Science.gov

Sample records for non-ionizing radiofrequency fields

  1. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    PubMed Central

    Cao, Yi; Tong, Jian

    2014-01-01

    During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed. PMID:24758897

  2. Mobile phones, non-ionizing radiofrequency fields and brain cancer: is there an adaptive response?

    PubMed

    Vijayalaxmi; Prihoda, Thomas J

    2014-07-01

    There is widespread concern among the general public regarding the ever increasing use of mobile phones. The concern is mainly because the antenna which transmits nonionizing radiofrequency fields is held close to the head during use and thus might cause brain cancer. By far, the largest epidemiological study was conducted by the INTER-PHONE study group and the results were published in 2011. The author's conclusions were (i) no increased risk of meningioma and glioma in mobile phone users and (ii) there were suggestions of an increased risk for glioma at the highest exposure levels but, bias and error prevented a causal interpretation. We have carefully examined all of the odd ratios presented in the INTERPHONE study publication: our results showed 24.3% decreased and 0.7% increased risk for meningioma and 22.1% decreased and 6.6% increased risk for glioma. Hence, we hypothesize that the overwhelming evidence for the decreased risk for both diseases may be due to the induction of 'adaptive response' which is well-documented in scientific literature. PMID:25249839

  3. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft. PMID:23915231

  4. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    PubMed

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More

  5. Measurement of radiofrequency fields

    NASA Astrophysics Data System (ADS)

    Leonowich, J. A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields.

  6. Measurement of radiofrequency fields

    SciTech Connect

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.

  7. Non-ionizing radiofrequency electromagnetic waves traversing the head can be used to detect cerebrovascular autoregulation responses

    NASA Astrophysics Data System (ADS)

    Oziel, M.; Hjouj, M.; Gonzalez, C. A.; Lavee, J.; Rubinsky, B.

    2016-02-01

    Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy.

  8. Non-ionizing radiofrequency electromagnetic waves traversing the head can be used to detect cerebrovascular autoregulation responses

    PubMed Central

    Oziel, M.; Hjouj, M.; Gonzalez, C. A.; Lavee, J.; Rubinsky, B.

    2016-01-01

    Monitoring changes in non-ionizing radiofrequency electromagnetic waves as they traverse the brain can detect the effects of stimuli employed in cerebrovascular autoregulation (CVA) tests on the brain, without contact and in real time. CVA is a physiological phenomenon of importance to health, used for diagnosis of a number of diseases of the brain with a vascular component. The technology described here is being developed for use in diagnosis of injuries and diseases of the brain in rural and economically underdeveloped parts of the world. A group of nine subjects participated in this pilot clinical evaluation of the technology. Substantial research remains to be done on correlating the measurements with physiology and anatomy. PMID:26898944

  9. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  10. Superconducting surface impedance under radiofrequency field

    DOE PAGESBeta

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  11. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    PubMed

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure. PMID:26444191

  12. Multiparametric imaging with heterogeneous radiofrequency fields.

    PubMed

    Cloos, Martijn A; Knoll, Florian; Zhao, Tiejun; Block, Kai T; Bruno, Mary; Wiggins, Graham C; Sodickson, Daniel K

    2016-01-01

    Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity. PMID:27526996

  13. Multiparametric imaging with heterogeneous radiofrequency fields

    PubMed Central

    Cloos, Martijn A.; Knoll, Florian; Zhao, Tiejun; Block, Kai T.; Bruno, Mary; Wiggins, Graham C.; Sodickson, Daniel K.

    2016-01-01

    Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity. PMID:27526996

  14. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  15. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields. PMID:26444190

  16. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling.

    PubMed

    Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-01

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information-inside hotspots or in search of them-based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. PMID:23759207

  17. Magnetoreception in birds: the effect of radio-frequency fields.

    PubMed

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  18. Magnetoreception in birds: the effect of radio-frequency fields

    PubMed Central

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-01-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field. PMID:25540238

  19. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling

    SciTech Connect

    Aerts, Sam Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-15

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information—inside hotspots or in search of them—based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km{sup 2}. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2 dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. -- Highlights: • We present an

  20. The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study

    PubMed Central

    Khaki, Amir Afshin; Khaki, Arash; Ahmadi, Seyed Shahin

    2016-01-01

    Background: Recently, there are increasing concerns and interests about the potential effects of Electromagnetic Field (EMF) on both human and animal health. Objective: The goal of this study was to evaluate the harmful effects of 50 Hz non-ionizing EMF on rat oocytes. Materials and Methods: In this experimental study 30 rats were randomly taken from laboratory animals and their ags and weights were determined. These 3 month's old rats were randomly divided into 3 groups. The control group consisted of 10 rats without receiving any treatment and kept under normal conditions. Experimental group 1 (10 rats) received EMF for 8 weeks (3 weeks intrauterine +5 weeks after births) and experimental group 2 (10 rats) received EMF for 13 weeks (3 weeks intrauterine +10 weeks after birth). After removing the ovaries and isolating follicles, granulosa cells were fixed in glutaraldehyde and osmium tetroxide. Electron microscopy was used to investigate the traumatic effects of EMF on follicles. Results: In control group nucleus membrane and mitochondria in follicle’s cytoplasm seemed normal in appearance. Theca layer of primary follicles in experimental group was separated clearly, zona layer demonstrated trot with irregular thickness and ovarian stroma seemed isolated with dilated vessels showing infiltration. Conclusion: According to the results of this study, it can be concluded that EMF has harmful effects on the ovarian follicles. PMID:27200427

  1. International and national expert group evaluations: biological/health effects of radiofrequency fields.

    PubMed

    Vijayalaxmi; Scarfi, Maria R

    2014-09-01

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the "weight of scientific evidence" approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research. PMID:25211777

  2. International and National Expert Group Evaluations: Biological/Health Effects of Radiofrequency Fields

    PubMed Central

    Vijayalaxmi; Scarfi, Maria R.

    2014-01-01

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the “weight of scientific evidence” approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research. PMID:25211777

  3. Adaptive Response in Mice Exposed to 900 MHz Radiofrequency Fields: Primary DNA Damage

    PubMed Central

    Zhou, Zhen; Zhang, Jie; Tong, Jian; Cao, Yi

    2012-01-01

    The phenomenon of adaptive response (AR) in animal and human cells exposed to ionizing radiation is well documented in scientific literature. We have examined whether such AR could be induced in mice exposed to non-ionizing radiofrequency fields (RF) used for wireless communications. Mice were pre-exposed to 900 MHz RF at 120 µW/cm2 power density for 4 hours/day for 1, 3, 5, 7 and 14 days and then subjected to an acute dose of 3 Gy γ-radiation. The primary DNA damage in the form of alkali labile base damage and single strand breaks in the DNA of peripheral blood leukocytes was determined using the alkaline comet assay. The results indicated that the extent of damage in mice which were pre-exposed to RF for 1 day and then subjected to γ-radiation was similar and not significantly different from those exposed to γ-radiation alone. However, mice which were pre-exposed to RF for 3, 5, 7 and 14 days showed progressively decreased damage and was significantly different from those exposed to γ-radiation alone. Thus, the data indicated that RF pre-exposure is capable of inducing AR and suggested that the pre-exposure for more than 4 hours for 1 day is necessary to elicit such AR. PMID:22389679

  4. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles

    PubMed Central

    Glazer, Evan S.; Curley, Steven A.

    2010-01-01

    Background Non-ionizing radiation, such as radiofrequency (RF) field and near infrared laser, induces thermal cytotoxicity in cancer cells treated with gold nanoparticles (AuNP). Quantum dots (QD) are fluorescent semiconducting nanoparticles that we hypothesize will induce similar injury following RF field irradiation. Methods AuNP and two types of QD (cadmium-selenide and indium-gallium-phosphide) conjugated to cetuximab (C225), a monoclonal antibody against human epidermal growth factor receptor (EGFR-1), demonstrated concentration-dependent heating in a RF field. We investigated the effect of RF field exposure after targeted nanoparticle treatment in a co-culture of two human cancer cell lines that have differential EGFR-1 expression (a high expressing pancreatic carcinoma, Panc-1, and a low expressing breast carcinoma, Cama-1). Results RF exposed Panc-1 or Cama-1 cells not containing AuNP or QD had a viability greater than 92%. The viability of Panc-1 cells exposed to the RF field after treatment with 50 nM Au-C225 was 39.4% ± 8.3% without injury to bystander Cama-1 cells (viability was 93.7% ± 1.0%, p ~ 0.0006). Panc-1 cells treated with targeted Cd-Se QD were only 47.5% viable after RF field exposure (p < 0.0001 compared to RF only Panc-1 control cells). Targeted InGaP QD decreased Panc-1 viability to 58.2% ± 3.4% after RF field exposure (p ~ 0.0004 compared to Cama-1 and Panc-1 controls). Conclusion We selectively induced RF field cytotoxicity in Panc-1 cells without injury to bystander Cama-1 cells utilizing EGFR-1 targeted nanoparticles, and demonstrated an interesting bifunctionality of fluorescent nanoparticles as agents for both cancer cell imaging and treatment. PMID:20564640

  5. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: A systematic review

    SciTech Connect

    Roeoesli, Martin

    2008-06-15

    This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.

  6. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  7. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics. PMID:23785812

  8. Assessment of occupational exposure to radiofrequency fields and radiation.

    PubMed

    Cooper, T G; Allen, S G; Blackwell, R P; Litchfield, I; Mann, S M; Pope, J M; van Tongeren, M J A

    2004-01-01

    The use of personal monitors for the assessment of exposure to radiofrequency fields and radiation in potential future epidemiological studies of occupationally exposed populations has been investigated. Data loggers have been developed for use with a commercially available personal monitor and these allowed personal exposure records consisting of time-tagged measurements of electric and magnetic field strength to be accrued over extended periods of the working day. The instrumentation was worn by workers carrying out tasks representative of some of their typical daily activities at a variety of radio sites. The results indicated significant differences in the exposures of workers in various RF environments. A number of measures of exposure have been examined with a view to assessing possible exposure metrics for epidemiological studies. There was generally a good correlation between a given measure of electric field strength and the same measure of magnetic field strength. PMID:15266067

  9. The Effect of Combined Exposure of 900 MHz Radiofrequency Fields and Doxorubicin in HL-60 Cells

    PubMed Central

    Jiang, Bingcheng; Zhou, Zhen; Tong, Jian; Cao, Yi

    2012-01-01

    Human promyelocytic leukemia HL-60 cells were pre-exposed to non-ionizing 900 MHz radiofrequency fields (RF) at 12 µW/cm2 power density for 1 hour/day for 3 days and then treated with a chemotherapeutic drug, doxorubicin (DOX, 0.125 mg/L). Several end-points related to toxicity, viz., viability, apoptosis, mitochondrial membrane potential (MMP), intracellular free calcium (Ca2+) and Ca2+-Mg2+ -ATPase activity were measured. The results obtained in un-exposed and sham-exposed control cells were compared with those exposed to RF alone, DOX alone and RF+DOX. The results indicated no significant differences between un-exposed, sham-exposed control cells and those exposed to RF alone while treatment with DOX alone showed a significant decrease in viability, increased apoptosis, decreased MMP, increased Ca2+ and decreased Ca2+-Mg2+-ATPase activity. When the latter results were compared with cells exposed RF+DOX, the data showed increased cell proliferation, decreased apoptosis, increased MMP, decreased Ca2+ and increased Ca2+-Mg2+-ATPase activity. Thus, RF pre-exposure appear to protect the HL-60 cells from the toxic effects of subsequent treatment with DOX. These observations were similar to our earlier data which suggested that pre-exposure of mice to 900 MHz RF at 120 µW/cm2 power density for 1 hours/day for 14 days had a protective effect in hematopoietic tissue damage induced by subsequent gamma-irradiation. PMID:23029402

  10. Biological effects and exposure criteria for radiofrequency electromagnetic fields

    SciTech Connect

    Not Available

    1986-01-01

    This report, which begins with a discussion of fundamental studies at the molecular level, presents a review of the subject matter covered in NCRP Report No. 67 on mechanisms of interaction of radiofrequency electromagnetic (RFEM) fields with tissue. The discussion continues to progressively larger scales of interaction, beginning with macromolecular and cellular effects, chromosomal and mutagenic effects, and carcinogenic effects. The scope of the subject matter is then expanded to include systemic effects such as those on reproduction, growth, and development, hematopoiesis and immunology, endocrinology and autonomic nervous function, cardiovascular effects and cerebrovascular effects. The interaction of electromagnetic fields with the central nervous system and special senses is also discussed. Also included are epidemiological studies, a discussion of thermoregulation, and a history of therapeutic applications of RFEM fields. The report concludes with human exposure criteria and rationale.

  11. Radiofrequency fields associated with the Itron smart meter.

    PubMed

    Tell, R A; Sias, G G; Vazquez, A; Sahl, J; Turman, J P; Kavet, R I; Mezei, G

    2012-08-01

    This study examined radiofrequency (RF) emissions from smart electric power meters deployed in two service territories in California for the purpose of evaluating potential human exposure. These meters included transmitters operating in a local area mesh network (RF LAN, ∼250 mW); a cell relay, which uses a wireless wide area network (WWAN, ∼1 W); and a transmitter serving a home area network (HAN, ∼70 mW). In all instances, RF fields were found to comply by a wide margin with the RF exposure limits established by the US Federal Communications Commission. The study included specialised measurement techniques and reported the spatial distribution of the fields near the meters and their duty cycles (typically <1 %) whose value is crucial to assessing time-averaged exposure levels. This study is the first to characterise smart meters as deployed. However, the results are restricted to a single manufacturer's emitters. PMID:22234423

  12. Remotely Triggered Cisplatin Release from Carbon Nanocapsules by Radiofrequency Fields

    PubMed Central

    Raoof, Mustafa; Cisneros, Brandon T.; Guven, Adem; Corr, Stuart J.; Wilson, Lon J.; Curley, Steven A.

    2013-01-01

    The efficacy of nanoparticle-mediated drug delivery is limited by its peri-vascular sequestration, thus necessitating a strategy to trigger drug release from such intra-tumoral nanocarrier-drug depots. In our efforts to explore remotely-activated nanocarriers, we have developed carbon nanocapsules comprised of an ultrashort carbon nanotube shell (US-tubes) loaded with cisplatin (CDDP@US-tubes) and covered with a Pluronic surfactant wrapping to minimize passive release. We demonstrate here that non-invasive radiofrequency (RF) field activation of the CDDP@US-tubes produces heat that causes Pluronic disruption which triggers cisplatin release in an RF-dependent manner. Furthermore, release-dependent cytotoxicity is demonstrated in human hepatocellular carcinoma cell lines. PMID:23228421

  13. Assessment of levels of occupational exposure to workers in radiofrequency fields of two television stations in Accra, Ghana.

    PubMed

    Osei, S; Amoako, J K; Fletcher, J J

    2016-03-01

    A survey of the radiofrequency (RF) radiation was undertaken within the premises of two television (TV) stations, TVA and TVB, in Accra, Ghana. The primary objective of this study was to determine the level of RF exposure to workers in the TV stations. A spectrum analyser, a bi-conical antenna (30-300 MHz) and a log-periodic antenna (200 MHz-2.0 GHz) were used. Results obtained indicated that the wideband electric field strength levels recorded in this work vary between 0.006 and 58.5 V m(-1) at TVA and between 0.007 and 28.5 V m(-1) at TVB. Compared with the results from TVB, TVA recorded relatively higher values in the 30-400 MHz range, whereas TVB produced relatively higher values in the 400 MHz-1.7 GHz range. Generally, results obtained were found to be below the occupational reference levels of the International Commission on Non-Ionizing Radiation Protection, but at some locations, the field intensity was 4.3 times higher than the reference levels for the general public. PMID:25979743

  14. Mechanisms of biological effects of radiofrequency electromagnetic fields: an overview

    SciTech Connect

    Erwin, D.N.

    1988-11-01

    Manmade sources of electromagnetic (EM) fields, and therefore human exposures to them, continue to increase. Public concerns stem from the effects reported in the literature, the visibility of the sources, and somewhat from confusion between EM fields and ionizing radiation. Protecting humans from the real hazards and allaying groundless fears requires a self-consistent body of scientific data concerning effects of the fields, levels of exposures which cause those effects, and which effects are deleterious (or beneficial or neutral). With that knowledge, appropriate guidelines for safety can be devised, while preserving the beneficial uses of radiofrequency radiation (RFR) energy for military or civilian purposes. The task is monumental because of the large and growing number of biological endpoints and the infinite array of RFR exposure conditions under which those endpoints might be examined. The only way to reach this goal is to understand the mechanisms by which EM fields interact with tissues. As in other fields of science, a mechanistic understanding of RFR effects will enable scientists to generalize from a selected few experiments to derive the laws of RFR bioeffects. This article gives an overview of present knowledge of those mechanisms and the part that the USAF School of Aerospace Medicine has played in expanding that knowledge. 91 references.

  15. Assessing personal exposures to environmental radiofrequency electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mann, Simon

    2010-11-01

    Recent advances in the capability of body-worn instruments for measuring the strengths of environmental radiofrequency signals have opened up a range of exciting new research possibilities. The readings from these instruments can be used in health related studies, but they have to be considered carefully when developing exposure metrics, as does the physical dosimetry concerning interactions between radio waves and the body. Several studies have distributed the instruments to large groups of people and analysed the gathered data in relation to possible determinants of exposure. This article reviews the state of the art in personal exposure measurements at radiofrequencies.

  16. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    SciTech Connect

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM{sub 010} passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B{sub peak} = 173 mT, in 8{pi}/9 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities.

  17. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. PMID:25194051

  18. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells

    PubMed Central

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. PMID:25194051

  19. Diverse Radiofrequency Sensitivity and Radiofrequency Effects of Mobile or Cordless Phone near Fields Exposure in Drosophila melanogaster

    PubMed Central

    Geronikolou, Styliani; Zimeras, Stelios; Davos, Constantinos H.; Michalopoulos, Ioannis; Tsitomeneas, Stephanos

    2014-01-01

    Introduction The impact of electromagnetic fields on health is of increasing scientific interest. The aim of this study was to examine how the Drosophila melanogaster animal model is affected when exposed to portable or mobile phone fields. Methods/Results Two experiments have been designed and performed in the same laboratory conditions. Insect cultures were exposed to the near field of a 2G mobile phone (the GSM 2G networks support and complement in parallel the 3G wide band or in other words the transmission of information via voice signals is served by the 2G technology in both mobile phones generations) and a 1880 MHz cordless phone both digitally modulated by human voice. Comparison with advanced statistics of the egg laying of the second generation exposed and non-exposed cultures showed limited statistical significance for the cordless phone exposed culture and statistical significance for the 900 MHz exposed insects. We calculated by physics, simulated and illustrated in three dimensional figures the calculated near fields of radiation inside the experimenting vials and their difference. Comparison of the power of the two fields showed that the difference between them becomes null when the experimental cylinder radius and the height of the antenna increase. Conclusions/Significance Our results suggest a possible radiofrequency sensitivity difference in insects which may be due to the distance from the antenna or to unexplored intimate factors. Comparing the near fields of the two frequencies bands, we see similar not identical geometry in length and height from the antenna and that lower frequencies tend to drive to increased radiofrequency effects. PMID:25402465

  20. In vitro and in vivo genotoxicity of radiofrequency fields.

    PubMed

    Verschaeve, L; Juutilainen, J; Lagroye, I; Miyakoshi, J; Saunders, R; de Seze, R; Tenforde, T; van Rongen, E; Veyret, B; Xu, Z

    2010-12-01

    There has been growing concern about the possibility of adverse health effects resulting from exposure to radiofrequency radiations (RFR), such as those emitted by wireless communication devices. Since the introduction of mobile phones many studies have been conducted regarding alleged health effects but there is still some uncertainty and no definitive conclusions have been reached so far. Although thermal effects are well understood they are not of great concern as they are unlikely to result from the typical low-level RFR exposures. Concern rests essentially with the possibility that RFR-exposure may induce non-thermal and/or long-term health effects such as an increased cancer risk. Consequently, possible genetic effects have often been studied but with mixed results. In this paper we review the data on alleged RFR-induced genetic effects from in vitro and in vivo investigations as well as from human cytogenetic biomonitoring surveys. Attention is also paid to combined exposures of RFR with chemical or physical agents. Again, however, no entirely consistent picture emerges. Many of the positive studies may well be due to thermal exposures, but a few studies suggest that biological effects can be seen at low levels of exposure. Overall, however, the evidence for low-level genotoxic effects is very weak. PMID:20955816

  1. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation.

    PubMed

    Balmori, Alfonso

    2015-06-15

    The rate of scientific activity regarding the effects of anthropogenic electromagnetic radiation in the radiofrequency (RF) range on animals and plants has been small despite the fact that this topic is relevant to the fields of experimental biology, ecology and conservation due to its remarkable expansion over the past 20 years. Current evidence indicates that exposure at levels that are found in the environment (in urban areas and near base stations) may particularly alter the receptor organs to orient in the magnetic field of the earth. These results could have important implications for migratory birds and insects, especially in urban areas, but could also apply to birds and insects in natural and protected areas where there are powerful base station emitters of radiofrequencies. Therefore, more research on the effects of electromagnetic radiation in nature is needed to investigate this emerging threat. PMID:25747364

  2. Superconducting radio-frequency resonator in magnetic fields up to 6 T

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M. S.; Stallkamp, N.; Quint, W.; Wiesel, M.; Vogel, M.; Martin, A.; Birkl, G.

    2016-07-01

    We have measured the characteristics of a superconducting radio-frequency resonator in an external magnetic field. The magnetic field strength has been varied with 10 mT resolution between zero and 6 T. The resonance frequency and the quality factor of the resonator have been found to change significantly as a function of the magnetic field strength. Both parameters show a hysteresis effect which is more pronounced for the resonance frequency. Quantitative knowledge of such behaviour is particularly important when experiments require specific values of resonance frequency and quality factor or when the magnetic field is changed while the resonator is in the superconducting state.

