Non-Markovian stochastic evolution equations
NASA Astrophysics Data System (ADS)
Costanza, G.
2014-05-01
Non-Markovian continuum stochastic and deterministic equations are derived from a set of discrete stochastic and deterministic evolution equations. Examples are given of discrete evolution equations whose updating rules depend on two or more previous time steps. Among them, the continuum stochastic evolution equation of the Newton second law, the stochastic evolution equation of a wave equation, the stochastic evolution equation for the scalar meson field, etc. are obtained as special cases. Extension to systems of evolution equations and other extensions are considered and examples are given. The concept of isomorphism and almost isomorphism are introduced in order to compare the coefficients of the continuum evolution equations of two different smoothing procedures that arise from two different approaches. Usually these discrepancies arising from two sources: On the one hand, the use of different representations of the generalized functions appearing in the models and, on the other hand, the different approaches used to describe the models. These new concept allows to overcome controversies that were appearing during decades in the literature.
Dynamical properties of non-Markovian stochastic differential equations
NASA Astrophysics Data System (ADS)
Hernández-Machado, A.; San Miguel, M.
1984-04-01
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an Ornstein-Uhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Zhou, Yun
2015-08-01
It remains a challenge for theory to simulate nonperturbative and non-Markovian quantum dissipative dynamics at low temperatures. In this study we suggest a Hermitian non-Markovian stochastic master equation suitable for dissipative dynamics at arbitrary temperatures. The memory effect of the bath is embedded within two real correlated Gaussian noises. This scheme is numerically verified by the hierarchical equation of motion and symmetry preserving for a symmetric two-level system. An exemplary application is carried out for the dynamics over a broad range of temperatures to investigate the temperature dependence of the Rabi frequency shift and the non-Markovianity.
An alternative realization of the exact non-Markovian stochastic Schrödinger equation.
Song, Kai; Song, Linze; Shi, Qiang
2016-06-14
Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performed to demonstrate the efficiency of the new method. PMID:27305994
An alternative realization of the exact non-Markovian stochastic Schrödinger equation
NASA Astrophysics Data System (ADS)
Song, Kai; Song, Linze; Shi, Qiang
2016-06-01
Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performed to demonstrate the efficiency of the new method.
Stochastic Impulse Control of Non-Markovian Processes
Djehiche, Boualem; Hamadene, Said Hdhiri, Ibtissam
2010-02-15
We consider a class of stochastic impulse control problems of general stochastic processes i.e. not necessarily Markovian. Under fairly general conditions we establish existence of an optimal impulse control. We also prove existence of combined optimal stochastic and impulse control of a fairly general class of diffusions with random coefficients. Unlike, in the Markovian framework, we cannot apply quasi-variational inequalities techniques. We rather derive the main results using techniques involving reflected BSDEs and the Snell envelope.
Description of non-Markovian effect in open quantum system with the discretized environment method
NASA Astrophysics Data System (ADS)
Lacroix, Denis; Sargsyan, Vazgen; Adamian, Gurgen; Antonenko, Nikolai
2015-04-01
An approach, called discretized environment method, is used to treat exactly non-Markovian effects in open quantum systems. In this approach, a complex environment described by a spectral function is mapped into a finite set of discretized states with an appropriate coupling to the system of interest. The finite set of system plus environment degrees of freedom are then explicitly followed in time leading to a quasi-exact description. The present approach is anticipated to be particularly accurate in the low temperature and strongly non-Markovian regime. The discretized environment method is validated on a two-level system (qubit) coupled to a bosonic or fermionic heat-bath. A perfect agreement with the quantum Langevin approach is found. Further illustrations are made on a three-level system (qutrit) coupled to a bosonic heat-bath. Emerging processes due to strong memory effects are discussed.
NASA Astrophysics Data System (ADS)
Barchielli, Alberto
2016-06-01
The quantum stochastic Schrödinger equation or Hudson-Parthasarathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of output fields. An important feature of such an equation is that it allows to treat not only absorption and emission of quanta, but also scattering processes, which however had very few applications in physical modelling. Moreover, recent developments have shown that also some non-Markovian dynamics can be generated by suitable choices of the state of the quantum noises involved in the HP-equation. This paper is devoted to an application involving these two features, non-Markovianity and scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that this process needs the scattering part of the HP-equation to be described. On the other side, non-Markovianity is introduced by the dissipation due to the interaction with some thermal environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum, and by the introduction of phase noise in the laser beam. Finally, we study the full power spectrum of the reflected light and we show how the laser beam can be used as a temperature probe.
Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics
NASA Astrophysics Data System (ADS)
Ray, Somrita; Bag, Bidhan Chandra
2014-09-01
In this article we have studied Shannon entropic nonequilibrium temperature (NET) extensively for a system which is coupled to a thermal bath that may be Markovian or non-Markovian in nature. Using the phase-space distribution function, i.e., the solution of the generalized Fokker Planck equation, we have calculated the entropy production, NET, and their bounds. Other thermodynamic properties like internal energy of the system, heat, and work, etc. are also measured to study their relations with NET. The present study reveals that the heat flux is proportional to the difference between the temperature of the thermal bath and the nonequilibrium temperature of the system. It also reveals that heat capacity at nonequilibrium state is independent of both NET and time. Furthermore, we have demonstrated the time variations of the above-mentioned and related quantities to differentiate between the equilibration processes for the coupling of the system with the Markovian and the non-Markovian thermal baths, respectively. It implies that in contrast to the Markovian case, a certain time is required to develop maximum interaction between the system and the non-Markovian thermal bath (NMTB). It also implies that longer relaxation time is needed for a NMTB compared to a Markovian one. Quasidynamical behavior of the NMTB introduces an oscillation in the variation of properties with time. Finally, we have demonstrated how the nonequilibrium state is affected by the memory time of the thermal bath.
Stochastic dynamics of charge fluctuations in dusty plasma: A non-Markovian approach
Asgari, H.; Muniandy, S. V.; Wong, C. S.
2011-08-15
Dust particles in typical laboratory plasma become charged largely by collecting electrons and/or ions. Most of the theoretical studies in dusty plasma assume that the grain charge remains constant even though it fluctuates due to the discrete nature of the charge. The rates of ions and electrons absorption depend on the grain charge, hence its temporal evolution. Stochastic charging model based on the standard Langevin equation assumes that the underlying process is Markovian. In this work, the memory effect in dust charging dynamics is incorporated using fractional calculus formalism. The resulting fractional Langevin equation is solved to obtain the amplitude and correlation function for the dust charge fluctuation. It is shown that the effects of ion-neutral collisions can be interpreted in phenomenological sense through the nonlocal fractional order derivative.
Non-Markovian approach to globally coupled excitable systems
Prager, T.; Schimansky-Geier, L.; Zaks, M. A.; Falcke, M.
2007-07-15
We consider stochastic excitable units with three discrete states. Each state is characterized by a waiting time density function. This approach allows for a non-Markovian description of the dynamics of separate excitable units and of ensembles of such units. We discuss the emergence of oscillations in a globally coupled ensemble with excitatory coupling. In the limit of a large ensemble we derive the non-Markovian mean-field equations: nonlinear integral equations for the populations of the three states. We analyze the stability of their steady solutions. Collective oscillations are shown to persist in a large parameter region beyond supercritical and subcritical Hopf bifurcations. We compare the results with simulations of discrete units as well as of coupled FitzHugh-Nagumo systems.
Quantum dynamics with non-Markovian fluctuating parameters
NASA Astrophysics Data System (ADS)
Goychuk, Igor
2004-07-01
A stochastic approach to the quantum dynamics randomly modulated in time by a discrete state non-Markovian noise, which possesses an arbitrary nonexponential distribution of the residence times, is developed. The formally exact expression for the Laplace-transformed quantum propagator averaged over the stationary realizations of such N -state non-Markovian noise is obtained. The theory possesses a wide range of applications. It includes some previous Markovian and non-Markovian theories as particular cases. In the context of the stochastic theory of spectral line shape and relaxation, the developed approach presents a non-Markovian generalization of the Kubo-Anderson theory of sudden modulation. In particular, the exact analytical expression is derived for the spectral line shape of optical transitions described by a Kubo oscillator with randomly modulated frequency which undergoes jumplike non-Markovian fluctuations in time.
Non-Markovian dynamics without using a quantum trajectory
Wu Chengjun; Li Yang; Zhu Mingyi; Guo Hong
2011-05-15
Open quantum systems interacting with structured environments is important and manifests non-Markovian behavior, which was conventionally studied using a quantum trajectory stochastic method. In this paper, by dividing the effects of the environment into two parts, we propose a deterministic method without using a quantum trajectory. This method is more efficient and accurate than the stochastic method in most Markovian and non-Markovian cases. We also extend this method to the generalized Lindblad master equation.
Closing the hierarchy for non-Markovian magnetization dynamics
NASA Astrophysics Data System (ADS)
Tranchida, J.; Thibaudeau, P.; Nicolis, S.
2016-04-01
We propose a stochastic approach for the description of the time evolution of the magnetization of nanomagnets, that interpolates between the Landau-Lifshitz-Gilbert and the Landau-Lifshitz-Bloch approximations, by varying the strength of the noise. In addition, we take into account the autocorrelation time of the noise and explore the consequences, when it is finite, on the scale of the response of the magnetization, i.e. when it may be described as colored, rather than white, noise and non-Markovian features become relevant. We close the hierarchy for the moments of the magnetization, by introducing a suitable truncation scheme, whose validity is tested by direct numerical solution of the moment equations and compared to the average deduced from a numerical solution of the corresponding stochastic Langevin equation. In this way we establish a general framework that allows both coarse-graining simulations and faster calculations beyond the truncation approximation used here.
Quantum measurements in continuous time, non-Markovian evolutions and feedback.
Barchielli, Alberto; Gregoratti, Matteo
2012-11-28
In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non-Markovian theory. The theory allows us to put together non-Markovian evolutions and measurements in continuous time, in agreement with the modern axiomatic formulation of quantum mechanics. To illustrate the possibilities of such a theory, we apply it to a two-level atom stimulated by a laser. We introduce closed loop control too, via the stimulating laser, with the aim of enhancing the 'squeezing' of the emitted light, or other typical quantum properties. Note that here we change the point of view with respect to the usual applications of control theory. In our model, the 'system' is the two-level atom, but we do not want to control its state, to bring the atom to a final target state. Our aim is to control the 'Mandel Q-parameter' and the spectrum of the emitted light; in particular, the spectrum is not a property at a single time, but involves a long interval of times (a Fourier transform of the autocorrelation function of the observed output is needed). PMID:23091214
Entropy production in a non-Markovian environment.
Kutvonen, Aki; Ala-Nissila, Tapio; Pekola, Jukka
2015-07-01
Stochastic thermodynamics and the associated fluctuation relations provide the means to extend the fundamental laws of thermodynamics to small scales and systems out of equilibrium. The fluctuating thermodynamic variables are usually treated in the context of either isolated Hamiltonian evolution, or Markovian dynamics in open systems. However, there is no reason a priori why the Markovian approximation should be valid in driven systems under nonequilibrium conditions. In this work, we introduce an explicitly non-Markovian model of dynamics of an open system, where the correlations between the system and the environment drive a subset of the environment out of equilibrium. Such an environment gives rise to a new type of non-Markovian entropy production term. Such non-Markovian components must be taken into account in order to recover the fluctuation relations for entropy. As a concrete example, we explicitly derive such modified fluctuation relations for the case of an overheated single electron box. PMID:26274125
Entropy production in a non-Markovian environment
NASA Astrophysics Data System (ADS)
Kutvonen, Aki; Ala-Nissila, Tapio; Pekola, Jukka
2015-07-01
Stochastic thermodynamics and the associated fluctuation relations provide the means to extend the fundamental laws of thermodynamics to small scales and systems out of equilibrium. The fluctuating thermodynamic variables are usually treated in the context of either isolated Hamiltonian evolution, or Markovian dynamics in open systems. However, there is no reason a priori why the Markovian approximation should be valid in driven systems under nonequilibrium conditions. In this work, we introduce an explicitly non-Markovian model of dynamics of an open system, where the correlations between the system and the environment drive a subset of the environment out of equilibrium. Such an environment gives rise to a new type of non-Markovian entropy production term. Such non-Markovian components must be taken into account in order to recover the fluctuation relations for entropy. As a concrete example, we explicitly derive such modified fluctuation relations for the case of an overheated single electron box.
Experimental observation of weak non-Markovianity
Bernardes, Nadja K.; Cuevas, Alvaro; Orieux, Adeline; Monken, C. H.; Mataloni, Paolo; Sciarrino, Fabio; Santos, Marcelo F.
2015-01-01
Non-Markovianity has recently attracted large interest due to significant advances in its characterization and its exploitation for quantum information processing. However, up to now, only non-Markovian regimes featuring environment to system backflow of information (strong non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an always increasing correlation between the system and its environment which, in our case, denotes no information backflow. We also show the transition from the weak to the strong regime by changing a single parameter in the environmental state, leading us to a better understanding of the fundamental features of non-Markovianity. PMID:26627910
Experimental observation of weak non-Markovianity.
Bernardes, Nadja K; Cuevas, Alvaro; Orieux, Adeline; Monken, C H; Mataloni, Paolo; Sciarrino, Fabio; Santos, Marcelo F
2015-01-01
Non-Markovianity has recently attracted large interest due to significant advances in its characterization and its exploitation for quantum information processing. However, up to now, only non-Markovian regimes featuring environment to system backflow of information (strong non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an always increasing correlation between the system and its environment which, in our case, denotes no information backflow. We also show the transition from the weak to the strong regime by changing a single parameter in the environmental state, leading us to a better understanding of the fundamental features of non-Markovianity. PMID:26627910
Modelling non-Markovian dynamics in biochemical reactions
2015-01-01
Background Biochemical reactions are often modelled as discrete-state continuous-time stochastic processes evolving as memoryless Markov processes. However, in some cases, biochemical systems exhibit non-Markovian dynamics. We propose here a methodology for building stochastic simulation algorithms which model more precisely non-Markovian processes in some specific situations. Our methodology is based on Constraint Programming and is implemented by using Gecode, a state-of-the-art framework for constraint solving. Results Our technique allows us to randomly sample waiting times from probability density functions that not necessarily are distributed according to a negative exponential function. In this context, we discuss an important case-study in which the probability density function is inferred from single-molecule experiments that describe the distribution of the time intervals between two consecutive enzymatically catalysed reactions. Noticeably, this feature allows some types of enzyme reactions to be modelled as non-Markovian processes. Conclusions We show that our methodology makes it possible to obtain accurate models of enzymatic reactions that, in specific cases, fit experimental data better than the corresponding Markovian models. PMID:26051249
On Reinforcement Memory for Non-Markovian Control
NASA Astrophysics Data System (ADS)
Osman, Hassab Elgawi
This paper contributes on designing robotic memory controller for solving non-Markovian reinforcement tasks, which correspond to a great deal of real-life stochastic predictions and control problems. Instead of holistic search for the whole memory contents, the controller adopts associated feature analysis to produce the most likely relevant action from previous experiences. Actor-Critic (AC) learning is used to adaptively tune the control parameters, while an on-line variant of decisiontrees ensemble learner is used as memory-capable to approximate the policy of the Actor and the value function of the Critic. Learning capability is experimentally examined through non-Markovian cart-pole balancing task. The result shows that the proposed controller acquired complex behaviors such as balancing two poles simultaneously.
