Science.gov

Sample records for non-invasive diagnostic techniques

  1. Non-invasive diagnostic techniques in the diagnosis of squamous cell carcinoma.

    PubMed

    Warszawik-Hendzel, Olga; Olszewska, Małgorzata; Maj, Małgorzata; Rakowska, Adriana; Czuwara, Joanna; Rudnicka, Lidia

    2015-12-31

    Squamous cell carcinoma is the second most common cutaneous malignancy after basal cell carcinoma. Although the gold standard of diagnosis for squamous cell carcinoma is biopsy followed by histopathology evaluation, optical non-invasive diagnostic tools have obtained increased attention. Dermoscopy has become one of the basic diagnostic methods in clinical practice. The most common dermoscopic features of squamous cell carcinoma include clustered vascular pattern, glomerular vessels and hyperkeratosis. Under reflectance confocal microscopy, squamous cell carcinoma shows an atypical honeycomb or disarranged pattern of the spinous-granular layer of the epidermis, round nucleated bright cells in the epidermis and round vessels in the dermis. High frequency ultrasound and optical coherence tomography may be helpful in predominantly in pre-surgical evaluation of tumor size. Emerging non-invasive or minimal invasive techniques with possible application in the diagnosis of squamous cell carcinoma of the skin, lip, oral mucosa, vulva or other tissues include high-definition optical coherence tomography, in vivo multiphoton tomography, direct oral microscopy, electrical impedance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, elastic scattering spectroscopy, differential path-length spectroscopy, nuclear magnetic resonance spectroscopy, and angle-resolved low coherence interferometry. PMID:26848316

  2. Modern non-invasive diagnostic techniques in the detection of early cutaneous melanoma.

    PubMed

    Kardynal, Agnieszka; Olszewska, Malgorzata

    2014-03-31

    Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Melanoma is a malignant tumor with a high tendency to metastasize. Therefore, an extremely important part of the therapeutic process is to identify the disease at an early stage: in situ or stage I. Many tools for early diagnosis of melanoma are available today, including dermoscopy, videodermoscopy and in vivo reflectance confocal microscopy. Other methods such as high frequency ultrasound, optical coherence tomography and electrical impedance spectroscopy may serve as additional diagnostic aids. Modern imaging techniques also allow the monitoring of melanocytic skin lesions over months or years to detect the moment of malignant transformation. This review summarizes the current knowledge about modern diagnostic techniques, which may aid early diagnosis of melanoma. PMID:24748903

  3. A pilot study using laser-based technique for non-invasive diagnostics of hypertensive conditions in mice

    NASA Astrophysics Data System (ADS)

    Litvinova, Karina S.; Ahmad, Shakil; Wang, Keqing; Rafailov, Ilya E.; Sokolovski, Sergei G.; Zhang, Lin; Rafailov, Edik U.; Ahmed, Asif

    2016-02-01

    Endothelial dysfunction is directly linked to preeclampsia, a maternal hypertensive condition that is life threating for both the mother and the baby. Epidemiological studies show that women with a history of pre-eclampsia have an elevated risk for cardiovascular disease. Here we report a new non-invasive diagnostic test for preeclampsia in mice that allows us to non-invasively assess the condition of the animals during the experiment and treatment in established models of preeclampsia. A laser-based multifunctional diagnostics system (LAKK-M) was chosen to carry out non-invasive analysis of multiple parameters. The device was used to simultaneously record the microcirculatory blood flow and oxygen saturation, as well as fluorescence levels of endogenous fluorophores. Preliminary experiments were conducted on adenoviral (Ad-)- mediated overexpression of sFlt-1 (Ad-sFlt-1) to mimic preeclampsialike symptoms in mice. The recorded data displayed the ability of the LAKK-M diagnostics device to detect significant differences in perfusion measurements between the control and Ad-sFlt-1 treatment. Preliminary results provide a potential avenue to employ these diagnostics technology to monitor and aid in maintaining control of live animal conditions throughout the experiment and treatment.

  4. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements.

    PubMed

    Alshuhri, Abdullah A; Holsgrove, Timothy P; Miles, Anthony W; Cunningham, James L

    2015-08-01

    Current techniques for diagnosing early loosening of a total hip replacement (THR) are ineffective, especially for the acetabular component. Accordingly, new, accurate, and quantifiable methods are required. The aim of this study was to investigate the viability of vibrational analysis for accurately detecting acetabular component loosening. A simplified acetabular model was constructed using a Sawbones(®) foam block. By placing a thin silicone layer between the acetabular component and the Sawbones block, 2- and 4-mm soft tissue membranes were simulated representing different loosening scenarios. A constant amplitude sinusoidal excitation with a sweep range of 100-1500 Hz was used. Output vibration from the model was measured using an accelerometer and an ultrasound probe. Loosening was determined from output signal features such as the number and relative strength of observed harmonic frequencies. Both measurement methods were sufficient to measure the output vibration. Vibrational analysis reliably detected loosening corresponding to both 2 and 4 mm tissue membranes at driving frequencies between 100 and 1000 Hz (p < 0.01) using the accelerometer. In contrast, ultrasound detected 2-mm loosening at a frequency range of 850-1050 Hz (p < 0.01) and 4-mm loosening at 500-950 Hz (p < 0.01). PMID:26054805

  5. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  6. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  7. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  8. Non-invasive methodology for diagnostics of bearing impacts

    NASA Astrophysics Data System (ADS)

    Chi, John N.

    2007-04-01

    Various events in reciprocating machinery, such as connecting rod or piston movement, and diesel combustion produce a series of highly transient forces within the machine. These events generate force transients of short duration and broad frequency content. Even though these events may be part of a machine cycle and therefore periodic, it is often more appropriate to treat them on an individual basis because more diagnostics information is available from a single waveform during a cycle than from averages over several cycles. However, it is very rare for one to have direct access to source waveforms because of the expense and reliability problems associated with the required instrumentation, and non-invasive techniques will have to be used. This paper explores the use of cepstral smoothing and minimum phase extraction technique for non-invasive diagnostics of bearing impacts in reciprocating machinery. The methodology is based on extracting diagnostic signals from vibration measurements taken at a "convenient" location such as the crankshaft casing or bearing end-cap, and consists of source identification, diagnostic signature recovery, and diagnostic system decision-making. A dynamic simulation with lumped mass model is developed to analyze bearing impacts for the big end bearings, experimental measurements from accelerometers, transfer functions of vibration, and the structural response are presented.

  9. Non-invasive diagnostic imaging of colorectal liver metastases

    PubMed Central

    Mainenti, Pier Paolo; Romano, Federica; Pizzuti, Laura; Segreto, Sabrina; Storto, Giovanni; Mannelli, Lorenzo; Imbriaco, Massimo; Camera, Luigi; Maurea, Simone

    2015-01-01

    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs. PMID:26217455

  10. Novel non invasive diagnostic strategies in bladder cancer

    PubMed Central

    TRUTA, ANAMARIA; POPON, TUDOR ADRIAN HODOR; SARACI, GEORGE; GHERVAN, LIVIU; POP, IOAN VICTOR

    2016-01-01

    Bladder cancer is one of the most commonly diagnosed malignancies worldwide, derived from the urothelium of the urinary bladder and defined by long asymptomatic and atypical clinical picture. Its complex etiopathogenesis is dependent on numerous risk factors that can be divided into three distinct categories: genetic and molecular abnormalities, chemical or environmental exposure and previous genitourinary disorders and family history of different malignancies. Various genetic polymorphisms and microRNA might represent useful diagnostic or prognostic biomarkers. Genetic and molecular abnormalities - risk factors are represented by miRNA or genetic polymorphisms proved to be part of bladder carcinogenesis such as: genetic mutations of oncogenes TP53, Ras, Rb1 or p21 oncoproteins, cyclin D or genetic polymorhisms of XPD,ERCC1, CYP1B1, NQO1C609T, MDM2SNP309, CHEK2, ERCC6, NRF2, NQO1Pro187Ser polymorphism and microRNA (miR-143, −145, −222, −210, −10b, 576-3p). The aim of our article is to highlight the most recent acquisitions via molecular biomarkers (miRNAs and genetic polymorphisms) involved in bladder cancer in order to provide early diagnosis, precise therapy according to the molecular profile of bladder tumors, as well as to improve clinical outcome, survival rates and life quality of oncological patients. These molecular biomarkers play a key role in bladder carcinogenesis, clinical evolution, prognosis and therapeutic response and explain the molecular mechanisms involved in bladder carcinogenesis; they can also be selected as therapeutic targets in developing novel therapeutic strategies in bladder malignancies. Moreover, the purpose in defining these molecular non invasive biomarkers is also to develop non invasive screening programs in bladder malignancies with the result of decreasing bladder cancer incidence in risk population. PMID:27152066

  11. Non-invasive techniques for determining musculoskeleton body composition

    SciTech Connect

    Cohn, S.H.

    1984-01-01

    In vivo neutron activation analysis, combined with gamma spectrometry, has ushered in a new era of clinical diagnosis and evaluation of therapies, as well as investigation into and modelling of body composition in both normal individuals and patients suffering from various diseases and dysfunctions. Body composition studies have provided baseline data on such vital constituents as nitrogen, potassium and calcium. The non-invasive measurement techniques are particularly suitable for study of the musculo-skeletal changes in body composition. Of particular relevance here is the measurement of calcium loss in astronauts during prolonged space flights.

  12. Neurophotonics: non-invasive optical techniques for monitoring brain functions.

    PubMed

    Torricelli, Alessandro; Contini, Davide; Dalla Mora, Alberto; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  13. Non-Invasive Techniques for Detection and Diagnosis of Oral Potentially Malignant Disorders.

    PubMed

    Liu, Dongjuan; Zhao, Xin; Zeng, Xin; Dan, Hongxia; Chen, Qianming

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common oral and maxillofacial malignancy, and its morbidity and mortality rates are still high in most countries. Oral potentially malignant disorders (PMDs) are used to refer to a heterogeneous group of conditions that are characterized by increased risk for malignant transformation to OSCC. Currently identified oral PMDs include leukoplakia, erythroplakia, palatal lesions associated with reverse smoking, oral lichen planus, oral submucous fibrosis, actinic keratosis, and discoid lupus erythematosus. The early detection and diagnosis of these lesions are important for cancer prevention and disease management. In recent years, there has been a growing and persistent demand for new non-invasive, practical diagnostic techniques that might facilitate the early detection of oral PMDs. The non-invasive detection techniques evaluated in this review are divided into four categories: vital staining with a solution that can be used as a mouth rinse or applied onto a suspected area of the mouth, light-based detection systems, optical diagnostic technologies that employ returned optical signals to reflect structural and morphological changes within tissues, and salivary biomarkers. Most of these techniques have shown great potential for screening and monitoring oral PMDs. In this review article, the authors critically assess these non-invasive detection techniques for oral PMDs. We also provide a summary of the sensitivity and specificity of each technique in detecting oral PMDs and oral cancer, as well as their advantages, disadvantages, clinical applications, and indications. PMID:26888696

  14. Diagnostic and prognostic utility of non-invasive imaging in diabetes management

    PubMed Central

    Barsanti, Cristina; Lenzarini, Francesca; Kusmic, Claudia

    2015-01-01

    Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed. PMID:26131322

  15. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    PubMed Central

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  16. In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. Identification of orcein and indigo in Renaissance tapestries

    NASA Astrophysics Data System (ADS)

    Clementi, C.; Miliani, C.; Romani, A.; Santamaria, U.; Morresi, F.; Mlynarska, K.; Favaro, G.

    2009-01-01

    In this paper, three Renaissance tapestries depicting scenes painted by Raffaello Sanzio, conserved at the Vatican Museum, were investigated using in-situ UV-Visible fluorimetric measurements. The results show that this technique is suitable for the detection of natural organic colorants used for dyeing the threads woven in these tapestries. The emission signals detected on red-purple colours were assigned to the colorant orcein and those on different nuances of blue and green colours to indigo by comparison with data from reference laboratory samples. The assignments were supported by chromatographic experiments carried out on threads taken from the back side of the tapestry in the same points analysed by spectrofluorimentry.

  17. In-situ fluorimetry: a powerful non-invasive diagnostic technique for natural dyes used in artefacts. Part II. Identification of orcein and indigo in Renaissance tapestries.

    PubMed

    Clementi, C; Miliani, C; Romani, A; Santamaria, U; Morresi, F; Mlynarska, K; Favaro, G

    2009-01-01

    In this paper, three Renaissance tapestries depicting scenes painted by Raffaello Sanzio, conserved at the Vatican Museum, were investigated using in-situ UV-Visible fluorimetric measurements. The results show that this technique is suitable for the detection of natural organic colorants used for dyeing the threads woven in these tapestries. The emission signals detected on red-purple colours were assigned to the colorant orcein and those on different nuances of blue and green colours to indigo by comparison with data from reference laboratory samples. The assignments were supported by chromatographic experiments carried out on threads taken from the back side of the tapestry in the same points analysed by spectrofluorimentry. PMID:19004665

  18. Using Diagnostic Radioentomology for Non-Invasive Observations of Colonies of the Bumblebee, Bombus terrestris

    PubMed Central

    Greco, Mark K.; Sadd, Ben M.

    2012-01-01

    Bumblebees have been the focus of a broad range of scientific research due to their behavior, social life, and a number of other intriguing traits. Current methods for examining their nest structure, such as natal cells and contents of storage cells, are destructive in nature because the cells need to be opened for physical inspections. This research describes how the internal structures of the artificial nests of the bumblebee Bombus terrestris L. (Hymentoptera: Apidae) were non-invasively viewed and assessed by using diagnostic radioentomology. For the first time, B. terrestris nest structures, and their contents such as larvae, pupae and eggs, were non-invaseively viewed and assessed. This technique will enable future experiments to take morphological measurements of egg, larval, and pupal development over time. Moreover, combining these measurements with measures of food-storage will provide a good assessment of colony health. The method will also allow tracking of individually marked adults, to monitor their behaviour and help gain a better understanding of the processes involved in the global declines of B. terrestris, which will in turn promote better management of these valuable pollinators. PMID:23421622

  19. Non-Invasive Health Diagnostics using Eye as a 'Window to the Body'

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.

    2002-01-01

    As a 'window to the body', the eye offers the opportunity to use light in various forms to detect ocular and systemic abnormalities long before clinical symptoms appear and help develop preventative/therapeutic countermeasures early. The effects of space travel on human body are similar to those of normal aging. For example, radiation exposure in space could lead to formation of cataracts and cancer by damaging the DNA and causing gene mutation. Additionally, the zero-gravity environment causes fluid shifts in the upper extremities of the body and changes the way blood flows and organ system performs. Here on Earth, cataract, age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma are major eye diseases and are expected to double in next two decades. To detect, prevent, and treat untoward effects of prolonged space travel in real-time requires the development of non-invasive diagnostic technologies that are compact and powerful. We are developing fiber-optic sensors to evaluate the ocular tissues in health, aging, and disease employing the techniques of dynamic light scattering (cataract, uveitis, Alzheimer's, glaucoma, DR, radiation damage, refractive surgery outcomes), auto-fluorescence (aging, DR), laser-Doppler flowmetry (choroidal blood flow), Raman spectroscopy (AMD), polarimetry (diabetes), and retinal oximetry (occult blood loss). The non-invasive feature of these technologies integrated in a head-mounted/goggles-like device permits frequent repetition of tests, enabling evaluation of the results to therapy that may ultimately be useful in various telemedicine applications on Earth and in space.

  20. The Book of Kells: a non-invasive MOLAB investigation by complementary spectroscopic techniques.

    PubMed

    Doherty, B; Daveri, A; Clementi, C; Romani, A; Bioletti, S; Brunetti, B; Sgamellotti, A; Miliani, C

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure. PMID:23850791

  1. The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Doherty, B.; Daveri, A.; Clementi, C.; Romani, A.; Bioletti, S.; Brunetti, B.; Sgamellotti, A.; Miliani, C.

    2013-11-01

    This paper highlights the efficacy of non-invasive portable spectroscopy for assessing the execution technique and constituent materials in one of the most important medieval manuscripts, the Book of Kells. An aimed campaign of in situ measurements by the MObile LABoratory (MOLAB) has analyzed its elemental composition and vibrational and electronic molecular properties. The ample analytical toolbox has afforded complementary diagnostic information of the pigment palette permitting the characterization of both inorganic and organic materials as pigments and dyes in the white, purple, blue, red, orange, green and black areas. In particular, the novel widespread use of calcinated gypsum (anhydrite) as both a white pigment and in correlation to the organic dyes in this manuscript has been noted. The non-invasive identification of the organic dye orchil is significant considering its rare non invasive detection in medieval manuscripts. Finally the occurrence of particular alterations of the organic black areas giving rise to calcium carboxylate and calcium oxalate has been specifically highlighted. Importantly, this work elaborates complex aspects of the employed painting materials which have given rise to numerous significant points of interest for a more elaborate understanding of this Irish treasure.

  2. Non-invasive diagnostics in pathological fossils by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-03-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows to non-invasively study anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly in soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological scenarios directly derived from 3D Magnetic Resonance images with microscopic resolution. These syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. Finally, the potential of Magnetic Resonance techniques for further paleontological applications is being discussed.

  3. Non-invasive diagnostics in fossils - Magnetic Resonance Imaging of pathological belemnites

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-06-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.

  4. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance

    PubMed Central

    Desai, Gauri S; Mathews, Suresh T

    2014-01-01

    Saliva has been progressively studied as a non-invasive and relatively stress-free diagnostic alternative to blood. Currently, saliva testing is used for clinical assessment of hormonal perturbations, detection of HIV antibodies, DNA analysis, alcohol screening, and drug testing. Recently, there has been increasing interest in evaluating the diagnostic potential of saliva in obesity, inflammation, and insulin-resistance. Current literature has demonstrated elevated levels of inflammatory biomarkers including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva of obese/overweight children and adults. Salivary antioxidant status has also been studied as a measure of oxidative stress in individuals with type 2 diabetes. Further, several studies have demonstrated correlations of salivary markers of stress and insulin resistance including cortisol, insulin, adiponectin, and resistin with serum concentrations. These findings suggest the potential diagnostic value of saliva in health screening and risk stratification studies, particularly in the pediatric population, with implications for inflammatory, metabolic and cardiovascular conditions. However, additional studies are required to standardize saliva collection and storage procedures, validate analytical techniques for biomarker detection, and establish reference ranges for routine clinical use. The purpose of this review is to summarize and evaluate recent advancements in using saliva as a diagnostic tool for inflammation and insulin-resistance. PMID:25512775

  5. SQUID magnetometry applied as non-invasive electroanalytic chemical technique

    SciTech Connect

    Jette, B.D.; MacVicar, M.L.A. )

    1991-03-01

    This paper reports on a SQUID magnetometer, employed as a highly sensitive ammeter, used to perform standard electroanalytic chemical measurements non- invasively. Specifically, the magnetic fields generated by the net ionic movement in the solution of a driven electrochemical system is detected by the gradiometer coils. The SQUID signal can then be compared to conventional current measurements. One such standard measurement investigated is Cyclic Voltametry (CV) which determines the I-V characteristics of an electrochemical system yielding critical kinetic parameters.

  6. Rapid non-invasive tests for diagnostics of infectious diseases

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2014-06-01

    A rapid test for an infectious disease that can be used at point-of-care at a physician's office, a pharmacy, or in the field is critical for the prompt and appropriate therapeutic intervention. Ultimately by treating infections early on will decrease transmission of the pathogen. In contrast to metabolic diseases or cancer where multiple biomarkers are required, infectious disease targets (e.g. antigen, antibody, nucleic acid) are simple and specific for the pathogen causing the disease. Our laboratory has focused on three major infectious disease; HIV, Tuberculosis, and Malaria. These diseases are pandemic in much of the world thus putting natives, tourists and military personnel at risk for becoming infected, and upon returning to the U.S., transmitting these diseases to their contacts. Our devices are designed to detect antigens, antibodies or nucleic acids in blood or saliva samples in less than 30 minutes. An overview describing the current status of each of the three diagnostic platforms is presented. These microfluidic point-of-care devices will be relatively inexpensive, disposable, and user friendly.

  7. Sub-millimeter Bunch Length Non-invasive Diagnostic Based on the Diffraction and Cherenkov Radiation

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Deng, H.; Potylitsyn, A.; Naumenko, G.; Zhang, J.; Lu, Sh; Gogolev, S.; Shkitov, D.

    2012-05-01

    A layout for the investigation the coherent Cherenkov radiation from a dielectric target with a large spectral dispersion and the coherent diffraction radiation from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics are proposed for the 20~30MeV Linac at Shanghai Institute of Applied Physics (SINAP). In this paper the status of the joint experiment and future plans are presented.

  8. Pulmonary infiltrates in non-HIV immunocompromised patients: a diagnostic approach using non-invasive and bronchoscopic procedures

    PubMed Central

    Rano, A; Agusti, C; Jimenez, P; Angrill, J; Benito, N; Danes, C; Gonzalez, J; Rovira, M; Pumarola, T; Moreno, A; Torres, A

    2001-01-01

    BACKGROUND—The development of pulmonary infiltrates is a frequent life threatening complication in immunocompromised patients, requiring early diagnosis and specific treatment. In the present study non-invasive and bronchoscopic diagnostic techniques were applied in patients with different non-HIV immunocompromised conditions to determine the aetiology of the pulmonary infiltrates and to evaluate the impact of these methods on therapeutic decisions and outcome in this population.
METHODS—The non-invasive diagnostic methods included serological tests, blood antigen detection, and blood, nasopharyngeal wash (NPW), sputum and tracheobronchial aspirate (TBAS) cultures. Bronchoscopic techniques included fibrobronchial aspirate (FBAS), protected specimen brush (PSB), and bronchoalveolar lavage (BAL). Two hundred consecutive episodes of pulmonary infiltrates were prospectively evaluated during a 30 month period in 52 solid organ transplant recipients, 53 haematopoietic stem cell transplant (HSCT) recipients, 68 patients with haematological malignancies, and 27 patients requiring chronic treatment with corticosteroids and/or immunosuppressive drugs.
RESULTS—An aetiological diagnosis was obtained in 162 (81%) of the 200 patients. The aetiology of the pulmonary infiltrates was infectious in 125 (77%) and non-infectious in 37 (23%); 38 (19%) remained undiagnosed. The main infectious aetiologies were bacterial (48/125, 24%), fungal (33/125, 17%), and viral (20/125, 10%), and the most frequent pathogens were Aspergillus fumigatus (n=29), Staphylococcus aureus (n=17), and Pseudomonas aeruginosa (n=12). Among the non-infectious aetiologies, pulmonary oedema (16/37, 43%) and diffuse alveolar haemorrhage (10/37, 27%) were the most common causes. Non-invasive techniques led to the diagnosis of pulmonary infiltrates in 41% of the cases in which they were used; specifically, the diagnostic yield of blood cultures was 30/191 (16%); sputum cultures 27/88 (31%); NPW 9/50 (18

  9. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    PubMed

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications. PMID:25990929

  10. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid:
a systematic review

    PubMed Central

    Nunes, Lazaro Alessandro Soares; Mussavira, Sayeeda

    2015-01-01

    This systematic review presents the latest trends in salivary research and its applications in health and disease. Among the large number of analytes present in saliva, many are affected by diverse physiological and pathological conditions. Further, the non-invasive, easy and cost-effective collection methods prompt an interest in evaluating its diagnostic or prognostic utility. Accumulating data over the past two decades indicates towards the possible utility of saliva to monitor overall health, diagnose and treat various oral or systemic disorders and drug monitoring. Advances in saliva based systems biology has also contributed towards identification of several biomarkers, development of diverse salivary diagnostic kits and other sensitive analytical techniques. However, its utilization should be carefully evaluated in relation to standardization of pre-analytical and analytical variables, such as collection and storage methods, analyte circadian variation, sample recovery, prevention of sample contamination and analytical procedures. In spite of all these challenges, there is an escalating evolution of knowledge with the use of this biological matrix. PMID:26110030

  11. Innovative non-invasive analysis techniques for cultural heritage using terahertz technology

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Hosako, I.

    2010-08-01

    Terahertz (THz) spectroscopy and THz imaging techniques are expected to have great potential for carrying out the non-invasive analysis of artworks. THz waves can penetrate opaque materials and they can perform three-dimensional material mapping non-destructively by spectroscopic imaging. Several attempts have been made to analyse artworks. Clear results, such as imaging of hidden art by using model paintings, have been obtained by many institutions. We succeeded to observe the first ever non-invasive cross-sectional image of a tempera masterpiece by Giotto. These results prove that THz technology can yield useful information in art conservation science.

  12. Non-invasive medical diagnostics by nanoparticle-based solid-state gas sensors

    NASA Astrophysics Data System (ADS)

    Tricoli, Antonio

    2013-08-01

    Chemical sensors made of tailored nanoparticles offer excellent miniaturization capability and are able to rapidly and continuously detect trace amounts of important analytes down to trace concentrations. Application of these sensing materials to non-invasive medical diagnostics by breath analysis has the potential to drastically reduce diagnostics costs while offering better service quality to the patients and enabling very early-stage detection of severe illnesses such as lung cancer. Here, we present a flexible approach to synthesize advanced solid-state gas sensor materials that have demonstrated reliable detection of important breath markers. In particular, the feasibility of capturing highly performing, meta-stable sensing nanoparticles by flame-synthesis of multi component metal-oxides is critically discussed.

  13. [Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].

    PubMed

    Shin, Jung Woo; Park, Neung Hwa

    2016-07-25

    The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis. PMID:27443617

  14. Towards novel compact laser sources for non-invasive diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Rafailov, Edik U.; Litvinova, Karina S.; Sokolovski, Sergei G.

    2015-08-01

    An important field of application of lasers is biomedical optics. Here, they offer great utility for diagnosis, therapy and surgery. For the development of novel methods of laser-based biomedical diagnostics careful study of light propagation in biological tissues is necessary to enhance our understanding of the optical measurements undertaken, increase research and development capacity and the diagnostic reliability of optical technologies. Ultimately, fulfilling these requirements will increase uptake in clinical applications of laser based diagnostics and therapeutics. To address these challenges informative biomarkers relevant to the biological and physiological function or disease state of the organism must be selected. These indicators are the results of the analysis of tissues and cells, such as blood. For non-invasive diagnostics peripheral blood, cells and tissue can potentially provide comprehensive information on the condition of the human organism. A detailed study of the light scattering and absorption characteristics can quickly detect physiological and morphological changes in the cells due to thermal, chemical, antibiotic treatments, etc [1-5]. The selection of a laser source to study the structure of biological particles also benefits from the fact that gross pathological changes are not induced and diagnostics make effective use of the monochromatic directional coherence properties of laser radiation.

  15. Graft complications following orthotopic liver transplantation: Role of non-invasive cross-sectional imaging techniques.

    PubMed

    Boraschi, Piero; Della Pina, Maria Clotilde; Donati, Francescamaria

    2016-07-01

    Orthotopic liver transplantation is the treatment of choice in adult patients with endstage liver disease. Survival of both graft and patient has progressively improved over time due to improvements in surgical and medical treatment. However, post-transplant complications still have a significant impact on morbidity and mortality associated with transplant surgery. The most common adverse events of the graft include vascular (arterial and venous stenosis and thrombosis), biliary (leakage, strictures, stones) and parenchymal complications (hepatitis virus C infection, HCC recurrence, liver abscesses). The diagnosis of these adverse events is often challenging because of the low specificity of clinical and biologic findings. Different diagnostic algorithms have been proposed for the detection of graft complications and, in this setting, radiological evaluation plays a key role in differential diagnosis of graft complications and the exclusion of other adverse events. Ultrasound examination is established the first-line method of identifying adverse events in liver transplant recipients but a normal or a technically unsatisfactory study cannot exclude the presence of biliary, vascular and/or parenchymal complications. In these circumstances, before planning any treatment, multi-detector CT and/or MR imaging and MR cholangiography should be performed for the evaluation of vascular structures, biliary system, liver parenchyma and fluid collections. The aim of this review is to illustrate the role and state-of-the-art of non-invasive cross-sectional imaging techniques in the diagnosis and management of complications which primarily affect the graft in patients after liver transplantation. PMID:27235874

  16. [Cerebral arteriovenous malformations: value of the non invasive vascular imaging techniques].

    PubMed

    Leclerc, X; Gauvrit, J Y; Trystram, D; Reyns, N; Pruvo, J P; Meder, J F

    2004-12-01

    Imaging evaluation of cerebral arteriovenous malformations (AVM) requires selective visualization of the different compartments of the malformation in order to select the therapeutic management. Conventional angiography remains the reference to analyze intracranial vessel conspicuity but non-invasive methods constitute an excellent alternative. Among these techniques, CT angiography is rarely used because of the need to inject iodinated contrast material and because of irradiation. MR angiography provides useful information and can be performed using several techniques: time of flight with or without contrast material injection, phase contrast, three-dimensional (3D) gradient echo acquisition after contrast material injection and, more recently, MR digital subtraction angiography. The purpose of this review article is to summarize the different non-invasive techniques for vascular imaging and to analyze the usefulness of these techniques for the assessment of brain AVMs. PMID:15687950

  17. Investigation of opportunities of the optical non-invasive diagnostics method for the blood sugar control

    NASA Astrophysics Data System (ADS)

    Lastovskaia, Elena A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2015-03-01

    The relevance of noninvasive method for determining the blood sugar is caused by necessity of regular monitoring of glucose levels in diabetic patients blood. Traditional invasive method is painful, because it requires a finger pricking. Despite the active studies in the field of non-invasive medical diagnostics, to date the painless and inexpensive instrument for blood sugar control for personal use doesn't exist. It's possible to measure the concentration of glucose in the blood with help of spectrophotometry method. It consists of registering and analyzing the spectral characteristics of the radiation which missed, reflected or absorbed by the object. The authors proposed a measuring scheme for studying the spectral characteristics of the radiation, missed by earlobe. Ultra-violet, visible and near infrared spectral ranges are considered. The paper presents the description of construction and working principles of the proposed special retaining clip and results of experiment with real patient.

  18. A non-invasive technique for rapid extraction of DNA from fish scales.

    PubMed

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales. PMID:18072545

  19. Aero-acoustic Properties of Eroded Airfoils of Compressor Blades for Use in Non-invasive Diagnostics

    NASA Astrophysics Data System (ADS)

    Drãgan, Valeriu; Grad, Danuţa

    2013-09-01

    The current techniques for investigating the erosion of turbo machineries rely on visual inspections trough boroscopy. However this implies shutting down the power plant in order to make the assessment which leads to operational costs and difficulties. This paper aims to provide a method for monitoring the erosion state of a bladed power plant operated in dusty environments such as the desert by measuring the changes in its acoustic spectrum. The method used for this study is numerical and the findings suggest that there are significant modifications to both the flow field and the acoustic parameters as the blade gets progressively eroded. This paves the way for the development of non-invasive permanent real time diagnostics for turbine engines and power plants.

  20. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment. PMID:27441427

  1. Intercomparison of techniques for the non-invasive measurement of bone mass

    SciTech Connect

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  2. Promoting social plasticity in developmental disorders with non-invasive brain stimulation techniques

    PubMed Central

    Boggio, Paulo S.; Asthana, Manish K.; Costa, Thiago L.; Valasek, Cláudia A.; Osório, Ana A. C.

    2015-01-01

    Being socially connected directly impacts our basic needs and survival. People with deficits in social cognition might exhibit abnormal behaviors and face many challenges in our highly social-dependent world. These challenges and limitations are associated with a substantial economical and subjective impact. As many conditions where social cognition is affected are highly prevalent, more treatments have to be developed. Based on recent research, we review studies where non-invasive neuromodulatory techniques have been used to promote Social Plasticity in developmental disorders. We focused on three populations where non-invasive brain stimulation seems to be a promising approach in inducing social plasticity: Schizophrenia, Autism Spectrum Disorder (ASD) and Williams Syndrome (WS). There are still very few studies directly evaluating the effects of transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) in the social cognition of these populations. However, when considering the promising preliminary evidences presented in this review and the limited amount of clinical interventions available for treating social cognition deficits in these populations today, it is clear that the social neuroscientist arsenal may profit from non-invasive brain stimulation techniques for rehabilitation and promotion of social plasticity. PMID:26388712

  3. Non-invasive physiological measurements

    SciTech Connect

    Rolfe, P.

    1983-01-01

    This book discusses the diagnostic techniques of nondestructive type for monitoring the physiology of various organ systems. The topics covered are: non-invasive assessment of gastric activity; uterine activity, intestinal activity; monitoring of fetal cardiovascular system and bilirubin physiology of infants. Respiratory system of infants is monitored and ultrasonography of heart is discussed.

  4. A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring

    PubMed Central

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2016-01-01

    We have developed a range of glucose sensing contact lenses, using a daily, disposable contact lens embedded with newly developed boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50–1000 μM, which typically track blood glucose levels, which are ≈5–10 fold higher. Our non-invasive approach may well offer an alternative solution to current invasive glucose monitoring techniques for diabetes, such as “finger pricking.” PMID:27340364

  5. Muscle tissue saturation in humans studied with two non-invasive optical techniques: a comparative study

    NASA Astrophysics Data System (ADS)

    Shaharin, Alfi; Krite Svanberg, Emilie; Ellerström, Ida; Subash, Arman Ahamed; Khoptyar, Dmitry; Andersson-Engels, Stefan; Åkeson, Jonas

    2013-11-01

    Muscle tissue saturation (StO2) has been measured with two non-invasive optical techniques and the results were compared. One of the techniques is widely used in the hospitals - the CW-NIRS technique. The other is the photon timeof- flight spectrometer (pTOFS) developed in the Group of Biophotonics, Lund University, Sweden. The wavelengths used in both the techniques are 730 nm and 810 nm. A campaign was arranged to perform measurements on 21 (17 were taken for comparison) healthy adult volunteers (8 women and 13 men). Oxygen saturations were measured at the right lower arm of each volunteer. To observe the effects of different provocations on the oxygen saturation a blood pressure cuff was attached in the upper right arm. For CW-NIRS, the tissue saturation values were in the range from 70-90%, while for pTOFS the values were in the range from 55-60%.

  6. A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods

    NASA Astrophysics Data System (ADS)

    Aceto, Maurizio; Arrais, Aldo; Marsano, Francesco; Agostino, Angelo; Fenoglio, Gaia; Idone, Ambra; Gulmini, Monica

    2015-05-01

    Folium and orchil are dyes of vegetal origin. Folium is obtained from Chrozophora tinctoria (L.) A. Juss., whereas orchil is obtained from Roccella and other genera of lichens. These dyes were used in the past to impart purple hue to paintings and textiles as substitutes for the more prised Tyrian purple dye, obtained from shellfish. Despite several citations in ancient technical treatises dating back at least to the Greek-Roman age, the identification of these dyes in artworks is rare. In the case of folium, an additional drawback is that its composition is presently unknown. In this work different non-invasive (FT-IR, FT-Raman, fibre optic reflectance spectrophotometry, spectrofluorimetry, X-ray fluorescence spectrometry) and micro-invasive (surface enhanced Raman spectroscopy, matrix assisted laser desorption ionisation-time of flight-mass spectrometry, inductively coupled plasma-mass spectrometry) techniques were used in order to increase the diagnostic information available on these dyes. Measurements were carried out on the dyes extracted from raw materials and on painted or dyed parchments. The possibility to distinguish between folium and orchil by chemical analysis is discussed.

  7. A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods.

    PubMed

    Aceto, Maurizio; Arrais, Aldo; Marsano, Francesco; Agostino, Angelo; Fenoglio, Gaia; Idone, Ambra; Gulmini, Monica

    2015-05-01

    Folium and orchil are dyes of vegetal origin. Folium is obtained from Chrozophora tinctoria (L.) A. Juss., whereas orchil is obtained from Roccella and other genera of lichens. These dyes were used in the past to impart purple hue to paintings and textiles as substitutes for the more prised Tyrian purple dye, obtained from shellfish. Despite several citations in ancient technical treatises dating back at least to the Greek-Roman age, the identification of these dyes in artworks is rare. In the case of folium, an additional drawback is that its composition is presently unknown. In this work different non-invasive (FT-IR, FT-Raman, fibre optic reflectance spectrophotometry, spectrofluorimetry, X-ray fluorescence spectrometry) and micro-invasive (surface enhanced Raman spectroscopy, matrix assisted laser desorption ionisation-time of flight-mass spectrometry, inductively coupled plasma-mass spectrometry) techniques were used in order to increase the diagnostic information available on these dyes. Measurements were carried out on the dyes extracted from raw materials and on painted or dyed parchments. The possibility to distinguish between folium and orchil by chemical analysis is discussed. PMID:25703360

  8. INVASIVE AND NON-INVASIVE TECHNIQUES FOR DETECTING PORTAL HYPERTENSION AND PREDICTING VARICEAL BLEEDING IN CIRRHOSIS: A REVIEW

    PubMed Central

    Zardi, Enrico Maria; Di Matteo, Francesco Maria; Pacella, Claudio Maurizio; Sanyal, Arun J

    2016-01-01

    Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal and post-sinusoidal causes. As a consequence, several complications (i.e., ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from nonbleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques. PMID:24328372

  9. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  10. Costs and clinical outcomes for non-invasive versus invasive diagnostic approaches to patients with suspected in-stent restenosis

    PubMed Central

    Hasegawa, James T.; Machacz, Susanne F.; O’Day, Ken

    2015-01-01

    This study compared costs and clinical outcomes of invasive versus non-invasive diagnostic evaluations for patients with suspected in-stent restenosis (ISR) after percutaneous coronary intervention. We developed a decision model to compare 2 year diagnosis-related costs for patients who presented with suspected ISR and were evaluated by: (1) invasive coronary angiography (ICA); (2) non-invasive stress testing strategy of myocardial perfusion imaging (MPI) with referral to ICA based on MPI; (3) coronary CT angiography-based testing strategy with referral to ICA based on CCTA. Costs were modeled from the payer’s perspective using 2014 Medicare rates. 56 % of patients underwent follow-up diagnostic testing over 2 years. Compared to ICA, MPI (98.6 %) and CCTA (98.1 %) exhibited lower rates of correct diagnoses. Non-invasive strategies were associated with reduced referrals to ICA and costs compared to an ICA-based strategy, with diagnostic costs lower for CCTA than MPI. Overall 2-year costs were highest for ICA for both metallic as well as BVS stents ($1656 and $1656, respectively) when compared to MPI ($1444 and $1411) and CCTA. CCTA costs differed based upon stent size and type, and were highest for metallic stents >3.0 mm followed by metallic stents <3.0 mm, BVS < 3.0 mm and BVS > 3.0 mm ($1466 vs. $1242 vs. $855 vs. $490, respectively). MPI for suspected ISR results in lower costs and rates of complications than invasive strategies using ICA while maintaining high diagnostic performance. Depending upon stent size and type, CCTA results in lower costs than MPI. PMID:26335370

  11. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    NASA Astrophysics Data System (ADS)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    Large numbers of polluted areas cause leakage of hazardous pollutants into our groundwater. Remediated actions are needed in a vast number of areas to prevent degradation of the quality of our water resources. As excavation of polluted masses is problematic as it often moves the pollutants from one site to another (in best case off site treatment is carried out), in-situ remediation and monitoring thereof needs further development. In general, we need to further develop and improve how we retrieve information on the status of the underground system. This is needed to avoid costly and hazardous shipments associated with excavations and to avoid unnecessary exposure when handling polluted masses. Easier, cheaper, more comprehensive and nondestructive monitoring techniques are needed for evaluation of remediation degree, degradation status of the contaminants and the remaining groundwater contaminant plume. We investigate the possibility to combine two investigation techniques, which are invasive to a very low degree and can give a very good visualization and evaluation of pollutant status underground and changes therein in time. The two methods we have combined are Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) and Compound Specific Isotope Analysis (CSIA) and their use within the context of DNAPL contaminated sites. DCIP is a non-invasive and non-destructive geoelectrical measurement method with emerging new techniques for 4D mapping for promising visualization of underground hydrogeochemical structures and spatial distribution of contaminants. The strength of CSIA is that inherent degradation-relatable isotopic information of contaminant molecules remains unaffected as opposed to the commonly used concentration-based studies. Our aim is to evaluate the possibilities of gas sampling on the ground surface for this technique to become non-invasive and usable without interfering ground conditions.Drillings together with soil and

  12. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    PubMed Central

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables. PMID:22399898

  13. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    PubMed Central

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  14. Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik

    Fluorescence spectroscopy and imaging methods, including fluorescence lifetime sensing, are being developed for a variety of non-invasive clinical diagnostic procedures, including applications to early cancer diagnosis. Here, both the theoretical developments and experimental validations of a versatile, numerical Monte Carlo code that models photon migration in turbid media to include simulations of time-resolved fluorescence transport are presented. The developed numerical model was used to study, for the first time, the dependence of time-resolved fluorescence signals emanating from turbid media on the optical transport coefficients, fluorophore properties and source-detector configurations in single-layered turbid media as well as more complex multi-layered turbid media. The numerical codes presented here can be adapted to model a wide range of experimental techniques measuring the optical responses of biological tissues to laser irradiation and are demonstrated here for two specific applications (a) to model time-resolved fluorescence dynamics in human colon tissues and (b) to extract the frequency-dependent optical responses of a model adult human head to an incident laser-source whose intensity was harmonically modulated i.e. simulating frequency-domain measurements. Specifically, measurements of time-resolved fluorescence decays from a previous clinical study aimed toward detecting differences in tissue pathologies in patients undergoing gastro-intestinal endoscopy were simulated using the Monte Carlo model and results demonstrated that variations in tissue optical transport coefficients (absorption and scattering) alone could not account for the fluorescence decay differences detected between tissue pathologies in vivo. However, variations in fluorescence decay time as large as those detected clinically between normal and pre-malignant tissues (of 2 ns) could be accounted for by simulated variations in tissue morphology or biochemistry while intrinsic

  15. Terahertz imaging systems: a non-invasive technique for the analysis of paintings

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Hosako, I.; Duling, I. N., III; Picollo, M.

    2009-07-01

    Terahertz (THz) imaging is an emerging technique for non-invasive analysis. Since THz waves can penetrate opaque materials, various imaging systems that use THz waves have been developed to detect, for instance, concealed weapons, illegal drugs, and defects in polymer products. The absorption of THz waves by water is extremely strong, and hence, THz waves can be used to monitor the water content in various objects. THz imaging can be performed either by transmission or by reflection of THz waves. In particular, time domain reflection imaging uses THz pulses that propagate in specimens, and in this technique, pulses reflected from the surface and from the internal boundaries of the specimen are detected. In general, the internal structure is observed in crosssectional images obtained using micro-specimens taken from the work that is being analysed. On the other hand, in THz time-domain imaging, a map of the layer of interest can be easily obtained without collecting any samples. When realtime imaging is required, for example, in the investigation of the effect of a solvent or during the monitoring of water content, a THz camera can be used. The first application of THz time-domain imaging in the analysis of a historical tempera masterpiece was performed on the panel painting Polittico di Badia by Giotto, of the permanent collection of the Uffizi Gallery. The results of that analysis revealed that the work is composed of two layers of gypsum, with a canvas between these layers. In the paint layer, gold foils covered by paint were clearly observed, and the consumption or ageing of gold could be estimated by noting the amount of reflection. These results prove that THz imaging can yield useful information for conservation and restoration purposes.

  16. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique.

    PubMed

    McLamore, Eric S; Diggs, Alfred; Calvo Marzal, Percy; Shi, Jin; Blakeslee, Joshua J; Peer, Wendy A; Murphy, Angus S; Porterfield, D Marshall

    2010-09-01

    Indole-3-acetic acid (IAA) is a primary phytohormone that regulates multiple aspects of plant development. Because polar transport of IAA is an essential determinant of organogenesis and dynamic tropic growth, methods to monitor IAA movement in vivo are in demand. A self-referencing electrochemical microsensor was optimized to non-invasively measure endogenous IAA flux near the surface of Zea mays roots without the addition of exogenous IAA. Enhanced sensor surface modification, decoupling of acquired signals, and integrated flux analyses were combined to provide direct, real time quantification of endogenous IAA movement in B73 maize inbred and brachytic2 (br2) auxin transport mutant roots. BR2 is localized in epidermal and hypodermal tissues at the root apex. br2 roots exhibit reduced shootward IAA transport at the root apex in radiotracer experiments and reduced gravitropic growth. IAA flux data indicates that maximal transport occurs in the distal elongation zone of maize roots, and net transport in/out of br2 roots was decreased compared to B73. Integration of short term real time flux data in this zone revealed oscillatory patterns, with B73 exhibiting shorter oscillatory periods and greater amplitude than br2. IAA efflux and influx were inhibited using 1-N-naphthylphthalamic acid (NPA), and 2-naphthoxyacetic acid (NOA), respectively. A simple harmonic oscillation model of these data produced a correlation between modeled and measured values of 0.70 for B73 and 0.69 for br2. These results indicate that this technique is useful for real-time IAA transport monitoring in surface tissues and that this approach can be performed simultaneously with current live imaging techniques. PMID:20626658

  17. Joint application of non-invasive techniques to characterize the dynamic behaviuor of engineering structures

    NASA Astrophysics Data System (ADS)

    Gallipoli, M. R.; Perrone, A.; Stabile, T. A.; Ponzo, F. C.; Ditommaso, R.

    2012-04-01

    The systematic monitoring of strategic civil infrastructures such as bridges, large dams or high-rise buildings in order to ensure their structural stability is a strategic issue particularly in earthquake-prone regions. Nevertheless, in areas less exposed to seismic hazard, the monitoring is also an important tool for civil engineers, for instance if they have to deal with structures exposed to heavy operational demands for extended periods of time and whose structural integrity might be in question or at risk. A continuous monitoring of such structures allows the identification of their fundamental response characteristics and the changes of these over time, the latter representing indicators for potential structural degradation. The aim of this paper is the estimation of fundamental dynamic parameters of some civil infrastructures by the joint application of fast executable, non-invasive techniques such as the Ambient Noise Standard Spectral Ratio, and Ground-Based microwave Radar Interferometer techniques. The joint approach combine conventional, non-conventional and innovative techniques in order to set up a non destructive evaluation procedure allowing for a multi-sensing monitoring at a multi-scale and multi-depth levels (i.e. with different degrees of spatial resolution and different subsurface depths). In particular, techniques based on ambient vibration recordings have become a popular tool for characterizing the seismic response and state-of-health of strategic civil infrastructure. The primary advantage of these approaches lies in the fact that no transient earthquake signals or even active excitation of the structure under investigation are required. The microwave interferometry radar technology, it has proven to be a powerful remote sensing tool for vibration measurement of structures, such as bridge, heritage architectural structures, vibrating stay cables, and engineering structures. The main advantage of this radar technique is the possibility to

  18. Non-invasive diagnostic methods for investigating the quality of Žilina airport's runway

    NASA Astrophysics Data System (ADS)

    Slabej, Martin; Grinč, Michal; Kováč, Matúš; Decký, Martin; Šedivý, Štefan

    2015-09-01

    The Žilina airport was after almost 50 years of use measured by non-invasive methods including GPR and Profilograph GE in order to investigate the quality of the runway pavement at the chosen spots. Since it was just a pilot action, a sample of survey was carried out. The testing spots were placed where the geologic drill core J02 have been drilled out. The measurements performed by Profilograph GE were used to verify the quality of the pavement surface in term longitudinal unevenness by means of index IRI and C. The GPR survey was performed in 3D geometry, hence in the x- and y-direction. A horn type antenna with central frequency of 2 GHz was used on the test field in order to verify the thicknesses of pavement construction layers. Here, the result of a 3D survey is presented. The investigation confirms two sub-horizontal construction layers of the runway pavement. In some areas the GPR interpretation was not possible due to the signal attenuation. This significant signal attenuation is found mainly in the areas where the linear cracks are situated.

  19. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    NASA Astrophysics Data System (ADS)

    Urakawa, J.; Hayano, H.; Kubo, K.; Kuroda, S.; Terunuma, N.; Kuriki, M.; Okugi, T.; Naito, T.; Araki, S.; Potylitsyn, A.; Naumenko, G.; Karataev, P.; Potylitsyna, N.; Vnukov, I.; Hirose, T.; Hamatsu, R.; Muto, T.; Ikezawa, M.; Shibata, Y.

    2001-10-01

    A "proof-of-principle" experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultrarelativistic beams. We estimated that the ODR photon yield in 10% bandwidth for 500 nm is about 10 6 photons/bunch with an impact parameter of 100 μm. This indicates that the ODR monitor is a promising candidate for single-pulse beam-profile measurements, and that it will be an extremely useful instrument for future linear colliders (JLC, NLC, TESLA and CLIC).