  3. Transmission of Mössbauer rays through ferromagnets in radio-frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Dzyublik, A. Ya.; Sadykov, E. K.; Petrov, G. I.; Arinin, V. V.; Vagizov, F. G.; Spivak, V. Yu.

    2013-08-01

    The transmission of Mössbauer radiation through a thick ferromagnetic crystal, exposed to a radio-frequency (rf) magnetic field, is studied. The quantum-mechanical dynamical scattering theory is developed, taking into account the periodical reversals of the magnetic field at the nuclei. The Mössbauer forward scattering (FS) spectra of the weak ferromagnet FeBO3 placed into rf field are measured. It is found that the coherent gamma wave in the crystal absorbs or emits only couples of the rf photons. As a result, the FS spectra consist of equidistant lines spaced by twice the frequency of the rf field in contrast to the absorption spectra.

  4. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents. PMID:10029137

  5. Measurement of radiofrequency electromagnetic fields in and around ambulances.

    PubMed

    Boivin, W S; Boyd, S M; Coletta, J A; Neunaber, L M

    1997-01-01

    Electromagnetic interference (EMI) with medical devices can threaten patient safety. More information is needed regarding circumstances in health care environments in which electromagnetic (EM) field strengths are expected to be high, such as emergency/transport. In ambulances medical devices and communications equipment must function properly in close proximity. This study characterized EM fields in and around ambulances under realistic conditions. Two types of ambulances were surveyed: the advanced life support (ALS) unit and the basic life support (BLS) unit. The surveys were conducted on-site using the ambulance mobile radio as the primary source of EM energy. Broadband field-strength measurements were collected at various locations in and around the ambulance to map interior and exterior EM field distributions. Nine ambulances were surveyed. In addition to the transmitter power and frequency, the field strengths measured were shown to be dependent upon the shielding provided by the ambulance roof and proximity of the measurement probe to the antenna. Field-strength measurements frequently exceeded the 3 V/m standard immunity level for devices set by the IEC Standard 601-1-2. The results indicate that the ambulance environment presents a considerable challenge to medical devices specifically used for emergency medical care. In order to assure their proper operation, medical devices used for transport emergency care must be able to withstand exposure to EM field strengths comparable to those reported in this study. PMID:9099436

  6. Pre-polarized MRI in a zero readout magnetic field and radiofrequency selective excitation in zero-field NMR

    NASA Astrophysics Data System (ADS)

    Agrawal, Aarati

    excitation of spins is also applied to selective decoupling using multiple-pulse sequences or continuous-wave radiofrequency irradiation. Here, I suggest a method for radiofrequency selective excitation of the spins based on the NMR frequency of the spins in the zero-field spectrum. I derive the resonance conditions for radiofrequency selective excitation in a purely J-coupled and purely dipolar coupled spin system and show simulations of the effect of selective excitation using the applied radiofrequency field. The applied rf-pulse selectively rotates spin pairs based on the J-coupling or dipolar coupling frequency of the spins in purely coupled spin systems.

  7. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Wiart, Joe; Grellier, James; Samaras, Theodoros; Thuróczy, György

    2015-01-01

    Average levels of exposure to radiofrequency (RF) electromagnetic fields (EMFs) of the general public in Europe are difficult to summarize, as exposure levels have been reported differently in those studies in which they have been measured, and a large proportion of reported measurements were very low, sometimes falling below detection limits of the equipment used. The goal of this paper is to present an overview of the scientific literature on RF EMF exposure in Europe and to characterize exposure within the European population. A comparative analysis of the results of spot or long-term RF EMF measurements in the EU indicated that mean electric field strengths were between 0.08 V/m and 1.8 V/m. The overwhelming majority of measured mean electric field strengths were <1 V/m. It is estimated that <1% were above 6 V/m and <0.1% were above 20 V/m. No exposure levels exceeding European Council recommendations were identified in these surveys. Most population exposures from signals of radio and television broadcast towers were observed to be weak because these transmitters are usually far away from exposed individuals and are spatially sparsely distributed. On the other hand, the contribution made to RF exposure from wireless telecommunications technology is continuously increasing and its contribution was above 60% of the total exposure. According to the European exposure assessment studies identified, three population exposure categories (intermittent variable partial body exposure, intermittent variable low-level whole-body (WB) exposure and continuous low-level WB exposure) were recognized by the authors as informative for possible future risk assessment. PMID:23942394

  8. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  9. A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia

    PubMed Central

    Corr, Stuart J.; Shamsudeen, Sabeel; Vergara, Leoncio A.; Ho, Jason Chak-Shing; Ware, Matthew J.; Keshishian, Vazrik; Yokoi, Kenji; Savage, David J.; Meraz, Ismail M.; Kaluarachchi, Warna; Cisneros, Brandon T.; Raoof, Mustafa; Nguyen, Duy Trac; Zhang, Yingchun; Wilson, Lon J.; Summers, Huw; Rees, Paul; Curley, Steven A.; Serda, Rita E.

    2015-01-01

    Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors. PMID:26308617

  10. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

    SciTech Connect

    Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry

    2014-11-10

    We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/√(Hz) and measure a technical noise floor of 40fT/√(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

  11. Present knowledge about specific absorption rates inside a human body exposed to radiofrequency electromagnetic fields

    SciTech Connect

    Garn, J.; Gabriel, C.

    1995-02-01

    We have compiled results of scientific investigations about the relationship between external field-strengths and specific absorption rates inside the human body. The data were normalized to SAR-values that form the basis for current safety standards. Results were compared to exposure limits given in these standard. This comparison should serve as a reference for the selection of reliable reference levels for personal protection against thermal effects in radiofrequency electromagnetic fields. The need to measure and monitor ankle/wrist currents to protect some exposed workers is explained. The study has also highlighted a scarcity of dosimetric data at frequencies below 3 MHz. 20 refs., 7 figs.

  12. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Tong Wang

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  13. Exposure to radio-frequency electromagnetic fields and behavioural problems in Bavarian children and adolescents.

    PubMed

    Thomas, Silke; Heinrich, Sabine; von Kries, Rüdiger; Radon, Katja

    2010-02-01

    Only few studies have so far investigated possible health effects of radio-frequency electromagnetic fields (RF EMF) in children and adolescents, although experts discuss a potential higher vulnerability to such fields. We aimed to investigate a possible association between measured exposure to RF EMF fields and behavioural problems in children and adolescents. 1,498 children and 1,524 adolescents were randomly selected from the population registries of four Bavarian (South of Germany) cities. During an Interview data on participants' mental health, socio-demographic characteristics and potential confounders were collected. Mental health behaviour was assessed using the German version of the Strengths and Difficulties Questionnaire (SDQ). Using a personal dosimeter, we obtained radio-frequency EMF exposure profiles over 24 h. Exposure levels over waking hours were expressed as mean percentage of the reference level. Overall, exposure to radiofrequency electromagnetic fields was far below the reference level. Seven percent of the children and 5% of the adolescents showed an abnormal mental behaviour. In the multiple logistic regression analyses measured exposure to RF fields in the highest quartile was associated to overall behavioural problems for adolescents (OR 2.2; 95% CI 1.1-4.5) but not for children (1.3; 0.7-2.6). These results are mainly driven by one subscale, as the results showed an association between exposure and conduct problems for adolescents (3.7; 1.6-8.4) and children (2.9; 1.4-5.9). As this is one of the first studies that investigated an association between exposure to mobile telecommunication networks and mental health behaviour more studies using personal dosimetry are warranted to confirm these findings. PMID:19960235

  14. Intracellular hyperthermia mediated by nanoparticles in radiofrequency fields in the treatment of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Glazer, Evan Scott

    Intracellular hyperthermic therapy may prove to be a unique and novel approach to the management of pancreatic cancer. Utilizing the principle of photothermal destruction, selective killing of cancer cells with minimal injury to normal tissues may be possible. This dissertation investigated the role of antibody targeted metal nanoparticles and the cytotoxic effects of nonionizing radiofrequency fields in pancreatic cancer. Cancer cell death was induced by heat release from intracellular metal nanoparticles after radiofrequency field exposure. Fluorescent and gold nanoparticles were delivered with two antibodies, cetuximab and PAM-4, to pancreatic cancer cells in vitro and mouse xenografts in vivo. Selective delivery of these nanoparticles induced cell death in vitro and decreased tumor burden in vivo after whole animal RF field exposure. This occurred through both apoptosis and necrosis. In addition, activated caspase-3 was increased after antibody treatment and RF field exposure. Furthermore, although there was non-specific uptake by the liver and spleen in vivo, there was no evidence of acute or chronic toxicity in the animals. These results are in agreement with the principle that malignant cells are more thermally sensitive than normal cells or tissues. Selective intracellular delivery of metal nanoparticles coupled with whole body RF field exposure may be a beneficial therapy against micrometastases and unresectable pancreatic cancer in the future. Further studies are planned with more specific antibodies, other nanoparticles, and other cancer targets.

  15. Radiofrequency field inhomogeneity compensation in high spatial resolution magnetic resonance spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Passeri, Alessandro; Mazzuca, Stefano; Del Bene, Veronica

    2014-06-01

    Clinical magnetic resonance spectroscopy imaging (MRSI) is a non-invasive functional technique, whose mathematical framework falls into the category of linear inverse problems. However, its use in medical diagnostics is hampered by two main problems, both linked to the Fourier-based technique usually implemented for spectra reconstruction: poor spatial resolution and severe blurring in the spatial localization of the reconstructed spectra. Moreover, the intrinsic ill-posedness of the MRSI problem might be worsened by (i) spatially dependent distortions of the static magnetic field (B0) distribution, as well as by (ii) inhomogeneity in the power deposition distribution of the radiofrequency magnetic field (B1). Among several alternative methods, slim (Spectral Localization by IMaging) and bslim (B0 compensated slim) are reconstruction algorithms in which a priori information concerning the spectroscopic target is introduced into the reconstruction kernel. Nonetheless, the influence of the B1 field, particularly when its operating wavelength is close to the size of the human organs being studied, continues to be disregarded. starslim (STAtic and Radiofrequency-compensated slim), an evolution of the slim and bslim methods, is therefore proposed, in which the transformation kernel also includes the B1 field inhomogeneity map, thus allowing almost complete 3D modelling of the MRSI problem. Moreover, an original method for the experimental determination of the B1 field inhomogeneity map specific to the target under evaluation is also included. The compensation capabilities of the proposed method have been tested and illustrated using synthetic raw data reproducing the human brain.

  16. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  17. Breakdown in hydrogen and deuterium gases in static and radio-frequency fields

    SciTech Connect

    Korolov, I. Donkó, Z.

    2015-09-15

    We report the results of a combined experimental and modeling study of the electrical breakdown of hydrogen and deuterium in static (DC) and radio-frequency (RF) (13.56 MHz) electric fields. For the simulations of the breakdown events, simplified models are used and only electrons are traced by Monte Carlo simulation. The experimental DC Paschen curve of hydrogen is used for the determination of the effective secondary electron emission coefficient. A very good agreement between the experimental and the calculated RF breakdown characteristics for hydrogen is found. For deuterium, on the other hand, presently available cross section sets do not allow a reproduction of RF breakdown characteristics.

  18. Creating Feshbach resonances for ultracold molecule formation with radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Owens, Daniel J.; Xie, Ting; Hutson, Jeremy M.

    2016-08-01

    We show that radio-frequency (rf) radiation may be used to create Feshbach resonances in ultracold gases of alkali-metal atoms at desired magnetic fields that are convenient for atomic cooling and degeneracy. For the case of 39K+133Cs , where there are no rf-free resonances in regions where Cs may be cooled to degeneracy, we show that a resonance may be created near 21 G with 69.2 MHz rf radiation. This resonance is almost lossless with circularly polarized rf, and the molecules created are long-lived even with plane-polarized rf.

  19. Diffusion tensor in electron transport in gases in a radio-frequency field

    SciTech Connect

    Maeda, K.; Makabe, T.; Nakano, N.; Bzenic, S.; Petrovic, Z.L.

    1997-05-01

    Electron transport theory in gases in a radio-frequency field is developed in the hydrodynamic regime from the density gradient expansion method of the Boltzmann equation. Swarm parameters for the radio-frequency (rf) field with periodic time modulation are derived as functions of both reduced effective field strength and reduced angular frequency from the time dependent velocity distribution function. The rf electron transport in phase space is analyzed from the series of governing equations by a direct numerical procedure (DNP). Electron velocity distribution function and corresponding swarm parameters obtained from DNP agree with those of the Monte Carlo simulation in the frequency range 10{endash}200 MHz at 10 Td for Reid`s inelastic ramp model gas. The temporal modulation of the ensemble average of energy and the diffusion tensor are discussed. The appearance of the anomalous time behavior of the longitudinal diffusion coefficient is discussed in particular detail, and we provide an explanation of the observed effect. {copyright} {ital 1997} {ital The American Physical Society}

  20. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields.

    PubMed

    Lee, Hae-June; Lee, Jae-Seon; Pack, Jeong-Ki; Choi, Hyung-Do; Kim, Nam; Kim, Sung-Ho; Lee, Yun-Sil

    2009-11-01

    Concern about the possible adverse effects of radiofrequency (RF)-field exposure on public health has increased because of the extensive use of wireless mobile phones and other telecommunication devices in daily life. The murine fetus is a very sensitive indicator of the effects of stress or stimuli in the environment. Therefore, we investigated the teratogenic effects of multi-signal radiofrequency electromagnetic fields (RF EMFs) on mouse fetuses. Pregnant mice were simultaneously exposed to two types of RF signals, single code division multiple access (CDMA) and wideband code division multiple access (WCDMA). Mice received two 45-min RF-field exposures, separated by a 15-min interval, daily throughout the entire gestation period. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg. The animals were killed humanely on the 18th day of gestation and fetuses were examined for mortality, growth retardation, changes in head size and other morphological abnormalities. From the results, we report for the first time that simultaneous experimental exposure to CDMA and WCDMA RF EMFs did not cause any observable adverse effects on mouse fetuses. PMID:19883234

  1. Field reversals in electrically asymmetric capacitively coupled radio-frequency discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schüngel, Edmund; Schulze, Julian; Czarnetzki, Uwe

    2013-10-01

    In this paper, we present a simulation study of electrically asymmetric capacitively coupled radio-frequency hydrogen discharges using the hybrid plasma equipment model operated at the combined frequencies of 10 and 20 MHz. We find that, in such discharges, field reversals cause ionization near the electrodes during the sheath collapse. In the case of the investigated asymmetric voltage waveforms, the field reversals are asymmetrically distributed over the sheaths, which causes asymmetric ionization and density profiles. The asymmetry of these profiles can be controlled by the phase angle between the two frequencies. As a result, the possibility to control the ion energy independently from the ion flux via the electrical asymmetry effect (EAE) is reduced in discharges displaying strong field reversals, as the asymmetric field reversals compensate the electrically induced asymmetry. The reason for this is understood by an analytical model. Furthermore, we demonstrate, that the EAE can be restored by the addition of specific gases to a pure hydrogen discharge.

  2. Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface

    SciTech Connect

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2013-08-15

    Computer simulations of radio-frequency (RF) waves propagating across a two-dimensional (2D) magnetic field into a conducting boundary are described. The boundary condition for the RF fields at the metal surface leads to the formation of an RF sheath, which has previously been studied in one-dimensional models. In this 2D study, it is found that rapid variation of conditions along the sheath surface promote coupling of the incident RF branch (either fast or slow wave) to a short-scale-length sheath-plasma wave (SPW). The SPW propagates along the sheath surface in a particular direction dictated by the orientation of the magnetic field with respect to the surface, and the wave energy in the SPW accumulates near places where the background magnetic field is tangent to the surface.

  3. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits

    NASA Astrophysics Data System (ADS)

    Liang, Yiran; Liang, Xuelei; Zhang, Zhiyong; Li, Wei; Huo, Xiaoye; Peng, Lianmao

    2015-06-01

    Field-effect transistors (GFETs) were fabricated on mechanically flexible substrates using chemical vapor deposition grown graphene. High current density (nearly 200 μA μm-1) with saturation, almost perfect ambipolar electron-hole behavior, high transconductance (120 μS μm-1) and good stability over 381 days were obtained. The average carrier mobility for holes (electrons) is 13 540 cm2 V-1 s-1 (12 300 cm2 V-1 s-1) with the highest value over 24 000 cm2 V-1 s-1 (20 000 cm2 V-1 s-1) obtained in flexible GFETs. Ambipolar radio-frequency circuits, frequency doubler, were constructed based on the high performed flexible GFET, which show record high output power spectra purity (~97%) and high conversion gain of -13.6 dB. Bending measurements show the flexible GFETs are able to work under modest strain. These results show that flexible GFETs are a very promising option for future flexible radio-frequency electronics.Field-effect transistors (GFETs) were fabricated on mechanically flexible substrates using chemical vapor deposition grown graphene. High current density (nearly 200 μA μm-1) with saturation, almost perfect ambipolar electron-hole behavior, high transconductance (120 μS μm-1) and good stability over 381 days were obtained. The average carrier mobility for holes (electrons) is 13 540 cm2 V-1 s-1 (12 300 cm2 V-1 s-1) with the highest value over 24 000 cm2 V-1 s-1 (20 000 cm2 V-1 s-1) obtained in flexible GFETs. Ambipolar radio-frequency circuits, frequency doubler, were constructed based on the high performed flexible GFET, which show record high output power spectra purity (~97%) and high conversion gain of -13.6 dB. Bending measurements show the flexible GFETs are able to work under modest strain. These results show that flexible GFETs are a very promising option for future flexible radio-frequency electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02292d

  4. Calculation of Radiofrequency Electromagnetic Fields and Their Effects in MRI of Human Subjects

    PubMed Central

    Collins, Christopher M.; Wang, Zhangwei

    2011-01-01

    Radiofrequency magnetic fields are critical to nuclear excitation and signal reception in Magnetic Resonance Imaging (MRI). The interactions between these fields and human tissues in anatomical geometries results in a variety of effects regarding image integrity and safety of the human subject. In recent decades numerical methods of calculation have been used increasingly to understand the effects of these interactions and aid in engineering better, faster, and safer equipment and methods. As MRI techniques and technology have evolved through the years, so too have the requirements for meaningful interpretation of calculation results. Here we review the basic physics of RF electromagnetics in MRI and discuss a variety of ways RF field calculations are used in MRI in engineering and safety assurance from simple systems and sequences through advanced methods of development for the future. PMID:21381106

  5. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Pasadas, Francisco; Jiménez, David

    2015-12-01

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  6. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    SciTech Connect

    Pasadas, Francisco Jiménez, David

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  7. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits.

    PubMed

    Liang, Yiran; Liang, Xuelei; Zhang, Zhiyong; Li, Wei; Huo, Xiaoye; Peng, Lianmao

    2015-07-01

    Field-effect transistors (GFETs) were fabricated on mechanically flexible substrates using chemical vapor deposition grown graphene. High current density (nearly 200 μA μm(-1)) with saturation, almost perfect ambipolar electron-hole behavior, high transconductance (120 μS μm(-1)) and good stability over 381 days were obtained. The average carrier mobility for holes (electrons) is 13,540 cm(2) V(-1) s(-1) (12,300 cm(2) V(-1) s(-1)) with the highest value over 24,000 cm(2) V(-1) s(-1) (20,000 cm(2) V(-1) s(-1)) obtained in flexible GFETs. Ambipolar radio-frequency circuits, frequency doubler, were constructed based on the high performed flexible GFET, which show record high output power spectra purity (∼97%) and high conversion gain of -13.6 dB. Bending measurements show the flexible GFETs are able to work under modest strain. These results show that flexible GFETs are a very promising option for future flexible radio-frequency electronics. PMID:26061485

  8. National surveys of radiofrequency field strengths from radio base stations in Africa

    PubMed Central

    Joyner, Ken H.; Van Wyk, Marthinus J.; Rowley, Jack T.

    2014-01-01

    The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from thes data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. PMID:24044904

  9. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.

    PubMed

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-08-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  10. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field

    PubMed Central

    Kavokin, Kirill; Chernetsov, Nikita; Pakhomov, Alexander; Bojarinova, Julia; Kobylkov, Dmitry; Namozov, Barot

    2014-01-01

    We report on the experiments on orientation of a migratory songbird, the garden warbler (Sylvia borin), during the autumn migration period on the Courish Spit, Eastern Baltics. Birds in experimental cages, deprived of visual information, showed the seasonally appropriate direction of intended flight with respect to the magnetic meridian. Weak radiofrequency (RF) magnetic field (190 nT at 1.4 MHz) disrupted this orientation ability. These results may be considered as an independent replication of earlier experiments, performed by the group of R. and W. Wiltschko with European robins (Erithacus rubecula). Confirmed outstanding sensitivity of the birds' magnetic compass to RF fields in the lower megahertz range demands for a revision of one of the mainstream theories of magnetoreception, the radical-pair model of birds' magnetic compass. PMID:24942848

  11. The argument for a unified approach to non-ionizing radiation protection

    SciTech Connect

    Perala, R.A.; Rigden, G.J. ); Pfeffer, R.A. )

    1993-12-01

    In the next decade military equipment will be required to operate in severe electromagnetic environments. These environments are expected to contain most non-ionizing frequencies (D.C. to GHz), from hostile and/or non-hostile sources, and be severe enough to cause temporary upset or even catastrophic failure of electronic equipment. Over the past thirty years considerable emphasis has been placed on hardening critical systems to one or more of these non-ionizing radiation environments, the most prevalent being the nuclear-induced electromagnetic pulse (EMD). From this technology development there has evolved a hardening philosophy that applies to most of these non-ionizing radiation environments. The philosophy, which stresses the application of zonal shields plus penetration protection, can provide low-cost hardening against such diverse non-ionizing radiation as p-static, lightning, electromagnetic interference (EMI), EMP, high intensity radiated fields (HIRF), electromagnetic radiation (EMR), and high power microwaves (HPM). The objective in this paper is to describe the application of this philosophy to Army helicopters. The authors develop a unified specification complete with threat definitions and test methods which illustrates integration of EMP, lightning, and HIRF at the box qualification level. This paper is a summary of the effort documented in a cited reference.

