Science.gov

Sample records for non-mhc immune genes

  1. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells

    SciTech Connect

    Mathew, P.A.; Garni-Wagner, B.A.; Land, K.; Takashima, A.; Stoneman, E.; Bennett, M.; Kumar, V. )

    1993-11-15

    The authors have recently described a signal transducing molecule, 2B4, expressed on all NK and T cells that mediate non-MHC-restricted killing. The gene encoding this molecule was cloned and its nucleotide sequence determined. The encoded protein of 398 amino acids has a leader peptide of 18 amino acids and a transmembrane region of 24 amino acids. The predicted protein has eight N-linked glycosylation sites, suggesting that it is highly glycosylated. Comparison of 2B4 with sequences in the databanks indicates that 2B4 is a member of the Ig supergene family, and it shows homology to murine and rat CD48 and human LFA-3. Northern blot analysis has shown at least three transcripts for 2B4 in adherent lymphokine-activated killer cells of several mouse strains and TCR-[gamma]/[delta] dendritic epidermal T cell lines but not in allospecific T cell clones. These three mRNA are the products of differential splicing of heterogeneous nuclear RNA. Southern blot analysis of genomic DNA from several mouse strains revealed that 2B4 belongs to a family of closely related genes. The 2B4 gene has been mapped to mouse chromosome 1 by analysis of 2B4 expression in recombinant inbred mouse strains. 48 refs., 6 figs., 2 tabs.

  2. Whole-Genome Screening in Ankylosing Spondylitis: Evidence of Non-MHC Genetic-Susceptibility Loci

    PubMed Central

    Laval, S. H.; Timms, A.; Edwards, S.; Bradbury, L.; Brophy, S.; Milicic, A.; Rubin, L.; Siminovitch, K. A.; Weeks, D. E.; Calin, A.; Wordsworth, B. P.; Brown, M. A.

    2001-01-01

    Ankylosing spondylitis (AS) is a common inflammatory arthritis predominantly affecting the axial skeleton. Susceptibility to the disease is thought to be oligogenic. To identify the genes involved, we have performed a genomewide scan in 185 families containing 255 affected sibling pairs. Two-point and multipoint nonparametric linkage analysis was performed. Regions were identified showing “suggestive” or stronger linkage with the disease on chromosomes 1p, 2q, 6p, 9q, 10q, 16q, and 19q. The MHC locus was identified as encoding the greatest component of susceptibility, with an overall LOD score of 15.6. The strongest non-MHC linkage lies on chromosome 16q (overall LOD score 4.7). These results strongly support the presence of non-MHC genetic-susceptibility factors in AS and point to their likely locations. PMID:11231900

  3. A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus.

    PubMed Central

    Flajnik, M F; Kasahara, M; Shum, B P; Salter-Cid, L; Taylor, E; Du Pasquier, L

    1993-01-01

    A Xenopus class I cDNA clone, isolated from a cDNA expression library using antisera, is a member of a large family of non-classical class I genes (class Ib) composed of at least nine subfamilies, all of which are expressed at the RNA level. The subfamilies are well conserved in their immunoglobulin-like alpha 3 domains, but their peptide-binding regions (PBRs) and cytoplasmic domains are very divergent. In contrast to the great allelic diversity found in the PBR of classical class I genes, the alleles of one of the Xenopus non-classical subfamilies are extremely well conserved in all regions. Several of the invariant amino acids essential for the anchoring of peptides in the classical class I groove are not conserved in some subfamilies, but the class Ib genes are nevertheless more closely related in the PBR to classical and non-classical genes linked to the MHC in mammals and birds than to any other described class I genes like CD1 and the neonatal rat intestinal Fc receptor. Comparison with the Xenopus MHC-linked class Ia protein indicate that amino acids presumed to interact with beta 2-microglobulin are identical or conservatively changed in the two major class I families. Genomic analyses of Xenopus species suggest that the classical and non-classical families diverged from a common ancestor before the emergence of the genus Xenopus over 100 million years ago; all of the non-classical genes appear to be linked on a chromosome distinct from the one harboring the MHC. We hypothesize that this class Ib gene family is under very different selection pressures from the classical MHC genes, and that each subfamily may have evolved for a particular function. Images PMID:8223448

  4. The relative roles of MHC and non-MHC antigens in bone marrow transplantation in rats. Graft acceptance and antigenic expression on donor red blood cells.

    PubMed

    Pinto, M; Gill, T J; Kunz, H W; Dixon-McCarthy, B D

    1983-06-01

    In order to investigate the influence of MHC and non-MHC genes in bone marrow transplantation, various combinations of congenic and inbred strains of rats were used as donors and recipients. A standard regimen of busulfan and cyclophosphamide treatment was used to condition the recipients. The resultant survival patterns of the animals indicated that: (1) a difference across the entire RT1 (MHC) complex is sufficient for the induction of fatal graft-versus-host disease (GVHD) in 100% of the engrafted animals; and (2) the blood group antigens RT2 and RT3, which are controlled by non-MHC genes, do not cause bone marrow graft rejection or GVHD. There were sequential changes of expression in surface alloantigens on the red cells in different donor-recipient combinations without other hematologic changes in the busulfan-cyclophosphamide conditioned bone marrow chimeras. PMID:6346598

  5. Non-MHC-dependent redirected T cells against tumor cells.

    PubMed

    Almåsbak, Hilde; Lundby, Marianne; Rasmussen, Anne-Marie

    2010-01-01

    Adoptive transfer of T cells with restricted tumor specificity provides a promising approach to immunotherapy of cancers. However, the isolation of autologous cytotoxic T cells that recognize tumor-associated antigens is time consuming and fails in many instances. Alternatively, gene modification with tumor antigen-specific T-cell receptors (TCR) or chimeric antigen receptors (CARs) can be used to redirect the specificity of large numbers of immune cells toward the malignant cells. Chimeric antigen receptors are composed of the single-chain variable fragment (scFv) of a tumor-recognizing antibody cloned in frame with human T-cell signaling domains (e.g., CD3zeta, CD28, OX40, 4-1BB), thus combining the specificity of antibodies with the effector functions of cytotoxic T cells. Upon antigen binding, the intracellular signaling domains of the CAR initiate cellular activation mechanisms including cytokine secretion and cytolysis of the antigen-positive target cell.In this chapter, we provide detailed protocols for large-scale ex vivo expansion of T cells and manufacturing of medium-scale batches of CAR-expressing T cells for translational research by mRNA electroporation. An anti-CD19 chimeric receptor for the targeting of leukemias and lymphomas was used as a model system. We are currently scaling up the protocols to adapt them to cGMP production of a large number of redirected T cells for clinical applications. PMID:20387166

  6. Non-MHC-linked Th2 cell development induced by soluble protein administration predicts susceptibility to Leishmania major infection.

    PubMed

    Guéry, J C; Galbiati, F; Smiroldo, S; Adorini, L

    1997-09-01

    Continuous administration of soluble protein Ag followed by immunization with the same Ag in adjuvant results in the selective development of Ag-specific CD4+ Th2 cells in both normal and beta2-microglobulin-deficient BALB/c mice. In addition to chronic administration by mini-osmotic pump, single bolus i.p., but not i.v., injection of protein Ag induces Th2 cell expansion. Strong Th2 cell priming depends on a non-MHC-linked genetic polymorphism. It is observed in all congenic strains on BALB background tested, BALB/c, BALB/b, and BALB/k, but not in MHC-matched strains on disparate genetic background, B10.D2, C57BL/6, and C3H. DBA/2 mice appear to have an intermediate phenotype, as shown by their weaker capacity to mount Th2 responses as compared with BALB/c mice after soluble Ag administered by either mini-osmotic pumps or single bolus i.p. Conversely, induction of Th1 cell unresponsiveness by soluble protein is observed in any mouse strain tested, following any mode of Ag administration. These data demonstrate that non-MHC-linked genetic polymorphism controls the priming of Th2 but not the inhibition of Th1 cells induced by administration of soluble protein. The pattern of Th2 responses in these different strains is predictive of disease outcome following Leishmania major infection and supports the hypothesis that systemic Ag presentation in the absence of strong inflammatory signals may represent an important stimulus leading to selective Th2 cell development in susceptible mouse strains. PMID:9278301

  7. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  8. Identification of a novel feline large granular lymphoma cell line (S87) as non-MHC-restricted cytotoxic T-cell line and assessment of its genetic instability.

    PubMed

    Rydzewski, Lena; Scheffold, Svenja; Hecht, Werner; Burkhardt, Eberhard; Kerner, Katharina; Klymiuk, Michele C; Deinzer, Renate; Reinacher, Manfred; Henrich, Manfred

    2016-09-01

    Feline large granular lymphocyte lymphomas are rare but very aggressive tumors with a poor prognosis. In this study, a cell line from an abdominal effusion of a cat with large granular lymphoma was characterized. Immunophenotype staining was positive for CD3 and CD45R, and negative for CD4, CD8, CD56, CD79α, BLA.36 and NK1. A TCR γ gene rearrangement was detectable by PARR. Neither FeLV antigen nor exogenous FeLV provirus could be detected. A chromosomal instability associated with a centrosome hyperamplification could also be determined. The cell line is able to lyse target cells without antigen presentation or interaction with antigen presenting cells. Therefore, these cells were classified as genetically instable non-MHC-restricted cytotoxic T cells with large granular lymphocyte morphology. PMID:27436441

  9. Researchers Find 8 Immune Genes in Aggressive Brain Cancer

    MedlinePlus

    ... news/fullstory_159031.html Researchers Find 8 Immune Genes in Aggressive Brain Cancer Discovery might eventually lead ... 25, 2016 (HealthDay News) -- Researchers have identified immune genes that may affect how long people live after ...

  10. Gene gun immunization to combat malaria.

    PubMed

    Bergmann-Leitner, Elke S; Leitner, Wolfgang W

    2013-01-01

    DNA immunization by gene gun against a variety of infectious diseases has yielded promising results in animal models. Skin-based DNA vaccination against these diseases is not only an attractive option for the clinic but can aid in the discovery and optimization of vaccine candidates. Vaccination against the protozoan parasite Plasmodium presents unique challenges: (a) most parasite-associated antigens are stage-specific; (b) antibodies capable of neutralizing the parasite during the probing of the mosquitoes have to be available at high titers in order to prevent infection of the liver; (c) immunity to liver-stage infection needs to be absolute in order to prevent subsequent blood-stage parasitemia. Gene gun vaccination has successfully been used to prevent the infection of mice with the rodent malaria strain P. berghei and has been employed in a macaque model of human P. falciparum. DNA plasmid delivery by gene gun offers the opportunity to economically and efficiently test novel malaria vaccine candidates and vaccination strategies, which include the evaluation of novel molecular adjuvant strategies. Here we describe the procedures involved in making and delivering a pre-clinical malaria DNA vaccine by gene gun as well as the correct approach for the in vivo evaluation of the vaccine. Furthermore, we discuss various approaches that either have already been tested or could be employed to improve DNA vaccines against malaria. PMID:23104349

  11. Innate Immune Gene Polymorphisms in Tuberculosis

    PubMed Central

    Sadee, Wolfgang

    2012-01-01

    Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and “case-control” association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB. PMID:22825450

  12. Researchers Find 8 Immune Genes in Aggressive Brain Cancer

    MedlinePlus

    ... 159031.html Researchers Find 8 Immune Genes in Aggressive Brain Cancer Discovery might eventually lead to better ... tissue samples from 170 people with a less aggressive type of brain tumor. This led to the ...