Thermodynamic power of non-Markovianity.
Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina
2016-01-01
The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer's principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947
Thermodynamic power of non-Markovianity
Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina
2016-01-01
The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947
Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion
Strunz, Walter T.; Yu Ting
2004-05-01
Stochastic Schroedinger equations for quantum trajectories offer an alternative and sometimes superior approach to the study of open quantum system dynamics. Here we show that recently established convolutionless non-Markovian stochastic Schroedinger equations may serve as a powerful tool for the derivation of convolutionless master equations for non-Markovian open quantum systems. The most interesting example is quantum Brownian motion (QBM) of a harmonic oscillator coupled to a heat bath of oscillators, one of the most employed exactly soluble models of open system dynamics. We show explicitly how to establish the direct connection between the exact convolutionless master equation of QBM and the corresponding convolutionless exact stochastic Schroedinger equation.
Alternative non-Markovianity measure by divisibility of dynamical maps
Hou, S. C.; Yi, X. X.; Yu, S. X.; Oh, C. H.
2011-06-15
By identifying non-Markovianity with nondivisibility, we propose a measure of non-Markovianity for quantum processes. Three examples are presented, and the measure of non-Markovianity is calculated and discussed for these examples. Comparisons with other measures of non-Markovianity are made. The present non-Markovianity measure has the merit that no optimization procedure is required and it is finite for any quantum process, which greatly enhances the practical relevance of the proposed measure.
Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz; Należyty, Paweł
2016-06-01
In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.
Non-Markovian environments and entanglement preservation
NASA Astrophysics Data System (ADS)
Tan, Jackson; Kyaw, Thi Ha; Yeo, Ye
2010-06-01
Using the Shabani-Lidar post-Markovian master equation, we derive non-Markovian generalizations of important quantum decohering operations on single qubits. When environmental memory effects are being taken into account, both single-qubit coherence and two-qubit entanglement may be preserved over a longer period of time, in contrast to the corresponding situations where these are totally neglected. We argue that recognizing the fact that every environment is inherently non-Markovian could be the key to the resolution of the issue of entanglement sudden death.
Non-Markovian environments and entanglement preservation
Tan, Jackson; Kyaw, Thi Ha; Yeo, Ye
2010-06-15
Using the Shabani-Lidar post-Markovian master equation, we derive non-Markovian generalizations of important quantum decohering operations on single qubits. When environmental memory effects are being taken into account, both single-qubit coherence and two-qubit entanglement may be preserved over a longer period of time, in contrast to the corresponding situations where these are totally neglected. We argue that recognizing the fact that every environment is inherently non-Markovian could be the key to the resolution of the issue of entanglement sudden death.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Generalization of Pairwise Models to non-Markovian Epidemics on Networks
NASA Astrophysics Data System (ADS)
Kiss, Istvan Z.; Röst, Gergely; Vizi, Zsolt
2015-08-01
In this Letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations, which shows excellent agreement with results based on stochastic simulations. Furthermore, we analytically compute a new R0 -like threshold quantity and an analytical relation between this and the final epidemic size. Additionally, we show that the pairwise model and the analytic results can be generalized to an arbitrary distribution of the infectious times, using integro-differential equations, and this leads to a general expression for the final epidemic size. By showing the rigorous link between non-Markovian dynamics and pairwise delay differential equations, we provide the framework for a more systematic understanding of non-Markovian dynamics.
Non-Markovianity measure using two-time correlation functions
NASA Astrophysics Data System (ADS)
Ali, Md. Manirul; Lo, Ping-Yuan; Tu, Matisse Wei-Yuan; Zhang, Wei-Min
2015-12-01
We investigate non-Markovianity measure using two-time correlation functions for open quantum systems. We define non-Markovianity measure as the difference between the exact two-time correlation function and the one obtained from quantum regression theorem in the Born-Markov approximation. Such non-Markovianity can easily be measured in experiments. We found that the non-Markovianity dynamics in different time scale crucially depends on the system-environment coupling strength and other physical parameters such as the initial temperature of the environment and the initial state of the system. In particular, we obtain the short-time and long-time behaviors of non-Markovianity for different spectral densities. We find that the thermal fluctuation always reduce the non-Markovian memory effect. Also, the non-Markovianity measure shows nontrivial initial state dependence in different time scales.
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states. PMID:26317700
The simulation of the non-Markovian behaviour of a two-level system
NASA Astrophysics Data System (ADS)
Semina, I.; Petruccione, F.
2016-05-01
Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.
Degree of Non-Markovianity of Quantum Evolution
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz; Maniscalco, Sabrina
2014-03-01
We propose a new characterization of non-Markovian quantum evolution based on the concept of non-Markovianity degree. It provides an analog of a Schmidt number in the entanglement theory and reveals the formal analogy between quantum evolution and the entanglement theory: Markovian evolution corresponds to a separable state and the non-Markovian one is further characterized by its degree. It enables one to introduce a non-Markovianity witness—an analog of an entanglement witness, and a family of measures—an analog of Schmidt coefficients, and finally to characterize maximally non-Markovian evolution being an analog of the maximally entangled state. Our approach allows us to classify the non-Markovianity measures introduced so far in a unified rigorous mathematical framework.
Non-Markovian effect on remote state preparation
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu; Liu, Chen; Luo, Shunlong; Zhu, Shiqun
2015-05-01
Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.
Non-Markovian effect on remote state preparation
Xu, Zhen-Yu; Liu, Chen; Luo, Shunlong; Zhu, Shiqun
2015-05-15
Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.
Non-Markovian dynamics of quantum discord
Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.
2010-05-15
We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.
Non-Markovianity hinders Quantum Darwinism
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857
Long-time memory in non-Markovian evolutions
Chruscinski, Dariusz; Pascazio, Saverio
2010-03-15
If the dynamics of an open quantum system is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement. Interestingly, even if the non-Markovian evolution relaxes to an equilibrium state, this state needs not be invariant. Therefore, the noninvariance of equilibrium becomes a clear sign of non-Markovianity.
Mean first-passage times of non-Markovian random walkers in confinement
NASA Astrophysics Data System (ADS)
Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.
2016-06-01
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Mean first-passage times of non-Markovian random walkers in confinement.
Guérin, T; Levernier, N; Bénichou, O; Voituriez, R
2016-06-16
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement. PMID:27306185
Discrete dynamics and non-Markovianity
NASA Astrophysics Data System (ADS)
Luoma, Kimmo; Piilo, Jyrki
2016-06-01
We study discrete quantum dynamics where a single evolution step consists of unitary system transformation followed by decoherence via coupling to an environment. Often, non-Markovian memory effects are attributed to structured environments, whereas, here, we take a more general approach within a discrete setting. In addition of controlling the structure of the environment, we are interested in how local unitaries on the open system allow the appearance and control of memory effects. Our first simple qubit model where local unitary is followed by dephasing illustrates how memory effects arise, despite having no structure in the environment the system is coupled with. We, then, elaborate on this observation by constructing a model for an open quantum walk where the unitary coin and transfer operation is augmented with the dephasing of the coin. The results demonstrate tha,t in the limit of strong dephasing within each evolution step, the combined coin-position open system always displays memory effects, and their quantities are independent of the structure of the environment. Our construction makes possible an experimentally realizable open quantum walk with photons exhibiting non-Markovian features.
Solvable non-Markovian dynamic network
NASA Astrophysics Data System (ADS)
Georgiou, Nicos; Kiss, Istvan Z.; Scalas, Enrico
2015-10-01
Non-Markovian processes are widespread in natural and human-made systems, yet explicit modeling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy-tailed Mittag-Leffler distribution for the interevent times. We derive an analytically and computationally tractable system of Kolmogorov-like forward equations utilizing the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law interevent times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excellent approximation to the case when the network dynamics is characterized by power-law-distributed interevent times. We further discuss possible generalizations of our result.
Non-Markovian dynamics of a qubit
Maniscalco, Sabrina; Petruccione, Francesco
2006-01-15
In this paper we investigate the non-Markovian dynamics of a qubit by comparing two generalized master equations with memory. In the case of a thermal bath, we derive the solution of the recently proposed post-Markovian master equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we study the dynamics for an exponentially decaying memory kernel. We compare the solution of the post-Markovian master equation with the solution of the typical memory kernel master equation. Our results lead to a new physical interpretation of the reservoir correlation function and bring to light the limits of usability of master equations with memory for the system under consideration.
Classical non-Markovian Boltzmann equation
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
Non-Markovian work fluctuation theorem in crossed electric and magnetic fields
NASA Astrophysics Data System (ADS)
Jiménez-Aquino, J. I.
2015-08-01
The validity of the transient work fluctuation theorem for a charged Brownian harmonic oscillator embedded in a non-Markovian heat bath and under the action of crossed electric and magnetic fields is investigated. The aforementioned theorem is verified to be valid within the context of the generalized Langevin equation with an arbitrary memory kernel and arbitrary dragging in the potential minimum. The fluctuation-dissipation relation of the second kind is assumed to be valid and shows that the non-Markovian stochastic dynamics associated with the particle, in the absence of the external time-dependent electric field, reaches an equilibrium state, as is precisely demanded by such a relation. The Jarzynski equality in this problem is also analyzed.
Non-Markovianity: initial correlations and nonlinear optical measurements
Dijkstra, Arend G.; Tanimura, Yoshitaka
2012-01-01
By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function. PMID:22753819
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Quantum non-Markovianity: characterization, quantification and detection
NASA Astrophysics Data System (ADS)
Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.
2014-09-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.
Non-Markovian Quantum Friction of Bright Solitons in Superfluids.
Efimkin, Dmitry K; Hofmann, Johannes; Galitski, Victor
2016-06-01
We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments. PMID:27314722
Non-Markovian Quantum Friction of Bright Solitons in Superfluids
NASA Astrophysics Data System (ADS)
Efimkin, Dmitry K.; Hofmann, Johannes; Galitski, Victor
2016-06-01
We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.
Harnessing non-Markovian quantum memory by environmental coupling
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-07-01
Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in the absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for the zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.
Chen, Po-Wen; Ali, Md. Manirul
2014-01-01
Leggett-Garg inequalities (LGI) test the correlations of a single system measured at different times. Violation of LGI implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. We investigate the violation of the Leggett-Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment. We discuss the non-Markovian dynamics of the violation of LGI at zero temperature and also at finite temperature for different structured environments. An enhanced quantum coherence is shown through the violation of Leggett-Garg inequality in the strong non-Markovian regime of the environment. PMID:25145508
Non-Markovian full counting statistics in quantum dot molecules
Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245
Markovian and Non-Markovian Modeling of Membrane Dynamics with Milestoning.
Cardenas, Alfredo E; Elber, Ron
2016-08-25
We exploit atomically detailed simulations and the milestoning theory to extract coarse grained models of membrane kinetics and thermodynamics. Non-Markovian and Markovian theories for the phosphate group displacements are used to coarsely represent membrane motions. The construction of the two models makes it possible to examine their consistency and accuracy. The equilibrium and fluctuations of the phosphate groups along the normal to the membrane plane are estimated, and milestoning equations are constructed and solved. An optimal Markovian model is constructed that reproduces exactly the equilibrium and mean first passage time (MFPT) of the non-Markovian model. The equilibrium solution of both models is favorably compared to distributions obtained from straightforward molecular dynamics simulations. The picture for the kinetics is complex. Multiple local relaxation times of the mass density are illustrated emphasizing the non-Markovian characteristics of the process. In Markovian modeling, only a single relaxation time is assumed for a state. Mapping of particle dynamics to the dynamics of a field density offers a new way of coarse graining complex systems as membranes that may bridge between atomically detailed models and phenomenological descriptions of macroscopic membranes. PMID:27016332
Geometric quantum discord and non-Markovianity of structured reservoirs
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Lian, Han-Li
2015-11-01
The reservoir memory effects can lead to information backflow and recurrence of the previously lost quantum correlations. We establish connections between the direction of information flow and variation of the geometric quantum discords (GQDs) measured respectively by the trace distance, the Hellinger distance, and the Bures distance for two qubits subjecting to the bosonic structured reservoirs, and unveil their dependence on a factor whose derivative signifies the (non-)Markovianity of the dynamics. By considering the reservoirs with Lorentzian and Ohmic-like spectra, we further demonstrated that the non-Markovianity induced by the backflow of information from the reservoirs to the system enhances the GQDs in most of the parameter regions. This highlights the potential of non-Markovianity as a resource for protecting the GQDs.
Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution
NASA Astrophysics Data System (ADS)
Triana, Johan F.; Estrada, Andrés F.; Pachón, Leonardo A.
2016-05-01
A sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them is developed. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at a much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as close as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined.
Human and machine learning in non-Markovian decision making.
Clarke, Aaron Michael; Friedrich, Johannes; Tartaglia, Elisa M; Marchesotti, Silvia; Senn, Walter; Herzog, Michael H
2015-01-01
Humans can learn under a wide variety of feedback conditions. Reinforcement learning (RL), where a series of rewarded decisions must be made, is a particularly important type of learning. Computational and behavioral studies of RL have focused mainly on Markovian decision processes, where the next state depends on only the current state and action. Little is known about non-Markovian decision making, where the next state depends on more than the current state and action. Learning is non-Markovian, for example, when there is no unique mapping between actions and feedback. We have produced a model based on spiking neurons that can handle these non-Markovian conditions by performing policy gradient descent [1]. Here, we examine the model's performance and compare it with human learning and a Bayes optimal reference, which provides an upper-bound on performance. We find that in all cases, our population of spiking neurons model well-describes human performance. PMID:25898139
Collision model for non-Markovian quantum dynamics
NASA Astrophysics Data System (ADS)
Kretschmer, Silvan; Luoma, Kimmo; Strunz, Walter T.
2016-07-01
We study the applicability of collisional models for non-Markovian dynamics of open quantum systems. By allowing interactions between the separate environmental degrees of freedom in between collisions we are able to construct a collision model that allows us to study quantum memory effects in open system dynamics. We also discuss the possibility to embed non-Markovian collision model dynamics into Markovian collision model dynamics in an extended state space. As a concrete example we show how, using the proposed class of collision models, we can discretely model non-Markovian amplitude damping of a qubit. In the time-continuous limit, we obtain the well-known results for spontaneous decay of a two-level system into a structured zero-temperature reservoir.
Dynamical decoupling efficiency versus quantum non-Markovianity
NASA Astrophysics Data System (ADS)
Addis, Carole; Ciccarello, Francesco; Cascio, Michele; Massimo Palma, G.; Maniscalco, Sabrina
2015-12-01
We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling (DD) protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrized by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the DD scheme, leading to a worse coherence preservation. We show that each DD pulse reverses the flow of quantum information and, on this basis, we investigate the connection between DD efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.
Human and Machine Learning in Non-Markovian Decision Making
Clarke, Aaron Michael; Friedrich, Johannes; Tartaglia, Elisa M.; Marchesotti, Silvia; Senn, Walter; Herzog, Michael H.