  12. Heating mechanisms for electron swarms in radio-frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Dujko, S.; Bošnjaković, D.; White, R. D.; Petrović, Z. Lj

    2015-10-01

    Starting from analytical and numerical solutions of the equation for collisionless motion of a single electron in time-varying electric and magnetic fields, we investigate the possible mechanisms for power absorption of electron swarms in neutral gases. A multi term theory for solving the Boltzmann equation is used to investigate the power absorption of electrons in radio-frequency (rf) electric and magnetic fields in collision-dominated regime for Reid’s inelastic ramp model gas and molecular oxygen. It is found that the effect of resonant absorption of energy in oscillating rf electric and magnetic fields observed under conditions when collisions do not occur, carries directly over to the case where collisions control the swarm behavior. In particular, we have observed the periodic structures in the absorbed power versus amplitude of the applied rf magnetic field curve which have a physical origin similar to the oscillatory phenomena observed for collisionless electron motion. The variation of the absorbed power and other transport properties with the field frequency and field amplitudes in varying configurations of rf electric and magnetic fields is addressed using physical arguments.

  13. Suppression of ionization instability in a magnetohydrodynamic plasma by coupling with a radio-frequency electromagnetic field

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-05-09

    We describe the suppression of ionization instability and the control of a magnetohydrodynamic electrical power-generating plasma by coupling with a radio-frequency (rf) electromagnetic field. The rf heating stabilizes the unstable plasma behavior and homogenizes the nonuniform plasma structure, whereby the power-generating performance is significantly improved.

  14. Assessment of induced radio-frequency electromagnetic fields in various anatomical human body models

    NASA Astrophysics Data System (ADS)

    Kühn, Sven; Jennings, Wayne; Christ, Andreas; Kuster, Niels

    2009-02-01

    The reference levels for testing compliance of human exposure with radio-frequency (RF) safety limits have been derived from very simplified models of the human. In order to validate these findings for anatomical models, we investigated the absorption characteristics for various anatomies ranging from 6 year old child to large adult male by numerical modeling. We address the exposure to plane-waves incident from all major six sides of the humans with two orthogonal polarizations each. Worst-case scattered field exposure scenarios have been constructed in order to test the implemented procedures of current in situ compliance measurement standards (spatial averaging versus peak search). Our findings suggest that the reference levels of current electromagnetic (EM) safety guidelines for demonstrating compliance as well as some of the current measurement standards are not consistent with the basic restrictions and need to be revised.

  15. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    SciTech Connect

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupled plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.

  16. A far-field radio-frequency experimental exposure system with unrestrained mice.

    PubMed

    Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L

    2015-01-01

    Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies. PMID:26558172

  17. Radio-frequency sheath voltages and slow wave electric field spatial structure

    SciTech Connect

    Colas, Laurent Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan

    2015-12-10

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the RF parallel electric field emitted by Ion Cyclotron (IC) wave launchers, using a simple model of Slow Wave (SW) evanescence coupled with Direct Current (DC) plasma biasing via sheath boundary conditions in a plasma-filled 2-dimensional (parallel, radial) rectangle. Within a “wide sheaths” asymptotic regime, valid for large-amplitude near RF fields, our model becomes partly linear: the sheath oscillating voltage at open field line boundaries is a linear combination of elementary contributions by every source point of the radiated RF field map. These individual contributions are all the more intense as the SW emission point is toroidally nearer to the sheath walls. A limit formula is given for a source infinitely close to the sheaths. The decay of sheath RF voltages with the sheath/source parallel distance is quantified as a function of two characteristic SW evanescence lengths. Decay lengths are smaller than antenna parallel extensions. The sheath RF voltages at an IC antenna side limiter are therefore mainly sensitive to SW emission near this limiter, as recent observations suggest. Toroidal proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel anti-symmetry of the radiated field map. They could also justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  18. The effects of radio-frequency electromagnetic fields on T cell function during development

    PubMed Central

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-01-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF–exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  19. The effects of radio-frequency electromagnetic fields on T cell function during development.

    PubMed

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-05-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF-exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  20. Ionization of N{sub 2} in radio-frequent electric field

    SciTech Connect

    Popović, M. P.; Vojnović, M. M.; Aoneas, M. M.; Vićić, M. D.; Poparić, G. B.; Ristić, M. M.

    2014-06-15

    Rate coefficients for the electron impact ionization of the N{sub 2} molecule are calculated in non-equilibrium conditions in the presence of time-dependent electric field. A Monte Carlo simulation has been developed in order to determine non-equilibrium electron energy distribution functions within one period of the radio-frequent (RF) electric field. By using these distribution functions, rate coefficients for ionization of the N{sub 2} molecule have been obtained time resolved within one period in the frequency range from 13.56 up to 500 MHz, at effective reduced electric field values up to 700 Td. This work presents an insight into the temporal characteristics of ionizing process and provides the ionization rate coefficients that can be of great use for correct implementation in modeling RF plasma discharges. A behavior of rate coefficients under the influence of magnitude and frequency of the fields was studied separately revealing some interesting features in time dependence.

  1. Radiofrequency electromagnetic leakage fields from plastic welding machines. Measurements and reducing measures.

    PubMed

    Eriksson, A; Mild, K H

    1985-01-01

    Operators of unshielded plastic welding machines are often exposed to radiofrequency (RF) electromagnetic leakage fields that substantially exceed all present occupational standards. Measurements show that the Swedish ceiling values (SE = SH = 250 W/m2) in many cases are exceeded at distances up to 1 meter from the electrode. To reduce the stray fields to an acceptable level at the location of the operator, RF field suppression devices should be fitted to the machine. We have studied the strength and the extent of the RF leakage field under various operating conditions and also investigated different methods for reducing the leakage field. The following measurements have been performed: E- and H-field strengths as a function of distance from the electrode, and as a function of load/tuning; the time dependence of [E]2 for various combinations of tuning and welding times producing a welding seam with the same strength; isopower density curves for SE and SH = 250 W/m2 with different types of RF emission control devices fitted to the machine; the RF voltage between the electrode and the welding table and the RF voltage on the machine casing. By decreasing the RF power and increasing the welding time the field strengths at the location of the operator can be reduced to levels below the ceiling values. The RF voltage between the electrode and the welding table ranged from 800 V up to 2100 V for the different plastic material that was welded. The RF voltage on certain parts on the chassis could be as high as 200 V. In order to reduce these voltages and the stray fields the machine should be equipped with a "large capacitive shield" in cases where this is possible. PMID:3850131

  2. Radiofrequency field exposure and cancer: what do the laboratory studies suggest?

    PubMed Central

    Repacholi, M H

    1997-01-01

    Significant concern has been raised about possible health effects from exposure to radiofrequency (RF) electromagnetic fields, especially after the rapid introduction of mobile telecommunications systems. Parents are especially concerned with the possibility that children might develop cancer after exposure to the RF emissions from mobile telephone base stations erected in or near schools. These questions have followed scientific reports suggesting that residence near high voltage power lines may to be associated with an increased childhood leukemia risk. Epidemiologic studies have been plagued by poor RF exposure assessment and differences in methodology. There are no high-quality epidemiologic studies that can be used to evaluate health risks from RF exposure. Laboratory studies in this area have been somewhat confusing. Some animal studies suggest that RF fields accelerate the development of sarcoma colonies in the lung, mammary tumors, skin tumors, hepatomas, and sarcomas. A substantial RF-induced increase in lymphoma incidence in transgenic mice exposed for up to 18 months has also been reported. In contrast, other studies have not found carcinogenic effects. These conflicting results indicate the need for more well-conducted studies on laboratory animals, supplemented with high-quality in vitro studies to identify effects that need further research in vivo, and to characterize any acting mechanisms, especially at low RF field levels. This paper provides a review of the laboratory studies and indicates what conclusions about RF-induced cancer can be drawn. PMID:9467083

  3. The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields.

    PubMed

    Tomanova, K; Vacha, M

    2016-06-01

    Studies on weak man-made radiofrequency (RF) electromagnetic fields affecting animal magnetoreception aim for a better understanding of the reception mechanism and also point to a new phenomenon having possible consequences in ecology and environmental protection. RF impacts on magnetic compasses have recently been demonstrated in migratory birds and other vertebrates. We set out to investigate the effect of RF on the magnetic orientation of the Antarctic krill species Gondogeneia antarctica, a small marine crustacean widespread along the Antarctic littoral line. Here, we show that upon release, G. antarctica (held under laboratory conditions) escaped in the magnetically seaward direction along the magnetic sea-land axis (y-axis) of the home beach. However, the animals were disoriented after being exposed to RF. Orientation was lost not only in an RF field with a magnetic flux density of 20 nT, as expected according to the literature, but even under the 2 nT originally intended as a control. Our results extend recent findings of the extraordinary sensitivity of animal magnetoreception to weak RF fields in marine invertebrates. PMID:27026715

  4. Gene and Protein Expression following Exposure to Radiofrequency Fields from Mobile Phones

    PubMed Central

    Vanderstraeten, Jacques; Verschaeve, Luc

    2008-01-01

    Background Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. Objectives We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. Discussion To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. Conclusions The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure. PMID:18795152

  5. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies

    PubMed Central

    Zimmerman, Jacquelyn W.; Jimenez, Hugo; Pennison, Michael J.; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P.; Barbault, Alexandre; Pasche, Boris

    2013-01-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer. PMID:24206915

  6. Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model.

    PubMed

    Black, Bryan; Granja-Vazquez, Rafael; Johnston, Benjamin R; Jones, Erick; Romero-Ortega, Mario

    2016-01-01

    Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population. PMID:26760033

  7. Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model

    PubMed Central

    Jones, Erick; Romero-Ortega, Mario

    2016-01-01

    Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population. PMID:26760033

  8. Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles

    PubMed Central

    Glazer, Evan S.; Zhu, Cihui; Massey, Katheryn L.; Thompson, C. Shea; Kaluarachchi, Warna D.; Hamir, Amir N.; Curley, Steven A.

    2010-01-01

    Purpose Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNPs) are potentially therapeutic because of the safety demonstrated thus far and their physio-chemical characteristics. We utilized the astounding heating rates of AuNPs in nonionizing radiofrequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. Experimental Design Weekly, Panc-1 and Capan-1 human pancreatic carcinoma xenografts in immunocompromised mice were exposed to an RF field 36 hours after treatment (intraperitoneal) with cetuximab or PAM4 antibody conjugated AuNPs, respectively. Tumor sizes were measured weekly while necrosis and cleaved caspase-3 were investigated with H&E staining and immunofluorescence, respectively. In addition, AuNP internalization and cytotoxicity were investigated in vitro with confocal microscopy and flow cytometry, respectively. Results Panc-1 cells demonstrated increased apoptosis with decreased viability after treatment with cetuximab conjugated AuNPs and RF field exposure (p = 0.00005). Differences in xenograft volumes were observed within 2 weeks of initiating therapy. Cetuximab-conjugated and PAM4-conjugated AuNPs demonstrated RF field-induced destruction of Panc-1 and Capan-1 pancreatic carcinoma xenografts after six weeks of weekly treatment (p = 0.004 and p = 0.035, respectively). There was no evidence of injury to murine organs. Cleaved caspase-3 and necrosis were both increased in treated tumors. Conclusions This study demonstrates a potentially novel cancer therapy by non-invasively inducing intracellular hyperthermia with targeted AuNPs in an RF field. While the therapy is dependent on the specificity of the targeting antibody, normal tissues were without toxicity despite systemic therapy and whole body RF field exposure. PMID:21138869

  9. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect

    Piot, P.; Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H.; Choi, B. K.; Blomberg, B.; Mihalcea, D.; Panuganti, H.; Jarvis, J.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ∼10{sup 6} diamond tips on pyramids. Maximum current on the order of 15 mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  10. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures.

    PubMed

    Bhatt, Chhavi Raj; Redmayne, Mary; Abramson, Michael J; Benke, Geza

    2016-03-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations. PMID:26684750

  11. Dominant lethal mutation test in male mice exposed to 900MHz radiofrequency fields.

    PubMed

    Zhu, Shunxing; Zhang, Jie; Liu, Chun; He, Qina; Vijayalaxmi; Prihoda, Thomas J; Tong, Jian; Cao, Yi

    2015-10-01

    Adult male ICR mice were exposed to continuous wave 900MHz radiofrequency fields (RF) at 1.6mW/cm(2) power intensity (whole body average specific absorption rate of 0.731W/kg) for 4 hour/day for 15 days. At the end of exposure, each mouse was caged with 3 mature virgin female mice for mating. After 7 days, each male mouse was transferred to a fresh cage and mated with a second batch of 3 females. This process was repeated for a total of 4 consecutive weeks. Sham exposed male mice and those subjected to an acute 2Gy γ-irradiation (GR) were handled similarly and used as un-exposed and positive controls, respectively. All females were sacrificed on the 18th day of gestation and presumptive mating and, the contents in their uteri were examined. The overall observations during the 4 weeks of mating indicated that the un-exposed female mice mated to RF-exposed male mice showed no significant differences in the percentage of pregnancies, total implants, live implants and dead implants when compared with those mated with sham-exposed mice. In contrast, female mice mated with GR-exposed males showed a consistent pattern of significant differences in the above indices in each and all 4 weeks of mating. Thus, the data indicated an absence of mutagenic potential of RF exposure in the germ cells of male mice. PMID:26433262

  12. Effects of field orientation during 700-MHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Padilla, J.M. )

    1989-01-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 degree C (38.5 to 39.5 degrees C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changes between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.

  13. Effects of field orientation during 700-MHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Padilla, J.M.

    1989-01-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 deg C (38.5 to 39.5 deg C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changer between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.

  14. DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations.

    PubMed

    Sakuma, N; Komatsubara, Y; Takeda, H; Hirose, H; Sekijima, M; Nojima, T; Miyakoshi, J

    2006-01-01

    We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg. PMID:16283663

  15. Occupational exposures to radiofrequency fields: results of an Israeli national survey.

    PubMed

    Hareuveny, R; Kavet, R; Shachar, A; Margaliot, M; Kheifets, L

    2015-06-01

    Relatively high exposures to radiofrequency (RF) fields can occur in the broadcast, medical, and communications industries, as well in occupations that use RF emitting equipment (e.g. law enforcement). Information on exposure to workers employed in these industries and occupations is limited. We present results of an Israeli National Survey of occupational RF field levels at frequencies between ~100 kHz and 40 GHz, representing Industrial Heating, Communications, Radar, Research, and Medicine. Almost 4300 measurements from 900 sources across 25 occupations were recorded and categorised as 'routine', 'incidental', or 'unintended'. The occupation-specific geometric means (GMs) of the percentage of the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values (TLVs) for each of the three exposure scenarios are presented together with the geometric standard deviation (GSD). Additionally, we present estimates of occupation-specific annual personal exposures and collective exposures. The vast majority of the GM of routine exposures ranged from a fraction to less than 1% of ACGIH TLVs, except for Walkie-Talkie (GM 94% of ACGIH), Induction Heating (17%), Plastic Welding (11%), Industrial Heating (6%) and Diathermy (6%). The GM of incidental and unintended exposures exceeded the TLV for one and 14 occupations, respectively. In many cases, the within-occupation GSD was very large, and though the medians remained below TLV, variable fractions of these occupations were projected to exceed the TLV. In rank order, Walkie-Talkie, Plastic Welding, and Induction Heating workers had the highest annual cumulative personal exposure. For cumulative collective exposures within an occupation, Walkie-Talkie dominated with 96.3% of the total, reflecting both large population and high personal exposure. A brief exceedance of the TLV does not automatically translate to hazard as RF exposure limits (issued by various bodies, including ACGIH) include a 10

  16. Field orientation effects during 5. 6-GHz radiofrequency irradiation of rats

    SciTech Connect

    Frei, M.R.; Jauchem, J.R.; Price, D.L.; Padilla, J.M. )

    1990-12-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed in E and H orientations (long axis parallel to electric and magnetic fields, respectively) to far-field 5.6-GHz continuous-wave radio-frequency radiation (RFR). Power densities were used that resulted in equivalent whole-body average specific absorption rates of 14 W/kg in both orientations (90 mW/cm2 for E and 66 mW/cm2 for H). Irradiation was conducted to increase colonic temperature by 1 degree C (from 38.5 to 39.5 degrees C). During experimentation, arterial blood pressure and respiratory rate and colonic, tympanic, left and right subcutaneous (sides toward and away from RFR source), and tail temperatures were continuously recorded. Results showed no significant difference in the times required to cause a 1 degree C increase or to recover to the initial temperature when irradiation was stopped. Significant differences between E- and H-orientation exposure were seen in the patterns of localized heating. The tail and left subcutaneous temperature increases were significantly greater during E-orientation exposure, the tympanic site showed no difference, and the right subcutaneous temperature increase was significantly greater during H-orientation exposure. Under both exposure conditions, heart rate and mean arterial blood pressure significantly increased during irradiation; however, there were no significant differences between E and H orientation responses. These findings at 5.6 GHz are in contrast to the significant cardiovascular response differences between E- and H-orientation exposure noted during a previous study of irradiation at 2.45 GHz.

  17. 2.2.2 Non-Ionizing Radiations

    NASA Astrophysics Data System (ADS)

    Bernhardt, J. H.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.2.2 Non-Ionizing Radiations' of the Section '2.2 Kinds of Radiation' of the Chapter '2 Radiation and Biological Effects' with the contents:

  18. Image-Guided Radio-Frequency Gain Calibration for High-Field MRI

    PubMed Central

    Breton, Elodie; McGorty, KellyAnne; Wiggins, Graham C.; Axel, Leon; Kim, Daniel

    2010-01-01

    High-field (≥ 3T) MRI provides a means to increase the signal-to-noise ratio, due to its higher tissue magnetization compared with 1.5T. However, both the static magnetic field (B0) and the transmit radio-frequency (RF) field (B1+) inhomogeneities are comparatively higher than those at 1.5T. These challenging factors at high-field strengths make it more difficult to accurately calibrate the transmit RF gain using standard RF calibration procedures. An image-based RF calibration procedure was therefore developed, in order to accurately calibrate the transmit RF gain within a specific region-of-interest (ROI). Using a single-shot ultra-fast gradient echo pulse sequence with centric k-space reordering, a series of “saturation-no-recovery” images was acquired by varying the flip angle of the preconditioning pulse. In the resulting images, the signal null occurs in regions where the flip angle of the preconditioning pulse is 90°. For a given ROI, the mean signal can be plotted as a function of the nominal flip angle, and the resulting curve can be used to quantitatively identify the signal null. This image-guided RF calibration procedure was evaluated through phantom and volunteer imaging experiments at 3T and 7T. The image-guided RF calibration results in vitro were consistent with standard B0 and B1+ maps. The standard automated RF calibration procedure produced approximately 20% and 15–30% relative error in the transmit RF gain in the left kidney at 3T and brain at 7T, respectively. For initial application, a T2 mapping pulse sequence was applied at 7T. The T2 measurements in the thalamus at 7T were 60.6 ms and 48.2 ms using the standard and image-guided RF calibration procedures, respectively. This rapid, image-guided RF calibration procedure can be used to optimally calibrate the flip angle for a given ROI and thus minimize measurement errors for quantitative MRI and MR spectroscopy. PMID:20014333

  19. Feasibility of a cohort study on health risks caused by occupational exposure to radiofrequency electromagnetic fields

    PubMed Central

    2009-01-01

    Background The aim of this study was to examine the feasibility of performing a cohort study on health risks from occupational exposure to radiofrequency electromagnetic fields (RF-EMF) in Germany. Methods A set of criteria was developed to evaluate the feasibility of such a cohort study. The criteria aimed at conditions of exposure and exposure assessment (level, duration, preferably on an individual basis), the possibility to assemble a cohort and the feasibility of ascertaining various disease endpoints. Results Twenty occupational settings with workers potentially exposed to RF-EMF and, in addition, a cohort of amateur radio operators were considered. Based on expert ratings, literature reviews and our set of predefined criteria, three of the cohorts were identified as promising for further evaluation: the personnel (technicians) of medium/short wave broadcasting stations, amateur radio operators, and workers on dielectric heat sealers. After further analyses, the cohort of workers on dielectric heat sealers seems not to be feasible due to the small number of exposed workers available and to the difficulty of assessing exposure (exposure depends heavily on the respective working process and mixture of exposures, e.g. plastic vapours), although exposure was highest in this occupational setting. The advantage of the cohort of amateur radio operators was the large number of persons it includes, while the advantage of the cohort of personnel working at broadcasting stations was the quality of retrospective exposure assessment. However, in the cohort of amateur radio operators the exposure assessment was limited, and the cohort of technicians was hampered by the small number of persons working in this profession. Conclusion The majority of occupational groups exposed to RF-EMF are not practicable for setting up an occupational cohort study due to the small numbers of exposed subjects or due to exposure levels being only marginally higher than those of the general

  20. Circadian Rhythmicity of Antioxidant Markers in Rats Exposed to 1.8 GHz Radiofrequency Fields

    PubMed Central

    Cao, Honglong; Qin, Fenju; Liu, Xueguan; Wang, Jiajun; Cao, Yi; Tong, Jian; Zhao, Heming

    2015-01-01

    Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity. PMID:25685954

  1. Effects of chronic exposure to radiofrequency electromagnetic fields on energy balance in developing rats.

    PubMed

    Pelletier, Amandine; Delanaud, Stéphane; Décima, Pauline; Thuroczy, Gyorgy; de Seze, René; Cerri, Matteo; Bach, Véronique; Libert, Jean-Pierre; Loos, Nathalie

    2013-05-01

    The effects of radiofrequency electromagnetic fields (RF-EMF) on the control of body energy balance in developing organisms have not been studied, despite the involvement of energy status in vital physiological functions. We examined the effects of chronic RF-EMF exposure (900 MHz, 1 V m(-1)) on the main functions involved in body energy homeostasis (feeding behaviour, sleep and thermoregulatory processes). Thirteen juvenile male Wistar rats were exposed to continuous RF-EMF for 5 weeks at 24 °C of air temperature (T a) and compared with 11 non-exposed animals. Hence, at the beginning of the 6th week of exposure, the functions were recorded at T a of 24 °C and then at 31 °C. We showed that the frequency of rapid eye movement sleep episodes was greater in the RF-EMF-exposed group, independently of T a (+42.1 % at 24 °C and +31.6 % at 31 °C). The other effects of RF-EMF exposure on several sleep parameters were dependent on T a. At 31 °C, RF-EMF-exposed animals had a significantly lower subcutaneous tail temperature (-1.21 °C) than controls at all sleep stages; this suggested peripheral vasoconstriction, which was confirmed in an experiment with the vasodilatator prazosin. Exposure to RF-EMF also increased daytime food intake (+0.22 g h(-1)). Most of the observed effects of RF-EMF exposure were dependent on T a. Exposure to RF-EMF appears to modify the functioning of vasomotor tone by acting peripherally through α-adrenoceptors. The elicited vasoconstriction may restrict body cooling, whereas energy intake increases. Our results show that RF-EMF exposure can induce energy-saving processes without strongly disturbing the overall sleep pattern. PMID:23143821

  2. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms.