  13. Genotype and gene expression associations with immune function in Drosophila.

    PubMed

    Sackton, Timothy B; Lazzaro, Brian P; Clark, Andrew G

    2010-01-01

    It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation associated with physiological measures of immune function. In no case, however, have intermediate measures of immune function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens, Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S. marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor effects through the cascade. PMID:20066029

  14. Inherited variation in immune genes and pathways and glioblastoma risk

    PubMed Central

    Schwartzbaum, Judith A.; Xiao, Yuanyuan; Liu, Yanhong; Tsavachidis, Spyros; Berger, Mitchel S.; Bondy, Melissa L.; Chang, Jeffrey S.; Chang, Susan M.; Decker, Paul A.; Ding, Bo; Hepworth, Sarah J.; Houlston, Richard S.; Hosking, Fay J.; Jenkins, Robert B.; Kosel, Matthew L.; McCoy, Lucie S.; McKinney, Patricia A.; Muir, Kenneth; Patoka, Joe S.; Prados, Michael; Rice, Terri; Robertson, Lindsay B.; Schoemaker, Minouk J.; Shete, Sanjay; Swerdlow, Anthony J.; Wiemels, Joe L.; Wiencke, John K.; Yang, Ping; Wrensch, Margaret R.

    2010-01-01

    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel–Haenzel P values = 1 × 10−5 to 4 × 10−3), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion–extravasation–migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk. PMID:20668009

  15. Inherited variation in immune genes and pathways and glioblastoma risk.

    PubMed

    Schwartzbaum, Judith A; Xiao, Yuanyuan; Liu, Yanhong; Tsavachidis, Spyros; Berger, Mitchel S; Bondy, Melissa L; Chang, Jeffrey S; Chang, Susan M; Decker, Paul A; Ding, Bo; Hepworth, Sarah J; Houlston, Richard S; Hosking, Fay J; Jenkins, Robert B; Kosel, Matthew L; McCoy, Lucie S; McKinney, Patricia A; Muir, Kenneth; Patoka, Joe S; Prados, Michael; Rice, Terri; Robertson, Lindsay B; Schoemaker, Minouk J; Shete, Sanjay; Swerdlow, Anthony J; Wiemels, Joe L; Wiencke, John K; Yang, Ping; Wrensch, Margaret R

    2010-10-01

    To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel-Haenzel P values = 1 × 10⁻⁵ to 4 × 10⁻³), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion-extravasation-migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk. PMID:20668009

  16. Genetics of gene expression in immunity to infection

    PubMed Central

    Fairfax, Benjamin P; Knight, Julian C

    2015-01-01

    Mapping gene expression as a quantitative trait (eQTL mapping) can reveal local and distant associations with functionally important genetic variation informative for disease. Recent studies are reviewed which have demonstrated that this approach is particularly informative when applied to diverse immune cell populations and situations relevant to infection and immunity. Context-specific eQTL have now been characterised following endotoxin activation, induction with interferons, mycobacteria, and influenza, together with genetic determinants of response to vaccination. The application of genetical genomic approaches offers new opportunities to advance our understanding of gene–environment interactions and fundamental processes in innate and adaptive immunity. PMID:25078545

  17. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci

    PubMed Central

    Reveille, John D; Sims, Anne-Marie; Danoy, Patrick; Evans, David M; Leo, Paul; Pointon, Jennifer J; Jin, Rui; Zhou, Xiaodong; Bradbury, Linda A; Appleton, Louise H; Davis, John C; Diekman, Laura; Doan, Tracey; Dowling, Alison; Duan, Ran; Duncan, Emma L; Farrar, Claire; Hadler, Johanna; Harvey, David; Karaderi, Tugce; Mogg, Rebecca; Pomeroy, Emma; Pryce, Karena; Taylor, Jacqueline; Savage, Laurie; Deloukas, Panos; Kumanduri, Vasudev; Peltonen, Leena; Ring, Sue M; Whittaker, Pamela; Glazov, Evgeny; Thomas, Gethin P; Maksymowych, Walter P; Inman, Robert D; Ward, Michael M; Stone, Millicent A; Weisman, Michael H; Wordsworth, B Paul; Brown, Matthew A

    2011-01-01

    To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P < 10−800), we found association with SNPs in two gene deserts at 2p15 (rs10865331; combined P = 1.9 × 10−19) and 21q22 (rs2242944; P = 8.3 × 10−20), as well as in the genes ANTXR2 (rs4333130; P = 9.3 × 10−8) and IL1R2 (rs2310173; P = 4.8 × 10−7). We also replicated previously reported associations at IL23R (rs11209026; P = 9.1 × 10−14) and ERAP1 (rs27434; P = 5.3 × 10−12). This study reports four genetic loci associated with ankylosing spondylitis risk and identifies a major role for the interleukin (IL)-23 and IL-1 cytokine pathways in disease susceptibility. PMID:20062062

  18. Population Genetics of Anopheles coluzzii Immune Pathways and Genes

    PubMed Central

    Rottschaefer, Susan M.; Crawford, Jacob E.; Riehle, Michelle M.; Guelbeogo, Wamdaogo M.; Gneme, Awa; Sagnon, N’Fale; Vernick, Kenneth D.; Lazzaro, Brian P.

    2014-01-01

    Natural selection is expected to drive adaptive evolution in genes involved in host–pathogen interactions. In this study, we use molecular population genetic analyses to understand how natural selection operates on the immune system of Anopheles coluzzii (formerly A. gambiae “M form”). We analyzed patterns of intraspecific and interspecific genetic variation in 20 immune-related genes and 17 nonimmune genes from a wild population of A. coluzzii and asked if patterns of genetic variation in the immune genes are consistent with pathogen-driven selection shaping the evolution of defense. We found evidence of a balanced polymorphism in CTLMA2, which encodes a C-type lectin involved in regulation of the melanization response. The two CTLMA2 haplotypes, which are distinguished by fixed amino acid differences near the predicted peptide cleavage site, are also segregating in the sister species A. gambiae (“S form”) and A. arabiensis. Comparison of the two haplotypes between species indicates that they were not shared among the species through introgression, but rather that they arose before the species divergence and have been adaptively maintained as a balanced polymorphism in all three species. We additionally found that STAT-B, a retroduplicate of STAT-A, shows strong evidence of adaptive evolution that is consistent with neofunctionalization after duplication. In contrast to the striking patterns of adaptive evolution observed in these Anopheles-specific immune genes, we found no evidence of adaptive evolution in the Toll and Imd innate immune pathways that are orthologously conserved throughout insects. Genes encoding the Imd pathway exhibit high rates of amino acid divergence between Anopheles species but also display elevated amino acid diversity that is consistent with relaxed purifying selection. These results indicate that adaptive coevolution between A. coluzzii and its pathogens is more likely to involve novel or lineage-specific molecular mechanisms

  19. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  20. The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Wainwright, Derek A.; Lesniak, Maciej S.

    2011-01-01

    Adenoviruses are the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in clinical trials, the efficacy of using adenoviruses for gene therapy is poor. A major hurdle to adenoviral-mediated gene therapy is the innate immune system. Cell-mediated recognition of viruses via capsid components or nucleic acids has received significant attention, principally thought to be regulated by the toll-like receptors (TLRs). Antiviral innate immune responses are initiated by the infected cell, which activates the interferon (IFN) response to block viral replication, while simultaneously releasing chemokines to attract neutrophils, mononuclear- and natural killer-cells. While the IFN and cellular recruitment pathways are activated and regulated independently of each other, both are required to overcome immune escape mechanisms by adenoviruses. Recent work has shown that the generation of adenoviral vectors lacking specific transcriptionally-active regions decreases immune system activation and increases the chance for immune escape. In this review, we elucidate how adenoviral vector modifications alter the IFN and innate inflammatory pathway response and propose future targets with clinically-translational relevance. PMID:21399236

  1. The evolution of secondary organization in immune system gene libraries

    SciTech Connect

    Hightower, R.; Forrest, S.; Perelson, A.S.

    1993-02-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  2. The evolution of secondary organization in immune system gene libraries

    SciTech Connect

    Hightower, R.; Forrest, S. . Dept. of Computer Science); Perelson, A.S. )

    1993-01-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  3. Human genes in TB infection: their role in immune response.

    PubMed

    Lykouras, D; Sampsonas, F; Kaparianos, A; Karkoulias, K; Tsoukalas, G; Spiropoulos, K

    2008-03-01

    Tuberculosis (TB) caused by the human pathogen Mycobacterium tuberculosis, is the leading cause of morbidity and mortality caused by infectious agents worldwide. Recently, there has been an ongoing concern about the clarification of the role of specific human genes and their polymorphisms involved in TB infection. In the vast majority of individuals, innate immune pathways and T-helper 1 (Th1) cell mediated immunity are activated resulting in the lysis of the bacterium. Firstly, PTPN22 R620W polymorphism is involved in the response to cases of infection. The Arg753Gln polymorphism in TLR-2 leads to a weaker response against the M. tuberculosis. The gene of the vitamin D receptor (VDR) has a few polymorphisms (BsmI, ApaI, Taq1, FokI) whose mixed genotypes alter the immune response. Solute carrier family 11 member (SLC11A1) is a proton/divalent cation antiporter that is more familiar by its former name NRAMP1 (natural resistance associated macrophage protein 1) and can affect M. tuberculosis growth. Polymorphisms of cytokines such as IL-10, IL-6, IFN-g, TNF-a, TGF-b1 can affect the immune response in various ways. Finally, a major role is played by M. tuberculosis antigens and the Ras-associated small GTP-ase 33A. As far as we know this is the first review that collates all these polymorphisms in order to give a comprehensive image of the field, which is currently evolving. PMID:18507196

  4. Gaucher disease gene GBA functions in immune regulation

    PubMed Central

    Liu, Jun; Halene, Stephanie; Yang, Mei; Iqbal, Jameel; Yang, Ruhua; Mehal, Wajahat Z.; Chuang, Wei-Lien; Jain, Dhanpat; Yuen, Tony; Sun, Li; Zaidi, Mone; Mistry, Pramod K.

    2012-01-01

    Inherited deficiency of acid β-glucosidase (GCase) due to biallelic mutations in the GBA (glucosidase, β, acid) gene causes the classic manifestations of Gaucher disease (GD) involving the viscera, the skeleton, and the lungs. Clinical observations point to immune defects in GD beyond the accumulation of activated macrophages engorged with lysosomal glucosylceramide. Here, we show a plethora of immune cell aberrations in mice in which the GBA gene is deleted conditionally in hematopoietic stem cells (HSCs). The thymus exhibited the earliest and most striking alterations reminiscent of impaired T-cell maturation, aberrant B-cell recruitment, enhanced antigen presentation, and impaired egress of mature thymocytes. These changes correlated strongly with disease severity. In contrast to the profound defects in the thymus, there were only limited cellular defects in peripheral lymphoid organs, mainly restricted to mice with severe disease. The cellular changes in GCase deficiency were accompanied by elevated T-helper (Th)1 and Th2 cytokines that also tracked with disease severity. Finally, the proliferation of GCase-deficient HSCs was inhibited significantly by both GL1 and Lyso-GL1, suggesting that the “supply” of early thymic progenitors from bone marrow may, in fact, be reduced in GBA deficiency. The results not only point to a fundamental role for GBA in immune regulation but also suggest that GBA mutations in GD may cause widespread immune dysregulation through the accumulation of substrates. PMID:22665763

  5. Identifying genes that mediate anthracyline toxicity in immune cells

    PubMed Central

    Frick, Amber; Suzuki, Oscar T.; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L.; Thomas, Russell S.; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies. PMID:25926793

  6. Plasmodium falciparum var gene expression is modified by host immunity

    PubMed Central

    Warimwe, George M.; Keane, Thomas M.; Fegan, Gregory; Musyoki, Jennifer N.; Newton, Charles R. J. C.; Pain, Arnab; Berriman, Matthew; Marsh, Kevin; Bull, Peter C.

    2009-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host–parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are ≈60 copies in each parasite genome. In sub-Saharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes “cys2,” containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host–parasite relationship. PMID:20018734

  7. Transferred interbacterial antagonism genes augment eukaryotic innate immune function

    PubMed Central

    Chou, Seemay; Daugherty, Matthew D.; Peterson, S. Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L.; Fritz-Laylin, Lillian K.; Ferrin, Michael A.; Harding, Brittany N.; Jacobs-Wagner, Christine; Yang, X. Frank; Vollmer, Waldemar; Malik, Harmit S.