2015-01-01
Humans can learn under a wide variety of feedback conditions. Reinforcement learning (RL), where a series of rewarded decisions must be made, is a particularly important type of learning. Computational and behavioral studies of RL have focused mainly on Markovian decision processes, where the next state depends on only the current state and action. Little is known about non-Markovian decision making, where the next state depends on more than the current state and action. Learning is non-Markovian, for example, when there is no unique mapping between actions and feedback. We have produced a model based on spiking neurons that can handle these non-Markovian conditions by performing policy gradient descent [1]. Here, we examine the model’s performance and compare it with human learning and a Bayes optimal reference, which provides an upper-bound on performance. We find that in all cases, our population of spiking neurons model well-describes human performance. PMID:25898139
Decoherence of Josephson charge qubit in non-Markovian environment
NASA Astrophysics Data System (ADS)
Qiu, Qing-Qian; Zhou, Xing-Fei; Liang, Xian-Ting
2016-05-01
In this paper we investigate the decoherence of Josephson charge qubit (JCQ) by using a time-nonlocal (TNL) dynamical method. Three kinds of environmental models, described with Ohmic, super-Ohmic, and sub-Ohmic spectral density functions are considered. It is shown that the TNL method can effectively include the non-Markovian effects in the dynamical solutions. In particular, it is shown that the sub-Ohmic environment has longer correlation time than the Ohmic and super-Ohmic ones. And the Markovian and non-Markovian dynamics are obviously different for the qubit in sub-Ohmic environment.
Non-Markovian effect on the quantum discord
Wang Bo; Xu Zhenyu; Chen Zeqian; Feng Mang
2010-01-15
We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. This implies that the quantum discord is more useful than the entanglement to describe the quantum correlation involved in quantum systems.
Data-based Non-Markovian Model Inference
NASA Astrophysics Data System (ADS)
Ghil, Michael
2015-04-01
This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close
Non-Markovian character in human mobility: Online and offline.
Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang
2015-06-01
The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations. PMID:26117100
Non-Markovian character in human mobility: Online and offline
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang
2015-06-01
The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.
Measures of non-Markovianity: Divisibility versus backflow of information
Chruscinski, Dariusz; Kossakowski, Andrzej
2011-05-15
We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.
Mean first-passage times in confined media: from Markovian to non-Markovian processes
NASA Astrophysics Data System (ADS)
Bénichou, O.; Guérin, T.; Voituriez, R.
2015-04-01
We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source-target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this non- Markovian problem.
Ritschel, Gerhard; Möbius, Sebastian; Eisfeld, Alexander; Suess, Daniel; Strunz, Walter T.
2015-01-21
Non-Markovian Quantum State Diffusion (NMQSD) has turned out to be an efficient method to calculate excitonic properties of aggregates composed of organic chromophores, taking into account the coupling of electronic transitions to vibrational modes of the chromophores. NMQSD is an open quantum system approach that incorporates environmental degrees of freedom (the vibrations in our case) in a stochastic way. We show in this paper that for linear optical spectra (absorption, circular dichroism), no stochastics is needed, even for finite temperatures. Thus, the spectra can be obtained by propagating a single trajectory. To this end, we map a finite temperature environment to the zero temperature case using the so-called thermofield method. The resulting equations can then be solved efficiently by standard integrators.
Programmable entanglement oscillations in a non-Markovian channel
Cialdi, Simone; Brivio, Davide; Tesio, Enrico; Paris, Matteo G. A.
2011-04-15
We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations of a pair of polarization qubits in an effective non-Markovian channel. We generate entangled photon pairs by spontaneous parametric down-conversion (SPDC), and then insert a programmable spatial light modulator in order to impose a polarization-dependent phase shift on the spatial domain of the SPDC output. This creates an effective programmable non-Markovian environment where modulation of the environment spectrum is obtained by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement are achieved, where the entangled state obtained at the maximum of the revival after sudden death violates Bell's inequality by 17 standard deviations.
Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution.
Triana, Johan F; Estrada, Andrés F; Pachón, Leonardo A
2016-05-01
A sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them is developed. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at a much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as close as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined. PMID:27203322
Generalized trace-distance measure connecting quantum and classical non-Markovianity
NASA Astrophysics Data System (ADS)
Wißmann, Steffen; Breuer, Heinz-Peter; Vacchini, Bassano
2015-10-01
We establish a direct connection of quantum Markovianity of an open system to its classical counterpart by generalizing the criterion based on the information flow. Here the flow is characterized by the time evolution of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum dynamical map. It turns out that the introduced criterion is equivalent to P divisibility of a quantum process, namely, divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic processes. Moreover, it is shown that mathematical representations similar to those found for the original trace-distance-based measure hold true for the associated generalized measure for quantum non-Markovianity. That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local and universal representation of the measure. We illustrate some properties of the generalized criterion by means of examples.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.
Non-Markovian effects on quantum-communication protocols
Yeo, Ye; Oh, C. H.; An, Jun-Hong
2010-09-15
We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.
Non-Markovian quantum Brownian motion of a harmonic oscillator
Tang, J.
1994-02-01
We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.
Non-Markovian Effects in Turbulent Diffusion in Magnetized Plasmas
Zagorodny, Anatoly; Weiland, Jan
2009-10-08
The derivation of the kinetic equations for inhomogeneous plasma in an external magnetic field is presented. The Fokker-Planck-type equations with the non-Markovian kinetic coefficients are proposed. In the time-local limit (small correlation times with respect to the distribution function relaxation time) the relations obtained recover the results known from the appropriate quasilinear theory and the Dupree-Weinstock theory of plasma turbulence. The equations proposed are used to describe zonal flow generation and to estimate the diffusion coefficient for saturated turbulence.
Information flow, non-Markovianity, and geometric phases
Wu, S. L.; Wang, L. C.; Yi, X. X.; Huang, X. L.
2010-11-15
Geometric phases and information flows of a two-level system coupled to its environment are calculated and analyzed. The information flow is defined as a cumulant of changes in trace distance between two quantum states, which is similar to the measure for non-Markovianity given by Breuer. We obtain an analytic relation between the geometric phase and the information flow for pure initial states, and a numerical result for mixed initial states. The geometric phase behaves differently depending on whether there are information flows back to the two-level system from its environment.
Non-Markovian dynamics in ultracold Rydberg aggregates
NASA Astrophysics Data System (ADS)
Genkin, M.; Schönleber, D. W.; Wüster, S.; Eisfeld, A.
2016-07-01
We propose a setup of an open quantum system in which the environment can be tuned such that either Markovian or non-Markovian system dynamics can be achieved. The implementation uses ultracold Rydberg atoms, relying on their strong long-range interactions. Our suggestion extends the features available for quantum simulators of molecular systems employing Rydberg aggregates and presents a new test bench for fundamental studies of the classification of system–environment interactions and the resulting system dynamics in open quantum systems.
Quantum Non-Markovian Langevin Equations and Transport Coefficients
Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.
2005-12-01
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed.
Exact and approximate moment closures for non-Markovian network epidemics.
Pellis, Lorenzo; House, Thomas; Keeling, Matt J
2015-10-01
Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and furthermore the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly used moment closures, in particular a new one based on the concept of maximum entropy, for approximating the spread of epidemics on networks by reconstructing the probability distributions over triplets based on those over pairs. We consider various models (SI, SIR, SEIR and Reed-Frost-type) under Markovian and non-Markovian assumption characterising the latent and infectious periods. We initially study with care two special networks, namely the open triplet and closed triangle, for which we can obtain analytical results. We then explore numerically the exactness of moment closures for a wide range of larger motifs, thus gaining understanding of the factors that introduce errors in the approximations, in particular the presence of a random duration of the infectious period and the presence of overlapping triangles in a network. We also derive a simpler and more intuitive proof than previously available concerning the known result that pair-based moment closure is exact for the Markovian SIR model on tree-like networks under pure initial conditions. We also extend such a result to all infectious models, Markovian and non-Markovian, in which susceptibles escape infection independently from each infected neighbour and for which infectives cannot regain susceptible status, provided the network is tree-like and initial conditions are pure. This works represent a valuable step in enriching intuition and deepening understanding of the assumptions behind moment closure approximations and for putting them on a more rigorous mathematical footing. PMID:25975999
Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation
Bolivar, A.O.
2011-05-15
Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.
Efficient simulation of non-Markovian system-environment interaction
NASA Astrophysics Data System (ADS)
Rosenbach, Robert; Cerrillo, Javier; Huelga, Susana F.; Cao, Jianshu; Plenio, Martin B.
2016-02-01
In this work, we combine an established method for open quantum systems—the time evolving density matrix using orthogonal polynomials algorithm—with the transfer tensors formalism, a new tool for the analysis, compression and propagation of non-Markovian processes. A compact propagator is generated out of sample trajectories covering the correlation time of the bath. This enables the investigation of previously inaccessible long-time dynamics with linear effort, such as those ensuing from low temperature regimes with arbitrary, possibly highly structured, spectral densities. We briefly introduce both methods, followed by a benchmark to prove viability and combination synergies. Subsequently we illustrate the capabilities of this approach at the hand of specific examples and conclude our analysis by highlighting possible further applications of our method.
Fermionic-mode entanglement in non-Markovian environment
Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling
2015-03-15
We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman–Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.
Entanglement oscillations in non-Markovian quantum channels
Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.
2007-06-15
We study the non-Markovian dynamics of a two-mode bosonic system interacting with two uncorrelated thermal bosonic reservoirs. We present the solution to the exact microscopic Master equation in terms of the quantum characteristic function and study in detail the dynamics of entanglement for bipartite Gaussian states. In particular, we analyze the effects of short-time system-reservoir correlations on the separability thresholds and show that the relevant parameter is the reservoir spectral density. If the frequencies of the involved modes are within the reservoir spectral density, entanglement persists for a longer time than in a Markovian channel. On the other hand, when the reservoir spectrum is out of resonance, short-time correlations lead to a faster decoherence and to the appearance of entanglement oscillations.
Nonclassical correlations in non-Markovian continuous-variable systems
Vasile, Ruggero; Maniscalco, Sabrina; Giorda, Paolo; Olivares, Stefano; Paris, Matteo G. A.
2010-07-15
We consider two identical and noninteracting harmonic oscillators coupled to either two independent bosonic baths or to a common bosonic bath. Under the only assumption, weak coupling, we analyze in detail the non-Markovian short-time-scale evolution of intensity correlations, entanglement, and quantum discord for initial two-mode squeezed-thermal vacuum states. In the independent reservoirs case, we observe the detrimental effect of the environment for all these quantities and we establish a hierarchy for their robustness against the environmental noise. In the common reservoir case, for initial uncorrelated states, we find that only quantum discord can be created via interaction with the bath, while entanglement and subshot noise intensity correlations remain absent.
Observation of non-Markovian micromechanical Brownian motion
Gröblacher, S.; Trubarov, A.; Prigge, N.; Cole, G. D.; Aspelmeyer, M.; Eisert, J.
2015-01-01
All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the emergence of classical properties in quantum physics. The precise decoherence mechanisms, however, are often unknown for a given system. In this work, we make use of an opto-mechanical resonator to obtain key information about spectral densities of its condensed-matter heat bath. In sharp contrast to what is commonly assumed in high-temperature quantum Brownian motion describing the dynamics of the mechanical degree of freedom, based on a statistical analysis of the emitted light, it is shown that this spectral density is highly non-Ohmic, reflected by non-Markovian dynamics, which we quantify. We conclude by elaborating on further applications of opto-mechanical systems in open system identification. PMID:26216619
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Korabel, Nickolay
2015-12-01
We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
NASA Astrophysics Data System (ADS)
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-07-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.
Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment.
Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping
2016-01-01
We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674
Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment
Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping
2016-01-01
We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674
NASA Astrophysics Data System (ADS)
Ding, Zhi-Yong; He, Juan; Ye, Liu
2016-08-01
In this paper, the dynamics of tripartite entanglement via π -tangle in independent non-Markovian environments is investigated. The results indicate that the π -tangle vanishes periodically as decoherence time increases with a damping of its revival amplitude due to the memory of the non-Markovian environments. In addition, we present a scheme to protect entanglement of W state from non-Markovian environments by means of the quantum partially collapsing measurements. It is worth mentioning that our scheme is a successful protection for the tripartite quantum system and the effect is better for the larger measurement strength, while the stronger decoherence suppression induces smaller success probability.
NASA Astrophysics Data System (ADS)
Mogilevtsev, D.; Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.
2015-12-01
A theoretical investigation on slow light propagation based on electromagnetically induced transparency in a three-level quantum-dot system is performed including non-Markovian effects and correlated dephasing reservoirs. It is demonstrated that the non-Markovian nature of the process is quite essential even for conventional dephasing typical of quantum dots leading to significant enhancement or inhibition of the group velocity slow-down factor as well as to the shifting and distortion of the transmission window. Furthermore, the correlation between dephasing reservoirs may also either enhance or inhibit non-Markovian effects.
Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment
NASA Astrophysics Data System (ADS)
Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping
2016-04-01
We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment.
Non-Markovian dynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Fleming, Chris H.
An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature
Dissipative particle dynamics incorporating non-Markovian effect
NASA Astrophysics Data System (ADS)
Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu
2015-11-01
The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.
Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
NASA Astrophysics Data System (ADS)
Zi-Long, Fan; Yu-Kun, Ren; Hao-Sheng, Zeng
2016-01-01
We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.
Continuous-variable quantum key distribution in non-Markovian channels
Vasile, Ruggero; Olivares, Stefano; Paris, MatteoG. A.; Maniscalco, Sabrina
2011-04-15
We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1{yields}2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD.
Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models
NASA Astrophysics Data System (ADS)
Addis, Carole; Bylicka, Bogna; Chruściński, Dariusz; Maniscalco, Sabrina
2014-11-01
In this paper we present a detailed critical study of several recently proposed non-Markovianity measures. We analyze their properties for single-qubit and two-qubit systems in both pure-dephasing and dissipative scenarios. More specifically we investigate and compare their computability, their physical meaning, their Markovian to non-Markovian crossover, and their additivity properties with respect to the number of qubits. The bottom-up approach that we pursue is aimed at identifying similarities and differences in the behavior of non-Markovianity indicators in several paradigmatic open system models. This, in turn, allows us to infer the leading traits of the variegated phenomenon known as non-Markovian dynamics.
Analysis of Non-Markovian Beam Flattening in the Auroral Ionosphere.
NASA Astrophysics Data System (ADS)
Spector, M.; Newman, D. L.; Goldman, M. V.
1997-11-01
Recent examination(K. Y. Sanbonmatsu, I. Doxas, M. V. Goldman, and D. L. Newman, GRL 24), 807-810 (1997) of beam-excited Langmuir turbulence in the auroral ionosphere has revealed that high-intensity events at 1700 km altitude cannot be described by standard quasilinear velocity-diffusion saturation models. A non-Markovian form of quasilinear diffusion may still be valid provided wave phases remain random and wave-wave interactions are small. Non-Markovian time-history effects come into play when the wave autocorrelation time is longer than the diffusion time. A complete analytic solution for non-Markovian velocity-space diffusion has been found for a velocity-independent diffusion coefficient. More generally, the non-Markovian diffusion coefficient will depend self-consistently on velocity through the Langmuir wave spectrum. Qualitative arguments are presented to describe the evolution of the turbulence in this more general case.
Long-time behavior of a non-Markovian Brownian oscillator
NASA Astrophysics Data System (ADS)
Stewart, Glen R.
