, disposable contact lens embedded with newly developed boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50–1000 μM, which typically track blood glucose levels, which are ≈5–10 fold higher. Our non-invasive approach may well offer an alternative solution to current invasive glucose monitoring techniques for diabetes, such as “finger pricking.” PMID:27340364

  5. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    NASA Astrophysics Data System (ADS)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  6. A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods

    NASA Astrophysics Data System (ADS)

    Aceto, Maurizio; Arrais, Aldo; Marsano, Francesco; Agostino, Angelo; Fenoglio, Gaia; Idone, Ambra; Gulmini, Monica

    2015-05-01

    Folium and orchil are dyes of vegetal origin. Folium is obtained from Chrozophora tinctoria (L.) A. Juss., whereas orchil is obtained from Roccella and other genera of lichens. These dyes were used in the past to impart purple hue to paintings and textiles as substitutes for the more prised Tyrian purple dye, obtained from shellfish. Despite several citations in ancient technical treatises dating back at least to the Greek-Roman age, the identification of these dyes in artworks is rare. In the case of folium, an additional drawback is that its composition is presently unknown. In this work different non-invasive (FT-IR, FT-Raman, fibre optic reflectance spectrophotometry, spectrofluorimetry, X-ray fluorescence spectrometry) and micro-invasive (surface enhanced Raman spectroscopy, matrix assisted laser desorption ionisation-time of flight-mass spectrometry, inductively coupled plasma-mass spectrometry) techniques were used in order to increase the diagnostic information available on these dyes. Measurements were carried out on the dyes extracted from raw materials and on painted or dyed parchments. The possibility to distinguish between folium and orchil by chemical analysis is discussed.

  7. A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods.

    PubMed

    Aceto, Maurizio; Arrais, Aldo; Marsano, Francesco; Agostino, Angelo; Fenoglio, Gaia; Idone, Ambra; Gulmini, Monica

    2015-05-01

    Folium and orchil are dyes of vegetal origin. Folium is obtained from Chrozophora tinctoria (L.) A. Juss., whereas orchil is obtained from Roccella and other genera of lichens. These dyes were used in the past to impart purple hue to paintings and textiles as substitutes for the more prised Tyrian purple dye, obtained from shellfish. Despite several citations in ancient technical treatises dating back at least to the Greek-Roman age, the identification of these dyes in artworks is rare. In the case of folium, an additional drawback is that its composition is presently unknown. In this work different non-invasive (FT-IR, FT-Raman, fibre optic reflectance spectrophotometry, spectrofluorimetry, X-ray fluorescence spectrometry) and micro-invasive (surface enhanced Raman spectroscopy, matrix assisted laser desorption ionisation-time of flight-mass spectrometry, inductively coupled plasma-mass spectrometry) techniques were used in order to increase the diagnostic information available on these dyes. Measurements were carried out on the dyes extracted from raw materials and on painted or dyed parchments. The possibility to distinguish between folium and orchil by chemical analysis is discussed. PMID:25703360

  8. INVASIVE AND NON-INVASIVE TECHNIQUES FOR DETECTING PORTAL HYPERTENSION AND PREDICTING VARICEAL BLEEDING IN CIRRHOSIS: A REVIEW

    PubMed Central

    Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J

    2016-01-01

    Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal and post-sinusoidal causes. As a consequence, several complications (i.e., ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from nonbleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques. PMID:24328372

  9. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  10. Costs and clinical outcomes for non-invasive versus invasive diagnostic approaches to patients with suspected in-stent restenosis

    PubMed Central

    Hasegawa, James T.; Machacz, Susanne F.; O’Day, Ken

    2015-01-01

    This study compared costs and clinical outcomes of invasive versus non-invasive diagnostic evaluations for patients with suspected in-stent restenosis (ISR) after percutaneous coronary intervention. We developed a decision model to compare 2 year diagnosis-related costs for patients who presented with suspected ISR and were evaluated by: (1) invasive coronary angiography (ICA); (2) non-invasive stress testing strategy of myocardial perfusion imaging (MPI) with referral to ICA based on MPI; (3) coronary CT angiography-based testing strategy with referral to ICA based on CCTA. Costs were modeled from the payer’s perspective using 2014 Medicare rates. 56 % of patients underwent follow-up diagnostic testing over 2 years. Compared to ICA, MPI (98.6 %) and CCTA (98.1 %) exhibited lower rates of correct diagnoses. Non-invasive strategies were associated with reduced referrals to ICA and costs compared to an ICA-based strategy, with diagnostic costs lower for CCTA than MPI. Overall 2-year costs were highest for ICA for both metallic as well as BVS stents ($1656 and $1656, respectively) when compared to MPI ($1444 and $1411) and CCTA. CCTA costs differed based upon stent size and type, and were highest for metallic stents >3.0 mm followed by metallic stents <3.0 mm, BVS < 3.0 mm and BVS > 3.0 mm ($1466 vs. $1242 vs. $855 vs. $490, respectively). MPI for suspected ISR results in lower costs and rates of complications than invasive strategies using ICA while maintaining high diagnostic performance. Depending upon stent size and type, CCTA results in lower costs than MPI. PMID:26335370

  11. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    NASA Astrophysics Data System (ADS)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  12. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    PubMed Central

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables. PMID:22399898

  13. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    PubMed Central

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  14. Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik

    Fluorescence spectroscopy and imaging methods, including fluorescence lifetime sensing, are being developed for a variety of non-invasive clinical diagnostic procedures, including applications to early cancer diagnosis. Here, both the theoretical developments and experimental validations of a versatile, numerical Monte Carlo code that models photon migration in turbid media to include simulations of time-resolved fluorescence transport are presented. The developed numerical model was used to study, for the first time, the dependence of time-resolved fluorescence signals emanating from turbid media on the optical transport coefficients, fluorophore properties and source-detector configurations in single-layered turbid media as well as more complex multi-layered turbid media. The numerical codes presented here can be adapted to model a wide range of experimental techniques measuring the optical responses of biological tissues to laser irradiation and are demonstrated here for two specific applications (a) to model time-resolved fluorescence dynamics in human colon tissues and (b) to extract the frequency-dependent optical responses of a model adult human head to an incident laser-source whose intensity was harmonically modulated i.e. simulating frequency-domain measurements. Specifically, measurements of time-resolved fluorescence decays from a previous clinical study aimed toward detecting differences in tissue pathologies in patients undergoing gastro-intestinal endoscopy were simulated using the Monte Carlo model and results demonstrated that variations in tissue optical transport coefficients (absorption and scattering) alone could not account for the fluorescence decay differences detected between tissue pathologies in vivo. However, variations in fluorescence decay time as large as those detected clinically between normal and pre-malignant tissues (of 2 ns) could be accounted for by simulated variations in tissue morphology or biochemistry while intrinsic

  15. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique.

    PubMed

    McLamore, Eric S; Diggs, Alfred; Calvo Marzal, Percy; Shi, Jin; Blakeslee, Joshua J; Peer, Wendy A; Murphy, Angus S; Porterfield, D Marshall

    2010-09-01

    Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques. PMID:20626658

  16. Terahertz imaging systems: a non-invasive technique for the analysis of paintings

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Hosako, I.; Duling, I. N., III; Picollo, M.

    2009-07-01

    Terahertz (THz) imaging is an emerging technique for non-invasive analysis. Since THz waves can penetrate opaque materials, various imaging systems that use THz waves have been developed to detect, for instance, concealed weapons, illegal drugs, and defects in polymer products. The absorption of THz waves by water is extremely strong, and hence, THz waves can be used to monitor the water content in various objects. THz imaging can be performed either by transmission or by reflection of THz waves. In particular, time domain reflection imaging uses THz pulses that propagate in specimens, and in this technique, pulses reflected from the surface and from the internal boundaries of the specimen are detected. In general, the internal structure is observed in crosssectional images obtained using micro-specimens taken from the work that is being analysed. On the other hand, in THz time-domain imaging, a map of the layer of interest can be easily obtained without collecting any samples. When realtime imaging is required, for example, in the investigation of the effect of a solvent or during the monitoring of water content, a THz camera can be used. The first application of THz time-domain imaging in the analysis of a historical tempera masterpiece was performed on the panel painting Polittico di Badia by Giotto, of the permanent collection of the Uffizi Gallery. The results of that analysis revealed that the work is composed of two layers of gypsum, with a canvas between these layers. In the paint layer, gold foils covered by paint were clearly observed, and the consumption or ageing of gold could be estimated by noting the amount of reflection. These results prove that THz imaging can yield useful information for conservation and restoration purposes.

  17. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    NASA Astrophysics Data System (ADS)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  18. Non-invasive diagnostic methods for investigating the quality of Žilina airport's runway

    NASA Astrophysics Data System (ADS)

    Slabej, Martin; Grinč, Michal; Kováč, Matúš; Decký, Martin; Šedivý, Štefan

    2015-09-01

    The Žilina airport was after almost 50 years of use measured by non-invasive methods including GPR and Profilograph GE in order to investigate the quality of the runway pavement at the chosen spots. Since it was just a pilot action, a sample of survey was carried out. The testing spots were placed where the geologic drill core J02 have been drilled out. The measurements performed by Profilograph GE were used to verify the quality of the pavement surface in term longitudinal unevenness by means of index IRI and C. The GPR survey was performed in 3D geometry, hence in the x- and y-direction. A horn type antenna with central frequency of 2 GHz was used on the test field in order to verify the thicknesses of pavement construction layers. Here, the result of a 3D survey is presented. The investigation confirms two sub-horizontal construction layers of the runway pavement. In some areas the GPR interpretation was not possible due to the signal attenuation. This significant signal attenuation is found mainly in the areas where the linear cracks are situated.

  19. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    NASA Astrophysics Data System (ADS)

    Urakawa, J.; Hayano, H.; Kubo, K.; Kuroda, S.; Terunuma, N.; Kuriki, M.; Okugi, T.; Naito, T.; Araki, S.; Potylitsyn, A.; Naumenko, G.; Karataev, P.; Potylitsyna, N.; Vnukov, I.; Hirose, T.; Hamatsu, R.; Muto, T.; Ikezawa, M.; Shibata, Y.

    2001-10-01

    A "proof-of-principle" experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultrarelativistic beams. We estimated that the ODR photon yield in 10% bandwidth for 500 nm is about 10 6 photons/bunch with an impact parameter of 100 μm. This indicates that the ODR monitor is a promising candidate for single-pulse beam-profile measurements, and that it will be an extremely useful instrument for future linear colliders (JLC, NLC, TESLA and CLIC).

  20. Non-invasive diagnosis in a case of bronchopulmonary sequestration and proposal of diagnostic algorithm.

    PubMed

    Caradonna, P; Bellia, M; Cannizzaro, F; Regio, S; Midiri, M; Bellia, V

    2008-09-01

    The case of a 43-year-old woman with intralobar pulmonary sequestration, Pryce type one, is presented. The medical history was characterised by recurrent bronchopneumonia, productive cough with purulent sputum and hemoptysis in the last three years. Diagnosis was made by CT angiography: multiplanar, maximum intensity projection and volume rendering reconstructions were visualised. A volume reduction of middle and lower lobe with multiple cyst-like bronchiectasis was detected and no evident relationship with tracheobronchial tree was pointed out. Reconstructions aimed at evaluating bronchial structures demonstrated no patency of middle and lower lobar bronchi. The study carried out after contrast medium infusion in arterial phase showed a vascular disorder characterised by an accessory arterial branch arising from the upper portion of thoracic aorta which, after moving caudally to pulmonary hilus with a tortuous course, supplied the atelectatic parenchyma. No anomalous venous drainage was detected. The patient underwent surgery with resection of two pulmonary lobes. CT compares favourably with other alternative imaging technique for pulmonary sequestration as multiplanar reconstructions allow not only the detection of supplying vessel, but also the accurate description of heterogeneous characteristics of the mass and adjacent structures. Finally an imaging-based diagnostic algorhithm is proposed. PMID:19065849

  1. Differential ion mobility spectroscopy: non-invasive real-time diagnostics and therapy control in metabolic diseases

    PubMed Central

    2009-01-01

    Background Over the last few years, differential ion mobility spectroscopy (DMS) has become an important tool in medical research. There are attempts to find markers for specific diseases in exhaled air, using this technology as a non-invasive early diagnosis. Objective In the present research, exhaled air from 78 patients with known diagnosis and 39 control persons were tested with a DMS system from Sionex. Results Bronchial asthma showed a pattern of 6 characteristic points in a discriminant analysis. Patients with diagnosed hypertension showed a characteristic pattern with 4 points, hypothyroidism 2 points; increased LDL cholesterol 3 points, and type II diabetics treated with insulin 4 spots. No significant differences with respect to the control group were found in chronic obstructive pulmonary disease patients. The DMS pattern in the tested asthmatics showed a partial change depending on different medications used. Conclusion Differential ion mobility spectroscopy offers promise as a helpful diagnostic tool. PMID:20156741

  2. A non-invasive technique to bleed incubating birds without trapping: A blood-sucking bug in a hollow egg

    USGS Publications Warehouse

    Becker, P.H.; Voigt, C.C.; Arnold, J.M.; Nagel, R.

    2006-01-01

    We describe a non-invasive technique to obtain blood samples from incubating birds without trapping and handling. A larval instar of the blood-sucking bug Dipetalogaster maximus (Heteroptera) was put in a hollowed artificial egg which was placed in a common tern Sterna hirundo) nest. A gauze-covered hole in the egg allowed the bug to draw blood from the brood patch of breeding adults. We successfully collected 68 blood samples of sufficient amount (median=187 ??l). The daily success rate was highest during the early breeding season and averaged 34% for all trials. We could not detect any visible response by the incubating bird to the sting of the bug. This technique allows for non-invasive blood collection from bird species of various sizes without disturbance. ?? Dt. Ornithologen-Gesellschaft e.V. 2005.

  3. A simple non-invasive technique for venom milking from a solitary wasp Delta conoideum Gmelin (Hymenoptera: Vespidae).

    PubMed

    Bhagavathula, Naga Chaitanya; Kumar, Mukesh; Krishnappa, Chandrashekra

    2016-01-01

    Prospecting wasp, ant and bee venom for active bio-molecules has gained considerable interest among researchers in recent years. Collecting sufficient quantity of venom from solitary wasps without sacrificing them is often difficult. Here we describe a non-invasive technique for collecting venom from a solitary wasp Delta conoideum Gmelin (Red-backed potter wasp). Venom was milked by presenting an agar block to a single female wasp for stinging. The venom was extracted from the agar block using ACN: water solvent system. The total protein in venom was estimated quantitatively and the presence of peptides in the venom was confirmed by MALDI-TOF analysis. The proposed technique is non-invasive and pure venom can be repeatedly 'milked' using this method from other wasps and also bees without the need for sacrificing a large number of individuals. PMID:26556656

  4. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise

    SciTech Connect

    Sapega, A.A.; Sokolow, D.P.; Graham, T.J.; Chance, B.

    1987-08-01

    Phosphorus nuclear magnetic resonance (/sup 31/P NMR) spectroscopy is a non-destructive analytical laboratory technique that, due to recent technical advances, has become applicable to the study of high-energy phosphate metabolism in both animal and human extremity muscles (in vivo). /sup 31/P NMR can assay cellular phosphocreatine, ATP, inorganic phosphate, the phosphorylated glycolytic intermediates, and intra-cellular pH in either resting or exercising muscle, in a non-invasive manner. NMR uses non-perturbing levels of radio-frequency energy as its biophysical probe and can therefore safely study intact muscle in a repeated fashion while exerting no artifactual influence on ongoing metabolic processes. Compared with standard tissue biopsy and biochemical assay techniques, NMR possesses the advantages of being non-invasive, allowing serial in situ studies of the same tissue sample, and providing measurements of only active (unbound) metabolites. NMR studies of exercising muscle have yielded information regarding fatigue mechanisms at the cellular level and are helping resolve long-standing questions regarding the metabolic control of glycolysis, oxidative phosphorylation, and post-exercise phosphocreatine re-synthesis. NMR is also being utilized to measure enzymatic reaction rates in vivo. In the near future, other forms of NMR spectroscopy may also permit the non-invasive measurement of tissue glycogen and lactate content. 75 references.

  5. Investigation of the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in reproductive medicine

    NASA Astrophysics Data System (ADS)

    Trottmann, Matthias; Homann, Christian; Leeb, R.; Doering, D.; Kuznetsova, J.; Reese, S.; Stief, C. G.; Koelle, S.; Sroka, R.

    2015-02-01

    Introduction and objective: In Europe, nearly every sixth couple in the reproductive age is involuntarily childless. In about 30%, both male and female reveal fertility problems. In about 10% of infertile men, azoospermia is the underlying cause. As conventional therapeutic options are limited, surgical testicular sperm extraction (TESE) is necessary to obtain sperms for assisted reproductive techniques. Regarding the females, up to 30% of all idiopathic infertilities are due to alterations of the uterine tube So far, no imaging technique, which does not require any labelling, is available to evaluate the male and female genital tract at a microscopic level under in vivo conditions. Thus, the aim of this study was to investigate the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in gynaecology and andrology. Material and Methods: Tissues samples from the bovine testis, epididymis, vas deferens, ovary, oviduct (ampulla and isthmus) and uterus were obtained immediately after slaughter (14 cows aged 3 to 8 years and 14 bulls aged 3 to 6 years; breeds: Holstein- Friesian, and Deutsches Fleckvieh). Imaging was done by using the US Food and Drug Administration (FDA) approved probe-based Niris Imaging System (Imalux, Cleveland, Ohio, USA) and the Telesto 1325 nm OCT System and Ganymede 930 nm OCT System (Thorlabs Inc., Dachau, Germany). All images obtained were compared to histological images after paraffin embedding and HE staining. Results: OCT imaging visualized the microarchitecture of the testis, epididymis, spermatic duct and the ovary, oviduct and uterus. Using the Thorlabs systems a axial resolution of approx. 5μm and lateral resolution of 8- 15μm could be achieved. Different optical tissue volumes could be visualized, which depends on the optical penetration depth of the wavelength of the system used. While the tissue volume observed by probe based Imalux-OCT is similar to the used Thorlabs systems, the optical resolution is

  6. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    SciTech Connect

    Robert Powell; David Pfund

    2005-07-17

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  7. Non-invasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer

    PubMed Central

    Mathé, Ewy A.; Patterson, Andrew D.; Haznadar, Majda; Manna, Soumen K.; Krausz, Kristopher W.; Bowman, Elise D.; Shields, Peter G.; Idle, Jeffrey R.; Smith, Philip B.; Anami, Katsuhiro; Kazandjian, Dickran G.; Hatzakis, Emmanuel; Gonzalez, Frank J.; Harris, Curtis C.