  20. Non-invasive diagnosis in a case of bronchopulmonary sequestration and proposal of diagnostic algorithm.

    PubMed

    Caradonna, P; Bellia, M; Cannizzaro, F; Regio, S; Midiri, M; Bellia, V

    2008-09-01

    The case of a 43-year-old woman with intralobar pulmonary sequestration, Pryce type one, is presented. The medical history was characterised by recurrent bronchopneumonia, productive cough with purulent sputum and hemoptysis in the last three years. Diagnosis was made by CT angiography: multiplanar, maximum intensity projection and volume rendering reconstructions were visualised. A volume reduction of middle and lower lobe with multiple cyst-like bronchiectasis was detected and no evident relationship with tracheobronchial tree was pointed out. Reconstructions aimed at evaluating bronchial structures demonstrated no patency of middle and lower lobar bronchi. The study carried out after contrast medium infusion in arterial phase showed a vascular disorder characterised by an accessory arterial branch arising from the upper portion of thoracic aorta which, after moving caudally to pulmonary hilus with a tortuous course, supplied the atelectatic parenchyma. No anomalous venous drainage was detected. The patient underwent surgery with resection of two pulmonary lobes. CT compares favourably with other alternative imaging technique for pulmonary sequestration as multiplanar reconstructions allow not only the detection of supplying vessel, but also the accurate description of heterogeneous characteristics of the mass and adjacent structures. Finally an imaging-based diagnostic algorhithm is proposed. PMID:19065849

  1. Differential ion mobility spectroscopy: non-invasive real-time diagnostics and therapy control in metabolic diseases

    PubMed Central

    2009-01-01

    Background Over the last few years, differential ion mobility spectroscopy (DMS) has become an important tool in medical research. There are attempts to find markers for specific diseases in exhaled air, using this technology as a non-invasive early diagnosis. Objective In the present research, exhaled air from 78 patients with known diagnosis and 39 control persons were tested with a DMS system from Sionex. Results Bronchial asthma showed a pattern of 6 characteristic points in a discriminant analysis. Patients with diagnosed hypertension showed a characteristic pattern with 4 points, hypothyroidism 2 points; increased LDL cholesterol 3 points, and type II diabetics treated with insulin 4 spots. No significant differences with respect to the control group were found in chronic obstructive pulmonary disease patients. The DMS pattern in the tested asthmatics showed a partial change depending on different medications used. Conclusion Differential ion mobility spectroscopy offers promise as a helpful diagnostic tool. PMID:20156741

  2. A non-invasive technique to bleed incubating birds without trapping: A blood-sucking bug in a hollow egg

    USGS Publications Warehouse

    Becker, P.H.; Voigt, C.C.; Arnold, J.M.; Nagel, R.

    2006-01-01

    We describe a non-invasive technique to obtain blood samples from incubating birds without trapping and handling. A larval instar of the blood-sucking bug Dipetalogaster maximus (Heteroptera) was put in a hollowed artificial egg which was placed in a common tern Sterna hirundo) nest. A gauze-covered hole in the egg allowed the bug to draw blood from the brood patch of breeding adults. We successfully collected 68 blood samples of sufficient amount (median=187 ??l). The daily success rate was highest during the early breeding season and averaged 34% for all trials. We could not detect any visible response by the incubating bird to the sting of the bug. This technique allows for non-invasive blood collection from bird species of various sizes without disturbance. ?? Dt. Ornithologen-Gesellschaft e.V. 2005.

  3. A simple non-invasive technique for venom milking from a solitary wasp Delta conoideum Gmelin (Hymenoptera: Vespidae).

    PubMed

    Bhagavathula, Naga Chaitanya; Kumar, Mukesh; Krishnappa, Chandrashekra

    2016-01-01

    Prospecting wasp, ant and bee venom for active bio-molecules has gained considerable interest among researchers in recent years. Collecting sufficient quantity of venom from solitary wasps without sacrificing them is often difficult. Here we describe a non-invasive technique for collecting venom from a solitary wasp Delta conoideum Gmelin (Red-backed potter wasp). Venom was milked by presenting an agar block to a single female wasp for stinging. The venom was extracted from the agar block using ACN: water solvent system. The total protein in venom was estimated quantitatively and the presence of peptides in the venom was confirmed by MALDI-TOF analysis. The proposed technique is non-invasive and pure venom can be repeatedly 'milked' using this method from other wasps and also bees without the need for sacrificing a large number of individuals. PMID:26556656

  4. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise

    SciTech Connect

    Sapega, A.A.; Sokolow, D.P.; Graham, T.J.; Chance, B.

    1987-08-01

    Phosphorus nuclear magnetic resonance (/sup 31/P NMR) spectroscopy is a non-destructive analytical laboratory technique that, due to recent technical advances, has become applicable to the study of high-energy phosphate metabolism in both animal and human extremity muscles (in vivo). /sup 31/P NMR can assay cellular phosphocreatine, ATP, inorganic phosphate, the phosphorylated glycolytic intermediates, and intra-cellular pH in either resting or exercising muscle, in a non-invasive manner. NMR uses non-perturbing levels of radio-frequency energy as its biophysical probe and can therefore safely study intact muscle in a repeated fashion while exerting no artifactual influence on ongoing metabolic processes. Compared with standard tissue biopsy and biochemical assay techniques, NMR possesses the advantages of being non-invasive, allowing serial in situ studies of the same tissue sample, and providing measurements of only active (unbound) metabolites. NMR studies of exercising muscle have yielded information regarding fatigue mechanisms at the cellular level and are helping resolve long-standing questions regarding the metabolic control of glycolysis, oxidative phosphorylation, and post-exercise phosphocreatine re-synthesis. NMR is also being utilized to measure enzymatic reaction rates in vivo. In the near future, other forms of NMR spectroscopy may also permit the non-invasive measurement of tissue glycogen and lactate content. 75 references.

  5. Investigation of the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in reproductive medicine

    NASA Astrophysics Data System (ADS)

    Trottmann, Matthias; Homann, Christian; Leeb, R.; Doering, D.; Kuznetsova, J.; Reese, S.; Stief, C. G.; Koelle, S.; Sroka, R.

    2015-02-01

    Introduction and objective: In Europe, nearly every sixth couple in the reproductive age is involuntarily childless. In about 30%, both male and female reveal fertility problems. In about 10% of infertile men, azoospermia is the underlying cause. As conventional therapeutic options are limited, surgical testicular sperm extraction (TESE) is necessary to obtain sperms for assisted reproductive techniques. Regarding the females, up to 30% of all idiopathic infertilities are due to alterations of the uterine tube So far, no imaging technique, which does not require any labelling, is available to evaluate the male and female genital tract at a microscopic level under in vivo conditions. Thus, the aim of this study was to investigate the potential of optical coherence tomography (OCT) as a non-invasive diagnostic tool in gynaecology and andrology. Material and Methods: Tissues samples from the bovine testis, epididymis, vas deferens, ovary, oviduct (ampulla and isthmus) and uterus were obtained immediately after slaughter (14 cows aged 3 to 8 years and 14 bulls aged 3 to 6 years; breeds: Holstein- Friesian, and Deutsches Fleckvieh). Imaging was done by using the US Food and Drug Administration (FDA) approved probe-based Niris Imaging System (Imalux, Cleveland, Ohio, USA) and the Telesto 1325 nm OCT System and Ganymede 930 nm OCT System (Thorlabs Inc., Dachau, Germany). All images obtained were compared to histological images after paraffin embedding and HE staining. Results: OCT imaging visualized the microarchitecture of the testis, epididymis, spermatic duct and the ovary, oviduct and uterus. Using the Thorlabs systems a axial resolution of approx. 5μm and lateral resolution of 8- 15μm could be achieved. Different optical tissue volumes could be visualized, which depends on the optical penetration depth of the wavelength of the system used. While the tissue volume observed by probe based Imalux-OCT is similar to the used Thorlabs systems, the optical resolution is

  6. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    SciTech Connect

    Robert Powell; David Pfund

    2005-07-17

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  7. Non-invasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer

    PubMed Central

    Mathé, Ewy A.; Patterson, Andrew D.; Haznadar, Majda; Manna, Soumen K.; Krausz, Kristopher W.; Bowman, Elise D.; Shields, Peter G.; Idle, Jeffrey R.; Smith, Philip B.; Anami, Katsuhiro; Kazandjian, Dickran G.; Hatzakis, Emmanuel; Gonzalez, Frank J.; Harris, Curtis C.

    2014-01-01

    Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1500 Da) were measured in urine collected from 469 lung cancer patients and 536 population controls using unbiased liquid chromatography-mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further validated in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared to the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA), were each significantly (P <0.00001) elevated in non–small cell lung cancer (NSCLC) and associated with worse prognosis (hazard ratio (HR) =1.81 [P =0.0002], and 1.54 [P =0.025], respectively). Creatine riboside was the strongest classifier of lung cancer status in all and stage I–II cases, important for early detection, and also associated with worse prognosis in stage I–II lung cancer (HR =1.71, P =0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 – 0.99. Both metabolites were significantly (P <0.03) enriched in tumor tissue compared to adjacent non-tumor tissue (N =48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis. PMID:24736543

  8. Diagnostic Approach to Disease Using Non-invasive Samples Based on Derivatization and LC-ESI-MS/MS.

    PubMed

    Toyo'oka, Toshimasa

    2016-01-01

    The determination of biologically-active molecules is very important in order to understand biological functions. A novel approach for the highly sensitive and specific determination seems to be essential for this purpose. Based on this consideration, we synthesized various types of fluorogenic and fluorescent reagents for the derivatization of chiral and achiral molecules. The fluorescence analysis is excellent for the analysis of target molecules and generally provides good expected results. However, the trace analysis of the bioactive molecules in complex matrices, such as plasma and urine, is not always satisfactory even using high-performance fluorometry. In such a situation, mass spectrometry (MS) is another technique for the selective and sensitive determination of biological components. Therefore, various derivatization reagents for MS/MS detection were developed and used for the determination of amines and carboxyls including chiral molecules. These newly developed reagents were also adopted for the biomarker detection related to diseases using non-invasive samples (i.e., saliva, nail, hair). Although the determination of the targeted chiral molecules is relatively easy, it is very difficult to identify and/or determine the enantiomeric biomarker in real samples. To solve this difficulty, we proposed the strategy called "chiral metabolomics," which means the total analysis of the enantiomers of various chiral metabolites in complex matrices. This review paper focused on the development of various new derivatization reagents for amines and carboxyls by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and the detection of the biomarker candidates related to several diseases in non-invasive samples (i.e., hair, nail, saliva) using these reagents. PMID:27582321

  9. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This project addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. The work consists of applying ultrasonic Doppler velocimetry and using it t...

  10. PROGRESS REPORT. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This work addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. This task consists of applying ultrasonic Doppler velocimetry and using it to ...

  11. ANNUAL REPORT. NON-INVASIVE DIAGNOSTICS TO MEASURE PHYSICAL PROPERTIES IN HIGH-LEVEL WASTES

    EPA Science Inventory

    This project addresses the need for a technique that can determine the rheological properties of tank wastes under processing conditions and permit the monitoring and control of slurries during transport. The work consists of applying ultrasonic Doppler velocimetry and using it t...

  12. In situ non-invasive investigation on the painting techniques of early Meissen Stoneware

    NASA Astrophysics Data System (ADS)

    Miliani, Costanza; Doherty, Brenda; Daveri, Alessia; Loesch, Anette; Ulbricht, Heike; Brunetti, Brunetto G.; Sgamellotti, Antonio

    2009-08-01

    In situ, non-invasive investigations by means of portable X-ray fluorescence and fibre optic reflectance mid-infrared (mid-FTIR) spectroscopy of painted Böttger Stoneware objects have been carried out through the MOLAB transnational access to the Porcelain Collection of the Staatliche Kunstsammlungen in Dresden. It has been possible to gather information regarding the composition of the black glaze by applying a principal component analysis to the elemental analysis to distinguish between the variations of lead, iron and manganese compositions of each glaze. It has been furthermore feasible to combine molecular spectroscopy for characterization of the constituent painting materials, namely lead white as cerusite and hydrocerusite, the use of cinnabar, azurite and Prussian blue leading to a better knowledge of the state of conservation and utility of certain pigments that may give rise to chronology of the decorative artwork. The identification of oxalates namely whedellite and moolooite are assigned as degradation products relative to the decorative areas.

  13. Optimization of a Novel Non-invasive Oral Sampling Technique for Zoonotic Pathogen Surveillance in Nonhuman Primates

    PubMed Central

    Smiley Evans, Tierra; Barry, Peter A.; Gilardi, Kirsten V.; Goldstein, Tracey; Deere, Jesse D.; Fike, Joseph; Yee, JoAnn; Ssebide, Benard J; Karmacharya, Dibesh; Cranfield, Michael R.; Wolking, David; Smith, Brett; Mazet, Jonna A. K.; Johnson, Christine K.

    2015-01-01

    Free-ranging nonhuman primates are frequent sources of zoonotic pathogens due to their physiologic similarity and in many tropical regions, close contact with humans. Many high-risk disease transmission interfaces have not been monitored for zoonotic pathogens due to difficulties inherent to invasive sampling of free-ranging wildlife. Non-invasive surveillance of nonhuman primates for pathogens with high potential for spillover into humans is therefore critical for understanding disease ecology of existing zoonotic pathogen burdens and identifying communities where zoonotic diseases are likely to emerge in the future. We developed a non-invasive oral sampling technique using ropes distributed to nonhuman primates to target viruses shed in the oral cavity, which through bite wounds and discarded food, could be transmitted to people. Optimization was performed by testing paired rope and oral swabs from laboratory colony rhesus macaques for rhesus cytomegalovirus (RhCMV) and simian foamy virus (SFV) and implementing the technique with free-ranging terrestrial and arboreal nonhuman primate species in Uganda and Nepal. Both ubiquitous DNA and RNA viruses, RhCMV and SFV, were detected in oral samples collected from ropes distributed to laboratory colony macaques and SFV was detected in free-ranging macaques and olive baboons. Our study describes a technique that can be used for disease surveillance in free-ranging nonhuman primates and, potentially, other wildlife species when invasive sampling techniques may not be feasible. PMID:26046911

  14. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints.

    PubMed

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (microFTIR) and micro-Raman (microRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor. PMID:19081288

  15. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    NASA Astrophysics Data System (ADS)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  16. Anthropometric and Biochemical Characteristics of Patients with Nonalcoholic Fatty Liver Diagnosed by Non-Invasive Diagnostic Methods

    PubMed Central

    Novakovic, Tatjana; Mekic, Mevludin; Smilic, Ljiljana; Smilic, Tanja; Inić-Kostic, Biljana; Jovicevic, Ljiljana; Mirkovic, Zlatica; Milinic, Srbislava

    2014-01-01

    ABSTRACT Introduction: Non-alcoholic (NAFLD) encompasses a spectrum of disease states, from steatosis (fatty liver) to non-alcoholic steatohepatitis (also called NASH steatosis with inflammatory changes) followed by progression to fibrosis and cirrhosis and hepatocellular carcinoma Excess liver fat is believed to be a manifestation of the metabolic syndrome and not surprisingly NASH is associated with obesity, insulin resistance, dyslipidemia and type 2 diabetes in humans. Aim of the study: is to establish anthropometric and biochemical specificities in patients with non-alcoholic steatohepatitis diagnosed with non-invasive diagnostic methods Material and methods: Study enrolled 170 participants, 130 with NASH steatosis. The non-alcoholic group (control), consisted of 40 normal weight patients without metabolic syndrome. Alcohol intake was estimated with established protocol. Routine biochemistry analysis were performed by standard laboratory procedures; serum levels of serum levels of fasting cholesterol and triglycerides, fasting glucose and insulin, insulin resistance estimated by HOMA index (Homeostasis model assessment), biochemistry tests and a liver ultrasound examination. Results: In study participants group, patients were more obese comparing with controls p < 0, 01, waist line extent also was of greater statistical significance in the non-alcoholic group fatty liver (p < 0, 01). Comparing biochemical parameter values, significant statistical deference has been noted in glaucosis and insulin levels, total cholesterol and gama-glutamil transferase levels, between groups (p<0, 01). Fasting glucose and insulin levels, HOMA-IR were significantly greater in study cohort group patients, as was significantly positive correlation between BMI and waist line extent. Conclusion: Patients with non-alcoholic fatty liver are excessively obese, have greater waist line extent, consequently insulin resistance and impaired glucose metabolism, insulin resistance

  17. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    NASA Astrophysics Data System (ADS)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  18. A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx.

    PubMed

    Xin, Xia; Wan, Yinglang; Wang, Wenjun; Yin, Guangkun; McLamore, Eric S; Lu, Xinxiong

    2013-01-01

    Quantifying seed viability is required for seed bank maintenance. The classical methods for detecting seed viability are time consuming and frequently cause seed damage and unwanted germination. We have established a novel micro-optrode technique (MOT) to measure seed viability in a quick and non-invasive manner by measuring the oxygen influxes of intact seeds, approximately 10 seconds to screen one seed. Here, we used soybean, wheat, and oilseed rape as models to test our method. After 3-hour imbibition, oxygen influxes were recorded in real-time with the total measurement taking less than 5 minutes. The results indicated a significantly positive correlation between oxygen influxes and viability in all 3 seed types. We also established a linear equation between oxygen influxes and seed viability for each seed type. For measurements, seeds were kept in the early imbibition stage without germination. Thus, MOT is a reliable, quick, and low-cost seed viability detecting technique. PMID:24162185

  19. Recent trends in non-invasive in situ techniques to monitor bacterial colonies in solid (model) food

    PubMed Central

    Lobete, María M.; Fernandez, Estefania Noriega; Van Impe, Jan F. M.

    2015-01-01

    Planktonic cells typically found in liquid systems, are routinely used for building predictive models or assessing the efficacy of food preserving technologies. However, freely suspended cells often show different susceptibility to environmental hurdles than colony cells in solid matrices. Limited oxygen, water and nutrient availability, metabolite accumulation and physical constraints due to cell immobilization in the matrix, are main factors affecting cell growth. Moreover, intra- and inter-colony interactions, as a consequence of the initial microbial load in solid systems, may affect microbial physiology. Predictive food microbiology approaches are moving toward a more realistic resemblance to food products, performing studies in structured solid systems instead of liquids. Since structured systems promote microbial cells to become immobilized and grow as colonies, it is essential to study the colony behavior, not only for food safety assurance systems, but also for understanding cell physiology and optimizing food production processes in solid matrices. Traditionally, microbial dynamics in solid systems have been assessed with a macroscopic approach by applying invasive analytical techniques; for instance, viable plate counting, which yield information about overall population. In the last years, this approach is being substituted by more mechanistically inspired ones at mesoscopic (colony) and microscopic (cell) levels. Therefore, non-invasive and in situ monitoring is mandatory for a deeper insight into bacterial colony dynamics. Several methodologies that enable high-throughput data collection have been developed, such as microscopy-based techniques coupled with image analysis and OD-based measurements in microplate readers. This research paper provides an overview of non-invasive in situ techniques to monitor bacterial colonies in solid (model) food and emphasizes their advantages and inconveniences in terms of accuracy, performance and output information

  20. Nondestructive testing and evaluation of composites by non-invasive IR Imaging techniques

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Siddiqui, Juned A.; Arora, Vanita; Ghali, S. V.; Muniyappa, Amarnath; Takei, Masahiro

    2013-05-01

    InfraRed Thermography (IRT) is one of the promising technique for non-destructive testing method for characterization of materials. This technique relies on evaluation of the surface temperature variations to detect the presence of surface and subsurface anomalies within the material. Due to its whole field and remote testing capabilities, IRT has gained significant importance in testing of Glass Fiber Reinforced Plastic (GFRP) materials. A GFRP sample with defects of various sizes at a given depth was inspected using non-stationary thermographic techniques. In order to highlight the defect detection capabilities of the proposed non-stationary schemes, a comparison has been made using matched excitation energy in frequency domain by taking signal to noise ratio into consideration.

  1. Non-invasive techniques for measuring body composition: state of the art and future prospects

    SciTech Connect

    Cohn, S.H.

    1985-01-01

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs.

  2. Mechanography: a non-invasive technique for the evaluation of cardiac function in children

    PubMed Central

    Spitaels, Silja; Fouron, Jean-Claude; Davignon, André

    1972-01-01

    Experience in the pediatric age group with mechanography, an indirect method of cardiovascular investigation, is described with emphasis on the recording technique and on the analysis of the tracings. A few examples are presented with comments on the morphological aspects and the time characteristics of the pulse curves, showing how much information about cardiac disease and especially myocardial function in children may be obtained. PMID:4640813

  3. A rapid and non-invasive bio-photonic technique to monitor the quality of onions

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Hussain, F.; Ahmad, E.; Ikram, M.

    2015-08-01

    We present the use of swept source optical coherence tomography and spectral domain optical coherence tomography for imaging the skins and concentric tissue leaves of intact whole onion bulb as well as single leave. The normal and watery scaled (defective) onion's outer leaves and whole bulb have been characterized by cross sectional imaging of internal defects. The method can be used as potential investigating technique for application of food quality check during long storage.

  4. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  5. A reliable, non-invasive technique for measuring growth in tadpoles exposed to salt.

    PubMed

    Weeg, Matthew S; Grant, Jacqualine B

    2016-07-01

    The use of chemical de-icers raises salt levels in roadside streams and ponds, which has adverse effects on tadpole development. Experiments on the effects of de-icers on tadpole development are often hampered by difficulties measuring body size without introducing handling stress that may skew results or cause unintended mortality. We have found a linear relationship between surface area and body mass in tadpoles that is unaffected by exposure to salt. Measuring surface area is therefore a suitable technique whose use should be encouraged when investigating the effects of salt exposure on tadpole growth and development. PMID:27267424

  6. Non-invasive Brain Stimulation and Auditory Verbal Hallucinations: New Techniques and Future Directions

    PubMed Central

    Moseley, Peter; Alderson-Day, Ben; Ellison, Amanda; Jardri, Renaud; Fernyhough, Charles

    2016-01-01

    Auditory verbal hallucinations (AVHs) are the experience of hearing a voice in the absence of any speaker. Results from recent attempts to treat AVHs with neurostimulation (rTMS or tDCS) to the left temporoparietal junction have not been conclusive, but suggest that it may be a promising treatment option for some individuals. Some evidence suggests that the therapeutic effect of neurostimulation on AVHs may result from modulation of cortical areas involved in the ability to monitor the source of self-generated information. Here, we provide a brief overview of cognitive models and neurostimulation paradigms associated with treatment of AVHs, and discuss techniques that could be explored in the future to improve the efficacy of treatment, including alternating current and random noise stimulation. Technical issues surrounding the use of neurostimulation as a treatment option are discussed (including methods to localize the targeted cortical area, and the state-dependent effects of brain stimulation), as are issues surrounding the acceptability of neurostimulation for adolescent populations and individuals who experience qualitatively different types of AVH. PMID:26834541

  7. Chemical Analysis of Whale Breath Volatiles: A Case Study for Non-Invasive Field Health Diagnostics of Marine Mammals

    PubMed Central

    Cumeras, Raquel; Cheung, William H.K.; Gulland, Frances; Goley, Dawn; Davis, Cristina E.

    2014-01-01

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research. PMID:25222833

  8. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals.

    PubMed

    Cumeras, Raquel; Cheung, William H K; Gulland, Frances; Goley, Dawn; Davis, Cristina E

    2014-01-01

    We explored the feasibility of collecting exhaled breath from a moribund gray whale (Eschrichtius robustus) for potential non-invasive health monitoring of marine mammals. Biogenic volatile organic compound (VOC) profiling is a relatively new field of research, in which the chemical composition of breath is used to non-invasively assess the health and physiological processes on-going within an animal or human. In this study, two telescopic sampling poles were designed and tested with the primary aim of collecting whale breath exhalations (WBEs). Once the WBEs were successfully collected, they were immediately transferred onto a stable matrix sorbent through a custom manifold system. A total of two large volume WBEs were successfully captured and pre-concentrated onto two Tenax®-TA traps (one exhalation per trap). The samples were then returned to the laboratory where they were analyzed using solid phase micro extraction (SPME) and gas chromatography/mass spectrometry (GC/MS). A total of 70 chemicals were identified (58 positively identified) in the whale breath samples. These chemicals were also matched against a database of VOCs found in humans, and 44% of chemicals found in the whale breath are also released by healthy humans. The exhaled gray whale breath showed a rich diversity of chemicals, indicating the analysis of whale breath exhalations is a promising new field of research. PMID:25222833

  9. Automated non-invasive measurement of cardiac output: comparison of electrical bioimpedance and carbon dioxide rebreathing techniques.

    PubMed Central

    Smith, S A; Russell, A E; West, M J; Chalmers, J

    1988-01-01

    Two commercial automated, non-invasive systems for estimation of cardiac output were evaluated. Values of cardiac output obtained by electrical bioimpedance cardiography (BoMed NCCOM3 machine) were compared with values derived from an indirect Fick technique that uses carbon dioxide rebreathing (Gould 9000 IV system) during 103 simultaneous measurements made at rest in 19 randomly selected subjects and on exercise in 11 subjects. Cardiac output values obtained with impedance cardiography were significantly correlated with those measured by the indirect Fick method, although there was a wide scatter with over 73% of the readings lying outside the limits defined by the line of identity +/- 20%. This correlation was greatly reduced when stroke volume index was used instead of cardiac output. Indirect Fick results were linearly related to oxygen uptake both at rest and on exercise, while impedance cardiography results did not correlate with oxygen uptake. Impedance cardiography gave consistently lower results for cardiac output than indirect Fick at all levels of exercise. Both machines were easy to use and produced acceptable mean (SE) coefficients of variation (BoMed NCCOM3 7.7 (1.0)%, Gould 9000 IV 10.6 (1.4)%). Further validation is required before either of these machines can be recommended as an alternative to invasive monitoring in clinical practice. PMID:3128316

  10. Assessment of disease activity in patients with rheumatoid arthritis using optical spectral transmission measurements, a non-invasive imaging technique

    PubMed Central

    van Onna, M; Ten Cate, D F; Tsoi, K L; Meier, A J L; Jacobs, J W G; Westgeest, A A A; Meijer, P B L; van Beek, M C; Rensen, W H J; Bijlsma, J W J

    2016-01-01

    Objectives In rheumatoid arthritis (RA), treat-to-target strategies require instruments for valid detection of joint inflammation. Therefore, imaging modalities are increasingly used in clinical practice. Optical spectral transmission (OST) measurements are non-invasive and fast and may therefore have benefits over existing imaging modalities. We tested whether OST could measure disease activity validly in patients with RA. Methods In 59 patients with RA and 10 patients with arthralgia, OST, joint counts, Disease Activity Score (DAS) 28 and ultrasonography (US) were performed. Additionally, MRI was performed in patients with DAS28<2.6. We developed and validated within the same cohort an algorithm for detection of joint inflammation by OST with US as reference. Results At the joint level, OST and US performed similarly inproximal interphalangeal-joints (area under the receiver-operating curve (AUC) of 0.79, p<0.0001) andmetacarpophalangeal joints (AUC 0.78, p<0.0001). Performance was less similar in wrists (AUC 0.62, p=0.006). On the patient level, OST correlated moderately with clinical examination (DAS28 r=0.42, p=0.001), and US scores (r=0.64, p<0.0001). Furthermore, in patients with subclinical and low disease activity, there was a correlation between OST and MRI synovitis score (RAMRIS (Rheumatoid Arthritis MRI Scoring) synovitis), r=0.52, p=0.005. Conclusions In this pilot study, OST performed moderately in the detection of joint inflammation in patients with RA. Further studies are needed to determine the diagnostic performance in a new cohort of patients with RA. PMID:26452538

  11. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  12. Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD.

    PubMed

    Perrault, Hélène; Richard, Ruddy; Kapchinsky, Sophia; Baril, Jacinthe; Bourbeau, Jean; Taivassalo, Tanja

    2016-01-01

    The multifactorial functional limitation of COPD increasingly demonstrates the need for an integrated circulatory assessment. In this study cardiac output (Qc) derived from non-inert (CO2-RB), inert (N2O-RB) gas rebreathing approaches and bioimpedance were compared to examine the limitations of currently available non-invasive techniques for exercise Qc determination in patients with chronic lung disease. Thirteen COPD patients (GOLD II-III) completed three constant cycling bouts at 20, 35, and 50% of peak work on two occasions to assess Qc with bioimpedance as well as using CO2-RB and N2O-RB for all exercise tests. Results showed significantly lower Qc using the N2O-RB or end-tidal CO2-derived Qc compared to the PaCO2-derived CO2-RB or the bioimpedance at rest and for all exercise intensities. End-tidal CO2-derived values are however not statistically different from those obtained using inert-gas rebreathing. This study show that in COPD patients, CO2-rebreathing Qc values obtained using PaCO2 contents which account for any gas exchange impairment or inadequate gas mixing are similar to those obtained using thoracic bioimpedance. Alternately, the lower values for N2O rebreathing derived Qc indicates the inability of this technique to account for gas exchange impairment in the computation of Qc. These findings indicate that the choice of a gas rebreathing technique to measure Qc in patients must be dictated by the ability to include in the derived computations a correction for either gas exchange inadequacies and/or a vascular shunt. PMID:26408087

  13. Novel diagnostic techniques for celiac disease.

    PubMed

    Kurppa, Kalle; Taavela, Juha; Saavalainen, Päivi; Kaukinen, Katri; Lindfors, Katri

    2016-07-01

    The diagnosis of celiac disease has long been based on the demonstration of gluten-induced small-bowel mucosal damage. However, due to the constantly increasing disease prevalence and limitations in the histology-based criteria there is a pressure towards more serology-based diagnostics. The serological tools are being improved and new non-invasive methods are being developed, but the constantly refined endoscopic and histologic techniques may still prove helpful. Moreover, growing understanding of the disease pathogenesis has led researchers to suggest completely novel approaches to celiac disease diagnostics regardless of disease activity. In this review, we will elucidate the most recent development and possible future innovations in the diagnostic techniques for celiac disease. PMID:26838683

  14. Genome-wide Long Non-coding RNA Analysis Identified Circulating LncRNAs as Novel Non-invasive Diagnostic Biomarkers for Gynecological Disease

    PubMed Central

    Wang, Wen-Tao; Sun, Yu-Meng; Huang, Wei; He, Bo; Zhao, Ya-Nan; Chen, Yue-Qin

    2016-01-01

    Increasing evidence indicates that long non-coding RNAs (lncRNAs) play important roles in human diseases. This study aimed to investigate the tissue and serum lncRNAs that are differentially expressed between patients with endometriosis, a gynecological disease, to evaluate the potential of these lncRNAs as non-invasive markers for the disease. The differentially expressed lncRNAs as competing endogenous RNAs (ceRNAs) were also analyzed to predict their functions in disease development. Genome-wide profiling of lncRNA expression patterns revealed that many lncRNAs were abnormally expressed between sera and tissuesof the patient samples. A set of aberrant differentially expressed lncRNAs were further validated in a validation cohort of 110 serum and 24 tissue samples. Functional analysis predicted that differentially expressed lncRNAs may participate in disease development through crosstalk between the ceRNAs of miRNAs and may be involved in a range of cellular pathways including steroid or hormone responses. We also found a unique set of lncRNAs that were associated with disease severity and progression, and their diagnostic values were also investigated. Our study demonstrated that lncRNAs could potentially serve as non-invasive biomarkers for the diagnosis of endometriosis and as important regulators in the progression of this disease. PMID:26987697

  15. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    NASA Astrophysics Data System (ADS)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  16. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers.

    PubMed

    Bazán, I; Vazquez, M; Ramos, A; Vera, A; Leija, L

    2009-03-01

    Optimization of efficiency in hyperthermia requires a precise and non-invasive estimation of internal distribution of temperature. Although there are several research trends for ultrasonic temperature estimation, efficient equipments for its use in the clinical practice are not still available. The main objective of this work was to research about the limitations and potential improvements of previously reported signal processing options in order to identify research efforts to facilitate their future clinical use as a thermal estimator. In this document, we have a critical analysis of potential performance of previous ultrasonic research trends for temperature estimation inside materials, using different processing techniques proposed in frequency, time and phase domains. It was carried out in phantom with scatterers, assessing at their specific applicability, linearity and limitations in hyperthermia range. Three complementary evaluation indexes: technique robustness, Mat-lab processing time and temperature resolution, with specific application protocols, were defined and employed for a comparative quantification of the behavior of the techniques. The average increment per degrees C and mm was identified for each technique (3 KHz/ degrees C in the frequency analysis, 0.02 rad/ degrees C in the phase domain, while increments in the time domain of only 1.6 ns/ degrees C were found). Their linearity with temperature rising was measured using linear and quadratic regressions and they were correlated with the obtained data. New improvements in time and frequency signal processing in order to reveal the potential thermal and spatial resolutions of these techniques are proposed and their subsequent improved estimation results are shown for simulated and measured A-scans registers. As an example of these processing novelties, an excellent potential resolution of 0.12 degrees C into hyperthermia range, with near-to-linear frequency dependence, could be achieved

  17. Non-Invasive, Non-Contact Heart Monitoring of Hemodialysis Patients with a Micropower Impulse Radar Technique

    SciTech Connect

    Chang, J; Levin, N; Poland, D; Welsh, P; Paulsen, C; Trebes, J; Rosenbury, R; Killip, T

    2002-02-01

    This report summarizes the LLNL LDRD funded portion of a collaborative project to demonstrate and clinically evaluate the micropower impulse radar technology as a means to non-invasively monitor the heart of chronic care patients undergoing hemodialysis. The development is based upon technologies and expertise unique to LLNL. The LLNL LDRD funded portion of this project was used to assist in the definition, design, construction, and evaluation of the prototype.

  18. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  19. Eco-photonics: application of optical diagnostic modalities for non-invasive monitoring and evaluation of stress conditions of aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gurkov, A. N.; Axenov-Gribanov, D. V.; Pavlichenko, V. V.; Shakhtanova, N. S.; Bedulina, D. S.; Timofeyev, M. A.; Kalchenko, V.; Meglinski, I.

    2012-03-01

    The growing interest in monitoring ecological change has been stimulated by a global climate change, combined with the day-to-day human anthropogenic activities, that heavily influence the environment. A global warming accompanied by a anthropogenic activities falling within the freshwater ecosystem result a dramatic enhance of the overall stress for most of aquatic organisms. We explore the applicability of optical spectroscopy and advanced non-invasive imaging techniques, that have been used earlier in various biomedical applications, to study an influence of climatic changes on the physiological and biochemical processes that take place in living aquatic organisms. In current report we demonstrate that optical spectroscopy and modern imaging techniques can be successfully used to observe and evaluate thermal and/or hypoxic stress, experienced by freshwater organisms, such as Baikal amphipods.

  20. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  1. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Metelin, Vladislav; Nasyrov, Marat; Belyakov, Vladimir; Kuznetsov, Alexander; Sukhenko, Evgeniy

    2015-03-01

    The objective of the present study is to increase the quality of the early diagnosis using cytological differential-diagnostic criteria for reactive changes in the nuclear structures of the immunocompetent cells. The morphofunctional status of living cells were estimated in the real time using new technologic platform of the hardware-software complex for phase cell imaging. The level of functional activity for lymphocyte subpopulations was determined on the base of modification of nuclear structures and decreasing of nuclear phase thickness. The dynamics of nuclear parameters was used as the quantitative measuring for cell activating level and increasing of proliferative potential.

  2. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  3. Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media ('metabolomics').

    PubMed

    Nagy, Zsolt Peter; Sakkas, Denny; Behr, Barry

    2008-10-01

    Increasing the efficiency of the IVF procedure by improving pregnancy/implantation rates and at the same time lowering (or avoiding) the risks of multiple gestations are the primary goals of the current assisted reproductive technology. These aims require a much improved gamete/embryo testing and selection procedure, which, using the current approach of microscopy-based morphology evaluation is unlikely to be achieved. Therefore, alternative or additional, non-invasive techniques have been proposed which may be able to detect alterations of the culture environment surrounding gametes/embryos reflective of the (patho-)physiological processes. One of the most recently applied approaches is to measure metabolomic changes in the culture medium of embryos and oocytes ('exometabolomics'). Initial studies have demonstrated that different types of spectrophotometric tests, including Raman and near-infrared (NIR) techniques, are similarly well capable of detecting specific changes of the 'secretome' (exometabolome). These studies have also demonstrated that metabolomic measurements correlate well with embryo development and morphology assessment. Furthermore, viability index on oocytes/embryos established by metabolomic tests may be a stronger predictor for implantation potential than traditional morphological assessment. Although the results of these initial investigations are promising, further prospective studies are required to define clearly the potential benefits and most relevant applications of this novel non-invasive technology in the field of assisted reproduction. PMID:18854103

  4. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector Using Non-invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  5. [Diagnostic accuracy for alcoholic liver disease with controlled Attenuation Parameter (CAP) measured by transient elastography for the non-invasive assessment of liver steatosis].

    PubMed

    Kikuchi, Masahiro; Umeda, Rumiko; Tsuruya, Kota; Shiozawa, Hirokazu; Matsushima, Masashi; Abe, Keiichiro; Kikuchi, Miho; Takahashi, Masahiko; Yamagishi, Yoshiyuki; Nishizaki, Hiroyasu; Horie, Yoshinori; Kanai, Takanori

    2015-10-01

    Along with the development of interferon and therapeutic medication, the incidence of viral hepatitis constituting the largest part of liver disease decreased, and the main target in the field of liver disease is now shifting from viral hepatitis to alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) as metabolic liver disease. Although these diseases tend.to. be gathered as non-viral liver disease because the similar specific liver tissue, the natural history and etiology are considerably different between them. We need to distinguish both of them to do appropriate treatment intervention. Questioning of amount of drinking is needed, but we experience some difficult cases to understand drinking history because of a too little declaration of amount of drinking. A new ultrasonic image analyses using propagation speed in the organization of the pulse vibration wave was developed as Fibroscan by Echosens company in recent years. Fibroscan is a non-invasive test to quantify liver fibrosis as Liver Stiffness Measurement (LSM). It also detects and quantifies steatosis simultaneously using the Controlled Attenuation Parameter (CAP). CAP is a measurement of the ultrasound attenuation. We measured liver steatosis of patients using Fibroscan, and other blood tests. 63 cases of ALD, 177 cases of NAFLD, 57 cases of Virus and 271 cases of Normal were enrolled. CAP value were significantly lower in the ALD group compared with NAFLD group. (P < 0.0053, ALD 268 dB/m : NAFLD 290 dB/m) We elucidate the diagnostic accuracy of CAP using Fibroscan for ALD patients, comparing the results of them to those of virus patients and NAFLD patients. PMID:26946784

  6. Research protocol for a diagnostic study of non-invasive exhaled breath analysis for the prediction of oesophago-gastric cancer

    PubMed Central

    Markar, Sheraz R; Lagergren, Jesper; Hanna, George B

    2016-01-01

    Introduction Despite improvements in a range of chemo, radio and surgical therapies, the overall survival at 5 years from oesophago-gastric cancer remains poor and ranges from 10% to 30%. Early diagnosis is a key strategy to improve survival but early disease stage has non-specific symptoms that are very common while the warning clinical picture often indicates advanced disease. The aim of this research is to validate a breath test to predict oesophago-gastric cancer therefore allowing earlier diagnosis and introduction of treatment. Methods and analysis The study will include 325 patients and be conducted across four major oesophago-gastric cancer centres in London, UK. This research will utilise selected ion flow-tube mass spectrometry (SIFT-MS) exhaled breath analysis, for comparison of predicted cancer risk based on the previously developed volatile organic compound exhaled breath model, with endoscopic findings and histology biopsies. This will determine the overall diagnostic accuracy for non-invasive breath testing for the diagnosis of oesophago-gastric cancer. Ethics and Dissemination Approval was gained from NRES Committee London, on 16 July 2014 (REC reference 14/LO/1136) for the completion of this study. Different methods of dissemination will be employed including international clinical and patient group presentations, and publication of research outputs in a high-impact clinical journal. This is to ensure that the findings from this research will reach patients, primary care practitioners, scientists, hospital specialists in gastroenterology, oncology and surgery, health policymakers and commissioners as well as NHS regulatory bodies. Trials registration number UKCRN18063; Pre-results. PMID:26739727

  7. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution

    PubMed Central

    Kuettner, A; Beck, T; Drosch, T; Kettering, K; Heuschmid, M; Burgstahler, C; Claussen, C D; Kopp, A F; Schroeder, S

    2005-01-01

    Objective: To evaluate image quality and clinical accuracy in detecting coronary artery lesions with a new multidetector spiral computed tomography (MDCT) generation with 16 detector slices and a temporal resolution of 188 ms. Methods: 124 consecutive patients scheduled for invasive coronary angiography (ICA) were additionally studied by MDCT (Sensation 16 Speed 4D). MDCTs were analysed with regard to image quality and presence of coronary artery lesions. The results were compared with ICA. Results: 120 of 124 scans were successful. The image quality of all remaining 120 scans was sufficient (mean (SD) heart rate 64.2 (9.8) beats/min, range 43–95). The mean calcium mass was 167 (223) mg (range 0–1038). Thirteen coronary segments were evaluated for each patient (1560 segments in total). Image quality was graded as follows: excellent, 422 (27.1%) segments; good, 540 (34.6%) segments; moderate, 277 (17.7%) segments; heavily calcified, 215 (13.8%) segments; and blurred, 106 (6.8%) segments. ICA detected 359 lesions with a diameter stenosis > 50% and MDCT detected 304 of 359 (85%). Sensitivity, specificity, and positive and negative predictive values were 85%, 98%, 91%, and 96%, respectively. The correct clinical diagnosis (presence or absence of at least one stenosis > 50%) was obtained for 110 of 120 (92%) patients. Conclusions: MDCT image quality can be further improved with 16 slices and faster gantry rotation time. These results in an unselected population underline the potential of MDCT to become a non-invasive diagnostic alternative, especially for the exclusion of coronary artery disease, in the near future. PMID:15958366

  8. Visceral anatomy of ocean sunfish (Mola mola (L., 1758), Molidae, Tetraodontiformes) and angler (Lophius piscatorius (L., 1758), Lophiidae, Lophiiformes) investigated by non-invasive imaging techniques.

    PubMed

    Chanet, Bruno; Guintard, Claude; Boisgard, Thierry; Fusellier, Marion; Tavernier, Cédric; Betti, Eric; Madec, Stéphane; Richaudeau, Yvan; Raphaël, Christian; Dettaï, Agnès; Lecointre, Guillaume

    2012-12-01

    The purpose of this work is to examine the gross visceral anatomy of ocean sunfish and angler using non-invasive imaging techniques: computed tomography imaging (CT) and magnetic resonance imaging (MRI). Similarities and differences in the internal organisation of these two species are verified. Both species lack a swimbladder and present a significant asymmetry in the hepatic lobes, an elongated bile duct terminating close to the stomach, a compact thyroid embedded in a blood lacuna, and very reduced brain and spinal cord. These observations are important in regard to the close relationships between Tetraodontiformes and Lophiiformes, established by several molecular works, but not yet confirmed by morpho-anatomical data. However the occurrence of these features has to be examined in other taxa before phylogenetic hypotheses are proposed. PMID:23312298

  9. Non-invasive sensing for food reassurance.

    PubMed

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm

    2016-03-01

    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance. PMID:26835653

  10. Non invasive assessment of the human tear film dynamics.

    PubMed

    Ring, M H; Rabensteiner, D F; Horwath-Winter, J; Boldin, I; Schrödl, F; Reitsamer, H; Haslwanter, T

    2015-11-01

    Dry eye disease, or keratoconjunctivitis sicca, is a multifactorial syndrome with altered tear film homeostasis leading to ocular irritations. These alterations cause discomfort and stress for the patient, but only a few objective parameters allow for proper differential diagnosis into different subtypes of this condition. The mostly invasively performed standard assessment procedures for tear film diagnosis are manifold, but often correlate quite poorly with the subjectively reported symptoms. Due to the inherent limitations, e.g. the subjectivity of the commonly performed invasive tests, a number of devices have been developed to assess the human tear film non-invasively. Since the production, delivery, distribution and drainage of the tear film is a dynamic process, we have focused our review on non-invasive methods which are capable of continuous or repetitive observations of the tear film during an inter-blink interval. These dynamic methods include (1) Interferometry, (2) Pattern Projection, (3) Aberrometry, (4) Thermography; and (5) Evaporimetry. These techniques are discussed with respect to their diagnostic value, both for screening and differential diagnostic of Dry Eye Disease. Many of the parameters obtained from these tests have been shown to have the potential to reliably discriminate patients from healthy subjects, especially when the tests are performed automatically and objectively. The differentiation into subtypes based solely on a single, dynamic parameter may not be feasible, but the combination of non-invasively performed procedures may provide good discrimination results. PMID:26406882

  11. Non-Invasive Imaging of Vascular Inflammation

    PubMed Central

    Ammirati, Enrico; Moroni, Francesco; Pedrotti, Patrizia; Scotti, Isabella; Magnoni, Marco; Bozzolo, Enrica P.; Rimoldi, Ornella E.; Camici, Paolo G.

    2014-01-01

    In large-vessel vasculitides, inflammatory infiltrates may cause thickening of the involved arterial vessel wall leading to progressive stenosis and occlusion. Dilatation, aneurysm formation, and thrombosis may also ensue. Activated macrophages and T lymphocytes are fundamental elements in vascular inflammation. The amount and density of the inflammatory infiltrate is directly linked to local disease activity. Additionally, patients with autoimmune disorders have an increased cardiovascular (CV) risk compared with age-matched healthy individuals as a consequence of accelerated atherosclerosis. Molecular imaging techniques targeting activated macrophages, neovascularization, or increased cellular metabolic activity can represent effective means of non-invasive detection of vascular inflammation. In the present review, novel non-invasive imaging tools that have been successfully tested in humans will be presented. These include contrast-enhanced ultrasonography, which allows detection of neovessels within the wall of inflamed arteries; contrast-enhanced CV magnetic resonance that can detect increased thickness of the arterial wall, usually associated with edema, or mural enhancement using T2 and post-contrast T1-weighted sequences, respectively; and positron emission tomography associated with radio-tracers such as [18F]-fluorodeoxyglucose and the new [11C]-PK11195 in combination with computed tomography angiography to detect activated macrophages within the vessel wall. Imaging techniques are useful in the diagnostic work-up of large- and medium-vessel vasculitides, to monitor disease activity and the response to treatments. Finally, molecular imaging targets can provide new clues about the pathogenesis and evolution of immune-mediated disorders involving arterial vessels. PMID:25183963

  12. Non-invasive Intratracheal Instillation in Mice

    PubMed Central

    Ortiz-Muñoz, Guadalupe; Looney, Mark R.

    2016-01-01

    The intratracheal instillation technique is used to deliver a variety of agents to the lungs ranging from pathogens (bacteria, viruses), toxins, to therapeutic agents. To model lung inflammation and injury, LPS can be administrated via intranasal, intratracheal, or aerosol approaches. Each technique has its limitations. The intratracheal technique can involve the non-invasive instillation method (via the oro-tracheal route) or a direct injection into the trachea. Here, we describe an optimized method for direct visual instillation of LPS via the non-invasive oro-tracheal route.

  13. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    SciTech Connect

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Ferreira, R.; Freitas, P.

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  14. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    NASA Astrophysics Data System (ADS)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-06-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  15. Study of turbocharger shaft motion by means of non-invasive optical techniques: Application to the behaviour analysis in turbocharger lubrication failures

    NASA Astrophysics Data System (ADS)

    Pastor, J. V.; Serrano, J. R.; Dolz, V.; López, M. A.; Bouffaud, F.

    2012-10-01

    This paper presents a novel non-invasive technique to estimate the turbocharger shaft whirl motion. The aim of this article is to present a system for monitoring the shaft motion of a turbocharger, which will be used in turbocharger destructive testing. To achieve this, a camera and a light source were installed in a turbocharger test bench with a controlled lubrication circuit. An image recording methodology and a process algorithm have been developed, in order to estimate the shaft motion. This processing consists on differentiating specific zones of the image, in order to obtain their coordinates. Two reference points have been configured on the compressor side, which help to calculate the relative position of the shaft, avoiding the errors due to structural vibrations. Maximum eccentricity of the turbocharger has been determined and it has been compared with shaft motion when it is spinning in different conditions. A luminosity study has been also done, in order to improve the process and to obtain locus of shaft position in a picture exposition time period. The technique has been applied to diagnosis of a lubrication failure test and the main results will be presented in this article: like shaft motion figures; thermodynamic variables and pictures of the shaft while it is spinning at abnormal lubrication conditions. The measuring components used in this technique have the ability to withstand the catastrophic failure of the turbocharger in this type of test.

  16. [Non-invasive diagnostic methods of fibrosis in chronic hepatitis C virus infection: their role in treatment indication, follow-up and assessment of prognosis].