    2015-01-01

    Horizontal gene transfer (HGT) allows organisms to rapidly acquire adaptive traits1. Though documented instances of HGT from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option2. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce anti-bacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system (T6SS)3. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years via purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the etiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for facile co-option by eukaryotic innate immune systems. PMID:25470067

  8. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    PubMed Central

    Aoki, Christopher A.; Dawson, Kevin; Kenny, Thomas P.; Gershwin, M. Eric; Bowlus, Christopher L.

    2006-01-01

    Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA) from peripheral blood mononuclear cells (PBMC) was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6) and membrane-spanning 4-domains, subfamily A (ms4a) were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5) was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated. PMID:17162367

  9. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions. PMID:26118468

  10. Gene Gun-Mediated DNA Immunization Primes Development of Mucosal Immunity against Bovine Herpesvirus 1 in Cattle†

    PubMed Central

    Loehr, B. I.; Willson, P.; Babiuk, L. A.; van Drunen Littel-van den Hurk, S.

    2000-01-01

    Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration. PMID:10846091

  11. Diversification of innate immune genes: lessons from the purple sea urchin.

    PubMed

    Smith, L Courtney

    2010-01-01

    Pathogen diversification can alter infection virulence, which in turn drives the evolution of host immune diversification, resulting in countermeasures for survival in this arms race. Somatic recombination of the immunoglobulin gene family members is a very effective mechanism to diversify antibodies and T-cell receptors that function in the adaptive immune system. Although mechanisms to diversify innate immune genes are not clearly understood, a seemingly unlikely source for insight into innate immune diversification may be derived from the purple sea urchin, which has recently had its genome sequenced and annotated. Although there are many differences, some characteristics of the sea urchin make for a useful tool to understand the human immune system. The sea urchin is phylogenetically related to humans although, as a group, sea urchins are evolutionarily much older than mammals. Humans require both adaptive and innate immune responses to survive immune challenges, whereas sea urchins only require innate immune functions. Genes that function in immunity tend to be members of families, and the sea urchin has several innate immune gene families. One of these is the Sp185/333 gene family with about 50 clustered members that encode a diverse array of putative immune response proteins. Understanding gene diversification in the Sp185/333 family in the sea urchin may illuminate new mechanisms of diversification that could apply to gene families that function in innate immunity in humans, such as the killer immunoglobulin-like receptor genes. PMID:20354110

  12. Calcitonin Gene-Related Peptide: Key Regulator of Cutaneous Immunity

    PubMed Central

    Granstein, Richard D.; Wagner, John A.; Stohl, Lori L.; Ding, Wanhong

    2014-01-01

    Calcitonin gene-related peptide (CGRP) has been viewed as a neuropeptide and vasodilator. However, CGRP is more appropriately thought of as a pleiotropic signaling molecule. Indeed, CGRP has key regulatory functions on immune and inflammatory processes within the skin. CGRP-containing nerves are intimately associated with epidermal LCs and CGRP has profound regulatory effects on Langerhans cell antigen-presenting capability. When LCs are exposed to CGRP in vitro, their ability to present antigen for in vivo priming of naïve mice or elicitation of delayed-type hypersensitivity is inhibited in at least some situations. Administration of CGRP intradermally inhibits acquisition of immunity to Th1-dominant haptens applied to the injected site while augmenting immunity to Th2-dominant haptens, although the cellular targets of activity in these experiments remains unclear. Although CGRP can be a pro-inflammatory agent, several studies have demonstrated that administration of CGRP can inhibit the elicitation of inflammation by inflammatory stimuli in vivo. In this regard, CGRP inhibits the release of certain chemokines by stimulated endothelial cells. This is likely to be physiologically relevant since cutaneous blood vessels are innervated by sensory nerves. Exciting new studies suggest a significant role for CGRP in the pathogenesis of psoriasis and, most strikingly, that CGRP inhibit the ability of LCs to transmit the human immunodeficiency virus 1 to T lymphocytes. A more complete understanding of the role of CGRP in the skin immune system may lead to new and novel approaches for the therapy of immune mediated skin disorders. PMID:25534428

  13. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  14. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses.

    PubMed

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  15. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  16. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    PubMed Central

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  17. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  18. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    PubMed

    Barribeau, Seth M; Schmid-Hempel, Paul; Sadd, Ben M

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  19. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response

    PubMed Central

    Schmid-Hempel, Paul; Sadd, Ben M.

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters’ immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  20. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    PubMed Central

    Yang, Lili; Wang, Pin

    2014-01-01

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. PMID:24473340

  1. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes

    PubMed Central

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways. PMID:26617621

  2. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-02-01

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. PMID:24473340

  3. Integrated immunogenomics in the chicken: Deciphering the immune response to identify disease resistance genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to infection takes place at many levels, and involves both non-specific and specific immune mechanisms. The chicken has a different repertoire of immune genes, molecules, cells and organs compared to mammals. To understand the role of any disease resistance gene(s), it is therefore impo...

  4. Characterization of rainbow trout (Oncorhynchus mykiss) spleen transcriptome and identification of immune-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...

  5. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID. PMID:27056559

  6. Copy number polymorphisms are not a common feature of innate immune genes.

    PubMed

    Linzmeier, Rose M; Ganz, Tomas

    2006-07-01

    Extensive copy number polymorphism was recently reported for innate immunity-related alpha-defensin genes DEFA1 and DEFA3 and beta-defensin genes DEFB4, DEFB103, and DEFB104. To establish whether such polymorphisms are a common feature of innate immune genes we used quantitative real-time PCR to determine the copy numbers of seven genes whose products have important innate immune functions. The genes encoding lysozyme, lactoferrin, cathelicidin antimicrobial peptide (hCAP18/LL-37), cathepsin G, bactericidal/permeability-increasing protein, azurocidin (CAP37/heparin-binding protein), and neutrophil elastase were each found to be single copy per haploid genome. These findings, along with the recent observation that defensin genes DEFA4, DEFA5, DEFA6, and DEFB1 are single copy, suggest that copy number polymorphisms are not a common feature of the innate immune genome but are restricted to a small subset of innate immunity-related genes. PMID:16617005

  7. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii)

    PubMed Central

    Hewavisenti, Rehana V.; Morris, Katrina M.; O’Meally, Denis; Cheng, Yuanyuan; Papenfuss, Anthony T.

    2016-01-01

    Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother’s milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk. PMID:26793426

  8. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Hewavisenti, Rehana V; Morris, Katrina M; O'Meally, Denis; Cheng, Yuanyuan; Papenfuss, Anthony T; Belov, Katherine

    2016-01-01

    Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother's milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk. PMID:26793426

  9. Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens.

    PubMed

    Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Dunn, Peter O

    2015-12-01

    Immune-receptor genes of the adaptive immune system, such as the major histocompatibility complex (MHC), are involved in recognizing specific pathogens and are known to have high rates of adaptive evolution, presumably as a consequence of rapid co-evolution between hosts and pathogens. In contrast, many 'mediating' genes of the immune system do not interact directly with specific pathogens and are involved in signalling (e.g. cytokines) or controlling immune cell growth. As a consequence, we might expect stronger selection at immune-receptor than mediating genes, but these two types of genes have not been compared directly in wild populations. Here, we tested the hypothesis that selection differs between MHC (class I and II) and mediating genes by comparing levels of population differentiation across the range of greater prairie-chickens (Tympanuchus cupido). As predicted, there was stronger population differentiation and isolation by distance at immune receptor (MHC) than at either mediating genes or neutral microsatellites, suggesting a stronger role of local adaptation at the MHC. In contrast, mediating genes displayed weaker differentiation between populations than neutral microsatellites, consistent with selection favouring similar alleles across populations for mediating genes. In addition to selection, drift also had a stronger effect on immune receptor (MHC) than mediating genes as indicated by the stronger decline of MHC variation in relation to population size. This is the first study in the wild to show that the effects of selection and drift on immune genes vary across populations depending on their functional role. PMID:26547898

  10. Identification of pleiotropic genes and gene sets underlying growth and immunity traits: a case study on Meishan pigs.

    PubMed

    Zhang, Z; Wang, Z; Yang, Y; Zhao, J; Chen, Q; Liao, R; Chen, Z; Zhang, X; Xue, M; Yang, H; Zheng, Y; Wang, Q; Pan, Y

    2016-04-01

    Both growth and immune capacity are important traits in animal breeding. The animal quantitative trait loci (QTL) database is a valuable resource and can be used for interpreting the genetic mechanisms that underlie growth and immune traits. However, QTL intervals often involve too many candidate genes to find the true causal genes. Therefore, the aim of this study was to provide an effective annotation pipeline that can make full use of the information of Gene Ontology terms annotation, linkage gene blocks and pathways to further identify pleiotropic genes and gene sets in the overlapping intervals of growth-related and immunity-related QTLs. In total, 55 non-redundant QTL overlapping intervals were identified, 1893 growth-related genes and 713 immunity-related genes were further classified into overlapping intervals and 405 pleiotropic genes shared by the two gene sets were determined. In addition, 19 pleiotropic gene linkage blocks and 67 pathways related to immunity and growth traits were discovered. A total of 343 growth-related genes and 144 immunity-related genes involved in pleiotropic pathways were also identified, respectively. We also sequenced and genotyped 284 individuals from Chinese Meishan pigs and European pigs and mapped the single nucleotide polymorphisms (SNPs) to the pleiotropic genes and gene sets that we identified. A total of 971 high-confidence SNPs were mapped to the pleiotropic genes and gene sets that we identified, and among them 743 SNPs were statistically significant in allele frequency between Meishan and European pigs. This study explores the relationship between growth and immunity traits from the view of QTL overlapping intervals and can be generalized to explore the relationships between other traits. PMID:26689779

  11. Genome-wide analysis of immune system genes by expressed sequence Tag profiling.

    PubMed

    Giallourakis, Cosmas C; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E; Zukerberg, Lawrence R; Daly, Mark J; Rioux, John D; Xavier, Ramnik J

    2013-06-01

    Profiling studies of mRNA and microRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as the Encyclopedia of DNA Elements have demonstrated the benefit of coupling RNA sequencing analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including noncoding RNAs. As a result, we have established the Immunogene database, representing an integrated EST road map of gene expression in human immune cells, which can be used to further investigate the function of coding and noncoding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus, we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  12. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity.

    PubMed

    Song, Xiaojun; Hu, Jing; Jin, Ping; Chen, Liming; Ma, Fei

    2013-10-01

    The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family. PMID:23657135

  13. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  14. Massive expansion and functional divergence of innate immune genes in a protostome

    PubMed Central

    Zhang, Linlin; Li, Li; Guo, Ximing; Litman, Gary W.; Dishaw, Larry J.; Zhang, Guofan

    2015-01-01

    The molecules that mediate innate immunity are encoded by relatively few genes and exhibit broad specificity. Detailed annotation of the Pacific oyster (Crassostrea gigas) genome, a protostome invertebrate, reveals large-scale duplication and divergence of multigene families encoding molecules that effect innate immunity. Transcriptome analyses indicate dynamic and orchestrated specific expression of numerous innate immune genes in response to experimental challenge with pathogens, including bacteria, and a pathogenic virus. Variable expression of individual members of the multigene families encoding these genes also occurs during different types of abiotic stress (environmentally-equivalent conditions of temperature, salinity and desiccation). Multiple families of immune genes are responsive in concert to certain biotic and abiotic challenges. Individual members of expanded families of immune genes are differentially expressed under both biotic challenge and abiotic stress conditions. Members of the same families of innate immune molecules also are transcribed in developmental stage- and tissue-specific manners. An integrated, highly complex innate immune system that exhibits remarkable discriminatory properties and responses to different pathogens as well as environmental stress has arisen through the adaptive recruitment of tandem duplicated genes. The co-adaptive evolution of stress and innate immune responses appears to have an ancient origin in phylogeny. PMID:25732911

  15. Comparative tissue expression of American lobster (Homarus americanus) immune genes during bacterial and scuticociliate challenge.