    2014-01-01

    Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1500 Da) were measured in urine collected from 469 lung cancer patients and 536 population controls using unbiased liquid chromatography-mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further validated in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared to the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA), were each significantly (P <0.00001) elevated in non–small cell lung cancer (NSCLC) and associated with worse prognosis (hazard ratio (HR) =1.81 [P =0.0002], and 1.54 [P =0.025], respectively). Creatine riboside was the strongest classifier of lung cancer status in all and stage I–II cases, important for early detection, and also associated with worse prognosis in stage I–II lung cancer (HR =1.71, P =0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 – 0.99. Both metabolites were significantly (P <0.03) enriched in tumor tissue compared to adjacent non-tumor tissue (N =48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis. PMID:24736543

  8. Diagnostic Approach to Disease Using Non-invasive Samples Based on Derivatization and LC-ESI-MS/MS.

    PubMed

    Toyo'oka, Toshimasa

    2016-01-01

    The determination of biologically-active molecules is very important in order to understand biological functions. A novel approach for the highly sensitive and specific determination seems to be essential for this purpose. Based on this consideration, we synthesized various types of fluorogenic and fluorescent reagents for the derivatization of chiral and achiral molecules. The fluorescence analysis is excellent for the analysis of target molecules and generally provides good expected results. However, the trace analysis of the bioactive molecules in complex matrices, such as plasma and urine, is not always satisfactory even using high-performance fluorometry. In such a situation, mass spectrometry (MS) is another technique for the selective and sensitive determination of biological components. Therefore, various derivatization reagents for MS/MS detection were developed and used for the determination of amines and carboxyls including chiral molecules. These newly developed reagents were also adopted for the biomarker detection related to diseases using non-invasive samples (i.e., saliva, nail, hair). Although the determination of the targeted chiral molecules is relatively easy, it is very difficult to identify and/or determine the enantiomeric biomarker in real samples. To solve this difficulty, we proposed the strategy called "chiral metabolomics," which means the total analysis of the enantiomers of various chiral metabolites in complex matrices. This review paper focused on the development of various new derivatization reagents for amines and carboxyls by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and the detection of the biomarker candidates related to several diseases in non-invasive samples (i.e., hair, nail, saliva) using these reagents. PMID:27582321

  9. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This project addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. The work consists of applying ultrasonic Doppler velocimetry and using it t...

  10. PROGRESS REPORT. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This work addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. This task consists of applying ultrasonic Doppler velocimetry and using it to ...

  11. ANNUAL REPORT. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This project addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. The work consists of applying ultrasonic Doppler velocimetry and using it t...

  12. In situ non-invasive investigation on the painting techniques of early Meissen Stoneware

    NASA Astrophysics Data System (ADS)

    Miliani, Costanza; Doherty, Brenda; Daveri, Alessia; Loesch, Anette; Ulbricht, Heike; Brunetti, Brunetto G.; Sgamellotti, Antonio

    2009-08-01

    In situ, non-invasive investigations by means of portable X-ray fluorescence and fibre optic reflectance mid-infrared (mid-FTIR) spectroscopy of painted Böttger Stoneware objects have been carried out through the MOLAB transnational access to the Porcelain Collection of the Staatliche Kunstsammlungen in Dresden. It has been possible to gather information regarding the composition of the black glaze by applying a principal component analysis to the elemental analysis to distinguish between the variations of lead, iron and manganese compositions of each glaze. It has been furthermore feasible to combine molecular spectroscopy for characterization of the constituent painting materials, namely lead white as cerusite and hydrocerusite, the use of cinnabar, azurite and Prussian blue leading to a better knowledge of the state of conservation and utility of certain pigments that may give rise to chronology of the decorative artwork. The identification of oxalates namely whedellite and moolooite are assigned as degradation products relative to the decorative areas.

  13. Optimization of a Novel Non-invasive Oral Sampling Technique for Zoonotic Pathogen Surveillance in Nonhuman Primates

    PubMed Central

    Smiley Evans, Tierra; Barry, Peter A.; Gilardi, Kirsten V.; Goldstein, Tracey; Deere, Jesse D.; Fike, Joseph; Yee, JoAnn; Ssebide, Benard J; Karmacharya, Dibesh; Cranfield, Michael R.; Wolking, David; Smith, Brett; Mazet, Jonna A. K.; Johnson, Christine K.

    2015-01-01

    Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible. PMID:26046911

  14. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints.

    PubMed

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (microFTIR) and micro-Raman (microRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor. PMID:19081288

  15. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    NASA Astrophysics Data System (ADS)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  16. Anthropometric and Biochemical Characteristics of Patients with Nonalcoholic Fatty Liver Diagnosed by Non-Invasive Diagnostic Methods

    PubMed Central

    Novakovic, Tatjana; Mekic, Mevludin; Smilic, Ljiljana; Smilic, Tanja; Inić-Kostic, Biljana; Jovicevic, Ljiljana; Mirkovic, Zlatica; Milinic, Srbislava

    2014-01-01

    ABSTRACT Introduction: Non-alcoholic (NAFLD) encompasses a spectrum of disease states, from steatosis (fatty liver) to non-alcoholic steatohepatitis (also called NASH steatosis with inflammatory changes) followed by progression to fibrosis and cirrhosis and hepatocellular carcinoma Excess liver fat is believed to be a manifestation of the metabolic syndrome and not surprisingly NASH is associated with obesity, insulin resistance, dyslipidemia and type 2 diabetes in humans. Aim of the study: is to establish anthropometric and biochemical specificities in patients with non-alcoholic steatohepatitis diagnosed with non-invasive diagnostic methods Material and methods: Study enrolled 170 participants, 130 with NASH steatosis. The non-alcoholic group (control), consisted of 40 normal weight patients without metabolic syndrome. Alcohol intake was estimated with established protocol. Routine biochemistry analysis were performed by standard laboratory procedures; serum levels of serum levels of fasting cholesterol and triglycerides, fasting glucose and insulin, insulin resistance estimated by HOMA index (Homeostasis model assessment), biochemistry tests and a liver ultrasound examination. Results: In study participants group, patients were more obese comparing with controls p < 0, 01, waist line extent also was of greater statistical significance in the non-alcoholic group fatty liver (p < 0, 01). Comparing biochemical parameter values, significant statistical deference has been noted in glaucosis and insulin levels, total cholesterol and gama-glutamil transferase levels, between groups (p<0, 01). Fasting glucose and insulin levels, HOMA-IR were significantly greater in study cohort group patients, as was significantly positive correlation between BMI and waist line extent. Conclusion: Patients with non-alcoholic fatty liver are excessively obese, have greater waist line extent, consequently insulin resistance and impaired glucose metabolism, insulin resistance

  17. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    NASA Astrophysics Data System (ADS)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  18. A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx.

    PubMed

    Xin, Xia; Wan, Yinglang; Wang, Wenjun; Yin, Guangkun; McLamore, Eric S; Lu, Xinxiong

    2013-01-01

    Quantifying seed viability is required for seed bank maintenance. The classical methods for detecting seed viability are time consuming and frequently cause seed damage and unwanted germination. We have established a novel micro-optrode technique (MOT) to measure seed viability in a quick and non-invasive manner by measuring the oxygen influxes of intact seeds, approximately 10 seconds to screen one seed. Here, we used soybean, wheat, and oilseed rape as models to test our method. After 3-hour imbibition, oxygen influxes were recorded in real-time with the total measurement taking less than 5 minutes. The results indicated a significantly positive correlation between oxygen influxes and viability in all 3 seed types. We also established a linear equation between oxygen influxes and seed viability for each seed type. For measurements, seeds were kept in the early imbibition stage without germination. Thus, MOT is a reliable, quick, and low-cost seed viability detecting technique. PMID:24162185

  19. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food

    PubMed Central

    Lobete, María M.; Fernandez, Estefania Noriega; Van Impe, Jan F. M.

    2015-01-01

    Planktonic cells typically found in liquid systems, are routinely used for building predictive models or assessing the efficacy of food preserving technologies. However, freely suspended cells often show different susceptibility to environmental hurdles than colony cells in solid matrices. Limited oxygen, water and nutrient availability, metabolite accumulation and physical constraints due to cell immobilization in the matrix, are main factors affecting cell growth. Moreover, intra- and inter-colony interactions, as a consequence of the initial microbial load in solid systems, may affect microbial physiology. Predictive food microbiology approaches are moving toward a more realistic resemblance to food products, performing studies in structured solid systems instead of liquids. Since structured systems promote microbial cells to become immobilized and grow as colonies, it is essential to study the colony behavior, not only for food safety assurance systems, but also for understanding cell physiology and optimizing food production processes in solid matrices. Traditionally, microbial dynamics in solid systems have been assessed with a macroscopic approach by applying invasive analytical techniques; for instance, viable plate counting, which yield information about overall population. In the last years, this approach is being substituted by more mechanistically inspired ones at mesoscopic (colony) and microscopic (cell) levels. Therefore, non-invasive and in situ monitoring is mandatory for a deeper insight into bacterial colony dynamics. Several methodologies that enable high-throughput data collection have been developed, such as microscopy-based techniques coupled with image analysis and OD-based measurements in microplate readers. This research paper provides an overview of non-invasive in situ techniques to monitor bacterial colonies in solid (model) food and emphasizes their advantages and inconveniences in terms of accuracy, performance and output information

  20. Nondestructive testing and evaluation of composites by non-invasive IR Imaging techniques

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Siddiqui, Juned A.; Arora, Vanita; Ghali, S. V.; Muniyappa, Amarnath; Takei, Masahiro

    2013-05-01

    InfraRed Thermography (IRT) is one of the promising technique for non-destructive testing method for characterization of materials. This technique relies on evaluation of the surface temperature variations to detect the presence of surface and subsurface anomalies within the material. Due to its whole field and remote testing capabilities, IRT has gained significant importance in testing of Glass Fiber Reinforced Plastic (GFRP) materials. A GFRP sample with defects of various sizes at a given depth was inspected using non-stationary thermographic techniques. In order to highlight the defect detection capabilities of the proposed non-stationary schemes, a comparison has been made using matched excitation energy in frequency domain by taking signal to noise ratio into consideration.

  1. Non-invasive techniques for measuring body composition: state of the art and future prospects

    SciTech Connect

    Cohn, S.H.

    1985-01-01

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs.

  2. Mechanography: a non-invasive technique for the evaluation of cardiac function in children

    PubMed Central

    Spitaels, Silja; Fouron, Jean-Claude; Davignon, André

    1972-01-01

    Experience in the pediatric age group with mechanography, an indirect method of cardiovascular investigation, is described with emphasis on the recording technique and on the analysis of the tracings. A few examples are presented with comments on the morphological aspects and the time characteristics of the pulse curves, showing how much information about cardiac disease and especially myocardial function in children may be obtained. PMID:4640813

  3. A rapid and non-invasive bio-photonic technique to monitor the quality of onions

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Hussain, F.; Ahmad, E.; Ikram, M.

    2015-08-01

    We present the use of swept source optical coherence tomography and spectral domain optical coherence tomography for imaging the skins and concentric tissue leaves of intact whole onion bulb as well as single leave. The normal and watery scaled (defective) onion's outer leaves and whole bulb have been characterized by cross sectional imaging of internal defects. The method can be used as potential investigating technique for application of food quality check during long storage.

  4. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  5. A reliable, non-invasive technique for measuring growth in tadpoles exposed to salt.

    PubMed

    Weeg, Matthew S; Grant, Jacqualine B

    2016-07-01

    The use of chemical de-icers raises salt levels in roadside streams and ponds, which has adverse effects on tadpole development. Experiments on the effects of de-icers on tadpole development are often hampered by difficulties measuring body size without introducing handling stress that may skew results or cause unintended mortality. We have found a linear relationship between surface area and body mass in tadpoles that is unaffected by exposure to salt. Measuring surface area is therefore a suitable technique whose use should be encouraged when investigating the effects of salt exposure on tadpole growth and development. PMID:27267424

  6. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions

    PubMed Central

    Moseley, Peter; Alderson-Day, Ben; Ellison, Amanda; Jardri, Renaud; Fernyhough, Charles

    2016-01-01

    Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH. PMID:26834541

  7. Automated non-invasive measurement of cardiac output: comparison of electrical bioimpedance and carbon dioxide rebreathing techniques.

    PubMed Central

    Smith, S A; Russell, A E; West, M J; Chalmers, J

    1988-01-01

    Two commercial automated, non-invasive systems for estimation of cardiac output were evaluated. Values of cardiac output obtained by electrical bioimpedance cardiography (BoMed NCCOM3 machine) were compared with values derived from an indirect Fick technique that uses carbon dioxide rebreathing (Gould 9000 IV system) during 103 simultaneous measurements made at rest in 19 randomly selected subjects and on exercise in 11 subjects. Cardiac output values obtained with impedance cardiography were significantly correlated with those measured by the indirect Fick method, although there was a wide scatter with over 73% of the readings lying outside the limits defined by the line of identity +/- 20%. This correlation was greatly reduced when stroke volume index was used instead of cardiac output. Indirect Fick results were linearly related to oxygen uptake both at rest and on exercise, while impedance cardiography results did not correlate with oxygen uptake. Impedance cardiography gave consistently lower results for cardiac output than indirect Fick at all levels of exercise. Both machines were easy to use and produced acceptable mean (SE) coefficients of variation (BoMed NCCOM3 7.7 (1.0)%, Gould 9000 IV 10.6 (1.4)%). Further validation is required before either of these machines can be recommended as an alternative to invasive monitoring in clinical practice. PMID:3128316

  8. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    PubMed Central

    Cumeras, Raquel; Cheung, William H.K.; Gulland, Frances; Goley, Dawn; Davis, Cristina E.

    2014-01-01

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research. PMID:25222833

  9. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals.

    PubMed

    Cumeras, Raquel; Cheung, William H K; Gulland, Frances; Goley, Dawn; Davis, Cristina E

    2014-01-01

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research. PMID:25222833

  10. Assessment of disease activity in patients with rheumatoid arthritis using optical spectral transmission measurements, a non-invasive imaging technique

    PubMed Central

    van Onna, M; Ten Cate, D F; Tsoi, K L; Meier, A J L; Jacobs, J W G; Westgeest, A A A; Meijer, P B L; van Beek, M C; Rensen, W H J; Bijlsma, J W J

    2016-01-01

    Objectives In rheumatoid arthritis (RA), treat-to-target strategies require instruments for valid detection of joint inflammation. Therefore, imaging modalities are increasingly used in clinical practice. Optical spectral transmission (OST) measurements are non-invasive and fast and may therefore have benefits over existing imaging modalities. We tested whether OST could measure disease activity validly in patients with RA. Methods In 59 patients with RA and 10 patients with arthralgia, OST, joint counts, Disease Activity Score (DAS) 28 and ultrasonography (US) were performed. Additionally, MRI was performed in patients with DAS28<2.6. We developed and validated within the same cohort an algorithm for detection of joint inflammation by OST with US as reference. Results At the joint level, OST and US performed similarly inproximal interphalangeal-joints (area under the receiver-operating curve (AUC) of 0.79, p<0.0001) andmetacarpophalangeal joints (AUC 0.78, p<0.0001). Performance was less similar in wrists (AUC 0.62, p=0.006). On the patient level, OST correlated moderately with clinical examination (DAS28 r=0.42, p=0.001), and US scores (r=0.64, p<0.0001). Furthermore, in patients with subclinical and low disease activity, there was a correlation between OST and MRI synovitis score (RAMRIS (Rheumatoid Arthritis MRI Scoring) synovitis), r=0.52, p=0.005. Conclusions In this pilot study, OST performed moderately in the detection of joint inflammation in patients with RA. Further studies are needed to determine the diagnostic performance in a new cohort of patients with RA. PMID:26452538

  11. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  12. Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD.