    PubMed

    Pár, Alajos; Vincze, Áron; Pár, Gabriella

    2015-05-24

    Chronic hepatitis C virus infection associated with necroinflammation predisposes to liver fibrosis and cirrhosis, which lead to severe end-stage complications. Staging of fibrosis is of basic importance for the indication of antiviral treatment, for monitoring the response and predicting the prognosis of patients with hepatitis C virus related liver disease. Since liver biopsy, the "gold standard" diagnosis of fibrosis is invasive and it has some other limitations, non-invasive methods have been developed and widely used in the clinical practice. Serum biomarkers and physical approaches measuring liver stiffness by elastography as well as combination algorithms have been gradually been integrated into guidelines resulting in a reduction of the need for liver biopsy. The authors review these non-invasive fibrosis markers and discuss their role in the indication of treatment, follow-up, and assessment of prognosis of patients with chronic hepatitis C virus infection. PMID:26038993

  17. Non-invasive diagnosis of advanced fibrosis and cirrhosis.

    PubMed

    Sharma, Suraj; Khalili, Korosh; Nguyen, Geoffrey Christopher

    2014-12-01

    Liver cirrhosis is a common and growing public health problem globally. The diagnosis of cirrhosis portends an increased risk of morbidity and mortality. Liver biopsy is considered the gold standard for diagnosis of cirrhosis and staging of fibrosis. However, despite its universal use, liver biopsy is an invasive and inaccurate gold standard with numerous drawbacks. In order to overcome the limitations of liver biopsy, a number of non-invasive techniques have been investigated for the assessment of cirrhosis. This review will focus on currently available non-invasive markers of cirrhosis. The evidence behind the use of these markers will be highlighted, along with an assessment of diagnostic accuracy and performance characteristics of each test. Non-invasive markers of cirrhosis can be radiologic or serum-based. Radiologic techniques based on ultrasound, magnetic resonance imaging and elastography have been used to assess liver fibrosis. Serum-based biomarkers of cirrhosis have also been developed. These are broadly classified into indirect and direct markers. Indirect biomarkers reflect liver function, which may decline with the onset of cirrhosis. Direct biomarkers, reflect extracellular matrix turnover, and include molecules involved in hepatic fibrogenesis. On the whole, radiologic and serum markers of fibrosis correlate well with biopsy scores, especially when excluding cirrhosis or excluding fibrosis. This feature is certainly clinically useful, and avoids liver biopsy in many cases. PMID:25492996

  18. Non-invasive investigative techniques for the diachronic study of territorial compartments: a case study for the documentation and analysis of architectural complexes.

    NASA Astrophysics Data System (ADS)

    Di Lieto, Marco; Marchetta, Isabella; Ciriello, Rosanna; De Martino, Gregory; Della Mora, Dario

    2014-05-01

    The trend in the study of areas of land in their integrity and as dynamic, anthropic units in diachronic history has initiated long survey campaigns over several decades that have covered large areas mapping the evidence and attempting a reconstruction of the evolution of ancient settlements. The need for further study to disentangle the knots of modes and types of settlement boosted further investigations of targeted excavations, based on the quality and density of the findings from the field. Currently archaeological research can rely on non-invasive integrated methods to better define the areas to be investigated systematically obtaining new typologies of information and better management of time and research costs. In this paper we present a specific case study in which a variety of integrated survey methods have contributed to the documentation and analysis of monumental complexes linked to specific local contexts. The area under investigation lies in Italy, in the province of Potenza and, specifically in the town of Forenza. The survey activities, involving the entire municipality, have been running on and off for about 2 years and have already resulted in the collection of a lot of interesting data that will be useful to essential fieldwork. In particular, we carried out different types of investigation in three different sample sites: 1. monumental complex of Santa Maria de 'Armenis: to complement previous excavations which involved only a portion of the estimated area of interest, we carried out magnetometric and geo-electrical surveys aimed at a more precise definition of the true extent and interpretation of the monument in antiquity; 2. site of Monte Caruso: we carried out remote sensing using a remote-controlled UAV hexakopter drone with stereoscopic photogrammetric survey techniques aimed at the detailed documentation of the monumental evidence of a structure visible in elevation but in a context difficult to approach with traditional surveying

  19. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    PubMed Central

    Moreno, Jaime Sánchez; Muñoz, Diego Ramírez; Cardoso, Susana; Berga, Silvia Casans; Antón, Asunción Edith Navarro; de Freitas, Paulo Jorge Peixeiro

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. PMID:22163748

  20. A dynamic and non-invasive technique for space cellular effects research based on the SPR principle

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Li, Y. H.; Xiong, J. H.; Tan, Y. J.; Yu, J. R.; Nie, J. L.

    Space cell and molecular biology research has shown that space environment can affect the cellular morphology and function induce physiological and biochemical disorders The effect mechanism of space factors on the intracellular molecular events involved in signal transduction cytoskeleton reorganization and protein expression Surface plasmon resonance SPR is a promising tool for monitoring and studying the spatio-temporal and dynamic characteristic of the intricate biochemical reactions inside living cells For its advantages such as high sensitivity fast determination safety anti-jamming and long distance transmission it might be used in the space environment for studying the dynamic characteristic of intracellular molecular events In this paper a prototype of portable SPR based cytosensor SBCS was constructed for cell culture and SPR signal record and on the basis of it the corresponding technique was also established and utilized to study the possible involvement of actin cytoskeleton in the glutamate Glu uptake activity in C6 cells Firstly SBCS was used for monitoring the depolymerization of actin cytoskeleton in C6 cells at real-time After cytochalasin D CD was injected into the flow cell to disrupt actin cytoskeleton the SPR sensorgram declined gradually in a time- and dose-dependent manner Then the sensorgrams induced by Glu on C6 cells with or without CD preincubation were monitored The SPR signals induced by Glu were significant depressed by CD pretreatment which indicated that actin cytoskeleton played a crucial

  1. A novel method for rapid and non-invasive detection of plants senescence using delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Wang, Junsheng; Zeng, Lizhang; Li, Qiang

    2007-05-01

    Plants senescence is a phase of plants ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II ( PSII ) in a plant is considered the primary site where light-induced delayed fluorescence (DF) is produced. With the leaves of Catharanthus roseus (Catharanthus roseus (L.) G.Don) as testing models, we have studied the effects of plants senescence induced by dark and/or exogenous hormones treatments on characteristics of DF by using a home-made portable DF detection system, which can enable various DF parameters, such as DF decay kinetic curve and DF intensity, to be rapidly produced for the plants in a short time. The results show that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content. Therefore, DF may be used an important means of evaluating in vivo plants senescence physiology. The changes in DF intensity may provide a new approach for the rapid and early detection of plants senescence caused by age or other senescence-related factors. DF technique could be potential useful for high throughput screening and less time-consuming and automated identifying the interesting mutants with genetic modifications that change plants senescence progress.

  2. Non-invasive near-field measurement setup based on modulated scatterer technique applied to microwave tomography

    NASA Astrophysics Data System (ADS)

    Memarzadeh-Tehran, Hamidreza

    The main focus of this thesis is to address the design and development of a near-field (NF) imaging setup based on the modulated scatterer technique (MST). MST is a well-known approach used in applications where accurate and perturbation-free measurement results are necessary. Of the possible implementations available for making an MST probe, including electrical, optical and mechanical, the optically modulated scatterer OMS was considered in order to provide nearly perturbation-free measurement due to the invisibility of optical fiber to the radio-frequency electromagnetic fields. The OMS probe consists of a commercial, off-the-shelf (COTS) photodiode chip (nonlinear device), a short-dipole antenna acting as a scatterer and a matching network (passive circuit). The latter improves the scattering properties and also increases the sensitivity of the OMS probe within the frequency range in which the matching network is optimized. The radiation characteristics of the probe, including cross-polarization response and omnidirectional sensitivity, were both theoretically and experimentally investigated. Finally, the performance and reliability of the probe was studied by comparing measured near-field distributions on a known field distribution with simulations. Increased imaging speed was obtained using an array of OMS probes, which reduces mechanical movements. Mutual-coupling, switching time and shadowing effect, which all may affect the performance of the array, were investigated. Then, the results obtained by the array were validated in a NF imager by measuring the E-field distribution of an antenna under test (AUT) and comparing it with a simulation. Calibration and data averaging were applied to raw data to compensate the probes for uncertainties in fabrication and interaction between array/AUT and array/receiving antenna. Dynamic range and linearity of the developed NF imager was improved by adding a carrier canceller circuit to the front-end of the receiver. The

  3. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Vitorino, T.; Casini, A.; Cucci, C.; Melo, M. J.; Picollo, M.; Stefani, L.

    2015-11-01

    The present paper, which focuses on the identification of red lake pigments, in particular madder, brazilwood, and cochineal, addresses the advantages and drawbacks of using reflectance hyperspectral imaging in the visible and near-infrared ranges as a non-invasive method of discrimination between different red organic pigments in cultural heritage objects. Based on reconstructions of paints used in the period extending from the fourteenth to the sixteenth century, prepared with as far as possible historical accuracy, the analyses by means of visible/near-infrared reflectance hyperspectral imaging were carried out with the objective of understanding the most significant differences between these vegetal- and animal-based red lake pigments. The paper discusses the results that were obtained on four original Italian and North European paintings and compared with those from the paint reconstructions, in order to demonstrate how the hyperspectral imaging technique can be usefully and effectively applied to the identification and mapping of red lake pigments in painted surfaces of interest in the conservation field.

  4. Verification of a semi-automated MRI-guided technique for non-invasive determination of the arterial input function in 15O-labeled gaseous PET

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoshi; Hori, Yuki; Moriguchi, Tetsuaki; Morita, Naomi; Yamamoto, Akihide; Koshino, Kazuhiro; Kawashima, Hidekazu; Zeniya, Tsutomu; Enmi, Jun-ichiro; Iida, Hidehiro

    2013-02-01

    A semi-automated MR-guided technique has been evaluated for non-invasive estimation of cerebral metabolic rate of oxygen (CMRO2) using the sequential administration of 15O oxygen (O2) and 15O carbon dioxide (CO2) during a single PET scan. Two mathematical models, which assess the arterial input function (AIF) from time-activity curves (TAC) in the internal carotid artery region, were tested, namely one with a simple correction for the recovery coefficient (RC) and another with corrections for RC and spillover from surrounding tissues. RC was determined from MRA and black-blood image. RC was also determined from C15O blood volume images as a reference. RC agreed between MR-based and C15O-PET based methods, suggesting validity of MR-based methods. Area-under-the-curve (AUC) of the early portion of estimated AIF agreed with that of measured AIF in both models. AUC of the delayed phase of estimated AIF was largely overestimated in the first model, but was sufficiently improved by the spillover correction implemented in the second model.

  5. Advances in non-invasive techniques as aids to the diagnosis and monitoring of therapeutic response in plaque psoriasis: a review.

    PubMed

    Lacarrubba, Francesco; Pellacani, Giovanni; Gurgone, Silvia; Verzì, Anna Elisa; Micali, Giuseppe

    2015-06-01

    Plaque psoriasis is a common, chronic, inflammatory disease with a multifactorial etiopathogenesis. Although its diagnosis is often based on clinical features, in ambiguous cases a biopsy with histopathologic confirmation may be necessary. Advanced high-definition imaging techniques may be useful in the study of skin properties in vivo and may facilitate therapeutic monitoring. Available imaging tools vary in their resolution, depth of penetration and visual representation (horizontal, vertical, three-dimensional), and in the type of skin structures visualized. The purpose of this review is to analyze a variety of non-invasive techniques that may assist in establishing definitive diagnoses, as well as in the therapeutic monitoring of psoriasis. These include dermoscopy, videocapillaroscopy (VC), high-frequency ultrasound (HFUS), reflectance confocal microscopy (RCM), laser Doppler imaging (LDI), optical coherence tomography (OCT), optical microangiography (OMAG) and multiphoton tomography (MPT). Their characteristics, indications, advantages, and limits are reviewed and discussed. Dermoscopy may be useful for a first, rapid outpatient evaluation. Videocapillaroscopy and HFUS represent the imaging techniques with the longest history of use in psoriasis. However, whereas VC is useful in both diagnosis and therapeutic monitoring, the utility of HFUS appears to be limited to the monitoring of response to therapy only. Both devices are cost-effective and easy to use in the office setting. Both RCM and OCT allow high-resolution microscopic imaging of psoriatic plaque in a manner comparable with that of virtual histopathology and represent more promising techniques. The utility of LDI, OMAG, and MPT in psoriasis skin imaging requires further study and validation. PMID:25772034

  6. Reproducibility of a non-invasive ultrasonic technique of tendon force measurement, determined in vitro in equine superficial digital flexor tendons.

    PubMed

    Crevier-Denoix, Nathalie; Ravary-Plumioën, Bérangère; Evrard, Delphine; Pourcelot, Philippe

    2009-09-18

    A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100N, and of force values every 2m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo. PMID:19647261

  7. Non-invasive assessment of intracranial pressure.

    PubMed

    Robba, C; Bacigaluppi, S; Cardim, D; Donnelly, J; Bertuccio, A; Czosnyka, M

    2016-07-01

    Monitoring of intracranial pressure (ICP) is invaluable in the management of neurosurgical and neurological critically ill patients. Invasive measurement of ventricular or parenchymal pressure is considered the gold standard for accurate measurement of ICP but is not always possible due to certain risks. Therefore, the availability of accurate methods to non-invasively estimate ICP has the potential to improve the management of these vulnerable patients. This review provides a comparative description of different methods for non-invasive ICP measurement. Current methods are based on changes associated with increased ICP, both morphological (assessed with magnetic resonance, computed tomography, ultrasound, and fundoscopy) and physiological (assessed with transcranial and ophthalmic Doppler, tympanometry, near-infrared spectroscopy, electroencephalography, visual-evoked potentials, and otoacoustic emissions assessment). At present, none of the non-invasive techniques alone seem suitable as a substitute for invasive monitoring. However, following the present analysis and considerations upon each technique, we propose a possible flowchart based on the combination of non-invasive techniques including those characterizing morphologic changes (e.g., repetitive US measurements of ONSD) and those characterizing physiological changes (e.g., continuous TCD). Such an integrated approach, which still needs to be validated in clinical practice, could aid in deciding whether to place an invasive monitor, or how to titrate therapy when invasive ICP measurement is contraindicated or unavailable. PMID:26515159

  8. Peak Cardiac Power Measured Non-Invasively with a Bioreactance Technique is a Predictor of Adverse Outcomes in Patients with Advanced Heart Failure

    PubMed Central

    Rosenblum, Hannah; Helmke, Stephen; Williams, Paula; Teruya, Sergio; Jones, Margaret; Burkhoff, Daniel; Mancini, Donna; Maurer, Mathew S.

    2010-01-01

    Summary Background Peak oxygen consumption (VO2) during cardiopulmonary exercise testing (CPET) is a powerful predictor of survival, providing an indirect assessment of cardiac output (CO). Hypothesis Non-invasive indices of CO derived from bioreactance methodology would add significantly to peak VO2 as a means of risk stratifying patients with heart failure. Methods 127 patients (53±14 years of age, 66% male) with heart failure and an average EF = 31±15 underwent a symptom-limited CPET using a bicycle ergometer while measuring CO noninvasively by a bioreactance technique. Peak cardiac power was derived from the product of the peak mean arterial blood pressure and CO divided by 451. Results Follow-up averaged 404±179 days (median, 366 days) to assess end points including death (n=3), heart transplant (n=10), or left ventricular assisted device (LVAD) implantation (n=2). Peak VO2 and peak power had similar area under the curves (0.77 and 0.76), which increased to 0.83 when combined. Kaplan-Meier cumulative survival curves demonstrated different outcomes in the subgroup with a VO2 <14 ml*kg-1*min-1 when stratified by a cardiac power above or below 1.5 Watts (92.2% vs. 82.1% at 1 year and 81.6% vs. 58.3% at last follow-up, p=0.02 by log-rank test). Conclusions Among patients with heart failure, peak cardiac power measured with bioreactance methodology and peak VO2 had similar associations with adverse outcomes and peak power added independent prognostic information to peak VO2 in subjects with advanced disease (e.g. VO2 < 14 ml*kg-1*min-1). PMID:21091609

  9. Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis

    PubMed Central

    2012-01-01

    Background Cell-free fetal DNA (cffDNA) can be detected in maternal blood during pregnancy, opening the possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of cffDNA for prenatal determination (diagnosis) of fetal sex. We applied a sensitive search of multiple bibliographic databases including PubMed (MEDLINE), EMBASE, the Cochrane library and Web of Science. Results Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria. Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7%) and mean specificity was 98.9% (95% CI = 98.1% to 99.4%). These results vary very little with trimester or week of testing, indicating that the performance of the test is reliably high. Conclusions Based on this review and meta-analysis we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic and ethical considerations of implementing an early non-invasive test for fetal sex. PMID:22937795

  10. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  11. Non-invasive diagnosis of liver fibrosis and cirrhosis

    PubMed Central

    Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z

    2015-01-01

    The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this “gold-standard” is imperfect; even according to its proponents, it is only “the best” among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future. PMID:26556987

  12. Non-invasive monitoring of spreading depression.

    PubMed

    Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali

    2016-10-01

    Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. PMID:27397413

  13. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in–vitro Study

    PubMed Central

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M.; Chopra, Saroj

    2013-01-01

    Background: Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from ‘drill and fill’ to that of ‘seal and heal’. Aims: The purpose of this in–vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. Study Design and Methods: One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Statistical Analysis: Data were then statistically analysed by using Student t–test for comparison. Results: A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. Conclusion: This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength. PMID:24298525

  14. Non-invasive deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case of the city of Roma (Italy)

    NASA Astrophysics Data System (ADS)

    Manunta, Michele; Bonano, Manuela; Marsella, Maria; Lanari, Riccardo

    2010-05-01

    The monitoring of urban areas and man-made structures is of key importance for the preservation of artistic, archaeological and architectural heritage. In this context, the remote sensing techniques may allow non-invasive analysis of large areas by exploiting long time series of satellite data. Among these techniques, the Synthetic Aperture Radar (SAR) Interferometry (InSAR) has already demonstrated to be an effective tool for monitoring the displacements occurring in the historical and artistic heritage located in the historical city centers. As a matter of fact, the InSAR technique allows producing spatially dense deformation maps with centimeter to millimeter accuracy, by exploiting the phase difference (interferogram) of temporally separated SAR images relevant to the same analyzed area. In order to guarantee the monitoring of urban area displacements, it is strategic to provide very long term deformation time series by also exploiting SAR data acquired by different sensors. Accordingly, ERS/ENVISAT data archive, providing acquisitions spanning the 1992-2010 time period, might allow us generating very long term deformation time-series. However, an ERS/ENVISAT data combination is limited by the two sensors slightly different carrier frequencies: 5.331 GHz for the ENVISAT sensor and 5.3 GHz for the ERS one. Therefore, because the interferometric phase is dependent on the radiation wavelength, the generation of conventional ERS/ENVISAT cross-interferograms is strongly affected by the induced decorrelation effects. In this work we show the effectiveness of the Small BAseline Subset (SBAS) (Berardino et al., 2002; Lanari et al., 2004) approach for the conservation, monitoring and risk prevention of cultural heritage. Indeed, the SBAS technique allows us to produce deformation time series at the scale of the single building by processing very long sequences of ERS-1/2 and ENVISAT (IS2 swath) SAR data, acquired with the same illumination geometry. In particular, the

  15. Diagnostic techniques for thermal plasmas

    SciTech Connect

    Fincke, J.R.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Reynolds, L.D.

    1994-12-31

    The plasma diagnostic techniques discussed are Rayleigh and coherent Thomson scattering, Coherent-Anti-Stokes-Raman Spectroscopy (CARS) and enthalpy probes. The quantities measured are heavy species and electron temperature, ionized fraction, plasma composition, and velocity. Examples of results from both subsonic and supersonic jets are presented and limitations discussed.

  16. Selected microgravity combustion diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Greenberg, Paul S.

    1993-01-01

    During FY 1989-1992, several diagnostic techniques for studying microgravity combustion have moved from the laboratory to use in reduced-gravity facilities. This paper discusses current instrumentation for rainbow schlieren deflectometry and thermophoretic sampling of soot from gas jet diffusion flames.

  17. Non-invasive Mapping of Cardiac Arrhythmias.

    PubMed

    Shah, Ashok; Hocini, Meleze; Haissaguerre, Michel; Jaïs, Pierre

    2015-08-01

    Since more than 100 years, 12-lead electrocardiography (ECG) is the standard-of-care tool, which involves measuring electrical potentials from limited sites on the body surface to diagnose cardiac disorder, its possible mechanism, and the likely site of origin. Several decades of research has led to the development of a 252-lead ECG and computed tomography (CT) scan-based three-dimensional electro-imaging modality to non-invasively map abnormal cardiac rhythms including fibrillation. These maps provide guidance towards ablative therapy and thereby help advance the management of complex heart rhythm disorders. Here, we describe the clinical experience obtained using non-invasive technique in mapping the electrical disorder and guide the catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats), and ventricular pre-excitation (Wolff-Parkinson-White syndrome). PMID:26072438

  18. [Non-invasive assessment of liver fibrosis].

    PubMed

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages. PMID:25962254

  19. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  20. Non-invasive monitoring of blood pressure using the Philips Intellivue MP50 monitor cannot replace invasive blood pressure techniques in surgery patients under general anesthesia.

    PubMed

    Meng, Xianghu; Zang, Guanghui; Fan, Longchang; Zheng, Lei; Dai, Jinzhen; Wang, Xueren; Xia, Wei; Liu, Jihong; Zhang, Chuanhan

    2013-07-01

    The Philips Intellivue MP50 monitor provides a method for non-invasive, near-continuous blood pressure (BP) monitoring and is designed to be an alternative to direct intra-arterial BP (IABP) measurement. However, no studies have specifically compared non-invasive and invasive BP measurements using the monitor. The present retrospective study observed 515 patients undergoing surgery with general anesthesia, whose invasive (intra-radial, femoral or dorsalis pedis artery) and non-invasive (oscillometric) BP (NIBP) were monitored simultaneously using the monitor. These data were analyzed using correlations, regressions and Bland-Altman plots. The patients were placed in a supine position during surgery. The correlation data for invasive BP and NIBP measurements were: for intra-radial measurements, r(2)=0.51 (bias and precision, 11.04±15.22 and 14.76±11.64 mmHg, respectively) for systolic BP (SBP) and r(2)=0.27 (6.17±11.95 and 9.77±9.25 mmHg, respectively) for diastolic BP (DBP); for intra-femoral measurements: r(2)=0.57 (14.79±14.55 and 17.15±11.68 mmHg, respectively) for SBP and r(2)=0.45 (4.12±9.70 and 7.49±7.40 mmHg, respectively) for DBP; and for intra-dorsalis pedis measurements: r(2)=0.33 (13.00±16.81 and 17.34±12.28 mmHg, respectively) for SBP and r(2)=0.30 (0.17±11.27 and 8.44±7.46 mmHg, respectively) for DBP. According to this data, the NIBP measured by the Philips Intellivue MP50 monitor showed low positive correlations and poor agreement with the IABP, as calculated by Bland-Altman analysis. Therefore, the use of oscillometric BP measured by the monitor in surgery patients under general anesthesia is not generally recommended. PMID:23935710

  1. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.

    PubMed

    Zhang, Xuewei; Yu, Peiqiang

    2014-07-01

    Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings. PMID:24920208

  2. An Acetone Nanosensor For Non-invasive Diabetes Detection

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yun, X.; Stanacevic, M.; Gouma, P. I.

    2009-05-01

    Diabetes is a most common disease worldwide. Acetone in exhaled breath is a known biomarker of Type- 1 diabetes. An exhaled breath analyzer has been developed with the potential to diagnose diabetes as a non-invasive alternative of the currently used blood-based diagnostics. This device utilizes a chemiresistor based on ferroelectric tungsten oxide nanoparticles and detects acetone selectively in breath-simulated media. Real-time monitoring of the acetone concentration is feasible, potentially making this detector a revolutionary, non- invasive, diabetes diagnostic tool.

  3. Non-invasive endodontic management of fused mandibular second molar and a paramolar, using cone beam computed tomography as an adjunctive diagnostic aid: A case report

    PubMed Central

    Ghogre, Priyanka; Gurav, Sandeep

    2014-01-01

    Tooth fusion is a developmental anomaly characterized by the union between the dentin and/or enamel of at least two separately developing teeth. Fusion is a rare occurrence, with overall prevalence to be approximately 0.5% in deciduous teeth and 0.1% in permanent dentition. The significance of this particular case was that the unilateral fusion occurred in a permanent mandibular second molar with a paramolar and successful endodontic management was done. The rarity with which this entity appears, along with its complex characteristics, often makes it difficult to treat. In this case, a new advanced three-dimensional imaging Cone Beam Computed Tomography (CBCT) was used as an adjunctive diagnostic aid to differentiate between fusion occurred before or after root formation and help to reach the correct diagnosis. PMID:25298654

  4. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navy Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.

  5. Formulation and in vivo evaluation for anti-aging effects of an emulsion containing basil extract using non- invasive biophysical techniques

    PubMed Central

    Rasul, A.; Akhtar, N.

    2011-01-01

    Background and the purpose of study Skin aging is a complex process induced by constant exposure to ultraviolet (UV) irradiation and damages human skin. UV generates reactive oxygen species leading to collagen deficiency and eventually skin wrinkling. Basil contains a number of phenolics and favonoids which possess antioxidant properties. The aim of this study was to formulate and investigate the antiaging potential of a cream containing Basil extract. Methods A single blinded study was conducted using non-invasive methods. Formulation containing 3% of the concentrated extract of Basil was developed by entrapping in the inner aqueous phase of w/o emulsion and base contained no extract. Both creams were stored at different storage conditions of 8°C, 25°C, 40°C and 40°C+ 75% relative humidity to predict their stabilities. The formulation and base were evaluated for their effects on various skin parameters i.e., moisture and trans epidermal water loss (TEWL), volume, energy and surface evaluation of the living skin (SELS). Results Significant effects (p≤0.05) were observed for both creams in the case of TEWL. The base showed insignificant (p≤0.05) while formulation showed significant effects on skin moisture. Volume, SELS SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), SEw (skin wrinkles) parameter showed significant decline while texture parameter of ‘Energy’ showed significant increase. Conclusion The results statistically indicated that the active formulation containg extract of Basil exert antiaging effects when applied topically. PMID:22615680

  6. Non-invasive brain stimulation in children: applications and future directions

    PubMed Central

    Rajapakse, Thilinie; Kirton, Adam

    2013-01-01

    Transcranial magnetic stimulation (TMS) is a neurostimulation and neuromodulation technique that has provided over two decades of data in focal, non-invasive brain stimulation based on the principles of electromagnetic induction. Its minimal risk, excellent tolerability and increasingly sophisticated ability to interrogate neurophysiology and plasticity make it an enviable technology for use in pediatric research with future extension into therapeutic trials. While adult trials show promise in using TMS as a novel, non-invasive, non-pharmacologic diagnostic and therapeutic tool in a variety of nervous system disorders, its use in children is only just emerging. TMS represents an exciting advancement to better understand and improve outcomes from disorders of the developing brain. PMID:24163755

  7. IN VIVO EVALUATION OF SKIN IRRITATION POTENTIAL, MELASMA AND SEBUM CONTENT FOLLOWING LONG TERM APPLICATION OF SKIN CARE CREAM IN HEALTHY ADULTS, USING NON-INVASIVE BIOMETROLOGICAL TECHNIQUES.

    PubMed

    Arshad, Atif I; Khan, Shoaib H M; Akhtar, Naveed; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-01-01

    The present investigation was conducted to evaluate non-invasively, various functional skin parameters i.e., irritation potential, melasma and sebum contents following long term application of topical cream (w/o) loaded with 2% methanolic extract of Ananas comosus L. versus placebo control (base) in healthy adults. Healthy human volunteers (n = 11, aged 20-30 years) were recruited for investigation and written informed consent was taken from each volunteer. In this single blinded study every volunteer applied formulation on one side of face and placebo on the other side of face twice daily for a period of 12 weeks (three months). Different skin parameters i.e., skin irritancy, melasma, and sebum contents were measured on both sides of face at baseline and after two weeks interval, using photometric device Mexameter and Sebumeter in a draught free room with modulated conditions of temperature (22-25°C) and humidity (55-60%). It was evident from the results that no primary skin irritancy was observed with patch test. Besides, statistical interpretation indicates that treatment with formulation is superior to placebo because it significantly (p ≤ 0.05) reduced the skin irritancy, melasma and sebum secretions throughout the study and reaching maximum -20.76 ± 0.89, -54.2 ± 0.37 and -40.71 ± 0.75%, respectively, at the end of study period. Antioxidant activity of extract was 92% compared to standard antioxidant. Conclusively, active cream loaded with fruit extract was well tolerated by all the volunteers and suitable to treat contact dermatitis, greasy skin, acne and seborrheic dermatitis and augmenting beauty and attraction by depigmentation of human skin. So, in the future, there is need to clinically evaluate these formulations in patients with compromised skin functions i.e., contact dermatitis, melasma, and acne vulgaris in order to explore the actual potential of this fruit. PMID:27008816

  8. Non invasive sensing technologies for cultural heritage management and fruition

    NASA Astrophysics Data System (ADS)

    Soldovieri, Francesco; Masini, Nicola

    2016-04-01

    monitoring of monuments and sites. In this way, we will be able to improve the appreciation of diagnostics and remote sensing technologies by the end-users. At the conference, we will show and discuss several study cases depicting the deployment of this knowledge chain in realistic conditions regarding the CH management. References Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08 Masini N., Soldovieri F. 2011. Editorial: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage, Journal of Geophysics and Engineering, 8 (3), 1-2, doi:10.1088/1742-2132/8/3/E01 Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012

  9. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site

  10. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  11. Non-invasive subcutaneous fat reduction: a review.

    PubMed

    Kennedy, J; Verne, S; Griffith, R; Falto-Aizpurua, L; Nouri, K

    2015-09-01

    The risks, financial costs and lengthy downtime associated with surgical procedures for fat reduction have led to the development of a number of non-invasive techniques. Non-invasive body contouring now represents the fastest growing area of aesthetic medicine. There are currently four leading non-invasive techniques for reducing localized subcutaneous adipose tissue: low-level laser therapy (LLLT), cryolipolysis, radio frequency (RF) and high-intensity focused ultrasound (HIFU). To review and compare leading techniques and clinical outcomes of non-invasive subcutaneous fat reduction. The terms 'non-invasive', 'low-level laser', 'cryolipolysis', 'ultrasound' and 'radio frequency' were combined with 'lipolysis', 'fat reduction' or 'body contour' during separate searches in the PubMed database. We identified 31 studies (27 prospective clinical studies and four retrospective chart reviews) with a total of 2937 patients that had been treated with LLLT (n = 1114), cryolipolysis (n = 706), HIFU (n = 843) or RF (n = 116) or other techniques (n = 158) for fat reduction or body contouring. A majority of these patients experienced significant and satisfying results without any serious adverse effects. The studies investigating these devices have all varied in treatment regimen, body locations, follow-up times or outcome operationalization. Each technique differs in offered advantages and severity of adverse effects. However, multiple non-invasive devices are safe and effective for circumferential reduction in local fat tissue by 2 cm or more across the abdomen, hips and thighs. Results are consistent and reproducible for each device and none are associated with any serious or permanent adverse effects. PMID:25664493

  12. Non-invasive characterization of intracranial tumors by magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Simon, M.; Guo, J.; Papazoglou, S.; Scholand-Engler, H.; Erdmann, C.; Melchert, U.; Bonsanto, M.; Braun, J.; Petersen, D.; Sack, I.; Wuerfel, J.

    2013-08-01

    Presurgical, non-invasive methods of differentiating brain tumors have remained unsatisfactory even for specialized academic hospitals. Despite major advances in clinical and neuroradiological diagnostic techniques, the majority of neurooncology patients still need to undergo a brain biopsy for diagnosis. Recent single cell experiments suggested that biomechanical cell properties might be very sensitive in detecting cellular malignancy. Accordingly, we investigated magnetic resonance elastography (MRE) as an investigative tool for the clinical routine diagnostic work-up of intracranial neoplasm. In order to obtain sufficient spatial resolution for the biomechanical characterization of intracranial tumors, we modified a recently introduced least-squares solution of the stationary wave equation, facilitating stable solutions of the magnitude |G*| and the phase angle φ of the complex shear modulus G*. MRE was added to a routine diagnostic or presurgical neuroradiological magnetic resonance imaging work-up in 16 prospective patients and it was well tolerated in all cases. Our preliminary tumor MRE data revealed alterations in viscoelastic constants, e.g. a loss of stiffness in malignancies compared to healthy reference tissue, or benign variants. Based on larger studies on selected tumor entities to establish threshold and reference values for future diagnostic purposes, MRE may thus provide a predictive marker for tumor malignancy and thereby contribute to an early non-invasive clinical assessment of suspicious cerebral lesions.

  13. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    SciTech Connect

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-05-20

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  14. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Sipaun, S. M.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.

    2008-05-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  15. Effect of Injector Geometry on Atomization of a Liquid-Liquid Double Swirl Coaxial Injector using Non-Invasive Laser, Optical and X-ray Techniques

    NASA Technical Reports Server (NTRS)

    Radke, C. R.; Meyer, T. R.

    2014-01-01

    The spray characteristics of a Liquid-Liquid Double Swirl Coaxial Injector were studied using noninvasive Optical, Laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler Particle Analysis characterized droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, x-ray radiographs allowed for investigations of sheet thickness and breakup length to be quantified for different recess exits and inlet pressures. Finally Computed Tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.

  16. Efficacy and cost-effectiveness of the 13C-urea breath test as the primary diagnostic investigation for the detection of Helicobacter pylori infection compared to invasive and non-invasive diagnostic tests

    PubMed Central

    Nocon, Marc; Kuhlmann, Alexander; Leodolter, Andreas; Roll, Stephanie; Vauth, Christoph; Willich, Stefan N.; Greiner, Wolfgang

    2009-01-01

    Background Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans. There is a risk factor for gastric or duodenal ulcers, gastric cancer and MALT (Mucosa Associated Lymphoid Tissue)-Lymphomas. There are several invasive and non-invasive methods available for the diagnosis of H. pylori. The 13C-urea breath test is a non-invasive method recommended for monitoring H. pylori eradication therapy. However, this test is not yet used for primary assessment of H. pylori in Germany. Objectives What are the clinical and health economic benefits of the 13C-urea breath test in the primary assessment of H. pylori compared to other invasive and non-invasive methods? Methods A systematic literature search including a hand search was performed for studies investigating test criteria and cost-effectiveness of the 13C-urea breath test in comparison to other methods used in the primary assessment of H. pylori. Only studies that directly compared the 13C-urea breath test to other H. pylori-tests were included. For the medical part, biopsy-based tests were used as the gold standard. Results 30 medical studies are included. Compared to the immunoglobulin G (IgG) test, the sensitivity of the 13C-urea breath test is higher in twelve studies, lower in six studies and one study reports no differences. The specificity is higher in 13 studies, lower in three studies and two studies report no differences. Compared to the stool antigen test, the sensitivity of the 13C-urea breath test is higher in nine studies, lower in three studies and one study reports no difference. The specificity is higher in nine studies, lower in two studies and two studies report no differences. Compared to the urease test, the sensitivity of the 13C-urea breath test is higher in four studies, lower in three studies and four studies report no differences. The specificity is higher in five studies, lower in five studies and one study reports no difference. Compared to histology, the

  17. Reliable, Low Mass, Non-Invasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Tovey, M.

    1999-01-01

    Mass is a major driver for future spacecraft and missions exposed to high radiation levels (i.e. Europa Orbiter) present even more challenge. A variety of non-invasive measurement techniques are in development that enables determination of pressures within a propulsion network.

  18. Non-invasive measurement of cholesterol in human blood by impedance technique: an investigation by 3D finite element field modelling

    NASA Astrophysics Data System (ADS)

    Aristovich, Ekaterina; Khan, Sanowar

    2013-06-01

    This paper concerns detection of particle concentration (e.g. cholesterol) in conductive media (e.g. human blood) by impedance technique. The technique is based on changes in the impedance measurement across a given conducting medium due to changes in the particle concentration. The impedance is calculated by calculating the current through the conducting media produced by electric field distribution between two electrodes. This is done by modelling and computation of 3D electric fields between the electrodes for known voltages applied between them using the well-known finite element method (FEM). The complexity of such FE models is attributed to particle distribution, their geometric and material parameters, and their shape and size which can be of many orders of magnitude smaller than the overall problem domain under investigation. This paper overcomes this problem by adopting an effective particle coagulation (aggregation) strategy in FE modelling without significantly affecting the accuracy of field computation.

  19. Non-invasive treatment options for focal cortical dysplasia

    PubMed Central

    WANG, TING-TING; ZHOU, DONG

    2016-01-01

    Focal cortical dysplasia (FCD) presents a strong clinical challenge especially for the treatment of the associated epilepsy. Epilepsy in FCD is often treatment-resistant and constitutes 50% of treatment-resistant cases. Antiepileptic drugs (AEDs) have been widely used in the treatment of FCD. However, evidence to suggest their specific effect on the treatment of FCD remains to be established. In view of this resistance, several alternative treatments have been suggested. Although treatment currently involves surgical management, non-invasive treatments have been identified. The aim of the present review, was to assess non-invasive management strategies including, i) mammalian target of rapamycin (mTOR) inhibitors, ii) ketogenic diet (KD), and iii) vagus nerve stimulation (VNS). In addition, we discussed the literature available regarding the use of AEDs in FCD. Experiments conducted with mammals detailing rapamycin gene mutations in FCD have produced vital information for exploring treatment options using mTOR inhibitors. Of note is the importance of KD in children with FCD. This diet has been shown to modify disease progression by attenuating chromatin modification, a master regulator for gene expression and functional adaptation of the cell. FCD has also been studied widely with neurostimulation techniques. The outcomes of these techniques have been found to be variable. For widespread dysplasias, VNS has been shown to produce responder rates of >50%. Nevertheless, non-invasive cranial nerve stimulation techniques such as transcutaneous VNS and non-invasive VNS are gaining better patient compatibility, albeit their efficacy remains to be established. PMID:27168769

  20. Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy

    PubMed Central

    QIU, SUFANG; XU, YUANJI; HUANG, LINGLING; ZHENG, WEI; HUANG, CHAOBIN; HUANG, SHAOHUA; LIN, JINYONG; LIN, DUO; FENG, SHANGYUAN; CHEN, RONG; PAN, JIANJI

    2016-01-01

    The present study evaluated the use of saliva surface-enhanced Raman spectroscopy (SERS) for the detection of non-invasive nasopharyngeal carcinoma (NPC). SERS measurements were taken from 62 saliva samples, of which 32 were from NPC patients and 30 from healthy volunteers. Notable biochemical Raman bands in the SERS spectra were tentatively assigned to various saliva components. The saliva SERS spectra obtained from the NPC patients and the healthy volunteers were also analyzed by multivariate statistical techniques based on principal component analysis and linear discriminant analysis (PCA-LDA). Significant differences were observed between the saliva SERS spectral intensities for NPC patients and healthy volunteers, particularly at 447, 496, 635, 729, 1134, 1270 and 1448 cm−1, which primarily contained signals associated with proteins, nucleic acids, fatty acids, glycogen and collagen. The classification results based on the PCA-LDA method provided a relatively high diagnostic sensitivity of 86.7%, specificity of 81.3% and diagnostic accuracy of 83.9% for NPC identification. The results from the present study demonstrate that saliva SERS analysis used in conjunction with PCA-LDA diagnostic algorithms possesses a promising clinical application for the non-invasive detection of NPC. PMID:26870300

  1. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples; Jerome Eyer

    2001-05-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford.

  2. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  3. Non invasive tools for the diagnosis of liver cirrhosis

    PubMed Central

    Soresi, Maurizio; Giannitrapani, Lydia; Cervello, Melchiorre; Licata, Anna; Montalto, Giuseppe

    2014-01-01

    Liver cirrhosis (LC), the end stage of many forms of chronic hepatitis of different etiologies is a diffuse process characterized by fibrosis and the conversion of normal liver architecture into structurally abnormal nodules surrounded by annular fibrosis. This chronic progressive clinical condition, leads to liver cell failure and portal hypertension, which can favour the onset of hepatocellular carcinoma. Defining the phase of the natural history is crucial for therapeutic choice and prognosis. Liver biopsy is currently considered the best available standard of reference but it has some limits, so alternative tools have been developed to substitute liver biopsy when assessing liver fibrosis. Serum markers offer a cost-effective alternative to liver biopsy being less invasive and theoretically without complications. They can be classified into direct and indirect markers which may be used alone or in combination to produce composite scores. Diagnostic imaging includes a number of instruments and techniques to estimate liver fibrosis and cirrhosis like ultrasound (US), US Doppler, contrast enhanced US and Elastography. US could be used for the diagnosis of advanced LC while is not able to evaluate progression of fibrosis, in this case Elastography is more reliable. This review aims to revise the most recent data from the literature about non invasive methods useful in defining liver fibrosis. PMID:25561782

  4. Application of optical non-invasive methods in skin physiology

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  5. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies.

    PubMed

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-01-01

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring. PMID:26852676

  6. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    PubMed Central

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-01-01

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring. PMID:26852676

  7. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  8. Cellular phone enabled non-invasive tissue classifier.

    PubMed

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554

  9. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  10. Non-invasive prenatal testing: ethical issues explored

    PubMed Central

    de Jong, Antina; Dondorp, Wybo J; de Die-Smulders, Christine E M; Frints, Suzanne G M; de Wert, Guido M W R

    2010-01-01

    This paper explores the ethical implications of introducing non-invasive prenatal diagnostic tests (NIPD tests) in prenatal screening for foetal abnormalities. NIPD tests are easy and safe and can be performed early in pregnancy. Precisely because of these features, it is feared that informed consent may become more difficult, that both testing and selective abortion will become ‘normalized', and that there will be a trend towards accepting testing for minor abnormalities and non-medical traits as well. In our view, however, the real moral challenge of NIPD testing consists in the possibility of linking up a technique with these features (easy, safe and early) with new genomic technologies that allow prenatal diagnostic testing for a much broader range of abnormalities than is the case in current procedures. An increase in uptake and more selective abortions need not in itself be taken to signal a thoughtless acceptance of these procedures. However, combining this with considerably enlarging the scope of NIPD testing will indeed make informed consent more difficult and challenge the notion of prenatal screening as serving reproductive autonomy. If broad NIPD testing includes later-onset diseases, the ‘right not to know' of the future child will become a new issue in the debate about prenatal screening. With regard to the controversial issue of selective abortion, it may make a morally relevant difference that after NIPD testing, abortion can be done early. A lower moral status may be attributed to the foetus at that moment, given the dominant opinion that the moral status of the foetus progressively increases with its development. PMID:19953123

  11. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Meglinski, I V

    2011-04-30

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo. (optical technologies in biophysics and medicine)

  12. Multimodal imaging of vascular network and blood microcirculation by optical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Meglinski, I. V.

    2011-04-01

    We present a multimodal optical diagnostic approach for simultaneous non-invasive in vivo imaging of blood and lymphatic microvessels, utilising a combined use of fluorescence intravital microscopy and a method of dynamic light scattering. This approach makes it possible to renounce the use of fluorescent markers for visualisation of blood vessels and, therefore, significantly (tenfold) reduce the toxicity of the technique and minimise side effects caused by the use of contrast fluorescent markers. We demonstrate that along with the ability to obtain images of lymph and blood microvessels with a high spatial resolution, current multimodal approach allows one to observe in real time permeability of blood vessels. This technique appears to be promising in physiology studies of blood vessels, and especially in the study of peripheral cardiovascular system in vivo.

  13. Evolving imaging techniques in diagnostic strategies of pulmonary embolism.

    PubMed

    Robert-Ebadi, Helia; Le Gal, Grégoire; Righini, Marc

    2016-04-01

    Modern non invasive diagnostic strategies for pulmonary embolism (PE) rely on the sequential use of clinical probability assessment, D-dimer measurement and thoracic imaging tests. Planar ventilation/perfusion (V/Q) scintigraphy was the cornerstone for more than two decades and has now been replaced by computed tomography pulmonary angiography (CTPA). Diagnostic strategies using CTPA are very safe to rule out PE and have been well validated in large prospective management outcome studies. With the widespread use of CTPA, concerns regarding radiation and overdiagnosis of PE have paved the way for investigating new diagnostic modalities. V/Q single photon emission tomography has arisen as a highly accurate test and a potential alternative to CTPA. However, prospective management outcome studies are still lacking and are warranted before implementation in everyday clinical practice. PMID:26691634

  14. Non-invasive and label-free detection of oral squamous cell carcinoma using saliva surface-enhanced Raman spectroscopy and multivariate analysis.

    PubMed

    Connolly, Jennifer M; Davies, Karen; Kazakeviciute, Agne; Wheatley, Antony M; Dockery, Peter; Keogh, Ivan; Olivo, Malini

    2016-08-01

    Reported here is the application of silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) as a label-free, non-invasive technique for detection of oral squamous cell cancer (OSCC) using saliva and desquamated oral cells. A total of 180 SERS spectra were acquired from saliva and 120 SERS spectra from oral cells collected from normal healthy individuals and from confirmed oropharyngeal cancer patients. Notable biochemical peaks in the SERS spectra were tentatively assigned to various components. Data were subjected to multivariate statistical techniques including principal component analysis, linear discriminate analysis (PCA-LDA) and logistic regression (LR) revealing a sensitivity of 89% and 68% and a diagnostic accuracy of 73% and 60% for saliva and oral cells, respectively. The results from this study demonstrate the potential of saliva and oral cell SERS combined with PCA-LDA or PCA-LR diagnostic algorithms as a promising clinical adjunct for the non-invasive detection of oral cancer. PMID:27015768

  15. Autofluorescence based diagnostic techniques for oral cancer

    PubMed Central

    Balasubramaniam, A. Murali; Sriraman, Rajkumari; Sindhuja, P.; Mohideen, Khadijah; Parameswar, R. Arjun; Muhamed Haris, K. T.

    2015-01-01

    Oral cancer is one of the most common cancers worldwide. Despite of various advancements in the treatment modalities, oral cancer mortalities are more, particularly in developing countries like India. This is mainly due to the delay in diagnosis of oral cancer. Delay in diagnosis greatly reduces prognosis of the treatment and also cause increased morbidity and mortality rates. Early diagnosis plays a key role in effective management of oral cancer. A rapid diagnostic technique can greatly aid in the early diagnosis of oral cancer. Now a day's many adjunctive oral cancer screening techniques are available for the early diagnosis of cancer. Among these, autofluorescence based diagnostic techniques are rapidly emerging as a powerful tool. These techniques are broadly discussed in this review. PMID:26538880

  16. Non-invasive investigation of inflammatory bowel disease

    PubMed Central

    Tibble, JA; Bjarnason, I

    2001-01-01

    The assessment of inflammatory activity in intestinal disease in man can be done using a variety of different techniques. These range from the use of non-invasive acute phase inflammatory markers measured in plasma such as C reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) (both of which give an indirect assessment of disease activity) to the direct assessment of disease activity by intestinal biopsy performed during endoscopy in association with endoscopic scoring systems. Both radiology and endoscopy are conventional for the diagnosis of inflammatory bowel disease (IBD). However these techniques have severe limitations when it comes to assessing functional components of the disease such as activity and prognosis. Here we briefly review the value of two emerging intestinal function tests. Intestinal permeability, although ideally suited for diagnostic screening for small bowel Crohn’s disease, appears to give reliable predictive data for imminent relapse of small bowel Crohn’s disease and it can be used to assess responses to treatment. More significantly it is now clear that single stool assay of neutrophil specific proteins (calprotectin, lactoferrin) give the same quantitative data on intestinal inflammation as the 4-day faecal excretion of 111Indium labelled white cells. Faecal calprotectin is shown to be increased in over 95% of patients with IBD and correlates with clinical disease activity. It reliably differentiates between patients with IBD and irritable bowel syndrome. More importantly, at a given faecal calprotectin concentration in patients with quiescent IBD, the test has a specificity and sensitivity in excess of 85% in predicting clinical relapse of disease. This suggests that relapse of IBD is closely related to the degree of intestinal inflammation and suggests that targeted treatment at an asymptomatic stage of the disease may be indicated. PMID:11819811

  17. Non-Invasive Neuromodulation for Headache Disorders.

    PubMed

    Zhu, Shuhan; Marmura, Michael J

    2016-02-01

    Migraine and other chronic headache disorders are common and if inadequately treated, can lead to significant disability. The effectiveness of medications can be limited by side effects, drug interactions, and comorbid diseases necessitating alternative methods. Technological developments in the past 5 years have made it possible to use non-invasive methods of neuromodulation to treat primary headache disorders. This field includes technologies such as supraorbital transcutaneous stimulation (STS), transcranial magnetic stimulation (TMS), and non-invasive vagal nerve stimulation (nVNS). Existing trials show these modalities are safe and well tolerated and can be combined with standard pharmacotherapy. We review the technologies, biological rationales, and trials involving non-invasive neuromodulation for the treatment of primary headache disorders. PMID:26750126

  18. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  19. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  20. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  1. Skin rejuvenation with non-invasive pulsed electric fields.