    PubMed

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-01

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz. PMID:26628171

  3. Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    SciTech Connect

    Mihalcea, D.; Faillace, L.; Hartzell, J.; Panuganti, H.; Boucher, S. M.; Murokh, A.; Piot, P.; Thangaraj, J. C.T.

    2014-12-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  4. Compact field programmable gate array-based pulse-sequencer and radio-frequency generator for experiments with trapped atoms

    SciTech Connect

    Pruttivarasin, Thaned; Katori, Hidetoshi

    2015-11-15

    We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.

  5. First Operation of an Ungated Diamond Field-Emission Array Cathode in a L-Band Radiofrequency Electron Source

    SciTech Connect

    Piot, P.; Brau, C. A.; Choi, B. K.; Blomberg, B.; Gabella, W. E.; Ivanov, B.; Jarvis, J.; Mendenhall, M. H.; Mihalcea, D.; Panuganti, S.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the first successful operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of $\\sim 10^6$ diamond diamond tips on pyramids. Maximum current on the order of 15~mA were reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed. Numerical simulations of the beam dynamics are also presented.

  6. Does Exposure to a Radiofrequency Electromagnetic Field Modify Thermal Preference in Juvenile Rats?

    PubMed Central

    Pelletier, Amandine; Delanaud, Stéphane; de Seze, René; Bach, Véronique; Libert, Jean-Pierre; Loos, Nathalie

    2014-01-01

    Some studies have shown that people living near a mobile phone base station may report sleep disturbances and discomfort. Using a rat model, we have previously shown that chronic exposure to a low-intensity radiofrequency electromagnetic field (RF-EMF) was associated with paradoxical sleep (PS) fragmentation and greater vasomotor tone in the tail. Here, we sought to establish whether sleep disturbances might result from the disturbance of thermoregulatory processes by a RF-EMF. We recorded thermal preference and sleep stage distribution in 18 young male Wistar rats. Nine animals were exposed to a low-intensity RF-EMF (900 MHz, 1 V.m−1) for five weeks and nine served as non-exposed controls. Thermal preference was assessed in an experimental chamber comprising three interconnected compartments, in which the air temperatures (Ta) were set to 24°C, 28°C and 31°C. Sleep and tail skin temperature were also recorded. Our results indicated that relative to control group, exposure to RF-EMF at 31°C was associated with a significantly lower tail skin temperature (−1.6°C) which confirmed previous data. During the light period, the exposed group preferred to sleep at Ta = 31°C and the controls preferred Ta = 28°C. The mean sleep duration in exposed group was significantly greater (by 15.5%) than in control group (due in turn to a significantly greater amount of slow wave sleep (SWS, +14.6%). Similarly, frequency of SWS was greater in exposed group (by 4.9 episodes.h−1). The PS did not differ significantly between the two groups. During the dark period, there were no significant intergroup differences. We conclude that RF-EMF exposure induced a shift in thermal preference towards higher temperatures. The shift in preferred temperature might result from a cold thermal sensation. The change in sleep stage distribution may involve signals from thermoreceptors in the skin. Modulation of SWS may be a protective adaptation in response to RF-EMF exposure. PMID

  7. EDITORIAL: The interaction of radio-frequency fields with fusion plasmas: the JET experience The interaction of radio-frequency fields with fusion plasmas: the JET experience

    NASA Astrophysics Data System (ADS)

    Ongena, Jef

    2012-07-01

    The JET Task Force Heating is proud to present this special issue. It is the result of hard and dedicated work by everybody participating in the Task Force over the last four years and gives an overview of the experimental and theoretical results obtained in the period 2008-2010 with radio frequency heating of JET fusion plasmas. Topics studied and reported in this issue are: investigations into the operation of lower hybrid heating accompanied by new modeling results; new experimental results and insights into the physics of various ion cyclotron range of frequencies (ICRF) heating scenarios; progress in studies of intrinsic and ion cyclotron wave-induced plasma rotation and flows; a summary of the developments over the last years in designing an ion cyclotron radiofrequency heating (ICRH) system that can cope with the presence of fast load variations in the edge, as e.g. caused by pellets or edge localized modes (ELMs) during H-Mode operation; an overview of the results obtained with the ITER-like antenna operating in H-Mode with a packed array of straps and power densities close to those of the projected ITER ICRH antenna; and, finally, a summary of the results obtained in applying ion cyclotron waves for wall conditioning of the tokamak. This issue would not have been possible without the strong motivation and efforts (sometimes truly heroic) of all colleagues of the JET Task Force Heating. A sincere word of thanks, therefore, to all authors and co-authors involved in the experiments, analysis and compilation of the papers. It was a special privilege to work with all of them during the past very intense years. Thanks also to all other European and non-European scientists who contributed to the JET scientific programme, the operations team of JET and the colleagues of the Close Support Unit in Culham. Thanks also to the editors, Editorial Board and referees of Plasma Physics and Controlled Fusion, together with the publishing staff of IOPP, who have not only

  8. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields.

    PubMed

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-20

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed. PMID:22991480

  9. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien; Altarawneh, Moaz M; Lacerda, Alex H; Adak, Sourav; Karunakar, Kothapalli; Nakotte, Heinrich; Chang, S; Alsmadi, A M; Alyones, S

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

  10. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    PubMed

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin. PMID:24760629

  11. Effect of the transverse nonuniformity of the radiofrequency field on the start current and efficiency of gyrodevices with confocal mirrors

    SciTech Connect

    Nusinovich, Gregory S.; Chainani, Samir; Granatstein, Victor L.

    2008-10-15

    The theory is developed for analyzing the effect of transverse nonuniformity of the radiofrequency (rf) field on the starting conditions and efficiency of such gyrotron oscillators as gyromonotrons and gyro-backward-wave oscillators (gyro-BWO). The formalism allows one to study this effect in oscillators operating in the regimes of soft and hard self-excitation. Results obtained for a device with a confocal waveguide (or resonator) are compared with the results for conventional gyrodevices where the rf field acting on electrons with different guiding centers is the same. It is shown how to use results of the classical small-signal theory of backward-wave oscillators driven by linear electron beams for calculating the start currents in gyro-BWOs. The effect of the wave attenuation in waveguide walls on the start current is analyzed, which is important for the design of frequency-tunable gyro-backward-wave oscillators in the THz (and sub THz) frequency range.

  12. Radio-frequency dispersive detection of donor atoms in a field-effect transistor

    SciTech Connect

    Verduijn, J. Rogge, S.; Vinet, M.

    2014-03-10

    Radio-frequency dispersive read-out can provide a useful probe to nano-scale structures, such as nano-wire devices, especially, when the implementation of charge sensing is not straightforward. Here, we demonstrate dispersive “gate-only” read-out of phosphor donors in a silicon nano-scale transistor. The technique enables access to states that are only tunnel-coupled to one contact, which is not easily achievable by other methods. This allows us to locate individual randomly placed donors in the device channel. Furthermore, the setup is naturally compatible with high bandwidth access to the probed donor states and may aid the implementation of a qubit based on coupled donors.

  13. The Interaction of Radio-Frequency Fields With Dielectric Materials at Macroscopic to Mesoscopic Scales

    PubMed Central

    Baker-Jarvis, James; Kim, Sung

    2012-01-01

    The goal of this paper is to overview radio-frequency (RF) electromagnetic interactions with solid and liquid materials from the macroscale to the nanoscale. The overview is geared toward the general researcher. Because this area of research is vast, this paper concentrates on currently active research areas in the megahertz (MHz) through gigahertz (GHz) frequencies, and concentrates on dielectric response. The paper studies interaction mechanisms both from phenomenological and fundamental viewpoints. Relaxation, resonance, interface phenomena, plasmons, the concepts of permittivity and permeability, and relaxation times are summarized. Topics of current research interest, such as negative-index behavior, noise, plasmonic behavior, RF heating, nanoscale materials, wave cloaking, polaritonic surface waves, biomaterials, and other topics are overviewed. Relaxation, resonance, and related relaxation times are overviewed. The wavelength and material length scales required to define permittivity in materials is discussed. PMID:26900513

  14. The Interaction of Radio-Frequency Fields With Dielectric Materials at Macroscopic to Mesoscopic Scales.

    PubMed

    Baker-Jarvis, James; Kim, Sung

    2012-01-01

    The goal of this paper is to overview radio-frequency (RF) electromagnetic interactions with solid and liquid materials from the macroscale to the nanoscale. The overview is geared toward the general researcher. Because this area of research is vast, this paper concentrates on currently active research areas in the megahertz (MHz) through gigahertz (GHz) frequencies, and concentrates on dielectric response. The paper studies interaction mechanisms both from phenomenological and fundamental viewpoints. Relaxation, resonance, interface phenomena, plasmons, the concepts of permittivity and permeability, and relaxation times are summarized. Topics of current research interest, such as negative-index behavior, noise, plasmonic behavior, RF heating, nanoscale materials, wave cloaking, polaritonic surface waves, biomaterials, and other topics are overviewed. Relaxation, resonance, and related relaxation times are overviewed. The wavelength and material length scales required to define permittivity in materials is discussed. PMID:26900513

  15. Extensive frequency selective measurements of radiofrequency fields in outdoor environments performed with a novel mobile monitoring system.

    PubMed

    Estenberg, Jimmy; Augustsson, Torsten

    2014-04-01

    A novel, car based, measuring system for estimation of general public outdoor exposure to radiofrequency fields (RF) has been developed. The system enables fast, large area, isotropic spectral measurements with a bandwidth covering the frequency range of 30 MHz to 3 GHz. Measurements have shown that complete mapping of a town with 15000 inhabitants and a path length of 115 km is possible to perform within 1 day. The measured areas were chosen to represent typical rural, urban and city areas of Sweden. The data sets consist of more than 70000 measurements. All measurements were performed during the daytime. The median power density was 16 µW/m(2) in rural areas, 270 µW/m(2) in urban areas, and 2400 µW/m(2) in city areas. In urban and city areas, base stations for mobile phones were clearly the dominating sources of exposure. PMID:24375568

  16. A p-spin high-pass filter using radiofrequency field gradients for homonuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Canet, Daniel; Mutzenhardt, Pierre; Brondeau, Jean

    Traditional multiple-quantum filtering in nuclear magnetic resonance spectroscopy relies on the acquisition of several transients along with appropriate phase cycling. It is shown that similar results can be obtained in one transient by using a cluster of two radiofrequency field (B1) gradient pulses (g1)x(rg1)y where g1 and rg1 denote the durations of the B1 gradient pulses and the subscripts x and y the transmitter phases. This filter acts on single-quantum antiphase coherences and is of high-pass nature. The choice of r determines the order of the filter (according to the number of spins belonging to the system considered). This property is demonstrated theoretically and verified experimentally by dedicated one-dimensional experiments and COSY-type two-dimensional experiments.

  17. Animal carcinogenicity studies on radiofrequency fields related to mobile phones and base stations

    SciTech Connect

    Dasenbrock, Clemens . E-mail: clemens-dasebrock@bc.boehringer-ingelheim.com

    2005-09-01

    Since a report in 1997 on an increased lymphoma incidence in mice chronically exposed to a mobile phone radiofrequency signal, none of the subsequent long-term studies in rodents have confirmed these results. On the other hand, several of the follow-up co- and carcinogenicity studies are still underway or are presently being initiated. Most of the published long-term studies used 1 exposure level only and suffer from a poor dosimetry which does not consider the animal's growth. Additional points of criticism are a limited, in some cases, questionable histopathology and inadequate group sizes. Overall, if dealing with new chemicals or drugs, these studies would not be acceptable for registration with the responsible authorities. The major critical points are taken into consideration within the European co- and carcinogenicity projects (CEMFEC and PERFORM-A), which are in their final stages and in the US long-term studies in mice and rats which are about to be initiated. Nevertheless, the WHO evaluation for health risk assessment of long-term telephone use and base station exposure will start in late 2005.

  18. Luciferase-based protein-denaturation assay for quantification of radiofrequency field-induced targeted hyperthermia: developing an intracellular thermometer

    PubMed Central

    Raoof, Mustafa; Zhu, Cihui; Kaluarachchi, Warna D.; Curley, Steven A.

    2013-01-01

    Background Several studies have reported targeted hyperthermia at the cellular level using remote activation of nanoparticles by radiofrequency waves. To date, methods to quantify intracellular thermal dose have not been reported. In this report we study the relationship between radio wave exposure and luciferase denaturation with and without intracellular nanoparticles. The findings are used to devise a strategy to quantify targeted thermal dose in a primary human liver cancer cell line. Methods Water-bath or non-invasive external RF generator (600W, 13.56 MHz) was used for hyperthermia exposures. Luciferase activity was measured using a bioluminescence assay and viability was assessed using Annexin V-FITC and Propidium iodide staining. Heat shock proteins were analyzed using western-blot analysis Results Duration-dependent luciferase denaturation was observed in SNU449 cells exposed to RF field that preceded measurable loss in viability. Loss of luciferase activity was higher in cetuximab-conjugated gold nanoparticle (C225-AuNP) treated cells. Using a standard curve from water-bath experiments, the intracellular thermal dose was calculated. Cells treated with C225-AuNP accumulated 6.07 times higher intracellular thermal dose than the untreated controls over initial 4 minutes of RF exposure. Conclusions Cancer cells when exposed to an external RF field exhibit dose-dependent protein denaturation. Luciferase denaturation assay can be used to quantify thermal dose delivered after RF exposures to cancer cells with and without nanoparticles. PMID:22515341

  19. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  20. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields

    PubMed Central

    McNamee, James P.; Bellier, Pascale V.; Konkle, Anne T. M.; Thomas, Reuben; Wasoontarajaroen, Siriwat; Lemay, Eric; Gajda, Greg B.

    2016-01-01

    Abstract Purpose: To assess 1.9 GHz radiofrequency (RF) field exposure on gene expression within a variety of discrete mouse brain regions using whole genome microarray analysis. Materials and methods: Adult male C57BL/6 mice were exposed to 1.9 GHz pulse-modulated or continuous-wave RF fields for 4 h/day for 5 consecutive days at whole body average (WBA) specific absorption rates of 0 (sham), ∼0.2 W/kg and ∼1.4 W/kg. Total RNA was isolated from the auditory cortex, amygdala, caudate, cerebellum, hippocampus, hypothalamus, and medial prefrontal cortex and differential gene expression was assessed using Illumina MouseWG-6 (v2) BeadChip arrays. Validation of potentially responding genes was conducted by RT-PCR. Results: When analysis of gene expression was conducted within individual brain regions when controlling the false discovery rate (FDR), no differentially expressed genes were identified relative to the sham control. However, it must be noted that most fold changes among groups were observed to be less than 1.5-fold and this study had limited ability to detect such small changes. While some genes were differentially expressed without correction for multiple-comparisons testing, no consistent pattern of response was observed among different RF-exposure levels or among different RF-modulations. Conclusions: The current study provides the most comprehensive analysis of potential gene expression changes in the rodent brain in response to RF field exposure conducted to date. Within the exposure conditions and limitations of this study, no convincing evidence of consistent changes in gene expression was found in response to 1.9 GHz RF field exposure. PMID:27028625

  1. Evaluation of 3D radio-frequency electromagnetic fields for any matching and coupling conditions by the use of basis functions

    NASA Astrophysics Data System (ADS)

    Tiberi, Gianluigi; Fontana, Nunzia; Monorchio, Agostino; Stara, Riccardo; Retico, Alessandra; Tosetti, Michela

    2015-12-01

    A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.

  2. Evaluation of safety and patient subjective efficacy of using radiofrequency and pulsed magnetic fields for the treatment of striae (stretch marks).

    PubMed

    Dover, Jeffrey S; Rothaus, Kenneth; Gold, Michael H

    2014-09-01

    Stretch marks are common skin disorders that are dermal scars with associated epidermal atrophy. They are of significant concern or psychological concern to many. This manuscript describes the use of multipolar radiofrequency with pulsed magnetic fields that was successfully used to diminish these lesions in 16 subjects undergoing a series of treatments. The improvements noted were statistically significant and no serious adverse events were noted. PMID:25276274

  3. Evaluation of Safety and Patient Subjective Efficacy of Using Radiofrequency and Pulsed Magnetic Fields for the Treatment of Striae (Stretch Marks)

    PubMed Central

    Dover, Jeffrey S.; Rothaus, Kenneth

    2014-01-01

    Stretch marks are common skin disorders that are dermal scars with associated epidermal atrophy. They are of significant concern or psychological concern to many. This manuscript describes the use of multipolar radiofrequency with pulsed magnetic fields that was successfully used to diminish these lesions in 16 subjects undergoing a series of treatments. The improvements noted were statistically significant and no serious adverse events were noted. PMID:25276274

  4. Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure

    PubMed Central

    Simkó, Myrtill; Remondini, Daniel; Zeni, Olga; Scarfi, Maria Rosaria

    2016-01-01

    Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions. PMID:27420084

  5. Young’s Modulus Reconstruction for Radio-frequency Ablation Electrode-induced Displacement Fields: A Feasibility Study

    PubMed Central

    Jiang, Jingfeng; Varghese, Tomy; Brace, Chris L.; Madsen, Ernest L.; Hall, Timothy J.; Bharat, Shyam; Hobson, Maritza A.; Zagzebski, James A.; Lee, Fred T.

    2009-01-01

    Radiofrequency (RF) ablation is a minimally invasive treatment for tumors in various abdominal organs. It is effective if good tumor localization and intra-procedural monitoring can be done. In this paper, we investigate the feasibility of using an ultrasound-based Young’s modulus reconstruction algorithm to image an ablated region whose stiffness is elevated due to tissue coagulation. To obtain controllable tissue deformations for abdominal organs during and/or intermediately after the RF ablation, the proposed modulus imaging method is specifically designed for using tissue deformation fields induced by the RF electrode. We have developed a new scheme under which the reconstruction problem is simplified to a two-dimensional problem. Based on this scheme, an iterative Young’s modulus reconstruction technique with edge-preserving regularization was developed to estimate the Young’s modulus distribution. The method was tested in experiments using a tissue-mimicking phantom and on ex vivo bovine liver tissues. Our preliminary results suggest that high contrast modulus images can be successfully reconstructed. In both experiments, the geometries of the reconstructed modulus images of thermal ablation zones match well with the phantom design and the gross pathology image, respectively. PMID:19258195

  6. Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure.

    PubMed

    Simkó, Myrtill; Remondini, Daniel; Zeni, Olga; Scarfi, Maria Rosaria

    2016-01-01

    Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of "cellular life" to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995-2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions. PMID:27420084

  7. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields.

    PubMed

    Vijayalaxmi; Reddy, Abhishek B; McKenzie, Raymond J; McIntosh, Robert L; Prihoda, Thomas J; Wood, Andrew W

    2013-10-01

    Peripheral blood samples from four healthy volunteers were collected and aliquots were exposed in vitro for 2 h to either (i) modulated (wideband code division multiple access, WCDMA) or unmodulated continuous wave (CW) 2450 MHz radiofrequency (RF) fields at an average specific absorption rate of 10.9 W/kg or (ii) sham-exposed. Aliquots of the same samples that were exposed in vitro to an acute dose of 1.5 Gy ionizing gamma-radiation (GR) were used as positive controls. Half of the aliquots were treated with melatonin (Mel) to investigate if such treatment offers protection to the cells from the genetic damage, if any, induced by RF and GR. The cells in all samples were cultured for 72 h and the lymphocytes were examined to determine the extent of genetic damage assessed from the incidence of micronuclei (MN). The results indicated the following: (i) the incidence of MN was similar in incubator controls, and those exposed to RF/sham and Mel alone; (ii) there were no significant differences between WCDMA and CW RF exposures; (iii) positive control cells exposed to GR alone exhibited significantly increased MN; and (iv) Mel treatment had no effect on cells exposed to RF and sham, while such treatment significantly reduced the frequency of MN in GR-exposed cells. PMID:23720062

  8. Strong field radio-frequency measurements using Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Anderson, David; Raithel, Georg

    2016-05-01

    There has been a growing interest in using electromagnetically induced transparency with Rydberg atoms in a room-temperature vapor cell as an all-optical readout method for measuring microwave electric fields. We present results from RF-modulating the 60S1 / 2 and 58D5 / 2 Rydberg states of rubidium with 50 MHz and 100 MHz fields, respectively. Weak RF fields AC Stark-shifts the Rydberg states. As the field strength is increased, sidebands appear at even multiples of the driving frequency. When strong fields are applied, the nearby hydrogenic manifold begins to intersect with the shifted levels. Similar investigations have been performed in cesium. Due to the significant amount of state mixing and level structure, Floquet theory is required to describe the level shifts and mixing. By comparing the calculation with the experimental data, we obtain an absolute determination of the RF electric field reaching a maximum field of 296 V/m to within +/- 0 . 35 % . Additionally, we estimate the shielding of DC fields within the vapor cell.

  9. 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice.