    PubMed

    Perrault, Hélène; Richard, Ruddy; Kapchinsky, Sophia; Baril, Jacinthe; Bourbeau, Jean; Taivassalo, Tanja

    2016-01-01

    The multifactorial functional limitation of COPD increasingly demonstrates the need for an integrated circulatory assessment. In this study cardiac output (Qc) derived from non-inert (CO2-RB), inert (N2O-RB) gas rebreathing approaches and bioimpedance were compared to examine the limitations of currently available non-invasive techniques for exercise Qc determination in patients with chronic lung disease. Thirteen COPD patients (GOLD II-III) completed three constant cycling bouts at 20, 35, and 50% of peak work on two occasions to assess Qc with bioimpedance as well as using CO2-RB and N2O-RB for all exercise tests. Results showed significantly lower Qc using the N2O-RB or end-tidal CO2-derived Qc compared to the PaCO2-derived CO2-RB or the bioimpedance at rest and for all exercise intensities. End-tidal CO2-derived values are however not statistically different from those obtained using inert-gas rebreathing. This study show that in COPD patients, CO2-rebreathing Qc values obtained using PaCO2 contents which account for any gas exchange impairment or inadequate gas mixing are similar to those obtained using thoracic bioimpedance. Alternately, the lower values for N2O rebreathing derived Qc indicates the inability of this technique to account for gas exchange impairment in the computation of Qc. These findings indicate that the choice of a gas rebreathing technique to measure Qc in patients must be dictated by the ability to include in the derived computations a correction for either gas exchange inadequacies and/or a vascular shunt. PMID:26408087

  13. Novel diagnostic techniques for celiac disease.

    PubMed

    Kurppa, Kalle; Taavela, Juha; Saavalainen, Päivi; Kaukinen, Katri; Lindfors, Katri

    2016-07-01

    The diagnosis of celiac disease has long been based on the demonstration of gluten-induced small-bowel mucosal damage. However, due to the constantly increasing disease prevalence and limitations in the histology-based criteria there is a pressure towards more serology-based diagnostics. The serological tools are being improved and new non-invasive methods are being developed, but the constantly refined endoscopic and histologic techniques may still prove helpful. Moreover, growing understanding of the disease pathogenesis has led researchers to suggest completely novel approaches to celiac disease diagnostics regardless of disease activity. In this review, we will elucidate the most recent development and possible future innovations in the diagnostic techniques for celiac disease. PMID:26838683

  14. Genome-wide Long Non-coding RNA Analysis Identified Circulating LncRNAs as Novel Non-invasive Diagnostic Biomarkers for Gynecological Disease

    PubMed Central

    Wang, Wen-Tao; Sun, Yu-Meng; Huang, Wei; He, Bo; Zhao, Ya-Nan; Chen, Yue-Qin

    2016-01-01

    Increasing evidence indicates that long non-coding RNAs (lncRNAs) play important roles in human diseases. This study aimed to investigate the tissue and serum lncRNAs that are differentially expressed between patients with endometriosis, a gynecological disease, to evaluate the potential of these lncRNAs as non-invasive markers for the disease. The differentially expressed lncRNAs as competing endogenous RNAs (ceRNAs) were also analyzed to predict their functions in disease development. Genome-wide profiling of lncRNA expression patterns revealed that many lncRNAs were abnormally expressed between sera and tissuesof the patient samples. A set of aberrant differentially expressed lncRNAs were further validated in a validation cohort of 110 serum and 24 tissue samples. Functional analysis predicted that differentially expressed lncRNAs may participate in disease development through crosstalk between the ceRNAs of miRNAs and may be involved in a range of cellular pathways including steroid or hormone responses. We also found a unique set of lncRNAs that were associated with disease severity and progression, and their diagnostic values were also investigated. Our study demonstrated that lncRNAs could potentially serve as non-invasive biomarkers for the diagnosis of endometriosis and as important regulators in the progression of this disease. PMID:26987697

  15. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    NASA Astrophysics Data System (ADS)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  16. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.

    PubMed

    Bazán, I; Vazquez, M; Ramos, A; Vera, A; Leija, L

    2009-03-01

    Optimization of efficiency in hyperthermia requires a precise and non-invasive estimation of internal distribution of temperature. Although there are several research trends for ultrasonic temperature estimation, efficient equipments for its use in the clinical practice are not still available. The main objective of this work was to research about the limitations and potential improvements of previously reported signal processing options in order to identify research efforts to facilitate their future clinical use as a thermal estimator. In this document, we have a critical analysis of potential performance of previous ultrasonic research trends for temperature estimation inside materials, using different processing techniques proposed in frequency, time and phase domains. It was carried out in phantom with scatterers, assessing at their specific applicability, linearity and limitations in hyperthermia range. Three complementary evaluation indexes: technique robustness, Mat-lab processing time and temperature resolution, with specific application protocols, were defined and employed for a comparative quantification of the behavior of the techniques. The average increment per degrees C and mm was identified for each technique (3 KHz/ degrees C in the frequency analysis, 0.02 rad/ degrees C in the phase domain, while increments in the time domain of only 1.6 ns/ degrees C were found). Their linearity with temperature rising was measured using linear and quadratic regressions and they were correlated with the obtained data. New improvements in time and frequency signal processing in order to reveal the potential thermal and spatial resolutions of these techniques are proposed and their subsequent improved estimation results are shown for simulated and measured A-scans registers. As an example of these processing novelties, an excellent potential resolution of 0.12 degrees C into hyperthermia range, with near-to-linear frequency dependence, could be achieved

  17. Non-Invasive, Non-Contact Heart Monitoring of Hemodialysis Patients with a Micropower Impulse Radar Technique

    SciTech Connect

    Chang, J; Levin, N; Poland, D; Welsh, P; Paulsen, C; Trebes, J; Rosenbury, R; Killip, T

    2002-02-01

    This report summarizes the LLNL LDRD funded portion of a collaborative project to demonstrate and clinically evaluate the micropower impulse radar technology as a means to non-invasively monitor the heart of chronic care patients undergoing hemodialysis. The development is based upon technologies and expertise unique to LLNL. The LLNL LDRD funded portion of this project was used to assist in the definition, design, construction, and evaluation of the prototype.

  18. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  19. Eco-photonics: application of optical diagnostic modalities for non-invasive monitoring and evaluation of stress conditions of aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gurkov, A. N.; Axenov-Gribanov, D. V.; Pavlichenko, V. V.; Shakhtanova, N. S.; Bedulina, D. S.; Timofeyev, M. A.; Kalchenko, V.; Meglinski, I.

    2012-03-01

    The growing interest in monitoring ecological change has been stimulated by a global climate change, combined with the day-to-day human anthropogenic activities, that heavily influence the environment. A global warming accompanied by a anthropogenic activities falling within the freshwater ecosystem result a dramatic enhance of the overall stress for most of aquatic organisms. We explore the applicability of optical spectroscopy and advanced non-invasive imaging techniques, that have been used earlier in various biomedical applications, to study an influence of climatic changes on the physiological and biochemical processes that take place in living aquatic organisms. In current report we demonstrate that optical spectroscopy and modern imaging techniques can be successfully used to observe and evaluate thermal and/or hypoxic stress, experienced by freshwater organisms, such as Baikal amphipods.

  20. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  1. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Metelin, Vladislav; Nasyrov, Marat; Belyakov, Vladimir; Kuznetsov, Alexander; Sukhenko, Evgeniy

    2015-03-01

    The objective of the present study is to increase the quality of the early diagnosis using cytological differential-diagnostic criteria for reactive changes in the nuclear structures of the immunocompetent cells. The morphofunctional status of living cells were estimated in the real time using new technologic platform of the hardware-software complex for phase cell imaging. The level of functional activity for lymphocyte subpopulations was determined on the base of modification of nuclear structures and decreasing of nuclear phase thickness. The dynamics of nuclear parameters was used as the quantitative measuring for cell activating level and increasing of proliferative potential.

  2. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  3. Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media ('metabolomics').

    PubMed

    Nagy, Zsolt Peter; Sakkas, Denny; Behr, Barry

    2008-10-01

    Increasing the efficiency of the IVF procedure by improving pregnancy/implantation rates and at the same time lowering (or avoiding) the risks of multiple gestations are the primary goals of the current assisted reproductive technology. These aims require a much improved gamete/embryo testing and selection procedure, which, using the current approach of microscopy-based morphology evaluation is unlikely to be achieved. Therefore, alternative or additional, non-invasive techniques have been proposed which may be able to detect alterations of the culture environment surrounding gametes/embryos reflective of the (patho-)physiological processes. One of the most recently applied approaches is to measure metabolomic changes in the culture medium of embryos and oocytes ('exometabolomics'). Initial studies have demonstrated that different types of spectrophotometric tests, including Raman and near-infrared (NIR) techniques, are similarly well capable of detecting specific changes of the 'secretome' (exometabolome). These studies have also demonstrated that metabolomic measurements correlate well with embryo development and morphology assessment. Furthermore, viability index on oocytes/embryos established by metabolomic tests may be a stronger predictor for implantation potential than traditional morphological assessment. Although the results of these initial investigations are promising, further prospective studies are required to define clearly the potential benefits and most relevant applications of this novel non-invasive technology in the field of assisted reproduction. PMID:18854103

  4. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  5. Research protocol for a diagnostic study of non-invasive exhaled breath analysis for the prediction of oesophago-gastric cancer

    PubMed Central

    Markar, Sheraz R; Lagergren, Jesper; Hanna, George B

    2016-01-01

    Introduction Despite improvements in a range of chemo, radio and surgical therapies, the overall survival at 5 years from oesophago-gastric cancer remains poor and ranges from 10% to 30%. Early diagnosis is a key strategy to improve survival but early disease stage has non-specific symptoms that are very common while the warning clinical picture often indicates advanced disease. The aim of this research is to validate a breath test to predict oesophago-gastric cancer therefore allowing earlier diagnosis and introduction of treatment. Methods and analysis The study will include 325 patients and be conducted across four major oesophago-gastric cancer centres in London, UK. This research will utilise selected ion flow-tube mass spectrometry (SIFT-MS) exhaled breath analysis, for comparison of predicted cancer risk based on the previously developed volatile organic compound exhaled breath model, with endoscopic findings and histology biopsies. This will determine the overall diagnostic accuracy for non-invasive breath testing for the diagnosis of oesophago-gastric cancer. Ethics and Dissemination Approval was gained from NRES Committee London, on 16 July 2014 (REC reference 14/LO/1136) for the completion of this study. Different methods of dissemination will be employed including international clinical and patient group presentations, and publication of research outputs in a high-impact clinical journal. This is to ensure that the findings from this research will reach patients, primary care practitioners, scientists, hospital specialists in gastroenterology, oncology and surgery, health policymakers and commissioners as well as NHS regulatory bodies. Trials registration number UKCRN18063; Pre-results. PMID:26739727

  6. [Diagnostic accuracy for alcoholic liver disease with controlled Attenuation Parameter (CAP) measured by transient elastography for the non-invasive assessment of liver steatosis].

    PubMed

    Kikuchi, Masahiro; Umeda, Rumiko; Tsuruya, Kota; Shiozawa, Hirokazu; Matsushima, Masashi; Abe, Keiichiro; Kikuchi, Miho; Takahashi, Masahiko; Yamagishi, Yoshiyuki; Nishizaki, Hiroyasu; Horie, Yoshinori; Kanai, Takanori

    2015-10-01

    Along with the development of interferon and therapeutic medication, the incidence of viral hepatitis constituting the largest part of liver disease decreased, and the main target in the field of liver disease is now shifting from viral hepatitis to alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) as metabolic liver disease. Although these diseases tend.to. be gathered as non-viral liver disease because the similar specific liver tissue, the natural history and etiology are considerably different between them. We need to distinguish both of them to do appropriate treatment intervention. Questioning of amount of drinking is needed, but we experience some difficult cases to understand drinking history because of a too little declaration of amount of drinking. A new ultrasonic image analyses using propagation speed in the organization of the pulse vibration wave was developed as Fibroscan by Echosens company in recent years. Fibroscan is a non-invasive test to quantify liver fibrosis as Liver Stiffness Measurement (LSM). It also detects and quantifies steatosis simultaneously using the Controlled Attenuation Parameter (CAP). CAP is a measurement of the ultrasound attenuation. We measured liver steatosis of patients using Fibroscan, and other blood tests. 63 cases of ALD, 177 cases of NAFLD, 57 cases of Virus and 271 cases of Normal were enrolled. CAP value were significantly lower in the ALD group compared with NAFLD group. (P < 0.0053, ALD 268 dB/m : NAFLD 290 dB/m) We elucidate the diagnostic accuracy of CAP using Fibroscan for ALD patients, comparing the results of them to those of virus patients and NAFLD patients. PMID:26946784

  7. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution

    PubMed Central

    Kuettner, A; Beck, T; Drosch, T; Kettering, K; Heuschmid, M; Burgstahler, C; Claussen, C D; Kopp, A F; Schroeder, S

    2005-01-01

    Objective: To evaluate image quality and clinical accuracy in detecting coronary artery lesions with a new multidetector spiral computed tomography (MDCT) generation with 16 detector slices and a temporal resolution of 188 ms. Methods: 124 consecutive patients scheduled for invasive coronary angiography (ICA) were additionally studied by MDCT (Sensation 16 Speed 4D). MDCTs were analysed with regard to image quality and presence of coronary artery lesions. The results were compared with ICA. Results: 120 of 124 scans were successful. The image quality of all remaining 120 scans was sufficient (mean (SD) heart rate 64.2 (9.8) beats/min, range 43–95). The mean calcium mass was 167 (223) mg (range 0–1038). Thirteen coronary segments were evaluated for each patient (1560 segments in total). Image quality was graded as follows: excellent, 422 (27.1%) segments; good, 540 (34.6%) segments; moderate, 277 (17.7%) segments; heavily calcified, 215 (13.8%) segments; and blurred, 106 (6.8%) segments. ICA detected 359 lesions with a diameter stenosis > 50% and MDCT detected 304 of 359 (85%). Sensitivity, specificity, and positive and negative predictive values were 85%, 98%, 91%, and 96%, respectively. The correct clinical diagnosis (presence or absence of at least one stenosis > 50%) was obtained for 110 of 120 (92%) patients. Conclusions: MDCT image quality can be further improved with 16 slices and faster gantry rotation time. These results in an unselected population underline the potential of MDCT to become a non-invasive diagnostic alternative, especially for the exclusion of coronary artery disease, in the near future. PMID:15958366

  8. Visceral anatomy of ocean sunfish (Mola mola (L., 1758), Molidae, Tetraodontiformes) and angler (Lophius piscatorius (L., 1758), Lophiidae, Lophiiformes) investigated by non-invasive imaging techniques.

    PubMed

    Chanet, Bruno; Guintard, Claude; Boisgard, Thierry; Fusellier, Marion; Tavernier, Cédric; Betti, Eric; Madec, Stéphane; Richaudeau, Yvan; Raphaël, Christian; Dettaï, Agnès; Lecointre, Guillaume

    2012-12-01

    The purpose of this work is to examine the gross visceral anatomy of ocean sunfish and angler using non-invasive imaging techniques: computed tomography imaging (CT) and magnetic resonance imaging (MRI). Similarities and differences in the internal organisation of these two species are verified. Both species lack a swimbladder and present a significant asymmetry in the hepatic lobes, an elongated bile duct terminating close to the stomach, a compact thyroid embedded in a blood lacuna, and very reduced brain and spinal cord. These observations are important in regard to the close relationships between Tetraodontiformes and Lophiiformes, established by several molecular works, but not yet confirmed by morpho-anatomical data. However the occurrence of these features has to be examined in other taxa before phylogenetic hypotheses are proposed. PMID:23312298

  9. Non-invasive sensing for food reassurance.

    PubMed

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm

    2016-03-01

    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance. PMID:26835653

  10. Non invasive assessment of the human tear film dynamics.

    PubMed

    Ring, M H; Rabensteiner, D F; Horwath-Winter, J; Boldin, I; Schrödl, F; Reitsamer, H; Haslwanter, T

    2015-11-01

    Dry eye disease, or keratoconjunctivitis sicca, is a multifactorial syndrome with altered tear film homeostasis leading to ocular irritations. These alterations cause discomfort and stress for the patient, but only a few objective parameters allow for proper differential diagnosis into different subtypes of this condition. The mostly invasively performed standard assessment procedures for tear film diagnosis are manifold, but often correlate quite poorly with the subjectively reported symptoms. Due to the inherent limitations, e.g. the subjectivity of the commonly performed invasive tests, a number of devices have been developed to assess the human tear film non-invasively. Since the production, delivery, distribution and drainage of the tear film is a dynamic process, we have focused our review on non-invasive methods which are capable of continuous or repetitive observations of the tear film during an inter-blink interval. These dynamic methods include (1) Interferometry, (2) Pattern Projection, (3) Aberrometry, (4) Thermography; and (5) Evaporimetry. These techniques are discussed with respect to their diagnostic value, both for screening and differential diagnostic of Dry Eye Disease. Many of the parameters obtained from these tests have been shown to have the potential to reliably discriminate patients from healthy subjects, especially when the tests are performed automatically and objectively. The differentiation into subtypes based solely on a single, dynamic parameter may not be feasible, but the combination of non-invasively performed procedures may provide good discrimination results. PMID:26406882

  11. Non-Invasive Imaging of Vascular Inflammation

    PubMed Central

    Ammirati, Enrico; Moroni, Francesco; Pedrotti, Patrizia; Scotti, Isabella; Magnoni, Marco; Bozzolo, Enrica P.; Rimoldi, Ornella E.; Camici, Paolo G.

    2014-01-01

    In large-vessel vasculitides, inflammatory infiltrates may cause thickening of the involved arterial vessel wall leading to progressive stenosis and occlusion. Dilatation, aneurysm formation, and thrombosis may also ensue. Activated macrophages and T lymphocytes are fundamental elements in vascular inflammation. The amount and density of the inflammatory infiltrate is directly linked to local disease activity. Additionally, patients with autoimmune disorders have an increased cardiovascular (CV) risk compared with age-matched healthy individuals as a consequence of accelerated atherosclerosis. Molecular imaging techniques targeting activated macrophages, neovascularization, or increased cellular metabolic activity can represent effective means of non-invasive detection of vascular inflammation. In the present review, novel non-invasive imaging tools that have been successfully tested in humans will be presented. These include contrast-enhanced ultrasonography, which allows detection of neovessels within the wall of inflamed arteries; contrast-enhanced CV magnetic resonance that can detect increased thickness of the arterial wall, usually associated with edema, or mural enhancement using T2 and post-contrast T1-weighted sequences, respectively; and positron emission tomography associated with radio-tracers such as [18F]-fluorodeoxyglucose and the new [11C]-PK11195 in combination with computed tomography angiography to detect activated macrophages within the vessel wall. Imaging techniques are useful in the diagnostic work-up of large- and medium-vessel vasculitides, to monitor disease activity and the response to treatments. Finally, molecular imaging targets can provide new clues about the pathogenesis and evolution of immune-mediated disorders involving arterial vessels. PMID:25183963

  12. Non-invasive Intratracheal Instillation in Mice

    PubMed Central

    Ortiz-Muñoz, Guadalupe; Looney, Mark R.