1982-10-01
A study is made of the relaxation process of a Brownian harmonic oscillator based upon the generalized Langevin equation (GLE). A non-Markovian damping term appears in the GLE in order to satisfy a fluctuation-dissipation relation when the stochastic force is not delta-correlated. If the force auto-correlation function is assumed to be approximated by a decaying exponential, then an equivalent Markovian Fokker-Planck equation may be written down in terms of an extended variable set. The extra variable is eliminated by a projection operator technique to obtain a modified Fokker-Planck equation with correction terms in successive powers of the correlation time that are different from those found by van Kampen and by San Miguel and Sancho. In the limit of small damping rate, an energy transport equation is derived which indicates a systematic increase in relaxation time as the force auto-correlation time increases from zero up to about one-third of the oscillation period. The expansion breaks down for longer correlation times.
Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations
NASA Astrophysics Data System (ADS)
Pellegrini, Clément
2014-02-01
A new type of quantum random walks, called Open Quantum Random Walks, has been developed and studied in Attal et al. (Open quantum random walks, preprint) and (Central limit theorems for open quantum random walks, preprint). In this article we present a natural continuous time extension of these Open Quantum Random Walks. This continuous time version is obtained by taking a continuous time limit of the discrete time Open Quantum Random Walks. This approximation procedure is based on some adaptation of Repeated Quantum Interactions Theory (Attal and Pautrat in Annales Henri Poincaré Physique Théorique 7:59-104, 2006) coupled with the use of correlated projectors (Breuer in Phys Rev A 75:022103, 2007). The limit evolutions obtained this way give rise to a particular type of quantum master equations. These equations appeared originally in the non-Markovian generalization of the Lindblad theory (Breuer in Phys Rev A 75:022103, 2007). We also investigate the continuous time limits of the quantum trajectories associated with Open Quantum Random Walks. We show that the limit evolutions in this context are described by jump stochastic differential equations. Finally we present a physical example which can be described in terms of Open Quantum Random Walks and their associated continuous time limits.
Gaussian interferometric power as a measure of continuous-variable non-Markovianity
NASA Astrophysics Data System (ADS)
Souza, Leonardo A. M.; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Liuzzo-Scorpo, Pietro; Adesso, Gerardo
2015-11-01
We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown. We observe that the monotonicity of the Gaussian interferometric power under the action of local Gaussian quantum channels on the ancillary arm of the bipartite probes is a natural indicator of Markovian dynamics; consequently, its breakdown for specific maps can be used to construct a witness and an effective quantifier of non-Markovianity. In our work, we consider two paradigmatic Gaussian models, the damping master equation and the quantum Brownian motion, and identify analytically and numerically the parameter regimes that give rise to non-Markovian dynamics. We then quantify the degree of non-Markovianity of the channels in terms of Gaussian interferometric power, showing, in particular, that even nonentangled probes can be useful to witness non-Markovianity. This establishes an interesting link between the dynamics of bipartite continuous-variable open systems and their potential for optical interferometry. The results are an important supplement to the recent research on characterization of non-Markovianity in continuous-variable systems.
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation
Sun, Zhe; Liu, Jing; Ma, Jian; Wang, Xiaoguang
2015-01-01
We derive an easily computable quantum speed limit (QSL) time bound for open systems whose initial states can be chosen as either pure or mixed states. Moreover, this QSL time is applicable to either Markovian or non-Markovian dynamics. By using of a hierarchy equation method, we numerically study the QSL time bound in a qubit system interacting with a single broadened cavity mode without rotating-wave, Born and Markovian approximation. By comparing with rotating-wave approximation (RWA) results, we show that the counter-rotating terms are helpful to increase evolution speed. The problem of non-Markovianity is also considered. We find that for non-RWA cases, increasing system-bath coupling can not always enhance the non-Markovianity, which is qualitatively different from the results with RWA. When considering the relation between QSL and non-Markovianity, we find that for small broadening widths of the cavity mode, non-Markovianity can increase the evolution speed in either RWA or non-RWA cases, while, for larger broadening widths, it is not true for non-RWA cases. PMID:25676589
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
NASA Astrophysics Data System (ADS)
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Optical signatures of non-Markovian behavior in open quantum systems
NASA Astrophysics Data System (ADS)
McCutcheon, Dara P. S.
2016-02-01
We derive an extension to the quantum regression theorem which facilitates the calculation of two-time correlation functions and emission spectra for systems undergoing non-Markovian evolution. The derivation exploits projection operator techniques, with which we obtain explicit equations of motion for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature of the dynamics has observable signatures in the form of phonon sidebands in the resonance fluorescence emission spectrum. Furthermore, we use recently developed non-Markovianity measures to demonstrate an associated flow of information from the phonon bath back into the quantum dot exciton system.
Optimal control-based states transfer for non-Markovian quantum system
NASA Astrophysics Data System (ADS)
Ying-Hua, Ji; Ju-ju, Hu; Jian-Hua, Huang; Qiang, Ke
2016-07-01
Utilizing the method of optimal control, we investigate the tactics of state transfer in the non-Markovian quantum system with phase relaxation and energy dissipative relaxation. The influence of Ohmic reservoir with Lorentz-Drude regularization is numerically studied. Owing to the decoherence and memory effects of non-Markovian channel, the purity of quantum state attenuates damply in the free evolution. The numerical simulations indicate that arbitrary state transfer for non-Markovian system can be realized under the optimal control function by a proper external control field with a success rate of more than 98 percent. When the right control field and function is implemented, not only the decoherence is compensated completely but also the purity of quantum states are maintained in the process of state transfer.
Quantum non-Markovianity based on the Fisher-information matrix
NASA Astrophysics Data System (ADS)
Song, Hongting; Luo, Shunlong; Hong, Yan
2015-04-01
With the development of quantum-information theory, there has been a flurry of investigations of quantum non-Markovian dynamics, and several significant measures for such dynamics have been proposed from various perspectives, such as the breakdown of dynamical divisibility, increase in the distinguishability between quantum states, increase in correlations between the system and an arbitrary ancillary, and so on. Motivated by the idea of exploiting the information content of parameters encoded in initial states, we propose a conceptually simple and physically intuitive characterization for non-Markovianity with the help of a quantum-Fisher-information matrix. The basic features are illustrated through several examples, and relations with other approaches are elucidated. A hierarchial aspect of quantum non-Markovianity is revealed.
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-08-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.
Non-markovian mesoscopic dissipative dynamics of open quantum spin chains
NASA Astrophysics Data System (ADS)
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2016-01-01
We study the dissipative dynamics of N quantum spins with Lindblad generator consisting of operators scaling as fluctuations, namely with the inverse square-root of N. In the large N limit, the microscopic dissipative time-evolution converges to a non-Markovian unitary dynamics on strictly local operators, while at the mesoscopic level of fluctuations it gives rise to a dissipative non-Markovian dynamics. The mesoscopic time-evolution is Gaussian and exhibits either a stable or an unstable asymptotic character; furthermore, the mesoscopic dynamics builds correlations among fluctuations that survive in time even when the original microscopic dynamics is unable to correlate local observables.
Non-Markovian theory for the waiting time distributions of single electron transfers.
Welack, Sven; Yan, YiJing
2009-09-21
We derive a non-Markovian theory for waiting time distributions of consecutive single electron transfer events. The presented microscopic Pauli rate equation formalism couples the open electrodes to the many-body system, allowing to take finite bias and temperature into consideration. Numerical results reveal transient oscillations of distinct system frequencies due to memory in the waiting time distributions. Memory effects can be approximated by an expansion in non-Markovian corrections. This method is employed to calculate memory landscapes displaying preservation of memory over multiple consecutive electron transfers. PMID:19778104
Non-Markovian evolution of photonic quantum states in atmospheric turbulence
NASA Astrophysics Data System (ADS)
Roux, Filippus S.
2016-05-01
The evolution of the spatial degrees of freedom of a photon propagating through atmospheric turbulence is treated as a non-Markovian process. Here, we derive and solve the evolution equation for this process. The turbulent medium is modeled by a sequence of multiple phase screens for general turbulence conditions. The non-Markovian perspective leads to a second-order differential equation with respect to the propagation distance. The solution for this differential equation is obtained with the aid of a perturbative analysis, assuming the turbulence is relatively weak. We also provide another solution for more general turbulence strengths, but where we introduce a simplification to the differential equation.
Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients
Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Scheid, W.
2005-01-01
Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are presented for the case of general and linear couplings in the coordinate and momentum between the collective harmonic oscillator and heat bath. The long-time tails of correlation functions are investigated in the low- and high-temperature regimes of dissipation for different couplings. The Onsager's regression hypothesis is discussed for the non-Markovian dynamics. The Lindblad theory is justified on the basis of the microscopical model.
Fisher information due to a phase noisy laser under non-Markovian environment
Abdel-Khalek, S.
2014-12-15
More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behavior and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.
Non-Markovian Effects in the Lindblad Master Equation Approach to Electronic Transport
NASA Astrophysics Data System (ADS)
Ribeiro, P.; Vieira, V. R.
Non-equilibrium processes in open quantum systems can be generically described within the framework of the Lindblad master equation i.e. without a memory kernel. This statement holds even for processes where information can flow-back from the environment to the system. This rather contra-intuitive fact lead to define a process as non Markovian if, during the time evolution of two different initial states of the system, their distinguishability increases, reflecting a back-flow of information from the environment to the system. However, for non Markovian dynamics, the set of conditions to ensure the positivity of the density matrix for all times is not known, making difficult the explicit construction of non Markovian Lindblad operators. Using the Keldysh non equilibrium Green's functions, we explicitly solve a generic quadratic model of electrons coupled at t = 0 to a set of wide-band baths characterized by temperature and chemical potential. We identify the equivalent Lindblad operators describing the evolution of the density matrix and show that the resulting dynamical process is generically non Markovian. We further discuss the cases in which Markovian dynamics is recovered. We apply our approach to a simple model for electronic transport thought a one dimensional wire coupled at t = 0 to wide-band metallic leads, and to a XY spin chain attached to two contacts.
Non-Markovian dynamics of an open quantum system with nonstationary coupling
Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.
2011-04-15
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.
Experimental observation of transition between strong and weak non-Markovianity
NASA Astrophysics Data System (ADS)
Bernardes, Nadja K.; Cuevas, Alvaro; Orieux, Adeline; Monken, Carlos H.; Mataloni, Paolo; Sciarrino, Fabio; Santos, Marcelo F.
2015-05-01
We experimentally observed in an optical setup and using full tomography process the so-called weak non-Markovian dynamics of a qubit [1]. This was done implementing the collisional model proposed in [2] to investigate the non- Markovian dynamics of an open quantum system interacting with a carefully controlled environment state. We also observed the transition from weak to strong (essentially) non-Markovianity. In our all-optical setup, a single photon system, initially entangled in polarization with an ancilla, is made to interact with a sequence of liquid crystal retarders driven by proper electric pulses, which simulates the environment. Depending on how the voltage is applied on each liquid crystal, it will work as a half-wave plate with different orientations. Then, by changing properly the parameters of the qubit-environment interactions, the system dynamics can suffer a transition from weak to strong non-Markovianity. In the strong regime, the full reconstruction of the entangled state was made by single entanglement witness between system and ancilla, showing a backflow of information, while, in the weak regime, given the contractive unital map feature, we can only measure the dynamics by a full process tomography analysis, searching for the violation of the divisibility completely positive map criterion, what was done successfully.
Non-Markovian dynamics of an open quantum system with nonstationary coupling.
Kalandarov, S A; Kanokov, Z; Adamian, G G; Antonenko, N V; Scheid, W
2011-04-01
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency. PMID:21599112
Data-driven non-Markovian closure models
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael
2015-03-01
This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter
Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao
2015-01-01
Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230
Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps
Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.; Breuer, Heinz-Peter; Piilo, Jyrki
2011-11-15
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.
A measure of non-Markovianity for unital quantum dynamical maps
NASA Astrophysics Data System (ADS)
Haseli, S.; Salimi, S.; Khorashad, A. S.
2015-09-01
One of the most important topics in the study of the dynamics of open quantum systems is the information exchange between system and environment. Based on the features of back-flow information from an environment to a system, an approach is provided to detect non-Markovianity for unital dynamical maps. The method takes advantage of non-contraction property of the von Neumann entropy under completely positive and trace-preserving unital maps. Accordingly, for the dynamics of a single qubit as an open quantum system, the sign of the time derivative of the density matrix eigenvalues of the system determines the non-Markovianity of unital quantum dynamical maps. The main characteristics of the measure are to make the corresponding calculations and optimization procedure simpler.
Dynamical invariants in a non-Markovian quantum-state-diffusion equation
NASA Astrophysics Data System (ADS)
Luo, Da-Wei; Pyshkin, P. V.; Lam, Chi-Hang; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao
2015-12-01
We find dynamical invariants for open quantum systems described by the non-Markovian quantum-state-diffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical to the system density operator, these dynamical invariants no longer share the equation of motion for the density operator. Moreover, the invariants obtained with a biorthonormal basis can be used to render an exact solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or numerical simulations. Significantly we show that we can apply these dynamical invariants to reverse engineering a Hamiltonian that is capable of driving the system to the target state, providing a different way to design control strategy for open quantum systems.
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
Non-Markovian Complexity in the Quantum-to-Classical Transition
NASA Astrophysics Data System (ADS)
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-08-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.
NASA Astrophysics Data System (ADS)
Zou, Chang-Ling; Chen, Xiang-Dong; Xiong, Xiao; Sun, Fang-Wen; Zou, Xu-Bo; Han, Zheng-Fu; Guo, Guang-Can
2013-12-01
The system-environment interaction is simulated by light propagating in coupled photonic waveguides. The profile of the electromagnetic field provides intuitive physical insight to study the Markovian and non-Markovian dynamics. The transition from non-Markovian to Markovian process is demonstrated by increasing the size of the environment, as the energy evolution changes from oscillation to exponential decay and the revival period increases. Moreover, the dynamical decoupling with a sequence of phase modulations is introduced to such a photonic system to form a band structure in the time dimension, where the energy dissipation can be significantly accelerated or inhibited. It opens the possibility to tune the dissipation in a photonic system, similar to the dynamic decoupling of spins.
Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments
Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao
2015-01-01
Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230
Non-Markovian master equation for a damped oscillator with time-varying parameters
Chang, K. W.; Law, C. K.
2010-05-15
We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D 45, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by {pi} pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed.
Entanglement Protection for Two-Qubit in a Non-Markovian Common Bath
NASA Astrophysics Data System (ADS)
Mu, Qingxia; Zhao, Xinyu
2016-06-01
In this paper, we propose a scheme to protect quantum entanglement and coherence from a non-Markovian noisy environment. By applying two quantum weak measurements before and after sending the quantum state into the noisy channel, the quantum state can be "pushed" closer to a decoherence free state thus suffer less decoherence in the time evolution. After the time evolution the second weak measurement can partially retrieve the original information encoded in the quantum system. Our study is based on a non-Markovian dynamic equation which allows us to investigate the impact of the memory effect on the performance of the protection scheme. We analyze several factors that may affect the protection efficiency. The results suggest that two measurement strengths should be chosen in a linear relation but the ratio is not one. Besides, we also show the memory effect can drastically improve the protection efficiency.