    PubMed

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P; Albadawi, Hassan; Felix Broelsch, G; Watkins, Michael T; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C; Austen, William G; Yarmush, Martin L

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  2. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    PubMed Central

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  3. Non-invasive microsensors for studying cell/tissue physiology

    NASA Astrophysics Data System (ADS)

    Vanegas, D. C.; Taguchi, M.; Chaturvedi, P.; Burrs, S.; McLamore, E. S.

    2013-05-01

    Non-invasive tools that allow real-time quantification of molecules relevant to metabolism, homeostasis, and cell signaling in cells and tissue are of great importance for studying physiology. Several microsensor technologies have been developed to monitor concentration of molecules such as ions, oxygen, electroactive molecules (e.g., nitric oxide, hydrogen peroxide), and biomolecules (e.g., sugars, hormones). The major challenges for microsensors are overcoming relatively low sensitivity and low signal-to-noise ratio. Modern approaches for enhancing microsensor performance focus on the incorporation of catalytic nanomaterials to increase sensitivity, reduce response time, and increase operating range. To improve signal-to-noise ratio, a non-invasive microsensor modality called self-referencing (SR) is being applied. The SR technique allows measurement of temporal and spatial transport dynamics at the cell, tissue, organ, and organismal level.

  4. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  5. In-vitro and in-vivo diagnostic techniques for prostate cancer: a review.

    PubMed

    McClure, Patrick; Elnakib, Ahmed; Abou El-Ghar, Mohamed; Khalifa, Fahmi; Soliman, Ahmed; El-Diasty, Tarek; Suri, Jasjit S; Elmaghraby, Adel; El-Baz, Ayman

    2014-10-01

    This paper overviews one of the most important, interesting, and challenging problems in oncology, early diagnosis of prostate cancer. Developing effective diagnostic techniques for prostate cancer is of great clinical importance and can improve the effectiveness of treatment and increase the patient's chance of survival. The main focus of this study is to overview the different in-vitro and in-vivo technologies for diagnosing prostate cancer. This review discusses the current clinically used in-vitro cancer diagnostic tools, such as biomarker tests and needle biopsies and including their applications, advantages, and limitations. Moreover, the current in-vitro research tools that focus on the role of nanotechnology in prostate cancer diagnosis have been detailed. In addition to the in-vitro techniques, the current study discusses in detail developed in-vivo non-invasive state-of-the-art Computer-Aided Diagnosis (CAD) systems for prostate cancer based on analyzing Transrectal Ultrasound (TRUS) and different types of magnetic resonance imaging (MRI), e.g., T2-MRI, Diffusion Weighted Imaging (DWI), Dynamic Contrast Enhanced (DCE)-MRI, and multi-parametric MRI, focusing on their implementation, experimental procedures, and reported outcomes. Furthermore, the paper addresses the limitations of the current prostate cancer diagnostic techniques, outlines the challenges that these techniques face, and introduces the recent trends to solve these challenges, which include biomarkers used in in-vitro lab-on-a-chip nanotechnology-based methods. PMID:25992417

  6. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    PubMed Central

    Ghazi, Negar; Arjmand, Mohammad; Akbari, Ziba; Mellati, Ali Owsat; Saheb-Kashaf, Hamid; Zamani, Zahra

    2016-01-01

    Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs) and quadratic discriminant analysis (QDA) modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III) who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients. PMID:27141542

  7. Diagnosis and therapies for gastric non-invasive neoplasia

    PubMed Central

    Kato, Motohiko

    2015-01-01

    There has been a great discrepancy of pathological diagnosis for gastric non-invasive neoplasia/dysplasia between Japanese and western pathologists. In Japan, lesions that most western pathologists diagnose as dysplasia are often considered adenocarcinoma based on nuclear and structural atypia regardless of the presence of invasion. In the Vienna classification, gastric non-invasive intraepithelial neoplasia (NIN) were divided into low grade and high grade (including intra-mucosal cancer of Japanese criteria). The diagnosis by both endoscopy and pathology of biopsy specimen is difficult. Recent advances of diagnostic modality such as magnified endoscopy and imaged enhanced endoscopy is expected to improve the diagnostic yield for NIN. There are two treatment strategies for NIN, observation and diagnostic therapy by endoscopic resection (ER). ER is acceptable because of its less invasiveness and high local control rate, on the other hand, cancer-developing rate of low-grade NIN is reported to be low. Therefore there is controversy for the treatment of gastric NIN. Prospective study based on unified pathological definition is required in the future. PMID:26640329

  8. [Pulmonary non invasive infection by Scedosporium apiospermum].

    PubMed

    Cruz, Rodrigo; Barros, Manuel; Reyes, Mirtha

    2015-08-01

    We reported a case of non-invasive pulmonary infection by Scedosporium apiospermum in 67 years old female with bronchiectasis and caverns secondary to tuberculosis. Diagnosis was made with lung CT and bronchial lavage cultures. The patient was initially treated with itraconazole for six weeks without success and then voriconazole for 16 weeks, with good clinical response. PMID:26436797

  9. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have

    PubMed Central

    Bujanda, Luis

    2016-01-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  10. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.

    PubMed

    Herreros-Villanueva, Marta; Bujanda, Luis

    2016-04-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  11. Congenital coronary artery anomalies silent until geriatric age: non-invasive assessment, angiography tips, and treatment

    PubMed Central

    Rigatelli, Gianluca; Dell'Avvocata, Fabio; Van Tan, Nguyen; Daggubati, Rames; Nanijundappa, Aravinda

    2015-01-01

    Coronary artery anomalies (CAAs) may be discovered more often as incidental findings during the normal diagnostic process for other cardiac diseases or less frequently on the basis of manifestations of myocardial ischemia. The cardiovascular professional may be involved in their angiographic diagnosis, functional assessment and eventual endovascular treatment. A complete angiographic definition is mandatory in order to understand the functional effects and plan any intervention in CAAs: computed tomography and magnetic resonance imaging are useful non-invasive tools to detect three-dimensional morphology of the anomalies and its relationships with contiguous cardiac structures, whereas coronary arteriography remains the gold standard for a definitive anatomic picture. A practical idea of the possible functional significance is mandatory for deciding how to manage CAAs: non-invasive stress tests and in particular the invasive pharmacological stress tests with or without intravascular ultrasound monitoring can assess correctly the functional significance of the most CAAs. Finally, the knowledge of the particular endovascular techniques and material is of paramount importance for achieving technical and clinical success. CAAs represent a complex issue, which rarely involve the cardiovascular professional at different levels. A timely practical knowledge of the main issues regarding CAAs is important in the management of such entities. PMID:25678906

  12. Diagnostics of nonlocal plasmas: advanced techniques

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  13. Non-invasive visual tools for diagnosis of oral cancer and dysplasia: A systematic review

    PubMed Central

    Giovannacci, Ilaria; Vescovi, Paolo; Manfredi, Maddalena

    2016-01-01

    Background Gold standard for the diagnosis of oral dysplasia (OD) oral squamous cell carcinoma (OSCC) and malignant lesions is the histological examination. Several adjunctive diagnostic techniques have been proposed in order to increase the sensitivity (SE) and specificity (SP) of conventional oral examination and to improve the diagnostic first level accuracy. The aim of this study is to perform a systematic review on non-invasive tools for diagnosis of OD and early OSCC. Material and Methods Medline, Scopus, Web of Knowledge databases were searched, using as entry terms “oral dysplasia AND diagnosis” / ”oral cancer AND diagnosis”. Data extracted from each study included number of lesions evaluated, histopathological diagnosis, SE, SP, positive and negative predictive values (PPV and NPV), diagnostic accuracy (DA) and the main conclusions. Results After title and abstract scanning of 11.080 records, we selected 35 articles for full text evaluation. Most evaluated tools were autofluorescence (AF), chemiluminescence (CL), toluidine blu (TL) and chemiluminescence associated with toluidine blue (CLTB). Conclusions There is a great inhomogeneity of the reported values and there is no significant evidence of superiority of one tool over the other. Further clinical trials with a higher level of evidence are necessary in order to assess the real usefulness visual diagnostic tools. Key words:Oral dysplasia, oral cancer, diagnosis, visual diagnostic tool, systematic review. PMID:26946204

  14. Non-invasive estimation of thermal tissue properties by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Appanaboyina, Sunil; Partanen, Ari; Haemmerich, Dieter

    2013-02-01

    Magnetic Resonance guided High-intensity Focused Ultrasound (MR-HIFU) can be used to locally heat tissue while non-invasively monitoring tissue temperature via MR-based thermometry. The goal of this study was to investigate the use of a computational technique based on inverse heat-transfer modeling for the non-invasive measurement of thermal tissue properties from data collected using an MR-HIFU system.

  15. Physiology of non-invasive respiratory support.

    PubMed

    Alexiou, Stamatia; Panitch, Howard B

    2016-06-01

    Non-invasive ventilation (NIV) is used in neonates to treat extrathoracic and intrathoracic airway obstruction, parenchymal lung disease and disorders of control of breathing. Avoidance of airway intubation is associated with a reduction in the incidence of chronic lung disease among preterm infants with respiratory distress syndrome. Use of nasal continuous positive airway pressure (nCPAP) may help establish and maintain functional residual capacity (FRC), decrease respiratory work, and improve gas exchange. Other modes of non-invasive ventilation, which include heated humidified high-flow nasal cannula therapy (HHHFNC), nasal intermittent mandatory ventilation (NIMV), non-invasive pressure support ventilation (NI-PSV), and bi-level CPAP (SiPAP™), have also been shown to provide additional benefit in improving breathing patterns, reducing work of breathing, and increasing gas exchange when compared with nCPAP. Newer modes, such as neurally adjusted ventilatory assist (NAVA), hold the promise of improving patient-ventilator synchrony and so might ultimately improve outcomes for preterm infants with respiratory distress. PMID:26923501

  16. [Non-invasive assessment of fatty liver].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-01

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response. PMID:25819147

  17. Diagnostic reasoning techniques for selective monitoring

    NASA Technical Reports Server (NTRS)

    Homem-De-mello, L. S.; Doyle, R. J.

    1991-01-01

    An architecture for using diagnostic reasoning techniques in selective monitoring is presented. Given the sensor readings and a model of the physical system, a number of assertions are generated and expressed as Boolean equations. The resulting system of Boolean equations is solved symbolically. Using a priori probabilities of component failure and Bayes' rule, revised probabilities of failure can be computed. These will indicate what components have failed or are the most likely to have failed. This approach is suitable for systems that are well understood and for which the correctness of the assertions can be guaranteed. Also, the system must be such that changes are slow enough to allow the computation.

  18. Magnetic separation techniques in diagnostic microbiology.

    PubMed Central

    Olsvik, O; Popovic, T; Skjerve, E; Cudjoe, K S; Hornes, E; Ugelstad, J; Uhlén, M

    1994-01-01

    The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection

  19. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  20. A review on the non-invasive evaluation of skeletal muscle oxygenation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The aim of this review is to conduct a feasibility study of non-invasive evaluation in skeletal muscle oxygenation. This non-invasive evaluation could extract many information using a safe non-invasive method regarding to the oxygenation and microcirculation status in human blood muscle. This brief review highlights the progress of the application of NIRS to evaluate skeletal muscle oxygenation in various activity of human nature from the historical point of view to the present advancement. Since the discovery of non-invasive optical method during 1992, there are many non-invasive techniques uses optical properties on human subject such as near infrared spectroscopy NIRS, optical topography, functional near infrared spectroscopy fNIRS and imaging fNIRI. Furthermore, in this paper we discuss the light absorption potential (LAP) towards chromophores content inside human muscle. Modified beer lambert law was studied in order to build a better understanding toward LAP between chromophores under tissue multilayers in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in skeletal muscle oxygenation. This will cover the advantages and limitation of such application. Thus, these non-invasive techniques could open other possibilities to study muscle performance diagnosis.

  1. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  2. Diagnostics techniques in nonmuscle invasive bladder cancer

    PubMed Central

    Soubra, Ayman; Risk, Michael C.

    2015-01-01

    Introduction: Nonmuscle invasive bladder cancer (NMIBC) is the most common presentation of bladder cancer and is often treatable with endoscopic resection and intravesical therapies. Cystoscopy and urine cytology are the gold standard in diagnosis and surveillance but are limited by their sensitivity in some situations. We seek to provide an overview of recent additions to the diagnostic armamentarium for urologists treating this disease. Methods: Articles were identified through a literature review of articles obtained through PubMed searches including the terms “bladder cancer” and various diagnostic techniques described in the article. Results: A variety of urinary biomarkers are available to assist the diagnosis and management of patients with NMIBC. Many have improved sensitivity over urine cytology, but less specificity. There are certain situations in which this has proved valuable, but as yet these are not part of the standard guidelines for NMIBC. Fluorescence cystoscopy has level 1 evidence demonstrating increased rates of tumor detection and prolonged recurrence-free survival when utilized for transurethral resection. Other technologies seeking to enhance cystoscopy, such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography are still under evaluation. Conclusions: A variety of urine biomarker and adjunctive endoscopic technologies have been developed to assist the management of NMIBC. While some, such as fluorescence cystoscopy, have demonstrated a definite benefit in this disease, others are still finding their place in the diagnosis and treatment of this disease. Future studies should shed light on how these can be incorporated to improve outcomes in NMIBC. PMID:26604438

  3. [Non invasive ventilation in the emergency setting].

    PubMed

    Wilhelm, Laetitia; Della Santa, Vincent; Hanhart, Walter-Alexandre

    2015-08-12

    Before the development of non invasive ventilation (NIV), endotracheal intubation was the only ventilatory therapy available in case of severe respiratory distress and acute respiratory failure. NIV used to be employed in intensive care settings only. Nowadays, the use of NIV has been democratized to include the emergency room, and the pre-hospital care setting for treatment of acute respiratory failure. Cardiogenic pulmonary edema and acute exacerbation of COPD are indications of choice, since NIV improves mortality. The efficiency of the therapy depends on early treatment; however, endotracheal intubation should not be delayed when it becomes necessary. PMID:26449102

  4. Examination of postmortem retinal folds: A non-invasive study.

    PubMed

    Oshima, Toru; Yoshikawa, Hiroshi; Ohtani, Maki; Mimasaka, Sohtaro

    2015-02-01

    The postmortem retinal fold has been previously documented, but its mechanism of formation is not known. All previous studies of the fold involved invasive techniques and the postmortem ocular fundus has yet to be non-invasively examined. Our study used the non-invasive techniques of monocular indirect ophthalmoscopy and ocular echography to examine 79 postmortem eyes of 42 bodies. We examined whether the postmortem retinal fold was associated with postmortem time, position, and/or age. Age was significantly associated with postmortem retinal fold formation (Mann-Whitney U test, P = 0.013), which led us to examine the effect of posterior vitreous detachment (PVD) on retinal folds. The absence of a PVD was statistically associated with the presence of a retinal fold (Fisher's exact test, P < 0.0001). Interestingly, the presence of a PVD was also significantly correlated with retinal fold height (Mann-Whitney U test, P < 0.0001). Therefore, we hypothesized that retinal folds result from postmortem vitreoretinal traction caused by eyeball flaccidity. We also believe that the loss of retinochoroidal hydrostatic pressure plays a role. It is important that forensic pathologists not confuse a postmortem retinal fold with traumatic retinal detachment or perimacular retinal folds caused by child abuse. When child abuse is suspected, forensic pathologists should perform enucleation and a subsequent histological examination for confirmation. PMID:25623189

  5. Ultrahigh-speed non-invasive widefield angiography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Klein, Thomas; Grajciar, Branislav; Schmoll, Tilman; Wieser, Wolfgang; Andre, Raphael; Huber, Robert; Leitgeb, Rainer A.

    2012-07-01

    Retinal and choroidal vascular imaging is an important diagnostic benefit for ocular diseases such as age-related macular degeneration. The current gold standard for vessel visualization is fluorescence angiography. We present a potential non-invasive alternative to image blood vessels based on functional Fourier domain optical coherence tomography (OCT). For OCT to compete with the field of view and resolution of angiography while maintaining motion artifacts to a minimum, ultrahigh-speed imaging has to be introduced. We employ Fourier domain mode locking swept source technology that offers high quality imaging at an A-scan rate of up to 1.68 MHz. We present retinal angiogram over ˜48 deg acquired in a few seconds in a single recording without the need of image stitching. OCT at 1060 nm allows for high penetration in the choroid and efficient separate characterization of the retinal and choroidal vascularization.

  6. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  7. Transbronchial needle aspiration. An underused diagnostic technique.

    PubMed

    Dasgupta, A; Mehta, A C

    1999-03-01

    Despite its proven usefulness, TBNA is not widely used. An American College of Chest Physicians (ACCP) survey showed that only 11.8% of pulmonologists use TBNA. Most pulmonologists in the 1980s were not formally trained in TBNA. This lack of training has unfortunately translated to minimal emphasis on TBNA in current training programs in a large number of institutions. Technical problems with the procedure (faulty site selection, incomplete needle penetration, catheter kinking that prevents adequate suction, etc.), the confusing array of needles, low diagnostic yields, unproven concerns regarding the safety of the procedure, inadequate cytopathology support, and bronchoscopic damage have all perpetuated the image of limited usefulness for this procedure. Limitations to the practice of TBNA are: Lack of training during fellowship Technical inadequacies Lack of cytopathologists trained in TBNA interpretation Fear of bronchoscope damage Safety issues Failure to reproduce published successes Reservations regarding usefulness of TBNA results Hands-on experience with TBNA, developing familiarity and expertise with only a few needles, and paying careful attention to anatomy, procedure techniques, and specimen acquisition may all help to increase yield. The following lists how better results can be obtained with TBNA: Preprocedure Review TBNA instruction tapes Attend hands-on courses Practice with lung models Review patient's CAT scans Familiarize with one-two cytology and histology needle Obtain a trained assistant Procedural Identify target site Needle to airway angle at least greater than 45 degrees Insert entire length of the needle Use scope channel to support the catheter Release suction before withdrawing needle (for staging) Specimen acquisition Avoid delay in preparing slides Adequate sampling (at least two) Use smear method for cytology specimen Analyze all samples flush solutions cell block Postprocedure Find an experienced cytopathologist Review your procedure

  8. Non-invasive imaging of microcirculation: a technology review

    PubMed Central

    Eriksson, Sam; Nilsson, Jan; Sturesson, Christian

    2014-01-01

    Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. PMID:25525397

  9. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  10. Non-invasive assessment of skeletal muscle activity

    NASA Astrophysics Data System (ADS)

    Merletti, Roberto; Orizio, Claudio; di Prampero, Pietro E.; Tesch, Per

    2005-10-01

    After the first 3 years (2002-2005), the MAP project has made available: - systems fo electrodes, signal conditioning and digital processing for multichannel simultaneously-detected EMG and MMG as well as for simultaneous electrical stimulation and EMG detection with artifact cancellation. - innovative non-invasive techniques for the extraction of individual motor unit action potentials (MUAPS) and individual motor and MMG contributions from the surface EMG interference signal and the MMG signal. - processing techniques for extractions of indicators of progressive fatigue from the electrically-elicited (M-wave) EMG signal. - techniques for the analysis of dynamic multichannel EMG during cyclic or explosive exercise (in collaboration with project EXER/MAP-MED-027).

  11. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation.

    PubMed

    Sale, Martin V; Mattingley, Jason B; Zalesky, Andrew; Cocchi, Luca

    2015-10-01

    The flexible integration of segregated neural processes is essential to healthy brain function. Advances in neuroimaging techniques have revealed that psychiatric and neurological disorders are characterized by anomalies in the dynamic integration of widespread neural populations. Re-establishing optimal neural activity is an important component of the treatment of such disorders. Non-invasive brain stimulation is emerging as a viable tool to selectively restore both local and widespread neural activity in patients affected by psychiatric and neurological disorders. Importantly, the different forms of non-invasive brain stimulation affect neural activity in distinct ways, which has important ramifications for their clinical efficacy. In this review, we discuss how non-invasive brain stimulation techniques influence widespread neural integration across brain regions. We suggest that the efficacy of such techniques in the treatment of psychiatric and neurological conditions is contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration. PMID:26409343

  12. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    PubMed Central

    Ozawa, Hideo; Watanabe, Toyohiko; Uematsu, Katsutoshi; Sasaki, Katsumi; Inoue, Miyabi; Kumon, Hiromi

    2009-01-01

    Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect) caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1) and the sphincteric urethra (V2) were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1), calculated by Qmax/V1, was lower in the group of bladder outlet obstruction (BOO) vs. control group. Velocity ratio (VR), which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS) will dramatically expand the information on voiding function. PMID:19468440

  13. Non-invasive diagnosis of hepatitis B virus-related cirrhosis

    PubMed Central

    Lee, Sangheun; Kim, Do Young

    2014-01-01

    Chronic hepatitis B (CHB) infection is a major public health problem associated with significant morbidity and mortality worldwide. Twenty-three percent of patients with CHB progress naturally to liver cirrhosis, which was earlier thought to be irreversible. However, it is now known that cirrhosis can in fact be reversed by treatment with oral anti-nucleotide drugs. Thus, early and accurate diagnosis of cirrhosis is important to allow an appropriate treatment strategy to be chosen and to predict the prognosis of patients with CHB. Liver biopsy is the reference standard for assessment of liver fibrosis. However, the method is invasive, and is associated with pain and complications that can be fatal. In addition, intra- and inter-observer variability compromises the accuracy of liver biopsy data. Only small tissue samples are obtained and fibrosis is heterogeneous in such samples. This confounds the two types of observer variability mentioned above. Such limitations have encouraged development of non-invasive methods for assessment of fibrosis. These include measurements of serum biomarkers of fibrosis; and assessment of liver stiffness via transient elastography, acoustic radiation force impulse imaging, real-time elastography, or magnetic resonance elastography. Although significant advances have been made, most work to date has addressed the diagnostic utility of these techniques in the context of cirrhosis caused by chronic hepatitis C infection. In the present review, we examine the advantages afforded by use of non-invasive methods to diagnose cirrhosis in patients with CHB infections and the utility of such methods in clinical practice. PMID:24574713

  14. Comparative diagnostic accuracy of magnetic resonance elastography versus eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven nonalcoholic fatty liver disease: a prospective study

    PubMed Central

    Cui, Jeffrey; Ang, Brandon; Haufe, William; Hernandez, Carolyn; Verna, Elizabeth C.; Sirlin, Claude B.; Loomba, Rohit

    2015-01-01

    Background Two-dimensional magnetic resonance elastography (2D-MRE) is an advanced magnetic resonance method with high diagnostic accuracy for predicting advanced fibrosis in nonalcoholic fatty liver disease (NAFLD) patients. However, no prospective, head-to-head comparisons between 2D-MRE and clinical prediction rules (CPRs) have been performed in patients with biopsy-proven NAFLD. Aim This study compared the diagnostic utility of 2D-MRE against that of eight CPRs (AST:ALT ratio, APRI, BARD, FIB-4, NAFLD Fibrosis Score, Bonacini cirrhosis discriminant score, Lok Index, and NASH CRN model) for predicting advanced fibrosis in a prospective cohort with paired liver biopsy as the gold standard. Methods This is a cross-sectional analysis of a prospective study of 102 patients (58.8% women) with biopsy-proven NAFLD, 2D-MRE, and clinical research assessment within 90 days of biopsy. ROC analysis was performed to assess the performance of 2D-MRE and CPRs for predicting advanced fibrosis. Results The mean (± SD) age and BMI were 51.3 (±14.0) years and 31.7 (±5.5) kg/m2, respectively. 48, 26, 9, 13, and 6 patients had stage 0, 1, 2, 3, and 4 fibrosis, respectively. The area under ROC curve (AUROC) was 0.957 for 2D-MRE and between 0.796 and 0.861 for the CPRs. FIB-4 was the best-performing CPR at predicting advanced fibrosis with AUROC of 0.861. In head-to-head comparisons using the Delong test, 2D-MRE had significantly better AUROC (p < 0.05) than each CPR for predicting advanced fibrosis. Conclusions Compared to CPRs, 2D-MRE provides significantly higher accuracy for advanced fibrosis diagnosis in NAFLD patients. PMID:25873207

  15. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma

    PubMed Central

    GHITA, MIHAELA A.; CARUNTU, CONSTANTIN; ROSCA, ADRIAN E.; KALESHI, HARILLAQ; CARUNTU, ANA; MORARU, LILIANA; DOCEA, ANCA OANA; ZURAC, SABINA; BODA, DANIEL; NEAGU, MONICA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  16. Non-invasive measurments of intense relativistic electron beam size

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; McCuistian, Trent; Moir, David; Rodriguez, Patrick; Broste, William; Johnson, Jeff

    2000-10-01

    To understand relativistic electron beam transport dynamics the size of the beam is often measured using invasive techniques such as imaging the Cerenkov or OTR light emitted from a screen inserted into the beam. These techniques would completely disrupt the DARHT 2 beam, so we are developing a non-invasive method using diamagnetic loops. We show that through conservation of canonical angular momentum the RMS radius of the beam can be found by measuring the magnetic flux excluded by the diamagnetic beam. Furthermore, this measurement is shown to be independent of the details of the beam radial current profile for DARHT 2 parameters. We present results from our test and calibration experiments, as well as results of beam radius measurements on the 20-MeV DARHT 1 accelerator.

  17. Non-invasive Central and Peripheral Stimulation: New Hope for Essential Tremor?

    PubMed Central

    Chalah, Moussa A.; Lefaucheur, Jean-Pascal; Ayache, Samar S.

    2015-01-01

    Essential tremor (ET) is among the most frequent movement disorders. It usually manifests as a postural and kinematic tremor of the arms, but may also involve the head, voice, lower limbs, and trunk. An oscillatory network has been proposed as a neural correlate of ET, and is mainly composed of the olivocerebellar system, thalamus, and motor cortex. Since pharmacological agents have limited benefits, surgical interventions like deep brain stimulation are the last-line treatment options for the most severe cases. Non-invasive brain stimulation techniques, particularly transcranial magnetic or direct current stimulation, are used to ameliorate ET. Their non-invasiveness, along with their side effects profile, makes them an appealing treatment option. In addition, peripheral stimulation has been applied in the same perspective. Hence, the aim of the present review is to shed light on the emergent use of non-invasive central and peripheral stimulation techniques in this interesting context. PMID:26635516

  18. It Takes Two: Non Invasive Brain Stimulation Combined with Neurorehabilitation

    PubMed Central

    Page, Stephen J.; Cunningham, David A; Plow, Ela; Blazak, Brittani

    2015-01-01

    The goal of post-acute neurorehabilitation is to maximize patients' function, ideally by using surviving brain and central nervous system tissue when possible. Yet the structures incorporated into neurorehabilitative approaches often differ from this target, which may explain why efficacy of conventional clinical treatments targeting neurological impairments varies widely. Non-invasive brain stimulation such as with Transcranial Magnetic Stimulation (TMS) and transcranial direct current stimulation (tDCS) offers the possibility of directly targeting brain structures to facilitate or inhibit their activity so as to steer neural plasticity in recovery, and measure neuronal output and interactions for evaluating progress. Latest advances as stereotactic navigation and electric field modeling are enabling more precise targeting of patient's residual structures in diagnosis and therapy. Given its promise, this supplement illustrates the wide-ranging significance of TMS and tDCS in neurorehabilitation, including in stroke, pediatrics, traumatic brain injury, focal hand dystonia, neuropathic pain and spinal cord injury. TMS and tDCS are still not widely used and remain poorly understood in neurorehabilitation. Thus, the present supplement includes articles that highlight ready clinical application of these technologies, including their comparative diagnostic capabilities relative to neuroimaging, their therapeutic benefit, their optimal delivery, the stratification of likely responders, and the variable benefits associated with their clinical use due to interactions between pathophysiology and the innate reorganization of the patient's brain. Overall, the supplement concludes that whether provided in isolation or in combination, non-invasive brain stimulation with neuro-rehabilitation are synergistic in the potential to transform clinical practice. PMID:25813373

  19. Non-invasive assessment of microvascular and endothelial function.

    PubMed

    Cheng, Cynthia; Daskalakis, Constantine; Falkner, Bonita

    2013-01-01

    The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBF(max)/FBF(base) is computed as an estimate of vasodilation, by dividing the mean of the four FBF(max) values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVR(max)) is calculated as the mean arterial pressure (MAP) divided by FBF(max). Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly. The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal

  20. Non-invasive neuroimaging using near-infrared light

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Boas, David A.; Sutton, Jeffrey P.

    2002-01-01

    This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.

  1. A novel, non-invasive diagnostic clinical procedure for the determination of an oxygenation status of chronic lower leg ulcers using peri-ulceral transcutaneous oxygen partial pressure measurements: Results of its application in chronic venous insufficiency (CVI)

    PubMed Central

    Barnikol, Wolfgang K. R.; Pötzschke, Harald

    2012-01-01

    wounds. The hypoxia grades found in all of the chronic wounds was seen to be evenly distributed with values ranging from 0 to 40 mmHg, and therefore extremely inhomogeneous. In terms of oxygenation, chronic wounds are therefore inhomogeneous in two respects: (1) within the wound itself (intra-individual wound inhomogeneity) and (2) between different wounds (inter-individual wound inhomogeneity). Due to the extreme oxygen inhomogeneity, single measurements are not diagnostically useful. In healthy individuals the oxygen inhalation challenge (see above) results in synchronised tcPO2 oscillations occurring at minute rhythms, which are not seen in CVI wounds. These oscillations can be interpreted as a sign of a functioning arterial vasomotor system. The new procedure is suitable for the routine characterisation of chronic wounds in terms of their oxygen status, and correspondingly, their metabolically determining (and limiting) potential for healing and regeneration. The oxygen characteristic K-PO2 can furthermore be used as a warning of impending ulceration, since the oxygen provision worsens over time prior to the demise of the ulcerated tissue, thus making a controlled prophylaxis possible. PMID:22737104

  2. [Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].

    PubMed

    Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J

    2015-11-01

    Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients. PMID:25702198

  3. Non-invasive Ventilation in Premature Infants: Based on Evidence or Habit

    PubMed Central

    Garg, Shalabh; Sinha, Sunil

    2013-01-01

    Despite surfactant and mechanical ventilation being the standard of care for preterm infants with respiratory failure, non-invasive respiratory support is increasingly being employed in neonatal units. The latter can be accomplished in a variety of ways but none of them have been proven so far to be superior to intubation and mechanical ventilation. Nonetheless, they appear to be safe and effective in experienced hands. This article relates to the use of non-invasive forms of respiratory support and evidence is reviewed from the clinical trials which have evaluated the use of these techniques. PMID:24404523

  4. Invasive versus Non Invasive Methods Applied to Mummy Research: Will This Controversy Ever Be Solved?

    PubMed Central

    Moissidou, Despina; Day, Jasmine; Shin, Dong Hoon; Bianucci, Raffaella

    2015-01-01

    Advances in the application of non invasive techniques to mummified remains have shed new light on past diseases. The virtual inspection of a corpse, which has almost completely replaced classical autopsy, has proven to be important especially when dealing with valuable museum specimens. In spite of some very rewarding results, there are still many open questions. Non invasive techniques provide information on hard and soft tissue pathologies and allow information to be gleaned concerning mummification practices (e.g., ancient Egyptian artificial mummification). Nevertheless, there are other fields of mummy studies in which the results provided by non invasive techniques are not always self-explanatory. Reliance exclusively upon virtual diagnoses can sometimes lead to inconclusive and misleading interpretations. On the other hand, several types of investigation (e.g., histology, paleomicrobiology, and biochemistry), although minimally invasive, require direct contact with the bodies and, for this reason, are often avoided, particularly by museum curators. Here we present an overview of the non invasive and invasive techniques currently used in mummy studies and propose an approach that might solve these conflicts. PMID:26345295

  5. Non-invasive assessment of liver fibrosis

    PubMed Central

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K.

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  6. Non-invasive assessment of liver fibrosis.

    PubMed

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  7. Invasive diagnostic techniques in idiopathic interstitial pneumonias.

    PubMed

    Poletti, Venerino; Ravaglia, Claudia; Gurioli, Carlo; Piciucchi, Sara; Dubini, Alessandra; Cavazza, Alberto; Chilosi, Marco; Rossi, Andrea; Tomassetti, Sara

    2016-01-01

    Fibrosing interstitial lung diseases (f-ILDs) represent a heterogeneous group of disorders in which the aetiology may be identified or, not infrequently, remain unknown. Establishing a correct diagnosis of a distinct f-ILD requires a multidisciplinary approach, integrating clinical profile, physiological and laboratory data, radiological appearance and, when appropriate, histological findings. Surgical lung biopsy is still considered the most important diagnostic tool as it is able to provide lung samples large enough for identification of complex patterns such as usual interstitial pneumonitis (UIP) and nonspecific interstitial pneumonitis. However, this procedure is accompanied by significant morbidity and mortality. Bronchoalveolar lavage is still a popular diagnostic tool allowing identification of alternative diagnoses in patients with suspected idiopathic pulmonary fibrosis (IPF) when an increase in lymphocytes is detected. Conventional transbronchial lung biopsy has a very low sensitivity in detecting the UIP pattern and its role in this clinical-radiological context is marginal. The introduction of less invasive methods such as transbronchial cryobiopsy show great promise to clinical practice as they can be used to obtain samples large enough to morphologically support a diagnosis of IPF or other idiopathic interstitial pneumonias, along with fewer complications. Recent advances in the field suggest that less invasive methods of lung sampling, without significant side effects, in combination with other diagnostic methods could replace the need for surgical lung biopsy in the future. Indeed, these new multidisciplinary procedures may become the main diagnostic work-up method for patients with suspected idiopathic interstitial pneumonia. PMID:26682637

  8. A Grab-Bag of Diagnostic Techniques.

    ERIC Educational Resources Information Center

    Harris, Muriel

    1983-01-01

    Describes several diagnostic tools used to determine specific problems of students referred to a writing lab, including structured interviews, protocols (asking a student to compose aloud for 15 to 20 minutes on a short topic), and back-pedaling (questioning what a student already knows about a given topic). (AEA)

  9. Laboratory diagnostic techniques for Entamoeba species.

    PubMed

    Fotedar, R; Stark, D; Beebe, N; Marriott, D; Ellis, J; Harkness, J

    2007-07-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  10. Laboratory Diagnostic Techniques for Entamoeba Species

    PubMed Central

    Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J.

    2007-01-01

    The genus Entamoeba contains many species, six of which (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba polecki, Entamoeba coli, and Entamoeba hartmanni) reside in the human intestinal lumen. Entamoeba histolytica is the causative agent of amebiasis and is considered a leading parasitic cause of death worldwide in humans. Although recent studies highlight the recovery of E. dispar and E. moshkovskii from patients with gastrointestinal symptoms, there is still no convincing evidence of a causal link between the presence of these two species and the symptoms of the host. New approaches to the identification of E. histolytica are based on detection of E. histolytica-specific antigen and DNA in stool and other clinical samples. Several molecular diagnostic tests, including conventional and real-time PCR, have been developed for the detection and differentiation of E. histolytica, E. dispar, and E. moshkovskii in clinical samples. The purpose of this review is to discuss different methods that exist for the identification of E. histolytica, E. dispar, and E. moshkovskii which are available to the clinical diagnostic laboratory. To address the need for a specific diagnostic test for amebiasis, a substantial amount of work has been carried out over the last decade in different parts of the world. The molecular diagnostic tests are increasingly being used for both clinical and research purposes. In order to minimize undue treatment of individuals infected with other species of Entamoeba such as E. dispar and E. moshkovskii, efforts have been made for specific diagnosis of E. histolytica infection and not to treat based simply on the microscopic examination of Entamoeba species in the stool. The incorporation of many new technologies into the diagnostic laboratory will lead to a better understanding of the public health problem and measures to control the disease. PMID:17630338

  11. Development of novel fuel ion ratio diagnostic techniques

    SciTech Connect

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; Conroy, S.; Ericsson, G.; Gorini, G.; Tardocchi, M.; Hellermann, M. von; Lischtschenko, O.; Delabie, E.; Jaspers, R. J. E.

    2010-10-15

    To overcome the challenge of measuring the fuel ion ratio in the core ({rho}<0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

  12. Continuous non-invasive finger blood pressure monitoring in children.

    PubMed

    Tanaka, H; Thulesius, O; Yamaguchi, H; Mino, M; Konishi, K

    1994-06-01

    We evaluated the performance of continuous non-invasive finger arterial pressure measurement using the volume-clamp technique (Finapres). This study was designed to compare finger arterial pressure with brachial blood pressure estimated by the auscultatory method in 217 children (90 boys and 127 girls) aged 4-16 years and in 38 adults (aged 18-45 years). Finger and brachial artery pressure readings were obtained consecutively from the ipsilateral side in the supine position. Finger arterial pressure waveforms were recorded in all children except 4 with small and thin fingers. There was good agreement for systolic pressure with only a slight underestimation of 1.9 mmHg and 5.1 mmHg lower for diastolic pressure. This difference most probably reflects inaccuracy of the auscultatory cuff method rather than an error in the Finapres. There was large inter-individual variability in Finapres recordings which might be due to differences in vasomotor tone, as demonstrated by systolic amplification in 5 patients with anorexia. However, Finapres showed a small within-subject variability (3.8 mmHg for systolic and 4.1 mmHg for diastolic pressure) determined in 5 patients during phenylephrine infusion, and as good reproducibility as the auscultatory method. These results suggest that finger arterial pressure measurement in children older than 6 years of age has similar accuracy as that in adults, and that this method is useful for clinical applications in children, especially for the non-invasive evaluation of autonomic control and cardiovascular reflexes involving transient and rapid blood pressure changes. PMID:7919764

  13. Recent Advances in Beam Diagnostic Techniques

    NASA Astrophysics Data System (ADS)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  14. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  15. Who is Who? Non-invasive Methods to Individually Sex and Mark Altricial Chicks

    PubMed Central

    Adam, Iris; Scharff, Constance; Honarmand, Mariam

    2014-01-01

    Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines. PMID:24893585

  16. Who is who? Non-invasive methods to individually sex and mark altricial chicks.

    PubMed

    Adam, Iris; Scharff, Constance; Honarmand, Mariam

    2014-01-01

    Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines. PMID:24893585

  17. Systolic time intervals: a review of the method in the non-invasive investigation of cardiac function in health, disease and clinical pharmacology.

    PubMed Central

    Hassan, S.; Turner, P.

    1983-01-01

    Measurement of systolic time intervals is a valuable, non-invasive procedure to assess left ventricular performance, particularly when influenced by drugs. In this review, we discuss various factors affecting systolic time intervals, the therapeutic implications of the technique and its place among other non-invasive tests of cardiac function. PMID:6353394

  18. Non invasive monitoring in mechanically ventilated pediatric patients.

    PubMed

    Al-Subu, Awni M; Rehder, Kyle J; Cheifetz, Ira M; Turner, David A

    2014-12-01

    Cardiopulmonary monitoring is a key component in the evaluation and management of critically ill patients. Clinicians typically rely on a combination of invasive and non-invasive monitoring to assess cardiac output and adequacy of ventilation. Recent technological advances have led to the introduction: of continuous non-invasive monitors that allow for data to be obtained at the bedside of critically ill patients. These advances help to identify hemodynamic changes and allow for interventions before complications occur. In this manuscript, we highlight several important methods of non-invasive cardiopulmonary monitoring, including capnography, transcutaneous monitoring, pulse oximetry, and near infrared spectroscopy. PMID:25119483

  19. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging

    PubMed Central

    Calcagni, A; Gibson, J M; Styles, I B; Claridge, E; Orihuela-Espina, F

    2011-01-01

    Purpose To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611 nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool. PMID:21904394

  20. Targeting Neural Endophenotypes of Eating Disorders with Non-invasive Brain Stimulation

    PubMed Central

    Dunlop, Katharine A.; Woodside, Blake; Downar, Jonathan

    2016-01-01

    The term “eating disorders” (ED) encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS). NIBS, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related to rewards and punishment, cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC) initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and the underlying behavioral and neurobiological targets associated with ED. This review will also identify candidate targets for NIBS based on these dimensions and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED. PMID:26909013

  1. Improving non-invasive ventilation documentation.

    PubMed

    Smith, Matthew; Elkheir, Natalie

    2014-01-01

    Record keeping for patients on non-invasive ventilation (NIV) at St. Georges Hospital is poor. The initial NIV prescription is often not recorded, and changes to the NIV prescription or the rationale for the changes (ABG results) are also poorly documented. This leads to confusion for nurses/doctors as to what the correct settings are, meaning patients could receive ineffective ventilation. The use of NIV is also poorly recorded by nursing staff meaning that doctors are unsure if the prescribed NIV is being achieved. This can lead to treatment being escalated unnecessarily in the event of treatment failure. Non-invasive ventilation (NIV) is the provision of ventilatory support in the form of positive pressure via the patient's upper airway using a mask or similar device. NIV is indicated for treatment of acute hypercapnic respiratory failure, of which there are many causes, though COPD is the indication in up to 70% of cases.[1] British Thoracic Society (BTS) guidelines for NIV suggest that the rationale for commencing a patient on NIV and the proposed settings should be clearly documented.[2] Clinicians cannot effectively tailor changes to the patients NIV settings if this information is not clearly recorded, which could lead to increased time requiring NIV or NIV failure. Three main areas were considered important to measure for this project. The initial prescription of the NIV, changes to the NIV settings, and nursing documentation surrounding NIV. A baseline measurement of NIV documentation for two weeks found NIV documentation to globally very poor. NIV was formally prescribed 29% of the time, full detail of intended settings were documented 57% of the time, the decision to commence NIV was discussed with the respiratory consultant/SpR just 29% of the time and on no occasion was a decision regarding escalation of treatment recorded. Eighteen changes were made to the NIV settings. These were formally prescribed 22% of the time and detail of the intended

  2. Modern non-invasive mechanical ventilation turns 25.

    PubMed

    Díaz Lobato, Salvador; Mayoralas Alises, Sagrario

    2013-11-01

    The history of non-invasive mechanical ventilation goes back more than 100 years, but it was not until 1987 when what we could call "modern" non-invasive mechanical ventilation was developed. The description of Delaubier and Rideau of a patient with Duchenne's disease who had been effectively ventilated through a nasal mask marked the start of a new era in the history of non-invasive mechanical ventilation. Over these last 25years, we have witnessed exponential growth in its use, field of activity and technological advances on an exciting fast-paced track. We believe that it is time to review the main milestones that have marked the development of non-invasive mechanical ventilation to date, while paying homage to this therapeutic method that has contributed so much to the advancement of respiratory medicine in the last 25years. PMID:23347549

  3. Comparative analyses of plasma probe diagnostics techniques

    SciTech Connect

    Godyak, V. A.; Alexandrovich, B. M.

    2015-12-21

    The subject of this paper is a comparative analysis of the plasma parameters inferred from the classical Langmuir probe procedure, from different theories of the ion current to the probe, and from measured electron energy distribution function (EEDF) obtained by double differentiation of the probe characteristic. We concluded that the plasma parameters inferred from the classical Langmuir procedure can be subjected to significant inaccuracy due to the non-Maxwellian EEDF, uncertainty of locating the plasma potential, and the arbitrariness of the ion current approximation. The plasma densities derived from the ion part of the probe characteristics diverge by as much as an order of magnitude from the density calculated according to Langmuir procedure or calculated as corresponding integral of the measured EEDF. The electron temperature extracted from the ion part is always subjected to uncertainty. Such inaccuracy is attributed to modification of the EEDF for fast electrons due to inelastic electron collisions, and to deficiencies in the existing ion current theories; i.e., unrealistic assumptions about Maxwellian EEDFs, underestimation of the ion collisions and the ion ambipolar drift, and discounting deformation of the one-dimensional structure of the region perturbed by the probe. We concluded that EEDF measurement is the single reliable probe diagnostics for the basic research and industrial applications of highly non-equilibrium gas discharge plasmas. Examples of EEDF measurements point up importance of examining the probe current derivatives in real time and reiterate significance of the equipment technical characteristics, such as high energy resolution and wide dynamic range.

  4. A computer controlled non-invasive haemodynamic monitoring system.

    PubMed

    McMenemin, I M; Kenny, G N

    1988-10-01

    A system for the non-invasive monitoring, recording and storing haemodynamic indices has been developed using an Apple II microcomputer, a Dinamap automatic arterial pressure monitor and a non-invasive cardiac output monitor based on bio-electrical impedance. This system was used during the induction and maintenance of anaesthesia. Numerical and graphical displays of heart rate, arterial pressure, cardiac output and systemic vascular resistance are available. A print-out of data can be produced for later analysis. PMID:3190976

  5. Aortic stenosis in adults. Non-invasive estimation of pressure differences by continuous wave Doppler echocardiography.

    PubMed Central

    Hegrenaes, L; Hatle, L

    1985-01-01

    The peak and mean aortic transvalvar pressure differences measured invasively and non-invasively by continuous wave Doppler echocardiography were compared in 87 consecutive patients with aortic stenosis. The mean values were calculated from the maximal velocities of the aortic jet recorded with a spectral display of the Doppler frequency shifts and by applying a modified Bernoulli equation. Technically satisfactory velocity curves for estimating the mean pressure differences could not be obtained in three patients and invasive measurements were not obtained in two. In all patients the peak transvalvar pressure difference was calculated since the aortic jet was identified non-invasively. The peak and mean pressure differences measured invasively and non-invasively correlated well--with only minor underestimation of the pressure differences measured with the Doppler technique--regardless of age, sex, and the presence or absence of aortic valvar regurgitation, or other valvar lesions. With a systematic search for the highest velocities in the aortic jet and with on line spectral analysis of the Doppler frequencies the peak and the mean aortic pressure differences can be determined non-invasively with a high degree of precision in almost all patients. Images PMID:4052281

  6. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  7. An optical approach for non-invasive blood clot testing

    NASA Astrophysics Data System (ADS)

    Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon

    2007-02-01

    Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.

  8. Non-invasive experimental determination of a CT source model.

    PubMed

    Alikhani, Babak; Büermann, Ludwig

    2016-01-01

    Non-invasive methods to determine equivalent X-ray source models of a CT scanner are presented. A high-precision technique called TRIC ("Time Resolved Integrated Charge") was developed and used to characterize the bow tie filters (BT) of the CT scanner installed at Physikalisch-Technische Bundesanstalt (PTB). Aluminum (Al) and polymethyl methacrylate (PMMA) equivalent thicknesses of the BT filters at all tube high voltages were evaluated, assuming that those consist of only one material. Thereby two different dose probes were used, a solid state detector and an ionization chamber, the former characterized by a significant and the latter by an almost negligible energy dependence of the air kerma response. A method was developed to correct for the energy dependence of the solid state dose probe. Next, a two-component material was assumed and equivalent BT filters were evaluated. The latter method was also applied using the known real BT filter materials and compared with the shape of the real BT filters. Finally, the results obtained by the TRIC method were compared with those obtained by using the so-called COBRA method ("Characterization Of Bow tie Relative Attenuation"), the latter being more suitable for measurements in a clinical environment. PMID:26602858

  9. Non-Invasive Gait Monitoring in a Ubiquitous Computing House

    NASA Astrophysics Data System (ADS)

    Ohta, Yuji; Motooka, Nobuhisa; Siio, Itiro; Tsukada, Koji; Kambara, Keisuke

    Computers become smaller and cheaper from day to day, and the utilization, as daily life equipments, is now becoming ubiquitous. Therefore, it's essential to discuss the development of applications, as well as the installation of ubiquitous computing technologies into our daily living environments. Based on this idea, in order to investigate how ubiquitous computing can be used in the most efficient way, an experimental house, Ocha House, has been constructed in the campus of Ochanomizu university in 2009. In this study, we described the feature of the design of the experimental house and proposed a non-invasive gait monitoring technique as a healthcare application. Specifically, five wireless accelerometers were fixed on the floor of the house, and the floor vibration was measured when the subject walked along the accelerometers. As a result, the floor acceleration intensity was found to surge at the ground contact, and the gait cycle could be detected. By combining the simple acceleration sensors and the housing structures, human motion monitoring would become less invasive.

  10. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  11. Invasive and non-invasive modalities of imaging carotid stenosis.