    2016-01-01

    The intratracheal instillation technique is used to deliver a variety of agents to the lungs ranging from pathogens (bacteria, viruses), toxins, to therapeutic agents. To model lung inflammation and injury, LPS can be administrated via intranasal, intratracheal, or aerosol approaches. Each technique has its limitations. The intratracheal technique can involve the non-invasive instillation method (via the oro-tracheal route) or a direct injection into the trachea. Here, we describe an optimized method for direct visual instillation of LPS via the non-invasive oro-tracheal route.

  13. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    NASA Astrophysics Data System (ADS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-06-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  14. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    SciTech Connect

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Ferreira, R.; Freitas, P.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  15. Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures

    NASA Astrophysics Data System (ADS)

    Pastor, J. V.; Serrano, J. R.; Dolz, V.; López, M. A.; Bouffaud, F.

    2012-10-01

    This paper presents a novel non-invasive technique to estimate the turbocharger shaft whirl motion. The aim of this article is to present a system for monitoring the shaft motion of a turbocharger, which will be used in turbocharger destructive testing. To achieve this, a camera and a light source were installed in a turbocharger test bench with a controlled lubrication circuit. An image recording methodology and a process algorithm have been developed, in order to estimate the shaft motion. This processing consists on differentiating specific zones of the image, in order to obtain their coordinates. Two reference points have been configured on the compressor side, which help to calculate the relative position of the shaft, avoiding the errors due to structural vibrations. Maximum eccentricity of the turbocharger has been determined and it has been compared with shaft motion when it is spinning in different conditions. A luminosity study has been also done, in order to improve the process and to obtain locus of shaft position in a picture exposition time period. The technique has been applied to diagnosis of a lubrication failure test and the main results will be presented in this article: like shaft motion figures; thermodynamic variables and pictures of the shaft while it is spinning at abnormal lubrication conditions. The measuring components used in this technique have the ability to withstand the catastrophic failure of the turbocharger in this type of test.

  16. [Non-invasive diagnostic methods of fibrosis in chronic hepatitis C virus infection: their role in treatment indication, follow-up and assessment of prognosis].

    PubMed

    Pár, Alajos; Vincze, Áron; Pár, Gabriella

    2015-05-24

    Chronic hepatitis C virus infection associated with necroinflammation predisposes to liver fibrosis and cirrhosis, which lead to severe end-stage complications. Staging of fibrosis is of basic importance for the indication of antiviral treatment, for monitoring the response and predicting the prognosis of patients with hepatitis C virus related liver disease. Since liver biopsy, the "gold standard" diagnosis of fibrosis is invasive and it has some other limitations, non-invasive methods have been developed and widely used in the clinical practice. Serum biomarkers and physical approaches measuring liver stiffness by elastography as well as combination algorithms have been gradually been integrated into guidelines resulting in a reduction of the need for liver biopsy. The authors review these non-invasive fibrosis markers and discuss their role in the indication of treatment, follow-up, and assessment of prognosis of patients with chronic hepatitis C virus infection. PMID:26038993

  17. Non-invasive diagnosis of advanced fibrosis and cirrhosis.

    PubMed

    Sharma, Suraj; Khalili, Korosh; Nguyen, Geoffrey Christopher

    2014-12-01

    Liver cirrhosis is a common and growing public health problem globally. The diagnosis of cirrhosis portends an increased risk of morbidity and mortality. Liver biopsy is considered the gold standard for diagnosis of cirrhosis and staging of fibrosis. However, despite its universal use, liver biopsy is an invasive and inaccurate gold standard with numerous drawbacks. In order to overcome the limitations of liver biopsy, a number of non-invasive techniques have been investigated for the assessment of cirrhosis. This review will focus on currently available non-invasive markers of cirrhosis. The evidence behind the use of these markers will be highlighted, along with an assessment of diagnostic accuracy and performance characteristics of each test. Non-invasive markers of cirrhosis can be radiologic or serum-based. Radiologic techniques based on ultrasound, magnetic resonance imaging and elastography have been used to assess liver fibrosis. Serum-based biomarkers of cirrhosis have also been developed. These are broadly classified into indirect and direct markers. Indirect biomarkers reflect liver function, which may decline with the onset of cirrhosis. Direct biomarkers, reflect extracellular matrix turnover, and include molecules involved in hepatic fibrogenesis. On the whole, radiologic and serum markers of fibrosis correlate well with biopsy scores, especially when excluding cirrhosis or excluding fibrosis. This feature is certainly clinically useful, and avoids liver biopsy in many cases. PMID:25492996

  18. Non-invasive investigative techniques for the diachronic study of territorial compartments: a case study for the documentation and analysis of architectural complexes.

    NASA Astrophysics Data System (ADS)

    Di Lieto, Marco; Marchetta, Isabella; Ciriello, Rosanna; De Martino, Gregory; Della Mora, Dario

    2014-05-01

    The trend in the study of areas of land in their integrity and as dynamic, anthropic units in diachronic history has initiated long survey campaigns over several decades that have covered large areas mapping the evidence and attempting a reconstruction of the evolution of ancient settlements. The need for further study to disentangle the knots of modes and types of settlement boosted further investigations of targeted excavations, based on the quality and density of the findings from the field. Currently archaeological research can rely on non-invasive integrated methods to better define the areas to be investigated systematically obtaining new typologies of information and better management of time and research costs. In this paper we present a specific case study in which a variety of integrated survey methods have contributed to the documentation and analysis of monumental complexes linked to specific local contexts. The area under investigation lies in Italy, in the province of Potenza and, specifically in the town of Forenza. The survey activities, involving the entire municipality, have been running on and off for about 2 years and have already resulted in the collection of a lot of interesting data that will be useful to essential fieldwork. In particular, we carried out different types of investigation in three different sample sites: 1. monumental complex of Santa Maria de 'Armenis: to complement previous excavations which involved only a portion of the estimated area of interest, we carried out magnetometric and geo-electrical surveys aimed at a more precise definition of the true extent and interpretation of the monument in antiquity; 2. site of Monte Caruso: we carried out remote sensing using a remote-controlled UAV hexakopter drone with stereoscopic photogrammetric survey techniques aimed at the detailed documentation of the monumental evidence of a structure visible in elevation but in a context difficult to approach with traditional surveying

  19. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    PubMed Central

    Moreno, Jaime Sánchez; Muñoz, Diego Ramírez; Cardoso, Susana; Berga, Silvia Casans; Antón, Asunción Edith Navarro; de Freitas, Paulo Jorge Peixeiro

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. PMID:22163748

  20. A dynamic and non-invasive technique for space cellular effects research based on the SPR principle

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Li, Y. H.; Xiong, J. H.; Tan, Y. J.; Yu, J. R.; Nie, J. L.

    Space cell and molecular biology research has shown that space environment can affect the cellular morphology and function induce physiological and biochemical disorders The effect mechanism of space factors on the intracellular molecular events involved in signal transduction cytoskeleton reorganization and protein expression Surface plasmon resonance SPR is a promising tool for monitoring and studying the spatio-temporal and dynamic characteristic of the intricate biochemical reactions inside living cells For its advantages such as high sensitivity fast determination safety anti-jamming and long distance transmission it might be used in the space environment for studying the dynamic characteristic of intracellular molecular events In this paper a prototype of portable SPR based cytosensor SBCS was constructed for cell culture and SPR signal record and on the basis of it the corresponding technique was also established and utilized to study the possible involvement of actin cytoskeleton in the glutamate Glu uptake activity in C6 cells Firstly SBCS was used for monitoring the depolymerization of actin cytoskeleton in C6 cells at real-time After cytochalasin D CD was injected into the flow cell to disrupt actin cytoskeleton the SPR sensorgram declined gradually in a time- and dose-dependent manner Then the sensorgrams induced by Glu on C6 cells with or without CD preincubation were monitored The SPR signals induced by Glu were significant depressed by CD pretreatment which indicated that actin cytoskeleton played a crucial

  1. A novel method for rapid and non-invasive detection of plants senescence using delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Wang, Junsheng; Zeng, Lizhang; Li, Qiang

    2007-05-01

    Plants senescence is a phase of plants ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II ( PSII ) in a plant is considered the primary site where light-induced delayed fluorescence (DF) is produced. With the leaves of Catharanthus roseus (Catharanthus roseus (L.) G.Don) as testing models, we have studied the effects of plants senescence induced by dark and/or exogenous hormones treatments on characteristics of DF by using a home-made portable DF detection system, which can enable various DF parameters, such as DF decay kinetic curve and DF intensity, to be rapidly produced for the plants in a short time. The results show that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content. Therefore, DF may be used an important means of evaluating in vivo plants senescence physiology. The changes in DF intensity may provide a new approach for the rapid and early detection of plants senescence caused by age or other senescence-related factors. DF technique could be potential useful for high throughput screening and less time-consuming and automated identifying the interesting mutants with genetic modifications that change plants senescence progress.

  2. Non-invasive near-field measurement setup based on modulated scatterer technique applied to microwave tomography

    NASA Astrophysics Data System (ADS)

    Memarzadeh-Tehran, Hamidreza

    The main focus of this thesis is to address the design and development of a near-field (NF) imaging setup based on the modulated scatterer technique (MST). MST is a well-known approach used in applications where accurate and perturbation-free measurement results are necessary. Of the possible implementations available for making an MST probe, including electrical, optical and mechanical, the optically modulated scatterer OMS was considered in order to provide nearly perturbation-free measurement due to the invisibility of optical fiber to the radio-frequency electromagnetic fields. The OMS probe consists of a commercial, off-the-shelf (COTS) photodiode chip (nonlinear device), a short-dipole antenna acting as a scatterer and a matching network (passive circuit). The latter improves the scattering properties and also increases the sensitivity of the OMS probe within the frequency range in which the matching network is optimized. The radiation characteristics of the probe, including cross-polarization response and omnidirectional sensitivity, were both theoretically and experimentally investigated. Finally, the performance and reliability of the probe was studied by comparing measured near-field distributions on a known field distribution with simulations. Increased imaging speed was obtained using an array of OMS probes, which reduces mechanical movements. Mutual-coupling, switching time and shadowing effect, which all may affect the performance of the array, were investigated. Then, the results obtained by the array were validated in a NF imager by measuring the E-field distribution of an antenna under test (AUT) and comparing it with a simulation. Calibration and data averaging were applied to raw data to compensate the probes for uncertainties in fabrication and interaction between array/AUT and array/receiving antenna. Dynamic range and linearity of the developed NF imager was improved by adding a carrier canceller circuit to the front-end of the receiver. The

  3. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Vitorino, T.; Casini, A.; Cucci, C.; Melo, M. J.; Picollo, M.; Stefani, L.

    2015-11-01

    The present paper, which focuses on the identification of red lake pigments, in particular madder, brazilwood, and cochineal, addresses the advantages and drawbacks of using reflectance hyperspectral imaging in the visible and near-infrared ranges as a non-invasive method of discrimination between different red organic pigments in cultural heritage objects. Based on reconstructions of paints used in the period extending from the fourteenth to the sixteenth century, prepared with as far as possible historical accuracy, the analyses by means of visible/near-infrared reflectance hyperspectral imaging were carried out with the objective of understanding the most significant differences between these vegetal- and animal-based red lake pigments. The paper discusses the results that were obtained on four original Italian and North European paintings and compared with those from the paint reconstructions, in order to demonstrate how the hyperspectral imaging technique can be usefully and effectively applied to the identification and mapping of red lake pigments in painted surfaces of interest in the conservation field.

  4. Verification of a semi-automated MRI-guided technique for non-invasive determination of the arterial input function in 15O-labeled gaseous PET

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoshi; Hori, Yuki; Moriguchi, Tetsuaki; Morita, Naomi; Yamamoto, Akihide; Koshino, Kazuhiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Enmi, Jun-ichiro; Iida, Hidehiro

    2013-02-01

    A semi-automated MR-guided technique has been evaluated for non-invasive estimation of cerebral metabolic rate of oxygen (CMRO2) using the sequential administration of 15O oxygen (O2) and 15O carbon dioxide (CO2) during a single PET scan. Two mathematical models, which assess the arterial input function (AIF) from time-activity curves (TAC) in the internal carotid artery region, were tested, namely one with a simple correction for the recovery coefficient (RC) and another with corrections for RC and spillover from surrounding tissues. RC was determined from MRA and black-blood image. RC was also determined from C15O blood volume images as a reference. RC agreed between MR-based and C15O-PET based methods, suggesting validity of MR-based methods. Area-under-the-curve (AUC) of the early portion of estimated AIF agreed with that of measured AIF in both models. AUC of the delayed phase of estimated AIF was largely overestimated in the first model, but was sufficiently improved by the spillover correction implemented in the second model.

  5. Advances in non-invasive techniques as aids to the diagnosis and monitoring of therapeutic response in plaque psoriasis: a review.

    PubMed

    Lacarrubba, Francesco; Pellacani, Giovanni; Gurgone, Silvia; Verzì, Anna Elisa; Micali, Giuseppe

    2015-06-01

    Plaque psoriasis is a common, chronic, inflammatory disease with a multifactorial etiopathogenesis. Although its diagnosis is often based on clinical features, in ambiguous cases a biopsy with histopathologic confirmation may be necessary. Advanced high-definition imaging techniques may be useful in the study of skin properties in vivo and may facilitate therapeutic monitoring. Available imaging tools vary in their resolution, depth of penetration and visual representation (horizontal, vertical, three-dimensional), and in the type of skin structures visualized. The purpose of this review is to analyze a variety of non-invasive techniques that may assist in establishing definitive diagnoses, as well as in the therapeutic monitoring of psoriasis. These include dermoscopy, videocapillaroscopy (VC), high-frequency ultrasound (HFUS), reflectance confocal microscopy (RCM), laser Doppler imaging (LDI), optical coherence tomography (OCT), optical microangiography (OMAG) and multiphoton tomography (MPT). Their characteristics, indications, advantages, and limits are reviewed and discussed. Dermoscopy may be useful for a first, rapid outpatient evaluation. Videocapillaroscopy and HFUS represent the imaging techniques with the longest history of use in psoriasis. However, whereas VC is useful in both diagnosis and therapeutic monitoring, the utility of HFUS appears to be limited to the monitoring of response to therapy only. Both devices are cost-effective and easy to use in the office setting. Both RCM and OCT allow high-resolution microscopic imaging of psoriatic plaque in a manner comparable with that of virtual histopathology and represent more promising techniques. The utility of LDI, OMAG, and MPT in psoriasis skin imaging requires further study and validation. PMID:25772034

  6. Reproducibility of a non-invasive ultrasonic technique of tendon force measurement, determined in vitro in equine superficial digital flexor tendons.

    PubMed

    Crevier-Denoix, Nathalie; Ravary-Plumioën, Bérangère; Evrard, Delphine; Pourcelot, Philippe

    2009-09-18

    A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100N, and of force values every 2m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo. PMID:19647261

  7. Non-invasive assessment of intracranial pressure.

    PubMed

    Robba, C; Bacigaluppi, S; Cardim, D; Donnelly, J; Bertuccio, A; Czosnyka, M

    2016-07-01

    Monitoring of intracranial pressure (ICP) is invaluable in the management of neurosurgical and neurological critically ill patients. Invasive measurement of ventricular or parenchymal pressure is considered the gold standard for accurate measurement of ICP but is not always possible due to certain risks. Therefore, the availability of accurate methods to non-invasively estimate ICP has the potential to improve the management of these vulnerable patients. This review provides a comparative description of different methods for non-invasive ICP measurement. Current methods are based on changes associated with increased ICP, both morphological (assessed with magnetic resonance, computed tomography, ultrasound, and fundoscopy) and physiological (assessed with transcranial and ophthalmic Doppler, tympanometry, near-infrared spectroscopy, electroencephalography, visual-evoked potentials, and otoacoustic emissions assessment). At present, none of the non-invasive techniques alone seem suitable as a substitute for invasive monitoring. However, following the present analysis and considerations upon each technique, we propose a possible flowchart based on the combination of non-invasive techniques including those characterizing morphologic changes (e.g., repetitive US measurements of ONSD) and those characterizing physiological changes (e.g., continuous TCD). Such an integrated approach, which still needs to be validated in clinical practice, could aid in deciding whether to place an invasive monitor, or how to titrate therapy when invasive ICP measurement is contraindicated or unavailable. PMID:26515159

  8. Peak Cardiac Power Measured Non-Invasively with a Bioreactance Technique is a Predictor of Adverse Outcomes in Patients with Advanced Heart Failure

    PubMed Central

    Rosenblum, Hannah; Helmke, Stephen; Williams, Paula; Teruya, Sergio; Jones, Margaret; Burkhoff, Daniel; Mancini, Donna; Maurer, Mathew S.