Modulation of Entanglement for Coupled Superconducting Qubits Under Non-Markovian Environment
NASA Astrophysics Data System (ADS)
Ji, Y. H.; Hu, J. J.; Wang, Z. S.
2010-08-01
The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.
Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics
Ubbelohde, N.; Maire, N.; Haug, R. J.; Roszak, K.; Hohls, F.; Novotný, T.
2013-12-04
For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.
Non-Markovian disentanglement dynamics of a two-qubit system
Cao Xiufeng; Zheng Hang
2008-02-15
We investigate the disentanglement dynamics of a two-qubit system in the non-Markovian approach. It is shown that only for weak coupling between the system and environment does an exponential decay of entanglement appear, for certain classes of two-qubit entangled states. When the coupling between qubit and the environment becomes stronger, entanglement sudden death always appears even if the dissipation environment is at zero temperature.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field
Stefanescu, Eliade Scheid, Werner; Sandulescu, Aurel
2008-05-15
For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics
Berrada, K.
2014-01-15
Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2012-08-15
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.
Non-Markovian Dynamics and Self-Diffusion in Strongly Coupled Plasmas
NASA Astrophysics Data System (ADS)
Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Daligault, Jerome; Maksimovich, Nikola; Killian, Thomas
2015-11-01
In weakly coupled plasmas, collisions are dominated by long range, small angle scattering, and each collision is an uncorrelated binary event. In contrast, collisions in strongly coupled plasmas (coupling parameter Γ > 1) are dominated by short range, large angle scattering in which the collisions may be correlated and non-independent in time, i.e., non-Markovian. In this work, we present experimental results indicative of non-Markovian processes in a strongly coupled ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. We use optical pumping to create spin ``tagged'' subpopulations of ions having non-zero average velocity < v > , and use laser induced fluorescence (LIF) imaging to measure the relaxation of < v (t) > back to equilibrium. We observe clear non-exponential decay in < v (t) > , which indicates non-Markovian dynamics. We further demonstrate there is a theoretical basis to consider < v (t) > as an approximation to the ion velocity autocorrelation function (VAF). We then calculate diffusion coefficients from our data, demonstrating experimental measurement of self-diffusion coefficients for 0 . 3 < Γ < 3 . 5 . This work was supported by the United States National Science Foundation and Department of Energy Partnership in Basic Plasma Science and Engineering (PHY-1102516) and the Air Force Office of Scientific Research (FA9550- 12-1-0267).
Using non-Markovian measures to evaluate quantum master equations for photosynthesis
Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco
2015-01-01
When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment. PMID:26238479
Dark-matter halo assembly bias: Environmental dependence in the non-Markovian excursion-set theory
Zhang, Jun; Ma, Chung-Pei; Riotto, Antonio
2014-02-10
In the standard excursion-set model for the growth of structure, the statistical properties of halos are governed by the halo mass and are independent of the larger-scale environment in which the halos reside. Numerical simulations, however, have found the spatial distributions of halos to depend not only on their mass but also on the details of their assembly history and environment. Here we present a theoretical framework for incorporating this 'assembly bias' into the excursion-set model. Our derivations are based on modifications of the path-integral approach of Maggiore and Riotto that models halo formation as a non-Markovian random-walk process. The perturbed density field is assumed to evolve stochastically with the smoothing scale and exhibits correlated walks in the presence of a density barrier. We write down conditional probabilities for multiple barrier crossings and derive from them analytic expressions for descendant and progenitor halo mass functions and halo merger rates as a function of both halo mass and the linear overdensity δ {sub e} of the larger-scale environment of the halo. Our results predict a higher halo merger rate and higher progenitor halo mass function in regions of higher overdensity, consistent with the behavior seen in N-body simulations.
Non-Markovian qubit dynamics in a thermal field bath: Relaxation, decoherence, and entanglement
Shresta, S.; Anastopoulos, C.; Dragulescu, A.; Hu, B.L.
2005-02-01
We study the non-Markovian dynamics of a qubit made up of a two-level atom interacting with an electromagnetic field (EMF) initially at finite temperature. Unlike most earlier studies where the bath is assumed to be fixed, we study the complete evolution of the combined qubit-EMF system, thus allowing for the coherent backaction from the bath on the qubit and the qubit on the bath in a self-consistent manner. In this way we can see the development of quantum correlations and entanglement between the system and its environment, and how that affects the decoherence and relaxation of the system. We find nonexponential decay for both the diagonal and nondiagonal matrix elements of the qubit's reduced density matrix in the pointer basis. The former shows the qubit relaxing to thermal equilibrium with the bath, while the latter shows the decoherence rate beginning at the usually predicted thermal rate, but changing to the zero-temperature value as the qubit and bath become entangled. The decoherence and relaxation rates are comparable, as in the zero-temperature case. On the entanglement of a qubit with the EMF we calculated the fidelity and the von Neumann entropy, which is a measure of the purity of the density matrix. The present more accurate non-Markovian calculations predict lower loss of fidelity and purity as compared with the Markovian results. Generally speaking, with the inclusion of quantum correlations between the qubit and its environment, the non-Markovian processes tend to slow down the drive of the system to equilibrium, prolonging the decoherence and better preserving the fidelity and purity of the system.
Density-matrix operatorial solution of the non-Markovian master equation for quantum Brownian motion
Intravaia, F.; Maniscalco, S.; Messina, A.
2003-04-01
An original method to exactly solve the non-Markovian master equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak-coupling limit is reported. By using a superoperatorial approach, we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.
Non-Markovian behavior of small and large complex quantum systems.
Žnidarič, Marko; Pineda, Carlos; García-Mata, Ignacio
2011-08-19
The channel induced by a complex system interacting strongly with a qubit is calculated exactly under the assumption of randomness of its eigenvectors. The resulting channel is represented as an isotropic time-dependent oscillation of the Bloch ball, leading to non-Markovian behavior, even in the limit of infinite environments. Two contributions are identified: one due to the density of states and the other due to correlations in the spectrum. Prototype examples, one for chaotic and the other for regular dynamics are explored. PMID:21929150
Non-Markovianity of the Heisenberg XY spin environment with Dzyaloshinskii—Moriya interaction
NASA Astrophysics Data System (ADS)
Xiang, Jun-Dong; Qin, Li-Guo; Tian, Li-Jun
2014-11-01
Using the effective non-Markovian measure proposed by Breuer et al. recently, we study the memory effect of a central qubit system coupled to a spin chain environment with Dzyaloshinskii—Moriya interaction in a transverse field. It is discovered that the central qubit system presents different memory effects in different environment phases with the different oscillatory behaviors of the decoherence factor. Moreover, it is revealed that the Dzyaloshinskii—Moriya interaction has a prominent influence on the memory effect of a central qubit system via modifying the amplitude and period of the decoherence factor under certain conditions.
Role of environmental correlations in the non-Markovian dynamics of a spin system
Lorenzo, Salvatore; Plastina, Francesco; Paternostro, Mauro
2011-09-15
We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.
Overcoming non-Markovian dephasing in single-photon sources through postselection
NASA Astrophysics Data System (ADS)
Nazir, A.; Barrett, S. D.
2009-01-01
We study the effects of realistic dephasing environments on a pair of solid-state single-photon sources in the context of the Hong-Ou-Mandel dip. By means of solutions for the Markovian or exact non-Markovian dephasing dynamics of the sources, we show that the resulting loss of visibility depends crucially on the timing of photon detection events. Our results demonstrate that the effective visibility can be improved via temporal postselection, and also that time-resolved interference can be a useful probe of the interaction between the emitter and its host environment.
Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states
Palchikov, Yu.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.; Scheid, W.
2005-01-01
On the basis of a master equation for the reduced density matrix of open quantum systems, we study the influence of time-dependent friction and diffusion coefficients on the decay rate from a potential well and the capture probability into a potential well. Taking into account the mixed diffusion coefficient D{sub qp}, the quasistationary decay rates are compared with the analytically derived Kramers-type formulas for different temperatures and frictions. The diffusion coefficients supplying the purity of states are derived for a non-Markovian dynamics.
Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
NASA Astrophysics Data System (ADS)
Park, DaeKil
2016-05-01
We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.
Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.
Kravchuk, Kseniia; Vidybida, Alexander
2014-02-01
Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data. PMID:24245681
Self-Diffusion and Non-Markovian Dynamics in Strongly Coupled Ultracold Neutral Plasmas
NASA Astrophysics Data System (ADS)
Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Killian, Thomas
2015-05-01
Collisional processes in weakly coupled plasmas are well-described by the Landau-Spitzer formalism. Classical plasma theory breaks down, however, in strongly coupled systems because of the non-perturbative nature of particle interactions, and improving our understanding of this regime is an important fundamental challenge. We present experimental measurements of the self-diffusion constant and observation of non-Markovian equilibration for strongly coupled ions in an ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. Our diagnostic uses optical pumping to create ``spin-tagged'' subpopulations of ions having skewed velocity distributions that then relax back to equilibrium. A Green-Kubo relation is used to extract the self-diffusion constant from the equilibration curves. With improved time resolution (down to 30 ns), we have explored the early time dynamics of these skewed ion distributions within 100 ns after the optical pumping, where molecular dynamics simulations predict non-Markovian deviations from the exponential velocity damping expected for weakly coupled systems. At longer times, we observe oscillations of the average velocity during the relaxation, which indicate coupling of single-particle motion to collective modes. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), and the Air Force Office of Scientific Research (FA9550-12-1-0267).
Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
NASA Astrophysics Data System (ADS)
Park, DaeKil
2016-08-01
We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.
Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile
NASA Astrophysics Data System (ADS)
Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.
2012-09-01
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Efficient superdense coding in the presence of non-Markovian noise
NASA Astrophysics Data System (ADS)
Liu, Bi-Heng; Hu, Xiao-Min; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Karlsson, Antti; Laine, Elsi-Mari; Maniscalco, Sabrina; Macchiavello, Chiara; Piilo, Jyrki
2016-04-01
Many quantum information tasks rely on entanglement, which is used as a resource, for example, to enable efficient and secure communication. Typically, noise, accompanied by loss of entanglement, reduces the efficiency of quantum protocols. We develop and demonstrate experimentally a superdense coding scheme with noise, where the decrease of entanglement in Alice's encoding state does not reduce the efficiency of the information transmission. Having an almost fully dephased classical two-photon polarization state at the time of encoding with concurrence of 0.163+/-0.007 , we reach values of mutual information close to 1.52+/- 0.02 (1.89+/- 0.05) with 3-state (4-state) encoding. This high efficiency relies both on non-Markovian features, that Bob exploits just before his Bell state measurement, and on very high visibility (99.6{%}+/-0.1{%}) of the Hong-Ou-Mandel interference within the experimental set-up. Our proof-of-principle results with measurements on mutual information pave the way for exploiting non-Markovianity to improve the efficiency and security of quantum information processing tasks.
Non-Markovian closure kinetics of flexible polymers with hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Levernier, N.; Dolgushev, M.; Bénichou, O.; Blumen, A.; Guérin, T.; Voituriez, R.
2015-11-01
This paper presents a theoretical analysis of the closure kinetics of a polymer with hydrodynamic interactions. This analysis, which takes into account the non-Markovian dynamics of the end-to-end vector and relies on the preaveraging of the mobility tensor (Zimm dynamics), is shown to reproduce very accurately the results of numerical simulations of the complete nonlinear dynamics. It is found that Markovian treatments based on a Wilemski-Fixman approximation significantly overestimate cyclization times (up to a factor 2), showing the importance of memory effects in the dynamics. In addition, this analysis provides scaling laws of the mean first cyclization time (MFCT) with the polymer size N and capture radius b, which are identical in both Markovian and non-Markovian approaches. In particular, it is found that the scaling of the MFCT for large N is given by T ˜ N3/2ln(N/b2), which differs from the case of the Rouse dynamics where T ˜ N2. The extension to the case of the reaction kinetics of a monomer of a Zimm polymer with an external target in a confined volume is also presented.
Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting
2011-09-15
Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.
Deterministic and Stochastic Descriptions of Gene Expression Dynamics
NASA Astrophysics Data System (ADS)
Marathe, Rahul; Bierbaum, Veronika; Gomez, David; Klumpp, Stefan
2012-09-01
A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.
NASA Astrophysics Data System (ADS)
Munakata, T.; Rosinberg, M. L.
2014-05-01
Continuous feedback control of Langevin processes may be non-Markovian due to a time lag between the measurement and the control action. We show that this requires one to modify the basic relation between dissipation and time reversal and to include a contribution arising from the noncausal character of the reverse process. We then propose a new definition of the quantity measuring the irreversibility of a path in a nonequilibrium stationary state, which can also be regarded as the trajectory-dependent total entropy production. This leads to an extension of the second law, which takes a simple form in the long-time limit. As an illustration, we apply the general approach to linear systems that are both analytically tractable and experimentally relevant.
Munakata, T; Rosinberg, M L
2014-05-01
Continuous feedback control of Langevin processes may be non-Markovian due to a time lag between the measurement and the control action. We show that this requires one to modify the basic relation between dissipation and time reversal and to include a contribution arising from the noncausal character of the reverse process. We then propose a new definition of the quantity measuring the irreversibility of a path in a nonequilibrium stationary state, which can also be regarded as the trajectory-dependent total entropy production. This leads to an extension of the second law, which takes a simple form in the long-time limit. As an illustration, we apply the general approach to linear systems that are both analytically tractable and experimentally relevant. PMID:24856682
Non-Markovian electron transfer reactions with frequency-dependent friction
Tang, J.
1993-12-31
A modified non-Markovian Zusman equation for electron transfer reactions with frequency-dependent friction is presented. The derivation is based on the spin-boson model with a two-level system coupled to a non-Debye polar solvent bath with frequency-dependent friction. The diffusion constant in the Smoluchowski diffusion operator of the ordinary Zusman equation should be replaced by a convolution of a retarded time-dependent diffusion constant. An analytical expression for the electron transfer rate constant was derived using the Green`s function method. In the adiabatic regime, electron transfer process is generally nonexponential. Because of the time-retardation, initial electron transfer reaction is influenced more by the higher frequency components in the solvent relaxation.
Digital quantum simulation of many-body non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.
2016-08-01
We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.
Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics.
Singh, Navinder; Brumer, Paul
2011-01-01
A simple numerical algorithm for solving the non-Markovian master equation in the second Born approximation is developed and used to propagate the traditional dimer system that models electronic energy transfer in photosynthetic systems. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to access the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second-order approximation is useful. For example, the use of Redfield theory for lambda > 10 cm(-1) in Fenna-Mathews-Olson (FMO) type systems is shown to be fundamentally inaccurate. PMID:22452072
Comparison of different measures for quantum discord under non-Markovian noise
NASA Astrophysics Data System (ADS)
Xu, Z. Y.; Yang, W. L.; Xiao, X.; Feng, M.
2011-09-01
Two geometric measures for quantum discord were recently proposed by Modi et al (2010 Phys. Rev. Lett.104 080501) and Dakić et al (2010 Phys. Rev. Lett.105 190502). We study the similarities and differences for total quantum correlations of Bell-diagonal states using these two geometry-based quantum discord and the original quantum discord. We show that, under non-Markovian dephasing channels, quantum discord and one of the geometric measures remain constant for a finite amount of time, but not the other geometric measure. However, all the three measures share a common sudden change point. Our study on critical point of sudden transition might be useful for keeping long-time total quantum correlations under decoherence.