    PubMed

    Tang, T Y; U-King-Im, J M; Walsh, S R; Young, V E; Sadat, U; Li, Z Y; Patterson, A J; Varty, K; Gillard, J H

    2009-12-01

    Despite recent therapeutic advances, acute ischemic complications of atherosclerosis remain the primary cause of morbidity and mortality in Western countries, with carotid atherosclerotic disease one of the major preventable causes of stroke. As the impact of this disease challenges our healthcare systems, we are becoming aware that factors influencing this disease are more complex than previously realized. In current clinical practice, risk stratification relies primarily on evaluation of the degree of luminal stenosis and patient symptomatology. Adequate investigation and optimal imaging are important factors that affect the quality of a carotid endarterectomy (CEA) service and are fundamental to patient selection. Digital subtraction angiography is still perceived as the most accurate imaging modality for carotid stenosis and historically has been the cornerstone of most of the major CEA trials but concerns regarding potential neurological complications have generated substantial interest in non-invasive modalities, such as contrast-enhanced magnetic resonance angiography. The purpose of this review is to give an overview to the vascular specialist of the current imaging modalities in clinical practice to identify patients with carotid stenosis. Advantages and disadvantages of each technique are outlined. Finally, limitations of assessing luminal stenosis in general are discussed. This article will not cover imaging of carotid atheroma morphology, function and other emerging imaging modalities of assessing plaque risk, which look beyond simple luminal measurements. PMID:19935602

  12. A non-invasive method of tendon force measurement.

    PubMed

    Pourcelot, Philippe; Defontaine, Marielle; Ravary, Bérangère; Lemâtre, Mickaël; Crevier-Denoix, Nathalie

    2005-10-01

    The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers. PMID:16084214

  13. Attitudes Towards Non-Invasive Prenatal Testing for Aneuploidy Among United States Adults of Reproductive Age

    PubMed Central

    Sayres, Lauren C.; Goodspeed, Taylor A.; Cho, Mildred K.

    2014-01-01

    Objective(s) To determine how adults in the United States (US) view non-invasive prenatal testing using cell-free fetal DNA (cffDNA testing) in order to help estimate uptake. Study Design A national sample of 1,861 US-based adults was surveyed using a validated online survey instrument. The survey was administered by a commercial survey research company. Respondents were randomized to receive a survey about prenatal testing for trisomy 13 and 18 or trisomy 21. Participants were asked to select among testing modalities, including cffDNA testing, and rank the features of testing that they considered most important to decision making. Results There was substantive interest in the use of cffDNA testing rather than traditional screening mechanisms with a minority of respondents reporting that they would support the use of both methods in combination. The lower rates of false negative and false positive test results and the ability to use the test earlier in the pregnancy were the most highly rated benefits of cffDNA testing. Participants expressed strong support for diagnostic confirmation via invasive testing after a positive result from either screening or cffDNA testing. However, almost one-third of participants reported that they would not endorse the use of either invasive or non-invasive prenatal testing. Conclusion(s) There appears to be support for uptake of non-invasive prenatal tests. Clinical guidelines should therefor go forward in providing guidance on how to integrate non-invasive methods into current standard of care. However, our findings indicate that even when accuracy, which is rated by patients as the most important aspect of prenatal testing, is significantly improved over existing screening methods and testing is offered non-invasively, the number of individuals who reported that they would decline any testing remained the same. Attention should therefor be directed at ensuring that the right of informed refusal of prenatal testing is not impacted

  14. Spectrometry techniques in diagnostics of hereditary breast cancer

    NASA Astrophysics Data System (ADS)

    Peresunko, Olexander; Kruk, Tetjana; Voloshynska, Katerina; Gruia, Ion; Gavrila, Camelia; Yermolenko, Sergey; Ivashko, Pavlo; Ushakova, Olga

    2015-02-01

    The aim was to study the possibility of using polarimetry methods of performance evaluation of blood plasma of patients with breast cancer and spectroscopy method in the diagnosis of breast cancer and determine the criteria for their use of non-invasive screening for problems.

  15. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  16. Non-invasive determination of cardiac output by Doppler echocardiography and electrical bioimpedance.

    PubMed Central

    Northridge, D B; Findlay, I N; Wilson, J; Henderson, E; Dargie, H J

    1990-01-01

    Cardiac output measured by thermodilution in 25 patients within 24 hours of acute myocardial infarction was compared with cardiac output measured by Doppler echocardiography (24 patients) and electrical bioimpedance (25 patients). The mean (range) cardiac outputs measured by Doppler (4.03 (2.2-6.0) 1/min) and electrical bioimpedance (3.79 (1.1-6.2) 1/min) were similar to the mean thermodilution value (3.95 (2.1-6.2) 1/min). Both non-invasive techniques agreed closely with thermodilution in most patients. None the less, three results with each method disagreed with thermodilution by more than 1 1/min. Both non-invasive techniques were reproducible and accurate in most patients with acute myocardial infarction. Doppler echocardiography was time consuming and technically demanding. Electrical bioimpedance was simple to use and had the additional advantage of allowing continuous monitoring of the cardiac output. PMID:2317415

  17. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    NASA Astrophysics Data System (ADS)

    McCarthy, B. M.; O'Flynn, B.; Mathewson, A.

    2011-08-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  18. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy?

    PubMed Central

    Chin, Jun L.; Pavlides, Michael; Moolla, Ahmad; Ryan, John D.

    2016-01-01

    Liver fibrosis reflects sustained liver injury often from multiple, simultaneous factors. Whilst the presence of mild fibrosis on biopsy can be a reassuring finding, the identification of advanced fibrosis is critical to the management of patients with chronic liver disease. This necessity has lead to a reliance on liver biopsy which itself is an imperfect test and poorly accepted by patients. The development of robust tools to non-invasively assess liver fibrosis has dramatically enhanced clinical decision making in patients with chronic liver disease, allowing a rapid and informed judgment of disease stage and prognosis. Should a liver biopsy be required, the appropriateness is clearer and the diagnostic yield is greater with the use of these adjuncts. While a number of non-invasive liver fibrosis markers are now used in routine practice, a steady stream of innovative approaches exists. With improvement in the reliability, reproducibility and feasibility of these markers, their potential role in disease management is increasing. Moreover, their adoption into clinical trials as outcome measures reflects their validity and dynamic nature. This review will summarize and appraise the current and novel non-invasive markers of liver fibrosis, both blood and imaging based, and look at their prospective application in everyday clinical care. PMID:27378924

  19. Non-invasive, non-radiological quantification of anteroposterior knee joint ligamentous laxity

    PubMed Central

    Russell, D. F.; Deakin, A. H.; Fogg, Q. A.; Picard, F.

    2013-01-01

    Objectives We performed in vitro validation of a non-invasive skin-mounted system that could allow quantification of anteroposterior (AP) laxity in the outpatient setting. Methods A total of 12 cadaveric lower limbs were tested with a commercial image-free navigation system using trackers secured by bone screws. We then tested a non-invasive fabric-strap system. The lower limb was secured at 10° intervals from 0° to 60° of knee flexion and 100 N of force was applied perpendicular to the tibia. Acceptable coefficient of repeatability (CR) and limits of agreement (LOA) of 3 mm were set based on diagnostic criteria for anterior cruciate ligament (ACL) insufficiency. Results Reliability and precision within the individual invasive and non-invasive systems was acceptable throughout the range of flexion tested (intra-class correlation coefficient 0.88, CR 1.6 mm). Agreement between the two systems was acceptable measuring AP laxity between full extension and 40° knee flexion (LOA 2.9 mm). Beyond 40° of flexion, agreement between the systems was unacceptable (LOA > 3 mm). Conclusions These results indicate that from full knee extension to 40° flexion, non-invasive navigation-based quantification of AP tibial translation is as accurate as the standard validated commercial system, particularly in the clinically and functionally important range of 20° to 30° knee flexion. This could be useful in diagnosis and post-operative evaluation of ACL pathology. Cite this article: Bone Joint Res 2013;2:233–7. PMID:24184443

  20. Flexible bronchoscopy during non-invasive positive pressure mechanical ventilation: are two better than one?

    PubMed

    Scala, Raffaele

    2016-09-01

    Flexible bronchoscopy (FBO) and non-invasive positive pressure ventilation (NIPPV) are largely applied in respiratory and general intensive care units. FBO plays a crucial role for the diagnosis of lung infiltrates of unknown origin and for the treatment of airways obstruction due to bronchial mucous plugging and hemoptysis in critical patients. NIPPV is the first-choice ventilatory strategy for acute respiratory failure (ARF) of different causes as it could be used as prevention or as alternative to the conventional mechanical ventilation (CMV) via endotracheal intubation (ETI). Some clinical scenarios represent contraindications for these techniques such as severe ARF in spontaneous breathing patients for FBO and accumulated tracheo-bronchial secretions in patients with depressed cough for NIPPV. In these contexts, the decision of performing ETI should carefully consider the risk of CMV-correlated complications. An increasing amount of published data suggested the use of FBO during NIPPV in ARF in order to avoid/reduce the need of ETI. Despite a strong rationale for the combined use of the two techniques, there is not still enough evidence for a large-scale application of this strategy in all different clinical scenarios. The majority of the available data are in favor of the "help" given by NIPPV to diagnostic FBO in high-risk spontaneously breathing patients with severe hypoxemia. Preliminary findings report the successful "help" given by early FBO to NIPPV in patients with hypoxemic-hypercapnic ARF who are likely to fail because of hypersecretion. Synergy of FBO and NIPPV application is emerging also to perform ETI in challenging situations, such as predicted difficult laringoscopy and NPPV failure in severely hypoxemic patients. This combined approach should be performed only in centers showing a wide experience with both NIPPV and FBO, where close monitoring and ETI facilities are promptly available. PMID:27012292

  1. Application of non-invasive optical monitoring methodologies to follow and record painting cleaning processes

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Dal Fovo, A.; Striova, J.; Pezzati, L.; Pampaloni, E.; Raffaelli, M.; Barucci, M.

    2015-11-01

    The cleaning of painted artworks, i.e. the critical operation whereby materials are selectively removed from a painted surface by partial thinning or complete elimination of varnish, is one of the most debated conservation operations, being an irreversible process, which may result in chromatic and morphological variations in the painted surface. Due to ageing, the upper layer is subject to darkening and yellowing because of blanching and fading from ultraviolet exposure, dust deposition, and overpainted layers due, for instance, to restoration interventions. This degradation can either alter the original appearance of painting polychromy or cause mechanical failure of the finishes. To address these adverse conditions, a process of examination and analysis is critical to the definition and interpretation of the varnish layer. When investigating the ageing process of old paintings, it is of great importance to obtain insight into the painting technique as practiced in the past, and the first step in gaining this knowledge is, to a large extent, based on the study of the varnish film. An effective control of the process and objective evaluation of its outcome requires therefore instrumental/analytical support. The present study illustrates the successful application of non-invasive optical techniques—such as colorimetry, multispectral reflectography, laser scanning micro-profilometry, and optical coherence tomography—to the monitoring of an Italian fourteenth-century painting cleaning process. Results presented here confirm that optical techniques play a pivotal role in artwork diagnostics, especially with regard to conservation operations, while also indicating their validity when applied to the monitoring of the cleaning process.

  2. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    PubMed

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  3. Non-invasive assessment of human tumour hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study.

    PubMed Central

    Parliament, M. B.; Chapman, J. D.; Urtasun, R. C.; McEwan, A. J.; Golberg, L.; Mercer, J. R.; Mannan, R. H.; Wiebe, L. I.

    1992-01-01

    Non-invasive predictive assays which can confirm the presence or absence of hypoxic cells in human tumours show promise for understanding the natural history of tumour oxygenation, and improving the selection of patient subsets for novel radiotherapeutic strategies. Sensitiser adducts have been proposed as markers for hypoxic cells. Misonidazole analogues radiolabelled with iodine-123 have been developed for the detection of tumour hypoxia using conventional nuclear medicine techniques. In this pilot study, we have investigated one such potential marker, 123I-iodoazomycin arabinoside (123I-IAZA). Patients with advanced malignancies have undergone planar and single-photon emission computed tomographic (SPECT) imaging after intravenous administration of 123I-IAZA. We have observed radiotracer avidity in three out of ten tumours studied to date. Normal tissue activity of variable extent was also seen in the thyroid and salivary glands, upper aerodigestive tract, liver, intestine, and urinary bladder. Quantitative analysis of those images showing radiotracer avidity revealed tumour/normal tissue (T/N) ratios of 2.3 (primary small cell lung carcinoma), 1.9 (primary malignant fibrous histiocytoma) and 3.2 (brain metastasis from small cell lung carcinoma) at 18-24 h post injection. These preliminary data suggest that the use of gamma-emitter labelled 2-nitroimidazoles as diagnostic radiopharmaceuticals is feasible and safe, and that metabolic binding of 123I-IAZA is observed in some, but not all tumours. The inference that tumour 123I-IAZA avidity could be a non-invasive measure of tumour hypoxia deserves independent confirmation with needle oximetry. Images p92-a Figure 2 PMID:1310253

  4. Non-invasive assessment of liver fibrosis in chronic hepatitis B

    PubMed Central

    Branchi, Federica; Conti, Clara Benedetta; Baccarin, Alessandra; Lampertico, Pietro; Conte, Dario; Fraquelli, Mirella

    2014-01-01

    The goal of this review is to provide a comprehensive picture of the role, clinical applications and future perspectives of the most widely used non-invasive techniques for the evaluation of hepatitis B virus (HBV) infection. During the past decade many non-invasive methods have been developed to reduce the need for liver biopsy in staging fibrosis and to overcome whenever possible its limitations, mainly: invasiveness, costs, low reproducibility, poor acceptance by patients. Elastographic techniques conceived to assess liver stiffness, in particular transient elastography, and the most commonly used biological markers will be assessed against their respective role and limitations in staging hepatic fibrosis. Recent evidence highlights that both liver stiffness and some bio-chemical markers correlate with survival and major clinical end-points such as liver decompensation, development of hepatocellular carcinoma and portal hypertension. Thus the non-invasive techniques here discussed can play a major role in the management of patients with chronic HBV-related hepatitis. Given their prognostic value, transient elastography and some bio-chemical markers can be used to better categorize patients with advanced fibrosis and cirrhosis and assign them to different classes of risk for clinically relevant outcomes. Very recent data indicates that the combined measurements of liver and spleen stiffness enable the reliable prediction of portal hypertension and esophageal varices development. PMID:25356021

  5. Non-invasive brain stimulation in early rehabilitation after stroke.

    PubMed

    Blesneag, A V; Popa, L; Stan, A D

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magnetic stimulation frequency, transcranial direct current stimulation polarity, the period and stimulation places in acute and subacute ischemic strokes. The risk of adverse events, the association with motor or language recovery specific training, and the cumulative positive effect evaluation are also discussed. PMID:26361512

  6. Non-invasive online detection of microbial lysine formation in stirred tank bioreactors by using calorespirometry.

    PubMed

    Regestein, Lars; Maskow, Thomas; Tack, Andreas; Knabben, Ingo; Wunderlich, Martin; Lerchner, Johannes; Büchs, Jochen

    2013-05-01

    Non-invasive methods for online monitoring of biotechnological processes without compromising the integrity of the reactor system are very important to generate continuous data. Even though calorimetry has been used in conventional biochemical analysis for decades, it has not yet been specifically applied for online detection of product formation at technical scale. Thus, this article demonstrates a calorespirometric method for online detection of microbial lysine formation in stirred tank bioreactors. The respective heat generation of two bacterial strains, Corynebacterium glutamicum ATCC 13032 (wild-type) and C. glutamicum DM1730 (lysine producer), was compared with the O2 -consumption in order to determine whether lysine was formed. As validation of the proposed calorespirometric method, the online results agreed well with the offline measured data. This study has proven that calorespirometry is a viable non-invasive technique to detect product formation at any time point. PMID:23280310

  7. Non-invasive mechanical ventilation: the benefits of the BiPAP system.

    PubMed

    Teba, L; Marks, P; Benzo, R

    1996-01-01

    Many of the complications with endotracheal intubation and invasive mechanical ventilation can be avoided with the use of non-invasive mechanical ventilation (NIMV). This technique has been especially successful in treating patients with acute respiratory failure (ARF). NIMV improves gas exchange, avoids complications caused by endotracheal intubation, and allows patients to talk and take medications orally. This article reviews our experiences treating 27 patients with ARF with a BiPAP (bi-level positive airway pressure) ventilator. This is a portable unit which allows for selection of different modes of ventilation and adjustment of inspiratory and expiratory pressures. Non-invasive mechanical ventilation should be considered in patients presenting with ARF who are hemodynamically stable and in whom spontaneous breathing is preserved. PMID:8599242

  8. [Non-invasive mechanical ventilation in the treatment of acute heart failure].

    PubMed

    Alfonso Megido, Joaquín; González Franco, Alvaro

    2014-03-01

    When acute heart failure progresses and there is acute cardiogenic pulmonary edema, routine therapeutic measures should be accompanied by other measures that help to correct oxygenation of the patient. The final and most drastic step is mechanical ventilation. Non-invasive ventilation has been developed in the last few years as a method that attempts to improve oxygenation without the need for intubation, thus, in theory, reducing morbidity and mortality in these patients. The present article describes the controversies surrounding the results of this technique and discusses its indications. The article also discusses how to start non-invasive ventilation in patients with acute pulmonary edema from a practical point of view. PMID:24930085

  9. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy: From imaging to electrocardiographic measures

    PubMed Central

    Iacoviello, Massimo; Monitillo, Francesco

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy. The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction. However, this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification. The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients. PMID:25068017

  10. Comparison of invasive and non-invasive blood pressure monitoring during clinical anaesthesia in dogs.

    PubMed

    MacFarlane, Paul D; Grint, Nicola; Dugdale, Alexandra

    2010-03-01

    Monitoring blood pressure during anaesthesia is widely recommended in man and animals. The accuracy of any device used to measure blood pressure is an important consideration when selecting monitoring equipment, the ANSI/AAMI SP10 standard is widely cited in this respect in recent veterinary publications. Blood pressure was monitored using invasive and non-invasive techniques during clinical anaesthesia in 19 dogs. The results were compared using Bland-Altman analysis. The bias (and limits of agreement) between invasive and non-invasive measurement was 7.1 mmHg (+/-34.7) for systolic blood pressure, -1.8 mmHg (+/-27.4) for mean blood pressure and 6.9 mmHg (+/-27.5) for diastolic blood pressure. In a clinical setting the bias between invasive and non-invasive measurement techniques was similar or smaller than laboratory reports, however the limits of agreement were considerably wider suggesting that care should be exercised when interpreting NIBP values. PMID:20306347

  11. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation

    PubMed Central

    Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.

    2015-01-01

    Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245

  12. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation.

    PubMed

    Donati, Fabrizio; Figueroa, C Alberto; Smith, Nicolas P; Lamata, Pablo; Nordsletten, David A

    2015-12-01

    Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245

  13. Assessment of lung function using a non-invasive oscillating gas-forcing technique☆

    PubMed Central

    Clifton, Lei; Clifton, David A.; Hahn, Clive E.W.; Farmery, Andrew D.

    2013-01-01

    Conventional methods for monitoring lung function can require complex, or special, gas analysers, and may therefore not be practical in clinical areas such as the intensive care unit (ICU) or operating theatre. The system proposed in this article is a compact and non-invasive system for the measurement and monitoring of lung variables, such as alveolar volume, airway dead space, and pulmonary blood flow. In contrast with conventional methods, the compact apparatus and non-invasive nature of the proposed method could eventually allow it to be used in the ICU, as well as in general clinical settings. We also propose a novel tidal ventilation model using a non-invasive oscillating gas-forcing technique, where both nitrous oxide and oxygen are used as indicator gases. Experimental results are obtained from healthy volunteers, and are compared with those obtained using a conventional continuous ventilation model. Our findings show that the proposed technique can be used to assess lung function, and has several advantages over conventional methods such as compact and portable apparatus, easy usage, and quick estimation of cardiopulmonary variables. PMID:23702307

  14. Diagnosis of Chagas' cardiomyopathy. Non-invasive techniques.

    PubMed Central

    Puigbó, J. J.; Valecillos, R.; Hirschhaut, E.; Giordano, H.; Boccalandro, I.; Suárez, C.; Aparicio, J. M.

    1977-01-01

    The natural history of Chagas' disease and its manifestations when the heart is involved are detailed clinically and pathologically. Three phases are recognized: the acute phase, lasting from 1-3 months, the latent phase, which may last from 10-20 years, and the chronic phase, which has the most serious manifestations. This phase is subdivided into three clinical stages. An analysis of the varied cardiac manifestations on 235 patients is included. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:412174

  15. Non-invasive, external ultrasonic lipolysis.

    PubMed

    Coleman, Kyle M; Coleman, William P; Benchetrit, Arie

    2009-12-01

    Numerous nonsurgical techniques and devices have sought to reproduce the effectiveness of liposuction. Unfortunately, the vast majority of these has fallen short of adequate results or has been plagued with complications. UltraShape (UltraShape; Yoqneam, Israel) is a device that is able to accomplish the reduction of the subcutaneous fat with a procedure that is both comfortable and leads to good patient satisfaction. Its design of a nonthermal ultrasonic energy is able to produce cavitation leading to fat cell lysis while sparing adjacent blood vessels and nerves. Although the results are not equivalent to surgical results, this device will offer a safe and effective alternative for patients who are apprehensive about undergoing liposuction. PMID:20123426

  16. Non-Invasive Survey of Old Paintings Using Vnir Hyperspectral Sensor

    NASA Astrophysics Data System (ADS)

    Matouskova, E.; Pavelka, K.; Svadlenkova, Z.

    2013-07-01

    Hyperspectral imaging is relatively new method developed primarily for army applications with respect to detection of possible chemical weapon existence and as an efficient assistant for a geological survey. The method is based on recording spectral profile for many hundreds of narrow spectral band. The technique gives full spectral curve of explored pixel which is an unparalleled signature of pixels material. Spectral signatures can then be compared with pre-defined spectral libraries or they can be created with respect to application. A new project named "New Modern Methods of Non-invasive Survey of Historical Site Objects" started at CTU in Prague with the New Year. The project is designed for 4 years and is funded by the Ministry of Culture in the Czech Republic. It is focused on material and chemical composition, damage diagnostics, condition description of paintings, images, construction components and whole structure object analysis in cultural heritage domain. This paper shows first results of the project on painting documentation field as well as used instrument. Hyperspec VNIR by Headwall Photonics was used for this analysis. It operates in the spectral range between 400 and 1000 nm. Comparison with infrared photography is discussed. The goal of this contribution is a non-destructive deep exploration of specific paintings. Two original 17th century paintings by Flemish authors Thomas van Apshoven ("On the Road") and David Teniers the Younger ("The Interior of a Mill") were chosen for the first analysis with a kind permission of academic painter Mr. M. Martan. Both paintings oil painted on wooden panel. This combination was chosen because of the possibility of underdrawing visualization which is supposed to be the most uncomplicated painting combination for this type of analysis.

  17. Limited Clinical Utility of Non-invasive Prenatal Testing for Subchromosomal Abnormalities.

    PubMed

    Lo, Kitty K; Karampetsou, Evangelia; Boustred, Christopher; McKay, Fiona; Mason, Sarah; Hill, Melissa; Plagnol, Vincent; Chitty, Lyn S

    2016-01-01

    The use of massively parallel sequencing of maternal cfDNA for non-invasive prenatal testing (NIPT) of aneuploidy is widely available. Recently, the scope of testing has increased to include selected subchromosomal abnormalities, but the number of samples reported has been small. We developed a calling pipeline based on a segmentation algorithm for the detection of these rearrangements in maternal plasma. The same read depth used in our standard pipeline for aneuploidy NIPT detected 15/18 (83%) samples with pathogenic rearrangements > 6 Mb but only 2/10 samples with rearrangements < 6 Mb, unless they were maternally inherited. There were two false-positive calls in 534 samples with no known subchromosomal abnormalities (specificity 99.6%). Using higher read depths, we detected 29/31 fetal subchromosomal abnormalities, including the three samples with maternally inherited microduplications. We conclude that test sensitivity is a function of the fetal fraction, read depth, and size of the fetal CNV and that at least one of the two false negatives is due to a low fetal fraction. The lack of an independent method for determining fetal fraction, especially for female fetuses, leads to uncertainty in test sensitivity, which currently has implications for this technique's future as a clinical diagnostic test. Furthermore, to be effective, NIPT must be able to detect chromosomal rearrangements across the whole genome for a very low false-positive rate. Because standard NIPT can only detect the majority of larger (>6 Mb) chromosomal rearrangements and requires knowledge of fetal fraction, we consider that it is not yet ready for routine clinical implementation. PMID:26708752

  18. Method for non-invasive detection of ocular melanoma

    DOEpatents

    Lambrecht, Richard M.; Packer, Samuel

    1984-01-01

    There is described an apparatus and method for diagnosing ocular cancer that is both non-invasive and accurate which comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67.

  19. Method for non-invasive detection of ocular melanoma

    DOEpatents

    Lambrecht, R.M.; Packer, S.

    1984-10-30

    An apparatus and method is disclosed for diagnosing ocular cancer that is both non-invasive and accurate. The apparatus comprises two radiation detectors positioned before each of the patient's eyes which will measure the radiation level produced in each eye after the administration of a tumor-localizing radiopharmaceutical such as gallium-67. 2 figs.

  20. Non-invasive Prediction of Pork Loin Tenderness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to develop a non-invasive method to predict tenderness of pork loins. Boneless pork loins (n = 901) were evaluated either on line on the loin boning and trimming line of large-scale commercial plants (n = 465) or at the U.S. Meat Animal Research Center abattoir ...

  1. NON-INVASIVE NEUROTOXICITY ASSAY USING LARVAL MEDAKA

    EPA Science Inventory

    We present a method for non-invasive electrophysiological analysis of rapid escape responses in intact, freely behaving larval medaka (Oryzias latipes) before and after short-term exposure to environmental toxicants. ecordings are obtained as a larval medaka swims in a small cham...

  2. Non-invasive in vivo measurement of macular carotenoids

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  3. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.

    2015-01-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  4. Non-invasive method of measuring cerebral spinal fluid pressure

    NASA Technical Reports Server (NTRS)

    Borchert, Mark S. (Inventor); Lambert, James L. (Inventor)

    2000-01-01

    The invention provides a method of non-invasively determining intracranial pressure from measurements of an eye. A parameter of an optic nerve of the eye is determined, along with an intraocular pressure of the eye. The intracranial pressure may be determined from the intraocular pressure and the parameter.

  5. Strategies for non-invasive delivery of biologics.

    PubMed

    Chung, Seung Woo; Hil-lal, Taslim A; Byun, Youngro

    2012-07-01

    Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system. PMID:22632037

  6. 13CO2 breath tests in non-invasive hepatological diagnosis

    PubMed Central

    Musialik, Joanna; Kasicka-Jonderko, Anna; Buschhaus, Magdalena

    2015-01-01

    In liver diagnostics, a simple, non-invasive test with high sensitivity and specificity is permanently being sought in order to assess the degree of liver damage. In addition to liver biopsy, algorithms using blood parameters or elastometry are used in clinical practice. However, these methods do not provide information about the true liver reserve, so the liver breath test seem to be a promising diagnostic tool. The basis of this test depends on the ability of particular hepatocyte enzyme systems to metabolise a tested substance labelled with a stable carbon isotope. The kinetics of 13CO2 elimination with expiratory air then permits quantitative assessment of the functional liver reserve and the degree of organ damage. In this paper the most commonly used tests, grouped according to the main metabolic pathways, are described. The usefulness of liver breath tests in specific clinical situations, both as a diagnostic and prognostic tool, is presented. PMID:25960807

  7. [The effect of non-invasive mechanical ventilation in postoperative respiratory failure].

    PubMed

    Ozyılmaz, Ezgi; Kaya, Akın

    2012-01-01

    Postoperative respiratory failure is related with the highest mortality and morbidity among all perioperative complications. The most common underlying mechanism of postoperative respiratory failure is the development of atelectasis. Anaesthesia, medications which cause respiratory depression, high FiO2 use, postoperative pain and disruption of muscle forces due to surgery leads to decrease in functional residual capacity and results in atelectasis formation. Atelectasis causes severe hypoxemia due to ventilation, perfusion mismatch, shunt and increased peripheral vascular resistance. Intrathoracic positive pressure is an effective therapeutic option in both prevention and treatment of atelectasis. Non-invasive mechanical ventilation is related with a lower mortality and morbidity rate due to lack of any potential complication risks of endotracheal intubation. Non-invasive mechanical ventilation can be applied as prophylactic or curative. Both of these techniques are related with lower reintubation rates, nosocomial infections, duration of hospitalization and mortality in patients with postoperative respiratory failure. The differences of this therapy from standard application and potential complications should be well known in order to improve prognosis in these group of patients. The primary aim of this review is to underline the pathogenesis of postoperative respiratory failure. The secondary aim is to clarify the optimum method, effect and complications of non-invasive mechanical ventilation therapy under the light of the studies which was performed in specific patient groups. PMID:22779943

  8. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  9. Optical Imaging Techniques for Point-of-care Diagnostics

    PubMed Central

    Zhu, Hongying; Isikman, Serhan O.; Mudanyali, Onur; Greenbaum, Alon; Ozcan, Aydogan

    2012-01-01

    Improving the access to effective and affordable healthcare has long been a global endeavor. In this quest, the development of cost-effective and easy-to-use medical testing equipment that enable rapid and accurate diagnosis is essential to reduce the time and costs associated with healthcare services. To this end, point-of-care (POC) diagnostics plays a crucial role in healthcare delivery in both the developed and developing countries by bringing medical testing to patients, or to sites near patients. As the diagnosis of a wide range of diseases, including various types of cancers and many endemics relies on optical techniques, numerous compact and cost-effective optical imaging platforms have been developed in recent years for use at the POC. Here, we review the state-of-the-art optical imaging techniques that can have significant impact on global health by facilitating effective and affordable POC diagnostics. PMID:23044793

  10. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  11. Non-invasive optical detection of glucose in cell culture nutrient medium

    NASA Technical Reports Server (NTRS)

    Cote, Gerald L.

    1993-01-01

    The objective of the proposed research was to begin the development of a non-invasive optical sensor for measuring glucose concentration in the output medium of cell cultures grown in a unique NASA bioreactor referred to as an integrated rotating-wall vessel (IRWV). The input, a bovine serum based nutrient media, has a known glucose concentration. The cells within the bioreactor digest a portion of the glucose. Thus, the non-invasive optical sensor is needed to monitor the decrease in glucose due to cellular consumption since the critical parameters for sustained cellular productivity are glucose and pH. Previous glucose sensing techniques have used chemical reactions to quantify the glucose concentration. Chemical reactions, however, cannot provide for continuous, real time, non-invasive measurement as is required in this application. Our effort while in the fellowship program was focused on the design, optical setup, and testing of one bench top prototype non-invasive optical sensor using a mid-infrared absorption spectroscopy technique. Glucose has a fundamental vibrational absorption peak in the mid-infrared wavelength range at 9.6 micron. Preliminary absorption data using a CO2 laser were collected at this wavelength for water based glucose solutions at different concentrations and one bovine serum based nutrient medium (GTSF) with added glucose. The results showed near linear absorption responses for the glucose-in-water data with resolutions as high at 108 mg/dl and as low as 10 mg/dl. The nutrient medium had a resolution of 291 mg/dl. The variability of the results was due mainly to thermal and polarization drifts of the laser while the decrease in sensitivity to glucose in the nutrient medium was expected due to the increase in the number of confounders present in the nutrient medium. A multispectral approach needs to be used to compensate for these confounders. The CO2 laser used for these studies was wavelength tunable (9.2 to 10.8 micrometers), however

  12. Low pressure plasma diagnostics by cars and other techniques

    SciTech Connect

    Hata, N. )

    1989-01-01

    Within the past several years, intensive research activities relating amorphous-silicon technology have stimulated plasma-chemical-vapor-deposition (plasma-CVD) diagnostics by laser-spectroscopic techniques. Among them, coherent anti-Stokes Raman spectroscopy (CARS) has attracted much attention because of its great success in combustion diagnostics, and has been employed for low-pressure-plasma studies. Gas-phase species such as SiH{sub 4}, H{sub 2}, Si{sub 2}H{sub 6}, SiH{sub 2}, and GeH{sub 4} have been detected, time dependences of their concentration and spatial profiles of their concentration and rotational temperature have been determined, and the gas-phase mechanisms have been discussed. This talk will employ those results as examples, and discuss (1) the potential of CARS for gas-phase analysis in CVD (including (i) what species are monitored, (ii) what information is obtained, and (iii) what are the advantages and limitations), and (2) some other diagnostic techniques that provide additional information for better understandings of CVD mechanisms.

  13. Non-invasive and invasive imaging of vulnerable coronary plaque.

    PubMed

    Celeng, Csilla; Takx, Richard A P; Ferencik, Maros; Maurovich-Horvat, Pál

    2016-08-01

    Vulnerable plaque is characterized by a large necrotic core and an overlying thin fibrous cap. Non-invasive imaging modalities such as computed tomography angiography (CTA) and magnetic resonance imaging (MRI) allow for the assessment of morphological plaque characteristics, while positron emission tomography (PET) enables the detection of metabolic activity within the atherosclerotic lesions. Invasive imaging modalities such as intravascular ultrasound (IVUS), optical-coherence tomography (OCT), and intravascular MRI (IV-MRI) display plaques at a high spatial resolution. Near-infrared spectroscopy (NIRS) allows for the detection of chemical components of atherosclerotic plaques. In this review, we describe state-of-the-art non-invasive and invasive imaging modalities and stress the combination of their advantages to identify vulnerable plaque features. PMID:27079893

  14. Non invasive ventilation as an additional tool for exercise training.

    PubMed

    Ambrosino, Nicolino; Cigni, Paolo

    2015-01-01

    Recently, there has been increasing interest in the use of non invasive ventilation (NIV) to increase exercise capacity. In individuals with COPD, NIV during exercise reduces dyspnoea and increases exercise tolerance. Different modalities of mechanical ventilation have been used non-invasively as a tool to increase exercise tolerance in COPD, heart failure and lung and thoracic restrictive diseases. Inspiratory support provides symptomatic benefit by unloading the ventilatory muscles, whereas Continuous Positive Airway Pressure (CPAP) counterbalances the intrinsic positive end-expiratory pressure in COPD patients. Severe stable COPD patients undergoing home nocturnal NIV and daytime exercise training showed some benefits. Furthermore, it has been reported that in chronic hypercapnic COPD under long-term ventilatory support, NIV can also be administered during walking. Despite these results, the role of NIV as a routine component of pulmonary rehabilitation is still to be defined. PMID:25874110

  15. LeRC rail accelerators - Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. Previously announced in STAR as N83-35053

  16. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between

  17. [Diagnostic imaging techniques for hepatic metastases from colorectal cancer].

    PubMed

    Mollerup, Talie Khadem; Lorentzen, Torben; Møller, Jakob M; Nørgaard, Henrik; Achiam, Michael P

    2015-07-27

    Hepatic metastases (HM) are amongst the most important prognostic factors in patient survival from colorectal cancer. The diagnostic imaging techniques for accurate detection and characterization of colorectal metastases are therefore vital. In a review of the literature, MRI showed the highest sensitivity for detection of HM lesions < 1 cm, but the amount of MR scanners is insufficient. Contrast-enhanced ultrasound and computed tomography have similar sensitivity for detection of HM, but each method also have limitation such as operator dependency or enhanced risk of cancer due to ionizing radiation. PMID:26238008

  18. [BiPAP (Biphasic Positive Airway Pressure)--an apparatus for non-invasive respiratory support].

    PubMed

    Nørregaard, F O; Vindelev, P O; Juhl, B

    1996-01-22

    Ventilatory support to patients suffering from respiratory insufficiency using a non-invasive technique has gained increasing popularity during the last few years. BiPAP (biphasic positive airway pressure) (Respiconics) offers inspiratory support and expiratory resistance to this group of patients both in the hospital and, in particular, in the home. The apparatus has proven to be effective as for instance a long term support device for patients suffering from neuromuscular diseases, sleep apnoeas and during the postoperative period. It works without pressurized air and is portable. PMID:8638299

  19. Non-invasive temperature measurements by neutron diffraction in aero-engine components

    SciTech Connect

    Holden, T.M.; Root, J.H.; Tennant, D.C.; Leggett, D.

    1995-12-31

    A requirement exists in the aeronautical industry for measuring temperature non-invasively in critical components, such as the turbine disc in an operating engine. Neutron diffraction, unique among nuclear techniques, offers the possibility of measuring both temperature and strain within an operating engine by virtue of the high penetration of neutrons through industrial materials. Static diffraction experiments on Waspaloy and Ti6Al4V showed, by comparison with thermocouples, that both the diffraction peak position and the peak intensity can measure the temperature to within {+-}6 K at 800 K.

  20. A non-invasive test for receptor binding applied to nephrogenic diabetes insipidus.

    PubMed Central

    Britton, K. E.; Tedder, R. S.; Khokhar, A. M.; Brown, N. J.; Davison, A.; Slater, J. D.

    1977-01-01

    Studies in animals have determined the importance of specific receptors to the action of many hormones and drugs. In man, a non-invasive external counting technique has been used and absence of receptor function has been demonstrated in a patient with nephrogenic diabetes insipidus using radioactively labelled arginine vasopressin. This is in contrast to the findings in a patient with pituitary diabetes insipidus and a normal control. These results suggest a model for the study of hormone and drug kinetics in man avoiding multiple samplings of biological fluids. PMID:196275

  1. Non-invasive cardiac mapping in clinical practice: Application to the ablation of cardiac arrhythmias.

    PubMed

    Dubois, Rémi; Shah, Ashok J; Hocini, Mélèze; Denis, Arnaud; Derval, Nicolas; Cochet, Hubert; Sacher, Frédéric; Bear, Laura; Duchateau, Josselin; Jais, Pierre; Haissaguerre, Michel

    2015-01-01

    Ten years ago, electrocardiographic imaging (ECGI) started to demonstrate its efficiency in clinical settings. The initial application to localize focal ventricular arrhythmias such as ventricular premature beats was probably the easiest to challenge and validates the concept. Our clinical experience in using this non-invasive mapping technique to identify the sources of electrical disorders and guide catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats) and ventricular pre-excitation (Wolff-Parkinson-White syndrome) is described here. PMID:26403066

  2. Non-invasive measurements of granular flows by magnetic resonance imaging

    SciTech Connect

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  3. Non-invasive imaging of breast cancer: synthesis and study of novel near-infrared fluorescent estrogen conjugate

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Vishnoi, Gargi; Deodhar, Kodand; Desai, Uday

    2005-04-01

    The use of near-infrared (NIR) spectroscopy to interrogate deeper tissue volume has shown enormous potential for molecular-based non-invasive imaging when coupled with appropriate excitable dyes. As most of the breast cancers are hormone dependent hence determination of the hormonal receptor status gains paramount importance when deciding the treatment regime for the patient. Since proliferations of the breast cancer cells are often driven by estrogen, we focus on to developing a technique to detect estrogen receptor status. As a first step, the objective of this work was to synthesize and characterize one such novel NIR fluorescent (NIRF) conjugate, which could potentially be used to detect estrogen receptors. The conjugate was synthesized by ester formation between 17-b estradiol and a cyanine dye namely: bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. The cyanine dye is a hydrophilic derivative of indocyanine green (ICG). The ester formed was found to have an extra binding ability with the receptor cites as compared to ICG, which was established by the partition coefficient studies. This cyanine dye has a partition coefficient less than 0.005 as compared to that of ICG (>200)[1]. In addition the ester showed enhanced fluorescent quantum yield than ICG. The replacement of the sodium ion in the ester by a larger glucosammonium ion was found to enhance the hydrophilicity and reduce the toxic effect on the cell lines. The excitation and emission peaks for the conjugate were recorded in the NIR region as 750nm and 788nm respectively. The ester developed was tested on the breast cancer cell lines MCF-7 and found non-toxic. The tagging characteristics were pivotal determinants underlying the ability of the fluorescent conjugate in binding the estrogen receptor of the breast cancer cells. This technique offers the potential of non-invasive detection of hormone receptor status in vivo and may help in decreasing the load of unnecessary biopsies

  4. Urine Exosomes for Non-Invasive Assessment of Gene Expression and Mutations of Prostate Cancer

    PubMed Central

    Sadeghi, Neda; Salazar, Guillermo; Shapiro, Edan; Ahn, Jennifer; Lipsky, Michael; Lin, James; Hruby, Greg W.; Badani, Ketan K.; Petrylak, Daniel P.; Benson, Mitchell C.; Donovan, Michael J.; Comper, Wayne D.; McKiernan, James M.

    2016-01-01

    Purpose The analysis of exosome/microvesicle (extracellular vesicles (EVs)) and the RNA packaged within them (exoRNA) has the potential to provide a non-invasive platform to detect and monitor disease related gene expression potentially in lieu of more invasive procedures such as biopsy. However, few studies have tested the diagnostic potential of EV analysis in humans. Experimental Design The ability of EV analysis to accurately reflect prostate tissue mRNA expression was examined by comparing urinary EV TMPRSS2:ERG exoRNA from pre-radical prostatectomy (RP) patients versus corresponding RP tissue in 21 patients. To examine the differential expression of TMPRSS2:ERG across patient groups a random urine sample was taken without prostate massage from a cohort of 207 men including prostate biopsy negative (Bx Neg, n = 39), prostate biopsy positive (Bx Pos, n = 47), post-radical prostatectomy (post-RP, n = 37), un-biopsied healthy age-matched men (No Bx, n = 44), and young male controls (Cont, n = 40). The use of EVs was also examined as a potential platform to non-invasively differentiate Bx Pos versus Bx Neg patients via the detection of known prostate cancer genes TMPRSS2:ERG, BIRC5, ERG, PCA3 and TMPRSS2. Results In this technical pilot study urinary EVs had a sensitivity: 81% (13/16), specificity: 80% (4/5) and an overall accuracy: 81% (17/21) for non-invasive detection of TMPRSS2:ERG versus RP tissue. The rate of TMPRSS2:ERG exoRNA detection was found to increase with age and the expression level correlated with Bx Pos status. Receiver operator characteristic analyses demonstrated that various cancer-related genes could differentiate Bx Pos from Bx Neg patients using exoRNA isolated from urinary EVs: BIRC5 (AUC 0.674 (CI:0.560–0.788), ERG (AUC 0.785 (CI:0.680–0.890), PCA3 (AUC 0.681 (CI:0.567–0.795), TMPRSS2:ERG (AUC 0.744 (CI:0.600–0.888), and TMPRSS2 (AUC 0.637 (CI:0.519–0.754). Conclusion This pilot study suggests that urinary EVs have the potential

  5. Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants

    PubMed Central

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P. Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO2). Thus, measures of CMRO2 are reflective of neuronal viability and provide critical diagnostic information, making CMRO2 an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO2) as a surrogate for cerebral oxygen consumption. However, SO2 is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO2 are not sensitive enough to detect brain injury hours after the insult 1,2, because oxygen consumption and delivery reach equilibrium after acute transients3. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO2 (CMRO2i) 4,5. With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain development

  6. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    PubMed

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  7. Breath Analysis as a Potential and Non-Invasive Frontier in Disease Diagnosis: An Overview

    PubMed Central

    Pereira, Jorge; Porto-Figueira, Priscilla; Cavaco, Carina; Taunk, Khushman; Rapole, Srikanth; Dhakne, Rahul; Nagarajaram, Hampapathalu; Câmara, José S.

    2015-01-01

    Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases. PMID:25584743

  8. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features

    PubMed Central

    Gosnell, Martin E.; Anwer, Ayad G.; Mahbub, Saabah B.; Menon Perinchery, Sandeep; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol A.; Sutton-McDowall, Melanie L.; Thompson, Jeremy G.; Goldys, Ewa M.

    2016-01-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. PMID:27029742

  9. Non-invasive assessment of liver fibrosis in patients with alcoholic liver disease

    PubMed Central

    Lombardi, Rosa; Buzzetti, Elena; Roccarina, Davide; Tsochatzis, Emmanuel A

    2015-01-01

    Alcoholic liver disease (ALD) consists of a broad spectrum of disorders, ranging from simple steatosis to alcoholic steatohepatitis and cirrhosis. Fatty liver develops in more than 90% of heavy drinkers, however only 30%-35% of them develop more advanced forms of ALD. Therefore, even if the current “gold standard” for the assessment of the stage of alcohol-related liver injury is histology, liver biopsy is not reasonable in all patients who present with ALD. Currently, although several non-invasive fibrosis markers have been suggested as alternatives to liver biopsy in patients with ALD, none has been sufficiently validated. As described in other liver disease, the diagnostic accuracy of such tests in ALD is acceptable for the diagnosis of significant fibrosis or cirrhosis but not for lesser fibrosis stages. Existing data suggest that the use of non-invasive tests could be tailored to first tier screening of patients at risk, in order to diagnose early patients with progressive liver disease and offer targeted interventions for the prevention of decompensation. We review these tests and critically appraise the existing evidence. PMID:26494961

  10. Development of non-invasive method for assessment of hepatic steatosis.

    PubMed

    Morikawa, H; Mano, K; Horinaka, H; Matsunaka, T; Matsumoto, Y; Ida, T; Kawaguchi, Y; Wada, K; Kawada, N

    2016-12-01

    Steatosis is a critical feature of liver disease and is considered to play a pivotal role in the progression of nonalcoholic fatty liver disease, as well as being a surrogate marker of metabolic syndrome. The purpose of this study was to develop a non-invasive diagnostic method for assessment of liver steatosis. It is well known that ultrasonic velocity depends on materials and temperature. For example, the ultrasonic velocity in water is 1530m/s at 37°C and 1534m/s at 39°C, while that in fat is 1412m/s at 37°C and 1402m/s at 39°C. On this basis, we thought that the percentage of fat in hepatic steatosis could be assessed by detecting changes of ultrasonic in the liver, caused by warming. In order to confirm the effectiveness of this method, we obtained the ultrasonic velocity changes of tissue phantom including lard oil and the liver of living rabbit by ultrasonic warming, and then succeeded in 2-D imaging of ultrasonic velocity changes of the phantom and the liver of living rabbit. We named this the ultrasonic velocity-change method. The experimental results show the possibility that hepatic steatosis could be characterized using our novel, non-invasive method. PMID:27567038

  11. A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry.

    PubMed

    Laqua, Daniel; Pollnow, Stefan; Fischer, Jan; Ley, Sebastian; Husar, Peter

    2014-01-01

    Arterial oxygen saturation of the fetus is an important parameter for monitoring its physical condition. During labor and delivery the transabdominal non-invasive fetal pulse oximetry could minimize the risk for mother and fetus, compared to other existing invasive examination methods. In this contribution, we developed a physical-like phantom to investigate new sensor circuits and algorithms of a non-invasive diagnostic method for fetal pulse oximetry. Hence, the developed artificial vascular system consists of two independent tube systems representing the maternal and fetal vessel system. The arterial blood pressure is reproduced with a pre-pressure and an artificial vascular system. Each pulse wave can be reproduced, by digital control of a proportional valve, adjustable viscoelastic elements, and resistances. The measurements are performed by pressure transducers, optical sensor units, and a coplanar capacitive sensor. Transmission and reflection measurements have shown that the fetal and maternal pulse waves can be reproduced qualitatively. The measured light represents the transabdominal modulated signal on an abdomen of a pregnant woman. PMID:25571272

  12. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features.

    PubMed

    Gosnell, Martin E; Anwer, Ayad G; Mahbub, Saabah B; Menon Perinchery, Sandeep; Inglis, David W; Adhikary, Partho P; Jazayeri, Jalal A; Cahill, Michael A; Saad, Sonia; Pollock, Carol A; Sutton-McDowall, Melanie L; Thompson, Jeremy G; Goldys, Ewa M

    2016-01-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous autofluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from autofluorescence imaging has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent. Label-free classifications are validated by the analysis of Classification Determinant (CD) antigen expression. The versatility of our method is illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. PMID:27029742

  13. Deconstructing autofluorescence: non-invasive detection and monitoring of biochemistry in cells and tissues (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.

    2016-03-01

    Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.