    2010-01-01

    Summary Background Peak oxygen consumption (VO2) during cardiopulmonary exercise testing (CPET) is a powerful predictor of survival, providing an indirect assessment of cardiac output (CO). Hypothesis Non-invasive indices of CO derived from bioreactance methodology would add significantly to peak VO2 as a means of risk stratifying patients with heart failure. Methods 127 patients (53±14 years of age, 66% male) with heart failure and an average EF = 31±15 underwent a symptom-limited CPET using a bicycle ergometer while measuring CO noninvasively by a bioreactance technique. Peak cardiac power was derived from the product of the peak mean arterial blood pressure and CO divided by 451. Results Follow-up averaged 404±179 days (median, 366 days) to assess end points including death (n=3), heart transplant (n=10), or left ventricular assisted device (LVAD) implantation (n=2). Peak VO2 and peak power had similar area under the curves (0.77 and 0.76), which increased to 0.83 when combined. Kaplan-Meier cumulative survival curves demonstrated different outcomes in the subgroup with a VO2 <14 ml*kg-1*min-1 when stratified by a cardiac power above or below 1.5 Watts (92.2% vs. 82.1% at 1 year and 81.6% vs. 58.3% at last follow-up, p=0.02 by log-rank test). Conclusions Among patients with heart failure, peak cardiac power measured with bioreactance methodology and peak VO2 had similar associations with adverse outcomes and peak power added independent prognostic information to peak VO2 in subjects with advanced disease (e.g. VO2 < 14 ml*kg-1*min-1). PMID:21091609

  9. Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis

    PubMed Central

    2012-01-01

    Background Cell-free fetal DNA (cffDNA) can be detected in maternal blood during pregnancy, opening the possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of cffDNA for prenatal determination (diagnosis) of fetal sex. We applied a sensitive search of multiple bibliographic databases including PubMed (MEDLINE), EMBASE, the Cochrane library and Web of Science. Results Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria. Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7%) and mean specificity was 98.9% (95% CI = 98.1% to 99.4%). These results vary very little with trimester or week of testing, indicating that the performance of the test is reliably high. Conclusions Based on this review and meta-analysis we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic and ethical considerations of implementing an early non-invasive test for fetal sex. PMID:22937795

  10. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  11. Non-invasive diagnosis of liver fibrosis and cirrhosis

    PubMed Central

    Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z

    2015-01-01

    The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this “gold-standard” is imperfect; even according to its proponents, it is only “the best” among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future. PMID:26556987

  12. Non-invasive monitoring of spreading depression.

    PubMed

    Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali

    2016-10-01

    Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. PMID:27397413

  13. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in–vitro Study

    PubMed Central

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M.; Chopra, Saroj

    2013-01-01

    Background: Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from ‘drill and fill’ to that of ‘seal and heal’. Aims: The purpose of this in–vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. Study Design and Methods: One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Statistical Analysis: Data were then statistically analysed by using Student t–test for comparison. Results: A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. Conclusion: This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength. PMID:24298525

  14. Non-invasive deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case of the city of Roma (Italy)

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Bonano, Manuela; Marsella, Maria; Lanari, Riccardo

    2010-05-01

    The monitoring of urban areas and man-made structures is of key importance for the preservation of artistic, archaeological and architectural heritage. In this context, the remote sensing techniques may allow non-invasive analysis of large areas by exploiting long time series of satellite data. Among these techniques, the Synthetic Aperture Radar (SAR) Interferometry (InSAR) has already demonstrated to be an effective tool for monitoring the displacements occurring in the historical and artistic heritage located in the historical city centers. As a matter of fact, the InSAR technique allows producing spatially dense deformation maps with centimeter to millimeter accuracy, by exploiting the phase difference (interferogram) of temporally separated SAR images relevant to the same analyzed area. In order to guarantee the monitoring of urban area displacements, it is strategic to provide very long term deformation time series by also exploiting SAR data acquired by different sensors. Accordingly, ERS/ENVISAT data archive, providing acquisitions spanning the 1992-2010 time period, might allow us generating very long term deformation time-series. However, an ERS/ENVISAT data combination is limited by the two sensors slightly different carrier frequencies: 5.331 GHz for the ENVISAT sensor and 5.3 GHz for the ERS one. Therefore, because the interferometric phase is dependent on the radiation wavelength, the generation of conventional ERS/ENVISAT cross-interferograms is strongly affected by the induced decorrelation effects. In this work we show the effectiveness of the Small BAseline Subset (SBAS) (Berardino et al., 2002; Lanari et al., 2004) approach for the conservation, monitoring and risk prevention of cultural heritage. Indeed, the SBAS technique allows us to produce deformation time series at the scale of the single building by processing very long sequences of ERS-1/2 and ENVISAT (IS2 swath) SAR data, acquired with the same illumination geometry. In particular, the

  15. Diagnostic techniques for thermal plasmas

    SciTech Connect

    Fincke, J.R.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Reynolds, L.D.

    1994-12-31

    The plasma diagnostic techniques discussed are Rayleigh and coherent Thomson scattering, Coherent-Anti-Stokes-Raman Spectroscopy (CARS) and enthalpy probes. The quantities measured are heavy species and electron temperature, ionized fraction, plasma composition, and velocity. Examples of results from both subsonic and supersonic jets are presented and limitations discussed.

  16. Selected microgravity combustion diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Greenberg, Paul S.

    1993-01-01

    During FY 1989-1992, several diagnostic techniques for studying microgravity combustion have moved from the laboratory to use in reduced-gravity facilities. This paper discusses current instrumentation for rainbow schlieren deflectometry and thermophoretic sampling of soot from gas jet diffusion flames.

  17. Non-invasive Mapping of Cardiac Arrhythmias.

    PubMed

    Shah, Ashok; Hocini, Meleze; Haissaguerre, Michel; Jaïs, Pierre

    2015-08-01

    Since more than 100 years, 12-lead electrocardiography (ECG) is the standard-of-care tool, which involves measuring electrical potentials from limited sites on the body surface to diagnose cardiac disorder, its possible mechanism, and the likely site of origin. Several decades of research has led to the development of a 252-lead ECG and computed tomography (CT) scan-based three-dimensional electro-imaging modality to non-invasively map abnormal cardiac rhythms including fibrillation. These maps provide guidance towards ablative therapy and thereby help advance the management of complex heart rhythm disorders. Here, we describe the clinical experience obtained using non-invasive technique in mapping the electrical disorder and guide the catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats), and ventricular pre-excitation (Wolff-Parkinson-White syndrome). PMID:26072438

  18. [Non-invasive assessment of liver fibrosis].

    PubMed

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages. PMID:25962254

  19. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  20. Non-invasive monitoring of blood pressure using the Philips Intellivue MP50 monitor cannot replace invasive blood pressure techniques in surgery patients under general anesthesia.

    PubMed

    Meng, Xianghu; Zang, Guanghui; Fan, Longchang; Zheng, Lei; Dai, Jinzhen; Wang, Xueren; Xia, Wei; Liu, Jihong; Zhang, Chuanhan

    2013-07-01

    The Philips Intellivue MP50 monitor provides a method for non-invasive, near-continuous blood pressure (BP) monitoring and is designed to be an alternative to direct intra-arterial BP (IABP) measurement. However, no studies have specifically compared non-invasive and invasive BP measurements using the monitor. The present retrospective study observed 515 patients undergoing surgery with general anesthesia, whose invasive (intra-radial, femoral or dorsalis pedis artery) and non-invasive (oscillometric) BP (NIBP) were monitored simultaneously using the monitor. These data were analyzed using correlations, regressions and Bland-Altman plots. The patients were placed in a supine position during surgery. The correlation data for invasive BP and NIBP measurements were: for intra-radial measurements, r(2)=0.51 (bias and precision, 11.04±15.22 and 14.76±11.64 mmHg, respectively) for systolic BP (SBP) and r(2)=0.27 (6.17±11.95 and 9.77±9.25 mmHg, respectively) for diastolic BP (DBP); for intra-femoral measurements: r(2)=0.57 (14.79±14.55 and 17.15±11.68 mmHg, respectively) for SBP and r(2)=0.45 (4.12±9.70 and 7.49±7.40 mmHg, respectively) for DBP; and for intra-dorsalis pedis measurements: r(2)=0.33 (13.00±16.81 and 17.34±12.28 mmHg, respectively) for SBP and r(2)=0.30 (0.17±11.27 and 8.44±7.46 mmHg, respectively) for DBP. According to this data, the NIBP measured by the Philips Intellivue MP50 monitor showed low positive correlations and poor agreement with the IABP, as calculated by Bland-Altman analysis. Therefore, the use of oscillometric BP measured by the monitor in surgery patients under general anesthesia is not generally recommended. PMID:23935710

  1. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.

    PubMed

    Zhang, Xuewei; Yu, Peiqiang

    2014-07-01

    Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings. PMID:24920208

  2. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  3. Non-invasive endodontic management of fused mandibular second molar and a paramolar, using cone beam computed tomography as an adjunctive diagnostic aid: A case report

    PubMed Central

    Ghogre, Priyanka; Gurav, Sandeep

    2014-01-01

    Tooth fusion is a developmental anomaly characterized by the union between the dentin and/or enamel of at least two separately developing teeth. Fusion is a rare occurrence, with overall prevalence to be approximately 0.5% in deciduous teeth and 0.1% in permanent dentition. The significance of this particular case was that the unilateral fusion occurred in a permanent mandibular second molar with a paramolar and successful endodontic management was done. The rarity with which this entity appears, along with its complex characteristics, often makes it difficult to treat. In this case, a new advanced three-dimensional imaging Cone Beam Computed Tomography (CBCT) was used as an adjunctive diagnostic aid to differentiate between fusion occurred before or after root formation and help to reach the correct diagnosis. PMID:25298654

  4. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navy Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.

  5. Formulation and in vivo evaluation for anti-aging effects of an emulsion containing basil extract using non- invasive biophysical techniques

    PubMed Central

    Rasul, A.; Akhtar, N.

    2011-01-01

    Background and the purpose of study Skin aging is a complex process induced by constant exposure to ultraviolet (UV) irradiation and damages human skin. UV generates reactive oxygen species leading to collagen deficiency and eventually skin wrinkling. Basil contains a number of phenolics and favonoids which possess antioxidant properties. The aim of this study was to formulate and investigate the antiaging potential of a cream containing Basil extract. Methods A single blinded study was conducted using non-invasive methods. Formulation containing 3% of the concentrated extract of Basil was developed by entrapping in the inner aqueous phase of w/o emulsion and base contained no extract. Both creams were stored at different storage conditions of 8°C, 25°C, 40°C and 40°C+ 75% relative humidity to predict their stabilities. The formulation and base were evaluated for their effects on various skin parameters i.e., moisture and trans epidermal water loss (TEWL), volume, energy and surface evaluation of the living skin (SELS). Results Significant effects (p≤0.05) were observed for both creams in the case of TEWL. The base showed insignificant (p≤0.05) while formulation showed significant effects on skin moisture. Volume, SELS SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), SEw (skin wrinkles) parameter showed significant decline while texture parameter of ‘Energy’ showed significant increase. Conclusion The results statistically indicated that the active formulation containg extract of Basil exert antiaging effects when applied topically. PMID:22615680

  6. Non-invasive brain stimulation in children: applications and future directions

    PubMed Central

    Rajapakse, Thilinie; Kirton, Adam

    2013-01-01

    Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain. PMID:24163755

  7. IN VIVO EVALUATION OF SKIN IRRITATION POTENTIAL, MELASMA AND SEBUM CONTENT FOLLOWING LONG TERM APPLICATION OF SKIN CARE CREAM IN HEALTHY ADULTS, USING NON-INVASIVE BIOMETROLOGICAL TECHNIQUES.

    PubMed

    Arshad, Atif I; Khan, Shoaib H M; Akhtar, Naveed; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-01-01

    The present investigation was conducted to evaluate non-invasively, various functional skin parameters i.e., irritation potential, melasma and sebum contents following long term application of topical cream (w/o) loaded with 2% methanolic extract of Ananas comosus L. versus placebo control (base) in healthy adults. Healthy human volunteers (n = 11, aged 20-30 years) were recruited for investigation and written informed consent was taken from each volunteer. In this single blinded study every volunteer applied formulation on one side of face and placebo on the other side of face twice daily for a period of 12 weeks (three months). Different skin parameters i.e., skin irritancy, melasma, and sebum contents were measured on both sides of face at baseline and after two weeks interval, using photometric device Mexameter and Sebumeter in a draught free room with modulated conditions of temperature (22-25°C) and humidity (55-60%). It was evident from the results that no primary skin irritancy was observed with patch test. Besides, statistical interpretation indicates that treatment with formulation is superior to placebo because it significantly (p ≤ 0.05) reduced the skin irritancy, melasma and sebum secretions throughout the study and reaching maximum -20.76 ± 0.89, -54.2 ± 0.37 and -40.71 ± 0.75%, respectively, at the end of study period. Antioxidant activity of extract was 92% compared to standard antioxidant. Conclusively, active cream loaded with fruit extract was well tolerated by all the volunteers and suitable to treat contact dermatitis, greasy skin, acne and seborrheic dermatitis and augmenting beauty and attraction by depigmentation of human skin. So, in the future, there is need to clinically evaluate these formulations in patients with compromised skin functions i.e., contact dermatitis, melasma, and acne vulgaris in order to explore the actual potential of this fruit. PMID:27008816

  8. Non invasive sensing technologies for cultural heritage management and fruition

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Masini, Nicola

    2016-04-01

    monitoring of monuments and sites. In this way, we will be able to improve the appreciation of diagnostics and remote sensing technologies by the end-users. At the conference, we will show and discuss several study cases depicting the deployment of this knowledge chain in realistic conditions regarding the CH management. References Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08 Masini N., Soldovieri F. 2011. Editorial: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage, Journal of Geophysics and Engineering, 8 (3), 1-2, doi:10.1088/1742-2132/8/3/E01 Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012

  9. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site

  10. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  11. Non-invasive subcutaneous fat reduction: a review.

    PubMed

    Kennedy, J; Verne, S; Griffith, R; Falto-Aizpurua, L; Nouri, K

    2015-09-01

    The risks, financial costs and lengthy downtime associated with surgical procedures for fat reduction have led to the development of a number of non-invasive techniques. Non-invasive body contouring now represents the fastest growing area of aesthetic medicine. There are currently four leading non-invasive techniques for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU). To review and compare leading techniques and clinical outcomes of non-invasive subcutaneous fat reduction. The terms 'non-invasive', 'low-level laser', 'cryolipolysis', 'ultrasound' and 'radio frequency' were combined with 'lipolysis', 'fat reduction' or 'body contour' during separate searches in the PubMed database. We identified 31 studies (27 prospective clinical studies and four retrospective chart reviews) with a total of 2937 patients that had been treated with LLLT (n = 1114), cryolipolysis (n = 706), HIFU (n = 843) or RF (n = 116) or other techniques (n = 158) for fat reduction or body contouring. A majority of these patients experienced significant and satisfying results without any serious adverse effects. The studies investigating these devices have all varied in treatment regimen, body locations, follow-up times or outcome operationalization. Each technique differs in offered advantages and severity of adverse effects. However, multiple non-invasive devices are safe and effective for circumferential reduction in local fat tissue by 2 cm or more across the abdomen, hips and thighs. Results are consistent and reproducible for each device and none are associated with any serious or permanent adverse effects. PMID:25664493

  12. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Sipaun, S. M.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.

    2008-05-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  13. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    SciTech Connect

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-05-20

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  14. Non-invasive characterization of intracranial tumors by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Simon, M.; Guo, J.; Papazoglou, S.; Scholand-Engler, H.; Erdmann, C.; Melchert, U.; Bonsanto, M.; Braun, J.; Petersen, D.; Sack, I.; Wuerfel, J.

    2013-08-01

    Presurgical, non-invasive methods of differentiating brain tumors have remained unsatisfactory even for specialized academic hospitals. Despite major advances in clinical and neuroradiological diagnostic techniques, the majority of neurooncology patients still need to undergo a brain biopsy for diagnosis. Recent single cell experiments suggested that biomechanical cell properties might be very sensitive in detecting cellular malignancy. Accordingly, we investigated magnetic resonance elastography (MRE) as an investigative tool for the clinical routine diagnostic work-up of intracranial neoplasm. In order to obtain sufficient spatial resolution for the biomechanical characterization of intracranial tumors, we modified a recently introduced least-squares solution of the stationary wave equation, facilitating stable solutions of the magnitude |G*| and the phase angle φ of the complex shear modulus G*. MRE was added to a routine diagnostic or presurgical neuroradiological magnetic resonance imaging work-up in 16 prospective patients and it was well tolerated in all cases. Our preliminary tumor MRE data revealed alterations in viscoelastic constants, e.g. a loss of stiffness in malignancies compared to healthy reference tissue, or benign variants. Based on larger studies on selected tumor entities to establish threshold and reference values for future diagnostic purposes, MRE may thus provide a predictive marker for tumor malignancy and thereby contribute to an early non-invasive clinical assessment of suspicious cerebral lesions.

  15. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector using Non-Invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  16. Efficacy and cost-effectiveness of the 13C-urea breath test as the primary diagnostic investigation for the detection of Helicobacter pylori infection compared to invasive and non-invasive diagnostic tests

    PubMed Central

    Nocon, Marc; Kuhlmann, Alexander; Leodolter, Andreas; Roll, Stephanie; Vauth, Christoph; Willich, Stefan N.; Greiner, Wolfgang

    2009-01-01

    Background Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans. There is a risk factor for gastric or duodenal ulcers, gastric cancer and MALT (Mucosa Associated Lymphoid Tissue)-Lymphomas. There are several invasive and non-invasive methods available for the diagnosis of H. pylori. The 13C-urea breath test is a non-invasive method recommended for monitoring H. pylori eradication therapy. However, this test is not yet used for primary assessment of H. pylori in Germany. Objectives What are the clinical and health economic benefits of the 13C-urea breath test in the primary assessment of H. pylori compared to other invasive and non-invasive methods? Methods A systematic literature search including a hand search was performed for studies investigating test criteria and cost-effectiveness of the 13C-urea breath test in comparison to other methods used in the primary assessment of H. pylori. Only studies that directly compared the 13C-urea breath test to other H. pylori-tests were included. For the medical part, biopsy-based tests were used as the gold standard. Results 30 medical studies are included. Compared to the immunoglobulin G (IgG) test, the sensitivity of the 13C-urea breath test is higher in twelve studies, lower in six studies and one study reports no differences. The specificity is higher in 13 studies, lower in three studies and two studies report no differences. Compared to the stool antigen test, the sensitivity of the 13C-urea breath test is higher in nine studies, lower in three studies and one study reports no difference. The specificity is higher in nine studies, lower in two studies and two studies report no differences. Compared to the urease test, the sensitivity of the 13C-urea breath test is higher in four studies, lower in three studies and four studies report no differences. The specificity is higher in five studies, lower in five studies and one study reports no difference. Compared to histology, the

  17. Reliable, Low Mass, Non-Invasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Tovey, M.

    1999-01-01

    Mass is a major driver for future spacecraft and missions exposed to high radiation levels (i.e. Europa Orbiter) present even more challenge. A variety of non-invasive measurement techniques are in development that enables determination of pressures within a propulsion network.