    PubMed

    Clark, K Fraser; Acorn, Adam R; Wang, Haili; Greenwood, Spencer J

    2015-12-01

    The American lobster (Homarus americanus) fishery is the most economically significant fishery in Canada; although comparatively little is known about the lobsters' response to pathogenic challenge. This is the first study to investigate the expression of immune genes in tissues outside of the lobster hepatopancreas in response to challenges by the Gram-positive bacteria, Aerococcus viridans var. homari or the scuticociliate parasite, Anophryoides haemophila. The hepatopancreas has been regarded as the major humoral immune organ in crustaceans, but the contribution of other organs and tissues to the molecular immune response has largely been overlooked. This study used RT-qPCR to monitor the gene expression of several immune genes including three anti-lipopolysaccharide isoforms (ALF) Homame ALF-B1, Homame ALF-C1 and ALFHa-1, acute phase serum amyloid protein A (SAA), as well as thioredoxin and hexokinase, in antennal gland and gill tissues. Our findings indicate that the gene expression of the SAA and all ALF isoforms in the antennal gland and gill tissues increased in response to pathogenic challenge. However, there was differential expression of individual ALF isoforms that were dependent on both the tissue, and the pathogen used in the challenge. The gene expression changes of several immune genes were found to be higher in the antennal gland than have been previously reported for the hepatopancreas. This study demonstrates that increased immune gene expression from the gill and antennal gland over the course of pathogen induced disease contributes to the immune response of H. americanus. PMID:26551049

  16. Innate immunity gene polymorphisms and the risk of colorectal neoplasia.

    PubMed

    Chang, Cindy M; Chia, Victoria M; Gunter, Marc J; Zanetti, Krista A; Ryan, Bríd M; Goodman, Julie E; Harris, Curtis C; Weissfeld, Joel; Huang, Wen-Yi; Chanock, Stephen; Yeager, Meredith; Hayes, Richard B; Berndt, Sonja I

    2013-11-01

    Inherited variation in genes that regulate innate immunity and inflammation may contribute to colorectal neoplasia risk. To evaluate this association, we conducted a nested case-control study of 451 colorectal cancer cases, 694 colorectal advanced adenoma cases and 696 controls of European descent within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. A total of 935 tag single-nucleotide polymorphisms (SNPs) in 98 genes were evaluated. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with colorectal neoplasia. Sixteen SNPs were associated with colorectal neoplasia risk at P < 0.01, but after adjustment for multiple testing, only rs2838732 (ITGB2) remained suggestively associated with colorectal neoplasia (OR(per T allele) = 0.68, 95% CI: 0.57-0.83, P = 7.7 × 10(-5), adjusted P = 0.07). ITGB2 codes for the CD18 protein in the integrin beta chain family. The ITGB2 association was stronger for colorectal cancer (OR(per T allele) = 0.41, 95% CI: 0.30-0.55, P = 2.4 × 10(-) (9)) than for adenoma (OR(per T allele) = 0.84, 95%CI: 0.69-1.03, P = 0.08), but it did not replicate in the validation study. The ITGB2 rs2838732 association was significantly modified by smoking status (P value for interaction = 0.003). Among never and former smokers, it was inversely associated with colorectal neoplasia (OR(per T allele) = 0.5, 95% CI: 0.37-0.69 and OR(per T allele) = 0.72, 95% CI: 0.54-0.95, respectively), but no association was seen among current smokers. Other notable findings were observed for SNPs in BPI/LBP and MYD88. Although the results need to be replicated, our findings suggest that genetic variation in inflammation-related genes may be related to the risk of colorectal neoplasia. PMID:23803696

  17. Innate immunity gene polymorphisms and the risk of colorectal neoplasia

    PubMed Central

    Berndt, Sonja I.

    2013-01-01

    Inherited variation in genes that regulate innate immunity and inflammation may contribute to colorectal neoplasia risk. To evaluate this association, we conducted a nested case–control study of 451 colorectal cancer cases, 694 colorectal advanced adenoma cases and 696 controls of European descent within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. A total of 935 tag single-nucleotide polymorphisms (SNPs) in 98 genes were evaluated. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with colorectal neoplasia. Sixteen SNPs were associated with colorectal neoplasia risk at P < 0.01, but after adjustment for multiple testing, only rs2838732 (ITGB2) remained suggestively associated with colorectal neoplasia (ORper T allele = 0.68, 95% CI: 0.57–0.83, P = 7.7 × 10–5, adjusted P = 0.07). ITGB2 codes for the CD18 protein in the integrin beta chain family. The ITGB2 association was stronger for colorectal cancer (ORper T allele = 0.41, 95% CI: 0.30–0.55, P = 2.4 × 10− 9) than for adenoma (ORper T allele = 0.84, 95%CI: 0.69–1.03, P = 0.08), but it did not replicate in the validation study. The ITGB2 rs2838732 association was significantly modified by smoking status (P value for interaction = 0.003). Among never and former smokers, it was inversely associated with colorectal neoplasia (ORper T allele = 0.5, 95% CI: 0.37–0.69 and ORper T allele = 0.72, 95% CI: 0.54–0.95, respectively), but no association was seen among current smokers. Other notable findings were observed for SNPs in BPI/LBP and MYD88. Although the results need to be replicated, our findings suggest that genetic variation in inflammation-related genes may be related to the risk of colorectal neoplasia. PMID:23803696

  18. Ventromedial hypothalamic lesions change the expression of neuron-related genes and immune-related genes in rat liver.

    PubMed

    Kiba, Takayoshi; Kintaka, Yuri; Suzuki, Yoko; Nakata, Eiko; Ishigaki, Yasuhito; Inoue, Shuji

    2009-05-01

    There are no reports that hypothalamus can directly affect the expression of neuron-related genes and immune-related genes in liver. We identified genes of which expression profiles showed significant modulation in rat liver after ventromedial hypothalamic (VMH) lesions. Total RNA was extracted, and differences in the gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH lesioned rats were investigated using DNA microarray analysis. The result revealed that VMH lesions regulated the genes that were involved in functions related to neuronal development and immunofunction in the liver. Real-time PCR also confirmed that gene expression of SULT4A1 was upregulated, but expression of ACSL1 and CISH were downregulated at day 3 after VMH lesions. VMH lesions may change the expression of neuron-related genes and immune-related genes in rat liver. PMID:19429097

  19. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer.

    PubMed

    Araujo, Jhajaira M; Prado, Alexandra; Cardenas, Nadezhda K; Zaharia, Mayer; Dyer, Richard; Doimi, Franco; Bravo, Leny; Pinillos, Luis; Morante, Zaida; Aguilar, Alfredo; Mas, Luis A; Gomez, Henry L; Vallejos, Carlos S; Rolfo, Christian; Pinto, Joseph A

    2016-04-12

    There are different biological and clinical patterns of lung cancer between genders indicating intrinsic differences leading to increased sensitivity to cigarette smoke-induced DNA damage, mutational patterns of KRAS and better clinical outcomes in women while differences between genders at gene-expression levels was not previously reported. Here we show an enrichment of immune genes in NSCLC in women compared to men. We found in a GSEA analysis (by biological processes annotated from Gene Ontology) of six public datasets a repeated observation of immune gene sets enrichment in women. "Immune system process", "immune response", "defense response", "cellular defense response" and "regulation of immune system process" were the gene sets most over-represented while APOBEC3G, APOBEC3F, LAT, CD1D and CCL5 represented the top-five core genes. Characterization of immune cell composition with the platform CIBERSORT showed no differences between genders; however, there were differences when tumor tissues were compared to normal tissues. Our results suggest different immune responses in NSCLC between genders that could be related with the different clinical outcome. PMID:26958810

  20. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer

    PubMed Central

    Araujo, Jhajaira M.; Prado, Alexandra; Cardenas, Nadezhda K.; Zaharia, Mayer; Dyer, Richard; Doimi, Franco; Bravo, Leny; Pinillos, Luis; Morante, Zaida; Aguilar, Alfredo; Mas, Luis A.; Gomez, Henry L.; Vallejos, Carlos S.; Rolfo, Christian; Pinto, Joseph A.

    2016-01-01

    There are different biological and clinical patterns of lung cancer between genders indicating intrinsic differences leading to increased sensitivity to cigarette smoke-induced DNA damage, mutational patterns of KRAS and better clinical outcomes in women while differences between genders at gene-expression levels was not previously reported. Here we show an enrichment of immune genes in NSCLC in women compared to men. We found in a GSEA analysis (by biological processes annotated from Gene Ontology) of six public datasets a repeated observation of immune gene sets enrichment in women. “Immune system process”, “immune response”, “defense response”, “cellular defense response” and “regulation of immune system process” were the gene sets most over-represented while APOBEC3G, APOBEC3F, LAT, CD1D and CCL5 represented the top-five core genes. Characterization of immune cell composition with the platform CIBERSORT showed no differences between genders; however, there were differences when tumor tissues were compared to normal tissues. Our results suggest different immune responses in NSCLC between genders that could be related with the different clinical outcome. PMID:26958810

  1. The immune gene repertoire encoded in the purple sea urchin genome.

    PubMed

    Hibino, Taku; Loza-Coll, Mariano; Messier, Cynthia; Majeske, Audrey J; Cohen, Avis H; Terwilliger, David P; Buckley, Katherine M; Brockton, Virginia; Nair, Sham V; Berney, Kevin; Fugmann, Sebastian D; Anderson, Michele K; Pancer, Zeev; Cameron, R Andrew; Smith, L Courtney; Rast, Jonathan P

    2006-12-01

    Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology. PMID:17027739

  2. Intestinal immune gene response to bacterial challenge in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mucosal immune system of fish is poorly understood and defined models for studying this system are lacking. The objective of this study was to evaluate different challenge paradigms and pathogens to examine the magnitude of change in intestinal immune gene expression. Rainbow trout were expos...

  3. Modulation of rainbow trout (Oncorhynchus mykiss) intestinal immune gene expression following bacterial challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mucosal immune system of fish is still poorly understood, and defined models for studying natural host-pathogen interaction are lacking. The objective of this study was to evaluate different challenge paradigms and pathogens to examine the magnitude of change in intestinal immune gene expressio...

  4. Bifunctional Gene Cluster lnqBCDEF Mediates Bacteriocin Production and Immunity with Differential Genetic Requirements

    PubMed Central

    Iwatani, Shun; Horikiri, Yuko; Zendo, Takeshi; Nakayama, Jiro

    2013-01-01

    A comprehensive gene disruption of lacticin Q biosynthetic cluster lnqQBCDEF was carried out. The results demonstrated the necessity of the complete set of lnqQBCDEF for lacticin Q production, whereas immunity was flexible, with LnqEF (ABC transporter) being essential for and LnqBCD partially contributing to immunity. PMID:23335763

  5. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes.

    PubMed

    Wang, Pingzhang; Han, Wenling; Ma, Dalong

    2016-07-15

    Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries. PMID:27288532

  6. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    PubMed

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  7. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    PubMed Central

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  8. Manipulating the in vivo immune response by targeted gene knockdown

    PubMed Central

    Lieberman, Judy

    2015-01-01

    Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic. PMID:26149459

  9. Manipulating the in vivo immune response by targeted gene knockdown.

    PubMed

    Lieberman, Judy

    2015-08-01

    Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic. PMID:26149459

  10. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  11. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  12. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  13. Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes

    PubMed Central

    Waterhouse, Robert M.; Kriventseva, Evgenia V.; Meister, Stephan; Xi, Zhiyong; Alvarez, Kanwal S.; Bartholomay, Lyric C.; Barillas-Mury, Carolina; Bian, Guowu; Blandin, Stephanie; Christensen, Bruce M.; Dong, Yuemei; Jiang, Haobo; Kanost, Michael R.; Koutsos, Anastasios C.; Levashina, Elena A.; Li, Jianyong; Ligoxygakis, Petros; MacCallum, Robert M.; Mayhew, George F.; Mendes, Antonio; Michel, Kristin; Osta, Mike A.; Paskewitz, Susan; Shin, Sang Woon; Vlachou, Dina; Wang, Lihui; Wei, Weiqi; Zheng, Liangbiao; Zou, Zhen; Severson, David W.; Raikhel, Alexander S.; Kafatos, Fotis C.; Dimopoulos, George; Zdobnov, Evgeny M.; Christophides, George K.