  14. AB048. A urinary-metabolomics-based panel for non-invasive detection of bladder cancer

    PubMed Central

    Ma, Zhong

    2016-01-01

    Objective Bladder cancer (BCa) is a common malignancy worldwide and has a high probability of recurrence. Early detection is vital to improve the overall survival rate. The common diagnostic modalities, such as cystoscopy and urinary cytology, have their limitations. In this study, potential metabolic biomarkers have been discovered through gas chromatography-mass spectrometry. Based on distinct metabolomics of urine between BCa patients and healthy people, we forged a non-invasive BCa diagnostic model and investigated its performance. Methods This study includes Training Phase, Modeling Phase and Test Phase. During the Training Phase, urine samples were collected from 32 patients diagnosed of bladder cancer and 21 healthy controls. We applied unsupervised principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) model used as a diagnostic model to distinguish two groups. We further constructed logistic regression model using combinations of the metabolites to improve the sensitivity and specificity for early BCa determination. In addition, we screened metabolites which AUC was more than 0.75 for establishing the model of diagnostic panel using logistic regressive analysis. In Test Phase, urine samples from 79 BCa patients and 51 non-BCa controls were subjected to test the diagnostic model. Moreover, by subgroup analysis of BCa, some metabolites were indentified to associate with tumor grade and stage. Results In Training phase, a set of 22 candidate differential metabolites was based on statistical significance and fold difference. Logistic diagnostic model has been established as below: Y=1.3333-8.891X(Glycine)×10-8-4.811X(3-Phosphoglycericacid)×10-5-5.625X(Cytosine)×10-5, with Area Under ROC Curve (AUC) =0.88, sensitivity =78.1% and specificity =95.2%. In Test phase, the efficiency of our diagnostic model shown AUC =0.705, sensitivity =62.0% and specificity =72.5%, better than that of urinary cytology. Besides

  15. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  16. MRI model-based non-invasive differential diagnosis in pulmonary hypertension.

    PubMed

    Lungu, A; Wild, J M; Capener, D; Kiely, D G; Swift, A J; Hose, D R

    2014-09-22

    Pulmonary hypertension(PH) is a disorder characterised by increased mean pulmonary arterial pressure. Currently, the diagnosis of PH relies upon measurements taken during invasive right heart catheterisation (RHC). This paper describes a process to derive diagnostic parameters using only non-invasive methods based upon MRI imaging alone. Simultaneous measurements of main pulmonary artery (MPA) anatomy and flow are interpreted by 0D and 1D mathematical models, in order to infer the physiological status of the pulmonary circulation. Results are reported for 35 subjects, 27 of whom were patients clinically investigated for PH and eight of whom were healthy volunteers. The patients were divided into 3 sub-groups according to the severity of the disease state, one of which represented a negative diagnosis (NoPH), depending on the results of the clinical investigation, which included RHC and complementary MR imaging. Diagnostic indices are derived from two independent mathematical models, one based on the 1D wave equation and one based on an RCR Windkessel model. Using the first model it is shown that there is an increase in the ratio of the power in the reflected wave to that in the incident wave (Wpb/Wptotal) according to the classification of the disease state. Similarly, the second model shows an increase in the distal resistance with the disease status. The results of this pilot study demonstrate that there are statistically significant differences in the parameters derived from the proposed models depending on disease status, and thus suggest the potential for development of a non-invasive, image-based diagnostic test for pulmonary hypertension. PMID:25145313

  17. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  18. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    PubMed Central

    Busschots, Steven; O’Toole, Sharon; O’Leary, John J.; Stordal, Britta

    2014-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. • Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner. • The technique is quick, affordable and eliminates sample manipulation. • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  19. Instrumentation for Non-Invasive Assessment of Cardiovascular Regulation

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.

  20. Towards a smart non-invasive fluid loss measurement system.

    PubMed

    Suryadevara, N K; Mukhopadhyay, S C; Barrack, L

    2015-04-01

    In this article, a smart wireless sensing non-invasive system for estimating the amount of fluid loss, a person experiences while physical activity is presented. The system measures three external body parameters, Heart Rate, Galvanic Skin Response (GSR, or skin conductance), and Skin Temperature. These three parameters are entered into an empirically derived formula along with the user's body mass index, and estimation for the amount of fluid lost is determined. The core benefit of the developed system is the affluence usage in combining with smart home monitoring systems to care elderly people in ambient assisted living environments as well in automobiles to monitor the body parameters of a motorist. PMID:25686913

  1. Non-Invasive Optical Biosensor for Probing Cell Signaling

    PubMed Central

    Fang, Ye

    2007-01-01

    Cell signaling mediated through a cellular target is encoded by spatial and temporal dynamics of downstream signaling networks. The coupling of temporal dynamics with spatial gradients of signaling activities guides cellular responses upon stimulation. Monitoring the integration of cell signaling in real time, if realized, would provide a new dimension for understanding cell biology and physiology. Optical biosensors including resonant waveguide grating (RWG) biosensor manifest a physiologically relevant and integrated cellular response related to dynamic redistribution of cellular matters, thus providing a non-invasive means for cell signaling study. This paper reviews recent progresses in biosensor instrumentation, and theoretical considerations and potential applications of optical biosensors for whole cell sensing.

  2. A simple highly efficient non invasive EMG-based HMI.

    PubMed

    Vitiello, N; Olcese, U; Oddo, C M; Carpaneto, J; Micera, S; Carrozza, M C; Dario, P

    2006-01-01

    Muscle activity recorded non-invasively is sufficient to control a mobile robot if it is used in combination with an algorithm for its asynchronous analysis. In this paper, we show that several subjects successfully can control the movements of a robot in a structured environment made up of six rooms by contracting two different muscles using a simple algorithm. After a small training period, subjects were able to control the robot with performances comparable to those achieved manually controlling the robot. PMID:17945773

  3. A new electric method for non-invasive continuous monitoring of stroke volume and ventricular volume-time curves

    PubMed Central

    2012-01-01

    Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the

  4. Non-Invasive Brain-to-Brain Interface (BBI): Establishing Functional Links between Two Brains

    PubMed Central

    Yoo, Seung-Schik; Kim, Hyungmin; Filandrianos, Emmanuel; Taghados, Seyed Javid; Park, Shinsuk

    2013-01-01

    Transcranial focused ultrasound (FUS) is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI). In conjunction with the use of brain-to-computer interface (BCI) techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat), thus creating a brain-to-brain interface (BBI). The implementation was aimed to non-invasively translate the human volunteer’s intention to stimulate a rat’s brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP) with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer’s intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration) to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications. PMID:23573251

  5. A review of non-invasive imaging methods and applications in contaminant hydrogeology research.

    PubMed

    Werth, Charles J; Zhang, Changyong; Brusseau, Mark L; Oostrom, Mart; Baumann, Thomas

    2010-04-01

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. Four of the most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods' advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  6. A REVIEW OF NON-INVASIVE IMAGING METHODS AND APPLICATIONS IN CONTAMINANT HYDROGEOLOGY RESEARCH

    SciTech Connect

    Werth, Charles J.; Zhang, Changyong; Brusseau, M. L.; Oostrom, Martinus; Baumann, T.

    2010-03-08

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. The most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma-radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods’ advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  7. A technique for the vibration signal analysis in vehicle diagnostics

    NASA Astrophysics Data System (ADS)

    Puchalski, Andrzej

    2015-05-01

    The method of utilising signals of vibration acceleration in the on-line and off-line diagnostics of mechanical defects of internal combustion engines is presented in the paper. The monitored vibration signals of the spark ignition (SI) engine in various maintenance states of the valve system were investigated. The suggested technique is based on mathematical methods of the lower triangular-orthogonal (LQ) factorisation and the singular value decomposition (SVD) of observation subspaces computed on a vibration time series after their angular resampling without any transformations in the frequency domain. The applied algorithm of data processing filters excessive information and allows the selection of diagnostic features (essential from the maintenance point of view) and generates the empirical model and matrix residuals assessed in the no-fault state as being 'zero'. Then, statistical feature vectors, for which the averaged successive singular values of the residuals of the observation subspaces of the vibration signals were assumed as components, were analysed. As a result of this procedure the vectors of lower dimensions reduced to components, allowing the classification of observations within all defined classes, were obtained. On the basis of these vectors a scalar measure - sensitive to the kind of defect - was proposed and verified.

  8. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  9. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited)

    SciTech Connect

    Coda, S.

    2008-10-15

    Plasmas, both in the laboratory and in space, are often not in thermodynamic equilibrium, and the plasma electron distribution function is accordingly non-Maxwellian. Suprathermal electron tails can be generated by external drives, such as rf waves and electric fields, or internal ones, such as instabilities and magnetic reconnection. The variety and importance of the phenomena in which suprathermal electrons play a significant role explains an enduring interest in diagnostic techniques to investigate their properties and dynamics. X-ray bremsstrahlung emission has been studied in hot magnetized plasmas for well over two decades, flanked progressively by electron-cyclotron emission in geometries favoring the high-energy end of the distribution function (high-field-side, vertical, oblique emission), by electron-cyclotron absorption, by spectroscopic techniques, and at lower temperatures, by Langmuir probes and electrostatic analyzers. Continuous progress in detector technology and in measurement and analysis techniques, increasingly sophisticated layouts (multichannel and tomographic systems, imaging geometries), and highly controlled suprathermal generation methods (e.g., perturbative rf modulation) have all been brought to bear in recent years on an increasingly detailed, although far from complete, understanding of suprathermal electron dynamics.

  10. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system

    NASA Astrophysics Data System (ADS)

    Pai, Praful P.; Sanki, Pradyut K.; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  11. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.

    PubMed

    Pai, Praful P; Sanki, Pradyut K; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems. PMID:26133859

  12. Non-Invasive Thrombolysis Using Pulsed Ultrasound Cavitation Therapy – Histotripsy

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Duryea, Alexander P.; Yuan, Lingqian; Gurm, Hitinder S.; Xu, Zhen

    2009-01-01

    Clinically available thrombolysis techniques are limited by either slow reperfusion (drugs) or invasiveness (catheters), and carry significant risks of bleeding. In this study, the feasibility of using histotripsy as an efficient and non-invasive thrombolysis technique was investigated. Histotripsy fractionates soft tissue through controlled cavitation using focused, short, high-intensity ultrasound pulses. In-vitro blood clots formed from fresh canine blood were treated by histotripsy. The treatment was applied using a focused 1-MHz transducer, with 5-cycle pulses at a pulse repetition rate of 1 kHz. Acoustic pressures varying from 2 – 12 MPa peak negative pressure were tested. Our results show that histotripsy can perform effective thrombolysis with ultrasound energy alone. Histotripsy thrombolysis only occurred at peak negative pressure ≥6 MPa when initiation of a cavitating bubble cloud was detected using acoustic backscatter monitoring. Blood clots weighing 330 mg were completely broken down by histotripsy in 1.5 – 5 minutes. The clot was fractionated to debris with >96% weight smaller than 5 μm diameter. Histotripsy thrombolysis treatment remained effective under a fast, pulsating flow (a circulatory model) as well as in static saline. Additionally, we observed that fluid flow generated by a cavitation cloud can attract, trap, and further break down clot fragments. This phenomenon may provide a non-invasive method to filter and eliminate hazardous emboli during thrombolysis. PMID:19854563

  13. Application of fluorescence spectroscopy and multispectral imaging for non-invasive estimation of GFP transfection efficiency

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, M.; Jakovels, D.; Lihačovs, A.; Kilikevičius, A.; Baltušnikas, J.; Kadikis, R.; Šatkauskas, S.

    2014-10-01

    Electroporation and ultrasound induced sonoporation has been showed to induce plasmid DNA transfection to the mice tibialis cranialis muscle. It offers new prospects for gene therapy and cancer treatment. However, numerous experimental data are still needed to deliver the plausible explanation of the mechanisms governing DNA electro- or sono-transfection, as well as to provide the updates on transfection protocols for transfection efficiency increase. In this study we aimed to apply non-invasive optical diagnostic methods for the real time evaluation of GFP transfection levels at the reduced costs for experimental apparatus and animal consumption. Our experimental set-up allowed monitoring of GFP levels in live mice tibialis cranialis muscle and provided the parameters for DNA transfection efficiency determination.

  14. Novel Non-invasive Treatment With High-intensity Focused Ultrasound (HIFU).

    PubMed

    Marinova, M; Rauch, M; Schild, H H; Strunk, H M

    2016-02-01

    Ultrasound is not only used for diagnostic purposes but it also can be applied therapeutically so far that nowadays high-intensity focused ultrasound (HIFU) even represents a novel non-invasive treatment modality for various solid tumors. HIFU works by causing selectively deep tissue destruction of target lesions within the body without harming adjacent and overlying structures. In this article, we present an overview on both the mode of action and requirements for a HIFU treatment as well as on the safety and the current status of indications and possible applications with regard to benign and malignant gynecological diseases. Based on numerous studies and original articles, HIFU proved to be an effective and low-risk treatment option particularly for uterine fibroids and adenomyosis, but it also seems to be effective for breast fibroadenomas or even for breast cancer in special cases and other rare entities. PMID:26251996

  15. Future Imaging Alternatives: The Clinical Non-invasive Modalities in Diagnosis of Oral Squamous Cell Carcinoma (OSCC)

    PubMed Central

    Omar, Esam

    2015-01-01

    Background : Oral squamous cell carcinoma (OSCC) has a remarkably high incidence worldwide, and a fairly serious prognosis. This is encouraging further research into advanced technologies for non-invasive methods of making early diagnoses, ideally in primary care settings. Method : In this article, the available objective Non-imaging methods for diagnosing OSCC have been reviewed. MEDLINE, EMBASE, the Cochrane Library, and CINAHL have been searched for advanced technologies of non-invasive methods in diagnosis of OSCC, including oral brush biopsy, optical biopsy, saliva-based oral cancer diagnosis and others. Results : Toluidine blue, one of the oldest non-invasive methods for diagnosing OSCC, is unreliable because of its subjectivity, as it is dependent on the experience of the examiner. The diagnosis of Oral carcinoma by Oral brush biopsy with exfoliative cytology based on nano-bio-chip sensor platform shows 97–100% sensitivity and 86% specificity. Another promising non-invasive technique for OSCC diagnosis is saliva-based oral cancer diagnosis, which is an alternative to serum testing. Optical biopsy, which uses the technology of spectroscopy, can be used to detect changes at a sub-cellular level; thus, it provides information that may not be available with conventional histology with reliable sensitivity and specificity. Conclusion : It is clearly evident that screening and early effective detection of cancer and pre-cancerous lesions have the potential to reduce the morbidity and mortality of this disease. The imaging technologies are subjective procedures since all of them require interpretation and significantly affected by the examiner experience. These make further research for advanced objective procedures. Saliva-based oral cancer diagnosis and optical biopsy are promising objective non-invasive methods for diagnosing OSCC. They are easy to perform clinically at primary care set. They show promising pathways for future development of more effective

  16. Influence of hemoglobin on non-invasive optical bilirubin sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  17. Modulation of Untruthful Responses with Non-Invasive Brain Stimulation

    PubMed Central

    Fecteau, Shirley; Boggio, Paulo; Fregni, Felipe; Pascual-Leone, Alvaro

    2013-01-01

    Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether non-invasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC) could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience), as well as across modality responses (verbal and motor responses). Results reveal that real, but not sham, transcranial direct current stimulation (tDCS) over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying non-invasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts. PMID:23550273

  18. Non-Invasive Continuous Respiratory Monitoring on General Hospital Wards: A Systematic Review

    PubMed Central

    van Loon, Kim; van Zaane, Bas; Bosch, Els J.; Kalkman, Cor J.; Peelen, Linda M.

    2015-01-01

    Background Failure to recognize acute deterioration in hospitalized patients may contribute to cardiopulmonary arrest, unscheduled intensive care unit admission and increased mortality. Purpose In this systematic review we aimed to determine whether continuous non-invasive respiratory monitoring improves early diagnosis of patient deterioration and reduces critical incidents on hospital wards. Data Sources Studies were retrieved from Medline, Embase, CINAHL, and the Cochrane library, searched from 1970 till October 25, 2014. Study Selection Electronic databases were searched using keywords and corresponding synonyms ‘ward’, ‘continuous’, ‘monitoring’ and ‘respiration’. Pediatric, fetal and animal studies were excluded. Data Extraction Since no validated tool is currently available for diagnostic or intervention studies with continuous monitoring, methodological quality was assessed with a modified tool based on modified STARD, CONSORT, and TREND statements. Data Synthesis Six intervention and five diagnostic studies were included, evaluating the use of eight different devices for continuous respiratory monitoring. Quantitative data synthesis was not possible because intervention, study design and outcomes differed considerably between studies. Outcomes estimates for the intervention studies ranged from RR 0.14 (0.03, 0.64) for cardiopulmonary resuscitation to RR 1.00 (0.41, 2.35) for unplanned ICU admission after introduction of continuous respiratory monitoring, Limitations The methodological quality of most studies was moderate, e.g. ‘before-after’ designs, incomplete reporting of primary outcomes, and incomplete clinical implementation of the monitoring system. Conclusions Based on the findings of this systematic review, implementation of routine continuous non-invasive respiratory monitoring on general hospital wards cannot yet be advocated as results are inconclusive, and methodological quality of the studies needs improvement. Future

  19. A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    NASA Astrophysics Data System (ADS)

    Kogou, Sotiria; Lucian, Andrei; Bellesia, Sonia; Burgio, Lucia; Bailey, Kate; Brooks, Charlotte; Liang, Haida

    2015-11-01

    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near-infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the micro-structure and light scattering properties of the substrate, while XRF detects the elemental composition that indicates the sizing methods and the filler content. The multiple techniques were applied in a study of forty-six nineteenth-century Chinese export watercolours from the Victoria and Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions. A micro-destructive technique of micro-fade spectrometry was used to assess the vulnerability of the paintings to light exposure. Most of the paint and paper substrates were found to be more stable than ISO Blue Wool 3. The palette was found to be composed of mostly traditional Chinese pigments. While the synthetic pigment, Prussian blue, made in Europe, was found on some of the paintings, none was found on the RHS paintings accurately recorded as being between 1817 and 1831 even though it is known that Prussian blue was imported to China during this period. The scale insect dyes, lac and cochineal, were detected on nearly every painting including those that fall within the identified date range. Cochineal is known to have

  20. Non-invasive characterisation of SIX Japanese hand-guards (tsuba)

    NASA Astrophysics Data System (ADS)

    Barzagli, Elisa; Grazzi, Francesco; Civita, Francesco; Scherillo, Antonella; Pietropaolo, Antonino; Festa, Giulia; Zoppi, Marco

    2013-12-01

    In this work we present a systematic study of Japanese sword hand-guards ( tsuba) carried out by means of non-invasive techniques using neutrons. Several tsuba from different periods, belonging to the Japanese Section of the Stibbert Museum, were analysed using an innovative approach to characterise the bulk of the samples, coupling two neutron techniques, namely Time of Flight Neutron Diffraction (ToF-ND) and Nuclear Resonance Capture Analysis (NRCA). The measurements were carried out on the same instrument: the INES beam-line at the ISIS spallation pulsed neutron source (UK). NRCA analysis allows identifying the elements present in the sample gauge volume, while neutron diffraction is exploited to quantify the phase distribution and other micro-structural parameters of the metal specimen. The results show that all samples are made of high-quality metal, either steel or copper alloy, with noticeable changes in composition and working techniques, depending on the place and time of manufacturing.

  1. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  2. Review of invasive urodynamics and progress towards non-invasive measurements in the assessment of bladder outlet obstruction

    PubMed Central

    Griffiths, C. J.; Pickard, R. S.

    2009-01-01

    Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS). It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO). The diagnosis is currently made by plotting the detrusor pressure at maximum flow (pdetQmax) and maximum flow rate (Qmax) on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS. PMID:19468436

  3. A simple approach for non-invasive transcranial optical vascular imaging (nTOVI).

    PubMed

    Kalchenko, Vyacheslav; Israeli, David; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2015-11-01

    In vivo imaging of cerebral vasculature is highly vital for clinicians and medical researchers alike. For a number of years non-invasive optical-based imaging of brain vascular network by using standard fluorescence probes has been considered as impossible. In the current paper controverting this paradigm, we present a robust non-invasive optical-based imaging approach that allows visualize major cerebral vessels at the high temporal and spatial resolution. The developed technique is simple to use, utilizes standard fluorescent dyes, inexpensive micro-imaging and computation procedures. The ability to clearly visualize middle cerebral artery and other major vessels of brain vascular network, as well as the measurements of dynamics of blood flow are presented. The developed imaging approach has a great potential in neuroimaging and can significantly expand the capabilities of preclinical functional studies of brain and notably contribute for analysis of cerebral blood circulation in disorder models. An example of 1 × 1.5 cm color-coded image of brain blood vessels of mouse obtained in vivo by transcranial optical vascular imaging (TOVI) approach through the intact cranium. PMID:25924020

  4. Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience.

    PubMed

    Brunetti, B; Miliani, C; Rosi, F; Doherty, B; Monico, L; Romani, A; Sgamellotti, A

    2016-02-01

    The in situ non invasive methods have experienced a significant development in the last decade because they meet specific needs of analytical chemistry in the field of cultural heritage where  artworks are rarely moved from their locations, sampling is rarely permitted, and analytes are a wide range of inorganic, organic and organometallic substances in complex and precious matrices. MOLAB, a unique collection of integrated mobile instruments, has greatly contributed to demonstrate that it is now possible to obtain satisfactory results in the study of a variety of heritage objects without sampling or moving them to a laboratory. The current chapter describes an account of these results with particular attention to ancient, modern, and contemporary paintings. Several non-invasive methods by portable equipment, including XRF, mid- and near-FTIR, UV-Vis and Raman spectroscopy, as well as XRD, are discussed in detail along with their impact on our understanding of painting materials and execution techniques. Examples of successful applications are given, both for point analyses and hyperspectral imaging approaches. Lines for future perspectives are finally drawn. PMID:27572993

  5. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-08-01

    There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and provide good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ∼20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1,000). Unlike conventional chromophores, nanonaps exhibit non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole-body imaging.

  6. Non-invasive in vivo imaging of calcium signaling in mice.

    PubMed

    Rogers, Kelly L; Picaud, Sandrine; Roncali, Emilie; Boisgard, Raphaël; Colasante, Cesare; Stinnakre, Jacques; Tavitian, Bertrand; Brûlet, Philippe

    2007-01-01

    Rapid and transient elevations of Ca(2+) within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+) concentration ([Ca(2+)]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca(2+)-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca(2+)] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca(2+)] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca(2+)] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca(2+) signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies. PMID:17912353

  7. Electromyography data for non-invasive naturally-controlled robotic hand prostheses

    PubMed Central

    Atzori, Manfredo; Gijsberts, Arjan; Castellini, Claudio; Caputo, Barbara; Hager, Anne-Gabrielle Mittaz; Elsig, Simone; Giatsidis, Giorgio; Bassetto, Franco; Müller, Henning

    2014-01-01

    Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible. PMID:25977804

  8. Non-invasive treatment of intractable posterior epistaxis with hot-water irrigation.

    PubMed

    Schlegel-Wagner, Christoph; Siekmann, Ulrich; Linder, Thomas

    2006-03-01

    Posterior nose bleeding is a frequent and challenging emergency. The authors report their experience using hot water irrigation as a non-invasive treatment option for posterior epistaxis. Between January 2003 and January 2005 a group of 103 patients were enrolled in this prospective study evaluating the effectiveness of a "hot water irrigation" technique to control acute posterior nose bleeding. All patients with posterior epistaxis were included, whereas anterior epistaxis was controlled using conventional methods. The patient's nose was initially anaesthetized with topical Tetracain 4% (without vasoconstriction) and a modified epistaxis-balloon-catheter was introduced into the bleeding nasal cavity obstructing the choana. The bleeding nasal cavity was continuously irrigated using 500 ml of 50 degrees C hot water. In a total of 84 patients (82%) the bleeding was successfully and permanently stopped. Forty-seven of these patients (56%) regularly took antiplatelet agents or anticoagulants. The method failed in 19 of 103 patients (18%). In the group with unsuccessful irrigation, 11 patients (58%) were receiving treatment with antiplatelet agents or anticoagulants. Their proportion was not different from the successfully treated group. The success rate of hot water irrigation as non-invasive treatment of posterior epistaxis appears at least as effective as conventional methods. However it avoids painful packing, hospitalizations, or immediate surgery, and allows the patient to breath normally through his open nasal cavities. PMID:16550958

  9. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines

    PubMed Central

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-01-01

    Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging. PMID:24997526

  10. Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations.

    PubMed

    Hani, Ahmad Fadzil Mohd; Kumar, Dileep; Malik, Aamir Saeed; Ahmad, Raja Mohd Kamil Raja; Razak, Ruslan; Kiflie, Azman

    2015-01-01

    Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques. PMID:24879325

  11. Limitations of Stroke Volume Estimation by Non-Invasive Blood Pressure Monitoring in Hypergravity

    PubMed Central

    2015-01-01

    Background Altitude and gravity changes during aeromedical evacuations induce exacerbated cardiovascular responses in unstable patients. Non-invasive cardiac output monitoring is difficult to perform in this environment with limited access to the patient. We evaluated the feasibility and accuracy of stroke volume estimation by finger photoplethysmography (SVp) in hypergravity. Methods Finger arterial blood pressure (ABP) waveforms were recorded continuously in ten healthy subjects before, during and after exposure to +Gz accelerations in a human centrifuge. The protocol consisted of a 2-min and 8-min exposure up to +4 Gz. SVp was computed from ABP using Liljestrand, systolic area, and Windkessel algorithms, and compared with reference values measured by echocardiography (SVe) before and after the centrifuge runs. Results The ABP signal could be used in 83.3% of cases. After calibration with echocardiography, SVp changes did not differ from SVe and values were linearly correlated (p<0.001). The three algorithms gave comparable SVp. Reproducibility between SVp and SVe was the best with the systolic area algorithm (limits of agreement −20.5 and +38.3 ml). Conclusions Non-invasive ABP photoplethysmographic monitoring is an interesting technique to estimate relative stroke volume changes in moderate and sustained hypergravity. This method may aid physicians for aeronautic patient monitoring. PMID:25798613

  12. In vivo non-invasive multiphoton tomography of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  13. Novel Coherent Laser Spectroscopic Techniques for Minor Species Combustion Diagnostics

    NASA Astrophysics Data System (ADS)

    Mann, Berenice Ann

    Available from UMI in association with The British Library. The aim of this thesis was to research novel coherent laser spectroscopic techniques with the application to combustion diagnostics as a long term objective. Two techniques, Picosecond Absorption Modulated Spectroscopy (PAMS) and Degenerate Four-Wave Mixing Spectroscopy (DFWM), have been experimentally investigated. PAMS is an optical pump-probe type experiment and offers the possibility of making direct, absolute in situ measurements of species concentrations. Results are presented of the PAMS signal against temporal delay for 10^{-6}M rhodamine B solution in methanol, gaseous sodium atoms and in iodine vapour. Iodine was detected at ambient room temperature and atmospheric pressure of air at a concentration of approximately 10ppm. A particular result was the observation of a negative absorption prior to the coherence spike, which has been identified as arising from a coherent transient effect. DFWM has been applied to the measurement of nitrogen dioxide spectra using the pulsed output of a frequency doubled Nd:YAG laser and the tuneable output of an excimer -pumped dye laser DFWM signals have been obtained for the first time in NO_2. Initial characterisation experiments were performed in which DFWM spectra of NO _2 were obtained and identified in the region of 450-480nm. The DFWM signal was investigated as a function of laser intensity, concentration of NO _2 and buffer gas pressure. DFWM has also been demonstrated as a two-dimensional imaging diagnostic in a sodium-seeded premixed acetylene/air slot burner. Further experiments were performed in which single shot DFWM two dimensional images of the distribution of NO_2 in a cold air/NO _2 gas flow have been recorded. Additional images have been obtained of NO_2 doped into a propane-air flame at concentrations of 5000ppm with an estimated spatial resolution of 150 mu m. The images taken in the flame follow the disappearance of NO_2 molecules in the flame

  14. Non-Invasive and Minimally Invasive Imaging Evaluation of CSF Rhinorrhoea – a Retrospective Study with Review of Literature

    PubMed Central

    Vimala, Leena Robinson; Jasper, Anitha; Irodi, Aparna

    2016-01-01

    Summary Background Localization of a cerebrospinal fluid [CSF] fistula is a diagnostic challenge. The choice of an optimal imaging technique is necessary to locate the site of CSF leak which is required for surgical/endoscopic repair of the CSF fistula. Material/Methods Retrospective analysis of imaging was performed in 33 patients who presented with symptoms suggestive of CSF rhinorrhoea over a period of two years. Either a bone defect on high resolution CT [HRCT] or CSF column extending extracranially from the subarachnoid space with or without brain/ meningeal herniation on magnetic resonance [MR] cisternography was considered positive for CSF leak. The MR imaging technique included 1-mm heavily T2-weighted [TR 2000 ms; TE-200 ms] fast spin echo study in coronal and sagittal planes. HRCT sections involved 0.625 to 0.8-mm sections in the coronal plane, with or without axial planes, through the paranasal sinuses, reconstructed in a sharp algorithm and acquired with the patient in prone position. Imaging findings were compared with endoscopic findings, being the gold standard for the assessment of CSF rhinorrhea. Results A total of 25 patients had a combination of HRCT and MR cisternography. The sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV] of both MR cisternography and HRCT together were 93%, 100%, 100% and 50% respectively. Two patients underwent only MR cisternography, 5 patients underwent only HRCT and one patient underwent HRCT, MR cisternography and CT cisternography. Though PPV was 100% in the groups with HRCT alone, MR cisternography alone and combined CT cisternography, HRCT and MR cisternography, the results were not statistically significant as the number of patients in those groups was lower. Conclusions Combination of MR cisternography and HRCT appears to be complementary, accurate and non-invasive and should be considered as optimal imaging modality for pre-op imaging in the evaluation of CSF rhinorrhoea

  15. [Non-invasive brain stimulation for Parkinson's disease].

    PubMed

    Gajo, Gianandrea; Pollak, Pierre; Lüscher, Christian; Benninger, David

    2015-04-29

    Parkinson's disease (PD) is a major socio-economic burden increasing with the aging population. In advanced PD, the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation (NIBS) as an alternative therapeutic tool. NIBS could offer an alternative approach for patients at risk who are excluded from surgery and/or to treat refractory symptoms. The treatment of the freezing of gait, a major cause of disability and falls in PD patients, could be enhanced by transcranial direct current stimulation (tDCS). A therapeutic study is currently performed at the Department of Neurology at the CHUV. PMID:26062225

  16. [Elemental research on intelligent non-invasive temporary pacemakers].

    PubMed

    Nie, Bang-ji; Xu, Long; Xin, Xue-gang; Wang, Cheng-lai; Wu, Min-shan

    2005-01-01

    Some research on intelligent non-invasive temporary pacemakers is introduced in this paper. An industrial computer, some IC chips and other elements are used to construct its hardware, and its software is in C++ language. The experimental device has some intelligent functions of recognizing some arrhythmia. The system has a pacemaker module and an ECG monitor module. Its software includes a main program, a RS-232C communication program, a printer VxD, a pacing control VxD and ECG signal pretreatment and recognizing program and so on. The pacing-generating circuit is employed to make the precision control of pacing current. The communication between industrial-computer system and ECG module is completed through the DLL. The real time processing of ECG signals is based on filter method for a higher recognizing ratio. The system calculates several parameters to recognize certain arrhythmia and uses MIT/BIH database to validate the reliability of ECG recognition. PMID:15875682

  17. [Non-invasive prenatal testing: challenges for future implementation].

    PubMed

    Henneman, Lidewij; Page-Chrisiaens, G C M L Lieve; Oepkes, Dick

    2015-01-01

    The non-invasive prenatal test (NIPT) is an accurate and safe test in which blood from the pregnant woman is used to investigate if the unborn child possibly has trisomy 21 (Down's syndrome), trisomy 18 (Edwards' syndrome) or trisomy 13 (Patau syndrome). Since April 2014 the NIPT has been available in the Netherlands as part of the TRIDENT implementation project for those in whom the first trimester combined test showed an elevated risk (> 1:200) of trisomy, or on medical indication, as an alternative to chorionic villous sampling or amniocentesis. Since the introduction of the NIPT the use of these invasive tests, which are associated with a risk of miscarriage, has fallen steeply. The NIPT may replace the combined test. Also the number of conditions that is tested for can be increased. Modification of current prenatal screening will require extensive discussion, but whatever the modification, careful counseling remains essential to facilitate pregnant women's autonomous reproductive decision making. PMID:26530119

  18. Non-invasive Respiratory Support and Severe Retinopathy of Prematurity.

    PubMed

    Raghu, Rahul; Fisher, Marilyn; Cerone, Jennifer; Barry, Gerard

    2016-01-01

    The authors describe two premature infants who developed stage 3, zone I retinopathy of prematurity (ROP) with plus disease in both eyes, despite limited exposure to supra-ambient oxygen. Both infants received noninvasive respiratory support for several weeks. Both cases are notable because the ROP was more posterior and aggressive than is typical for the gestational ages or birth weights. These cases are insufficient to make definitive conclusions regarding the factors that cause ROP. Further investigation is required to determine if there is an association between the use of non-invasive respiratory support, even in the absence of supra-ambient oxygen, and severe ROP development. [J Pediatr Ophthalmol Strabismus. 2016;53:e47-e50.]. PMID:27537495

  19. Eyeblink conditioning: a non-invasive biomarker for neurodevelopmental disorders.

    PubMed

    Reeb-Sutherland, Bethany C; Fox, Nathan A

    2015-02-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition, abnormalities in the cerebellum, a region of the brain highly involved in EBC, have been implicated in a number of neurodevelopmental disorders including autism spectrum disorders (ASDs). In the current paper, we review studies that have employed EBC as a biomarker for several neurodevelopmental disorders including fetal alcohol syndrome, Down syndrome, fragile X syndrome, attention deficit/hyperactivity disorder, dyslexia, specific language impairment, and schizophrenia. In addition, we discuss the benefits of using such a tool in individuals with ASD. PMID:23942847

  20. Non-invasive ventilation in exacerbations of COPD

    PubMed Central

    Ambrosino, Nicolino; Vagheggini, Guido

    2007-01-01

    Randomized controlled trials have confirmed the evidence and helped to define when and where non invasive mechanical ventilation (NIV) should be the first line treatment of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Noninvasive ventilation has its best indication in moderate-to-severe respiratory acidosis in patients with AECOPD. For this indication, studies conducted in ICU, in wards and in accident and emergency departments confirmed its effectiveness in preventing endotracheal intubation and reducing mortality. The skill of the health care team promotes proper NIV utilization and improves the patient outcome. Patients with severe acidosis or with altered levels of consciousness due to hypercapnic acute respiratory failure are exposed to high risk of NIV failure. In these patients a NIV trial may be attempted in closely monitored clinical settings where prompt endotracheal intubation may be assured. PMID:18268921

  1. Non-invasive Loading Model of Murine Osteoarthritis.

    PubMed

    Poulet, Blandine

    2016-07-01

    Osteoarthritis is the commonest degenerative joint disease, leading to joint pain and disability. The mouse has been the primary animal used for research, due to its size, relatively short lifespan, and the availability of genetically modified animals. Importantly, they show pathogenesis similar to osteoarthritis in humans. Mechanical loading is a major risk factor for osteoarthritis, and various mouse models have been developed to study the role and effects of mechanics on health and disease in various joints. This review describes the main mouse models used to non-invasively apply mechanical loads on joints. Most of the mouse models of osteoarthritis target the knee, including repetitive loading and joint injury such as ligament rupture, but a few studies have also characterised models for elbow, temporomandibular joint, and whole-body vibration spinal loading. These models are a great opportunity to dissect the influences of various types of mechanical input on joint health and disease. PMID:27177901

  2. Non-invasive glucose determination in the human eye

    NASA Astrophysics Data System (ADS)

    Schrader, Wolfgang; Meuer, Petra; Popp, Jürgen; Kiefer, Wolfgang; Menzebach, Johannes-Ulrich; Schrader, Bernhard

    2005-02-01

    For non-invasive in vivo glucose determinations by means of near-infrared spectroscopy, the anterior chamber of the human eye is a promising site. An optical set-up for the non-invasive glucose determination in the human eye precisely in the anterior chamber with a beam reflected from the surface of the eye lens is presented here. As the anterior chamber has a depth of 3.13±0.50 mm, the beam follows an optical path of 5.3-7.3 mm depending on the angle of incidence, which is individually constant. We will show that it is possible to acquire good concentration predictions for physiological glucose concentrations with such a long optical path. A chemometric study of NIR glucose spectra with concentrations of glucose in water of 10-350 mg/dL (0.56-1.94 mmol/L) resulted in a calibration model which was able to predict physiological glucose concentrations with a root mean square error of prediction RMSEPTest=15.41 mg/dL. The Clarke error grid diagram shows that the model performs well according to medical impact. Using a first in vivo set-up, the precision is not sufficient for a reliable prediction of glucose concentration, especially due to the flickering of the patient's eye and the low reflectivity of the eye lens. Therefore, we have designed a new in vivo set-up: a prototype for a self-monitoring device with controlled geometry and laser radiation at several distinct wavelengths instead of the halogen lamp as light source. This allows a far higher signal/noise ratio under much better reproducible geometrical conditions and at the same time a much smaller necessary light flux.

  3. Non-invasive diagnosis of alcoholic liver disease.

    PubMed

    Mueller, Sebastian; Seitz, Helmut Karl; Rausch, Vanessa

    2014-10-28

    Alcoholic liver disease (ALD) is the most common liver disease in the Western world. For many reasons, it is underestimated and underdiagnosed. An early diagnosis is absolutely essential since it (1) helps to identify patients at genetic risk for ALD; (2) can trigger efficient abstinence namely in non-addicted patients; and (3) initiate screening programs to prevent life-threatening complications such as bleeding from varices, spontaneous bacterial peritonitis or hepatocellular cancer. The two major end points of ALD are alcoholic liver cirrhosis and the rare and clinically-defined alcoholic hepatitis (AH). The prediction and early diagnosis of both entities is still insufficiently solved and usually relies on a combination of laboratory, clinical and imaging findings. It is not widely conceived that conventional screening tools for ALD such as ultrasound imaging or routine laboratory testing can easily overlook ca. 40% of manifest alcoholic liver cirrhosis. Non-invasive methods such as transient elastography (Fibroscan), acoustic radiation force impulse imaging or shear wave elastography have significantly improved the early diagnosis of alcoholic cirrhosis. Present algorithms allow either the exclusion or the exact definition of advanced fibrosis stages in ca. 95% of patients. The correct interpretation of liver stiffness requires a timely abdominal ultrasound and actual transaminase levels. Other non-invasive methods such as controlled attenuation parameter, serum levels of M30 or M65, susceptometry or breath tests are under current evaluation to assess the degree of steatosis, apoptosis and iron overload in these patients. Liver biopsy still remains an important option to rule out comorbidities and to confirm the prognosis namely for patients with AH. PMID:25356026

  4. Non-invasive diagnosis of alcoholic liver disease

    PubMed Central

    Mueller, Sebastian; Seitz, Helmut Karl; Rausch, Vanessa

    2014-01-01

    Alcoholic liver disease (ALD) is the most common liver disease in the Western world. For many reasons, it is underestimated and underdiagnosed. An early diagnosis is absolutely essential since it (1) helps to identify patients at genetic risk for ALD; (2) can trigger efficient abstinence namely in non-addicted patients; and (3) initiate screening programs to prevent life-threatening complications such as bleeding from varices, spontaneous bacterial peritonitis or hepatocellular cancer. The two major end points of ALD are alcoholic liver cirrhosis and the rare and clinically-defined alcoholic hepatitis (AH). The prediction and early diagnosis of both entities is still insufficiently solved and usually relies on a combination of laboratory, clinical and imaging findings. It is not widely conceived that conventional screening tools for ALD such as ultrasound imaging or routine laboratory testing can easily overlook ca. 40% of manifest alcoholic liver cirrhosis. Non-invasive methods such as transient elastography (Fibroscan), acoustic radiation force impulse imaging or shear wave elastography have significantly improved the early diagnosis of alcoholic cirrhosis. Present algorithms allow either the exclusion or the exact definition of advanced fibrosis stages in ca. 95% of patients. The correct interpretation of liver stiffness requires a timely abdominal ultrasound and actual transaminase levels. Other non-invasive methods such as controlled attenuation parameter, serum levels of M30 or M65, susceptometry or breath tests are under current evaluation to assess the degree of steatosis, apoptosis and iron overload in these patients. Liver biopsy still remains an important option to rule out comorbidities and to confirm the prognosis namely for patients with AH. PMID:25356026

  5. A technical guide to tDCS, and related non-invasive brain stimulation tools.

    PubMed

    Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A

    2016-02-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  6. The importance of optical methods for non-invasive measurements in the skin care industry

    NASA Astrophysics Data System (ADS)

    Stamatas, Georgios N.

    2010-02-01

    Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.

  7. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    SciTech Connect

    Sanchez-Pernaute, Rosario; Jenkins, Bruce G.; Isacson, Ole

    2005-09-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders.

  8. Innovative systems for cultural heritage conservation. Millimeter wave application for non-invasive monitoring and treatment of works of art.

    PubMed

    Bruno, Bisceglia; De Leo, Roberto; Pastore, Anna Pia; von Gratowski, Svetlana; Meriakri, Viatcheslav

    2011-01-01

    A novel non invasive technique and a suitable apparatus for disinfestation of artworks is introduced. Non destructive and non invasive techniques are often irreplaceable in order to preserve and restore cultural heritage objects in its structure and shape. Although many techniques are available for art and archaeological works the non invasive methods are preferred as they leave the object untouched after treatment. Environmental parameters, such as humidity, can damage culture heritage objects and also results in spring up variety of pests and other micro-organisms. Non-invasive monitoring of these damage and also disinfestation treatments and drying with help of electromagnetic waves are preferred as they keep the object untouched after treatment. Application of millimeter waves for solving this problem is discussed here. Millimeter waves have high spatial resolution and absorption in water as well as in bio-objects that are usually moist and at the same time minimal interaction with dry culture heritage objects by itself. Different phases of the microwaves treatment (MW) of artworks are described, some results are shown and discussed. Many biological forms don't survive over a certain temperature, called lethal temperature which, for most xylophages is about 53-55 degrees C, while for moulds and funguses is between 65 and 70 degrees C. In order to evaluate the management of disinfestation of works of art, incident power, temperature, exposure time were monitored. The monitoring of temperature is essential in order to prevent damages. A computer simulation allows to predict and monitor the heating process. PMID:24427872

  9. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  10. Simplified Models of Non-Invasive Fractional Flow Reserve Based on CT Images

    PubMed Central

    Zhang, Jun-Mei; Zhong, Liang; Luo, Tong; Lomarda, Aileen Mae; Huo, Yunlong; Yap, Jonathan; Lim, Soo Teik; Tan, Ru San; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Fam, Jiang Ming; Keng, Felix Yung Jih; Wan, Min; Su, Boyang; Zhao, Xiaodan; Allen, John Carson; Kassab, Ghassan S.; Chua, Terrance Siang Jin; Tan, Swee Yaw

    2016-01-01

    Invasive fractional flow reserve (FFR) is the gold standard to assess the functional coronary stenosis. The non-invasive assessment of diameter stenosis (DS) using coronary computed tomography angiography (CTA) has high false positive rate in contrast to FFR. Combining CTA with computational fluid dynamics (CFD), recent studies have shown promising predictions of FFRCT for superior assessment of lesion severity over CTA alone. The CFD models tend to be computationally expensive, however, and require several hours for completing analysis. Here, we introduce simplified models to predict noninvasive FFR at substantially less computational time. In this retrospective pilot study, 21 patients received coronary CTA. Subsequently a total of 32 vessels underwent invasive FFR measurement. For each vessel, FFR based on steady-state and analytical models (FFRSS and FFRAM, respectively) were calculated non-invasively based on CTA and compared with FFR. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 90.6% (87.5%), 80.0% (80.0%), 95.5% (90.9%), 88.9% (80.0%) and 91.3% (90.9%) respectively for FFRSS (and FFRAM) on a per-vessel basis, and were 75.0%, 50.0%, 86.4%, 62.5% and 79.2% respectively for DS. The area under the receiver operating characteristic curve (AUC) was 0.963, 0.954 and 0.741 for FFRSS, FFRAM and DS respectively, on a per-patient level. The results suggest that the CTA-derived FFRSS performed well in contrast to invasive FFR and they had better diagnostic performance than DS from CTA in the identification of functionally significant lesions. In contrast to FFRCT, FFRSS requires much less computational time. PMID:27187726

  11. Long Term Non-Invasive Ventilation in Children: Impact on Survival and Transition to Adult Care

    PubMed Central

    Chatwin, Michelle; Tan, Hui-Leng; Bush, Andrew; Rosenthal, Mark; Simonds, Anita Kay

    2015-01-01

    Background The number of children receiving domiciliary ventilatory support has grown over the last few decades driven largely by the introduction and widening applications of non-invasive ventilation. Ventilatory support may be used with the intention of increasing survival, or to facilitate discharge home and/or to palliate symptoms. However, the outcome of this intervention and the number of children transitioning to adult care as a consequence of longer survival is not yet clear. Methods In this retrospective cohort study, we analysed the outcome in children (<17 years) started on home NIV at Royal Brompton Hospital over an 18 year period 1993-2011. The aim was to establish for different diagnostic groups: survival rate, likelihood of early death depending on diagnosis or discontinuation of ventilation, and the proportion transitioning to adult care. Results 496 children were commenced on home non invasive ventilation; follow-up data were available in 449 (91%). Fifty six per cent (n=254) had neuromuscular disease. Ventilation was started at a median age (IQR) 10 (3-15) years. Thirteen percent (n=59) were less than 1 year old. Forty percent (n=181) have transitioned to adult care. Twenty four percent (n=109) of patients have died, and nine percent (n=42) were able to discontinue ventilatory support. Conclusion Long term ventilation is associated with an increase in survival in a range of conditions leading to ventilatory failure in children, resulting in increasing numbers surviving to adulthood. This has significant implications for planning transition and adult care facilities. PMID:25933065

  12. Residual gas analyzer mass spectrometry for human breath analysis: a new tool for the non-invasive diagnosis of Helicobacter pylori infection.

    PubMed

    Maity, Abhijit; Banik, Gourab D; Ghosh, Chiranjit; Som, Suman; Chaudhuri, Sujit; Daschakraborty, Sunil B; Ghosh, Shibendu; Ghosh, Barnali; Raychaudhuri, Arup K; Pradhan, Manik

    2014-03-01

    A residual gas analyzer (RGA) coupled with a high vacuum chamber is described for the non-invasive diagnosis of the Helicobacter pylori (H. pylori) infection through ¹³C-urea breath analysis. The present RGA-based mass spectrometry (MS) method is capable of measuring high-precision ¹³CO₂ isotope enrichments in exhaled breath samples from individuals harboring the H. pylori infection. The system exhibited 100% diagnostic sensitivity, and 93% specificity alongside positive and negative predictive values of 95% and 100%, respectively, compared with invasive endoscopy-based biopsy tests. A statistically sound diagnostic cut-off value for the presence of H. pylori was determined to be 3.0‰ using a receiver operating characteristic curve analysis. The diagnostic accuracy and validity of the results are also supported by optical off-axis integrated cavity output spectroscopy measurements. The δ¹³(DOB)C‰ values of both methods correlated well (R² = 0.9973 at 30 min). The RGA-based instrumental setup described here is simple, robust, easy-to-use and more portable and cost-effective compared to all other currently available detection methods, thus making it a new point-of-care medical diagnostic tool for the purpose of large-scale screening of the H. pylori infection in real time. The RGA-MS technique should have broad applicability for ¹³C-breath tests in a wide range of biomedical research and clinical diagnostics for many other diseases and metabolic disorders. PMID:24566134

  13. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue

    PubMed Central

    Valdes, Claudia P.; Varma, Hari M.; Kristoffersen, Anna K.; Dragojevic, Tanja; Culver, Joseph P.; Durduran, Turgut

    2014-01-01

    We introduce a new, non-invasive, diffuse optical technique, speckle contrast optical spectroscopy (SCOS), for probing deep tissue blood flow using the statistical properties of laser speckle contrast and the photon diffusion model for a point source. The feasibility of the method is tested using liquid phantoms which demonstrate that SCOS is capable of measuring the dynamic properties of turbid media non-invasively. We further present an in vivo measurement in a human forearm muscle using SCOS in two modalities: one with the dependence of the speckle contrast on the source-detector separation and another on the exposure time. In doing so, we also introduce crucial corrections to the speckle contrast that account for the variance of the shot and sensor dark noises. PMID:25136500

  14. Magnetic Resonance Spectroscopy – a non-invasive method in evaluating focal and diffuse central nervous system disease

    PubMed Central

    Scheau, C; Preda, EM; Popa, GA; Ghergus, AE; Capsa, RA; Lupescu, IG

    2012-01-01

    Magnetic Resonance Spectroscopy is a non-invasive method, which can be performed following a routine Magnetic Resonance investigation within the same examination, and can provide very useful molecular information related to the metabolism and function of the normal and pathological structures of the brain. Its role is increasing in the establishment of a clear diagnosis, in both focal and diffuse central nervous system diseases, and the tendency is to replace the histopathology test, in certain cases, with similar or sometimes better diagnostic accuracy. This paper summarizes the principle, method, and main clinical applications, standing as a guide to procedure performing and results interpretation. PMID:23346244

  15. Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy.