  18. Non-invasive measurement of cholesterol in human blood by impedance technique: an investigation by 3D finite element field modelling

    NASA Astrophysics Data System (ADS)

    Aristovich, Ekaterina; Khan, Sanowar

    2013-06-01

    This paper concerns detection of particle concentration (e.g. cholesterol) in conductive media (e.g. human blood) by impedance technique. The technique is based on changes in the impedance measurement across a given conducting medium due to changes in the particle concentration. The impedance is calculated by calculating the current through the conducting media produced by electric field distribution between two electrodes. This is done by modelling and computation of 3D electric fields between the electrodes for known voltages applied between them using the well-known finite element method (FEM). The complexity of such FE models is attributed to particle distribution, their geometric and material parameters, and their shape and size which can be of many orders of magnitude smaller than the overall problem domain under investigation. This paper overcomes this problem by adopting an effective particle coagulation (aggregation) strategy in FE modelling without significantly affecting the accuracy of field computation.

  19. Non-invasive treatment options for focal cortical dysplasia

    PubMed Central

    WANG, TING-TING; ZHOU, DONG

    2016-01-01

    Focal cortical dysplasia (FCD) presents a strong clinical challenge especially for the treatment of the associated epilepsy. Epilepsy in FCD is often treatment-resistant and constitutes 50% of treatment-resistant cases. Antiepileptic drugs (AEDs) have been widely used in the treatment of FCD. However, evidence to suggest their specific effect on the treatment of FCD remains to be established. In view of this resistance, several alternative treatments have been suggested. Although treatment currently involves surgical management, non-invasive treatments have been identified. The aim of the present review, was to assess non-invasive management strategies including, i) mammalian target of rapamycin (mTOR) inhibitors, ii) ketogenic diet (KD), and iii) vagus nerve stimulation (VNS). In addition, we discussed the literature available regarding the use of AEDs in FCD. Experiments conducted with mammals detailing rapamycin gene mutations in FCD have produced vital information for exploring treatment options using mTOR inhibitors. Of note is the importance of KD in children with FCD. This diet has been shown to modify disease progression by attenuating chromatin modification, a master regulator for gene expression and functional adaptation of the cell. FCD has also been studied widely with neurostimulation techniques. The outcomes of these techniques have been found to be variable. For widespread dysplasias, VNS has been shown to produce responder rates of >50%. Nevertheless, non-invasive cranial nerve stimulation techniques such as transcutaneous VNS and non-invasive VNS are gaining better patient compatibility, albeit their efficacy remains to be established. PMID:27168769

  20. Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy

    PubMed Central

    QIU, SUFANG; XU, YUANJI; HUANG, LINGLING; ZHENG, WEI; HUANG, CHAOBIN; HUANG, SHAOHUA; LIN, JINYONG; LIN, DUO; FENG, SHANGYUAN; CHEN, RONG; PAN, JIANJI

    2016-01-01

    The present study evaluated the use of saliva surface-enhanced Raman spectroscopy (SERS) for the detection of non-invasive nasopharyngeal carcinoma (NPC). SERS measurements were taken from 62 saliva samples, of which 32 were from NPC patients and 30 from healthy volunteers. Notable biochemical Raman bands in the SERS spectra were tentatively assigned to various saliva components. The saliva SERS spectra obtained from the NPC patients and the healthy volunteers were also analyzed by multivariate statistical techniques based on principal component analysis and linear discriminant analysis (PCA-LDA). Significant differences were observed between the saliva SERS spectral intensities for NPC patients and healthy volunteers, particularly at 447, 496, 635, 729, 1134, 1270 and 1448 cm−1, which primarily contained signals associated with proteins, nucleic acids, fatty acids, glycogen and collagen. The classification results based on the PCA-LDA method provided a relatively high diagnostic sensitivity of 86.7%, specificity of 81.3% and diagnostic accuracy of 83.9% for NPC identification. The results from the present study demonstrate that saliva SERS analysis used in conjunction with PCA-LDA diagnostic algorithms possesses a promising clinical application for the non-invasive detection of NPC. PMID:26870300

  1. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples; Jerome Eyer

    2001-05-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford.

  2. Non invasive tools for the diagnosis of liver cirrhosis

    PubMed Central

    Soresi, Maurizio; Giannitrapani, Lydia; Cervello, Melchiorre; Licata, Anna; Montalto, Giuseppe

    2014-01-01

    Liver cirrhosis (LC), the end stage of many forms of chronic hepatitis of different etiologies is a diffuse process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules surrounded by annular fibrosis. This chronic progressive clinical condition, leads to liver cell failure and portal hypertension, which can favour the onset of hepatocellular carcinoma. Defining the phase of the natural history is crucial for therapeutic choice and prognosis. Liver biopsy is currently considered the best available standard of reference but it has some limits, so alternative tools have been developed to substitute liver biopsy when assessing liver fibrosis. Serum markers offer a cost-effective alternative to liver biopsy being less invasive and theoretically without complications. They can be classified into direct and indirect markers which may be used alone or in combination to produce composite scores. Diagnostic imaging includes a number of instruments and techniques to estimate liver fibrosis and cirrhosis like ultrasound (US), US Doppler, contrast enhanced US and Elastography. US could be used for the diagnosis of advanced LC while is not able to evaluate progression of fibrosis, in this case Elastography is more reliable. This review aims to revise the most recent data from the literature about non invasive methods useful in defining liver fibrosis. PMID:25561782

  3. Application of optical non-invasive methods in skin physiology

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  4. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  5. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies.

    PubMed

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-01-01

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring. PMID:26852676

  6. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    PubMed Central

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-01-01

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring. PMID:26852676

  7. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  8. Cellular phone enabled non-invasive tissue classifier.

    PubMed

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554

  9. Non-invasive prenatal testing: ethical issues explored

    PubMed Central

    de Jong, Antina; Dondorp, Wybo J; de Die-Smulders, Christine E M; Frints, Suzanne G M; de Wert, Guido M W R

    2010-01-01

    This paper explores the ethical implications of introducing non-invasive prenatal diagnostic tests (NIPD tests) in prenatal screening for foetal abnormalities. NIPD tests are easy and safe and can be performed early in pregnancy. Precisely because of these features, it is feared that informed consent may become more difficult, that both testing and selective abortion will become ‘normalized', and that there will be a trend towards accepting testing for minor abnormalities and non-medical traits as well. In our view, however, the real moral challenge of NIPD testing consists in the possibility of linking up a technique with these features (easy, safe and early) with new genomic technologies that allow prenatal diagnostic testing for a much broader range of abnormalities than is the case in current procedures. An increase in uptake and more selective abortions need not in itself be taken to signal a thoughtless acceptance of these procedures. However, combining this with considerably enlarging the scope of NIPD testing will indeed make informed consent more difficult and challenge the notion of prenatal screening as serving reproductive autonomy. If broad NIPD testing includes later-onset diseases, the ‘right not to know' of the future child will become a new issue in the debate about prenatal screening. With regard to the controversial issue of selective abortion, it may make a morally relevant difference that after NIPD testing, abortion can be done early. A lower moral status may be attributed to the foetus at that moment, given the dominant opinion that the moral status of the foetus progressively increases with its development. PMID:19953123

  10. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  11. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  12. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  13. Evolving imaging techniques in diagnostic strategies of pulmonary embolism.

    PubMed

    Robert-Ebadi, Helia; Le Gal, Grégoire; Righini, Marc

    2016-04-01

    Modern non invasive diagnostic strategies for pulmonary embolism (PE) rely on the sequential use of clinical probability assessment, D-dimer measurement and thoracic imaging tests. Planar ventilation/perfusion (V/Q) scintigraphy was the cornerstone for more than two decades and has now been replaced by computed tomography pulmonary angiography (CTPA). Diagnostic strategies using CTPA are very safe to rule out PE and have been well validated in large prospective management outcome studies. With the widespread use of CTPA, concerns regarding radiation and overdiagnosis of PE have paved the way for investigating new diagnostic modalities. V/Q single photon emission tomography has arisen as a highly accurate test and a potential alternative to CTPA. However, prospective management outcome studies are still lacking and are warranted before implementation in everyday clinical practice. PMID:26691634

  14. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis.

    PubMed

    Connolly, Jennifer M; Davies, Karen; Kazakeviciute, Agne; Wheatley, Antony M; Dockery, Peter; Keogh, Ivan; Olivo, Malini

    2016-08-01

    Reported here is the application of silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) as a label-free, non-invasive technique for detection of oral squamous cell cancer (OSCC) using saliva and desquamated oral cells. A total of 180 SERS spectra were acquired from saliva and 120 SERS spectra from oral cells collected from normal healthy individuals and from confirmed oropharyngeal cancer patients. Notable biochemical peaks in the SERS spectra were tentatively assigned to various components. Data were subjected to multivariate statistical techniques including principal component analysis, linear discriminate analysis (PCA-LDA) and logistic regression (LR) revealing a sensitivity of 89% and 68% and a diagnostic accuracy of 73% and 60% for saliva and oral cells, respectively. The results from this study demonstrate the potential of saliva and oral cell SERS combined with PCA-LDA or PCA-LR diagnostic algorithms as a promising clinical adjunct for the non-invasive detection of oral cancer. PMID:27015768

  15. Autofluorescence based diagnostic techniques for oral cancer

    PubMed Central

    Balasubramaniam, A. Murali; Sriraman, Rajkumari; Sindhuja, P.; Mohideen, Khadijah; Parameswar, R. Arjun; Muhamed Haris, K. T.

    2015-01-01

    Oral cancer is one of the most common cancers worldwide. Despite of various advancements in the treatment modalities, oral cancer mortalities are more, particularly in developing countries like India. This is mainly due to the delay in diagnosis of oral cancer. Delay in diagnosis greatly reduces prognosis of the treatment and also cause increased morbidity and mortality rates. Early diagnosis plays a key role in effective management of oral cancer. A rapid diagnostic technique can greatly aid in the early diagnosis of oral cancer. Now a day's many adjunctive oral cancer screening techniques are available for the early diagnosis of cancer. Among these, autofluorescence based diagnostic techniques are rapidly emerging as a powerful tool. These techniques are broadly discussed in this review. PMID:26538880

  16. Non-invasive investigation of inflammatory bowel disease

    PubMed Central

    Tibble, JA; Bjarnason, I

    2001-01-01

    The assessment of inflammatory activity in intestinal disease in man can be done using a variety of different techniques. These range from the use of non-invasive acute phase inflammatory markers measured in plasma such as C reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) (both of which give an indirect assessment of disease activity) to the direct assessment of disease activity by intestinal biopsy performed during endoscopy in association with endoscopic scoring systems. Both radiology and endoscopy are conventional for the diagnosis of inflammatory bowel disease (IBD). However these techniques have severe limitations when it comes to assessing functional components of the disease such as activity and prognosis. Here we briefly review the value of two emerging intestinal function tests. Intestinal permeability, although ideally suited for diagnostic screening for small bowel Crohn’s disease, appears to give reliable predictive data for imminent relapse of small bowel Crohn’s disease and it can be used to assess responses to treatment. More significantly it is now clear that single stool assay of neutrophil specific proteins (calprotectin, lactoferrin) give the same quantitative data on intestinal inflammation as the 4-day faecal excretion of 111Indium labelled white cells. Faecal calprotectin is shown to be increased in over 95% of patients with IBD and correlates with clinical disease activity. It reliably differentiates between patients with IBD and irritable bowel syndrome. More importantly, at a given faecal calprotectin concentration in patients with quiescent IBD, the test has a specificity and sensitivity in excess of 85% in predicting clinical relapse of disease. This suggests that relapse of IBD is closely related to the degree of intestinal inflammation and suggests that targeted treatment at an asymptomatic stage of the disease may be indicated. PMID:11819811

  17. Non-Invasive Neuromodulation for Headache Disorders.

    PubMed

    Zhu, Shuhan; Marmura, Michael J

    2016-02-01

    Migraine and other chronic headache disorders are common and if inadequately treated, can lead to significant disability. The effectiveness of medications can be limited by side effects, drug interactions, and comorbid diseases necessitating alternative methods. Technological developments in the past 5 years have made it possible to use non-invasive methods of neuromodulation to treat primary headache disorders. This field includes technologies such as supraorbital transcutaneous stimulation (STS), transcranial magnetic stimulation (TMS), and non-invasive vagal nerve stimulation (nVNS). Existing trials show these modalities are safe and well tolerated and can be combined with standard pharmacotherapy. We review the technologies, biological rationales, and trials involving non-invasive neuromodulation for the treatment of primary headache disorders. PMID:26750126

  18. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  19. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  20. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  1. Skin rejuvenation with non-invasive pulsed electric fields.

    PubMed

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P; Albadawi, Hassan; Felix Broelsch, G; Watkins, Michael T; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C; Austen, William G; Yarmush, Martin L

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  2. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    PubMed Central

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  3. Non-invasive microsensors for studying cell/tissue physiology

    NASA Astrophysics Data System (ADS)

    Vanegas, D. C.; Taguchi, M.; Chaturvedi, P.; Burrs, S.; McLamore, E. S.

    2013-05-01

    Non-invasive tools that allow real-time quantification of molecules relevant to metabolism, homeostasis, and cell signaling in cells and tissue are of great importance for studying physiology. Several microsensor technologies have been developed to monitor concentration of molecules such as ions, oxygen, electroactive molecules (e.g., nitric oxide, hydrogen peroxide), and biomolecules (e.g., sugars, hormones). The major challenges for microsensors are overcoming relatively low sensitivity and low signal-to-noise ratio. Modern approaches for enhancing microsensor performance focus on the incorporation of catalytic nanomaterials to increase sensitivity, reduce response time, and increase operating range. To improve signal-to-noise ratio, a non-invasive microsensor modality called self-referencing (SR) is being applied. The SR technique allows measurement of temporal and spatial transport dynamics at the cell, tissue, organ, and organismal level.

  4. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  5. In-vitro and in-vivo diagnostic techniques for prostate cancer: a review.

    PubMed

    McClure, Patrick; Elnakib, Ahmed; Abou El-Ghar, Mohamed; Khalifa, Fahmi; Soliman, Ahmed; El-Diasty, Tarek; Suri, Jasjit S; Elmaghraby, Adel; El-Baz, Ayman

    2014-10-01

    This paper overviews one of the most important, interesting, and challenging problems in oncology, early diagnosis of prostate cancer. Developing effective diagnostic techniques for prostate cancer is of great clinical importance and can improve the effectiveness of treatment and increase the patient's chance of survival. The main focus of this study is to overview the different in-vitro and in-vivo technologies for diagnosing prostate cancer. This review discusses the current clinically used in-vitro cancer diagnostic tools, such as biomarker tests and needle biopsies and including their applications, advantages, and limitations. Moreover, the current in-vitro research tools that focus on the role of nanotechnology in prostate cancer diagnosis have been detailed. In addition to the in-vitro techniques, the current study discusses in detail developed in-vivo non-invasive state-of-the-art Computer-Aided Diagnosis (CAD) systems for prostate cancer based on analyzing Transrectal Ultrasound (TRUS) and different types of magnetic resonance imaging (MRI), e.g., T2-MRI, Diffusion Weighted Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-parametric MRI, focusing on their implementation, experimental procedures, and reported outcomes. Furthermore, the paper addresses the limitations of the current prostate cancer diagnostic techniques, outlines the challenges that these techniques face, and introduces the recent trends to solve these challenges, which include biomarkers used in in-vitro lab-on-a-chip nanotechnology-based methods. PMID:25992417

  6. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    PubMed Central

    Ghazi, Negar; Arjmand, Mohammad; Akbari, Ziba; Mellati, Ali Owsat; Saheb-Kashaf, Hamid; Zamani, Zahra

    2016-01-01

    Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients. PMID:27141542

  7. Diagnosis and therapies for gastric non-invasive neoplasia

    PubMed Central

    Kato, Motohiko

    2015-01-01

    There has been a great discrepancy of pathological diagnosis for gastric non-invasive neoplasia/dysplasia between Japanese and western pathologists. In Japan, lesions that most western pathologists diagnose as dysplasia are often considered adenocarcinoma based on nuclear and structural atypia regardless of the presence of invasion. In the Vienna classification, gastric non-invasive intraepithelial neoplasia (NIN) were divided into low grade and high grade (including intra-mucosal cancer of Japanese criteria). The diagnosis by both endoscopy and pathology of biopsy specimen is difficult. Recent advances of diagnostic modality such as magnified endoscopy and imaged enhanced endoscopy is expected to improve the diagnostic yield for NIN. There are two treatment strategies for NIN, observation and diagnostic therapy by endoscopic resection (ER). ER is acceptable because of its less invasiveness and high local control rate, on the other hand, cancer-developing rate of low-grade NIN is reported to be low. Therefore there is controversy for the treatment of gastric NIN. Prospective study based on unified pathological definition is required in the future. PMID:26640329

  8. [Pulmonary non invasive infection by Scedosporium apiospermum].