Rabi oscillation in a quantum cavity: Markovian and non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Guimond, Pierre-Olivier; Roulet, Alexandre; Le, Huy Nguyen; Scarani, Valerio
2016-02-01
We investigate the Rabi oscillation of an atom placed inside a quantum cavity where each mirror is formed by a chain of atoms trapped near a one-dimensional waveguide. This proposal was studied previously with the use of Markov approximation, where the delay due to the finite travel time of light between the two cavity mirrors is neglected. We show that Rabi oscillation analogous to that obtained with high-finesse classical cavities is achieved only when this travel time is much larger than the time scale that characterizes the superradiant response of the mirrors. Therefore, the delay must be taken into account and the dynamics of the problem is inherently non-Markovian. Parameters of interest such as the Rabi frequency and the cavity loss rate due to photon leakage through the mirrors are obtained.
Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics
Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Franco, Rosario Lo; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo
2015-01-01
In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of “hidden” quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks. PMID:25712406
Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier
Sargsyan, V. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.
2008-02-15
The generalized Langevin approach is suggested to describe the capture inside of the Coulomb barrier of two heavy nuclei at bombarding energies near the barrier. The equations of motion for the relative distance (collective coordinate) between two interacting nuclei are consistent with the generalized quantum fluctuation-dissipation relations. The analytical expressions are derived for the time-dependent non-Markovian microscopic transport coefficients for the stable and unstable collective modes. The calculated results show that the quantum effects in the diffusion process increase with increasing friction or/and decreasing temperature. The capture probability inside of the Coulomb barrier is enhanced by the quantum noise at low energies near the barrier. An increase of the passing probability with dissipation is found at sub-barrier energies.
NASA Astrophysics Data System (ADS)
Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin
2016-08-01
The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Progress towards an effective non-Markovian description of a system interacting with a bath
NASA Astrophysics Data System (ADS)
Ferialdi, L.; Dürr, D.
2015-04-01
We analyze a system coupled to a bath of independent harmonic oscillators. We transform the bath in chain structure by solving an inverse eigenvalue problem. We solve the equations of motion for the collective variables defined by this transformation, and we derive the exact dynamics for a harmonic oscillator in terms of the microscopic motion of the environmental modes. We compare this approach to the well-known generalized Langevin equation and we show that our dynamics satisfies this equation.
Fractional noise destroys or induces a stochastic bifurcation
Yang, Qigui; Zeng, Caibin; Wang, Cong
2013-12-15
Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework.
Fractional noise destroys or induces a stochastic bifurcation
NASA Astrophysics Data System (ADS)
Yang, Qigui; Zeng, Caibin; Wang, Cong
2013-12-01
Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework.
Fractional noise destroys or induces a stochastic bifurcation.
Yang, Qigui; Zeng, Caibin; Wang, Cong
2013-12-01
Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework. PMID:24387559
Stochastic Schroedinger equations with general complex Gaussian noises
Bassi, Angelo
2003-06-01
Within the framework of non-Markovian stochastic Schroedinger equations, we generalize the results of [W. T. Strunz, Phys. Lett. A 224, 25 (1996)] to the case of general complex Gaussian noises; we analyze the two important cases of purely real and purely imaginary stochastic processes.
Qubit decoherence and non-Markovian dynamics at low temperatures via an effective spin-boson model
Shiokawa, K.; Hu, B.L.
2004-12-01
Quantum Brownian oscillator model (QBM), in the Fock-space representation, can be viewed as a multilevel spin-boson model. At sufficiently low temperature, the oscillator degrees of freedom are dynamically reduced to the lowest two levels and the system behaves effectively as a two-level (E2L) spin-boson model (SBM) in this limit. We discuss the physical mechanism of level reduction and analyze the behavior of E2L-SBM from the QBM solutions. The availability of close solutions for the QBM enables us to study the non-Markovian features of decoherence and leakage in a SBM in the nonperturbative regime (e.g., without invoking the Born approximation) in better details than before. Our result captures very well the characteristic non-Markovian short time low temperature behavior common in many models.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-05-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-09-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
Yao, Yao
2015-09-15
The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.
Non-Markovianity induced by a single-photon wave packet in a one-dimensional waveguide.
Valente, D; Arruda, M F Z; Werlang, T
2016-07-01
The concept of non-Markovianity (NM) in quantum dynamics is still an open debate. Understanding how to generate and measure NM in specific models may aid in this quest. In quantum optics, an engineered electromagnetic environment coupled to a single atom can induce NM. The most common scenario of structured electromagnetic environment is an optical cavity, composed by a pair of mirrors. Here, we show how to generate and measure NM on a two-level system coupled to a one-dimensional waveguide with no mirrors required. The origin of the non-Markovian behavior lies in the initial state of the field, prepared as a single-photon packet. NM is shown to depend on two experimentally controllable parameters, namely, the linewidth of the packet and its central frequency. We relate the presence of NM to quantum interference. We also show how the two output channels of the waveguide provide distinct signatures of NM, both experimentally accessible. PMID:27367118
Non-Markovian dynamics of dust charge fluctuations in dusty plasmas
NASA Astrophysics Data System (ADS)
Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee
2014-06-01
Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.
NASA Astrophysics Data System (ADS)
Panja, Debabrata
2010-06-01
Any first course on polymer physics teaches that the dynamics of a tagged monomer of a polymer is anomalously subdiffusive, i.e., the mean-square displacement of a tagged monomer increases as tα for some α < 1 until the terminal relaxation time τ of the polymer. Beyond time τ the motion of the tagged monomer becomes diffusive. Classical examples of anomalous dynamics in polymer physics are single polymeric systems, such as phantom Rouse, self-avoiding Rouse, self-avoiding Zimm, reptation, translocation through a narrow pore in a membrane, and many-polymeric systems such as polymer melts. In this pedagogical paper I report that all these instances of anomalous dynamics in polymeric systems are robustly characterized by power-law memory kernels within a unified generalized Langevin equation (GLE) scheme, and therefore are non-Markovian. The exponents of the power-law memory kernels are related to the relaxation response of the polymers to local strains, and are derived from the equilibrium statistical physics of polymers. The anomalous dynamics of a tagged monomer of a polymer in these systems is then reproduced from the power-law memory kernels of the GLE via the fluctuation-dissipation theorem (FDT). Using this GLE formulation I further show that the characteristics of the drifts caused by a (weak) applied field on these polymeric systems are also obtained from the corresponding memory kernels.
Non-Markovian quantum dynamics: correlated projection superoperators and Hilbert space averaging.
Breuer, Heinz-Peter; Gemmer, Jochen; Michel, Mathias
2006-01-01
The time-convolutionless (TCL) projection operator technique allows a systematic analysis of the non-Markovian quantum dynamics of open systems. We present a class of projection superoperators that project the states of the total system onto certain correlated system-environment states. It is shown that the application of the TCL technique to this class of correlated superoperators enables the nonperturbative treatment of the dynamics of system-environment models for which the standard approach fails in any finite order of the coupling strength. We demonstrate further that the correlated superoperators correspond to the idea of a best guess of conditional quantum expectations, which is determined by a suitable Hilbert-space average. The general approach is illustrated by means of the model of a spin that interacts through randomly distributed couplings with a finite reservoir consisting of two energy bands. Extensive numerical simulations of the full Schrödinger equation of the model reveal the power and efficiency of the method. PMID:16486248
Exact decoherence-free state of two distant quantum systems in a non-Markovian environment
NASA Astrophysics Data System (ADS)
Chen, Chong; Yang, Chun-Jie; An, Jun-Hong
2016-06-01
Decoherence-free-state (DFS) encoding supplies a useful way to avoid the detrimental influence of the environment on quantum information processing. The DFS was previously well established in either the two subsystems locating at the same spatial position or the dynamics under the Born-Markovian approximation. Here, we investigate the exact DFS of two spatially separated quantum systems consisting of two-level systems or harmonic oscillators coupled to a common non-Markovian zero-temperature bosonic environment. The exact distance-dependent DFS and the explicit criterion for forming the DFS are obtained analytically, which reveals that the DFS can arise only in one-dimensional environment. It is remarkable to further find that the DFS is just the system-reduced state of the famous bound state in the continuum (BIC) of the total system predicted by Wigner and von Neumann. On the one hand our result gives insight into the physical nature of the DFS, and on the other hand it supplies an experimentally accessible scheme to realize the mathematically curious BIC in the standard quantum optical systems.
The Design of Collectives of Agents to Control Non-Markovian Systems
NASA Technical Reports Server (NTRS)
Lawson, John W.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)
2002-01-01
The 'Collective Intelligence' (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided 'world' utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional-'team games'. We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents' ability to learn. The implication is that 'learning' is a property only of high-enough dimensional systems.
Extending the applicability of Redfield theories into highly non-Markovian regimes
Montoya-Castillo, Andrés; Reichman, David R.; Berkelbach, Timothy C.
2015-11-21
We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high-frequency bath degrees of freedom only, while the low-frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. We further generalize the method to multi-site models and compare with exact results for a model of the Fenna–Matthews–Olson complex. The results from the method are found to dramatically improve Redfield dynamics in highly non-Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low-frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marginal improvement over the simpler approximation of complete mode arrest.
Monogamy and backflow of mutual information in non-Markovian thermal baths
NASA Astrophysics Data System (ADS)
Costa, A. C. S.; Angelo, R. M.; Beims, M. W.
2014-07-01
We investigate the dynamics of information among the parties of tripartite systems. We start by proving two results concerning the monogamy of mutual information. The first one states that mutual information is monogamous for generic tripartite pure states. The second shows that, in general, mutual information is monogamous only if the amount of genuine tripartite correlations is large enough. Then, we analyze the internal dynamics of tripartite systems whose parties do not exchange energy. In particular, we allow for one of the subsystems to play the role of a finite thermal bath. As a result, we find a typical scenario in which local information tends to be converted into delocalized information. Moreover, we show that (i) the information flow is reversible for finite thermal baths at low temperatures, (ii) monogamy of mutual information is respected throughout the dynamics, and (iii) genuine tripartite correlations are typically present. Finally, we analytically calculate a quantity capable of revealing favorable regimes for non-Markovianity in our model.
Applying benchmarking protocols to encoded qubits with non-Markovian errors
NASA Astrophysics Data System (ADS)
Merkel, Seth
An essential goal for any quantum information processing platform is to develop the tools necessary to validate high-fidelity quantum gates. This effort has produced a suite of benchmarking and tomographic protocols that have been applied to a wide variety of physical implementations. All these protocols, however, were designed with strict error assumptions that can and will be violated by physical errors, especially as we push to lower and lower error rates. In this talk we look at randomized benchmarking with encoded states (from which leakage errors may occur) in the presence of non-Markovian noise and under the influence of sequence-length dependent filtering errors. These circumstances may apply to a variety of physical systems, but are particularly pertinent for 1/f charge noise and hyperfine leakage noise in electrically controlled quantum dot qubits. We demonstrate how these errors affect the outcome of randomized benchmarking, including the signatures of said errors and the confidence with which we can report an average gate fidelity.
Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Stochastic description of water table fluctuations in wetlands
NASA Astrophysics Data System (ADS)
Tamea, Stefania; Muneepeerakul, Rachata; Laio, Francesco; Ridolfi, Luca; Rodriguez-Iturbe, Ignacio
2010-03-01
Wetlands are crucial ecosystems which provide several functions, beneficial both to human beings and to the environment. Despite such importance, quantitative approaches to many aspects of wetlands are far from being adequate, above all the interaction between rainfall, vegetation, soil moisture and groundwater depth. Starting from a previously developed model for below-ground stochastic water level fluctuations, we extend it to consider the case of waterlogging. The extended model is now suitable for describing the long-term probability distribution of water table depth in temporarily inundated wetland sites, whose hydrologic input is dominated by stochastic rainfall. The extended model performs well when compared to real data collected in the Everglades National Park (Florida, US), confirming its capability to capture the stochastic variability of wetland ecosystems.
Stochastic thermodynamics of a tagged particle within a harmonic chain
NASA Astrophysics Data System (ADS)
Lacoste, David; Lomholt, Michael A.
2015-02-01
We study the stochastic thermodynamics of an overdamped harmonic chain, which can be viewed equivalently as a one-dimensional Rouse chain or as an approximate model of single file diffusion. We discuss mainly two levels of description of this system: the Markovian level for which the trajectories of all the particles of the chain are known and the non-Markovian level in which only the motion of a tagged particle is available. For each case, we analyze the energy dissipation and its dependence on initial conditions. Surprisingly, we find that the average coarse-grained entropy production rate can become transiently negative when an oscillating force is applied to the tagged particle. This occurs due to memory effects as shown in a framework based on path integrals or on a generalized Langevin equation.
NASA Astrophysics Data System (ADS)
Lorenz, Ulf; Saalfrank, Peter
2015-02-01
System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hartree method is used to provide a numerically converged solution of the system-bath Schrödinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems typically encountered in quantum optics, but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50727-8
Fedotov, Sergei; Iomin, Alexander; Ryashko, Lev
2011-12-01
Proliferation and migration dichotomy of the tumor cell invasion is examined within two non-Markovian models. We consider the tumor spheroid, which consists of the tumor core with a high density of cells and the outer invasive zone. We distinguish two different regions of the outer invasive zone and develop models for both zones. In model I we analyze the near-core-outer region, where biased migration away from the tumor spheroid core takes place. We suggest non-Markovian switching between the migrating and proliferating phenotypes of tumor cells. Nonlinear master equations for mean densities of cancer cells of both phenotypes are derived. In anomalous switching case we estimate the average size of the near-core-outer region that corresponds to sublinear growth (r(t)) ~ t(μ) for 0 < μ < 1. In model II we consider the outer zone, where the density of cancer cells is very low. We suggest an integrodifferential equation for the total density of cancer cells. For proliferation rate we use the classical logistic growth, while the migration of cells is subdiffusive. The exact formulas for the overall spreading rate of cancer cells are obtained by a hyperbolic scaling and Hamilton-Jacobi techniques. PMID:22304064
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K Birgitta
2014-10-31
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments. PMID:25396397
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K. Birgitta
2014-10-01
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.
Buldyreva, Jeanna; Daneshvar, Leila
2013-10-28
The non-Markovian Energy-Corrected Sudden approach [J. Buldyreva and L. Bonamy, Phys. Rev. A 60, 370 (1999)] previously developed for wide-band rototranslational Raman spectra of linear rotors is extended to the case of infrared absorption by linear molecules with stretching and bending modes. Basic relations such as detailed balance and double-sided sum rules for the rotational relaxation matrix are easily satisfied owing to the specific choice of a symmetric metric in the Liouville space. A single set of model parameters deduced from experimental widths of isolated isotropic Raman lines enables calculations of line-shape characteristics and full spectra up to the far wings. Applications to the important but quite complex example of pure carbon dioxide indicate the crucial role of the frequency dependence in the relaxation operator even for calculations of isolated-line characteristics. PMID:24182004
Wu, Wei; Luo, Da-Wei; Xu, Jing-Bo
2014-06-28
We investigate the phenomenon of double sudden transitions in geometric quantum correlations for a system consisting of a bare qubit and a qubit locally coupled to its finite-temperature heat environment with an Ohmic spectrum in the framework of stochastic description. Moreover, we explore the possibility of protecting the geometric discord between the two qubits and prolonging the time during which the geometric discord remains constant by applying Bang-Bang pulses.