    PubMed

    Son, Yeonghoon; Jeong, Ye Ji; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June

    2016-09-01

    The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF-EMF) on health. In the present study, we investigated whether RF-EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)-related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF-EMF- and sham-exposed groups, eight mice per group). The RF-EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y-maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non-spatial memory following 3-month RF-EMF exposure. Furthermore, Aβ deposition and APP and carboxyl-terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF-EMF for 3 months did not exhibit differences in spatial and non-spatial memory compared to the sham-exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF-EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3-month RF-EMF exposure did not affect Aβ-related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391-399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society. PMID:27434853

  10. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  11. Mapping of force fields in a capacitively driven radiofrequency plasma discharge

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Chen, M.; Sabo, H.; Laufer, R.; Herdrich, G.; Matthews, L. S.; Hyde, T. W.

    2016-08-01

    > In this paper a method is described that allows mapping of the forces acting on dust particles in a GEC reference cell. Monodisperse particles are dropped into the plasma environment and their trajectories are tracked using a high-speed camera system to determine local accelerations and respective forces. Collecting data from a large number of particle drops allows the identification of three-dimensional vector fields for the acting forces. The procedure is described and multiple examples in which the method has been applied are given. These examples include a simple plasma sheath, plasmas perturbed by a horizontal and vertical dipole magnet, an array of multiple magnets mimicking the fields found at a lunar swirl, and the fields inside a glass box used for particle confinement. Further applicability in other plasma environments will be discussed shortly.

  12. Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation

    SciTech Connect

    Ledbetter, M. P.; Acosta, V. M.; Rochester, S. M.; Budker, D.; Pustelny, S.; Yashchuk, V. V.

    2007-02-15

    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high-frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. Based on experimentally measured signal-to-noise ratio, we demonstrate a sensitivity of 100 pG/{radical}(Hz) (rms) in a 3.5-cm-diameter paraffin coated cell. Assuming detection at the photon shot-noise limit, we project a sensitivity as low as 25 pG/{radical}(Hz) (rms)

  13. Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI

    PubMed Central

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-01-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090

  14. A Genome-Wide mRNA Expression Profile in Caenorhabditis elegans under Prolonged Exposure to 1750MHz Radiofrequency Fields

    PubMed Central

    Gao, Dawen; Yu, Zhoulong; Wu, Tongning; Zhang, Chenggang

    2016-01-01

    Objective C. elegans has been used as a biomonitor for microwave-induced stress. However, the RF (radiofrequency) fields that have been used in previous studies were weak (≤1.8W/kg), and the bio-effects on C. elegans were mostly negative or ambiguous. Therefore, this study used more intense RF fields (SAR = 3W/kg) and longer time course of exposure (60h at 25°C, L1 stage through adult stage) to investigate the biological consequences of 1750 MHz RF fields in wild-type worms. Methods The growth rates and lifespans of RF-exposure group and the control group were carefully recorded. RNA samples were collected at L4 (35h) and gravid adult (50h) stages for further high-throughput sequencing, focusing on differences between the RF-exposure and the sham control groups. Results The RF-exposed and sham control groups developed at almost the same rate and had similar longevity curves. In L4 stage worms, 94 up-regulated and 17 down-regulated genes were identified, while 186 up-regulated and 3 down-regulated genes were identified in adult stage worms. GO analysis showed that the differentially expressed genes at 35h were associated with growth, body morphogenesis and collagen and cuticle-based development. Genes that were linked to growth rate and reproductive development were differentially expressed at 50h. Some embryonic and larval development genes in the offspring were also differentially expressed at 50h. Ten genes were differentially expressed at both 35h and 50h, most of which were involved in both embryonic and larval developmental processes. Although prolonged RF fields did not induce significant temperature increase in RF exposure groups, the temperature inside worms during exposure was unknown. Conclusions No harmful effects were observed in prolonged exposure to 1750 MHz RF fields at SAR of 3W/kg on development and longevity of C. elegans. Although some differentially expressed genes were found after prolonged RF exposure, these differences were ascribed to

  15. Application of the Monte Carlo Method for the Estimation of Uncertainty in Radiofrequency Field Spot Measurements

    NASA Astrophysics Data System (ADS)

    Iakovidis, S.; Apostolidis, C.; Samaras, T.

    2015-04-01

    The objective of the present work is the application of the Monte Carlo method (GUMS1) for evaluating uncertainty in electromagnetic field measurements and the comparison of the results with the ones obtained using the 'standard' method (GUM). In particular, the two methods are applied in order to evaluate the field measurement uncertainty using a frequency selective radiation meter and the Total Exposure Quotient (TEQ) uncertainty. Comparative results are presented in order to highlight cases where GUMS1 results deviate significantly from the ones obtained using GUM, such as the presence of a non-linear mathematical model connecting the inputs with the output quantity (case of the TEQ model) or the presence of a dominant nonnormal distribution of an input quantity (case of U-shaped mismatch uncertainty). The deviation of the results obtained from the two methods can even lead to different decisions regarding the conformance with the exposure reference levels.

  16. Gold-gold sulfide nanoshell as a novel intensifier for anti-tumor effects of radiofrequency fields

    PubMed Central

    Sadeghi, Hamid Reza; Bahreyni-Toosi, Mohammad Hossein; Meybodi, Naser Tayebi; Esmaily, Habibollah; Soudmand, Samaneh; Eshghi, Hossein; Soudmand, Samaneh; Sazgarnia, Ameneh

    2014-01-01

    Objective(s): Several studies have been carried out to investigate the effect of various nanoparticles exposed to radiofrequency (RF) waves on cancerous tissues. In this study, a colon carcinoma tumor model was irradiated by RF in the presence of gold-gold sulfide (GGS) nanoshells. Materials and Methods: Synthesis and characterization of GGS nanoshells were initially performed. CT26 cells were subcutaneously injected into the flank of BALB/c mice to create the colon carcinoma tumor models. Then the tumors were subjected to different treatments. Treatment factors included intratumoral injection of GGS and RF radiation. Different groups were considered as control with no treatment, receiving GGS, RF irradiated and simultaneous administration of GGS and RF. Efficacy of the treatments was evaluated by daily monitoring of tumor volume and recording the relative changes in it, the time needed for a 5-fold increase in the volume of tumor (T5) and utilizing pathologic studies to determine the lost volume of the tumors. Results: In comparison with control group, tumor growth was not markedly inhibited in the groups receiving only GGS or RF, while in the group receiving GGS and RF, tumor growth was effectively inhibited compared with the other groups. In addition, the lost volume of the tumor and T5 was markedly higher in groups receiving GGS and RF compared with other groups. Conclusion: This study showed that RF radiation can markedly reduce the tumor growth in presence of GGS. Hence, it can be predicted that GGS nanoshells convert sub-lethal effects of noninvasive RF fields into lethal damages. PMID:25429343

  17. The Precautionary Principle in the Context of Mobile Phone and Base Station Radiofrequency Exposures

    PubMed Central

    Dolan, Mike; Rowley, Jack

    2009-01-01

    Background No health hazard has been established from exposure to radiofrequency fields up to the levels recommended by the International Commission on Non-Ionizing Radiation Protection. However, in response to public concern and the perceived level of scientific uncertainty, there are continuing calls for the application of the precautionary principle to radiofrequency exposures from mobile phones and base stations. Objective We examined the international evolution of calls for precautionary measures in relation to mobile phones and base stations, with particular focus on Australia and the United Kingdom. Results The precautionary principle is difficult to define, and there is no widespread agreement as to how it should be implemented. However, there is a strong argument that precautionary measures should not be implemented in the absence of reliable scientific data and logical reasoning pointing to a possible health hazard. There is also experimental evidence that precautionary advice may increase public concern. Conclusion We argue that conservative exposure standards, technical features that minimize unnecessary exposures, ongoing research, regular review of standards, and availability of consumer information make mobile communications inherently precautionary. Commonsense measures can be adopted by individuals, governments, and industry to address public concern while ensuring that mobile networks are developed for the benefit of society. PMID:19750093

  18. Immune responses of a wall lizard to whole-body exposure to radiofrequency electromagnetic radiation.

    PubMed

    Mina, Despoina; Sagonas, Kostas; Fragopoulou, Adamantia F; Pafilis, Panayiotis; Skouroliakou, Aikaterini; Margaritis, Lukas H; Tsitsilonis, Ourania E; Valakos, Efstratios D

    2016-03-01

    Purpose During the last three decades, the number of devices that emit non-ionizing electromagnetic radiation (EMR) at the wireless communication spectrum has rapidly increased and possible effects on living organisms have become a major concern. The purpose of this study was to investigate the effects of radiofrequency EMR emitted by a widely used wireless communication device, namely the Digital Enhanced Communication Telephony (DECT) base, on the immune responses of the Aegean wall lizard (Podarcis erhardii). Materials and methods Adult male lizards were exposed 24 h/day for 8 weeks to 1880-1900 MHz DECT base radiation at average electric field intensity of 3.2 V/m. Immune reactivity was assessed using the phytohemagglutinin (PHA) skin swelling and mixed lymphocyte reaction (MLR) tests. Results Our results revealed a noticeable suppression (approximately 45%) of inflammatory responses in EMR-exposed lizards compared to sham-exposed animals. T cell-mediated responses were marginally affected. Conclusion Daily radiofrequency EMR exposure seems to affect, at least partially, the immunocompetence of the Aegean wall lizard. PMID:26853383

  19. Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ma, Peng; Jin, Zhi; Guo, Jian-Nan; Pan, Hong-Liang; Liu, Xin-Yu; Ye, Tian-Chun; Wang, Hong; Wang, Guan-Zhong

    2012-05-01

    We report the dc and rf performance of graphene rf field-effect transistors, where the graphene films are grown on copper by using the chemical vapour deposition (CVD) method and transferred to SiO2/Si substrates. Composite materials, benzocyclobutene and atomic layer deposition Al2O3 are used as the gate dielectrics. The observation of n- and p-type transitions verifies the ambipolar characteristics in the graphene layers. While the intrinsic carrier mobility of CVD graphene is extracted to be 1200 cm2/V·s, the parasitic series resistances are demonstrated to have a serious impact on device performance. With a gate length of 1 μm and an extrinsic transconductance of 72 mS/mm, a cutoff frequency of 6.6 GHz and a maximum oscillation frequency of 8.8 GHz are measured for the transistors, illustrating the potential of the CVD graphene for rf applications.

  20. Searching for the Perfect Wave: The Effect of Radiofrequency Electromagnetic Fields on Cells

    PubMed Central

    Gherardini, Lisa; Ciuti, Gastone; Tognarelli, Selene; Cinti, Caterina

    2014-01-01

    There is a growing concern in the population about the effects that environmental exposure to any source of “uncontrolled” radiation may have on public health. Anxiety arises from the controversial knowledge about the effect of electromagnetic field (EMF) exposure to cells and organisms but most of all concerning the possible causal relation to human diseases. Here we reviewed those in vitro and in vivo and epidemiological works that gave a new insight about the effect of radio frequency (RF) exposure, relating to intracellular molecular pathways that lead to biological and functional outcomes. It appears that a thorough application of standardized protocols is the key to reliable data acquisition and interpretation that could contribute a clearer picture for scientists and lay public. Moreover, specific tuning of experimental and clinical RF exposure might lead to beneficial health effects. PMID:24681584

  1. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  2. Short channel effects in graphene-based field effect transistors targeting radio-frequency applications

    NASA Astrophysics Data System (ADS)

    Feijoo, Pedro C.; Jiménez, David; Cartoixà, Xavier

    2016-06-01

    Channel length scaling in graphene field effect transistors (GFETs) is key in the pursuit of higher performance in radio frequency electronics for both rigid and flexible substrates. Although two-dimensional (2D) materials provide a superior immunity to short channel effects (SCEs) than bulk materials, they could dominate in scaled GFETs. In this work, we have developed a model that calculates electron and hole transport along the graphene channel in a drift-diffusion basis, while considering the 2D electrostatics. Our model obtains the self-consistent solution of the 2D Poisson’s equation coupled to the current continuity equation, the latter embedding an appropriate model for drift velocity saturation. We have studied the role played by the electrostatics and the velocity saturation in GFETs with short channel lengths L. Severe scaling results in a high degradation of GFET output conductance. The extrinsic cutoff frequency follows a 1/{L}n scaling trend, where the index n fulfills n≤slant 2. The case n=2 corresponds to long-channel GFETs with low source/drain series resistance, that is, devices where the channel resistance is controlling the drain current. For high series resistance, n decreases down to n=1, and it degrades to values of n\\lt 1 because of the SCEs, especially at high drain bias. The model predicts high maximum oscillation frequencies above 1 THz for channel lengths below 100 nm, but, in order to obtain these frequencies, it is very important to minimize the gate series resistance. The model shows very good agreement with experimental current voltage curves obtained from short channel GFETs and also reproduces negative differential resistance, which is due to a reduction of diffusion current.

  3. Magnetic fluid hyperthermia induced by radiofrequency capacitive field for the treatment of transplanted subcutaneous tumors in rats

    PubMed Central

    LI, XU-HONG; RONG, PENG-FEI; JIN, HE-KUN; WANG, WEI; TANG, JIN-TIAN

    2012-01-01

    Magnetic fluid hyperthermia (MFH) induced by a magnetic field has become a new heating technology for the treatment of malignant tumors due to its ability to heat the tumor tissue precisely and properly, and due to its significant therapeutic effects. In this study, MFH induced by radiofrequency capacitive field (RCF) for the treatment of transplanted subcutaneous tumors in rats, was investigated. A total of 50 rats bearing subcutaneous tumors were randomly divided into five groups, including i) a pseudo-treatment (PT) control group, ii) magnetic fluid (MF) group, iii) pure hyperthermia (PH) group, iv) magnetic fluid hyperthermia 1 (MFH1) group, and v) magnetic fluid hyperthermia 2 (MFH2) group. Tumors were irradiated for 30 min in the MFH1 group 24 h following injection of MF. Tumors were irradiated for 30 min in the MFH2 group 24 h following injection of MF, and irradiation was repeated for 30 min 72 h following injection of MF. Tumor volumes, tumor volume inhibition ratios and survival times in the rat model were examined. Temperatures of tumor cores and rims both rapidly reached the desired temperature (∼50°C) for tumor treatment within 5 to 10 min in the MFH1 and MFH2 groups, and we maintained this temperature level by manually adjusting the output power (70–130 W). Tumor volumes of the MFH1 and MFH2 groups were reduced compared to those of the PT, MF and PH groups. The inhibitory effect on tumor growth in the MFH2 group (91.57%) was higher compared to that in the MFH1 group (85.21%) and the other groups. The survival time of the MFH2 group (51.62±2.28 days) and MFH1 group (43.10±1.57 days) was increased compared to that of the PH, MF and PT groups. The results obtained show that MFH induced by RCF may serve as a potential and promising method for the treatment of tumors. PMID:22969882

  4. ECG changes in factory workers exposed to 27.2  MHz radiofrequency radiation.

    PubMed

    Chen, Qingsong; Xu, Guoyong; Lang, Li; Yang, Aichu; Li, Shilin; Yang, Liwen; Li, Chaolin; Huang, Hanlin; Li, Tao

    2013-05-01

    To research the effect of 27.2 MHz radiofrequency radiation on electrocardiograms (ECG), 225 female workers operating radiofrequency machines at a shoe factory were chosen as the exposure group and 100 female workers without exposure from the same factory were selected as the control group. The 6 min electric field strength that the female workers were exposed to was 64.0 ± 25.2 V/m (mean ± SD), which exceeded 61 V/m, the International Commission on Non-Ionizing Radiation Protection reference root mean square levels for occupational exposure. A statistical difference was observed between the exposed group and the control group in terms of the rate of sinus bradycardia (χ(2)  = 11.48, P = 0.003). When several known risk factors for cardiovascular disease were considered, including smoking, age, alcohol ingestion habit, and so on, the exposure duration was not an effective factor for ECG changes, sinus arrhythmia, or sinus bradycardia according to α = 0.05, while P = 0.052 for sinus arrhythmia was very close to 0.05. We did not find any statistical difference in heart rate, duration of the QRS wave (ventricular depolarization), or corrected QT intervals (between the start of the Q wave and end of the T wave) between the exposed and control groups. Occupational exposure to radiofrequency radiation was not found to be a cause of ECG changes after consideration of the confounding factors. PMID:23280584

  5. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage. PMID:27267824

  6. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields.

    PubMed

    Sakurai, Tomonori; Kiyokawa, Tomoko; Narita, Eijiro; Suzuki, Yukihisa; Taki, Masao; Miyakoshi, Junji

    2011-01-01

    The increasing use of mobile phones has aroused public concern regarding the potential health risks of radiofrequency (RF) fields. We investigated the effects of exposure to RF fields (2.45 GHz, continuous wave) at specific absorption rate (SAR) of 1, 5, and 10 W/kg for 1, 4, and 24 h on gene expression in a normal human glial cell line, SVGp12, using DNA microarray. Microarray analysis revealed 23 assigned gene spots and 5 non-assigned gene spots as prospective altered gene spots. Twenty-two genes out of the 23 assigned gene spots were further analyzed by reverse transcription-polymerase chain reaction to validate the results of microarray, and no significant alterations in gene expression were observed. Under the experimental conditions used in this study, we found no evidence that exposure to RF fields affected gene expression in SVGp12 cells. PMID:21343680

  7. New-generation radiofrequency technology.

    PubMed

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation. PMID:23461058

  8. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation.

    PubMed

    Eghlidospour, M; Mortazavi, S M J; Yousefi, F; Mortazavi, S A R

    2015-09-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  9. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

    PubMed Central

    Eghlidospour, M.; Mortazavi, S. M. J.; Yousefi, F.; Mortazavi, S. A. R.

    2015-01-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  10. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. PMID:24246885

  11. Rotating-frame spin-lattice relaxation time imaging by radio-frequency field gradients: visualization of strained crosslinked natural rubbers

    NASA Astrophysics Data System (ADS)

    Chaumette, H.; Grandclaude, D.; Canet, D.

    2003-08-01

    NMR imaging by radio-frequency field gradients ( B1 gradients) is especially convenient for heterogeneous samples and/or in the case of relatively short transverse relaxation times. The method has been combined with the application of two spin-lock periods of different duration so as to produce rotating-frame spin-lattice relaxation time ( T1 ρ) images. In the case of natural rubber samples with different crosslink densities, such images are not only characteristic of the crosslink density but also reveal the way in which the material has been stressed. The strained parts can be visualized either directly or through histograms showing the T1 ρ distribution over the whole sample.

  12. Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Kim, S. K.; Chang, D.; Xuan, Y.; Mohammadi, S.; Ye, P. D.; Lu, G.; Facchetti, A.; Marks, T. J.

    2007-08-01

    Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors (MISFETs) with very thin self-assembled organic nanodielectrics (SANDs) are presented. The application of SAND on compound semiconductors offers unique opportunities for high-performance devices. Thus, 1μm gate-length depletion-mode n-channel SAND/GaAs MISFETs exhibit low gate leakage current densities of 10-2-10-5A/cm2, a maximum drain current of 260mA/mm at 2V forward gate bias, and a maximum intrinsic transconductance of 127mS/mm. These devices achieve a current cutoff frequency (fT) of 10.6GHz and a maximum oscillation frequency (fmax) of 6.9GHz. Nearly hysteresis-free Ids-Vgs characteristics and low flicker noise indicate that a high-quality SAND-GaAs interface is achieved.

  13. 2.3.2 Biological Effects of Non-Ionizing Radiations

    NASA Astrophysics Data System (ADS)

    Bernhardt, J. H.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Subsection '2.3.2 Biological Effects of Non-Ionizing Radiations' of the Section '2.3 Biological Effects' of the Chapter '2 Radiation and Biological Effects' with the contents:

  14. 2-GHz band CW and W-CDMA modulated radiofrequency fields have no significant effect on cell proliferation and gene expression profile in human cells.

    PubMed

    Sekijima, Masaru; Takeda, Hiroshi; Yasunaga, Katsuaki; Sakuma, Noriko; Hirose, Hideki; Nojima, Toshio; Miyakoshi, Junji

    2010-01-01

    We investigated the mechanisms by which radiofrequency (RF) fields exert their activity, and the changes in both cell proliferation and the gene expression profile in the human cell lines, A172 (glioblastoma), H4 (neuroglioma), and IMR-90 (fibroblasts from normal fetal lung) following exposure to 2.1425 GHz continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) RF fields at three field levels. During the incubation phase, cells were exposed at the specific absorption rates (SARs) of 80, 250, or 800 mW/kg with both CW and W-CDMA RF fields for up to 96 h. Heat shock treatment was used as the positive control. No significant differences in cell growth or viability were observed between any test group exposed to W-CDMA or CW radiation and the sham-exposed negative controls. Using the Affymetrix Human Genome Array, only a very small (< 1%) number of available genes (ca. 16,000 to 19,000) exhibited altered expression in each experiment. The results confirm that low-level exposure to 2.1425 GHz CW and W-CDMA RF fields for up to 96 h did not act as an acute cytotoxicant in either cell proliferation or the gene expression profile. These results suggest that RF exposure up to the limit of whole-body average SAR levels as specified in the ICNIRP guidelines is unlikely to elicit a general stress response in the tested cell lines under these conditions. PMID:20215713

  15. The effect of frequency and grounding on whole-body absorption of humans in E-polarized radiofrequency fields.

    PubMed

    Hill, D A

    1984-01-01

    The radiofrequency absorption rates of five male human volunteers have been measured from 3 to 41 MHz. The subjects were exposed at about 10 microW /cm2 inside a very large transverse electromagnetic (TEM) cell and never absorbed more than 1 W. Both the EKH and EHK orientations were employed under both free-space and grounded conditions. Absorption rates for the EKH orientation exceed those of the EHK orientation by 40% in free space, but only by 6% when grounded. The absorption rates for the grounded men vary with frequency, f, as f1.9 from 3 to 25 MHz and then level off at peak. The free-space absorption rates vary as f1.7 from 3 to 18 MHz and as f2.9 from 18 to 41 MHz. The average measured absorption rates at 10 MHz exceed the average of the standard model calculations by a factor of three (for free space) or four (grounded). The average man, when exposed grounded in an EKH orientation to the maximum permitted exposure levels under ANSI standard C95 .1-1982, will absorb 0.58 +/- 0.14 W/kg over most of the 3 to 41-MHz frequency range. This slightly exceeds the whole-body maximum of 0.40 W/kg underlying the standard. PMID:6732871

  16. Summary of measured radiofrequency electric and magnetic fields (10 kHz to 30 GHz) in the general and work environment.