    2007-01-01

    Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associated with different functional gene categories and particular aspects of immune reactions. These dynamics reflect in part continuous readjustment between accommodation and rejection of pathogens and suggest how innate immunity may have evolved. PMID:17588928

  14. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes.

    PubMed

    Waterhouse, Robert M; Kriventseva, Evgenia V; Meister, Stephan; Xi, Zhiyong; Alvarez, Kanwal S; Bartholomay, Lyric C; Barillas-Mury, Carolina; Bian, Guowu; Blandin, Stephanie; Christensen, Bruce M; Dong, Yuemei; Jiang, Haobo; Kanost, Michael R; Koutsos, Anastasios C; Levashina, Elena A; Li, Jianyong; Ligoxygakis, Petros; Maccallum, Robert M; Mayhew, George F; Mendes, Antonio; Michel, Kristin; Osta, Mike A; Paskewitz, Susan; Shin, Sang Woon; Vlachou, Dina; Wang, Lihui; Wei, Weiqi; Zheng, Liangbiao; Zou, Zhen; Severson, David W; Raikhel, Alexander S; Kafatos, Fotis C; Dimopoulos, George; Zdobnov, Evgeny M; Christophides, George K

    2007-06-22

    Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associated with different functional gene categories and particular aspects of immune reactions. These dynamics reflect in part continuous readjustment between accommodation and rejection of pathogens and suggest how innate immunity may have evolved. PMID:17588928

  15. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  16. Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection

    PubMed Central

    Hosseini, Iraj; Gama, Lucio; Mac Gabhann, Feilim

    2015-01-01

    Immune response genes play an important role during acute HIV and SIV infection. Using an SIV macaque model of AIDS and CNS disease, our overall goal was to assess how the expression of genes associated with immune and inflammatory responses are longitudinally changed in different organs or cells during SIV infection. To compare RNA expression of a panel of 88 immune-related genes across time points and among three tissues – spleen, mesenteric lymph nodes (MLN) and peripheral blood mononuclear cells (PBMC) – we designed a set of Nanostring probes. To identify significant genes during acute SIV infection and to investigate whether these genes are tissue-specific or have global roles, we introduce a novel multiplexed component analysis (MCA) method. This combines multivariate analysis methods with multiple preprocessing methods to create a set of 12 “judges”; each judge emphasizes particular types of change in gene expression to which cells could respond, for example, the absolute or relative size of expression change from baseline. Compared to bivariate analysis methods, our MCA method improved classification rates. This analysis allows us to identify three categories of genes: (a) consensus genes likely to contribute highly to the immune response; (b) genes that would contribute highly to the immune response only if certain assumptions are met – e.g. that the cell responds to relative expression change rather than absolute expression change; and (c) genes whose contribution to immune response appears to be modest. We then compared the results across the three tissues of interest; some genes are consistently highly-contributing in all tissues, while others are specific for certain tissues. Our analysis identified CCL8, CXCL10, CXCL11, MxA, OAS2, and OAS1 as top contributing genes, all of which are stimulated by type I interferon. This suggests that the cytokine storm during acute SIV infection is a systemic innate immune response against viral replication

  17. Immunity-related genes in Ixodes scapularis—perspectives from genome information

    PubMed Central

    Smith, Alexis A.; Pal, Utpal

    2014-01-01

    Ixodes scapularis, commonly known as the deer tick, transmits a wide array of human and animal pathogens including Borrelia burgdorferi. Despite substantial advances in our understanding of immunity in model arthropods, including other disease vectors, precisely how I. scapularis immunity functions and influences persistence of invading pathogens remains largely unknown. This review provides a comprehensive analysis of the recently sequenced I. scapularis genome for the occurrence of immune-related genes and related pathways. We will also discuss the potential influence of immunity-related genes on the persistence of tick-borne pathogens with an emphasis on the Lyme disease pathogen B. burgdorferi. Further enhancement of our knowledge of tick immune responses is critical to understanding the molecular basis of the persistence of tick-borne pathogens and development of novel interventions against the relevant infections. PMID:25202684

  18. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.

    PubMed

    Reese, Tiffany A; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K; Bürger, Matheus C; Pulendran, Bali; Sekaly, Rafick-Pierre; Jameson, Stephen C; Masopust, David; Haining, W Nicholas; Virgin, Herbert W

    2016-05-11

    Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939

  19. Species-wide Genetic Incompatibility Analysis Identifies Immune Genes as Hotspots of Deleterious Epistasis

    PubMed Central

    Chae, Eunyoung; Bomblies, Kirsten; Kim, Sang-Tae; Karelina, Darya; Zaidem, Maricris; Ossowski, Stephan; Martín-Pizarro, Carmen; Laitinen, Roosa A. E.; Rowan, Beth A.; Tenenboim, Hezi; Lechner, Sarah; Demar, Monika; Habring-Müller, Anette; Lanz, Christa; Rätsch, Gunnar; Weigel, Detlef

    2014-01-01

    Summary Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hotspots in the genome, often in regions densely populated by NLR immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DANGEROUS MIX2 (DM2), which causes multiple, independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors at the front lines of host-pathogen co-evolution limit the combinations of favorable disease resistance alleles accessible to plant genomes. PMID:25467443

  20. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes.

    PubMed

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000-13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change-containing variation acquired from archaic hominins or adaptive variants in specific populations-improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  1. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes

    PubMed Central

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  2. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria.

    PubMed

    Pulpitel, Tamara; Pernice, Mathieu; Simpson, Stephen J; Ponton, Fleur

    2015-01-01

    The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs) allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA), gram-negative binding protein 1 (GNBP1) and prophenoloxidase (ProPO) were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS) solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works. PMID:26463191

  3. Immune-Related Functions of the Hivep Gene Family in East African Cichlid Fishes

    PubMed Central

    Diepeveen, Eveline T.; Roth, Olivia; Salzburger, Walter

    2013-01-01

    Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host–pathogen interactions within an adaptive radiation. PMID:24142922

  4. Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus.

    PubMed

    Yang, Aifu; Zhou, Zunchun; Dong, Ying; Jiang, Bei; Wang, Xiaoyu; Chen, Zhong; Guan, Xiaoyan; Wang, Bai; Sun, Dapeng

    2010-11-01

    The echinoderm immunity system has been extensively investigated in adults in several classes such as echinoid and holothuroidea. However, the defense mechanism in embryos and larvae remains largely unexplored. To profile the immune-related genes expression in embryos and larvae and to monitor the stimulation of the innate immune response by lipopolysaccharides (LPS) challenge, we investigated the expression patterns of nine immune-related genes in embryos and larvae of sea cucumber (Apostichopus japonicus) at eleven developmental stages using quantitative real-time PCR (qRT-PCR). The expression of six encoding proteins including heat shock protein70 (Hsp70), Hsp90, Hsp gp96, thymosin-beta, ferritin and DD104 protein was detected at all eleven development stages according to mRNA expression data. However, the expression of mannan-binding C-type lectin (MBCL) was detected at early auricularia to juvenile stages, while lysozyme and serine proteinase inhibitor (SPI) were detected only at juvenile stage. Out of these nine genes, three (MBCL, lysozyme and SPI) were found to be up-regulated in mRNA expression upon LPS challenge, whereas the other six showed no significant change. Our study presents a first preliminary view into the expression patterns of immune-related genes at different developmental stages of sea cucumber, which increases the available information on echinoderm immunity. PMID:20673800

  5. Immune Responses of Piglets Immunized by a Recombinant Plasmid Containing Porcine Circovirus Type 2 and Porcine Interleukin-18 Genes

    PubMed Central

    Chen, Guang-Lei; Fu, Peng-Fei; Wang, Lin-Qing

    2014-01-01

    Abstract In this study, two recombinant plasmids containing the ORF2 gene of porcine circovirus type 2 (PCV2) with or without porcine interleukin-18 (IL-18) were constructed and evaluated for their ability to protect piglets against PCV2 challenge. Transient expression of the plasmids in PK-15 cells could be detected using Western blot. Piglets were given two intramuscular immunizations 3 weeks apart and were challenged with a virulent Wuzhi strain of PCV2 at 42 days after the initial immunization. All animals vaccinated with pBudCE4.1-ORF2 or with pBudCE4.1-ORF2/IL18 developed PCV2-specific antibody and T-lymphocyte proliferative responses. The levels of T-lymphocyte proliferation in piglets immunized with pBudCE4.1-ORF2/IL18 were significantly higher than in those immunized with pBudCE4.1-ORF2, and pBudCE4.1-ORF2/IL18 stimulated a significantly increased production of IFN-γ and IL-2. Furthermore, PCV2 challenge experiments showed that the DNA vaccine-immunized groups can partially prevent PCV2 viremia and significantly reduce the amount of PCV2 virus in the lymphoid tissues, and the piglets immunized by pBudCE4.1-ORF2/IL18 exhibit a marked inhibition of PCV2 replication compared to the pBudCE4.1-ORF2 group. These data demonstrate that the plasmid pBudCE4.1-ORF2/IL18 may be an effective approach for increasing PCV2 DNA vaccine immunogenicity. PMID:25268976

  6. Association of variants in innate immune genes with asthma and eczema

    PubMed Central

    Sharma, Sunita; Poon, Audrey; Himes, Blanca E.; Lasky-Su, Jessica; Sordillo, Joanne E.; Belanger, Kathleen; Milton, Donald K.; Bracken, Michael B.; Triche, Elizabeth W.; Leaderer, Brian P.; Gold, Diane R.; Litonjua, Augusto A.

    2012-01-01

    Background The innate immune pathway is important in the pathogenesis of asthma and eczema. However, only a few variants in these genes have been associated with either disease. We investigate the association between polymorphisms of genes in the innate immune pathway with childhood asthma and eczema. In addition, we compare individual associations with those discovered using a multivariate approach. Methods Using a novel method, case control based association testing (C2BAT), 569 single nucleotide polymorphisms (SNPs) in 44 innate immune genes were tested for association with asthma and eczema in children from the Boston Home Allergens and Asthma Study and the Connecticut Childhood Asthma Study. The screening algorithm was used to identify the top SNPs associated with asthma and eczema. We next investigated the interaction of innate immune variants with asthma and eczema risk using Bayesian networks. Results After correction for multiple comparisons, 7 SNPs in 6 genes (CARD25, TGFB1, LY96, ACAA1, DEFB1, and IFNG) were associated with asthma (adjusted p-value<0.02), while 5 SNPs in 3 different genes (CD80, STAT4, and IRAKI) were significantly associated with eczema (adjusted p-value < 0.02). None of these SNPs were associated with both asthma and eczema. Bayesian network analysis identified 4 SNPs that were predictive of asthma and 10 SNPs that predicted eczema. Of the genes identified using Bayesian networks, only CD80 was associated with eczema in the single-SNP study. Using novel methodology that allows for screening and replication in the same population, we have identified associations of innate immune genes with asthma and eczema. Bayesian network analysis suggests that additional SNPs influence disease susceptibility via SNP interactions. Conclusion Our findings suggest that innate immune genes contribute to the pathogenesis of asthma and eczema, and that these diseases likely have different genetic determinants. PMID:22192168

  7. Intradermal Gene Immunization: The Possible Role of DNA Uptake in the Induction of Cellular Immunity to Viruses

    NASA Astrophysics Data System (ADS)

    Raz, Eyal; Carson, Dennis A.; Parker, Suezanne E.; Parr, Tyler B.; Abai, Anna M.; Aichinger, Gerald; Gromkowski, Stanislaw H.; Singh, Malini; Lew, Denise; Yankauckas, Michelle A.; Baird, Stephen M.; Rhodes, Gary H.