    PubMed

    Cruz, Rodrigo; Barros, Manuel; Reyes, Mirtha

    2015-08-01

    We reported a case of non-invasive pulmonary infection by Scedosporium apiospermum in 67 years old female with bronchiectasis and caverns secondary to tuberculosis. Diagnosis was made with lung CT and bronchial lavage cultures. The patient was initially treated with itraconazole for six weeks without success and then voriconazole for 16 weeks, with good clinical response. PMID:26436797

  9. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have

    PubMed Central

    Bujanda, Luis

    2016-01-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  10. Congenital coronary artery anomalies silent until geriatric age: non-invasive assessment, angiography tips, and treatment

    PubMed Central

    Rigatelli, Gianluca; Dell'Avvocata, Fabio; Van Tan, Nguyen; Daggubati, Rames; Nanijundappa, Aravinda

    2015-01-01

    Coronary artery anomalies (CAAs) may be discovered more often as incidental findings during the normal diagnostic process for other cardiac diseases or less frequently on the basis of manifestations of myocardial ischemia. The cardiovascular professional may be involved in their angiographic diagnosis, functional assessment and eventual endovascular treatment. A complete angiographic definition is mandatory in order to understand the functional effects and plan any intervention in CAAs: computed tomography and magnetic resonance imaging are useful non-invasive tools to detect three-dimensional morphology of the anomalies and its relationships with contiguous cardiac structures, whereas coronary arteriography remains the gold standard for a definitive anatomic picture. A practical idea of the possible functional significance is mandatory for deciding how to manage CAAs: non-invasive stress tests and in particular the invasive pharmacological stress tests with or without intravascular ultrasound monitoring can assess correctly the functional significance of the most CAAs. Finally, the knowledge of the particular endovascular techniques and material is of paramount importance for achieving technical and clinical success. CAAs represent a complex issue, which rarely involve the cardiovascular professional at different levels. A timely practical knowledge of the main issues regarding CAAs is important in the management of such entities. PMID:25678906

  11. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.

    PubMed

    Herreros-Villanueva, Marta; Bujanda, Luis

    2016-04-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  12. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  13. Non-invasive visual tools for diagnosis of oral cancer and dysplasia: A systematic review

    PubMed Central

    Giovannacci, Ilaria; Vescovi, Paolo; Manfredi, Maddalena

    2016-01-01

    Background Gold standard for the diagnosis of oral dysplasia (OD) oral squamous cell carcinoma (OSCC) and malignant lesions is the histological examination. Several adjunctive diagnostic techniques have been proposed in order to increase the sensitivity (SE) and specificity (SP) of conventional oral examination and to improve the diagnostic first level accuracy. The aim of this study is to perform a systematic review on non-invasive tools for diagnosis of OD and early OSCC. Material and Methods Medline, Scopus, Web of Knowledge databases were searched, using as entry terms “oral dysplasia AND diagnosis” / ”oral cancer AND diagnosis”. Data extracted from each study included number of lesions evaluated, histopathological diagnosis, SE, SP, positive and negative predictive values (PPV and NPV), diagnostic accuracy (DA) and the main conclusions. Results After title and abstract scanning of 11.080 records, we selected 35 articles for full text evaluation. Most evaluated tools were autofluorescence (AF), chemiluminescence (CL), toluidine blu (TL) and chemiluminescence associated with toluidine blue (CLTB). Conclusions There is a great inhomogeneity of the reported values and there is no significant evidence of superiority of one tool over the other. Further clinical trials with a higher level of evidence are necessary in order to assess the real usefulness visual diagnostic tools. Key words:Oral dysplasia, oral cancer, diagnosis, visual diagnostic tool, systematic review. PMID:26946204

  14. Non-invasive estimation of thermal tissue properties by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Appanaboyina, Sunil; Partanen, Ari; Haemmerich, Dieter

    2013-02-01

    Magnetic Resonance guided High-intensity Focused Ultrasound (MR-HIFU) can be used to locally heat tissue while non-invasively monitoring tissue temperature via MR-based thermometry. The goal of this study was to investigate the use of a computational technique based on inverse heat-transfer modeling for the non-invasive measurement of thermal tissue properties from data collected using an MR-HIFU system.

  15. [Non-invasive assessment of fatty liver].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-01

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response. PMID:25819147

  16. Physiology of non-invasive respiratory support.

    PubMed

    Alexiou, Stamatia; Panitch, Howard B

    2016-06-01

    Non-invasive ventilation (NIV) is used in neonates to treat extrathoracic and intrathoracic airway obstruction, parenchymal lung disease and disorders of control of breathing. Avoidance of airway intubation is associated with a reduction in the incidence of chronic lung disease among preterm infants with respiratory distress syndrome. Use of nasal continuous positive airway pressure (nCPAP) may help establish and maintain functional residual capacity (FRC), decrease respiratory work, and improve gas exchange. Other modes of non-invasive ventilation, which include heated humidified high-flow nasal cannula therapy (HHHFNC), nasal intermittent mandatory ventilation (NIMV), non-invasive pressure support ventilation (NI-PSV), and bi-level CPAP (SiPAP™), have also been shown to provide additional benefit in improving breathing patterns, reducing work of breathing, and increasing gas exchange when compared with nCPAP. Newer modes, such as neurally adjusted ventilatory assist (NAVA), hold the promise of improving patient-ventilator synchrony and so might ultimately improve outcomes for preterm infants with respiratory distress. PMID:26923501

  17. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  18. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  19. A review on the non-invasive evaluation of skeletal muscle oxygenation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The aim of this review is to conduct a feasibility study of non-invasive evaluation in skeletal muscle oxygenation. This non-invasive evaluation could extract many information using a safe non-invasive method regarding to the oxygenation and microcirculation status in human blood muscle. This brief review highlights the progress of the application of NIRS to evaluate skeletal muscle oxygenation in various activity of human nature from the historical point of view to the present advancement. Since the discovery of non-invasive optical method during 1992, there are many non-invasive techniques uses optical properties on human subject such as near infrared spectroscopy NIRS, optical topography, functional near infrared spectroscopy fNIRS and imaging fNIRI. Furthermore, in this paper we discuss the light absorption potential (LAP) towards chromophores content inside human muscle. Modified beer lambert law was studied in order to build a better understanding toward LAP between chromophores under tissue multilayers in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in skeletal muscle oxygenation. This will cover the advantages and limitation of such application. Thus, these non-invasive techniques could open other possibilities to study muscle performance diagnosis.

  20. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  1. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  2. Diagnostics techniques in nonmuscle invasive bladder cancer

    PubMed Central

    Soubra, Ayman; Risk, Michael C.

    2015-01-01

    Introduction: Nonmuscle invasive bladder cancer (NMIBC) is the most common presentation of bladder cancer and is often treatable with endoscopic resection and intravesical therapies. Cystoscopy and urine cytology are the gold standard in diagnosis and surveillance but are limited by their sensitivity in some situations. We seek to provide an overview of recent additions to the diagnostic armamentarium for urologists treating this disease. Methods: Articles were identified through a literature review of articles obtained through PubMed searches including the terms “bladder cancer” and various diagnostic techniques described in the article. Results: A variety of urinary biomarkers are available to assist the diagnosis and management of patients with NMIBC. Many have improved sensitivity over urine cytology, but less specificity. There are certain situations in which this has proved valuable, but as yet these are not part of the standard guidelines for NMIBC. Fluorescence cystoscopy has level 1 evidence demonstrating increased rates of tumor detection and prolonged recurrence-free survival when utilized for transurethral resection. Other technologies seeking to enhance cystoscopy, such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography are still under evaluation. Conclusions: A variety of urine biomarker and adjunctive endoscopic technologies have been developed to assist the management of NMIBC. While some, such as fluorescence cystoscopy, have demonstrated a definite benefit in this disease, others are still finding their place in the diagnosis and treatment of this disease. Future studies should shed light on how these can be incorporated to improve outcomes in NMIBC. PMID:26604438

  3. [Non invasive ventilation in the emergency setting].

    PubMed

    Wilhelm, Laetitia; Della Santa, Vincent; Hanhart, Walter-Alexandre

    2015-08-12

    Before the development of non invasive ventilation (NIV), endotracheal intubation was the only ventilatory therapy available in case of severe respiratory distress and acute respiratory failure. NIV used to be employed in intensive care settings only. Nowadays, the use of NIV has been democratized to include the emergency room, and the pre-hospital care setting for treatment of acute respiratory failure. Cardiogenic pulmonary edema and acute exacerbation of COPD are indications of choice, since NIV improves mortality. The efficiency of the therapy depends on early treatment; however, endotracheal intubation should not be delayed when it becomes necessary. PMID:26449102

  4. Examination of postmortem retinal folds: A non-invasive study.

    PubMed

    Oshima, Toru; Yoshikawa, Hiroshi; Ohtani, Maki; Mimasaka, Sohtaro

    2015-02-01

    The postmortem retinal fold has been previously documented, but its mechanism of formation is not known. All previous studies of the fold involved invasive techniques and the postmortem ocular fundus has yet to be non-invasively examined. Our study used the non-invasive techniques of monocular indirect ophthalmoscopy and ocular echography to examine 79 postmortem eyes of 42 bodies. We examined whether the postmortem retinal fold was associated with postmortem time, position, and/or age. Age was significantly associated with postmortem retinal fold formation (Mann-Whitney U test, P = 0.013), which led us to examine the effect of posterior vitreous detachment (PVD) on retinal folds. The absence of a PVD was statistically associated with the presence of a retinal fold (Fisher's exact test, P < 0.0001). Interestingly, the presence of a PVD was also significantly correlated with retinal fold height (Mann-Whitney U test, P < 0.0001). Therefore, we hypothesized that retinal folds result from postmortem vitreoretinal traction caused by eyeball flaccidity. We also believe that the loss of retinochoroidal hydrostatic pressure plays a role. It is important that forensic pathologists not confuse a postmortem retinal fold with traumatic retinal detachment or perimacular retinal folds caused by child abuse. When child abuse is suspected, forensic pathologists should perform enucleation and a subsequent histological examination for confirmation. PMID:25623189

  5. Ultrahigh-speed non-invasive widefield angiography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  6. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  7. Transbronchial needle aspiration. An underused diagnostic technique.

    PubMed

    Dasgupta, A; Mehta, A C

    1999-03-01

    Despite its proven usefulness, TBNA is not widely used. An American College of Chest Physicians (ACCP) survey showed that only 11.8% of pulmonologists use TBNA. Most pulmonologists in the 1980s were not formally trained in TBNA. This lack of training has unfortunately translated to minimal emphasis on TBNA in current training programs in a large number of institutions. Technical problems with the procedure (faulty site selection, incomplete needle penetration, catheter kinking that prevents adequate suction, etc.), the confusing array of needles, low diagnostic yields, unproven concerns regarding the safety of the procedure, inadequate cytopathology support, and bronchoscopic damage have all perpetuated the image of limited usefulness for this procedure. Limitations to the practice of TBNA are: Lack of training during fellowship Technical inadequacies Lack of cytopathologists trained in TBNA interpretation Fear of bronchoscope damage Safety issues Failure to reproduce published successes Reservations regarding usefulness of TBNA results Hands-on experience with TBNA, developing familiarity and expertise with only a few needles, and paying careful attention to anatomy, procedure techniques, and specimen acquisition may all help to increase yield. The following lists how better results can be obtained with TBNA: Preprocedure Review TBNA instruction tapes Attend hands-on courses Practice with lung models Review patient's CAT scans Familiarize with one-two cytology and histology needle Obtain a trained assistant Procedural Identify target site Needle to airway angle at least greater than 45 degrees Insert entire length of the needle Use scope channel to support the catheter Release suction before withdrawing needle (for staging) Specimen acquisition Avoid delay in preparing slides Adequate sampling (at least two) Use smear method for cytology specimen Analyze all samples flush solutions cell block Postprocedure Find an experienced cytopathologist Review your procedure

  8. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  9. Non-invasive imaging of microcirculation: a technology review

    PubMed Central

    Eriksson, Sam; Nilsson, Jan; Sturesson, Christian

    2014-01-01

    Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. PMID:25525397

  10. Non-invasive assessment of skeletal muscle activity

    NASA Astrophysics Data System (ADS)

    Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per

    2005-10-01

    After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).

  11. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation.

    PubMed

    Sale, Martin V; Mattingley, Jason B; Zalesky, Andrew; Cocchi, Luca

    2015-10-01

    The flexible integration of segregated neural processes is essential to healthy brain function. Advances in neuroimaging techniques have revealed that psychiatric and neurological disorders are characterized by anomalies in the dynamic integration of widespread neural populations. Re-establishing optimal neural activity is an important component of the treatment of such disorders. Non-invasive brain stimulation is emerging as a viable tool to selectively restore both local and widespread neural activity in patients affected by psychiatric and neurological disorders. Importantly, the different forms of non-invasive brain stimulation affect neural activity in distinct ways, which has important ramifications for their clinical efficacy. In this review, we discuss how non-invasive brain stimulation techniques influence widespread neural integration across brain regions. We suggest that the efficacy of such techniques in the treatment of psychiatric and neurological conditions is contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration. PMID:26409343

  12. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    PubMed Central

    Ozawa, Hideo; Watanabe, Toyohiko; Uematsu, Katsutoshi; Sasaki, Katsumi; Inoue, Miyabi; Kumon, Hiromi

    2009-01-01

    Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect) caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1) and the sphincteric urethra (V2) were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1), calculated by Qmax/V1, was lower in the group of bladder outlet obstruction (BOO) vs. control group. Velocity ratio (VR), which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS) will dramatically expand the information on voiding function. PMID:19468440

  13. Non-invasive diagnosis of hepatitis B virus-related cirrhosis

    PubMed Central

    Lee, Sangheun; Kim, Do Young

    2014-01-01

    Chronic hepatitis B (CHB) infection is a major public health problem associated with significant morbidity and mortality worldwide. Twenty-three percent of patients with CHB progress naturally to liver cirrhosis, which was earlier thought to be irreversible. However, it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs. Thus, early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB. Liver biopsy is the reference standard for assessment of liver fibrosis. However, the method is invasive, and is associated with pain and complications that can be fatal. In addition, intra- and inter-observer variability compromises the accuracy of liver biopsy data. Only small tissue samples are obtained and fibrosis is heterogeneous in such samples. This confounds the two types of observer variability mentioned above. Such limitations have encouraged development of non-invasive methods for assessment of fibrosis. These include measurements of serum biomarkers of fibrosis; and assessment of liver stiffness via transient elastography, acoustic radiation force impulse imaging, real-time elastography, or magnetic resonance elastography. Although significant advances have been made, most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection. In the present review, we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice. PMID:24574713

  14. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma

    PubMed Central

    GHITA, MIHAELA A.; CARUNTU, CONSTANTIN; ROSCA, ADRIAN E.; KALESHI, HARILLAQ; CARUNTU, ANA; MORARU, LILIANA; DOCEA, ANCA OANA; ZURAC, SABINA; BODA, DANIEL; NEAGU, MONICA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  15. Comparative diagnostic accuracy of magnetic resonance elastography versus eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven nonalcoholic fatty liver disease: a prospective study

    PubMed Central

    Cui, Jeffrey; Ang, Brandon; Haufe, William; Hernandez, Carolyn; Verna, Elizabeth C.; Sirlin, Claude B.; Loomba, Rohit

    2015-01-01

    Background Two-dimensional magnetic resonance elastography (2D-MRE) is an advanced magnetic resonance method with high diagnostic accuracy for predicting advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) patients. However, no prospective, head-to-head comparisons between 2D-MRE and clinical prediction rules (CPRs) have been performed in patients with biopsy-proven NAFLD. Aim This study compared the diagnostic utility of 2D-MRE against that of eight CPRs (AST:ALT ratio, APRI, BARD, FIB-4, NAFLD Fibrosis Score, Bonacini cirrhosis discriminant score, Lok Index, and NASH CRN model) for predicting advanced fibrosis in a prospective cohort with paired liver biopsy as the gold standard. Methods This is a cross-sectional analysis of a prospective study of 102 patients (58.8% women) with biopsy-proven NAFLD, 2D-MRE, and clinical research assessment within 90 days of biopsy. ROC analysis was performed to assess the performance of 2D-MRE and CPRs for predicting advanced fibrosis. Results The mean (± SD) age and BMI were 51.3 (±14.0) years and 31.7 (±5.5) kg/m2, respectively. 48, 26, 9, 13, and 6 patients had stage 0, 1, 2, 3, and 4 fibrosis, respectively. The area under ROC curve (AUROC) was 0.957 for 2D-MRE and between 0.796 and 0.861 for the CPRs. FIB-4 was the best-performing CPR at predicting advanced fibrosis with AUROC of 0.861. In head-to-head comparisons using the Delong test, 2D-MRE had significantly better AUROC (p < 0.05) than each CPR for predicting advanced fibrosis. Conclusions Compared to CPRs, 2D-MRE provides significantly higher accuracy for advanced fibrosis diagnosis in NAFLD patients. PMID:25873207

  16. Non-invasive measurments of intense relativistic electron beam size

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; McCuistian, Trent; Moir, David; Rodriguez, Patrick; Broste, William; Johnson, Jeff

    2000-10-01

    To understand relativistic electron beam transport dynamics the size of the beam is often measured using invasive techniques such as imaging the Cerenkov or OTR light emitted from a screen inserted into the beam. These techniques would completely disrupt the DARHT 2 beam, so we are developing a non-invasive method using diamagnetic loops. We show that through conservation of canonical angular momentum the RMS radius of the beam can be found by measuring the magnetic flux excluded by the diamagnetic beam. Furthermore, this measurement is shown to be independent of the details of the beam radial current profile for DARHT 2 parameters. We present results from our test and calibration experiments, as well as results of beam radius measurements on the 20-MeV DARHT 1 accelerator.

  17. Non-invasive Central and Peripheral Stimulation: New Hope for Essential Tremor?

    PubMed Central

    Chalah, Moussa A.; Lefaucheur, Jean-Pascal; Ayache, Samar S.