    PubMed

    Mantiply, E D; Pohl, K R; Poppell, S W; Murphy, J A

    1997-01-01

    We have plotted data from a number of studies on the range of radiofrequency (RF) field levels associated with a variety of environmental and occupational sources. Field intensity is shown in units of volts/meter (V/m) for electric field strength and amps/meter (A/m) for magnetic field strength. Duty factors, modulation frequencies, and modulation indices are also reported for some sources. This paper is organized into seven sections, each cataloging sources into appropriate RF frequency bands from very-low frequency (VLF) to super-high frequency (SHF), and covers frequencies from 10 kHz to 30 GHz. Sources included in this summary are the following: Coast Guard navigational transmitters, a Navy VLF transmitter, computer visual display terminals (VDTs), induction stoves or range tops, industrial induction and dielectric heaters, radio and television broadcast transmitters, amateur and citizens band (CB) transmitters, medical diathermy and electrosurgical units, mobile and handheld transmitters, cordless and cellular telephones, microwave ovens, microwave terrestrial relay and satellite uplinks, and police, air traffic, and aircraft onboard radars. For the sources included in this summary, the strongest fields are found near industrial induction and dielectric heaters, and close to the radiating elements or transmitter leads of high power antenna systems. Handheld transmitters can produce near fields of about 500 V/m at the antenna. Fields in the general urban environment are principally associated with radio and TV broadcast services and measure about 0.1 V/m root-mean-square (rms). Peak fields from air traffic radars sampled in one urban environment were about 10 V/m, 300 times greater than the rms value of 0.03 V/m when the duty factor associated with antenna rotation and pulsing are factored in. PMID:9383245

  17. Radiofrequency Ablation of Liver Tumors

    MedlinePlus

    ... Other equipment such as needle electrodes, an electrical generator and grounding pads may also be used. Radiofrequency ... retractable electrodes that extend when needed. The radiofrequency generator produces electrical currents in the range of radiofrequency ...

  18. Effects of magnetic field on pulse wave forms in plasma immersion ion implantation in a radio-frequency, inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Tong, Honghui; Fu, Ricky K. Y.; Tang, Deli; Zeng, Xuchu; Chu, Paul K.

    2002-09-01

    The time-dependent current wave forms measured using a pulse biased planar electrode in hydrogen radio-frequency (rf), inductively coupled plasma, plasma immersion ion implantation experiments are observed to vary in the presence of an external magnetic field B. Results further indicate that the magnitude of the pulse current is related to the strength and direction of the magnetic field, rf power, and pressure, but the pulse current curves can be primarily correlated with B. The plasma discharges are enhanced in all cases due to magnetic confinement of the electrons, enlargement of the plasma generation volume, and increase in the rf power absorbing efficiency. The plasma density diagnosed by Langmuir probe diminishes in front of the sample chuck with B, whereas the plasma is confined nearby the sidewall of the vacuum chamber at high magnetic field. The high degree of plasma density nonuniformity at high B in front of the sample chuck is not desirable for the processing of planar samples such as silicon wafers and must be compensated. The reduction in the plasma density and plasma density gradient in the sheath can be accounted for by the changes in the pulse current wave forms.

  19. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  20. The Role of Non-ionizing Radiation Pressure in Star Formation: The Stability of Cores and Filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-06-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic center or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  1. Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range.

    PubMed

    Bernardi, Paolo; Cavagnaro, Marta; Pisa, Stefano; Piuzzi, Emanuele

    2003-03-01

    The exposure of a subject in the far field of radiofrequency sources operating in the 10-900-MHz range has been studied. The electromagnetic field inside an anatomical heterogeneous model of the human body has been computed by using the finite-difference time-domain method; the corresponding temperature increase has been evaluated through an explicit finite-difference formulation of the bio-heat equation. The thermal model used, which takes into account the thermoregulatory system of the human body, has been validated through a comparison with experimental data. The results show that the peak specific absorption rate (SAR) as averaged over 10 g has about a 25-fold increase in the trunk and a 50-fold increase in the limbs with respect to the whole body averaged SAR (SARWB). The peak SAR as averaged over 1 g, instead, has a 30- to 60-fold increase in the trunk, and up to 135-fold increase in the ankles, with respect to SARWB. With reference to temperature increases, at the body resonance frequency of 40 MHz, for the ICNIRP incident power density maximum permissible value, a temperature increase of about 0.7 degrees C is obtained in the ankles muscle. The presence of the thermoregulatory system strongly limits temperature elevations, particularly in the body core. PMID:12669986

  2. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    PubMed

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design. PMID:19353658

  3. DNA synthesis and cell proliferation C{sub 6} glioma and primary glial cells exposed to a 836.55 MHz modulated radiofrequency field

    SciTech Connect

    Stagg, R.B.; Thomas, W.J.; Jones, R.A.; Adey, W.R.

    1997-05-01

    The authors have tested the hypothesis that modulated radiofrequency (RF) fields may act as a tumor-promoting agent by altering DNA synthesis, leading to increased cell proliferation. In vitro tissue cultures of transformed and normal rat glial cells were exposed to an 836.55 MHz, packet-modulated RF field at three power densities: 0.09, 0.9, and 9 mW/cm{sup 2}, resulting in specific absorption rates (SARs) ranging from 0.15 to 59 {micro}W/g. TEM-mode transmission-line cells were powered by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. One sham and one energized TEM cell were placed in standard incubators maintained at 37 C and 5% CO{sub 2}. DNA synthesis experiments at 0.59--59 {micro}W/g SAR were performed on log-phase and serum-starved semiquiescent cultures after 24 h exposure. Cell growth at 0.15--15 {micro}W/g SAR was determined by cell counts of log-phase cultures on days 0, 1, 5, 7, 9, 12, and 14 of a 2 week protocol.

  4. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  5. Biplanar Radiofrequency Coil Design

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Insko, E. K.; Bolinger, L.; Leigh, J. S.

    A novel geometry for radiofrequency coil design is described. In this geometry, longitudinal wires of the coil lie on two parallel planes. The currents in the wires of one plane run in the direction opposite to those of the other plane. An analytic solution is provided for the field produced by infinite surface currents running in the biplanar geometry. For the case of discrete wires, computer-generated field maps imply that the homogeneity and sensitivity of the biplanar design are superior to those of a saddle coil, but worse than those obtained in an equivalent discrete cosine or birdcage coil design. Optimization of this coil design was performed using computer simulations. The measured B1 map of an optimized, single-tuned biplanar coil compares favorably to that of an equivalent discrete cosine coil, demonstrating excellent homogeneity in the central region of the coil. A 30 × 24 × 40 cm biplanar coil has been coupled to a 1.5 T imaging system. Images of the human abdomen generated with this coil demonstrate a high degree of homogeneity across nearly all of the sensitive region of the coil.

  6. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling

    PubMed Central

    Gerner, Christopher; Haudek, Verena; Schandl, Ulla; Bayer, Editha; Gundacker, Nina; Hutter, Hans Peter

    2010-01-01

    Purpose To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Methods Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual proteins. Results While short-term RF-EME did not significantly alter the proteome, an 8-h exposure caused a significant increase in protein synthesis in Jurkat T-cells and human fibroblasts, and to a lesser extent in activated primary human mononuclear cells. Quiescent (metabolically inactive) mononuclear cells, did not detectably respond to RF-EME. Since RF exposure induced a temperature increase of less than 0.15°C, we suggest that the observed cellular response is a so called “athermal” effect of RF-EME. Conclusion Our finding of an association between metabolic activity and the observed cellular reaction to low intensity RF-EME may reconcile conflicting results of previous studies. We further postulate that the observed increased protein synthesis reflects an increased rate of protein turnover stemming from protein folding problems caused by the interference of radio-frequency electromagnetic fields with hydrogen bonds. Our observations do not directly imply a health risk. However, vis-a-vis a synopsis of reports on cells stress and DNA breaks, after short and longer exposure, on active and inactive cells, our findings may contribute to the re-evaluation of previous reports. Electronic supplementary material The online version of this article (doi:10.1007/s00420-010-0513-7) contains supplementary material, which is available to authorized users. PMID:20145945

  7. Potential human study populations for non-ionizing (radio frequency) radiation health effects

    SciTech Connect

    Novotney, L.C.; Gravitis, I.

    1982-12-01

    This research project was initiated to identify potential human populations for future epidemiological studies of the health effects of radio frequency radiation. Through a literature search and contacts with various groups and organizations, numerous occupations and applications of radio frequency radiation (RFR) were identified and evaluated for their suitability for further study. Many populations were eliminated early because their potential exposure to RFR was too limited or data necessary for epidemiological research were unavailable. Eight populations were evaluated in detail and appear to satisfy many of the criteria for epidemiological research and could be useful study groups in an investigation of the health effects of non-ionizing radiation. The eight potential study populations are: RF heat sealer operators, HF (high frequency) tube welder operators, medical diathermy operators in Veterans Administration hospitals, medical diathermy operators in rehabilitation facilities, school children located near broadcasting towers, state policemen, security guards, and radar technicians.

  8. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27. 12 MHz) near a shortwave diathermy device

    SciTech Connect

    Brown-Woodman, P.D.; Hadley, J.A.; Richardson, L.; Bright, D.; Porter, D.

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession.

  9. In situ measurements of radiofrequency exposure levels in Greece from 2008 to 2013: a multi-parametric annual analysis.

    PubMed

    Christopoulou, Maria; Karabetsos, Efthymios

    2015-04-01

    From 2008 through 2013, more than 6,000 in situ frequency selective audits, in the proximity of base stations, were conducted throughout Greece by the Greek Atomic Energy Commission (EEAE), in order to verify exposure limit compliance. EEAE is the competent national authority for protection of the general public against artificially produced non-ionizing radiation. This paper presents the first post processing and multi-parametric year statistical analysis of in situ measurement data corresponding to 4,705 audits in the whole country, compared to general public exposure levels, according to Greek legislation. The aim is to derive nationwide conclusions for the characterization of general public exposure to radiofrequency electromagnetic fields, during the last 6 years. The results' presentation includes electric field exposure ratios referring to broadband and frequency selective measurements at the highest exposure measurement point. Statistical analysis is applied to assist the data presentation and evaluation, based on selected criteria and classification parameters, including: (i) year (2008-2013); (ii) environment (urban/suburban/rural); (iii) frequency bands of selected common telecommunication services (e.g., TV, FM, GSM, DCS, UMTS); and (iv) number of service providers installed at the same site. In general, measurement results revealed that the vast majority of exposure values were below reference levels for general public exposure, as defined by Greek legislation. Data are constantly updated with the latest measurements, including emerging wireless technologies. PMID:25726724

  10. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  11. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    SciTech Connect

    Dzyuba, A.; Romanenko, A.; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  12. A reverberation chamber for rodents' exposure to wideband radiofrequency electromagnetic fields with different small-scale fading distributions.

    PubMed

    Li, Congsheng; Yang, Lei; Lu, Bingsong; Xie, Yi; Wu, Tongning

    2016-01-01

    A reverberation chamber (RC) is realized for the rodents' in vivo exposure to electromagnetic fields (EMFs) with various small-scale fading characteristics. Its performance is evaluated to ensure the exposure experiments from 0.85 to 2.60 GHz. By different configurations, line-of-sight and non-line-of-sight exposures can be established. The measured electric field in the RC is analyzed to determine its statistical distribution. We accordingly reconstruct the EMF environment by numerical methods. Simulations are carried to compare the dosimetric variability due to different small-scale fading characteristics. It demonstrates that the surveyed fading distribution will not change the specific absorption rate in the rats. The possibility to reproduce the realistic multi-reflective EMF environment by adjusting the structures of the RC is discussed. It is the first reported in vivo exposure system aiming to provide the EMF exposure with different small-scale fading distributions. PMID:25259622

  13. Spatial aspects of nuclear magnetic resonance spectroscopy: Static and radio-frequency magnetic field gradients in principle and practice

    NASA Astrophysics Data System (ADS)

    Sodickson, Aaron David

    All nuclear magnetic resonance (NMR) measurements are influenced by the spatial distribution of spin properties across the sample volume. This thesis presents a general theoretical treatment of spatial phenomena in NMR along with a number of experimental explorations. A generalized k space formalism is described which lends physical insight into the spatial modulations underlying a wide variety of NMR experiments. The approach involves a Fourier decomposition of spin coherences into a set of basis functions that most naturally describes the evolution of the system under field gradients and RF pulses. It provides a straightforward physical interpretation of the sample's spatial behavior while simplifying the calculation of analytical results for any signal pathway of interest. The formalism is applied to a diverse range of NMR experiments, including imaging, echo experiments, flow and diffusion measurements, selective excitation sequences, and multiple quantum coherence pathway selection techniques. A modification of the BIRD and TANGO sequences is presented which incorporates RF gradients to eliminate the net magnetization from uncoupled spins, while completely preserving magnetization with the proper scalar-coupling constant. The spatial variation of the B1 field strength-here due to the residual field inhomogeneity of a nominally homogeneous coil-causes dephasing of the uncoupled line while refocussing the desired magnetization in a rotary echo. The sequence is demonstrated for selective excitation of the satellites in a chloroform sample, yielding suppression of the uncoupled magnetization by a factor of approximately 800. A simplified approach to shimming for a high resolution magic angle spinning (MAS) probe is developed. Correction fields of the desired symmetry about the sample's spinning axis are derived as linear combinations of the usual lab-frame spherical harmonic shim-field geometries. The effects of sample spinning are incorporated which further

  14. Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles.

    PubMed

    Koroloff, Sophie N; Nevzorov, Alexander A

    2015-07-01

    Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from low sensitivity. Moreover, utilization of high-power radiofrequency (RF) irradiations for magnetization transfer may give rise to sample heating, thereby decreasing the efficiency of conventional cross-polarization schemes. Here we have optimized the recently developed repetitive cross-polarization (REP-CP) sequence (Tang et al., 2011) to further increase the magnetization transfer efficiency for membrane proteins reconstituted in magnetically aligned bicelles and compared its performance to single-contact Hartmann-Hahn cross-polarization (CP), CP-MOIST and the adiabatic transfer. It has been found that employing the REP-CP sequence at RF amplitudes of 19kHz instead of the commonly used higher RF fields (>45kHz) enhances the efficiency of REP-CP. An additional 30% signal can be obtained as compared to the previously published REP-CP, and 20% when compared to the re-optimized REP-CP at 50kHz RF fields. Moreover, the (15)N signal gain of low-power REP-CP was found to be 40% over the adiabatic CP and up to 80% over CP-MOIST. Thus, the low-power REP-CP sequence surpasses all of the previous CP schemes in addition of having the tremendous advantage of reducing the RF powers by a factor of seven, thereby preserving the liquid-like bicelle sample. By contrast, in purely static (NAL crystal) and semi-rigid systems (Pf1 phage), the adiabatic CP was found to be more effective. Periodic oscillations of the intensity profile (distinct from the transient oscillations) as a function of the CP contact time and B1 RF field strengths were observed during the REP-CP optimization with the oscillations becoming more pronounced with lower RF fields. Many-spin simulations were performed to explain the oscillations and their periodicity. PMID

  15. Cell Type-Dependent Induction of DNA Damage by 1800 MHz Radiofrequency Electromagnetic Fields Does Not Result in Significant Cellular Dysfunctions

    PubMed Central

    Xu, Shanshan; Chen, Guangdi; Chen, Chunjing; Sun, Chuan; Zhang, Danying; Murbach, Manuel; Kuster, Niels; Zeng, Qunli; Xu, Zhengping

    2013-01-01

    Background Although IARC clarifies radiofrequency electromagnetic fields (RF-EMF) as possible human carcinogen, the debate on its health impact continues due to the inconsistent results. Genotoxic effect has been considered as a golden standard to determine if an environmental factor is a carcinogen, but the currently available data for RF-EMF remain controversial. As an environmental stimulus, the effect of RF-EMF on cellular DNA may be subtle. Therefore, more sensitive method and systematic research strategy are warranted to evaluate its genotoxicity. Objectives To determine whether RF-EMF does induce DNA damage and if the effect is cell-type dependent by adopting a more sensitive method γH2AX foci formation; and to investigate the biological consequences if RF-EMF does increase γH2AX foci formation. Methods Six different types of cells were intermittently exposed to GSM 1800 MHz RF-EMF at a specific absorption rate of 3.0 W/kg for 1 h or 24 h, then subjected to immunostaining with anti-γH2AX antibody. The biological consequences in γH2AX-elevated cell type were further explored with comet and TUNEL assays, flow cytometry, and cell growth assay. Results Exposure to RF-EMF for 24 h significantly induced γH2AX foci formation in Chinese hamster lung cells and Human skin fibroblasts (HSFs), but not the other cells. However, RF-EMF-elevated γH2AX foci formation in HSF cells did not result in detectable DNA fragmentation, sustainable cell cycle arrest, cell proliferation or viability change. RF-EMF exposure slightly but not significantly increased the cellular ROS level. Conclusions RF-EMF induces DNA damage in a cell type-dependent manner, but the elevated γH2AX foci formation in HSF cells does not result in significant cellular dysfunctions. PMID:23355902

  16. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    PubMed

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic. PMID:19256646

  17. Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters.

    PubMed

    Bolte, John F B

    2016-09-01

    Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and Wi

  18. Radiofrequency Ablation of Lung Tumors

    MedlinePlus

    ... computed tomography (CT) imaging, needle electrodes , an electrical generator and grounding pads are used. There are two ... retractable electrodes that extend when needed. The radiofrequency generator produces electrical currents in the range of radiofrequency ...

  19. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    PubMed

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended. PMID:26735379

  20. The bioelectronic connectional system (BCS): a therapeutic target for non ionizing radiation.

    PubMed

    Bistolfi, F

    1990-01-01

    Among cells and extracellular matrix have been demonstrated reciprocal interactions of oriented morphogenesis. As collagen fibers of the matrix, keratin filaments of desmosomes and the cytoskeleton elements are all piezoelectric substances, with particular biophysical characters, it is possible that these three classes of biostructures are the morphological expressions of a large and unitary cooperative system for coherent communication among cells, by means of piezoelectric interactions and photon/phonon transduction of electromagnetic signals, both endogenous and exogenous. The Author has proposed in 1989 to classify this morphofunctional complex as a bioelectronic connectional system (BCS), in which connective tissue is largely included, but the functions of which go well beyond its classical mechanical ones. The hypothesis is consistent both with the model of Welch and Berry (protonic energy continuum) and with the concept of bioplasma (Inyushin, Sedlak et al.). Physiology and pathology of BCS could also work as a starting point for experimental research aiming at inducing order in biostructures by means of non ionizing radiation. PMID:2263396

  1. ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes.

    PubMed

    Lantow, M; Lupke, M; Frahm, J; Mattsson, M O; Kuster, N; Simko, M

    2006-05-01

    The aim of this study is to investigate if 1,800 MHz radiofrequency electromagnetic fields (RF-EMF) can induce reactive oxygen species (ROS) release and/or changes in heat shock protein 70 (Hsp70) expression in human blood cells, using different exposure and co-exposure conditions. Human umbilical cord blood-derived monocytes and lymphocytes were used to examine ROS release after exposure to continuous wave or different GSM signals (GSM-DTX and GSM-Talk) at 2 W/kg for 30 or 45 min of continuous or intermittent (5 min ON/5 min OFF) exposure. The cells were exposed to incubator conditions, to sham, to RF-EMF, or to chemicals in parallel. Cell stimulation with the phorbol ester phorbol-12-myristate-13-acetate (PMA; 1 microM) was used as positive control for ROS release. To investigate the effects on Hsp70 expression, the human monocytes were exposed to the GSM-DTX signal at 2 W/kg for 45 min, or to heat treatment (42 degrees C) as positive control. ROS production and Hsp70 expression were determined by flow cytometric analysis. The data were compared to sham and/or to control values and the statistical analysis was performed by the Student's t-test (P<0.05). The PMA treatment induced a significant increase in ROS production in human monocytes and lymphocytes when the data were compared to sham or to incubator controls. After continuous or intermittent GSM-DTX signal exposure (2 W/kg), a significantly different ROS production was detected in human monocytes if the data were compared to sham. However, this significant difference appeared due to the lowered value of ROS release during sham exposure. In human lymphocytes, no differences could be detected if data were compared either to sham or to incubator control. The Hsp70 expression level after 0, 1, and 2 h post-exposure to GSM-DTX signal at 2 W/kg for 1 h did not show any differences compared to the incubator or to sham control. PMID:16552570

  2. Personal radiofrequency electromagnetic field measurements in The Netherlands: exposure level and variability for everyday activities, times of day and types of area.

    PubMed

    Bolte, John F B; Eikelboom, Tessa

    2012-11-01

    Knowledge of the exposure to radiofrequency electromagnetic fields is necessary for epidemiological studies on possible health effects. The main goal of this study is to determine the exposure level and spatial and temporal variances during 39 everyday activities in 12 frequency bands used in mobile telecommunication and broadcasting. Therefore, 24 h measurements were gathered from 98 volunteers living in or near Amsterdam and Purmerend, The Netherlands. They carried an activity diary to be kept to the minute, a GPS logger sampling at an interval of 1 s, and an EME Spy exposimeter with a detection limit of 0.0066 mW/m(2) sampling at an interval of 10s in 12 frequency bands. The mean exposure over 24 h, excluding own mobile phone use, was 0.180 mW/m(2). During daytime exposure was about the same, but during night it was about half, and in the evening it was about twice as high. The main contribution to environmental exposure (calling by participant not included) is from calling with mobile phones (37.5%), from cordless DECT phones and their docking stations (31.7%), and from the base stations (12.7%). The exposure to mobile phone base stations increases with the percentage of urban ground use, which is an indication for high people density. In agreement, the highest mean exposure relates to the activities with high people density, such as travelling by public transport, visiting social events, pubs or shopping malls. Exposure at home depends mainly on exposure from people calling in the neighbourhood of the participant and thus on the number of persons in a household. In addition just the possession of DECT docking stations leads to exposure as most models transmit continuously in stand-by. Also wireless internet routers continuously transmit in the WiFi band. Though the highest exposure peaks in the WiFi band, up to 0.265 W/m(2), come from stray radiation of microwave ovens. The mean total exposure largely depends on phone calls of a high exposure level and short

  3. Effect of Radiofrequency Transmit Field Correction on Quantitative Dynamic Contrast-enhanced MR Imaging of the Breast at 3.0 T.