    1994-09-01

    The skin and mucous membranes are the anatomical sites where most viruses are first encountered by the immune system. Previous experiments have suggested that striated muscle cells are unique among mammalian cell types in their capacity to take up and express free DNA in the absence of a viral vector or physical carrier. However, we have found that mice injected into the superficial skin with free (naked) plasmid DNA encoding the influenza nucleoprotein gene had discrete foci of epidermal and dermal cells, including cells with dendritic morphology, that contained immunoreactive nucleoprotein antigen. A single intradermal administration of 0.3-15 μ g of free plasmid DNA induced anti-nucleoprotein-specific antibody and cytotoxic T lymphocytes that persisted for at least 68-70 weeks after vaccination. Intradermal gene administration induced higher antibody titers than did direct gene injection into skeletal muscle and did not cause local inflammation or necrosis. Compared with control animals, the gene-injected mice were resistant to challenge with a heterologous strain of influenza virus. These results indicate that the cells of the skin can take up and express free foreign DNA and induce cellular and humoral immune responses against the encoded protein. We suggest that DNA uptake by the skin-associated lymphoid tissues may play a role in the induction of cytotoxic T cells against viruses and other intracellular pathogens.

  8. Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis.

    PubMed

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-03-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  9. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare

    PubMed Central

    2012-01-01

    Background Wolbachia are vertically transmitted bacteria known to be the most widespread endosymbiont in arthropods. They induce various alterations of the reproduction of their host, including feminization of genetic males in isopod crustaceans. In the pill bug Armadillidium vulgare, the presence of Wolbachia is also associated with detrimental effects on host fertility and lifespan. Deleterious effects have been demonstrated on hemocyte density, phenoloxidase activity, and natural hemolymph septicemia, suggesting that infected individuals could have defective immune capacities. Since nothing is known about the molecular mechanisms involved in Wolbachia-A. vulgare interactions and its secondary immunocompetence modulation, we developed a transcriptomics strategy and compared A. vulgare gene expression between Wolbachia-infected animals (i.e., “symbiotic” animals) and uninfected ones (i.e., “asymbiotic” animals) as well as between animals challenged or not challenged by a pathogenic bacteria. Results Since very little genetic data is available on A. vulgare, we produced several EST libraries and generated a total of 28 606 ESTs. Analyses of these ESTs revealed that immune processes were over-represented in most experimental conditions (responses to a symbiont and to a pathogen). Considering canonical crustacean immune pathways, these genes encode antimicrobial peptides or are involved in pathogen recognition, detoxification, and autophagy. By RT-qPCR, we demonstrated a general trend towards gene under-expression in symbiotic whole animals and ovaries whereas the same gene set tends to be over-expressed in symbiotic immune tissues. Conclusion This study allowed us to generate the first reference transcriptome ever obtained in the Isopoda group and to identify genes involved in the major known crustacean immune pathways encompassing cellular and humoral responses. Expression of immune-related genes revealed a modulation of host immunity when females are

  10. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis1

    PubMed Central

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-01-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  11. Strategies to Modulate Immune Responses: A New Frontier for Gene Therapy

    PubMed Central

    Arruda, Valder R; Favaro, Patricia; Finn, Jonathan D

    2009-01-01

    The success of gene therapy strategies to cure disease relies on the control of unwanted immune responses to transgene products, genetically modified cells and/or to the vector. Effective treatment of an established immune response is much harder to achieve than prevention of a response before it has had a chance to develop. However, preventive strategies are not always effective in avoiding immune responses, thus the use of drugs to induce immunosuppression (IS) is required. The growing discovery of novel drugs provides a conceptual shift from using generalized, moderately intensive immunosuppressive regimens towards a refined approach to attain the optimal balance of naive cells, effector cells, memory cells, and regulatory cells, harnessing the natural tolerance mechanisms of the body. We review several strategies based on transient IS coupled with gene therapy for sustained immune tolerance induction to the therapeutic transgene. PMID:19584819

  12. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes.

    PubMed

    Ali, Ali; Rexroad, Caird E; Thorgaard, Gary H; Yao, Jianbo; Salem, Mohamed

    2014-01-01

    Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture. PMID:25352861

  13. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    PubMed Central

    Ali, Ali; Rexroad, Caird E.; Thorgaard, Gary H.; Yao, Jianbo; Salem, Mohamed

    2014-01-01

    Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to “organismal systems” with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture. PMID:25352861

  14. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs. PMID:24959590

  15. Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora

    PubMed Central

    Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2012-01-01

    Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of

  16. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System

    PubMed Central

    Steuerman, Yael; Gat-Viks, Irit

    2016-01-01

    Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. PMID:27035464

  17. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System.

    PubMed

    Steuerman, Yael; Gat-Viks, Irit

    2016-04-01

    Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. PMID:27035464

  18. De novo annotation of the immune-enriched transcriptome provides insights into immune system genes of Chinese sturgeon (Acipenser sinensis).

    PubMed

    Zhu, Rong; Du, He-Jun; Li, Shun-Yi; Li, Ya-Dong; Ni, Hong; Yu, Xue-Jing; Yang, Yan-Yan; Fan, Yu-Ding; Jiang, Nan; Zeng, Ling-Bing; Wang, Xing-Guo

    2016-08-01

    Chinese sturgeon (Acipenser sinensis), one of the oldest extant actinopterygian fishes with very high evolutionary, economical and conservation interest, is considered to be one of the critically endangered aquatic animals in China. Up to date, the immune system of this species remains largely undetermined with little sequence information publicly available. Herein, the first comprehensive transcriptome of immune tissues for Chinese sturgeon was characterized using Illumina deep sequencing. Over 67 million high-quality reads were generated and de novo assembled into the final set of 91,739 unique sequences. The annotation pipeline revealed that 25,871 unigenes were successfully annotated in the public databases, of which only 2002 had significant match to the existing sequences for the genus Acipenser. Overall 22,827 unigenes were categorized into 52 GO terms, 12,742 were classified into 26 KOG categories, and 4968 were assigned to 339 KEGG pathways. A more detailed annotation search showed the presence of a notable representation of immune-related genes, which suggests that this non-teleost actinopterygian fish harbors the same intermediates as in the well known immune pathways from mammals and teleosts, such as pattern recognition receptor (PRR) signaling pathway, JAK-STAT signaling pathway, complement and coagulation pathway, T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additional genetic marker discovery led to the retrieval of 20,056 simple sequence repeats (SSRs) and 327,140 single nucleotide polymorphisms (SNPs). This immune-enriched transcriptome of Chinese sturgeon represents a rich resource that adds to the currently nascent field of chondrostean fish immunogenetics and furthers the conservation and management of this valuable fish. PMID:27368537

  19. Selection and Evaluation of Tissue Specific Reference Genes in Lucilia sericata during an Immune Challenge

    PubMed Central

    Baumann, Andre; Lehmann, Rüdiger; Beckert, Annika; Vilcinskas, Andreas; Franta, Zdeněk

    2015-01-01

    The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge. PMID:26252388

  20. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    PubMed

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. PMID:27231190

  1. Microgravity and Immunity: Changes in Lymphocyte Gene Expression

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; Ward, N. E.; Risin, S. A.

    2006-01-01

    Earlier studies had shown that modeled and true microgravity (MG) cause multiple direct effects on human lymphocytes. MG inhibits lymphocyte locomotion, suppresses polyclonal and antigen-specific activation, affects signal transduction mechanisms, as well as activation-induced apoptosis. In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes (MGSG) in general and specifically those genes that might be responsible for the functional and structural changes observed earlier. Two sets of experiments targeting different goals were conducted. In the first set, T-lymphocytes from normal donors were activated with antiCD3 and IL2 and then cultured in 1g (static) and modeled MG (MMG) conditions (Rotating Wall Vessel bioreactor) for 24 hours. This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity. In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus (PHA) thus triggering the apoptotic pathway. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes, were used for microarray analysis. In the first set of experiments MMG exposure resulted in altered expression of 89 genes, 10 of them were up-regulated and 79 down-regulated. In the second set, changes in expression were revealed in 85 genes, 20 were up-regulated and 65 were down-regulated. The analysis revealed that significant numbers of MGS genes are associated with signal transduction and apoptotic pathways. Interestingly, the majority of genes that responded by up- or down-regulation in the alternative sets of experiments were not the same, possibly reflecting different functional states of the examined T-lymphocyte populations. The responder genes (MGSG) might play an

  2. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins.

    PubMed

    Reinardy, H C; Chapman, J; Bodnar, A G

    2016-02-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, including genes involved in NF-κB signalling. Results suggest that activation of the innate immune system following DNA damage may contribute to the naturally occurring resistance to neoplastic disease observed in sea urchins. PMID:26911343

  3. Genome-wide screen for Mycobacterium tuberculosis genes that regulate host immunity.

    PubMed

    Beaulieu, Aimee M; Rath, Poonam; Imhof, Marianne; Siddall, Mark E; Roberts, Julia; Schnappinger, Dirk; Nathan, Carl F

    2010-01-01

    In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain. PMID:21170273

  4. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  5. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. PMID:26119928

  6. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima.

    PubMed

    Ramírez-Gómez, Francisco; Ortíz-Pineda, Pablo A; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; García-Arrarás, José E; García-Ararrás, José E

    2008-01-01

    We have analyzed 5,173 expressed sequence tags (ESTs) from three cDNA libraries of normal and regenerating intestinal tissue of the sea cucumber Holothuria glaberrima and found 22 putative immune-related genes. These sequences showed similarities (e-value approx 10(-8)) to genes involved in immune processes or expressed by immune cells. Sequences were analyzed using bioinformatic tools to determine a putative identity. In addition, phylogenetic analyses were performed to find relationships with similar proteins in other organisms. The mRNAs for ten sequences were detected in coelomocytes by using reverse transcription-polymerase chain reaction (RT-PCR). Moreover, five of them showed a significant increase in expression after an LPS challenge, while the other five showed no significant changes. These results show the variety of immune molecules that may be found in holothurians and support the idea that the invertebrate immune system is more than a collection of simple innate responses. Our study also provides new data of importance in deciphering the evolution and development of the immune system. PMID:18092157

  7. An MHC class I immune evasion gene of Marek’s Disease Virus

    PubMed Central

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D.

    2014-01-01

    Marek’s Disease Virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. PMID:25462349

  8. A gene associated with social immunity in the burying beetle Nicrophorus vespilloides

    PubMed Central

    Palmer, William J.; Duarte, Ana; Schrader, Matthew; Day, Jonathan P.; Kilner, Rebecca; Jiggins, Francis M.

    2016-01-01

    Some group-living species exhibit social immunity, where the immune response of one individual can protect others in the group from infection. In burying beetles, this is part of parental care. Larvae feed on vertebrate carcasses which their parents smear with exudates that inhibit microbial growth. We have sequenced the transcriptome of the burying beetle Nicrophorus vespilloides and identified six genes that encode lysozymes—a type of antimicrobial enzyme that has previously been implicated in social immunity in burying beetles. When females start breeding and producing antimicrobial anal exudates, we found that the expression of one of these genes was increased by approximately 1000 times to become one of the most abundant transcripts in the transcriptome. Females varied considerably in the antimicrobial properties of their anal exudates, and this was strongly correlated with the expression of this lysozyme. We conclude that we have likely identified a gene encoding a key effector molecule in social immunity and that it was recruited during evolution from a function in personal immunity. PMID:26817769

  9. Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon?