    PubMed

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2016-06-23

    Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles. PMID:27049293

  16. Non-invasive assessment of liver fibrosis: Between prediction/prevention of outcomes and cost-effectiveness

    PubMed Central

    Stasi, Cristina; Milani, Stefano

    2016-01-01

    The assessment of the fibrotic evolution of chronic hepatitis has always been a challenge for the clinical hepatologist. Over the past decade, various non-invasive methods have been proposed to detect the presence of fibrosis, including the elastometric measure of stiffness, panels of clinical and biochemical parameters, and combinations of both methods. The aim of this review is to analyse the most recent data on non-invasive techniques for the evaluation of hepatic fibrosis with particular attention to cost-effectiveness. We searched for relevant studies published in English using the PubMed database from 2009 to the present. A large number of studies have suggested that elastography and serum markers are useful techniques for diagnosing severe fibrosis and cirrhosis and for excluding significant fibrosis in hepatitis C virus patients. In addition, hepatic stiffness may also help to prognosticate treatment response to antiviral therapy. It has also been shown that magnetic resonance elastography has a high accuracy for staging and differentiating liver fibrosis. Finally, studies have shown that non-invasive methods are becoming increasingly precise in either positively identifying or excluding liver fibrosis, thus reducing the need for liver biopsy. However, both serum markers and transient elastography still have “grey area” values of lower accuracy. In this case, liver biopsy is still required to properly assess liver fibrosis. Recently, the guidelines produced by the World Health Organization have suggested that the AST-to-platelet ratio index or FIB-4 test could be utilised for the evaluation of liver fibrosis rather than other, more expensive non-invasive tests, such as elastography or FibroTest. PMID:26819535

  17. [An automatic non-invasive method for the measurement of systolic, diastolic and mean blood pressure].

    PubMed

    Morel, D; Suter, P

    1981-01-01

    A new automatic apparatus for the measurement of arterial pressure by a non-invasive technique was compared with direct intra-arterial measurement in 20 adult patients in a surgical intensive care unit. The apparatus works on the basis of the principle of oscillometry. Blood pressure is determined with a microprocessor by analysis of the amplitude of the oscillations produced by a cuff which is inflated then deflated automatically. Thus mean arterial pressure corresponds to the maximum amplitude. Systolic and diastolic pressures are deduced by extrapolation to zero of the amplitudes on either side of the maximum reading. Mean arterial pressure (AP) proved to be very reliable within the limits studied: 8.0 - 14.7 kPa (60 - 110 mmHg) with a difference in mean direct AP and indirect AP of 0,09 +/- 0.9 kPa SD (0.71 +/- 7 mmHg) and a coefficient of linear correlation between the two methods of r = 0.82. This non-invasive technique determined systolic arterial pressure (sAP) in a less reliable fashion than AP when compared with the invasive technique, with a tendency to flatten the extreme values. The correlation coefficient here was 0.68. Finally, diastolic arterial pressure (dAP) showed a better degree of agreement through with a difference in mean indirect AP and mean direct AP of 1.0 +/- 0.8 kPa (7.6 +/- 6.0 mmHg). These results indicate a good degree of agreement for measurements of mean arterial pressure, clinically the most important, between the two methods used. Measurements of diastolic pressure and above all of diastolic pressure seemed to be less in agreement. This difference could be due to an error in determination of the automatic apparatus tested or to the peripheral site (radial artery) of the intra-arterial catheter used, itself falsifying the humeral arterial pressure. PMID:6113805

  18. Non invasive analysis of miniature paintings: Proposal for an analytical protocol

    NASA Astrophysics Data System (ADS)

    Aceto, Maurizio; Agostino, Angelo; Fenoglio, Gaia; Gulmini, Monica; Bianco, Valentina; Pellizzi, Eleonora

    2012-06-01

    The characterisation of palettes used in manuscript illumination is a hard analytical task, due to value and fragility of the analysed items. Analysis on miniatures must be necessarily non-invasive and fast and requires the use of several techniques since no single technique is able to provide all information needed. In this work a four-step analytical protocol is proposed for non-invasive in situ characterisation of miniature paintings. The protocol allows the identification of coloured materials through the use in sequence of complementary techniques, so as to fully exploit the information given by each instrument. Preliminarily to the instrumental investigations on ancient books and miniatures is the compilation of spectroscopic databases obtained from "standard" samples prepared on parchment, according to recipes described in medieval artistic treatises. The protocol starts with an extensive investigation with UV-visible spectrophotometry in reflectance mode, collecting spectra from all the most significant painted areas in the manuscript; chemometric classification is then performed on the spectra to highlight areas possibly containing the same materials. The second step involves in-depth inspection of miniatures under optical microscopy that guides the interpretation of reflectance spectra. XRF spectrometry is then performed to characterise pigments and metal layers, to verify the presence of overlapping layers, to identify mordants in lakes and to recognise minor components that may yield information concerning provenance; in addition, chemometric classification can be performed on element concentrations to highlight similar areas. Finally, Raman spectroscopy is used to shed light on the uncertain cases, if still present. Such a procedure offers a wealth of information without causing stress to the manuscripts under analysis.

  19. Non invasive analysis of miniature paintings: proposal for an analytical protocol.

    PubMed

    Aceto, Maurizio; Agostino, Angelo; Fenoglio, Gaia; Gulmini, Monica; Bianco, Valentina; Pellizzi, Eleonora

    2012-06-01

    The characterisation of palettes used in manuscript illumination is a hard analytical task, due to value and fragility of the analysed items. Analysis on miniatures must be necessarily non-invasive and fast and requires the use of several techniques since no single technique is able to provide all information needed. In this work a four-step analytical protocol is proposed for non-invasive in situ characterisation of miniature paintings. The protocol allows the identification of coloured materials through the use in sequence of complementary techniques, so as to fully exploit the information given by each instrument. Preliminarily to the instrumental investigations on ancient books and miniatures is the compilation of spectroscopic databases obtained from "standard" samples prepared on parchment, according to recipes described in medieval artistic treatises. The protocol starts with an extensive investigation with UV-visible spectrophotometry in reflectance mode, collecting spectra from all the most significant painted areas in the manuscript; chemometric classification is then performed on the spectra to highlight areas possibly containing the same materials. The second step involves in-depth inspection of miniatures under optical microscopy that guides the interpretation of reflectance spectra. XRF spectrometry is then performed to characterise pigments and metal layers, to verify the presence of overlapping layers, to identify mordants in lakes and to recognise minor components that may yield information concerning provenance; in addition, chemometric classification can be performed on element concentrations to highlight similar areas. Finally, Raman spectroscopy is used to shed light on the uncertain cases, if still present. Such a procedure offers a wealth of information without causing stress to the manuscripts under analysis. PMID:22391225

  20. Therapeutic Ultrasound to Non-Invasively Create Intra-Cardiac Communications in an Intact Animal Model

    PubMed Central

    Owens, Gabe E.; Miller, Ryan M.; Ensing, Greg; Ives, Kimberly; Gordon, David; Ludomirsky, Achi; Xu, Zhen

    2010-01-01

    Objective To determine if pulsed cavitational ultrasound therapy (histotripsy) can accurately and safely generate ventricular septal defects (VSDs) through the intact chest of a neonatal animal, with the eventual goal of developing a non-invasive technique of creating intra-cardiac communications in patients with congenital heart disease. Background Histotripsy is an innovative ultrasonic technique that generates demarcated, mechanical tissue fractionation utilizing high intensity ultrasound pulses. Previous work has shown that histotripsy can create atrial septal defects in a beating heart in an open-chest canine model. Methods Nine neonatal pigs were treated with transcutaneous histotripsy targeting the ventricular septum. Ultrasound pulses of 5μs duration at a peak negative pressure of 13 MPa and a pulse repetition frequency of 1 kHz were generated by a 1 MHz focused transducer. The procedure was guided by real-time ultrasound imaging. Results VSDs were created in all pigs with diameters ranging from 2–6.5mm. Six pigs were euthanized within 2 hrs of treatment, while 3 were recovered and maintained for 2–3 days to evaluate lesion maturation and clinical side effects. There were only transient clinical effects and pathology revealed mild collateral damage around the VSD with no significant damage to other cardiac or extra-cardiac structures. Conclusions Histotripsy can accurately and safely generate VSDs through the intact chest in a neonatal animal model. These results suggest that with further advances, histotripsy can be a useful, non-invasive technique to create intra-cardiac communications, which currently require invasive catheter-based or surgical procedures, to clinically stabilize newborn infants with complex congenital heart disease. PMID:20853366

  1. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  2. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  3. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof

    DOEpatents

    Ross, Michael P.

    1996-01-01

    A coaxial hyperthermia applicator for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator.

  4. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof

    DOEpatents

    Ross, M.P.

    1996-08-27

    A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.

  5. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  6. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges.

    PubMed

    Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated. PMID:23556841

  7. Tissue Damage Characterization Using Non-invasive Optical Modalities

    NASA Astrophysics Data System (ADS)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p < 0.05). Burn depth and viable vessel density were estimated via histological samples. 42% of vessels in the dermal layer were viable for superficial burns, compared to 25% for deep burns. The differences detected in optical properties and hemoglobin content by optical measurements

  8. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  9. Non-invasive in situ simultaneous measurement of multi-parameter mechanical properties of red blood cell membrane.

    PubMed

    Li, Jing; Huang, Yao-Xiong; Ji, Tao; Tu, Mei; Mao, Xuan; Chen, Wen-Xin; Chen, Guang-Wei

    2005-06-01

    The purpose of this study was to develop a new dynamic image analyzing technique that will give us the ability to measure the viscoelastic parameters of individual living red blood cells non-invasively, in situ and in real time. With this technique, the bending modulus KC, the shear elasticity mu and their ratio were measured under different temperatures, oxygen partial pressures and osmotic pressures. The results not only show the effects of external conditions on mechanical properties of cell membranes including deformability, flexibility, adhesive ability and plasticity, but also demonstrate that the technique can be used to measure cell membrane parameters continuously under several physiological and pathological conditions. PMID:15944754

  10. Monitoring the ingestion of anti-tuberculosis drugs by simple non-invasive methods.

    PubMed

    Sirgel, F A; Maritz, J S; Venter, A; Langdon, G; Smith, P J; Donald, P R

    2006-01-13

    This investigation retrospectively assessed inexpensive non-invasive qualitative methods to monitor the ingestion of anti-tuberculosis drugs isoniazid, rifampicin and rifapentine. Results showed that commercial test strips detected the isoniazid metabolites isonicotinic acid and isonicotinylglycine as efficiently as the isonicotinic acid method in 150 urine samples. The presence of rifamycins in urine samples (n=1085) was detected by microbiological assay techniques and the sensitivity compared to the n-butanol extraction colour test in 91 of these specimens. The proportions detected by the two methods were significantly different and the sensitivity of the n-butanol procedure was only 63.8% (95% CL 51.2-76.4%) as compared to that of the superior microbiological method. Final validation (n=691) showed that qualitative assays measure isoniazid and rifamycin ingestion with an efficiency similar to high-performance liquid chromatography. The qualitative procedures may therefore be valuable in clinical trials and in tuberculosis clinics to confirm drug ingestion. PMID:16303269

  11. Clinical non-invasive measurement of effective pulmonary capillary blood flow.

    PubMed

    Winter, S M

    1995-01-01

    Since traditional pulmonary function testing is centered on measurements of air flow and lung volume, a method to assess the pulmonary circulation might improve our ability to evaluate diseases that impact upon pulmonary hemodynamics. We have developed a PC based application that rapidly calculates pulmonary blood flow. Subjects rebreath a mixture of 10% argon and 3.5% freon for 20 seconds. Gas concentrations at the mouth are monitored by a clinical mass spectrometer and signals are acquired and processed with off-the-shelf hardware. To test the accuracy and reproducibility of this technique, patients with pulmonary artery catheters were assessed by standard thermodilution methods and the rebreathing test. Measurements using this non-invasive technology closely corelate with invasive thermodilution methods (r = 0.980) and show equivalent reproducibility (average standard error = 2.5%). This application of signal processing technology can extend the role of pulmonary function testing to include routine evaluation of the pulmonary circulation. PMID:8583166

  12. Non-invasive assessment of portal hypertension and liver fibrosis using contrast-enhanced ultrasonography.

    PubMed

    Maruyama, Hitoshi; Shiha, Gamal; Yokosuka, Osamu; Kumar, Ashish; Sharma, Barjesh Chander; Ibrahim, Alaa; Saraswat, Vivek; Lesmana, Cosmas Rinaldi A; Omata, Masao

    2016-03-01

    Portal hypertension and hepatic fibrosis are key pathophysiologies with major manifestations in cirrhosis. Although the degree of portal pressure and hepatic fibrosis are pivotal parameters, both are determined using invasive procedures. Ultrasound (US) is a simple and non-invasive technique that is available for use worldwide in the abdominal field. Because of its safety and easy of use, contrast-enhanced US is one of the most frequently used tools in the management of liver tumors for the detection and characterization of lesions, assessment of malignancy grade, and evaluation of therapeutic effects. This wide range of applications drives the practical use of contrast-enhanced US for evaluation of the severity of portal hypertension and hepatic fibrosis. The present article reviews the recent progress in contrast-enhanced US for the assessment of portal hypertension and hepatic fibrosis. PMID:26696585

  13. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  14. Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun

    2010-11-01

    Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.

  15. State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications

    PubMed Central

    Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.

    2013-01-01

    Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738

  16. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described.

  17. Non-invasive imaging of flow and vascular function in disease of the aorta

    PubMed Central

    Whitlock, Matthew C.; Hundley, W. Gregory

    2015-01-01

    With advancements in technology and a better understanding of human cardiovascular physiology, research as well as clinical care can go beyond dimensional anatomy offered by traditional imaging and investigate aortic functional properties and the impact disease has on this function. Linking the knowledge of the histopathological changes with the alterations in aortic function observed on noninvasive imaging results in a better understanding of disease pathophysiology. Translating this to clinical medicine, these noninvasive imaging assessments of aortic function are proving to be able to diagnosis disease, better predict risk, and assess response to therapies. This review is designed to summarize the various hemodynamic measures that can characterize the aorta, the various non-invasive techniques, and applications for various disease states. PMID:26381770

  18. Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaopeng; Shi, Junxin; Bu, Yang; Tian, Gan; Zhang, Xiao; Yin, Wenyan; Gao, Bifen; Yang, Zhiyong; Hu, Zhongbo; Liu, Xiangfeng; Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2015-07-01

    Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3 NRs were synthesized by a facile solvothermal method and then coated with a SiO2 layer to improve their biocompatibility and stability in the harsh environments of the GI tract, such as the stomach and the small intestine. Due to their strong X-ray- and near infrared-absorption abilities, we demonstrate that, following oral administration in mice, the Bi2S3@SiO2 NRs can be used as a dual-modal contrast agent for the real-time and non-invasive visualization of NRs distribution and the GI tract via both X-ray computed tomography (CT) and photoacoustic tomography (PAT) techniques. Importantly, integration of PAT with CT provides complementary information on anatomical details with high spatial resolution. In addition, we use Caenorhabditis Elegans (C. Elegans) as a simple model organism to investigate the biological response of Bi2S3@SiO2 NRs by oral administration. The results indicate that these NRs can pass through the GI tract of C. Elegans without inducing notable toxicological effects. The above results suggest that Bi2S3@SiO2 NRs pave an alternative way for the fabrication of multi-modal contrast agents which integrate CT and PAT modalities for a direct and non-invasive visualization of the GI tract with low toxicity.Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3 NRs were synthesized by a facile

  19. A practical guide to non-invasive foetal electrocardiogram extraction and analysis.

    PubMed

    Behar, Joachim; Andreotti, Fernando; Zaunseder, Sebastian; Oster, Julien; Clifford, Gari D

    2016-05-01

    Non-Invasive foetal electrocardiography (NI-FECG) represents an alternative foetal monitoring technique to traditional Doppler ultrasound approaches, that is non-invasive and has the potential to provide additional clinical information. However, despite the significant advances in the field of adult ECG signal processing over the past decades, the analysis of NI-FECG remains challenging and largely unexplored. This is mainly due to the relatively low signal-to-noise ratio of the FECG compared to the maternal ECG, which overlaps in both time and frequency. This article is intended to be used by researchers as a practical guide to NI-FECG signal processing, in the context of the above issues. It reviews recent advances in NI-FECG research including: publicly available databases, NI-FECG extraction techniques for foetal heart rate evaluation and morphological analysis, NI-FECG simulators and the methodology and statistics for assessing the performance of the extraction algorithms. Reference to the most recent work is given, recent findings are highlighted in the form of intermediate summaries, references to open source code and publicly available databases are provided and promising directions for future research are motivated. In particular we emphasise the need and specifications for building a new open reference database of NI-FECG signals, and the need for new algorithms to be benchmarked on the same database, employing the same evaluation statistics. Finally we motivate the need for research in NI-FECG to address morphological analysis, since this represent one of the most promising avenues for this foetal monitoring modality. PMID:27067431

  20. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  1. A New Quantitative Method for the Non-Invasive Documentation of Morphological Damage in Paintings Using RTI Surface Normals

    PubMed Central

    Manfredi, Marcello; Bearman, Greg; Williamson, Greg; Kronkright, Dale; Doehne, Eric; Jacobs, Megan; Marengo, Emilio

    2014-01-01

    In this paper we propose a reliable surface imaging method for the non-invasive detection of morphological changes in paintings. Usually, the evaluation and quantification of changes and defects results mostly from an optical and subjective assessment, through the comparison of the previous and subsequent state of conservation and by means of condition reports. Using quantitative Reflectance Transformation Imaging (RTI) we obtain detailed information on the geometry and morphology of the painting surface with a fast, precise and non-invasive method. Accurate and quantitative measurements of deterioration were acquired after the painting experienced artificial damage. Morphological changes were documented using normal vector images while the intensity map succeeded in highlighting, quantifying and describing the physical changes. We estimate that the technique can detect a morphological damage slightly smaller than 0.3 mm, which would be difficult to detect with the eye, considering the painting size. This non-invasive tool could be very useful, for example, to examine paintings and artwork before they travel on loan or during a restoration. The method lends itself to automated analysis of large images and datasets. Quantitative RTI thus eases the transition of extending human vision into the realm of measuring change over time. PMID:25010699

  2. Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method.

    PubMed

    Anand, Uttam; Jash, Chandrima; Mukherjee, Saptarshi

    2011-12-15

    In this present study, we report on new methodology for determining the Critical Micelle Concentration (CMC) of a neutral surfactant Triton X-100 (TX-100) both in aqueous and non-aqueous media based on a non-invasive approach. The presence of the phenyl moiety of TX-100 was made use of as an intrinsic fluorophore and steady-state and time-resolved spectroscopy has been used to characterize the micellar systems. There are reports that external fluorophores may bring about some structural changes in the systems and the perturbations caused by these fluorophores in micellar systems may affect the shape and size of the micelles. We have also used three probes namely ANS, Rh6G and C-480 to determine the CMC of TX-100 both in aqueous and non-aqueous media and the values obtained agree very well with those estimated by the non-invasive techniques. Interestingly, for our system, we have conclusively proved that the external probes have almost no effect on the process of micellization. Although, both the invasive and non-invasive technologies report almost the same values of CMC, yet the latter methodology is free from any external perturbations and this makes the micellar/reverse micellar system, which may interact with other biological systems less prone to any physical distortions. PMID:21924731

  3. Quantification of the Impaired Cardiac Output Response to Exercise in Heart Failure: Application of a Non-Invasive Device

    PubMed Central

    Myers, Jonathan; Gujja, Pradeep; Neelagaru, Suresh; Hsu, Leon; Burkhoff, Daniel

    2009-01-01

    An impaired cardiac output (CO) response to exercise is a hallmark of chronic heart failure (CHF), and the degree to which CO is impaired is related to the severity of CHF and prognosis. However, practical methods for obtaining cardiac output during exercise are lacking, and what constitutes and impaired response is unclear. Forty six CHF patients and 13 normal subjects underwent cardiopulmonary exercise testing (CPX) while CO and other hemodynamic measurements at rest and during exercise were obtained using a novel, non-invasive, bioreactance device based on assessment of relative phase shifts of electric currents injected across the thorax, heart rate and ventricular ejection time. An abnormal cardiac output response to exercise was defined as achieving ≤ 95% of the confidence limits of the slope of the relationship between CO and oxygen uptake (VO2). An impaired CO slope identified patients with more severe CHF as evidenced by a lower peak VO2, lower peak CO, heightened VE/VCO2 slope, and lower oxygen uptake efficiency slope. CO can be estimated during exercise using a novel bioreactance technique; patients with an impaired response to exercise exhibit reduced exercise capacity and inefficient ventilation typical of more severe CHF. Non- invasive measurement of cardiac performance in response to exercise provides a simple method of identifying patients with more severe CHF and may complement the CPX in identifying CHF patients at high risk. Key points Non-invasive measurement of cardiac output during exercise is feasible in patients with heart failure. Impairment in the CO response to exercise identifies heart failure patients with more severe disease, lower exercise capacity and inefficient ventilation. Non-invasive measurement of cardiac performance during exercise has potentially important applications for the functional and prognostic assessment of patients with heart failure. PMID:24149996

  4. Alteration of Political Belief by Non-invasive Brain Stimulation

    PubMed Central

    Chawke, Caroline; Kanai, Ryota

    2016-01-01

    People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to. PMID:26834603

  5. Non-invasive Renal Denervation: Update on External Ultrasound Approaches.

    PubMed

    Schmieder, Roland E; Ott, Christian; Bramlage, Peter

    2016-06-01

    In the last decade, intravenous renal denervation (RDN) has emerged as an alternative to pharmacological treatment in patients with resistant hypertension, but currently involves an invasive and technically challenging procedure. The Surround Sound™ system utilises externally delivered ultrasound to achieve RDN using a completely non-invasive, automated real-time tracking system coupled with a therapeutic delivery module thereby addressing these limitations. A brief history, technical overview and summary of preclinical and clinical studies of the KonaMedical Surround Sound™ system are presented. A literature search using the terms "renal denervation", "resistant hypertension" and "external ultrasound" was performed using PubMed, and references retrieved were selected based on relevancy and year of publication (date range 1991-2015). The Surround Sound™ system appears to be a promising approach to RDN which eliminates several of the factors currently limiting the intravenous approach. So far, it has demonstrated efficacy for reducing blood pressure in resistant hypertension patients with minimal adverse effects. Several double-blind, sham-controlled clinical trials are currently underway to confirm the validity of these findings. PMID:27137523

  6. Public viewpoints on new non-invasive prenatal genetic tests.

    PubMed

    Farrimond, Hannah R; Kelly, Susan E

    2013-08-01

    Prenatal screening programmes have been critiqued for their routine implementation according to clinical rationale without public debate. A new approach, non-invasive prenatal diagnosis (NIPD), promises diagnosis of fetal genetic disorders from a sample of maternal blood without the miscarriage risk of current invasive prenatal tests (e.g. amniocentesis). Little research has investigated the attitudes of wider publics to NIPD. This study used Q-methodology, which combines factor analysis with qualitative comments, to identify four distinct "viewpoints" amongst 71 UK men and women: 1. NIPD as a new tool in the ongoing societal discrimination against the disabled; 2. NIPD as a positive clinical application offering peace of mind in pregnancy; 3. NIPD as a medical option justified for severe disorders only; and 4. NIPD as a valid expansion of personal choice. Concerns included the "trivialisation of testing" and the implications of commercial/direct-to-consumer tests. Q-methodology has considerable potential to identify viewpoints and frame public debate about new technologies. PMID:23885055

  7. Non-invasive biosensor and wilreless interrogating system for hypoglycemia

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Saukesi, K.

    2002-11-01

    Hypoglycemia - abnormal decrease in blood sugar - is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chiralit of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin.It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or laptop computer.

  8. Facilitate Insight by Non-Invasive Brain Stimulation

    PubMed Central

    Chi, Richard P.; Snyder, Allan W.

    2011-01-01

    Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS) to the anterior temporal lobes (ATL). Only 20% of participants solved an insight problem with sham stimulation (control), whereas 3 times as many participants did so (p = 0.011) with cathodal stimulation (decreased excitability) of the left ATL together with anodal stimulation (increased excitability) of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement. PMID:21311746

  9. Alteration of Political Belief by Non-invasive Brain Stimulation.

    PubMed

    Chawke, Caroline; Kanai, Ryota

    2015-01-01

    People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to. PMID:26834603

  10. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  11. Non-invasive fecal metabonomic detection of colorectal cancer

    PubMed Central

    Phua, Lee Cheng; Chue, Xiu Ping; Koh, Poh Koon; Cheah, Peh Yean; Ho, Han Kiat; Chan, Eric Chun Yong

    2014-01-01

    Colorectal cancer (CRC) is a major cause of mortality in many developed countries. Effective screening strategies were called for to facilitate timely detection and to promote a better clinical outcome. In this study, the role of fecal metabonomics in the non-invasive detection of CRC was investigated. Gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) was utilized for the metabolic profiling of feces obtained from 11 CRC patients and 10 healthy subjects. Concurrently, matched tumor and normal mucosae surgically excised from CRC patients were profiled. CRC patients were differentiated clearly from healthy subjects based on their fecal metabonomic profiles (orthogonal partial least squares discriminant analysis [OPLS-DA], 1 predictive and 3 Y-orthogonal components, R2X = 0.373, R2Y = 0.995, Q2 [cumulative] = 0.215). The robustness of the OPLS-DA model was demonstrated by an area of 1 under the receiver operator characteristic curve. OPLS-DA revealed fecal marker metabolites (e.g., fructose, linoleic acid, and nicotinic acid) that provided novel insights into the tumorigenesis of CRC. Interestingly, a disparate set of CRC-related metabolic aberrations occurred at the tissue level, implying the contribution of processes beyond the direct shedding of tumor cells to the fecal metabotype. In summary, this work established proof-of-principle for GC/TOFMS-based fecal metabonomic detection of CRC and offered new perspectives on the underlying mechanisms. PMID:24424155

  12. Non-invasive instant genotyping of fluorescently labelled transgenic mice.

    PubMed

    Fink, Dieter; Yau, Tien Yin; Kolbe, Thomas; Rülicke, Thomas

    2015-01-01

    Fluorescence proteins have been useful as genetic reporters for a wide range of applications in biomedical research and are frequently used for the analysis of transgene activity. Here, we show that expression levels of the ubiquitously expressed fluorescent proteins eGFP, mCherry, and tdTomato can be measured in transgenic mouse lines with random or targeted integrations. We identified the tail of the mouse as the tissue best suited for quantifying fluorescence intensity and show that expression levels in the tail correlate with gene dose. This allows for instant non-invasive determination of the genetic condition at the transgenic locus (hemizygous/heterozygous and homozygous), while simultaneously providing an objective comparison for transgene expression levels among different mouse lines. In summary, we demonstrate for the first time that the gene dose of a ubiquitously expressed fluorescence reporter can be reliably quantified and directly linked to the genotype of transgenic mice. Based on this information, animals with the appropriate genotype can be instantly selected without laborious analysis for establishing and breeding of new transgenic lines, reducing the number of "waste" animals. Furthermore, no tissue sampling is necessary, which is a significant refinement of genotyping procedures. Both aspects are important improvements for the genotyping of transgenic mice that follow the principles of the 3 Rs (reduction and refinement). PMID:25981046

  13. Non-invasive prenatal screening for trisomy 21: Consumers' perspectives.

    PubMed

    Higuchi, Emily C; Sheldon, Jane P; Zikmund-Fisher, Brian J; Yashar, Beverly M

    2016-02-01

    Non-invasive prenatal screening (NIPS) has the potential to dramatically increase the prenatal detection rate of Down syndrome because of improvements in safety and accuracy over existing tests. There is concern that NIPS could lead to more negative attitudes towards Down syndrome and less support for individuals with Down syndrome. To assess the impact of NIPS on support for prenatal testing, decision-making about testing, and beliefs or attitudes about Down syndrome, we performed an Internet-based experiment using adults (N = 1,789) recruited through Amazon Mechanical Turk. Participants were randomly assigned to read a mock news article about NIPS, a mock news article about amniocentesis, or no article. The content in the two articles varied only in their descriptions of the test characteristics. Participants then answered questions about their support for testing, hypothetical testing decision, and beliefs and attitudes about Down syndrome. Reading the mock NIPS news article predicted increased hypothetical test uptake. In addition, the NIPS article group also agreed more strongly that pregnant women, in general, should utilize prenatal testing. We also found that the more strongly participants supported prenatal testing for pregnant women, the less favorable their attitudes towards individuals with Down syndrome; providing some evidence that NIPS may indirectly result in more negative perceptions of individuals with this diagnosis. PMID:26553705

  14. Use of dexmedetomidine to facilitate non-invasive ventilation

    PubMed Central

    DeMuro, Jonas P; Mongelli, Michael N; Hanna, Adel F

    2013-01-01

    Patients with chronic obstructive pulmonary disease and congestive heart failure exacerbations, as well as pneumonia benefit from the use of non-invasive ventilation (NIV), due to increased patient comfort and a reduced incidence of ventilator-associated pneumonia. However, some patients do not tolerate NIV due to anxiety or agitation, and traditionally physicians have withheld sedation from these patients due to concerns of loss of airway protection and respiratory depression. We report our recent experience with a 91-year-old female who received NIV for acute respiratory distress secondary to pneumonia. The duration of NIV was a total time period of 86 h, using the bilevel positive airway pressure mode via a full face mask. The patient was initially agitated with the NIV, but with the addition of the dexmedetomidine, she tolerated it well. The dexmedetomidine was administered without a loading dose, as a continuous infusion ranging from 0.2 to 0.5 mcg/kg/hr, titrated to a Ramsey score of three. This case illustrates the safe use of dexmedetomidine to facilitate NIV, and improve compliance, which may reduce ICU length of stay. PMID:24459626

  15. Novel non-invasive protein and peptide drug delivery approaches.

    PubMed

    Wallis, L; Kleynhans, E; Toit, T Du; Gouws, C; Steyn, D; Steenekamp, J; Viljoen, J; Hamman, J

    2014-01-01

    Protein and peptide based therapeutics are typically administered by injection due to their poor uptake when administered via enteral routes of drug administration. Unfortunately, chronic administration of these drugs through multiple injections presents certain patient related problems and it is difficult to mimic the normal physiological release patterns via this mode of drug administration. A need therefore exists to non-invasively deliver these drugs by means of alternative ways such as via the oral, pulmonary, nasal, transdermal and buccal administration routes. Although some attempts of needle free peptide and protein drug delivery have progressed to the clinical stage, relatively limited success has been achieved in terms of commercially available products. Despite the low frequency of clinical breakthroughs with noninvasive protein drug delivery this far, it remains an active research area with renewed interest not only due to its improved therapeutic potential, but also due to the attractive commercial outcomes it offers. It is the aim of this review article to reflect on the main strategies investigated to overcome the barriers against effective systemic protein drug delivery in different routes of drug administration. Approaches based on chemical modifications and pharmaceutical technologies are discussed with reference to examples of drugs and devices that have shown potential, while attempts that have failed are also briefly outlined. PMID:25106909

  16. Non-invasive mechanical ventilation and epidural anesthesia for an emergency open cholecystectomy.

    PubMed

    Yurtlu, Bülent Serhan; Köksal, Bengü; Hancı, Volkan; Turan, Işıl Özkoçak

    2016-01-01

    Non-invasive ventilation is an accepted treatment modality in both acute exacerbations of respiratory diseases and chronic obstructive lung disease. It is commonly utilized in the intensive care units, or for postoperative respiratory support in post-anesthesia care units. This report describes intraoperative support in non-invasive ventilation to neuroaxial anesthesia for an emergency upper abdominal surgery. PMID:27591472

  17. Non-Invasive Detection of Anaemia Using Digital Photographs of the Conjunctiva

    PubMed Central

    Collings, Shaun; Thompson, Oliver; Hirst, Evan; Goossens, Louise; George, Anup; Weinkove, Robert

    2016-01-01

    Background and Aims Anaemia is a major health burden worldwide. Although the finding of conjunctival pallor on clinical examination is associated with anaemia, inter-observer variability is high, and definitive diagnosis of anaemia requires a blood sample. We aimed to detect anaemia by quantifying conjunctival pallor using digital photographs taken with a consumer camera and a popular smartphone. Our goal was to develop a non-invasive screening test for anaemia. Patients and Methods The conjunctivae of haemato-oncology in- and outpatients were photographed in ambient lighting using a digital camera (Panasonic DMC-LX5), and the internal rear-facing camera of a smartphone (Apple iPhone 5S) alongside an in-frame calibration card. Following image calibration, conjunctival erythema index (EI) was calculated and correlated with laboratory-measured haemoglobin concentration. Three clinicians independently evaluated each image for conjunctival pallor. Results Conjunctival EI was reproducible between images (average coefficient of variation 2.96%). EI of the palpebral conjunctiva correlated more strongly with haemoglobin concentration than that of the forniceal conjunctiva. Using the compact camera, palpebral conjunctival EI had a sensitivity of 93% and 57% and specificity of 78% and 83% for detection of anaemia (haemoglobin < 110 g/L) in training and internal validation sets, respectively. Similar results were found using the iPhone camera, though the EI cut-off value differed. Conjunctival EI analysis compared favourably with clinician assessment, with a higher positive likelihood ratio for prediction of anaemia. Conclusions Erythema index of the palpebral conjunctiva calculated from images taken with a compact camera or mobile phone correlates with haemoglobin and compares favourably to clinician assessment for prediction of anaemia. If confirmed in further series, this technique may be useful for the non-invasive screening for anaemia. PMID:27070544

  18. Biological markers in non-invasive brain stimulation trials in major depressive disorder: a systematic review

    PubMed Central

    Fidalgo, TM; Morales-Quezada, L; Muzy, GSC; Chiavetta, NM; Mendonça, ME; Santana, MVB; Gonçalves, OF; Brunoni, AR; Fregni, F

    2014-01-01

    Objectives The therapeutic effects of Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BM) as an outcome. Therefore, our aim was to review non-invasive brain stimulation trials in depression using BM. Method The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and tDCS as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. Results Of 1234 potential articles, 52 papers were included. Only studies using TMS were found. BM included immune and endocrine serum markers, neuroimaging techniques and electrophysiological outcomes. In 12 articles (21.4%) endpoint BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. BM outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. Conclusions fMRI, SPECT, PET, MRS, cortical excitability and BDNF consistently showed positive results. BDNF was the best predictor of patients’ likeliness to respond. These initial results are promising; however, all studies investigating BM are small, used heterogeneous samples, and did not take into account confounders such as age, gender or family history. Based on our findings we recommend further studies to validate BM in non-invasive brain stimulation trials in MDD. PMID:23845938

  19. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    PubMed Central

    Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  20. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas).

    PubMed

    Thompson, Laura A; Spoon, Tracey R; Goertz, Caroline E C; Hobbs, Roderick C; Romano, Tracy A

    2014-01-01

    Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow) provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas). Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml-1) was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl-1; 30 minutes, 0.95 and 0.14 µg dl-1). Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl-1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl-1). Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly. PMID:25464121

  1. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  2. Peripheral venous blood oxygen saturation can be non-invasively estimated using photoplethysmography.

    PubMed

    Khan, Musabbir; Pretty, Christopher G; Amies, Alexander C; Elliott, Rodney B; Suhaimi, Fatanah M; Shaw, Geoffrey M; Chase, J Geoffrey

    2015-08-01

    Measurement of peripheral venous oxygen saturation (SvO2) is currently performed using invasive catheters or direct blood draw. The purpose of this study was to non-invasively determine SvO2 using a variation of pulse oximetry techniques. Artificial respiration-like modulations applied to the peripheral vascular system were used to infer regional SvO2 using photoplethysmography (PPG) sensors. To achieve this modulation, an artificial pulse generating system (APG) was developed to generate controlled, superficial perturbations on the finger using a pneumatic digit cuff. These low pressure and low frequency modulations affect blood volumes in veins to a much greater extent than arteries due to significant arterial-venous compliance differences. Ten healthy human volunteers were recruited for proof-ofconcept testing. The APG was set at a modulation frequency of 0.2 Hz (12 bpm) and 45-50 mmHg compression pressure. Initial analysis showed that induced blood volume changes in the venous compartment could be detected by PPG. Estimated arterial oxygen saturation (97% [IQR=96.1%-97.4%]) matches published values (95%-99%). Estimated venous oxygen saturation (93.2% [IQR=91.-93.9%]) agrees with reported ranges (92%-95%) measured in peripheral regions. The median difference between the two saturations was 3.6%, while the difference between paired measurements in each subject was statistically significant (p=0.002). These results demonstrate the feasibility of this method for real-time, low cost, non-invasive estimation of SvO2. Further validation of this method is warranted. PMID:26737758

  3. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758).

    PubMed

    Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  4. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  5. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    PubMed Central

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  6. Non-invasive integrative analysis of contraction energetics in intact beating heart.

    PubMed

    Deschodt-Arsac, Véronique; Calmettes, Guillaume; Gouspillou, Gilles; Chapolard, Mathilde; Raffard, Gérard; Rouland, Richard; Jais, Pierre; Haissaguerre, Michel; Dos Santos, Pierre; Diolez, Philippe

    2013-01-01

    The comprehensive study of human pathologies has revealed the complexity of the interactions involved in cardiovascular physiology. The recent validation of system's biology approaches - like our Modular Control and Regulation Analysis (MoCA) - motivates the current interest for new integrative and non-invasive analyses that could be used for medical study of human heart contraction energetics. By considering heart energetics as a supply-demand system, MoCA gives access to integrated organ function and brings out a new type of information, the "elasticities", which describe in situ the regulation of both energy demand and supply by cellular energetic status. These regulations determine the internal control of contraction energetics and may therefore be a key to the understanding of the links between molecular events in pathologies and whole organ function/dysfunction. A wider application to the effects of cardiac drugs in conjunction with the direct study of heart pathologies may be considered in the near future. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology (elasticity analyses), but also to provide a quantitative description of how these defects influence global heart function (regulation analysis) and therefore open new therapeutic perspectives. Several key examples of current applications to intact isolated beating heart are presented in this paper. The future application to human pathologies will require the use of non-invasive NMR techniques for the simultaneous measurement of energy status ((31)P NMR) and heart contractile activity (3D MRI). This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy. PMID:22789933

  7. Non-invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world.

    PubMed

    Meimoun, Patrick; Tribouilloy, Christophe

    2008-07-01

    Transthoracic Doppler echocardiography, introduced in the echo-lab in recent last years, to measure coronary flow and coronary flow reserve, is a very attractive tool, totally non-invasive, and easily available at bedside. This review summarizes the actual possibilities of this tool, its multiple potential clinical applications and diagnostic insights, and its arising prognosis value, in coronary artery disease as in various settings affecting the coronary microcirculation. PMID:18296409

  8. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  9. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies

    PubMed Central

    CONSTANTIN, Maria-Magdalena; POENARU, Elena; POENARU, Calin; CONSTANTIN, Traian

    2014-01-01

    Non-invasive bioengineering technologies continuously discovered and developed in recent decades provide a significant input to research development and remarkably contribute to the improvement of medical education and care to our patients. Aim: Assessing skin hydration by using the capacitance method for a group of patients with allergic contact dermatitis versus healthy subjects, before and after applying a moisturiser (assessing the immediate and long-term effectiveness of hydration). Results: For both groups, but especially for the patients with dry skin, there was a clear improvement of hydration, statistically significant after applying the moisturiser. In the case of the patients with allergic contact dermatitis, hydration was at a maximum immediately after the first application, and then maintained an increased level after 7 and 28 days, respectively. In the healthy subjects, the increase in hydration was lower, but progressive. The moisturiser determined an increase in hydration for all age groups, but those who showed the most obvious effect were the young adults (18-29 years old) with an increase of 19.9%. The maintenance effect of hydration lasted for 28 days, while the improvement was important for allergic skin (17.1%) and significant for healthy skin (10.9%). Conclusion: The assessment of epidermal hydration performed by using the corneometer showed very good hydration of the stratum corneum for both groups studied, with immediate and long-term effect. This study also showed that the degree of skin hydration was inversely proportional with age. The corneometer is easy to use, efficient and widely utilised in international studies for measurements in healthy or pathological conditions, for quantitative assessment of the effectiveness of various preparations intended for application to the skin surface, under well-controlled and standardised conditions. PMID:25553123

  10. Early non-invasive ventilation treatment for severe influenza pneumonia.

    PubMed

    Masclans, J R; Pérez, M; Almirall, J; Lorente, L; Marqués, A; Socias, L; Vidaur, L; Rello, J

    2013-03-01

    The role of non-invasive ventilation (NIV) in acute respiratory failure caused by viral pneumonia remains controversial. Our objective was to evaluate the use of NIV in a cohort of (H1N1)v pneumonia. Usefulness and success of NIV were assessed in a prospective, observational registry of patients with influenza A (H1N1) virus pneumonia in 148 Spanish intensive care units (ICUs) in 2009-10. Significant variables for NIV success were included in a multivariate analysis. In all, 685 patients with confirmed influenza A (H1N1)v viral pneumonia were admitted to participating ICUs; 489 were ventilated, 177 with NIV. The NIV was successful in 72 patients (40.7%), the rest required intubation. Low Acute Physiology and Chronic Health Evaluation (APACHE) II, low Sequential Organ Failure Assessment (SOFA) and absence of renal failure were associated with NIV success. Success of NIV was independently associated with fewer than two chest X-ray quadrant opacities (OR 3.5) and no vasopressor requirement (OR 8.1). However, among patients with two or more quadrant opacities, a SOFA score ≤7 presented a higher success rate than those with SOFA score >7 (OR 10.7). Patients in whom NIV was successful required shorter ventilation time, shorter ICU stay and hospital stay than NIV failure. In patients in whom NIV failed, the delay in intubation did not increase mortality (26.5% versus 24.2%). Clinicians used NIV in 25.8% of influenza A (H1N1)v viral pneumonia admitted to ICU, and treatment was effective in 40.6% of them. NIV success was associated with shorter hospital stay and mortality similar to non-ventilated patients. NIV failure was associated with a mortality similar to those who were intubated from the start. PMID:22404211

  11. Non-invasive Thrombolysis using Microtripsy: A Parameter Study

    PubMed Central

    Zhang, Xi; Jin, Lifang; Vlaisavljevich, Eli; Owens, Gabe E.; Gurm, Hitinder S.; Cain, Charles A.; Xu, Zhen

    2016-01-01

    Histotripsy fractionates soft tissue by well-controlled acoustic cavitation using microsecond-long, high-intensity ultrasound pulses. The feasibility of using histotripsy as a non-invasive, drug-free, and image-guided thrombolysis method has been shown previously. A new histotripsy approach, termed Microtripsy, has recently been investigated for the thrombolysis application to improve treatment accuracy and avoid potential vessel damage. In this study, we investigated the effects of pulse repetition frequency (PRF) on microtripsy thrombolysis. Microtripsy thrombolysis treatments using different PRFs (5, 50, and 100 Hz) and doses (20, 50, and 100 pulses) were performed on blood clots in an in vitro vessel flow model. To quantitatively evaluate the microtripsy thrombolysis effect, the location of focal cavitation, the incident rate of pre-focal cavitation on the vessel wall, the size and location of the resulting flow channel, and the generated clot debris particles were measured. The results demonstrated that focal cavitation was always well-confined in the vessel lumen without contacting the vessel wall for all PRFs. Pre-focal cavitation on the front vessel wall was never observed at 5Hz PRF, but occasionally observed at PRFs of 50 Hz (1.2%) and 100 Hz (5.4%). However, the observed pre-focal cavitation was weak and didn’t significantly impact the focal cavitation. Results further demonstrated that, although the extent of clot fractionation per pulse was the highest at 5 Hz PRF at the beginning of treatment (<20 pulses), 100 Hz PRF generated the largest flow channels with a much shorter treatment time. Finally, results showed fewer large debris particles were generated at a higher PRF. Overall, the results of this study suggest that a higher PRF (50 or 100 Hz) may be a better choice for microtripsy thrombolysis to use clinically due to the larger resulting flow channel, shorter treatment time, and smaller debris particles. PMID:26670850

  12. Non-invasive optical characterization of biomaterial mineralization.

    PubMed

    Gupta, Sharad; Hunter, Martin; Cebe, Peggy; Levitt, Jonathan M; Kaplan, David L; Georgakoudi, Irene

    2008-05-01

    Current approaches to study biomaterial mineralization are invasive and prevent dynamic characterization of this process within the same sample. Polarized light scattering spectroscopy (LSS) may offer a non-invasive alternative for assessing the levels of mineralization as well as some aspects of the organization of the mineral deposits. Specifically, we used LSS to characterize the formation of hydroxyapatite deposits on three types of silk films (water-annealed, methanol-treated and polyaspartic acid (PAA)-mixed) following 1, 3, 5 and 7 cycles of mineralization. We found that the total light scattering intensity provided a quantitative measure of the degree of mineralization as confirmed by thermal gravimetric analysis (TGA). The PAA-mixed silk films yielded the highest level of mineral deposition and the water-annealed ones the least, consistent with the beta sheet content of the films prior to the onset of mineralization. The wavelength dependence of the singly backscattered light was consistent with a self-affine fractal morphology of the deposited films within scales in the range of 150-300nm; this was confirmed by Fourier analysis of scanning electron microscopy (SEM) images of the corresponding films. The deposits of minerals in the water-annealed films were predominantly flake-like, with positively correlated density fluctuations (Hurst parameter, H>0.5), whereas methanol-treated and PAA-mixed silk films resulted in densely-packed, bulk mineral deposits with negatively correlated density fluctuations (H<0.5). Therefore, LSS could serve as a valuable tool for understanding the role of biomaterial properties in mineral formation, and, ultimately, for optimizing biomaterial designs that yield mineral deposits with the desired organization. PMID:18313137

  13. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis.

    PubMed

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-12-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, "sausage-like" pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  14. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis

    PubMed Central

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-01-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, “sausage-like” pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  15. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  16. Non-invasive quantification of lower limb mechanical alignment in flexion

    PubMed Central

    Deakin, Angela; Fogg, Quentin A.; Picard, Frederic

    2014-01-01

    Objective Non-invasive navigation techniques have recently been developed to determine mechanical femorotibial alignment (MFTA) in extension. The primary aim of this study was to evaluate the precision and accuracy of an image-free navigation system with new software designed to provide multiple kinematic measurements of the knee. The secondary aim was to test two types of strap material used to attach optical trackers to the lower limb. Methods Seventy-two registrations were carried out on 6 intact embalmed cadaveric specimens (mean age: 77.8 ± 12 years). A validated fabric strap, bone screws and novel rubber strap were used to secure the passive tracker baseplate for four full experiments with each knee. The MFTA angle was measured under the conditions of no applied stress, valgus stress, and varus stress. These measurements were carried out at full extension and at 30°, 40°, 50° and 60° of flexion. Intraclass correlation coefficients, repeatability coefficients, and limits of agreement (LOA) were used to convey precision and agreement in measuring MFTA with respect to each of the independent variables, i.e., degree of flexion, applied coronal stress, and method of tracker fixation. Based on the current literature, a repeatability coefficient and LOA of ≤3° were deemed acceptable. Results The mean fixed flexion for the 6 specimens was 12.8° (range: 6–20°). The mean repeatability coefficient measuring MFTA in extension with screws or fabric strapping of the baseplate was ≤2°, compared to 2.3° using rubber strapping. When flexing the knee, MFTA measurements taken using screws or fabric straps remained precise (repeatability coefficient ≤3°) throughout the tested range of flexion (12.8–60°); however, using rubber straps, the repeatability coefficient was >3° beyond 50° flexion. In general, applying a varus/valgus stress while measuring MFTA decreased precision beyond 40° flexion. Using fabric strapping, excellent repeatability

  17. Changing trends of hemodynamic monitoring in ICU - from invasive to non-invasive methods: Are we there yet?

    PubMed

    Arora, Shubhangi; Singh, Preet Mohinder; Goudra, Basavana G; Sinha, Ashish C

    2014-04-01

    Hemodynamic monitoring in the form of invasive arterial, central venous pressure and pulmonary capillary wedge pressure monitoring may be required in seriously ill Intensive care unit patients, in patients undergoing surgeries involving gross hemodynamic changes and in patients undergoing cardiac surgeries. These techniques are considered the gold standards of hemodynamic monitoring but are associated with their inherent risks. A number of non-invasive techniques based on various physical principles are under investigation at present. The goal is to not only avoid the risk of invasive intervention, but also to match the gold standard set by them as far as possible. Techniques based on photoplethysmography, arterial tonometry and pulse transit time analysis have come up for continuous arterial pressure monitoring. Of these the first has been studied most extensively and validated, however it has been shown to be substandard in patients with gross hemodynamic instability. The other two still need further evaluation. While the non-invasive methods for arterial blood pressure monitoring are based on diverse technologies, those for measurement of central venous and pulmonary pressures are mostly based on imaging techniques such as echocardiography, Doppler ultrasound, computed tomography scan and chest X ray. Most of these techniques are based on measurement of the dimensions of the great veins. This makes them operator and observer dependent. However, studies done till now have revealed adequate inter-observer agreement. These techniques are still in their incipience and although initial studies are encouraging, further research is needed on this front. PMID:25024945

  18. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique

    PubMed Central

    2012-01-01

    Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes. PMID:22809406

  19. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bolshov, M. A.; Kuritsyn, Yu. A.; Romanovskii, Yu. V.