    PubMed

    Bedair, Reem; Graves, Martin J; Patterson, Andrew J; McLean, Mary A; Manavaki, Roido; Wallace, Tess; Reid, Scott; Mendichovszky, Iosif; Griffiths, John; Gilbert, Fiona J

    2016-05-01

    Purpose To investigate the effects of radiofrequency transmit field (B1(+)) correction on (a) the measured T1 relaxation times of normal breast tissue and malignant lesions and (b) the pharmacokinetically derived parameters of malignant breast lesions at 3 T. Materials and Methods Ethics approval and informed consent were obtained. Between May 2013 and January 2014, 30 women (median age, 58 years; range, 32-83 years) with invasive ductal carcinoma of at least 10 mm were recruited to undergo dynamic contrast material-enhanced magnetic resonance (MR) imaging before surgery. B1(+) and T1 mapping sequences were performed to determine the effect of B1(+) correction on the native tissue relaxation time (T10) of fat, parenchyma, and malignant lesions in both breasts. Pharmacokinetic parameters were calculated before and after correction for B1(+) variations. Results were correlated with histologic grade by using the Kruskal-Wallis test. Results Measurements showed a mean 37% flip angle difference between the right and left breast, which resulted in a 61% T10 difference in fat and a 41.5% difference in parenchyma between the two breasts. The T1 of lesions in the right breast increased by 58%, whereas that of lesions in the left breast decreased by 30% after B1(+) correction. The whole-tumor transendothelial permeability across the vascular compartment(K(trans)) of lesions in the right breast decreased by 41%, and that of lesions in the left breast increased by 46% after correction. A systematic increase in K(trans) was observed, with significant differences found across the histologic grades (P < .001). The effect size of B1(+) correction on K(trans) calculation was large for lesions in the right breast and moderate for lesions in the left breast (Cohen effect size, d = 0.86 and d = 0.59, respectively). Conclusion B1(+) correction demonstrates a substantial effect on the results of quantitative dynamic contrast-enhanced analysis of breast tissue at 3 T, which propagates

  4. Minimally Invasive Radiofrequency Devices.

    PubMed

    Sadick, Neil; Rothaus, Kenneth O

    2016-07-01

    This article reviews minimally invasive radiofrequency options for skin tightening, focusing on describing their mechanism of action and clinical profile in terms of safety and efficacy and presenting peer-reviewed articles associated with the specific technologies. Treatments offered by minimally invasive radiofrequency devices (fractional, microneedling, temperature-controlled) are increasing in popularity due to the dramatic effects they can have without requiring skin excision, downtime, or even extreme financial burden from the patient's perspective. Clinical applications thus far have yielded impressive results in treating signs of the aging face and neck, either as stand-alone or as postoperative maintenance treatments. PMID:27363771

  5. Nanoscale memristive radiofrequency switches.

    PubMed

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C; Xia, Qiangfei

    2015-01-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications. PMID:26108890

  6. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  7. Dynamics Of Ions In A Radio-Frequency Quadrupole Trap

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Williams, Angelyn P.; Maleki, Lutfollah

    1994-01-01

    Report describes computer-simulation study of motions of various numbers of ions in Paul trap. Study part of continuing effort to understand motions of trapped charged particles (atoms, ions, molecules, or dust particles). Motions characterized in terms of heating by radio-frequency fields, formation of crystallike structures in cold clouds of trapped particles, and other phenomena important in operation of radio-frequency traps in frequency standards.

  8. Radiofrequency Ablation of Cancer

    PubMed Central

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2008-01-01

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized. PMID:15383844

  9. Radiofrequency Ablation of Cancer

    SciTech Connect

    Friedman, Marc; Mikityansky, Igor; Kam, Anthony; Libutti, Steven K.; Walther, McClellan M.; Neeman, Ziv; Locklin, Julia K.; Wood, Bradford J.

    2004-09-15

    Radiofrequency ablation (RFA) has been used for over 18 years for treatment of nerve-related chronic pain and cardiac arrhythmias. In the last 10 years, technical developments have increased ablation volumes in a controllable, versatile, and relatively inexpensive manner. The host of clinical applications for RFA have similarly expanded. Current RFA equipment, techniques, applications, results, complications, and research avenues for local tumor ablation are summarized.

  10. The role of the location of personal exposimeters on the human body in their use for assessing exposure to the electromagnetic field in the radiofrequency range 98-2450 MHz and compliance analysis: evaluation by virtual measurements.

    PubMed

    Gryz, Krzysztof; Zradziński, Patryk; Karpowicz, Jolanta

    2015-01-01

    The use of radiofrequency (98-2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from -96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements. PMID:25879021

  11. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450 MHz and Compliance Analysis: Evaluation by Virtual Measurements

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    The use of radiofrequency (98–2450 MHz range) personal exposimeters to measure the electric field (E-field) in far-field exposure conditions was modelled numerically using human body model Gustav and finite integration technique software. Calculations with 256 models of exposure scenarios show that the human body has a significant influence on the results of measurements using a single body-worn exposimeter in various locations near the body ((from −96 to +133)%, measurement errors with respect to the unperturbed E-field value). When an exposure assessment involves the exposure limitations provided for the strength of an unperturbed E-field. To improve the application of exposimeters in compliance tests, such discrepancies in the results of measurements by a body-worn exposimeter may be compensated by using of a correction factor applied to the measurement results or alternatively to the exposure limit values. The location of a single exposimeter on the waist to the back side of the human body or on the front of the chest reduces the range of exposure assessments uncertainty (covering various exposure conditions). However, still the uncertainty of exposure assessments using a single exposimeter remains significantly higher than the assessment of the unperturbed E-field using spot measurements. PMID:25879021

  12. Radiofrequency in cosmetic dermatology.

    PubMed

    Beasley, Karen L; Weiss, Robert A

    2014-01-01

    The demand for noninvasive methods of facial and body rejuvenation has experienced exponential growth over the last decade. There is a particular interest in safe and effective ways to decrease skin laxity and smooth irregular body contours and texture without downtime. These noninvasive treatments are being sought after because less time for recovery means less time lost from work and social endeavors. Radiofrequency (RF) treatments are traditionally titrated to be nonablative and are optimal for those wishing to avoid recovery time. Not only is there minimal recovery but also a high level of safety with aesthetic RF treatments. PMID:24267424

  13. A prospective study analyzing the application of radiofrequency energy and high-voltage, ultrashort pulse duration electrical fields on the quantitative reduction of adipose tissue

    PubMed Central

    Duncan, Diane Irvine; Kim, Theresa H. M.; Temaat, Robbin

    2016-01-01

    Noninvasive fat reduction is claimed by many device manufacturers, but proof of efficacy has been difficult to establish. This prospective study was designed to measure the reduction of fat thickness and actual volume reduction in 20 female patients treated with an external radiofrequency (RF) device. This device combines RF heat, suction coupled vacuum, and oscillating electrical pulses that induce adipocyte death over time. Patients underwent pre- and post-treatment and intercurrent measurements of weight, body mass index, ultrasonic transcutaneous fat thickness, and 2D and 3D Vectra photography with independent calculation of circumferential and volumetric change. Mean transcutaneous ultrasound thickness at reproducible points was 2.78 cm; at 1-month post-treatment, the mean fat thickness was 1.71 cm. At 3-month post-treatment, the mean fat thickness reduction was 39.6%. Vectra circumference measurements were taken at 10-mm intervals, with postural and breathing cycle control. Independent analysis of serial measurements from + 60 to − 70 mm showed mean abdominal circumference measurement of 2.3 cm. Mean abdominal volume loss was 202.4 and 428.5 cc at 1- and 3-month post-treatment, respectively. Scanning electron microscopy confirmed that permanent cell destruction was caused by irreversible electroporation. Pyroptosis appears to be the mechanism of action. PMID:26962636

  14. A prospective study analyzing the application of radiofrequency energy and high-voltage, ultrashort pulse duration electrical fields on the quantitative reduction of adipose tissue.

    PubMed

    Duncan, Diane Irvine; Kim, Theresa H M; Temaat, Robbin

    2016-10-01

    Noninvasive fat reduction is claimed by many device manufacturers, but proof of efficacy has been difficult to establish. This prospective study was designed to measure the reduction of fat thickness and actual volume reduction in 20 female patients treated with an external radiofrequency (RF) device. This device combines RF heat, suction coupled vacuum, and oscillating electrical pulses that induce adipocyte death over time. Patients underwent pre- and post-treatment and intercurrent measurements of weight, body mass index, ultrasonic transcutaneous fat thickness, and 2D and 3D Vectra photography with independent calculation of circumferential and volumetric change. Mean transcutaneous ultrasound thickness at reproducible points was 2.78 cm; at 1-month post-treatment, the mean fat thickness was 1.71 cm. At 3-month post-treatment, the mean fat thickness reduction was 39.6%. Vectra circumference measurements were taken at 10-mm intervals, with postural and breathing cycle control. Independent analysis of serial measurements from + 60 to - 70 mm showed mean abdominal circumference measurement of 2.3 cm. Mean abdominal volume loss was 202.4 and 428.5 cc at 1- and 3-month post-treatment, respectively. Scanning electron microscopy confirmed that permanent cell destruction was caused by irreversible electroporation. Pyroptosis appears to be the mechanism of action. PMID:26962636

  15. The radiofrequency magnetic dipole discharge

    NASA Astrophysics Data System (ADS)

    Martines, E.; Zuin, M.; Marcante, M.; Cavazzana, R.; Fassina, A.; Spolaore, M.

    2016-05-01

    This paper describes a novel and simple concept of plasma source, which is able to produce a radiofrequency magnetized discharge with minimal power requirements. The source is based on the magnetron concept and uses a permanent magnet as an active electrode. The dipolar field produced by the magnet confines the electrons, which cause further ionization, thus producing a toroidally shaped plasma in the equatorial region around the electrode. A plasma can be ignited with such scheme with power levels as low as 5 W. Paschen curves have been built for four different working gases, showing that in Helium or Neon, plasma breakdown is easily obtained also at atmospheric pressure. The plasma properties have been measured using a balanced Langmuir probe, showing that the electron temperature is around 3-4 eV and higher in the cathode proximity. Plasma densities of the order of 1016 m-3 have been obtained, with a good positive scaling with applied power. Overall, the electron pressure appears to be strongly correlated with the magnetic field magnitude in the measurement point.

  16. Longevity of radiofrequency identification device microchips in citrus trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term identification of individual plants in the field is an important part of many types of botanical and horticultural research. In a previous report, we described methods for using implanted radiofrequency (RFID) microchips to tag citrus trees for field research. This report provides an upd...

  17. Dosimetry associated with exposure to non-ionizing radiation: very low frequency to microwaves.

    PubMed

    Guy, A W

    1987-12-01

    The interpretation of the effects in biological systems exposed to electromagnetic (EM) fields requires knowledge of the internal fields and absorbed energy. The quantification of the specific absorption rate (SAR) is called dosimetry. The SAR given in units of watts per kilogram is a complex function of the source configuration, shape and size of the exposed subjects, orientation of the subject with respect to the source, and the frequency. The average and maximum SAR in the exposed subject may vary over many orders of magnitude for a given exposure level. In order to relate observed biological effects in exposed laboratory animals to safe exposure levels for man, both the fields within the environment and SAR within the exposed tissues must be determined. The environmental fields and the SAR can often be determined from EM theory, but in most cases one must rely on instrumentation such as field survey meters for quantifying the exposure fields and electric field probes, thermocouples, thermistors, fiber optic probes, thermography, and calorimetry for quantifying the SAR in the tissues or equivalent models. A combination of techniques, each valid for a particular model over a particular frequency range, have been used to determine average and peak SARs in humans and animals exposed to plane wave radiation. Though it has been considerably more difficult to quantify these quantities for near field and partial-body exposure conditions, progress is continually being made in this area. PMID:3679822

  18. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  19. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  20. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  1. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  2. Evaluation of non ionizing radiation around the dielectric heaters and sealers: a case report.

    PubMed

    Sirav, Bahriye; Tuysuz, Mehmet Zahid; Canseven, Ayse G; Seyhan, Nesrin

    2010-12-01

    Dielectric heaters and sealers present the most common source of occupational exposure to excessive radio frequency (RF) fields. These systems are used industrially to heat or melt dielectric materials. Nowadays, the effects of high frequency electromagnetic (EM) fields on the health have been discussed frequently but there are few health studies done for workers around dielectric heaters and sealers. In this study, the leakage fields around dielectric heaters and sealers (27.12 MHz) were measured in MKE--Mechanical and Chemical Industry Corporation, Gazi Rocket Factory and evaluated in terms of standards. It has been observed that operators exposed to same RF fields with occupational exposure limits. Many workers have health complaints, such as elevated body temperatures in the factory. Safe distances or areas for workers should be recommended in these systems. Protective measures could be implemented to minimize these exposures. Further measurements and occupational exposure studies of RF exposed women and men are needed to demonstrate the levels of exposed Radio Frequency Radiation (RFR). Precautions should therefore be taken either to reduce the leakage fields or minimise the exposed fields. PMID:20923325

  3. Nuclear and Non-Ionizing Energy-Loss of Electrons with Low and Relativistic Energies in Materials and Space Environment

    NASA Astrophysics Data System (ADS)

    Boschini, M. J.; Consolandi, C.; Gervasi, M.; Giani, S.; Grandi, D.; Ivanchenko, V.; Nieminem, P.; Pensotti, S.; Rancoita, P. G.; Tacconi, M.

    2012-08-01

    The treatment of the electron-nucleus interaction based on the Matt differential cross section was extended to account for effects due to screened Coulomb potentials, finite sizes and finite rest masses of nuclei for electrons above 200keV and up to ultra high energies. This treatment allows one to determine both the total and differential cross sections, thus, subsequently to calculate the resulting nuclear and non-ionizing stopping powers. Above a few hundreds of MeV, neglecting the effect due to finite rest masses of recoil nuclei the stopping power and NIEL result to be largely underestimated. While, above a few tens of MeV, the finite size ofthe nuclear target prevents a further large increase of stopping powers which approach almost constant values.

  4. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90.

    PubMed

    Misa-Agustiño, Maria J; Jorge-Mora, Teresa; Jorge-Barreiro, Francisco J; Suarez-Quintanilla, Juan; Moreno-Piquero, Eduardo; Ares-Pena, Francisco J; López-Martín, Elena

    2015-09-01

    Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic-pituitary-thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland. PMID:25649190

  5. Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: Effects on c-jun and c-fos expression

    SciTech Connect

    Ivaschuk, O.I.; Jones, R.A.; Ishida-Jones, T.; Haggren, W.; Adey, W.R.; Phillips, J.L.

    1997-05-01

    Rat PC12 pheochromocytoma cells have been treated with nerve growth factor and then exposed to athermal levels of a packet-modulated radiofrequency field at 836.55 MHz. This signal was produced by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. Three slot average power densities were used: 0.09, 0.9, and 9 mW/cm{sup 2}. Exposures were for 20, 40, and 60 min and included an intermittent exposure regime, resulting in total incubation times of 20, 60, and 100 min, respectively. Concurrent controls were sham exposed. After extracting total cellular RNA, Northern blot analysis was used to assess the expression of the immediate early genes, c-fos and c-jun, in all cell populations. No change in c-fos transcript levels were detected after 20 min exposure at each field intensity. Transcript levels for c-jun were altered only after 20 min exposure to 9 mW/cm{sup 2}. 51 refs., 2 tabs.

  6. Exposure of nerve growth factor-treated PC12 rat pheochromocytoma cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression.

    PubMed

    Ivaschuk, O I; Jones, R A; Ishida-Jones, T; Haggren, W; Adey, W R; Phillips, J L

    1997-01-01

    Rat PC12 pheochromocytoma cells have been treated with nerve growth factor and then exposed to athermal levels of a packet-modulated radiofrequency field at 836.55 MHz. This signal was produced by a prototype time-domain multiple-access (TDMA) transmitter that conforms to the North American digital cellular telephone standard. Three slot average power densities were used: 0.09, 0.9, and 9 mW/cm2. Exposures were for 20, 40, and 60 min and included an intermittent exposure regimen (20 min on/20 min off), resulting in total incubation times of 20, 60, and 100 min, respectively. Concurrent controls were sham exposed. After extracting total cellular RNA, Northern blot analysis was used to assess the expression of the immediate early genes, c-fos and c-jun, in all cell populations. No change in c-fos transcript levels were detected after 20 min exposure at each field intensity (20 min was the only time period at which c-fos message could be detected consistently). Transcript levels for c-jun were altered only after 20 min exposure to 9 mW/cm2 (average 38% decrease). PMID:9096840

  7. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  8. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  9. Influence of non ionizing radiation of base stations on the activity of redox proteins in bovines

    PubMed Central

    2014-01-01

    Background The influence of electromagnetic fields on the health of humans and animals is still an intensively discussed and scientifically investigated issue (Prakt Tierarzt 11:15-20, 2003; Umwelt Medizin Gesellschaft 17:326-332, 2004; J Toxicol Environment Health, Part B 12:572–597, 2009). We are surrounded by numerous electromagnetic fields of variable strength, coming from electronic equipment and its power cords, from high-voltage power lines and from antennas for radio, television and mobile communication. Particularly the latter cause’s controversy, as everyone likes to have good mobile reception at anytime and anywhere, whereas nobody wants to have such a basestation antenna in their proximity. Results In this experiment, the NIR has resulted in changes in the enzyme activities. Certain enzymes were disabled, others enabled by NIR. Furthermore, individual behavior patterns were observed. While certain cows reacted to NIR, others did not react at all, or even inversely. Conclusion The present results coincide with the information from the literature, according to which NIR leads to changes in redox proteins, and that there are individuals who are sensitive to radiation and others that are not. However, the latter could not be distinctly attributed – there are cows that react clearly with one enzyme while they do not react with another enzyme at all, or even the inverse. The study approach of testing ten cows each ten times during three phases has proven to be appropriate. Future studies should however set the post-exposure phase later on. PMID:24946856

  10. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    PubMed

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues. PMID:26444193

  11. On the interaction of non-ionizing radiation with people. Technical report

    SciTech Connect

    Ruderman, M.A.; MacDonald, G.J.

    1980-03-01

    This report examines the physical basis for many of the thermal and non-thermal interactions between microwaves and the human body. Although a microwave beam incident on the human body dissipates, on the average, about the same amount of heat as does normal metabolism, it can actually dissipate considerably more heat in certain local regions of the body because of strong beam focusing effects (e.g., within the brain), flow of induced currents through small, constricted areas of the body (e.g., ankle, neck) and differences in electrical properties among body tissues. Since relatively large heat dissipation can occur on a local level, it would appear more rational to determine a maximum permissive radiation exposure in terms of maximum allowed dissipation in a specific sensitive part of the body rather than, as is presently done, in terms of external beam intensity (the present U.S. standard is 10 milliwatts/sq cm). For non-thermal processes, no special biological process or structure has been identified as likely to be especially sensitive to microwave fields or frequencies. The experimental results designed to explore the non-thermal effect of microwaves were studied. The results of all experiments purporting to demonstrate a significant non-thermal biological effect have been disputed; in fact, very few experiments in the entire field have ever been replicated -- a situation which should be rectified.

  12. Radio-frequency small-signal model of hetero-gate-dielectric p-n-p-n tunneling field-effect transistor including charge conservation capacitance and substrate parameters

    NASA Astrophysics Data System (ADS)

    Marjani, Saeid; Hosseini, Seyed Ebrahim

    2015-09-01

    This paper presents a radio-frequency (RF) small-signal model for the hetero-gate-dielectric p-n-p-n tunnel field-effect transistor (HG p-n-p-n TFET) that includes the charge conservation capacitance and the substrate parameters. The HG p-n-p-n TFET is evaluated in terms of various RF parameters, including the cut-off frequency, the maximum oscillation frequency, capacitances, resistances, conductances, and transport time delay. The extracted small-signal parameters and RF performance values are compared with those of the low-κ p-n-p-n TFET. A nonquasistatic RF small-signal model has been used along with SPICE simulations and small-signal parameters that were extracted from the simulated device Y-parameters to simulate the HG p-n-p-n TFET. It is confirmed using the Y-parameters and the extracted parameters that this model with the extracted charge conservation capacitance and substrate parameters is valid in the high frequency range up to 100 GHz. In addition, it is shown that a significant circuit performance error may be introduced if the charge conservation capacitance and the substrate parameters are not considered appropriately.

  13. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exposure limits. The criteria listed in table 1 shall be used to evaluate the environmental impact of human..., “Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation.” Note to... Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,”...

  14. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  15. Fervent: chemistry-coupled, ionizing and non-ionizing radiative feedback in hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Baczynski, C.; Glover, S. C. O.; Klessen, R. S.

    2015-11-01

    We introduce a radiative transfer code module for the magnetohydrodynamical adaptive mesh refinement code FLASH 4. It is coupled to an efficient chemical network which explicitly tracks the three hydrogen species H, H2, H+ as well as C+ and CO. The module is geared towards modelling all relevant thermal feedback processes of massive stars, and is able to follow the non-equilibrium time-dependent thermal and chemical state of the present-day interstellar medium as well as that of dense molecular clouds. We describe in detail the implementation of all relevant thermal stellar feedback mechanisms, i.e. photoelectric, photoionization and H2 dissociation heating as well as pumping of molecular hydrogen by UV photons. All included radiative feedback processes are extensively tested. We also compare our module to dedicated photodissociation region (PDR) codes and find good agreement in our modelled hydrogen species once our radiative transfer solution reaches equilibrium. In addition, we show that the implemented radiative feedback physics is insensitive to the spatial resolution of the code and show under which conditions it is possible to obtain well-converged evolution in time. Finally, we briefly explore the robustness of our scheme for treating combined ionizing and non-ionizing radiation.