    PubMed Central

    Vinkler, Michal

    2015-01-01

    Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles. PMID:26090501

  10. Expression analysis of immune response genes in fish epithelial cells following ranavirus infection.

    PubMed

    Holopainen, Riikka; Tapiovaara, Hannele; Honkanen, Jarno

    2012-06-01

    Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection. PMID:22452879

  11. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity. PMID:18598713

  12. TGFβ receptor 1: an immune susceptibility gene in HPV-associated cancer.

    PubMed

    Levovitz, Chaya; Chen, Dan; Ivansson, Emma; Gyllensten, Ulf; Finnigan, John P; Alshawish, Sara; Zhang, Weijia; Schadt, Eric E; Posner, Marshal R; Genden, Eric M; Boffetta, Paolo; Sikora, Andrew G

    2014-12-01

    Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein-protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38-MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV(+) head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. PMID:25273091

  13. TGFβ Receptor 1: An Immune Susceptibility Gene in HPV-Associated Cancer

    PubMed Central

    Levovitz, Chaya; Chen, Dan; Ivansson, Emma; Gyllensten, Ulf; Finnigan, John P.; Alshawish, Sara; Zhang, Weijia; Schadt, Eric E.; Posner, Marshal R.; Genden, Eric M.; Boffetta, Paolo; Sikora, Andrew G.

    2015-01-01

    Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein–protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38–MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV+ head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. PMID:25273091

  14. Immunizations.

    PubMed

    Sanford, Christopher A; Jong, Elaine C

    2016-03-01

    Vaccinations are a cornerstone of the pretravel consultation. The pretravel provider should assess a traveler's past medical history, planned itinerary, activities, mode of travel, and duration of stay and make appropriate vaccine recommendations. Given that domestic vaccine-preventable illnesses are more common in international travelers than are exotic or low-income nation-associated vaccine-preventable illnesses, clinicians should first ensure that travelers are current regarding routine immunizations. Additional immunizations may be indicated in some travelers. Familiarity with geographic distribution and seasonality of infectious diseases is essential. Clinicians should be cognizant of which vaccines are live, as there exist contraindications for live vaccines. PMID:26900111

  15. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe

    PubMed Central

    Tschirren, Barbara

    2015-01-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  16. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe.

    PubMed

    Tschirren, Barbara

    2015-05-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  17. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression

    PubMed Central

    Fairfax, Benjamin P.; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C.

    2014-01-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor–modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants. PMID:24604202

  18. Testosterone regulates thyroid cancer progression by modifying tumor suppressor genes and tumor immunity

    PubMed Central

    Zhang, Lisa J.; Xiong, Yin; Nilubol, Naris; He, Mei; Bommareddi, Swaroop; Zhu, Xuguang; Jia, Li; Xiao, Zhen; Park, Jeong-Won; Xu, Xia; Patel, Dhaval; Willingham, Mark C.; Cheng, Sheue-yann; Kebebew, Electron

    2015-01-01

    Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression. Using a transgenic mouse model of follicular thyroid cancer (FTC), we found castration led to lower rates of cancer in females and less advanced cancer in males. Mechanistically, less advanced cancer in castrated males was due to increased expression of tumor suppressor (Glipr1, Sfrp1) and immune-regulatory genes and higher tumor infiltration with M1 macrophages and CD8 cells. Functional study showed that GLIPR1 reduced cell growth and increased chemokine secretion (Ccl5) that activates immune cells. Our data demonstrate that testosterone regulates thyroid cancer progression by reducing tumor suppressor gene expression and tumor immunity. PMID:25576159

  19. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants. PMID:24604202

  20. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  1. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  2. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing

    PubMed Central

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars. PMID:24401541

  3. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to have affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity...

  4. KINETIC CHANGES IN IMMUNE-RELATED GENE EXPRESSION AND INTESTINAL LYMPHOCYTE SUBPOPULATIONS FOLLOWING E. MAXIMA INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidiosis, a major intestinal parasitic disease of poultry, induces a cell-mediated immune response against the etiologic agent of the disease, Eimeria. In the current study, the expression levels of gene transcripts encoding pro-inflammatory, Th1, and Th2 cytokines, as well as chemokines and int...

  5. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  6. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei. PMID:26993614

  7. DNA vaccination using expression vectors carrying FIV structural genes induces immune response against feline immunodeficiency virus.

    PubMed

    Cuisinier, A M; Mallet, V; Meyer, A; Caldora, C; Aubert, A

    1997-07-01

    Following inactivated virus vaccination trials, the surface glycoprotein gp120 of the feline immunodeficiency virus (FIV) was considered as one of the determinants for protection. However, several vaccination trials using recombinant Env protein or some peptides failed to induce protection. To understand the role of the gp120 protein in vivo, we vaccinated cats with naked DNA coding for FIV structural proteins gp120 and p10. We analyzed the ability of these vaccinations to induce immune protection and to influence the onset of infection. Injection in cat muscles of expression vectors coding for the FIV gp120 protein induced a humoral response. Cats immunized twice with the gp120 gene showed different patterns after challenge. Two cats were, like the control cats, infected from the second week after infection onwards. The two others maintained a low proviral load with no modification of their antibody pattern. The immune response induced by gp120 DNA injection could control the level of viral replication. This protective-like immune response was not correlated to the humoral response. All the cats immunized with the gp120 gene followed by the p10 gene were infected, like the control cats, from the second week but they developed a complete humoral response against viral proteins after challenge. Furthermore, they showed a sudden but transient drop of the proviral load at 4 weeks after infection. Under these conditions, one injection of the p10 gene after one injection of the gp120 gene was not sufficient to stimulate protection. On the contrary, after a period, it seems to facilitate virus replication. PMID:9269051

  8. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    PubMed Central

    2011-01-01

    Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and

  9. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3.

    PubMed Central

    Siegers, K; Entian, K D

    1995-01-01

    The lantibiotic nisin is produced by several strains of Lactococcus lactis. The complete gene cluster for nisin biosynthesis in L. lactis 6F3 comprises 15 kb of DNA. As described previously, the structural gene nisA is followed by the genes nisB, nisT, nisC, nisI, nisP, nisR, and nisK. Further analysis revealed three additional open reading frames, nisF, nisE, and nisG, adjacent to nisK. Approximately 1 kb downstream of the nisG gene, three open reading frames in the opposite orientation have been identified. One of the reading frames, sacR, belongs to the sucrose operon, indicating that all genes belonging to the nisin gene cluster of L. lactis 6F3 have now been identified. Proteins NisF and NisE show strong homology to members of the family of ATP-binding cassette (ABC) transporters, and nisG encodes a hydrophobic protein which might act similarly to the immunity proteins described for several colicins. Gene disruption mutants carrying mutations in the genes nisF, nisE, and nisG were still able to produce nisin. However, in comparison with the wild-type strain, these mutants were more sensitive to nisin. This indicates that besides nisI the newly identified genes are also involved in immunity to nisin. The NisF-NisE ABC transporter is homologous to an ABC transporter of Bacillus subtilis and the MbcF-MbcE transporter of Escherichia coli, which are involved in immunity to subtilin and microcin B17, respectively. PMID:7793910

  10. Characterization of a Novel Gene in the Extended MHC Region of Mouse, NG29/Cd320, a Homolog of the Human CD320

    PubMed Central

    Park, Hyo Jin; Kim, Ji-Yeon; Jung, Kyung In

    2009-01-01

    Background The MHC region of the chromosome contains a lot of genes involved in immune responses. Here we have investigated the mouse NG29/Cd320 gene in the centrometrically extended MHC region of chromosome 17. Methods We cloned the NG29 gene by RT-PCR and confirmed the tissue distribution of its gene expression by northern blot hybridization. We generated the NG29 gene expression constructs and polyclonal antibody against the NG29 protein to perform the immunofluorescence, immunoprecipitation and flow cytometric analysis. Results The murine NG29 gene and its human homologue, the CD320/8D6 gene, were similar in the gene structure and tissue expression patterns. We cloned the NG29 gene and confirmed its expression in plasma membrane and intracellular compartments by transfecting its expresssion constructs into HEK 293T cells. The immunoprecipitation studies with rabbit polyclonal antibody raised against the NG29-NusA fusion protein indicated that NG29 protein was a glycoprotein of about 45 kDa size. A flow cytometric analysis also showed the NG29 expression on the surface of Raw 264.7 macrophage cell line. Conclusion These findings suggested that NG29 gene in mouse extended MHC class II region was the orthologue of human CD320 gene even though human CD320/8D6 gene was located in non-MHC region, chromosome 19p13. PMID:20157601

  11. Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A

    PubMed Central

    2010-01-01

    Background Immunization of BALB/c mice with a recombinant adenovirus expressing Mycobacterium tuberculosis (M. tuberculosis) antigen 85A (Ad85A) protects against aerosol challenge with M. tuberculosis only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of M. tuberculosis growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization. Method Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools. Results CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene Cxcr6, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry. Conclusions Our microarray analysis represents the first ex vivo study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after

  12. Widespread Decreased Expression of Immune Function Genes in Human Peripheral Blood Following Radiation Exposure

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Amundson, Sally A.

    2014-01-01

    We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6–48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments. PMID:24168352

  13. Identification of Toxoplasma gondii Genes Responsive to the Host Immune Response during In Vivo Infection

    PubMed Central

    Skariah, Sini; Mordue, Dana G.

    2012-01-01

    Toxoplasma gondii is an obligate intracellular protozoa parasite that causes the disease toxoplasmosis. It resides within host cells in a parasitophorous vacuole distinct from the host cell endocytic system. T. gondii was used as a model to investigate how obligate intracellular parasites alter their gene expression in response to the host immune response during infection compared to growth in host cells in vitro. While bacterial pathogens clearly alter gene expression to adapt to the host environment during infection, the degree to which the external environment affects gene expression by obligate intracellular pathogens sequestered within host cells is less clear. The global transcriptome of T. gondii was analyzed in vivo in the presence and absence of the IFN-γ-dependent host innate immune response. The parasites' in vivo transcriptome was also compared to its transcriptome in vitro in fibroblast cells. Our results indicate that the parasite transcriptome is significantly altered during in vivo infection in the presence, but not absence, of IFN–γ-dependent immunity compared with fibroblasts infected in vitro. Many of the parasite genes increased in vivo appear to be common to an early general stress response by the parasite; surprisingly putative oocyst stage specific genes were also disproportionately increased during infection. PMID:23071600

  14. Expression analysis of 13 ovine immune response candidate genes in Visna/Maedi disease progression.

    PubMed

    Larruskain, Amaia; Bernales, Irantzu; Luján, Lluis; de Andrés, Damián; Amorena, Beatriz; Jugo, Begoña M

    2013-07-01

    Visna/Maedi virus (VMV) is a lentivirus that infects cells of the monocyte/macrophage lineage in sheep. Infection with VMV may lead to Visna/Maedi (VM) disease, which causes a multisystemic inflammatory disorder causing pneumonia, encephalitis, mastitis and arthritis. The role of ovine immune response genes in the development of VM disease is not fully understood. In this work, sheep of the Rasa Aragonesa breed were divided into two groups depending on the presence/absence of VM-characteristic clinical lesions in the aforementioned organs and the relative levels of candidate gene expression, including cytokines and innate immunity loci were measured by qPCR in the lung and udder. Sheep with lung lesions showed differential expression in five target genes: CCR5, TLR7, and TLR8 were up regulated and IL2 and TNFα down regulated. TNFα up regulation was detected in the udder. PMID:23582860

  15. DNA Vaccines: Protective Immunizations by Parenteral, Mucosal, and Gene-Gun Inoculations

    NASA Astrophysics Data System (ADS)

    Fynan, Ellen F.; Webster, Robert G.; Fuller, Deborah H.; Haynes, Joel R.; Santoro, Joseph C.; Robinson, Harriet L.

    1993-12-01

    Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 μg of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 μg of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines.

  16. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity

    PubMed Central

    Huang, Shengfeng; Yuan, Shaochun; Guo, Lei; Yu, Yanhong; Li, Jun; Wu, Tao; Liu, Tong; Yang, Manyi; Wu, Kui; Liu, Huiling; Ge, Jin; Yu, Yingcai; Huang, Huiqing; Dong, Meiling; Yu, Cuiling; Chen, Shangwu; Xu, Anlong

    2008-01-01

    It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity. PMID:18562681

  17. Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity.