    2015-01-01

    Essential tremor (ET) is among the most frequent movement disorders. It usually manifests as a postural and kinematic tremor of the arms, but may also involve the head, voice, lower limbs, and trunk. An oscillatory network has been proposed as a neural correlate of ET, and is mainly composed of the olivocerebellar system, thalamus, and motor cortex. Since pharmacological agents have limited benefits, surgical interventions like deep brain stimulation are the last-line treatment options for the most severe cases. Non-invasive brain stimulation techniques, particularly transcranial magnetic or direct current stimulation, are used to ameliorate ET. Their non-invasiveness, along with their side effects profile, makes them an appealing treatment option. In addition, peripheral stimulation has been applied in the same perspective. Hence, the aim of the present review is to shed light on the emergent use of non-invasive central and peripheral stimulation techniques in this interesting context. PMID:26635516

  18. It Takes Two: Non Invasive Brain Stimulation Combined with Neurorehabilitation

    PubMed Central

    Page, Stephen J.; Cunningham, David A; Plow, Ela; Blazak, Brittani

    2015-01-01

    The goal of post-acute neurorehabilitation is to maximize patients' function, ideally by using surviving brain and central nervous system tissue when possible. Yet the structures incorporated into neurorehabilitative approaches often differ from this target, which may explain why efficacy of conventional clinical treatments targeting neurological impairments varies widely. Non-invasive brain stimulation such as with Transcranial Magnetic Stimulation (TMS) and transcranial direct current stimulation (tDCS) offers the possibility of directly targeting brain structures to facilitate or inhibit their activity so as to steer neural plasticity in recovery, and measure neuronal output and interactions for evaluating progress. Latest advances as stereotactic navigation and electric field modeling are enabling more precise targeting of patient's residual structures in diagnosis and therapy. Given its promise, this supplement illustrates the wide-ranging significance of TMS and tDCS in neurorehabilitation, including in stroke, pediatrics, traumatic brain injury, focal hand dystonia, neuropathic pain and spinal cord injury. TMS and tDCS are still not widely used and remain poorly understood in neurorehabilitation. Thus, the present supplement includes articles that highlight ready clinical application of these technologies, including their comparative diagnostic capabilities relative to neuroimaging, their therapeutic benefit, their optimal delivery, the stratification of likely responders, and the variable benefits associated with their clinical use due to interactions between pathophysiology and the innate reorganization of the patient's brain. Overall, the supplement concludes that whether provided in isolation or in combination, non-invasive brain stimulation with neuro-rehabilitation are synergistic in the potential to transform clinical practice. PMID:25813373

  19. Non-invasive assessment of microvascular and endothelial function.

    PubMed

    Cheng, Cynthia; Daskalakis, Constantine; Falkner, Bonita

    2013-01-01

    The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBF(max)/FBF(base) is computed as an estimate of vasodilation, by dividing the mean of the four FBF(max) values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVR(max)) is calculated as the mean arterial pressure (MAP) divided by FBF(max). Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly. The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal

  20. Non-invasive neuroimaging using near-infrared light

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Boas, David A.; Sutton, Jeffrey P.

    2002-01-01

    This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.

  1. A novel, non-invasive diagnostic clinical procedure for the determination of an oxygenation status of chronic lower leg ulcers using peri-ulceral transcutaneous oxygen partial pressure measurements: Results of its application in chronic venous insufficiency (CVI)

    PubMed Central

    Barnikol, Wolfgang K. R.; Pötzschke, Harald

    2012-01-01

    wounds. The hypoxia grades found in all of the chronic wounds was seen to be evenly distributed with values ranging from 0 to 40 mmHg, and therefore extremely inhomogeneous. In terms of oxygenation, chronic wounds are therefore inhomogeneous in two respects: (1) within the wound itself (intra-individual wound inhomogeneity) and (2) between different wounds (inter-individual wound inhomogeneity). Due to the extreme oxygen inhomogeneity, single measurements are not diagnostically useful. In healthy individuals the oxygen inhalation challenge (see above) results in synchronised tcPO2 oscillations occurring at minute rhythms, which are not seen in CVI wounds. These oscillations can be interpreted as a sign of a functioning arterial vasomotor system. The new procedure is suitable for the routine characterisation of chronic wounds in terms of their oxygen status, and correspondingly, their metabolically determining (and limiting) potential for healing and regeneration. The oxygen characteristic K-PO2 can furthermore be used as a warning of impending ulceration, since the oxygen provision worsens over time prior to the demise of the ulcerated tissue, thus making a controlled prophylaxis possible. PMID:22737104

  2. [Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients. PMID:25702198

  3. Non-invasive Ventilation in Premature Infants: Based on Evidence or Habit

    PubMed Central

    Garg, Shalabh; Sinha, Sunil

    2013-01-01

    Despite surfactant and mechanical ventilation being the standard of care for preterm infants with respiratory failure, non-invasive respiratory support is increasingly being employed in neonatal units. The latter can be accomplished in a variety of ways but none of them have been proven so far to be superior to intubation and mechanical ventilation. Nonetheless, they appear to be safe and effective in experienced hands. This article relates to the use of non-invasive forms of respiratory support and evidence is reviewed from the clinical trials which have evaluated the use of these techniques. PMID:24404523

  4. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    PubMed Central

    Moissidou, Despina; Day, Jasmine; Shin, Dong Hoon; Bianucci, Raffaella

    2015-01-01

    Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts. PMID:26345295

  5. Non-invasive assessment of liver fibrosis

    PubMed Central

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K.

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  6. Non-invasive assessment of liver fibrosis.

    PubMed

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  7. Invasive diagnostic techniques in idiopathic interstitial pneumonias.

    PubMed

    Poletti, Venerino; Ravaglia, Claudia; Gurioli, Carlo; Piciucchi, Sara; Dubini, Alessandra; Cavazza, Alberto; Chilosi, Marco; Rossi, Andrea; Tomassetti, Sara

    2016-01-01

    Fibrosing interstitial lung diseases (f-ILDs) represent a heterogeneous group of disorders in which the aetiology may be identified or, not infrequently, remain unknown. Establishing a correct diagnosis of a distinct f-ILD requires a multidisciplinary approach, integrating clinical profile, physiological and laboratory data, radiological appearance and, when appropriate, histological findings. Surgical lung biopsy is still considered the most important diagnostic tool as it is able to provide lung samples large enough for identification of complex patterns such as usual interstitial pneumonitis (UIP) and nonspecific interstitial pneumonitis. However, this procedure is accompanied by significant morbidity and mortality. Bronchoalveolar lavage is still a popular diagnostic tool allowing identification of alternative diagnoses in patients with suspected idiopathic pulmonary fibrosis (IPF) when an increase in lymphocytes is detected. Conventional transbronchial lung biopsy has a very low sensitivity in detecting the UIP pattern and its role in this clinical-radiological context is marginal. The introduction of less invasive methods such as transbronchial cryobiopsy show great promise to clinical practice as they can be used to obtain samples large enough to morphologically support a diagnosis of IPF or other idiopathic interstitial pneumonias, along with fewer complications. Recent advances in the field suggest that less invasive methods of lung sampling, without significant side effects, in combination with other diagnostic methods could replace the need for surgical lung biopsy in the future. Indeed, these new multidisciplinary procedures may become the main diagnostic work-up method for patients with suspected idiopathic interstitial pneumonia. PMID:26682637

  8. A Grab-Bag of Diagnostic Techniques.

    ERIC Educational Resources Information Center

    Harris, Muriel

    1983-01-01

    Describes several diagnostic tools used to determine specific problems of students referred to a writing lab, including structured interviews, protocols (asking a student to compose aloud for 15 to 20 minutes on a short topic), and back-pedaling (questioning what a student already knows about a given topic). (AEA)

  9. Development of novel fuel ion ratio diagnostic techniques

    SciTech Connect

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; Conroy, S.; Ericsson, G.; Gorini, G.; Tardocchi, M.; Hellermann, M. von; Lischtschenko, O.; Delabie, E.; Jaspers, R. J. E.

    2010-10-15

    To overcome the challenge of measuring the fuel ion ratio in the core ({rho}<0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

  10. Laboratory diagnostic techniques for Entamoeba species.

    PubMed

    Fotedar, R; Stark, D; Beebe, N; Marriott, D; Ellis, J; Harkness, J

    2007-07-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  11. Laboratory Diagnostic Techniques for Entamoeba Species

    PubMed Central

    Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J.

    2007-01-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  12. Continuous non-invasive finger blood pressure monitoring in children.

    PubMed

    Tanaka, H; Thulesius, O; Yamaguchi, H; Mino, M; Konishi, K

    1994-06-01

    We evaluated the performance of continuous non-invasive finger arterial pressure measurement using the volume-clamp technique (Finapres). This study was designed to compare finger arterial pressure with brachial blood pressure estimated by the auscultatory method in 217 children (90 boys and 127 girls) aged 4-16 years and in 38 adults (aged 18-45 years). Finger and brachial artery pressure readings were obtained consecutively from the ipsilateral side in the supine position. Finger arterial pressure waveforms were recorded in all children except 4 with small and thin fingers. There was good agreement for systolic pressure with only a slight underestimation of 1.9 mmHg and 5.1 mmHg lower for diastolic pressure. This difference most probably reflects inaccuracy of the auscultatory cuff method rather than an error in the Finapres. There was large inter-individual variability in Finapres recordings which might be due to differences in vasomotor tone, as demonstrated by systolic amplification in 5 patients with anorexia. However, Finapres showed a small within-subject variability (3.8 mmHg for systolic and 4.1 mmHg for diastolic pressure) determined in 5 patients during phenylephrine infusion, and as good reproducibility as the auscultatory method. These results suggest that finger arterial pressure measurement in children older than 6 years of age has similar accuracy as that in adults, and that this method is useful for clinical applications in children, especially for the non-invasive evaluation of autonomic control and cardiovascular reflexes involving transient and rapid blood pressure changes. PMID:7919764

  13. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  14. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  15. Who is who? Non-invasive methods to individually sex and mark altricial chicks.

    PubMed

    Adam, Iris; Scharff, Constance; Honarmand, Mariam

    2014-01-01

    Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines. PMID:24893585

  16. Who is Who? Non-invasive Methods to Individually Sex and Mark Altricial Chicks

    PubMed Central

    Adam, Iris; Scharff, Constance; Honarmand, Mariam

    2014-01-01

    Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines. PMID:24893585

  17. Systolic time intervals: a review of the method in the non-invasive investigation of cardiac function in health, disease and clinical pharmacology.

    PubMed Central

    Hassan, S.; Turner, P.

    1983-01-01

    Measurement of systolic time intervals is a valuable, non-invasive procedure to assess left ventricular performance, particularly when influenced by drugs. In this review, we discuss various factors affecting systolic time intervals, the therapeutic implications of the technique and its place among other non-invasive tests of cardiac function. PMID:6353394

  18. Non invasive monitoring in mechanically ventilated pediatric patients.

    PubMed

    Al-Subu, Awni M; Rehder, Kyle J; Cheifetz, Ira M; Turner, David A

    2014-12-01

    Cardiopulmonary monitoring is a key component in the evaluation and management of critically ill patients. Clinicians typically rely on a combination of invasive and non-invasive monitoring to assess cardiac output and adequacy of ventilation. Recent technological advances have led to the introduction: of continuous non-invasive monitors that allow for data to be obtained at the bedside of critically ill patients. These advances help to identify hemodynamic changes and allow for interventions before complications occur. In this manuscript, we highlight several important methods of non-invasive cardiopulmonary monitoring, including capnography, transcutaneous monitoring, pulse oximetry, and near infrared spectroscopy. PMID:25119483

  19. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging

    PubMed Central

    Calcagni, A; Gibson, J M; Styles, I B; Claridge, E; Orihuela-Espina, F

    2011-01-01

    Purpose To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611 nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool. PMID:21904394

  20. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    PubMed Central

    Dunlop, Katharine A.; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related to rewards and punishment, cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC) initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and the underlying behavioral and neurobiological targets associated with ED. This review will also identify candidate targets for NIBS based on these dimensions and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED. PMID:26909013

  1. Improving non-invasive ventilation documentation.

    PubMed

    Smith, Matthew; Elkheir, Natalie

    2014-01-01

    Record keeping for patients on non-invasive ventilation (NIV) at St. Georges Hospital is poor. The initial NIV prescription is often not recorded, and changes to the NIV prescription or the rationale for the changes (ABG results) are also poorly documented. This leads to confusion for nurses/doctors as to what the correct settings are, meaning patients could receive ineffective ventilation. The use of NIV is also poorly recorded by nursing staff meaning that doctors are unsure if the prescribed NIV is being achieved. This can lead to treatment being escalated unnecessarily in the event of treatment failure. Non-invasive ventilation (NIV) is the provision of ventilatory support in the form of positive pressure via the patient's upper airway using a mask or similar device. NIV is indicated for treatment of acute hypercapnic respiratory failure, of which there are many causes, though COPD is the indication in up to 70% of cases.[1] British Thoracic Society (BTS) guidelines for NIV suggest that the rationale for commencing a patient on NIV and the proposed settings should be clearly documented.[2] Clinicians cannot effectively tailor changes to the patients NIV settings if this information is not clearly recorded, which could lead to increased time requiring NIV or NIV failure. Three main areas were considered important to measure for this project. The initial prescription of the NIV, changes to the NIV settings, and nursing documentation surrounding NIV. A baseline measurement of NIV documentation for two weeks found NIV documentation to globally very poor. NIV was formally prescribed 29% of the time, full detail of intended settings were documented 57% of the time, the decision to commence NIV was discussed with the respiratory consultant/SpR just 29% of the time and on no occasion was a decision regarding escalation of treatment recorded. Eighteen changes were made to the NIV settings. These were formally prescribed 22% of the time and detail of the intended

  2. Modern non-invasive mechanical ventilation turns 25.

    PubMed

    Díaz Lobato, Salvador; Mayoralas Alises, Sagrario

    2013-11-01

    The history of non-invasive mechanical ventilation goes back more than 100 years, but it was not until 1987 when what we could call "modern" non-invasive mechanical ventilation was developed. The description of Delaubier and Rideau of a patient with Duchenne's disease who had been effectively ventilated through a nasal mask marked the start of a new era in the history of non-invasive mechanical ventilation. Over these last 25years, we have witnessed exponential growth in its use, field of activity and technological advances on an exciting fast-paced track. We believe that it is time to review the main milestones that have marked the development of non-invasive mechanical ventilation to date, while paying homage to this therapeutic method that has contributed so much to the advancement of respiratory medicine in the last 25years. PMID:23347549

  3. A computer controlled non-invasive haemodynamic monitoring system.

    PubMed

    McMenemin, I M; Kenny, G N

    1988-10-01

    A system for the non-invasive monitoring, recording and storing haemodynamic indices has been developed using an Apple II microcomputer, a Dinamap automatic arterial pressure monitor and a non-invasive cardiac output monitor based on bio-electrical impedance. This system was used during the induction and maintenance of anaesthesia. Numerical and graphical displays of heart rate, arterial pressure, cardiac output and systemic vascular resistance are available. A print-out of data can be produced for later analysis. PMID:3190976

  4. Aortic stenosis in adults. Non-invasive estimation of pressure differences by continuous wave Doppler echocardiography.

    PubMed Central

    Hegrenaes, L; Hatle, L

    1985-01-01

    The peak and mean aortic transvalvar pressure differences measured invasively and non-invasively by continuous wave Doppler echocardiography were compared in 87 consecutive patients with aortic stenosis. The mean values were calculated from the maximal velocities of the aortic jet recorded with a spectral display of the Doppler frequency shifts and by applying a modified Bernoulli equation. Technically satisfactory velocity curves for estimating the mean pressure differences could not be obtained in three patients and invasive measurements were not obtained in two. In all patients the peak transvalvar pressure difference was calculated since the aortic jet was identified non-invasively. The peak and mean pressure differences measured invasively and non-invasively correlated well--with only minor underestimation of the pressure differences measured with the Doppler technique--regardless of age, sex, and the presence or absence of aortic valvar regurgitation, or other valvar lesions. With a systematic search for the highest velocities in the aortic jet and with on line spectral analysis of the Doppler frequencies the peak and the mean aortic pressure differences can be determined non-invasively with a high degree of precision in almost all patients. Images PMID:4052281

  5. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  6. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  7. Invasive and non-invasive modalities of imaging carotid stenosis.

    PubMed

    Tang, T Y; U-King-Im, J M; Walsh, S R; Young, V E; Sadat, U; Li, Z Y; Patterson, A J; Varty, K; Gillard, J H

    2009-12-01

    Despite recent therapeutic advances, acute ischemic complications of atherosclerosis remain the primary cause of morbidity and mortality in Western countries, with carotid atherosclerotic disease one of the major preventable causes of stroke. As the impact of this disease challenges our healthcare systems, we are becoming aware that factors influencing this disease are more complex than previously realized. In current clinical practice, risk stratification relies primarily on evaluation of the degree of luminal stenosis and patient symptomatology. Adequate investigation and optimal imaging are important factors that affect the quality of a carotid endarterectomy (CEA) service and are fundamental to patient selection. Digital subtraction angiography is still perceived as the most accurate imaging modality for carotid stenosis and historically has been the cornerstone of most of the major CEA trials but concerns regarding potential neurological complications have generated substantial interest in non-invasive modalities, such as contrast-enhanced magnetic resonance angiography. The purpose of this review is to give an overview to the vascular specialist of the current imaging modalities in clinical practice to identify patients with carotid stenosis. Advantages and disadvantages of each technique are outlined. Finally, limitations of assessing luminal stenosis in general are discussed. This article will not cover imaging of carotid atheroma morphology, function and other emerging imaging modalities of assessing plaque risk, which look beyond simple luminal measurements. PMID:19935602

  8. A non-invasive method of tendon force measurement.

    PubMed

    Pourcelot, Philippe; Defontaine, Marielle; Ravary, Bérangère; Lemâtre, Mickaël; Crevier-Denoix, Nathalie

    2005-10-01

    The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers. PMID:16084214

  9. An optical approach for non-invasive blood clot testing

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon

    2007-02-01

    Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.

  10. Non-invasive experimental determination of a CT source model.

    PubMed

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858