  16. Discharge regime of non-ambipolarity with a self-induced steady-state magnetic field in plasma sources with localized radio-frequency power deposition

    SciTech Connect

    Shivarova, A. Lishev, St.; Todorov, D.; Paunska, Ts.

    2015-10-15

    Involving the idea for the Biermann effect known from space physics as well as recent discussions on non-ambipolarity of the electron and ion fluxes in low-pressure discharges, the study builds the discharge pattern in a source with localized RF power deposition outside the region of high electron density. A vortex dc current flowing in an RF discharge and a steady-state magnetic field induced by this current govern the discharge behavior. Owing to a shift in the positions of the electron-density and plasma-potential maxima, the dc current is driven with the purpose of keeping the conservativity of the dc field in the discharge. The results present the spatial structure of a discharge in a regime of non-ambipolarity of the electron and ion fluxes, including its modifications by the magnetic field.

  17. Radiofrequency electron swarm transport in reactive gases and plasmas

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Makabe, T.

    1994-01-01

    This paper gives a historical review of the development of radiofrequency (RF) electron swarm from a theoretical point of view. Also the recent progress of the direct numerical procedure (DNP) for solving the Boltzmann equation will be discussed with some typical examples of the temporally modulated velocity distribution in Ar and HCl in an RF field. The significance of DNP will be demonstrated for an RF swarm in the frequency range from MHz to GHz at strong fields.

  18. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz.

    PubMed

    Wainwright, P R

    2007-06-21

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 degrees C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged. PMID:17664547

  19. Research on heating, instabilities, turbulence, and rf (radiofrequency) emission from electric-field dominated plasmas. Final report, 15 March 1986-14 May 1989

    SciTech Connect

    Roth, J.R.; Alexeff, I.

    1989-07-01

    This contract has supported four research programs: (1) a program of research on plasma turbulence; (2) a program of research on plasma heating by collisional magnetic pumping; (3) a research program on the Orbitron submillimeter maser; and (4) the initial phase of a program on plasma cloaking of military targets for protection against radar and directed microwave energy weapons. Progress in these areas is documented in the text of this final report and in the twenty archival publications included in the appendices to this report. In addition to the above four research areas, work is continuing on plasma diagnostic development, and the development of new state-of-the-art data analysis and reduction methods, including software development for on-line reduction of Langmuir probe, capacitive probe, and other diagnostic information. The authors are also developing the capability to analyze electrostatic-potential fluctuations by the methods of nonlinear dynamics. An important part of our research program has been the training of graduate and undergraduate research assistants in state-of-the-art methods in the fields of high-temperature plasma physics, plasma diagnostics, communications, and related areas.

  20. Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla

    PubMed Central

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX

  1. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.

    PubMed

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX

  2. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  3. Four-Sector Cylindrical Radio-Frequency Ion Trap

    NASA Technical Reports Server (NTRS)

    Melbourne, Ruthann K.; Prestage, John D.; Maleki, Lutfollah

    1992-01-01

    Proposed linear radio-frequency ion trap consists of closed metal cylinder partitioned into four equal cylindrical-sector electrodes and two circular end electrodes. Features include relatively large ion-storage capacity and shielding against external fields. Used in frequency-standard laboratories to confine 199Hg+ ions electrodynamically in isolation from external environment. Similar to device described in "Linear Ion Trap for Atomic Clock" (NPO-17758).

  4. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation.

    PubMed

    Sannino, Anna; Sarti, Maurizio; Reddy, Siddharth B; Prihoda, Thomas J; Vijayalaxmi; Scarfì, Maria Rosaria

    2009-06-01

    The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder. PMID:19580480

  5. Radiofrequency Physics for Minimally Invasive Aesthetic Surgery.

    PubMed

    Levy, Adam S; Grant, Robert T; Rothaus, Kenneth O

    2016-07-01

    Radiofrequency energy has a wide range of medical applications, including noninvasive treatment of wrinkles and body contouring. This technology works by differential heating of skin and soft tissue layers causing dermal remodeling or adipolysis, ultimately leading to observable effects. This article reviews the physics of radiofrequency as applied clinically. PMID:27363769

  6. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  7. Aesthetic Applications of Radiofrequency Devices.

    PubMed

    Sadick, Neil; Rothaus, Kenneth O

    2016-07-01

    Radiofrequency (RF)-based devices are used to improve face and neck laxity, a major feature of aging that until recently could only be addressed with surgery. Although these treatments are not meant to replace surgical procedures, patient satisfaction studies have been consistently high. For physicians offering these skin rejuvenation procedures, it is essential to have intimate knowledge of how the devices work, select appropriate candidates, set realistic expectations, and combine treatments to optimize outcomes. This article discusses the various noninvasive RF technologies currently in use and reviews pertinent clinical studies evaluating their efficacy and safety. PMID:27363770

  8. Addressed qubit manipulation in radio-frequency dressed lattices

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Garraway, B. M.

    2016-03-01

    Precise control over qubits encoded as internal states of ultracold atoms in arrays of potential wells is a key element for atomtronics applications in quantum information, quantum simulation and atomic microscopy. Here we theoretically study atoms trapped in an array of radio-frequency dressed potential wells and propose a scheme for engineering fast and high-fidelity single-qubit gates with low error due to cross-talk. In this proposal, atom trapping and qubit manipulation relies exclusively on long-wave radiation making it suitable for atom-chip technology. We demonstrate that selective qubit addressing with resonant microwaves can be programmed by controlling static and radio-frequency currents in microfabricated conductors. These results should enable studies of neutral-atom quantum computing architectures, powered by low-frequency electromagnetic fields with the benefit of simple schemes for controlling individual qubits in large ensembles.

  9. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  10. Band-selective radiofrequency pulses

    NASA Astrophysics Data System (ADS)

    Geen, Helen; Freeman, Ray

    A theoretical treatment is given of the general problem of designing amplitude-modulated radiofrequency pulses that will excite a specified band of frequencies within a high-resolution NMR spectrum with uniform intensity and phase but with negligible excitation elsewhere. First a trial pulse envelope is defined in terms of a finite Fourier series and its frequency-domain profile calculated through the Bloch equations. The result is compared with the desired target profile to give a multidimensional error surface. The method of simulated annealing is then used to find the global minimum on this surface and the result refined by standard gradient-descent optimization. In this manner, a family of new shaped radio-frequency pulses, known as BURP ( band-selective, uniform response, pure-phase) pulses, has been created. These are of two classes—pulses that excite or invert z magnetization and those that act as general-rotation πr/2 or π pulses irrespective of the initial condition of the nuclear magnetization. It was found convenient to design the latter class as amplitude-modulated time-symmetric pulses. Tables of Fourier coefficients and pulse-shape ordinates are given for practical implementation of BURP pulses, together with the calculated frequency-domain responses and experimental verifications. Examples of the application of band-selective pulses in conventional and multidimensional spectroscopy are given. Pure-phase pulses of this type should also find applications in magnetic resonance imaging where refocusing schemes are undesirable.

  11. A Comparative PCET Study of a Donor-Acceptor Pair Linked by Ionized and Non-ionized Asymmetric Hydrogen-Bonded Interfaces

    PubMed Central

    Young, Elizabeth R.; Rosenthal, Joel; Hodgkiss, Justin M.

    2012-01-01

    A Zn(II) porphyrin-amidinium is the excited state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond (---[H+]---) formed between the amidinium and carboxylate or sulfonate establishes a proton-coupled electron transfer (PCET) pathway for charge transfer. The two D---[H+]---A assemblies differ only by the proton configuration within the hydrogen bonding interface. Specifically, the amidinium transfers a proton to the carboxylate to form a non-ionized amidine-carboxylic acid two-point hydrogen network whereas the amidinium maintains both protons when bound to the sulfonate functionality forming an ionized amidinium-sulfonate two-point hydrogen network. These two interface configurations within the dyads thus allow for a direct comparison of PCET kinetics for the same donor and acceptor juxtaposed by an ionized and non-ionized hydrogen-bonded interface. Analysis of PCET kinetics ascertained from transient absorption and transient emission spectroscopy reveal that the ionized interface is more strongly impacted by the local solvent environment, thus establishing that the initial static configuration of the proton interface is a critical determinant to the kinetics of PCET. PMID:19489645

  12. Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes

    PubMed Central

    Glazer, Evan S; Curley, Steven A

    2013-01-01

    Various types of nanoparticles efficiently heat in radiofrequency fields, which can potentially be used to produce cancer cell cytotoxicity within minutes. Multifunctional and targeted nanoparticles have demonstrated effective cancer control in vivo without significant toxicity associated with radiofrequency field exposure. Importantly, animals treated systemically with targeted nanoparticles smaller than 50 nm demonstrate tumor necrosis after radiofrequency field exposure without acute or chronic toxicity to normal tissues. Likewise, the future holds great promise for multifunctional imaging as well as multimodality therapy with chemotherapeutic molecules and ionizing radiation sensitizing agents attached to nanoparticle constructs. However, the appropriate balance of safety and efficacy for diagnosis, therapy, and therapeutic monitoring with these nanoparticles remains to be fully elucidated. PMID:22826886

  13. Radiofrequency Ablation of Metastatic Pheochromocytoma

    PubMed Central

    Venkatesan, Aradhana M.; Locklin, Julia; Lai, Edwin W.; Adams, Karen T.; Fojo, Antonio Tito; Pacak, Karel; Wood, Bradford J.

    2013-01-01

    In the present report on the preliminary safety and effectiveness of radiofrequency (RF) ablation for pheochromocytoma metastases, seven metastases were treated in six patients (mean size, 3.4 cm; range, 2.2–6 cm). α- and β-adrenergic and catecholamine synthesis inhibition and intraprocedural anesthesia monitoring were used. Safety was assessed by recording ablation-related complications. Complete ablation was defined as a lack of enhancement within the ablation zone on follow-up computed tomography. No serious adverse sequelae were observed. Complete ablation was achieved in six of seven metastases (mean follow-up, 12.3 months; range, 2.5–28 months). In conclusion, RF ablation may be safely performed for metastatic pheochromocytoma given careful attention to peri-procedural management. PMID:19875067

  14. Trigeminal Neuralgia and Radiofrequency Lesioning

    PubMed Central

    Eugene, Andy R.

    2016-01-01

    Trigeminal Neuralgia is a disorder that is characterized with electrical-type shocking pain in the face and jaw. This pain may either present as sharp unbearable pain unilateral or bilaterally. There is no definite etiology for this condition. There are various treatment methods that are currently being used to relieve the pain. One of the pharmacological treatments is Carbamazepine and the most prevalent surgical treatments include Gamma Knife Surgery (GKS), Microvascular Decompression (MVD) and Radiofrequency Lesioning (RFL). Although, MVD is the most used surgical method it is not an option for all the patients due to the intensity of the procedure. RFL is used when MVD is not suitable. In this paper we present the various options in the treatment of Trigeminal Neuralgia. PMID:26770820

  15. Esophageal papilloma: Flexible endoscopic ablation by radiofrequency

    PubMed Central

    del Genio, Gianmattia; del Genio, Federica; Schettino, Pietro; Limongelli, Paolo; Tolone, Salvatore; Brusciano, Luigi; Avellino, Manuela; Vitiello, Chiara; Docimo, Giovanni; Pezzullo, Angelo; Docimo, Ludovico

    2015-01-01

    Squamous papilloma of the esophagus is a rare benign lesion of the esophagus. Radiofrequency ablation is an established endoscopic technique for the eradication of Barrett esophagus. No cases of endoscopic ablation of esophageal papilloma by radiofrequency ablation (RFA) have been reported. We report a case of esophageal papilloma successfully treated with a single session of radiofrequency ablation. Endoscopic ablation of the lesion was achieved by radiofrequency using a new catheter inserted through the working channel of endoscope. The esophageal ablated tissue was removed by a specifically designed cup. Complete ablation was confirmed at 3 mo by endoscopy with biopsies. This case supports feasibility and safety of as a new potential indication for BarrxTM RFA in patients with esophageal papilloma. PMID:25789102

  16. Radiofrequency quadrupole accelerators and their applications

    SciTech Connect

    Stokes, R.H.; Wangler, T.P.

    1988-01-01

    This review of Radiofrequency Quadrupole (RFQ) Acelerators contains a short history of Soviet and Los Alamos RFQ developments, RFQ beam dynamics, resonator structures, and the characteristics and performance of RFQ accelerators. (AIP)

  17. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  18. Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks.

    PubMed

    Zanon-Willette, Thomas; de Clercq, Emeric; Arimondo, Ennio

    2012-11-30

    A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by a nonresonant radio-frequency field. For fermionic species as (87)Sr, (171)Yb, and (199)Hg, particular ratios between the radio-frequency driving amplitude and frequency lead to "magic" magnetic values where a net cancelation of the Zeeman clock shift and a complete reduction of first-order magnetic variations are produced within a relative uncertainty below the 10(-18) level. An Autler-Townes continued fraction describing a semiclassical radio-frequency dressed spin is numerically computed and compared to an analytical quantum description including higher-order magnetic field corrections to the dressed energies. PMID:23368116

  19. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    PubMed

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-03-01

    Purpose Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Materials and methods Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment. PMID:26872622

  20. SU-E-J-160: Comparing the Setup Accuracy of Non-Ionizing Patient Localization Systems with CBCT to Reduce Imaging Dose in Prone Breast Treatments

    SciTech Connect

    Chung, E; Yamamoto, T; Mayadev, J; Dieterich, S

    2014-06-01

    Purpose: CBCT is the current gold standard to verify prone breast patient setup. We investigated in a phantom if non-ionizing localization systems can replace ionizing localization systems for prone breast treatments. Methods: An anthropomorphic phantom was positioned on a prone breast board. Electromagnetic transponders were attached on the left chest surface. The CT images of the phantom were imported to the treatment planning system. The isocenter was set to the center of the transponders. The positions of the isocenter and transponders transferred to the transponder tracking system. The posterior phantom surface was contoured and exported to the optical surface tracking system. A CBCT was taken for the initial setup alignment on the treatment machine. Using the electromagnetic and optical localization systems, the deviation of the phantom setup from the original CT images was measured. This was compared with the difference between the original CT and kV-CBCT images. Results: For the electromagnetic localization system, the phantom position deviated from the original CT in 1.5 mm, 0.0 mm and 0.5 mm in the anterior-posterior (AP), superior-inferior (SI) and left-right (LR) directions. For the optical localization system, the phantom position deviated from the original CT in 2.0 mm, −2.0 mm and 0.1 mm in the AP, SI and LR directions. For the CBCT, the phantom position deviated from the original CT in 4.0 mm, 1.0 mm and −1.0 mm in the AP, SI and LR directions. The measured values from the non-ionizing localization systems differed from those with the CBCT less than 3.0 mm in all directions. Conclusions: This phantom study showed the feasibility of using a combination of non-ionizing localization systems to achieve a similar setup accuracy as CBCT for prone breast patients. This could potentially eliminate imaging dose. As a next step, we are expanding this study to actual patients. This work has been in part supported by Departmental Research Award RODEPT1-JS

  1. Epidemiology of Health Effects of Radiofrequency Exposure

    PubMed Central

    Ahlbom, Anders; Green, Adele; Kheifets, Leeka; Savitz, David; Swerdlow, Anthony

    2004-01-01

    We have undertaken a comprehensive review of epidemiologic studies about the effects of radiofrequency fields (RFs) on human health in order to summarize the current state of knowledge, explain the methodologic issues that are involved, and aid in the planning of future studies. There have been a large number of occupational studies over several decades, particularly on cancer, cardiovascular disease, adverse reproductive outcome, and cataract, in relation to RF exposure. More recently, there have been studies of residential exposure, mainly from radio and television transmitters, and especially focusing on leukemia. There have also been studies of mobile telephone users, particularly on brain tumors and less often on other cancers and on symptoms. Results of these studies to date give no consistent or convincing evidence of a causal relation between RF exposure and any adverse health effect. On the other hand, the studies have too many deficiencies to rule out an association. A key concern across all studies is the quality of assessment of RF exposure. Despite the ubiquity of new technologies using RFs, little is known about population exposure from RF sources and even less about the relative importance of different sources. Other cautions are that mobile phone studies to date have been able to address only relatively short lag periods, that almost no data are available on the consequences of childhood exposure, and that published data largely concentrate on a small number of outcomes, especially brain tumor and leukemia. PMID:15579422

  2. Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.

    PubMed

    Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien

    2015-08-01

    This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors. PMID:26107432

  3. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Balas, Costas

    2009-10-01

    This paper reviews the recent developments in the field of biomedical optical imaging, emphasizing technologies that have been moved from 'bench top to bedside'. Important new developments in this field allow for unprecedented visualization of the tissue microstructure and enable quantitative mapping of disease-specific endogenous and exogenous substances. With these advances, optical imaging technologies are becoming powerful clinical tools for non-invasive and objective diagnosis, guided treatment and monitoring therapies. Recent developments in visible and infrared diffuse spectroscopy and imaging, spectral imaging, optical coherence tomography, confocal imaging, molecular imaging and dynamic spectral imaging are presented together with their derivative medical devices. Their perspectives and challenges are discussed.

  4. Risk assessment and management of radiofrequency radiation exposure

    SciTech Connect

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  5. Characterization of superconducting radiofrequency breakdown by two-mode excitation

    SciTech Connect

    Eremeev, Grigory V.; Palczewski, Ari D.

    2014-01-14

    We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.

  6. Risk assessment and management of radiofrequency radiation exposure

    NASA Astrophysics Data System (ADS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  7. [Electrosmog, cellular phones, sunbeds etc. -- adverse health effects from radiation? Health aspects of non-ionizing radiation].

    PubMed

    Bernhardt, J H

    2005-01-01

    This review supplies a survey of the three physical influences, i. e. UV radiation, high-frequency electromagnetic fields of radio telephone systems and other wireless radio applications as well as low-frequency fields of electric power supply. The exposure to UV radiation must be considered to be by far the highest health risk. The annual rate of about 2000 deaths from skin cancer in Germany, mainly caused by extensive exposure to solar UV radiation, demands protective measures. Teaching reasonable behaviour is the supreme issue. Recommended protective measures in the order of their effectiveness are protection by adaptation of behaviour, by clothes, sun hats and sunglasses as well as by sun creams. Children are the most important target group. With regard to UV tanning appliances it is recommended not to use artificial UV radiation for cosmetic purposes because of the related health risks. For the assessment of health impairments caused by exposure to electromagnetic fields, direct field reactions due to induced electric body currents, reactions on the surface of the body or heating effects should be separated from indirect field reactions (e. g. electric shocks and burns) due to contact currents or interference with electronic body aids and implants. Risk assessment has led to recommendations of threshold values which-in agreement with international research results-exclude all impairments of health caused by direct field reactions scientifically proven to date. Contrary to public concerns, which are mostly related to base transmitters of radio telephone systems, exposure due to handheld radio telephones (cellular phones) should rather be considered from the viewpoint of precautionary health protection, since it is more likely that their use can lead to high exposure of the user. Due to the protective measures provided so far and observance of the threshold values based on scientific results, exposures do not lead to health impairments-not even in children

  8. Radiofrequency ablation for hepatocellular carcinoma.

    PubMed

    Nishikawa, Hiroki; Kimura, Toru; Kita, Ryuichi; Osaki, Yukio

    2013-09-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related mortality worldwide. Unfortunately, only 20% of HCC patients are amenable to curative therapy (liver transplantation or surgical resection). Locoregional therapies such as radiofrequency ablation (RFA), percutaneous ethanol injection, microwave coagulation therapy, and transcatheter arterial chemoembolisation play a key role in the management of HCC. The choice of the treatment modality depends on the size of the tumour, tumour location, anatomic considerations and the number of tumours present and liver function. RFA therapy for HCC can be performed safely using a percutaneous, laparoscopic, or an open approach, even in patients with poor functional reserve. Since the introduction of RFA, several randomised controlled trials and non-randomised studies comparing RFA and other therapies for HCC have been conducted. In addition, in the last decade there have been technical advances in RFA therapy for HCC, resulting in significant improvement in the prognosis of HCC patients treated with this modality. In this review, we primarily focus on percutaneous RFA therapy for HCC and refer to current knowledge and future perspectives for this therapy. We also discuss new emerging ablation techniques. PMID:23937321

  9. Percutaneous Tumor Ablation with Radiofrequency

    PubMed Central

    Wood, Bradford J.; Ramkaransingh, Jeffrey R.; Fojo, Tito; Walther, McClellan M.; Libutti, Stephen K.

    2008-01-01

    BACKGROUND Radiofrequency thermal ablation (RFA) is a new minimally invasive treatment for localized cancer. Minimally invasive surgical options require less resources, time, recovery, and cost, and often offer reduced morbidity and mortality, compared with more invasive methods. To be useful, image-guided, minimally invasive, local treatments will have to meet those expectations without sacrificing efficacy. METHODS Image-guided, local cancer treatment relies on the assumption that local disease control may improve survival. Recent developments in ablative techniques are being applied to patients with inoperable, small, or solitary liver tumors, recurrent metachronous hereditary renal cell carcinoma, and neoplasms in the bone, lung, breast, and adrenal gland. RESULTS Recent refinements in ablation technology enable large tumor volumes to be treated with image-guided needle placement, either percutaneously, laparoscopically, or with open surgery. Local disease control potentially could result in improved survival, or enhanced operability. CONCLUSIONS Consensus indications in oncology are ill-defined, despite widespread proliferation of the technology. A brief review is presented of the current status of image-guided tumor ablation therapy. More rigorous scientific review, long-term follow-up, and randomized prospective trials are needed to help define the role of RFA in oncology. PMID:11900230

  10. 21 CFR 882.4725 - Radiofrequency lesion probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Identification. A radiofrequency lesion probe is a device connected to a radiofrequency (RF) lesion generator to deliver the RF energy to the site within the nervous system where a lesion is...