    2015-04-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review.

  20. Nonintrusive spectroscopic techniques for supersonic/hypersonic aerodynamics and combustion diagnostics

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1992-01-01

    This paper presents an overview of the primary nonintrusive diagnostic techniques being developed by the NASA Langley Research Center to address the validation needs of Computational Fluid Dynamic (CFD) codes. The techniques include absorption in the UV and IR, Laser Induced Fluorescence, electron beam fluorescence, and a number of scattering techniques including Rayleigh, spontaneous Raman, and several coherent Raman spectroscopies. Most of the techniques are highly specialized, require complex data interpretation, and can satisfy only a few of the CFD needs. For these reasons, the evolving trend in flowfield diagnostics appears to favor a mode in which the diagnostic researcher, the experimental aerodynamicist, and the CFD community jointly define experiments based on the aeronautical requirements and on available diagnostic techniques.

  1. An easy test but a hard decision: ethical issues concerning non-invasive prenatal testing for autosomal recessive disorders.

    PubMed

    Skirton, Heather; Goldsmith, Lesley; Chitty, Lyn S

    2015-08-01

    Prenatal testing based on cell-free fetal DNA in maternal serum is now possible for specific monogenic conditions, and studies have shown that the use of non-invasive testing is supported by prospective parents and health professionals. However, some ethical issues have been raised concerning informed consent and paternal rights. The objective of this study was to explore ethical aspects of the use of non-invasive prenatal diagnostic testing for autosomal recessive disorders. We used a qualitative cross-sectional design, based on Thematic Analysis, and recruited 27 individuals of reproductive age who were carriers of one of four conditions: thalassaemia, sickle cell disease, cystic fibrosis or spinal muscular atrophy. Data were collected via focus groups or interviews. Participants were aware of the potential for such tests to be viewed as routine and suggested that obtaining written consent and allowing time for consideration is needed to facilitate autonomous choice and informed consent. All participants felt that mothers should be able to request such tests, but fathers who declined carrier testing should be made aware that fetal test results may reveal their status. We suggest that a written record of consent for non-invasive prenatal diagnosis should be used as a standard to help reinforce the serious nature of the test results. Where the father's carrier status could be revealed through fetal testing, he should be made aware of this before the results are available. Health professionals should discuss with the pregnant woman the best way to manage unsought information about the father's carrier status to minimise family disruption. PMID:25351779

  2. A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator.

    PubMed

    Martinek, Radek; Kelnar, Michal; Koudelka, Petr; Vanus, Jan; Bilik, Petr; Janku, Petr; Nazeran, Homer; Zidek, Jan

    2016-02-01

    This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics. Furthermore, based on the change in the FHR and in the T wave-to-QRS complex ratio (T/QRS), the generator enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored while complying with clinical recommendations for classifications in cardiotocography (CTG) and fECG ST segment analysis (STAN). The generator can also produce synthetic signals with defined properties for 6 input leads (4 abdominal and 2 thoracic). Such signals are well suited to the testing of new and existing methods of fECG processing and are effective in suppressing maternal ECG while non-invasively monitoring abdominal fECG. They may also contribute to the development of a new diagnostic method, which may be referred to as non-invasive trans-abdominal CTG +  STAN. The functional prototype is based on virtual instrumentation using the LabVIEW developmental environment and its associated data acquisition measurement cards (DAQmx). The generator also makes it possible to create synthetic signals and measure actual fetal and maternal ECGs by means of bioelectrodes. PMID:26799770

  3. Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain.

    PubMed

    Knotkova, Helena; Cruciani, Ricardo A

    2010-01-01

    In the last decade, radiological neuroimaging techniques have enhanced the study of mechanisms involved in the development and maintenance of neuropathic pain. Recent findings suggest that neuropathic pain in certain pain syndromes (e.g., complex regional pain syndrome/reflex sympathic dystrophy, phantom-limb pain) is associated with a functional reorganization and hyperexitability of the somatosensory and motor cortex. Studies showing that the reversal of cortical reorganization in patients with spontaneous or provoked pain is accompanied by pain relief stimulated the search for novel alternatives how to modulate the cortical excitability as a strategy to relieve pain. Recently, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) were proposed as suitable methods for modulation of cortical excitability. Both techniques (TMS and tDCS) have been clinically investigated in healthy volunteers as well as in patients with various clinical pathologies and variety of pain syndromes. Although there is less evidence on tDCS as compared with TMS, the findings on tDCS in patients with pain are promising, showing an analgesic effect of tDCS, and observations up to date justify the use of tDCS for the treatment of pain in selected patient populations. tDCS has been shown to be very safe if utilized within the current protocols. In addition, tDCS has been proven to be easy to apply, portable and not expensive, which further enhances great clinical potential of this technique. PMID:20336445

  4. Dynamics of the brain: Mathematical models and non-invasive experimental studies

    NASA Astrophysics Data System (ADS)

    Toronov, V.; Myllylä, T.; Kiviniemi, V.; Tuchin, V. V.

    2013-10-01

    Dynamics is an essential aspect of the brain function. In this article we review theoretical models of neural and haemodynamic processes in the human brain and experimental non-invasive techniques developed to study brain functions and to measure dynamic characteristics, such as neurodynamics, neurovascular coupling, haemodynamic changes due to brain activity and autoregulation, and cerebral metabolic rate of oxygen. We focus on emerging theoretical biophysical models and experimental functional neuroimaging results, obtained mostly by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). We also included our current results on the effects of blood pressure variations on cerebral haemodynamics and simultaneous measurements of fast processes in the brain by near-infrared spectroscopy and a very novel functional MRI technique called magnetic resonance encephalography. Based on a rapid progress in theoretical and experimental techniques and due to the growing computational capacities and combined use of rapidly improving and emerging neuroimaging techniques we anticipate during next decade great achievements in the overall knowledge of the human brain.

  5. Image-assisted non-invasive and dynamic biomechanical analysis of human joints

    NASA Astrophysics Data System (ADS)

    Muhit, Abdullah A.; Pickering, Mark R.; Scarvell, Jennifer M.; Ward, Tom; Smith, Paul N.

    2013-07-01

    Kinematic analysis provides a strong link between musculoskeletal injuries, chronic joint conditions, treatment planning/monitoring and prosthesis design/outcome. However, fast and accurate 3D kinematic analysis still remains a challenge in order to translate this procedure into clinical scenarios. 3D computed tomography (CT) to 2D single-plane fluoroscopy registration is a promising non-invasive technology for biomechanical examination of human joints. Although this technique has proven to be very precise in terms of in-plane translation and rotation measurements, out-of-plane motion estimations have been a difficulty so far. Therefore, to enable this technology into clinical translation, precise and fast estimation of both in-plane and out-of-plane movements is crucial, which is the aim of this paper. Here, a fast and accurate 3D/2D registration technique is proposed to evaluate biomechanical/kinematic analysis. The proposed algorithm utilizes a new multi-modal similarity measure called ‘sum of conditional variances’, a coarse-to-fine Laplacian of Gaussian filtering approach for robust gradient-descent optimization and a novel technique for the analytic calculation of the required gradients for out-of-plane rotations. Computer simulations and in vitro experiments showed that the new approach was robust in terms of the capture range, required significantly less iterations to converge and achieved good registration and kinematic accuracy when compared to existing techniques and to the ‘gold-standard’ Roentgen stereo analysis.

  6. Ankle Brachial Index: simple non-invasive estimation of peripheral artery disease

    NASA Astrophysics Data System (ADS)

    Pieniak, Marcin; Cieślicki, Krzysztof; Żyliński, Marek; Górski, Piotr; Murgrabia, Agnieszka; Cybulski, Gerard

    2014-11-01

    According to international guidelines, patients with Peripheral Artery Disease (PAD) are burdened with high cardiovascular risk. One of the simplest, non-invasive methods for PAD detection is the ankle-brachial index (ABI) measurement. The ABI is calculated as the ratio of systolic blood pressure at the ankle (pressure in the posterior tibial artery or the dorsal artery) to the systolic pressure in the arm (in the brachial artery) when the body is in a horizontal position. The physiological value of the ABI is assumed to be between 1 and 1.3; however, these limits vary from study to study. A value less than 0.9 indicates PAD. Some authors propose also measuring the ABI on both sides of the body to highlight possible differences in blood pressure between the opposite arterial segments. The aim of this study was to perform a meta-analysis of the ABI diagnostic criteria used in different publications. Additionally, ABI measurements were performed on 19 healthy patients in age ranged from 20 to 63 years. The results showed a slight dependence between age and the differences between the values obtained from left and right sides of the body.

  7. Non-invasive investigation on a VI century purple codex from Brescia, Italy.

    PubMed

    Aceto, Maurizio; Idone, Ambra; Agostino, Angelo; Fenoglio, Gaia; Gulmini, Monica; Baraldi, Pietro; Crivello, Fabrizio

    2014-01-01

    Purple codices are among the most relevant and prestigious book productions of Late Antique and Medieval age. They usually contained texts from Holy Writings written with golden or silver inks on parchment dyed in a purple hue. According to the tradition, the colour of parchment was obtained by the well renowned Tyrian purple dye. From the material point of view, however, very little is known about the compounds actually used in the manufacture of these manuscripts. Presently, the information available is limited to the ancient art treatises, with very few diagnostic evidences supporting them and, moreover, none confirming the presence of Tyrian purple. It is more than apparent, then, the need to have at disposal larger and more complete information at the concern, in order to verify what came to us from the literary tradition only. In this study, preliminary results are presented from non-invasive investigation on a VI century purple codex, the so-called CodexBrixianus, held in the Biblioteca Civica Queriniana at Brescia (Italy). Analyses were carried out with XRF spectrometry, UV-visible diffuse reflectance spectrophotometry, molecular spectrofluorimetry and optical microscopy. The results suggest the hypothesis that Tyrian purple had been used as a minor component mixed with other less precious dyes such as folium or orchil. PMID:23981412

  8. Non-invasive investigation on a VI century purple codex from Brescia, Italy

    NASA Astrophysics Data System (ADS)

    Aceto, Maurizio; Idone, Ambra; Agostino, Angelo; Fenoglio, Gaia; Gulmini, Monica; Baraldi, Pietro; Crivello, Fabrizio

    2014-01-01

    Purple codices are among the most relevant and prestigious book productions of Late Antique and Medieval age. They usually contained texts from Holy Writings written with golden or silver inks on parchment dyed in a purple hue. According to the tradition, the colour of parchment was obtained by the well renowned Tyrian purple dye. From the material point of view, however, very little is known about the compounds actually used in the manufacture of these manuscripts. Presently, the information available is limited to the ancient art treatises, with very few diagnostic evidences supporting them and, moreover, none confirming the presence of Tyrian purple. It is more than apparent, then, the need to have at disposal larger and more complete information at the concern, in order to verify what came to us from the literary tradition only. In this study, preliminary results are presented from non-invasive investigation on a VI century purple codex, the so-called CodexBrixianus, held in the Biblioteca Civica Queriniana at Brescia (Italy). Analyses were carried out with XRF spectrometry, UV-visible diffuse reflectance spectrophotometry, molecular spectrofluorimetry and optical microscopy. The results suggest the hypothesis that Tyrian purple had been used as a minor component mixed with other less precious dyes such as folium or orchil.

  9. Non-invasive methods for the diagnosis of nonalcoholic fatty liver disease

    PubMed Central

    Papagianni, Marianthi; Sofogianni, Areti; Tziomalos, Konstantinos

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the commonest chronic liver disease and includes simple steatosis and nonalcoholic steatohepatitis (NASH). Since NASH progresses to cirrhosis more frequently and increases liver-related and cardiovascular disease risk substantially more than simple steatosis, there is a great need to differentiate the two entities. Liver biopsy is the gold standard for the diagnosis of NAFLD but its disadvantages, including the risk of complications and sampling bias, stress the need for developing alternative diagnostic methods. Accordingly, several non-invasive markers have been evaluated for the diagnosis of simple steatosis and NASH, including both serological indices and imaging methods. The present review summarizes the current knowledge on the role of these markers in the diagnosis of NAFLD. Current data suggest that ultrasound and the fibrosis-4 score are probably the most appealing methods for detecting steatosis and for distinguishing NASH from simple steatosis, respectively, because of their low cost and relatively high accuracy. However, currently available methods, both serologic and imaging, cannot obviate the need for liver biopsy for diagnosing NASH due to their substantial false positive and false negative rates. Therefore, the current role of these methods is probably limited in patients who are unwilling or have contraindications for undergoing biopsy. PMID:25866601

  10. Development of low cost instrumentation for non-invasive detection of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Rutt, H. N.

    2007-02-01

    A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers ( 12CO II and 13CO II) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.

  11. 14 Years of Polish Experience in Non-Invasive Prenatal Blood Group Diagnosis

    PubMed Central

    Orzińska, Agnieszka; Guz, Katarzyna; Dębska, Marzena; Uhrynowska, Małgorzata; Celewicz, Zbigniew; Wielgo, Mirosław; Brojer, Ewa

    2015-01-01

    Summary Background Blood cell antigens may cause maternal alloimmunization leading to fetal/newborn disorders. Non-invasive prenatal diagnostics (NIPD) of the blood group permits the determination of feto-maternal incompatibility. Aim To evaluate 14 years of blood group NIPD at the Institute of Hematology and Transfusion Medicine (IHTM) in Warsaw. Methods Plasma DNA from 536 RhD-negative, 24 Rhc-negative, 26 RhE-negative, 43 K-negative, and 42 HPA-1a-negative pregnant women was examined by real-time PCR to detect RHD, RHCE*c, RHCE*E, RHCE*C, KEL*01 and HPA*1A, respectively. We tested for CCR5, SRY or bi-allelic polymorphisms and quantified the total or fetal DNA. Results The results of fetal antigen status prediction by NIPD in all but one case (false-positive result of KEL*01) were correct taking neonate serology as a reference. It was confirmed that all negative results of NIPD contained fetal DNA except for four cases where there was no difference between the parents' polymorphisms. Conclusions A fetal genotype compatible with the mother was determined in 25% of all pregnancies tested at the IHTM for the fetal blood group. These cases were not at risk of disease, so it was possible to avoid invasive procedures. PMID:26733766

  12. New Horizons in the Etiopathogenesis and Non-Invasive Diagnosis of Endometriosis.

    PubMed

    Zubrzycka, A; Zubrzycki, M; Janecka, A; Zubrzycka, M

    2015-01-01

    Endometriosis is one of the most common gynecological inflammatory diseases, occurring in adolescents and women in the reproductive age group and leading to infertility. The precise etiopathogenesis of endometriosis is unknown, but several theories concerning the phenomena involved in its development have been proposed. Beside classic retrograde menstruation, these include lymphatic and vascular metastases, iatrogenic direct implantation, coelomic metaplasia, embryonic remnants and mesenchymal cell differentiation or induction; the persistence of a form of embryonic endometriosis may also be involved, as well as the theory of the possible role of endometrial stem/progenitor cells. This paper deals with other risk factors which may be potentially involved in the etiopathogenesis of endometriosis, including the immune, inflammatory, endocrine, genetic, anatomical and environmental factors. At present, endometriosis can only be diagnosed with surgery, where laparoscopy is considered a gold standard. Therefore, there is an urgent need for a test allowing to detect non-invasive molecular biomarkers to identify the symptoms of endometriosis early on in disease development. A thorough understanding of the etiopathogenesis of endometriosis is essential toward the development of novel diagnostic assays and effective treatments of the disease. PMID:26391550

  13. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Williams, Joel; Biedron, Sandra; Harris, John; Martinez, Jorge; Milton, Stephen; Benson, S.; Evtushenko, P.; Neil, G.; Zhang, S.

    2014-03-01

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system in an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance, one needs to investigate the longitudinal emittance during operation, preferably in a non-invasive manner. Using electro-optical (EO) methods, we plan to measure the bunch longitudinal profile of an energy (~120-MeV), high-power (~10 kW or more average FEL output power) beam. Such a diagnostic could be critical in efforts to diagnose and help mitigate deleterious beam effects for high output power FELs.

  14. Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe

    PubMed Central

    Hernandez, Frank J.; Huang, Lingyan; Olson, Michael E.; Powers, Kristy M.; Hernandez, Luiza I.; Meyerholz, David K.; Thedens, Daniel R.; Behlke, Mark A.; Horswill, Alexander R.; McNamara, James O.

    2013-01-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens. PMID:24487433

  15. Non-invasive Technology to Study Local Passivity Breakdown of Metal Alloys in Aqueous Media

    SciTech Connect

    Alan M. Shipley

    2005-03-09

    Little is known about the basic mechanisms of passive oxide breakdown, repair, and localized corrosion of metals. A non-invasive instrument and methods have been developed to study local events and mechanisms that initiate passivity breakdown and subsequent corrosion of metals in aqueous media. The ''difference viewer imaging technique'' (DVIT) is a rapid, real time, non-invasive assay to study metal surfaces in corrosive solutions. It has a spatial resolution of less than 10.0 ?m (1cm x 1cm sample, 1000 x 1000 pixel CCD) to observe initial corrosion processes of the order of seconds. DVIT is a software-controlled video microscopy system and methods to collect and analyze pixel changes in video images. These images are recorded from a digital CCD video camera and frame grabber package using visible light for illumination. The DVIT system detects changes in video images that represent initial corrosive events that lead to passivity breakdown and re-passivation on metal surfaces in situ. This visual technique is easy to use and apply. It compliments other metal surface measurement techniques and can be used simultaneously with them. DVIT has proven to be more sensitive in detecting changes than scanning microelectrode techniques. DVIT is also much easier than other methods to apply and operate. It has the further advantage of providing a real time image of the entire metal surface under study instead of waiting for a microelectrode to scan a number of data points over a sample then plot the results. This project has fulfilled all specifications as outlined in the Department of Energy solicitation responsible for this grant application and award and exceeded a number of the specifications. Applicable Electronics, Inc. now has a marketable instrument and software package available for sale now. Further development of the system will be ongoing as driven by customer needs and discoveries. This technology has immediate applications in corrosion labs to further study

  16. Non-invasive ventilation in acute respiratory failure in children

    PubMed Central

    Abadesso, Clara; Nunes, Pedro; Silvestre, Catarina; Matias, Ester; Loureiro, Helena; Almeida, Helena

    2012-01-01

    The aim of this paper is to assess the clinical efficacy of non-invasive ventilation (NIV) in avoiding endotracheal intubation (ETI), to demonstrate clinical and gasometric improvement and to identify predictive risk factors associated with NIV failure. An observational prospective clinical study was carried out. Included Patients with acute respiratory disease (ARD) treated with NIV, from November 2006 to January 2010 in a Pediatric Intensive Care Unit (PICU). NIV was used in 151 patients with acute respiratory failure (ARF). Patients were divided in two groups: NIV success and NIV failure, if ETI was required. Mean age was 7.2±20.3 months (median: 1 min: 0,3 max.: 156). Main diagnoses were bronchiolitis in 102 (67.5%), and pneumonia in 44 (29%) patients. There was a significant improvement in respiratory rate (RR), heart rate (HR), pH, and pCO2 at 2, 6, 12 and 24 hours after NIV onset (P<0.05) in both groups. Improvement in pulse oximetric saturation/fraction of inspired oxygen (SpO2/FiO2) was verified at 2, 4, 6, 12 and 24 hours after NIV onset in the success group (P<0.001). In the failure group, significant SpO2/FiO2 improvement was only observed in the first 4 hours. NIV failure occurred in 34 patients (22.5%). Risk factors for NIV failure were apnea, prematurity, pneumonia, and bacterial co-infection (P<0.05). Independent risk factors for NIV failure were apneia (P<0.001; odds ratio 15.8; 95% confidence interval: 3.42–71.4) and pneumonia (P<0.001, odds ratio 31.25; 95% confidence interval: 8.33–111.11). There were no major complications related with NIV. In conclusion this study demonstrates the efficacy of NIV as a form of respiratory support for children and infants with ARF, preventing clinical deterioration and avoiding ETI in most of the patients. Risk factors for failure were related with immaturity and severe infection. PMID:22802994

  17. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  18. Endoscopy as a diagnostic and therapeutic alternative technique of taeniasis.

    PubMed

    Canaval Zuleta, Héctor Julián; Company Campins, María M; Dolz Abadía, Carlos

    2016-06-01

    Despite a low incidence in developed countries, gastrointestinal taeniasis should be suspected in patients with abdominal pain, diarrhea, anemia, and/or malabsorption of unknown origin, even more so if they come from endemic regions or areas with poor hygienic and alimentary habits. Diagnosis is traditionally reached by identifying the parasite in stools, but more recently both serological and immunological approaches are also available. Based on a patient diagnosed by gastroscopy, a literature review was undertaken of patients diagnosed by endoscopy. We discuss endoscopy as diagnostic modality, and the effectiveness and safety that endoscopic treatment may provide in view of the potential risk for neurocysticercosis. PMID:26219408

  19. Could Digital PCR Be an Alternative as a Non-Invasive Prenatal Test for Trisomy 21: A Proof of Concept Study

    PubMed Central

    El Khattabi, Laïla Allach; Rouillac-Le Sciellour, Christelle; Le Tessier, Dominique; Luscan, Armelle; Coustier, Audrey; Porcher, Raphael; Bhouri, Rakia; Nectoux, Juliette; Sérazin, Valérie; Quibel, Thibaut; Mandelbrot, Laurent; Tsatsaris, Vassilis

    2016-01-01

    Objective NIPT for fetal aneuploidy by digital PCR has been hampered by the large number of PCR reactions needed to meet statistical requirements, preventing clinical application. Here, we designed an octoplex droplet digital PCR (ddPCR) assay which allows increasing the number of available targets and thus overcomes statistical obstacles. Method After technical optimization of the multiplex PCR on mixtures of trisomic and euploid DNA, we performed a validation study on samples of plasma DNA from 213 pregnant women. Molecular counting of circulating cell-free DNA was performed using a mix of hydrolysis probes targeting chromosome 21 and a reference chromosome. Results The results of our validation experiments showed that ddPCR detected trisomy 21 even when the sample’s trisomic DNA content is as low as 5%. In a validation study of plasma samples from 213 pregnant women, ddPCR discriminated clearly between the trisomy 21 and the euploidy groups. Conclusion Our results demonstrate that digital PCR can meet the requirements for non-invasive prenatal testing of trisomy 21. This approach is technically simple, relatively cheap, easy to implement in a diagnostic setting and compatible with ethical concerns regarding access to nucleotide sequence information. These advantages make it a potential technique of choice for population-wide screening for trisomy 21 in pregnant women. PMID:27167625

  20. Non-invasive blood sampling from primates using laboratory-bred blood-sucking bugs (Dipetalogaster maximus; Reduviidae, Heteroptera).

    PubMed

    Thomsen, Ruth; Voigt, Christian C

    2006-10-01

    Primates are easily stressed by the conventional veterinary blood sampling routine and consequently, measured blood parameters may be biased. In this study, we tested blood-sucking bugs (Dipetalogaster maximus) on one lemur and two ape species (Microcebus murinus, Pongo abelii, Pan paniscus) as an alternative, non-invasive technique for bleeding primates. Within time periods of between 6 and 62 min we obtained blood volumes of 0.01-2.4 ml in 11 out of 12 trials from all three species. Therefore, we conclude that these bugs represent a new, gentle and effective tool for bleeding captive primates without stress. PMID:16741605

  1. Non-Invasive Imaging of Neuroanatomical Structures and Neural Activation with High-Resolution MRI

    PubMed Central

    Herberholz, Jens; Mishra, Subrata H.; Uma, Divya; Germann, Markus W.; Edwards, Donald H.; Potter, Kimberlee

    2011-01-01

    Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories. PMID:21503138

  2. Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.

    PubMed

    Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano

    2016-08-01

    Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. PMID:27221544

  3. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    NASA Astrophysics Data System (ADS)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  4. Invasive and non-invasive ventilation for prematurely born infants - current practice in neonatal ventilation.

    PubMed

    Greenough, Anne; Lingam, Ingran

    2016-02-01

    Non-invasive techniques, include nasal continuous positive airways pressure (nCPAP), nasal intermittent positive pressure ventilation (NIPPV) and heated, humidified, high flow cannula (HHFNC). Randomised controlled trials (RCTs) of nCPAP versus ventilation have given mixed results, but one demonstrated fewer respiratory problems during infancy. Meta-analysis demonstrated NIPPV rather than nCPAP provided better support post extubation. After extubation or initial support HHFNC has similar efficacy to CPAP. Invasive techniques include those that synchronise inflations with the patient's respiratory efforts. Assist control/ synchronised intermittent mandatory ventilation compared to non triggered modes only reduce the duration of ventilation. Further data are required to determine the efficacy of proportional assist ventilation and neurally adjusted ventilatory assist. Other techniques aim to minimise volutrauma. RCTs of volume targeted ventilation demonstrated reductions in BPD and respiratory medication usage at follow-up. Prophylactic high frequency oscillatory ventilation does not reduce BPD, but is associated with superior lung function at school age. PMID:26698269

  5. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke.

    PubMed

    Wessel, Maximilian J; Zimerman, Máximo; Hummel, Friedhelm C

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke. PMID:26029083

  6. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    SciTech Connect

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  7. Non-Invasive Brain Stimulation: An Interventional Tool for Enhancing Behavioral Training after Stroke

    PubMed Central

    Wessel, Maximilian J.; Zimerman, Máximo; Hummel, Friedhelm C.

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke. PMID:26029083

  8. Picosecond acoustics in vegetal cells: non invasive in vitro measurements at a sub-cell scale

    NASA Astrophysics Data System (ADS)

    Audoin, Bertrand; Rossignol, Clément; Chigarev, Nikolay; Ducousso, Mathieu; Forget, Guillaume; Guillemot, Fabien; Durrieu, Marie-Christine

    2010-01-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to stimulated Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection. The technique offers perspectives for single cell imaging. The in plane resolution is limited by the pump and probe spot sizes, i.e ˜1 μm, and the in depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non invasive technique in the fields of bio-engineering and medicine.

  9. Action Research to Improve the Learning Space for Diagnostic Techniques.

    PubMed

    Ariel, Ellen; Owens, Leigh

    2015-12-01

    The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of "knowledge" and "understanding." The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001), it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education. PMID:26753024

  10. Use of Entero-Test, a simple approach for non-invasive clinical evaluation of the biliary disposition of drugs

    PubMed Central

    Guiney, William J; Beaumont, Claire; Thomas, Steve R; Robertson, Darren C; McHugh, Simon M; Koch, Annelize; Richards, Duncan

    2011-01-01

    AIM To evaluate the non-invasive collection of bile from healthy human subjects for the qualitative characterization of the biliary disposition of a drug, using spectrometric techniques. METHODS Twenty subjects underwent non-invasive bile capture using a peroral string test (Entero-Test) device prior to and following a single oral dose of simvastatin (80 mg). The device, consisting of a weighted gelatin capsule containing a highly absorbent nylon string, was swallowed by each subject with the proximal end of the string taped to the face. Once the weighted string was judged to have reached the duodenum, gallbladder contraction was stimulated in order to release bile. The string was then retrieved via the mouth, and bile samples were analysed for drug-related material using spectrometric and spectroscopic techniques following solvent extraction. RESULTS Numerous metabolites of simvastatin were detected, and the major metabolites were consistent with those reported from studies where bile was collected using invasive techniques from patients dosed with [14C]-simvastatin. CONCLUSIONS The results from this study demonstrate the utility of deploying the Entero-Test in human studies to provide structural information on biliary metabolites. This can be readily applied in drug development studies, including those in the target patient population and may eliminate the need for more invasive sampling techniques. PMID:21366667

  11. Prognostic Value of Non-Invasive Fibrosis and Steatosis Tools, Hepatic Venous Pressure Gradient (HVPG) and Histology in Nonalcoholic Steatohepatitis

    PubMed Central

    Sebastiani, Giada; Alshaalan, Rasha; Wong, Philip; Rubino, Maria; Salman, Ayat; Metrakos, Peter; Deschenes, Marc; Ghali, Peter

    2015-01-01

    Background & Aims Non-invasive diagnostic methods for liver fibrosis predict clinical outcomes in viral hepatitis and nonalcoholic fatty liver disease (NAFLD). We specifically evaluated prognostic value of non-invasive fibrosis methods in nonalcoholic steatohepatitis (NASH) against hepatic venous pressure gradient (HVPG) and liver histology. Methods This was a retrospective cohort study of 148 consecutive patients who met the following criteria: transjugular liver biopsy with HVPG measurement; biopsy-proven NASH; absence of decompensation; AST-to-Platelets Ratio Index (APRI), fibrosis-4 (FIB-4), NAFLD fibrosis score, ultrasound, hepatic steatosis index and Xenon-133 scan available within 6 months from biopsy; a minimum follow-up of 1 year. Outcomes were defined by death, liver transplantation, cirrhosis complications. Kaplan–Meier and Cox regression analyses were employed to estimate incidence and predictors of outcomes, respectively. Prognostic value was expressed as area under the curve (AUC). Results During a median follow-up of 5 years (interquartile range 3-8), 16.2% developed outcomes, including 7.4% who died or underwent liver transplantation. After adjustment for age, sex, diabetes, the following fibrosis tools predicted outcomes: HVPG >10mmHg (HR=9.60; 95% confidence interval [CI] 3.07-30.12), histologic fibrosis F3-F4 (HR=3.14; 1.41-6.95), APRI >1.5 (HR=5.02; 1.6-15.7), FIB-4 >3.25 (HR=6.33; 1.98-20.2), NAFLD fibrosis score >0.676 (HR=11.9; 3.79-37.4). Prognostic value was as follows: histologic fibrosis stage, AUC=0.85 (95% CI 0.76-0.93); HVPG, AUC=0.81 (0.70-0.91); APRI, AUC=0.89 (0.82-0.96); FIB-4, AUC=0.89 (0.83-0.95); NAFLD fibrosis score, AUC=0.79 (0.69-0.91). Neither histologic steatosis nor non-invasive steatosis methods predicted outcomes (AUC<0.50). Conclusions Non-invasive methods for liver fibrosis predict outcomes of patients with NASH. They could be used for serial monitoring, risk stratification and targeted interventions. PMID:26083565

  12. Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification

    PubMed Central

    Xi, Jinxiang; Zhao, Weizhong; Yuan, Jiayao Eddie; Kim, JongWon; Si, Xiuhua; Xu, Xiaowei

    2015-01-01

    Background Each lung structure exhales a unique pattern of aerosols, which can be used to detect and monitor lung diseases non-invasively. The challenges are accurately interpreting the exhaled aerosol fingerprints and quantitatively correlating them to the lung diseases. Objective and Methods In this study, we presented a paradigm of an exhaled aerosol test that addresses the above two challenges and is promising to detect the site and severity of lung diseases. This paradigm consists of two steps: image feature extraction using sub-regional fractal analysis and data classification using a support vector machine (SVM). Numerical experiments were conducted to evaluate the feasibility of the breath test in four asthmatic lung models. A high-fidelity image-CFD approach was employed to compute the exhaled aerosol patterns under different disease conditions. Findings By employing the 10-fold cross-validation method, we achieved 100% classification accuracy among four asthmatic models using an ideal 108-sample dataset and 99.1% accuracy using a more realistic 324-sample dataset. The fractal-SVM classifier has been shown to be robust, highly sensitive to structural variations, and inherently suitable for investigating aerosol-disease correlations. Conclusion For the first time, this study quantitatively linked the exhaled aerosol patterns with their underlying diseases and set the stage for the development of a computer-aided diagnostic system for non-invasive detection of obstructive respiratory diseases. PMID:26422016

  13. Hypersonic Wake Diagnostics Using Laser Induced Fluorescence Techniques

    NASA Technical Reports Server (NTRS)

    Mills, Jack L.; Sukenik, Charles I.; Balla, Robert J.

    2011-01-01

    A review of recent research performed in iodine that involves a two photon absorption of light at 193 nm will be discussed, and it's potential application to velocimetry measurements in a hypersonic flow field will be described. An alternative seed atom, Krypton, will be presented as a good candidate for performing nonintrusive hypersonic flow diagnostics. Krypton has a metastable state with a lifetime of approximately 43 s which would prove useful for time of flight measurement (TOF) and a sensitivity to collisions that can be utilized for density measurements. Calculations using modest laser energies and experimental values show an efficiency of excited state production to be on the order of 10(exp -6) for a two photon absorption at 193 nm.

  14. Investigation of plasma diagnostics using a dual frequency harmonic technique

    SciTech Connect

    Kim, Dong-Hwan; Kim, Young-Do; Cho, Sung-Won; Kim, Yu-Sin; Chung, Chin-Wook

    2014-09-07

    Plasma diagnostic methods using harmonic currents analysis of electrostatic probes were experimentally investigated to understand the differences in their measurement of the plasma parameters. When dual frequency voltage (ω{sub 1},ω{sub 2}) was applied to a probe, various harmonic currents (ω{sub 1}, 2ω{sub 1},ω{sub 2}, 2ω{sub 2},ω{sub 2}±ω{sub 1},ω{sub 2}±2ω{sub 1}) were generated due to the non-linearity of the probe sheath. The electron temperature can be obtained from the ratio of the two harmonics of the probe currents. According to the combinations of the two harmonics, the sensitivities in the measurement of the electron temperature differed, and this results in a difference of the electron temperature. From experiments and simulation, it is shown that this difference is caused by the systematic and random noise.

  15. Non-invasive Foetal ECG – a Comparable Alternative to the Doppler CTG?

    PubMed Central

    Reinhard, J.; Louwen, F.

    2012-01-01

    This review discusses the alternative of using the non-invasive foetal ECG compared with the conventionally used Doppler CTG. Non-invasive abdominal electrocardiograms (ECG) have been approved for clinical routine since 2008; subsequently they were also approved for antepartum and subpartum procedures. The first study results have been published. Non-invasive foetal ECG is especially indicated during early pregnancy, while the Doppler CTG is recommended for the vernix period. Beyond the vernix period no difference has been recorded in the success rate of either approach. The foetal ECG signal quality is independent of the BMI, whereas the success rate of the Doppler CTG is diminished with an increased BMI. During the first stage of labour, non-invasive foetal ECG demonstrates better signal quality; however during the second stage of labour no difference has been identified between the methods. PMID:25308981

  16. [Options for non-invasive assessment of liver fibrosis based on clinical data].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-01-11

    Liver cirrhosis is one of the leading causes of death worldwide. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Studies have focused on non-invasive markers for liver fibrosis because of the dangers and complications of liver biopsy. The authors review the non-invasive direct as well as indirect methods for liver fibrosis assessment and present the positive and negative predictive value, sensitivity and specificity of those. Clinical utilities of transient elastography (Fibrsocan) is also reviewed. Non-invasive methods are useful in the assessment of liver fibrosis, monitoring disease progression and therapeutic response. Their accuracy can be increased by the combined or sequential use of non-invasive markers. PMID:25563681

  17. Comparison of diagnostic performances among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions

    PubMed Central

    Kanoksil, Wasana; Laungdamerongchai, Sarangrat

    2015-01-01

    Background There are many sampling techniques dedicated to radial endobronchial ultrasound (R-EBUS) guided flexible bronchoscopy (FB). However, data regarding the diagnostic performances among bronchoscopic sampling techniques is limited. This study was conducted to compare the diagnostic yields among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions (PPLs). Methods A prospective study was conducted on 112 patients who were diagnosed with PPLs and underwent R-EBUS-guided FB between Oct 2012 and Sep 2014. Sampling techniques—including transbronchial biopsy (TBB), brushing cell block, brushing smear, rinsed fluid of brushing, and bronchoalveolar lavage (BAL)—were evaluated for the diagnosis. Results The mean diameter of the PPLs was 23.5±9.5 mm. The final diagnoses included 76 malignancies and 36 benign lesions. The overall diagnostic yield of R-EBUS-guided bronchoscopy was 80.4%; TBB gave the highest yield among the 112 specimens: 70.5%, 34.8%, 62.5%, 50.0% and 42.0% for TBB, brushing cell block, brushing smear, rinsed brushing fluid, and BAL fluid (BALF), respectively (P<0.001). TBB provided high diagnostic yield irrespective of the size and etiology of the PPLs. The combination of TBB and brushing smear achieved the maximum diagnostic yield. Of 31 infectious PPLs, BALF culture gave additional microbiological information in 20 cases. Conclusions TBB provided the highest diagnostic yield; however, to achieve the highest diagnostic performance, TBB, brushing smear and BAL techniques should be performed together. PMID:25973236

  18. Transcranial MR-guided High Intensity Focused Ultrasound for Non-Invasive Functional Neurosurgery

    NASA Astrophysics Data System (ADS)

    Werner, Beat; Morel, Anne; Zadicario, Eyal; Jeanmonod, Daniel; Martin, Ernst

    2010-03-01

    While the development of transcranial MR-guided High Intensity Focused Ultrasound has been driven mainly by applications for tumor ablation this new intervention method is also very attractive for functional neurosurgery due to its non-invasiveness, the absence of ionizing radiation and the closed-loop intervention control by MRI. Here we provide preliminary data to demonstrate the clinical feasibility, safety and precision of non-invasive functional neurosurgery by transcranial MR-guided High Intensity Focused Ultrasound.

  19. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics

    PubMed Central

    Busch, David R.; Choe, Regine; Durduran, Turgut; Yodh, Arjun G.

    2013-01-01

    We review recent developments in diffuse optical imaging and monitoring of breast cancer, i.e. optical mammography. Optical mammography permits non-invasive, safe and frequent measurement of tissue hemodynamics oxygen metabolism and components (lipids, water, etc.), the development of new compound indices indicative of the risk and malignancy, and holds potential for frequent non-invasive longitudinal monitoring of therapy progression. PMID:24244206

  20. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  1. Non-Invasive Prenatal RHD Genotyping Using Cell-Free Fetal DNA from Maternal Plasma: An Italian Experience

    PubMed Central

    Picchiassi, Elena; Di Renzo, Gian Carlo; Tarquini, Federica; Bini, Vittorio; Centra, Michela; Pennacchi, Luana; Galeone, Fabiana; Micanti, Mara; Coata, Giuliana

    2015-01-01

    Summary Background This study assessed the diagnostic accuracy of a non-invasive approach to fetal RHD genotyping using cell-free fetal DNA in maternal plasma and a combination of methodological strategies. Methods Real-time PCR (qPCR) was performed on 216 RhD-negative women between weeks 10+0 and 14+6 of gestation (1st qPCR). qPCR was repeated (2nd qPCR) to increase the amount of each sample for analysis, on 95 plasma aliquots that were available from first trimester blood collection (group 1) and on 13 samples that were collected between weeks 18+0 and 25+6 of gestation (group 2). qPCR was specific for exons 5 and 7 of the RHD gene (RHD5 and RHD7). The results were interpreted according to the number of positive replicates of both exons. Results 1st qPCR: diagnostic accuracy was of 93.3%. Diagnostic accuracy increased from 90.5% (1st qPCR) to 93.7% (2nd qPCR) in group 1 and from 84.6% (1st qPCR) to 92.3% (2nd qPCR) in group 2. These increments were not statistically significant. Conclusion Our approach to RHD genotyping in early pregnancy yielded high diagnostic accuracy. Increasing the amount of DNA analyzed in each sample did not improve significantly the diagnostic accuracy of the test. PMID:25960712

  2. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination.

    PubMed

    Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul

    2013-03-25

    A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin

  3. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  4. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva.

    PubMed

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual's salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calcium ions. The samples were obtained from 175 randomly selected volunteers comprising half healthy and half diabetic patients. The models were trained using 70 % of the total data, and tested upon the remaining set. For each algorithm, data points were cross-validated by randomly shuffling them three times prior to implementing the model. The performance of the machine learning technique was reported in terms of four statistically significant parameters-accuracy, precision, sensitivity and F1 score. SVM using RBF kernel showed the best performance for classifying high FBGLs with approximately 85 % accuracy, 84 % precision, 85 % sensitivity and 85 % F1 score. This study has been approved by the ethical committee of All India Institute of Medical Sciences, New Delhi, India with the reference number: IEC/NP-278/01-08-2014, RP-29/2014. PMID:27350930

  5. Chemical sensor platform for non-invasive monitoring of activity and dehydration.

    PubMed

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  6. Development of a non-invasive LED based device for adipose tissue thickness measurements in vivo

    NASA Astrophysics Data System (ADS)

    Volceka, K.; Jakovels, D.; Arina, Z.; Zaharans, J.; Kviesis, E.; Strode, A.; Svampe, E.; Ozolina-Moll, L.; Butnere, M. M.

    2012-06-01

    There are a number of techniques for body composition assessment in clinics and in field-surveys, but in all cases the applied methods have advantages and disadvantages. High precision imaging methods are available, though expensive and non-portable, however, the methods devised for the mass population, often suffer from the lack of precision. Therefore, the development of a safe, mobile, non-invasive, optical method that would be easy to perform, precise and low-cost, but also would offer an accurate assessment of subcutaneous adipose tissue (SAT) both in lean and in obese persons is required. Thereof, the diffuse optical spectroscopy is advantageous over the aforementioned techniques. A prototype device using an optical method for measurement of the SAT thickness in vivo has been developed. The probe contained multiple LEDs (660nm) distributed at various distances from the photo-detector which allow different light penetration depths into the subcutaneous tissue. The differences of the reflected light intensities were used to create a non-linear model, and the computed values were compared with the corresponding thicknesses of SAT, assessed by B-mode ultrasonography. The results show that with the optical system used in this study, accurate results of different SAT thicknesses can be obtained, and imply a further potential for development of multispectral optical system to observe changes of SAT thickness as well as to determine the percentage of total body fat.

  7. Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance

    PubMed Central

    Jaberzadeh, Shapour; Zoghi, Maryam

    2013-01-01

    During the past 20 years, non-invasive brain stimulation has become an emerging field in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. Whereas transcranial magnetic stimulation has been used extensively since more than two decades ago as a potential “neuromodulator”, transcranial current stimulation (tCS) has more recently gathered increased scientific interests. The primary aim of this narrative review is to describe characteristics of different tCS paradigms. tCS is an umbrella term for a number of brain modulating paradigms such as transcranial direct current stimulation (tDCS), transcranial alternative current stimulation (tACS), and transcranial random noise stimulation (tRNS). Their efficacy is dependent on two current parameters: intensity and length of application. Unlike tACS and tRNS, tDCS is polarity dependent. These techniques could be used as stand-alone techniques or can be used to prime the effects of other movement trainings. The review also summarises safety issues, the mechanisms of tDCS-induced neuroplasticity, limitations of current state of knowledge in the literature, tool that could be used to understand brain plasticity effects in motor regions and tool that could be used to understand motor learning effects. PMID:25337355

  8. Non-invasive NIR spectroscopy of human brain function during exercise.

    PubMed

    Perrey, Stéphane

    2008-08-01

    The assessment of physiological changes associated with brain activity has become possible by optical methods, such as near-infrared spectroscopy (NIRS). NIRS is a useful neuroimaging technique based on haemodynamic principles for the non-invasive investigation of brain in motion. Due to its properties, the near-infrared light can penetrate biological tissue reasonably well to assess brain activity and two types of measurements are possible according to the number of channels used: dynamic changes in a localized brain region or functional brain imaging. The theoretical and technological advances of the past 10-15 years have opened the door to a range of applications in the human movement sciences, including some that involve imaging of the adult brain during motor and cognitive tasks, which for many years had been inaccessible to NIRS. This article examines the perturbation methods for measuring cerebral haemodynamic responses within resting and exercise conditions in humans and how NIRS can be used to image the moving brain. Methodological challenges of NIRS technique are presented, while the advantages and pitfalls of NIRS compared to other neuroimaging methods are discussed. Actual and future uses for NIRS in the field of sport sciences are outlined for a better understanding of brain processes during movement. PMID:18539160

  9. Challenges for non-invasive brain perfusion quantification using arterial spin labeling.

    PubMed

    Sousa, I; Santos, N; Sanches, J; Figueiredo, P

    2011-03-29

    Arterial Spin Labeling (ASL) sequences for perfusion Magnetic Resonance Imaging (MRI) have recently become available to be used in the clinical practice, offering a completely non-invasive technique for the quantitative evaluation of brain perfusion. Despite its great potential, ASL perfusion imaging still presents important methodological challenges before its incorporation in routine protocols. Specifically, in some pathological conditions in which the cerebrovascular dynamics is altered, the standard application of ASL may lead to measurement errors. In these cases, it would be possible to estimate perfusion, as well as arterial transit times, by collecting images at multiple time points and then fitting a mathematical model to the data. This approach can be optimized by selecting a set of optimal imaging time points and incorporating knowledge about the physiological distributions of the parameters into the model estimation procedures. In this study, we address the challenges that arise in the measurement of brain perfusion using PASL, due to variations in the arterial transit times, by estimating the errors produced using different types of acquisitions and proposing methods for minimizing such errors. We show by simulation that multiple inversion time ASL acquisitions are expected to reduce measurement errors relative to standard approaches. In data collected from a group of subjects, we further observed reduced inter-subject variability in perfusion measurements when using a multiple versus single inversion time acquisitions. Both measurement errors and variability were further reduced if optimized acquisition and analysis techniques were employed. PMID:24059574

  10. Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing.

    PubMed

    McLamore, Eric S; Porterfield, D Marshall

    2011-11-01

    Biophysical phenomena related to cellular biochemistry and transport are spatially and temporally dynamic, and are directly involved in the regulation of physiology at the sub-cellular to tissue spatial scale. Real time monitoring of transmembrane transport provides information about the physiology and viability of cells, tissues, and organisms. Combining information learned from real time transport studies with genomics and proteomics allows us to better understand the functional and mechanistic aspects of cellular and sub-cellular systems. To accomplish this, ultrasensitive sensing technologies are required to probe this functional realm of biological systems with high temporal and spatial resolution. In addition to ongoing research aimed at developing new and enhanced sensors (e.g., increased sensitivity, enhanced analyte selectivity, reduced response time, and novel microfabrication approaches), work over the last few decades has advanced sensor utility through new sensing modalities that extend and enhance the data recorded by sensors. A microsensor technique based on phase sensitive detection of real time biophysical transport is reviewed here. The self-referencing technique converts non-invasive extracellular concentration sensors into dynamic flux sensors for measuring transport from the membrane to the tissue scale. In this tutorial review, we discuss the use of self-referencing micro/nanosensors for measuring physiological activity of living cells/tissues in agricultural, environmental, and biomedical applications comprehensible to any scientist/engineer. PMID:21761069

  11. Non-invasive cell type selective in vivo monitoring of insulin resistance dynamics

    PubMed Central

    Paschen, Meike; Moede, Tilo; Leibiger, Barbara; Jacob, Stefan; Bryzgalova, Galyna; Leibiger, Ingo B.; Berggren, Per-Olof

    2016-01-01

    Insulin resistance contributes to the development of cardio-vascular disease and diabetes. An important but unresolved task is to study the dynamics of insulin resistance in selective cell types of insulin target tissues in vivo. Here we present a novel technique to monitor insulin resistance dynamics non-invasively and longitudinally in vivo in a cell type-specific manner, exemplified by the pancreatic β-cell situated within the micro-organ the islet of Langerhans. We utilize the anterior chamber of the eye (ACE) as a transplantation site and the cornea as a natural body-window to study the development and reversibility of insulin resistance. Engrafted islets in the ACE that express a FoxO1-GFP-based biosensor in their β-cells, report on insulin resistance measured by fluorescence microscopy at single-cell resolution in the living mouse. This technique allows monitoring of cell type specific insulin sensitivity/resistance in real-time in the context of whole body insulin resistance during progression and intervention of disease. PMID:26899548

  12. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  13. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.

    PubMed

    Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U

    2015-06-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. PMID:25797650

  14. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  15. Non-Invasive Bedside Assessment of Central Venous Pressure: Scanning into the Future

    PubMed Central

    Rizkallah, Jacques; Jack, Megan; Saeed, Mahwash; Shafer, Leigh Anne; Vo, Minh; Tam, James

    2014-01-01

    Background Noninvasive evaluation of central venous pressure (CVP) can be achieved by assessing the Jugular Venous Pressure (JVP), Peripheral Venous Collapse (PVC), and ultrasound visualization of the inferior vena cava. The relative accuracy of these techniques compared to one another