Derivation of exact master equation with stochastic description: Dissipative harmonic oscillator
NASA Astrophysics Data System (ADS)
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
NASA Astrophysics Data System (ADS)
Buldyreva, Jeanna
2013-06-01
Reliable modeling of radiative transfer in planetary atmospheres requires accounting for the collisional line mixing effects in the regions of closely spaced vibrotational lines as well as in the spectral wings. Because of too high CPU cost of calculations from ab initio potential energy surfaces (if available), the relaxation matrix describing the influence of collisions is usually built by dynamical scaling laws, such as Energy-Corrected Sudden law. Theoretical approaches currently used for calculation of absorption near the band center are based on the impact approximation (Markovian collisions without memory effects) and wings are modeled via introducing some empirical parameters [1,2]. Operating with the traditional non-symmetric metric in the Liouville space, these approaches need corrections of the ECS-modeled relaxation matrix elements ("relaxation times" and "renormalization procedure") in order to ensure the fundamental relations of detailed balance and sum rules.We present an extension to the infrared absorption case of the previously developed [3] for rototranslational Raman scattering spectra of linear molecules non-Markovian approach of ECS-type. Owing to the specific choice of symmetrized metric in the Liouville space, the relaxation matrix is corrected for initial bath-molecule correlations and satisfies non-Markovian sum rules and detailed balance. A few standard ECS parameters determined by fitting to experimental linewidths of the isotropic Q-branch enable i) retrieval of these isolated-line parameters for other spectroscopies (IR absorption and anisotropic Raman scattering); ii) reproducing of experimental intensities of these spectra. Besides including vibrational angular momenta in the IR bending shapes, Coriolis effects are also accounted for. The efficiency of the method is demonstrated on OCS-He and CO_2-CO_2 spectra up to 300 and 60 atm, respectively. F. Niro, C. Boulet, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 88, 483
NASA Astrophysics Data System (ADS)
Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.
2013-12-01
Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2'-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.
Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.
2013-12-07
Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2{sup ′}-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.
Mineo, H; Lin, S H; Fujimura, Y; Xu, J; Xu, R X; Yan, Y J
2013-12-01
Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2'-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified. PMID:24320379
NASA Astrophysics Data System (ADS)
Strasberg, Philipp; Schaller, Gernot; Lambert, Neill; Brandes, Tobias
2016-07-01
We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for this new system–environment partition. To achieve this goal we make use of the reaction coordinate (RC) mapping, which is a general method in the sense that it can be applied to an arbitrary (quantum or classical and even time-dependent) system coupled linearly to an arbitrary number of harmonic oscillator reservoirs. The core of the method relies on an appropriate identification of a part of the environment (the RC), which is subsequently included as a part of the system. We demonstrate the power of this concept by showing that non-Markovian effects can significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime of weak system–bath coupling. Furthermore, we show for a single electron transistor coupled to vibrations that our method allows one to justify master equations derived in a polaron transformed reference frame.
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-05-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.
NASA Astrophysics Data System (ADS)
Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig
2014-09-01
The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.
Forsling, Robin; Sanders, Lloyd P; Ambjörnsson, Tobias; Lizana, Ludvig
2014-09-01
The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates k(off) (k(on)). The tracer particle is restricted to diffuse with rate k(D) on the lattice and the density of crowders is constant (on average). The unbinding rate k(off) is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (k(off) ≫ k(D)) to the non-Markovian case (k(off) ≪ k(D)) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f(t) (t is time), numerically using the Gillespie algorithm, and estimate f(t) analytically. In terms of k(off) (keeping k(D) fixed), we study the transition between the two known regimes: (i) when k(off) ≫ k(D) the particles may effectively pass each other and we recover the single particle result f(t) ∼ t(-3/2), with a reduced diffusion constant; (ii) when k(off) ≪ k(D) unbinding is rare and we obtain the single-file result f(t) ∼ t(-7/4). The intermediate region displays rich dynamics where both the characteristic f(t) - peak and the long-time power-law slope are sensitive to k(off). PMID:25194389
Stochastic Description of Seismic Anisotropy in the Lithosphere and Upper Mantle
NASA Astrophysics Data System (ADS)
Browaeys, J. T.; Becker, T. W.; Jordan, T. H.
2005-12-01
Shear wave splitting data recorded at the Earth surface sometimes appear to be spatially variable, even at a regional scale. We attempt here to extract the characteristic parameters of the anisotropy heterogeneity by using parametric statistics. A suitable two-point correlation function was introduced by Von Karmàn (1948) for the characterization of a random velocity field in a turbulent fluid. This function has since been used with success for random fields implied in wave scattering theoretical studies (Chernov, 1960) and to describe the seafloor topography (Goff & Jordan, 1988). The covariance function depends on the distance r between two points and is of the form rνKν(r) where Kν(r) is the modified Bessel function of the second kind and ν lies in [0,1]. This random field has a Hausdorff (fractal) dimension of 4-ν at small scale. The statistical description for our problem is derived from the stochastic modeling of small scale anisotropic structures in three dimensions with hexagonal symmetry. Random fields are produced by a Gaussian probability combined with the previous correlation function. The model is characterized by the horizontal wave number of the heterogeneity, the aspect ratio of the anisotropy, the aspect ratio of the heterogeneity and the fractal dimension of the field. In the limit of a stochastic horizontal laminate, this description produces the second-order approximation of Backus (1962) for a layered medium. To inspect the homogeneity of the shear wave splitting records, the rms angular difference depending on the distance between two stations is calculated. This approach is applied to the Western US which provides a statistically significant amount of seismic data to retrieve the parameters of the distribution heterogeneity. The typical range of the horizontal correlation length for the splitting directions is a hundred of kilometers, corresponding to the dimensions of the different tectonic settings. A local correlation between the
Generalized stochastic Landau-Lifshitz-Gilbert equation for yttrium-iron garnet films
NASA Astrophysics Data System (ADS)
Rückriegel, Andreas; Kopietz, Peter
2015-03-01
We derive a generalization of the well-known stochastic Landau-Lifshitz-Gilbert equation starting from a microscopic Heisenberg model coupled to the lattice degrees of freedom. By integrating out the phonons we obtain a non-Markovian, stochastic equation of motion for the spin degrees of freedom satisfying a Fluctuation-Dissipation theorem. We apply our theory to study the parametric pumping and thermalization of spin excitations in thin yttrium-iron garnet films.
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.
2013-03-01
We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in
Reversible Stochastically Gated Diffusion-Influenced Reactions.
Gopich, Irina V; Szabo, Attila
2016-08-25
An approximate but accurate theory is developed for the kinetics of reversible binding of a ligand to a macromolecule when either can stochastically fluctuate between reactive and unreactive conformations. The theory is based on a set of reaction-diffusion equations for the deviations of the pair distributions from their bulk values. The concentrations are shown to satisfy non-Markovian rate equations with memory kernels that are obtained by solving an irreversible geminate (i.e., two-particle) problem. The relaxation to equilibrium is not exponential but rather a power law. In the Markovian limit, the theory reduces to a set of ordinary rate equations with renormalized rate constants. PMID:26956646
A stochastic description on the traction-separation law of an interface with non-covalent bonding
NASA Astrophysics Data System (ADS)
Wei, Yujie
2014-10-01
We formulate a stochastic description about the mechanical response of an interface composed of non-covalent bonds. In such interfaces, the evolution of bonding probability in response to deformation plays the central role in determining their traction-separation behavior. The model connects atomistic and molecular level bonding properties to meso-scale traction-separation relationship in an interface. In response to quasi-static loading, the traction-separation of a stochastic interface is the resultant of varying bonding probability as a function of separation, and the bonding probability follows the Boltzmann distribution. The quasi-static stochastic interface model is applied to understand the critical force while detaching a sphere from an infinite half space. We further show the kinetics of interfacial debonding in the context of the Bell model (1978) and two of its derivatives - the Evans-Richie model (1997) and the Freund model (2009). While subjected to constant force, an interface creeps and its separation-time curve shows typical characteristics seen during the creep of crystalline materials at high temperature. When we exert constant separation rate to an interface, interfacial traction shows strong rate-sensitivity with higher traction at faster separation rate. The model presented here may supply a guidance to bring the stochastic nature of interfacial debonding into theories on cracking initiation and growth during fatigue fracture.
NASA Astrophysics Data System (ADS)
Nourmandipour, A.; Tavassoly, M. K.; Bolorizadeh, M. A.
2016-08-01
We investigate the quantum Zeno and anti-Zeno effects on pairwise entanglement dynamics of a collective of non-interacting qubits which have been initially prepared in a Werner state and are off-resonantly coupled to a common and non-Markovian environment. We obtain the analytical expression of the concurrence in the absence and presence of the non-selective measurements. In particular, we express our results in the strong and weak coupling regimes and examine the role of the system size, and the effect of the detuning from the cavity field frequency on the temporal behaviour of the pairwise entanglement. We show that, the detuning parameter has a positive role in the protection of entanglement in the absence of the measurement for weak coupling regime. We find that for the values of detuning parameter less than the cavity damping rate, the quantum Zeno effect is always dominant, while for the values greater than the cavity damping rate, both Zeno and anti-Zeno effects can occur, depending on the measurement intervals. We also find that the anti-Zeno effect can occur in the pairwise entanglement dynamics in the absence and presence of the detuning in the strong coupling regime.
Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka
2015-06-01
We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441
NASA Astrophysics Data System (ADS)
Vico, Giulia; Porporato, Amilcare
2013-03-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems, stabilizing yields and profits. Because of the significant investments and water requirements associated with irrigation, strategic choices are needed to preserve productivity and profitability while ensuring a sustainable water management, a nontrivial task given rainfall unpredictability. Decision-making under uncertainty requires the knowledge of the probability density function (pdf) of the outcome variable (yield and economic return) for the different management alternatives to be considered (here, irrigation strategies). A stochastic framework is proposed, linking probabilistically the occurrence of rainfall events and irrigation applications to crop development during the growing season. Based on these linkages, the pdf of yields and the corresponding irrigation requirements are obtained analytically as a function of climate, soil, and crop parameters, for different irrigation strategies and both unlimited and limited water availability. Approximate expressions are also presented to facilitate their application. Our results employ relatively few parameters and are thus broadly applicable to different crops and sites, under current- and future-climate scenarios, offering a quantitative tool to quantify the impact of irrigation strategies and water allocation on yields. As a tool for decision-making under uncertainty (e.g., via expected utility theory), our framework will be useful for the assessment of the feasibility of different irrigation strategies and water allocations, toward a sustainable management of water resources for human and environmental needs.
Two-layer symbolic representation for stochastic models with phase-type distributed events
NASA Astrophysics Data System (ADS)
Longo, Francesco; Scarpa, Marco
2015-07-01
Among the techniques that have been proposed for the analysis of non-Markovian models, the state space expansion approach showed great flexibility in terms of modelling capacities.The principal drawback is the explosion of the state space. This paper proposes a two-layer symbolic method for efficiently storing the expanded reachability graph of a non-Markovian model in the case in which continuous phase-type distributions are associated with the firing times of system events, and different memory policies are considered. At the lower layer, the reachability graph is symbolically represented in the form of a set of Kronecker matrices, while, at the higher layer, all the information needed to correctly manage event memory is stored in a multi-terminal multi-valued decision diagram. Such an information is collected by applying a symbolic algorithm, which is based on a couple of theorems. The efficiency of the proposed approach, in terms of memory occupation and execution time, is shown by applying it to a set of non-Markovian stochastic Petri nets and comparing it with a classical explicit expansion algorithm. Moreover, a comparison with a classical symbolic approach is performed whenever possible.
Linear noise approximation for oscillations in a stochastic inhibitory network with delay
NASA Astrophysics Data System (ADS)
Dumont, Grégory; Northoff, Georg; Longtin, André
2014-07-01
Understanding neural variability is currently one of the biggest challenges in neuroscience. Using theory and computational modeling, we study the behavior of a globally coupled inhibitory neural network, in which each neuron follows a purely stochastic two-state spiking process. We investigate the role of both this intrinsic randomness and the conduction delay on the emergence of fast (e.g., gamma) oscillations. Toward that end, we expand the recently proposed linear noise approximation (LNA) technique to this non-Markovian "delay" case. The analysis first leads to a nonlinear delay-differential equation (DDE) with multiplicative noise for the mean activity. The LNA then yields two coupled DDEs, one of which is driven by additive Gaussian white noise. These equations on their own provide an excellent approximation to the full network dynamics, which are much longer to integrate. They further allow us to compute a theoretical expression for the power spectrum of the population activity. Our analytical result is in good agreement with the power spectrum obtained via numerical simulations of the full network dynamics, for the large range of parameters where both the intrinsic stochasticity and the conduction delay are necessary for the occurrence of oscillations. The intrinsic noise arises from the probabilistic description of each neuron, yet it is expressed at the system activity level, and it can only be controlled by the system size. In fact, its effect on the fluctuations in system activity disappears in the infinite network size limit, but the characteristics of the oscillatory activity depend on all model parameters including the system size. Using the Hilbert transform, we further show that the intrinsic noise causes sporadic strong fluctuations in the phase of the gamma rhythm.
Stochastic models for surface diffusion of molecules
Shea, Patrick Kreuzer, Hans Jürgen
2014-07-28
We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.
Stochastic Wilson-Cowan models of neuronal network dynamics with memory and delay
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Goychuk, Andriy
2015-04-01
We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around -1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence.
Analysis of Phase-Type Stochastic Petri Nets With Discrete and Continuous Timing
NASA Technical Reports Server (NTRS)
Jones, Robert L.; Goode, Plesent W. (Technical Monitor)
2000-01-01
The Petri net formalism is useful in studying many discrete-state, discrete-event systems exhibiting concurrency, synchronization, and other complex behavior. As a bipartite graph, the net can conveniently capture salient aspects of the system. As a mathematical tool, the net can specify an analyzable state space. Indeed, one can reason about certain qualitative properties (from state occupancies) and how they arise (the sequence of events leading there). By introducing deterministic or random delays, the model is forced to sojourn in states some amount of time, giving rise to an underlying stochastic process, one that can be specified in a compact way and capable of providing quantitative, probabilistic measures. We formalize a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model. The approach affords efficient, stationary analysis in most cases and efficient transient analysis under certain restrictions. Moreover, this new formalism has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events (as opposed to capturing only one and approximating the other). We show how the underlying stochastic process, which is non-Markovian, can be resolved into simpler Markovian problems that enjoy efficient solutions. Solution algorithms are provided that can be easily programmed.
Gerdes, Frank; Finette, Steven
2012-10-01
A modeling and simulation study is performed in a littoral ocean waveguide subject to uncertainty in four quantities: source depth, tidal forcing, initial thermocline structure, and sediment sound speed. In this partially known shelf-break environment, tidal forcing over a density-stratified water column produces internal tides and solitary wave packets. The resulting uncertainty in the space-time oceanographic field is mapped into the sound speed distribution which, in turn, introduces uncertainty into the acoustic wave field. The latter is treated as a stochastic field whose intensity is described by a polynomial chaos expansion. The expansion coefficients are estimated through constrained multivariate linear regression, and an analysis of the chaos coefficients provides insight into the relative contribution of the uncertain acoustic and oceanographic quantities. Histograms of acoustic intensity are estimated and compared to a reference solution obtained through Latin Hypercube sampling. A sensitivity analysis is performed to illustrate the relative importance of the four contributions of incomplete information about the environment. The simulation methodology represents an end-to-end analysis approach including both oceanographic and acoustic field uncertainty where the latter is quantified using stochastic basis expansions in the form of a polynomial chaos representation. PMID:23039422
Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Profeta, Christophe
2015-11-01
This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems
Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows.
Minier, Jean-Pierre; Profeta, Christophe
2015-11-01
This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Z(p)=(x(p),U(p)) and is represented by its PDF p(t; y(p),V(p)) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Z(p)=(x(p),U(p),U(s)), and, consequently, handles an extended PDF p(t; y(p),V(p),V(s)) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to
Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation
NASA Astrophysics Data System (ADS)
Credidio, Heitor F.; Moreira, André A.; Herrmann, Hans J.; Andrade, José S.
2016-04-01
We disclose the origin of anisotropic percolation perimeters in terms of the stochastic Loewner evolution (SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of multilayered and directed percolation clusters at criticality are the scaling limits of the Loewner evolution of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series (fractional Brownian motion) as the driving functions in the evolution process. The fact that the resulting traces are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study therefore reveals different perspectives for mathematical and physical interpretations of non-Markovian processes in terms of anisotropic paths at criticality and vice versa.
Assessing non-Markovian quantum dynamics.
Wolf, M M; Eisert, J; Cubitt, T S; Cirac, J I
2008-10-10
We investigate what a snapshot of a quantum evolution--a quantum channel reflecting open system dynamics--reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of "Markovianity" is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations. PMID:18999575
Non-Markovian dynamics with fermions
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.
2014-08-01
Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well as the associated fluctuation-dissipation relation. Due to different nature of the particles, the path to equilibrium is slightly affected. However, in the weak-coupling regime, the time scale for approaching equilibrium is found to be globally unchanged. The Pauli-blocking effect can modify the usual picture in open quantum system. In some limits, contrary to boson, this effect can strongly hinder the influence of the bath by blocking the interacting channels.
Wiegel, A A; Wilson, K R; Hinsberg, W D; Houle, F A
2015-02-14
The heterogeneous oxidation of organic aerosol by hydroxyl radicals (OH) can proceed through two general pathways: functionalization, in which oxygen functional groups are added to the carbon skeleton, and fragmentation, in which carbon-carbon bonds are broken, producing higher volatility, lower molecular weight products. An ongoing challenge is to develop a quantitative molecular description of these pathways that connects the oxidative evolution of the average aerosol properties (e.g. size and hygroscopicity) to the transformation of free radical intermediates. In order to investigate the underlying molecular mechanism of aerosol oxidation, a relatively compact kinetics model is developed for the heterogeneous oxidation of squalane particles by OH using free radical intermediates that convert reactive hydrogen sites into oxygen functional groups. Stochastic simulation techniques are used to compare calculated system properties over ten oxidation lifetimes with the same properties measured in experiment. The time-dependent average squalane aerosol mass, volume, density, carbon number distribution of scission products, and the average elemental composition are predicted using known rate coefficients. For functionalization, the calculations reveal that the distribution of alcohol and carbonyl groups is controlled primarily by the initial OH abstraction rate and to lesser extent by the branching ratio between secondary peroxy radical product channels. For fragmentation, the calculations reveal that the formation of activated alkoxy radicals with neighboring functional groups controls the molecular decomposition, particularly at high O/C ratios. This kinetic scheme provides a framework for understanding the oxidation chemistry of a model organic aerosol and informs parameterizations of more complex systems. PMID:25578323
Wang, Xiao; Weinberg, Seth H; Hao, Yan; Sobie, Eric A; Smith, Gregory D
2015-03-01
Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks. PMID:25485896
Stochastic Processes in Electrochemistry.
Singh, Pradyumna S; Lemay, Serge G
2016-05-17
Stochastic behavior becomes an increasingly dominant characteristic of electrochemical systems as we probe them on the smallest scales. Advances in the tools and techniques of nanoelectrochemistry dictate that stochastic phenomena will become more widely manifest in the future. In this Perspective, we outline the conceptual tools that are required to analyze and understand this behavior. We draw on examples from several specific electrochemical systems where important information is encoded in, and can be derived from, apparently random signals. This Perspective attempts to serve as an accessible introduction to understanding stochastic phenomena in electrochemical systems and outlines why they cannot be understood with conventional macroscopic descriptions. PMID:27120701
Non-stochastic matrix Schrödinger equation for open systems
Joubert-Doriol, Loïc; Ryabinkin, Ilya G.; Izmaylov, Artur F.
2014-12-21
We propose an extension of the Schrödinger equation for a quantum system interacting with environment. This extension describes dynamics of a collection of auxiliary wavefunctions organized as a matrix m, from which the system density matrix can be reconstructed as ρ{sup ^}=mm{sup †}. We formulate a compatibility condition, which ensures that the reconstructed density satisfies a given quantum master equation for the system density. The resulting non-stochastic evolution equation preserves positive-definiteness of the system density and is applicable to both Markovian and non-Markovian system-bath treatments. Our formalism also resolves a long-standing problem of energy loss in the time-dependent variational principle applied to mixed states of closed systems.
Brett, Tobias Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Liu, Fuliang; Li, Yaping Sun, Xiaoming
2014-01-28
When considering stochastic oscillations of heterogeneous catalyst systems, most researches have focused on the surface of a metal or its oxide catalysts, but there have been few studies on porous catalysts. In this work, the effects of internal noise on oscillations of N{sub 2}O decomposition over Cu-ZSM-5 zeolites are investigated, using the chemical Langevin equation and a mesoscopic stochastic model. Considering that Cu-ZSM-5 particles are finely divided particles, the number of Cu ions (N{sub s}) is proportional to the particle size at a certain Cu/Al, and the internal noise is inversely proportional to N{sub s}. Stochastic oscillations can be observed outside the deterministic oscillatory region. Furthermore, the performance of the oscillation characterized by the signal-to-noise ratio has a maximum within the optimal size range of 4–8 nm. This suggests that a nanometer-sized zeolite may be best for oscillations.
Local Quasi-equilibrium Description of Multiscale Systems
NASA Astrophysics Data System (ADS)
Santamaría-Holek, Iván; Pérez-Madrid, Augustin; Miguel Rubí, J.
2016-04-01
Systems whose dynamics result from the existence of a wide variety of time and length scales frequently exhibit slow relaxation behavior, manifested through the aging compartment of the correlations and the nonexponential decay of the response function. Experiments performed in systems such as amorphous polymers and supercooled liquids and glasses seem to indicate that these systems undergo, in general, non-Markovian and nonstationary dynamics. Hence, in this contribution, we present a dynamical description of slow relaxation systems based on a generalization of Onsager's theory to nonequilibrium aging states. By assuming the existence of a local quasi-equilibrium state characterized by a nonstationary probability distribution the entropy of the system is expressed in terms of the conditional probability density by means of the Gibbs entropy postulate. Thus, by taking into account probability conservation and the rules of nonequilibrium thermodynamics, the generalized Fokker-Planck equation is derived.
Solan, Eilon; Vieille, Nicolas
2015-01-01
In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883
Limits in the characteristic-function description of non-Lindblad-type open quantum systems
Maniscalco, Sabrina
2005-08-15
In this paper I investigate the usability of the characteristic functions for the description of the dynamics of open quantum systems focussing on non-Lindblad-type master equations. I consider, as an example, a non-Markovian generalized master equation containing a memory kernel which may lead to nonphysical time evolutions characterized by negative values of the density matrix diagonal elements [S. M. Barnett and S. Stenholm, Phys. Rev. A 64, 033808 (2001)]. The main result of the paper is to demonstrate that there exist situations in which the symmetrically ordered characteristic function is perfectly well-defined while the corresponding density matrix loses positivity. Therefore, nonphysical situations may not show up in the characteristic function. As a consequence, the characteristic function cannot be considered an alternative complete description of the non-Lindblad dynamics.
NASA Astrophysics Data System (ADS)
Dybiec, Bartłomiej; Gudowska-Nowak, Ewa
2009-05-01
A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance.
Analyzing a stochastic time series obeying a second-order differential equation
NASA Astrophysics Data System (ADS)
Lehle, B.; Peinke, J.
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2 N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series. PMID:26172667
BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.
2003-05-12
Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.
NASA Astrophysics Data System (ADS)
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Bisognano, J.; Leemann, C.
1982-03-01
Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.
Nonperturbative stochastic method for driven spin-boson model
NASA Astrophysics Data System (ADS)
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
NASA Astrophysics Data System (ADS)
Rosinberg, M. L.; Munakata, T.; Tarjus, G.
2015-04-01
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.
Rosinberg, M L; Munakata, T; Tarjus, G
2015-04-01
Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups. PMID:25974446
Stochastic description of pilus retraction dynamics
NASA Astrophysics Data System (ADS)
Lindén, Martin; Johansson, Emil; Jonsson, Ann-Beth
2005-03-01
Motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. Type IV pili are helical filaments with 4 nm periodicity and 5 subunits per turn. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces in excess of 100 pN[1]. One possible explanation for the high forces are that several ATP are hydrolyzed to retract each subunit.We consider a widely used class of discrete hopping models, which has been used to describe well-known motor proteins such as kinesin[2] and myosin[3]. The model describes recent experimental measurements[1] on Neisseria gonorrhoeae well, and makes several interesting predictions for the randomness of the retraction dynamics.1. Maier et al, PNAS 101:10961 (2004)2. M. E. Fisher and A. B. Kolomeisky, PNAS 98:7748 (2001)3. A. B. Kolomeisky and M. E. Fisher, Biophys. J. 84:1650 (2003)
NASA Astrophysics Data System (ADS)
Mel'nikov, A. V.
1996-10-01
Contents Introduction Chapter I. Basic notions and results from contemporary martingale theory §1.1. General notions of the martingale theory §1.2. Convergence (a.s.) of semimartingales. The strong law of large numbers and the law of the iterated logarithm Chapter II. Stochastic differential equations driven by semimartingales §2.1. Basic notions and results of the theory of stochastic differential equations driven by semimartingales §2.2. The method of monotone approximations. Existence of strong solutions of stochastic equations with non-smooth coefficients §2.3. Linear stochastic equations. Properties of stochastic exponentials §2.4. Linear stochastic equations. Applications to models of the financial market Chapter III. Procedures of stochastic approximation as solutions of stochastic differential equations driven by semimartingales §3.1. Formulation of the problem. A general model and its relation to the classical one §3.2. A general description of the approach to the procedures of stochastic approximation. Convergence (a.s.) and asymptotic normality §3.3. The Gaussian model of stochastic approximation. Averaged procedures and their effectiveness Chapter IV. Statistical estimation in regression models with martingale noises §4.1. The formulation of the problem and classical regression models §4.2. Asymptotic properties of MLS-estimators. Strong consistency, asymptotic normality, the law of the iterated logarithm §4.3. Regression models with deterministic regressors §4.4. Sequential MLS-estimators with guaranteed accuracy and sequential statistical inferences Bibliography
Non-Markovian persistence and nonequilibrium critical dynamics
NASA Astrophysics Data System (ADS)
Oerding, Klaus; Cornell, Stephen J.; Bray, Alan J.
1997-07-01
The persistence exponent θ for the global order parameter M(t) of a system quenched from the disordered phase to its critical point describes the probability, p(t)~t-θ, that M(t) does not change sign in the time interval t following the quench. We calculate θ to O(ɛ2) for model A of Hohenberg and Halperin [Rev. Mod. Phys. 49, 435 (1977)] (and to order ɛ for model C) and show that at this order M(t) is a non-Markov process. Consequently, to our knowledge, θ is a new exponent. The calculation is performed by expanding around a Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and Sire [Phys. Rev. Lett. 77, 1420 (1996)].
Non-Markovian Transport of DNA in Microfluidic Post Arrays
NASA Astrophysics Data System (ADS)
Minc, Nicolas; Viovy, Jean-Louis; Dorfman, Kevin D.
2005-05-01
We present an analytically solvable model for the transport of long DNA through microfluidic arrays of posts. The motion is a repetitive three-part cycle: (i) collision with the post and extension of the arms; (ii) rope-over-pulley post disengagement; and (iii) a random period of uniform translation before the next collision. This cycle, inspired by geometration, is a nonseparable (Scher-Lax) continuous-time random walk on a lattice defined by the posts. Upon adopting a simple model for the transition probability density on the lattice, we analytically compute the mean DNA velocity and dispersivity in the long-time limit without any adjustable parameters. The results compare favorably with the limited amount of experimental data on separations in self-assembled arrays of magnetic beads. The Scher-Lax formalism provides a template for incorporating more sophisticated microscale models.
Stochastic deformation of a thermodynamic symplectic structure
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.
Stochastic deformation of a thermodynamic symplectic structure.
Kazinski, P O
2009-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered. PMID:19256999
Blaskiewicz, M.
2011-01-01
Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.
Stochastic resonance in the mechanoelectrical transduction of hair cells
NASA Astrophysics Data System (ADS)
Lindner, John F.; Bennett, Matthew; Wiesenfeld, Kurt
2005-11-01
In transducing mechanical stimuli into electrical signals, at least some hair cells in vertebrate auditory and vestibular systems respond optimally to weak periodic signals at natural, nonzero noise intensities. We understand this stochastic resonance by constructing a faithful mechanical model reflecting the hair cell geometry and described by a nonlinear stochastic differential equation. This Langevin description elucidates the mechanism of hair cell stochastic resonance while supporting the hypothesis that noise plays a functional role in hearing.
Solving the Langevin equation with stochastic algebraically correlated noise
NASA Astrophysics Data System (ADS)
Płoszajczak, M.; Srokowski, T.
1997-05-01
The long time tail in the velocity and force autocorrelation function has been found recently in molecular dynamics simulations of peripheral collisions of ions. Simulation of those slowly decaying correlations in the stochastic transport theory requires the development of new methods of generating stochastic force of arbitrarily long correlation times. In this paper we propose a Markovian process, the multidimensional kangaroo process, which permits the description of various algebraically correlated stochastic processes.
NASA Astrophysics Data System (ADS)
Galves, A.; Löcherbach, E.
2013-06-01
We consider a new class of non Markovian processes with a countable number of interacting components. At each time unit, each component can take two values, indicating if it has a spike or not at this precise moment. The system evolves as follows. For each component, the probability of having a spike at the next time unit depends on the entire time evolution of the system after the last spike time of the component. This class of systems extends in a non trivial way both the interacting particle systems, which are Markovian (Spitzer in Adv. Math. 5:246-290, 1970) and the stochastic chains with memory of variable length which have finite state space (Rissanen in IEEE Trans. Inf. Theory 29(5):656-664, 1983). These features make it suitable to describe the time evolution of biological neural systems. We construct a stationary version of the process by using a probabilistic tool which is a Kalikow-type decomposition either in random environment or in space-time. This construction implies uniqueness of the stationary process. Finally we consider the case where the interactions between components are given by a critical directed Erdös-Rényi-type random graph with a large but finite number of components. In this framework we obtain an explicit upper-bound for the correlation between successive inter-spike intervals which is compatible with previous empirical findings.