    PubMed

    Huang, Shengfeng; Yuan, Shaochun; Guo, Lei; Yu, Yanhong; Li, Jun; Wu, Tao; Liu, Tong; Yang, Manyi; Wu, Kui; Liu, Huiling; Ge, Jin; Yu, Yingcai; Huang, Huiqing; Dong, Meiling; Yu, Cuiling; Chen, Shangwu; Xu, Anlong

    2008-07-01

    It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity. PMID:18562681

  18. In ovo carbohydrate supplementation modulates growth and immunity-related genes in broiler chickens.

    PubMed

    Bhanja, S K; Goel, A; Pandey, N; Mehra, M; Majumdar, S; Mandal, A B

    2015-02-01

    A study was undertaken to investigate the role of in ovo administrated carbohydrates on the expression pattern of growth and immune-related genes. In ovo injections (n = 400) were carried out on the 14th day of incubation into the yolk sac/amnion of the broiler chicken embryos. Expression of growth-related genes: chicken growth hormone (cGH), insulin-like growth factor-I & II (IGF-I & II) and mucin were studied in hepatic and jejunum tissues of late-term embryo and early post-hatch chicks. Expression of candidate immune genes: Interleukin-2, 6, 10 and 12 (IL-2, IL-6, IL-10 and IL-12), Tumour necrosis factor-alpha (TNF-α) and Interferon gamma (IFN-γ) were studied in peripheral blood monocyte cells of in ovo-injected and control birds following antigenic stimulation with sheep RBC (SRBC) or mitogen concanavalin A (Con-A). Glucose injection significantly increased the expression of IGF-II gene during embryonic period and both cGH and IGF-II in early post-hatch period, while ribose-injected chicks had higher expression of IGF-II gene during embryonic stage. Enhanced mucin gene expression was also observed in fructose-injected chicks during embryonic age. Glucose-injected chicks had higher expression of IL-6 or IL-10, while those injected with fructose or ribose had higher expression of IL-2, IL-12 and IFN gamma. It is concluded that in ovo supplementation of carbohydrates might help in improving the growth of late-term embryos and chicks. In ovo glucose could modulate humoral-related immunity, while fructose or ribose might help in improving the cellular immunity in broiler chickens. PMID:24797673

  19. Immune Recognition of Gene Transfer Vectors: Focus on Adenovirus as a Paradigm

    PubMed Central

    Aldhamen, Yasser Ali; Seregin, Sergey S.; Amalfitano, Andrea

    2011-01-01

    Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general. PMID:22566830

  20. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Lehmann, Tovi; Hume, Jen C. C.; Licht, Monica; Burns, Christopher S.; Wollenberg, Kurt; Simard, Fred; Ribeiro, Jose' M. C.

    2009-01-01

    Background As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. Methodology/Findings We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin) to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin) at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP) in accordance with frequency dependent balancing selection. At the longest time scale (>100 my), PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. Significance and Conclusions Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for “hypervariability” was not detected, but negative balancing selection, detected at a recent evolutionary time scale between sibling

  1. Interleukin-23R gene polymorphism in pediatric Egyptian patients with primary immune thrombocytopenia.

    PubMed

    Farawela, Hala M; Botros, Shahira K A; El-Ghamrawy, Mona; Ebrahim, Eman O

    2016-06-01

    Primary immune thrombocytopenia is an acquired autoimmune disorder caused by the production of antiplatelet antibodies. These autoantibodies opsonize platelets for splenic clearance, resulting in low levels of circulating platelets. The current case-control study aimed at detecting the frequency of interleukin-23 receptor rs1884444 single nucleotide polymorphism in Egyptian children with primary immune thrombocytopenia and its possible role as a genetic marker for disease risk. Interleukin-23 receptor rs1884444 single nucleotide polymorphism was studied in 50 patients with primary immune thrombocytopenia and 100 healthy age and sex-matched controls by polymerase chain reaction amplification of the target gene followed by allele-specific restriction enzyme digestion. Regarding the distribution of the genotypes of the interleukin-23 receptor rs1884444 polymorphism, no statistically significant difference was found between cases and control groups. The variant genotypes (GT/TT) frequency was 10% in primary immune thrombocytopenia cases versus 7% in the control groups [P value = 0.755, odds ratio (OR): 0.326, 95% confidence interval (CI): 0.099-1.076]. Similarly, no difference was found between acute and chronic cases. The variant genotypes GT/TT frequency was 10.7% in acute versus 9.1% in chronic primary immune thrombocytopenia (P value = 0.849). The variant genotypes GT/TT were not found to be a risk factor for acute primary (P value = 0.807, OR: 0.641, 95% CI: 0.16-2.563) or chronic primary immune thrombocytopenia (P value = 0.914, OR: 0.762, 95% CI: 0.153-3.797). Our study suggests the possibility that interleukin-23 receptor gene polymorphism may not contribute to the susceptibility of development of primary immune thrombocytopenia in Egyptian children. PMID:26859125

  2. Immunogenic Subtypes of Breast Cancer Delineated by Gene Classifiers of Immune Responsiveness.

    PubMed

    Miller, Lance D; Chou, Jeff A; Black, Michael A; Print, Cristin; Chifman, Julia; Alistar, Angela; Putti, Thomas; Zhou, Xiaobo; Bedognetti, Davide; Hendrickx, Wouter; Pullikuth, Ashok; Rennhack, Jonathan; Andrechek, Eran R; Demaria, Sandra; Wang, Ena; Marincola, Francesco M

    2016-07-01

    The abundance and functional orientation of tumor-infiltrating lymphocytes in breast cancer is associated with distant metastasis-free survival, yet how this association is influenced by tumor phenotypic heterogeneity is poorly understood. Here, a bioinformatics approach defined tumor biologic attributes that influence this association and delineated tumor subtypes that may differ in their ability to sustain durable antitumor immune responses. A large database of breast tumor expression profiles and associated clinical data was compiled, from which the ability of phenotypic markers to significantly influence the prognostic performance of a classification model that incorporates immune cell-specific gene signatures was ascertained. Markers of cell proliferation and intrinsic molecular subtype reproducibly distinguished two breast cancer subtypes that we refer to as immune benefit-enabled (IBE) and immune benefit-disabled (IBD). The IBE tumors, comprised mostly of highly proliferative tumors of the basal-like, HER2-enriched, and luminal B subtypes, could be stratified by the immune classifier into significantly different prognostic groups, while IBD tumors could not, indicating the potential for productive engagement of metastasis-protective immunity in IBE tumors, but not in IBD tumors. The prognostic stratification in IBE was independent of conventional variables. Gene network analysis predicted the activation of TNFα/IFNγ signaling pathways in IBE tumors and the activation of the transforming growth factor-β pathway in IBD tumors. This prediction supports a model in which breast tumors can be distinguished on the basis of their potential for metastasis-protective immune responsiveness. Whether IBE and IBD represent clinically relevant contexts for evaluating sensitivity to immunotherapeutic agents warrants further investigation. Cancer Immunol Res; 4(7); 600-10. ©2016 AACR. PMID:27197066

  3. Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data

    PubMed Central

    Leal, Luis Guillermo; Perez, Álvaro; Quintero, Andrés; Bayona, Ángela; Ortiz, Juan Felipe; Gangadharan, Anju; Mackey, David; López, Camilo; López-Kleine, Liliana

    2013-01-01

    Recent advances in genomic and post-genomic technologies have provided the opportunity to generate a previously unimaginable amount of information. However, biological knowledge is still needed to improve the understanding of complex mechanisms such as plant immune responses. Better knowledge of this process could improve crop production and management. Here, we used holistic analysis to combine our own microarray and RNA-seq data with public genomic data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was based on a kernel method adapted for the construction of gene networks. The obtained results allowed us to propose a list of new IRGs. A putative function in the immunity pathway was predicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well documented or recognized in previous co-expression studies. In addition to robust relationships between IRGs, there is evidence suggesting that other cellular processes may be also strongly related to immunity. PMID:24316329

  4. Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

    PubMed Central

    Feng, Baomin; Liu, Chenglong; de Oliveira, Marcos V. V.; Intorne, Aline C.; Li, Bo; Babilonia, Kevin; de Souza Filho, Gonçalo A.; Shan, Libo; He, Ping

    2015-01-01

    Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen treatments. Poly(ADP-ribose) glycohydrolase (PARG) is predicted to remove poly(ADP-ribose) polymers on acceptor proteins modified by poly(ADP-ribose) polymerases (PARPs) with three PARPs and two PARGs in Arabidopsis genome. AtPARP1 and AtPARP2 possess poly(ADP-ribose) polymerase activity, and the activity of AtPARP2 was enhanced by MAMP treatment. AtPARG1, but not AtPARG2, carries glycohydrolase activity in vivo and in vitro. Importantly, mutation (G450R) in atparg1 blocks its activity and the corresponding residue is highly conserved and essential for human HsPARG activity. Consistently, mutant atparp1atparp2 plants exhibited compromised immune gene activation and enhanced susceptibility to pathogen infections. Our study indicates that protein poly(ADP-ribosyl)ation plays critical roles in plant immune gene expression and defense to pathogen attacks. PMID:25569773

  5. The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity?

    PubMed

    Degnan, Sandie M

    2015-02-01

    Most bacteria are not pathogenic to animals, and may instead serve beneficial functions. The requisite need for animals to differentiate between microbial friend and foe is likely borne from a deep evolutionary imperative to recognise self from non-self, a service ably provided by the innate immune system. Recent findings from an ancient lineage of simple animals - marine sponges - have revealed an unexpectedly large and diverse suite of genes belonging to one family of pattern recognition receptors, namely the NLR genes. Because NLRs can recognise a broad spectrum of microbial ligands, they may play a critical role in mediating the animal-bacterial crosstalk needed for sophisticated discrimination between microbes of various relationships. The building blocks for an advanced NLR-based immune specificity encoded in the genome of the coral reef sponge Amphimedon queenslandica may provide a specialisation and diversity of responses that equals, or even exceeds, that of vertebrate NLRs. PMID:25058852

  6. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2016-01-01

    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 (P = 0.039) and positively by IL-2 gene expression (P = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P = 0.027, FAS: P = 0.021, and IFNG: P = 0.029) and long-term graft function (24-month GFR CASP3: P = 0.003, FAS: P = 0.033, IL-18: P = 0.044, and IFNG: P = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes' expression in the recipients' peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function. PMID:27382192

  7. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006.

    PubMed

    Giri, Malavika S; Nebozhyn, Michael; Showe, Louise; Montaner, Luis J

    2006-11-01

    Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo. PMID:16940334

  8. Immune gene discovery by expressed sequence tag (EST) analysis of hemocytes in the ridgetail white prawn Exopalaemon carinicauda

    PubMed Central

    Duan, Yafei; Liu, Ping; Li, Jitao; Li, Jian; Chen, Ping

    2013-01-01

    The ridgetail white prawn Exopalaemon carinicauda is one of the most important commercial species in eastern China. However, little information of immune genes in E. carinicauda has been reported. To identify distinctive genes associated with immunity, an expressed sequence tag (EST) library was constructed from hemocytes of E. carinicauda. A total of 3411 clones were sequenced, yielding 2853 ESTs and the average sequence length is 436 bp. The cluster and assembly analysis yielded 1053 unique sequences including 329 contigs and 724 singletons. Blast analysis identified 593 (56.3%) of the unique sequences as orthologs of genes from other organisms (E-value < 1e-5). Based on the COG and Gene Ontology (GO), 593 unique sequences were classified. Through comparison with previous studies, 153 genes assembled from 367 ESTs have been identified as possibly involved in defense or immune functions. These genes are categorized into seven categories according to their putative functions in shrimp immune system: antimicrobial peptides, prophenoloxidase activating system, antioxidant defense systems, chaperone proteins, clottable proteins, pattern recognition receptors and other immune-related genes. According to EST abundance, the major immune-related genes were thioredoxin (141, 4.94% of all ESTs) and calmodulin (14, 0.49% of all ESTs). The EST sequences of E. carinicauda hemocytes provide important information of the immune system and lay the groundwork for development of molecular markers related to disease resistance in prawn species. PMID:23092732

  9. Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues

    PubMed Central

    Thézé, Julien; Cambier, Sébastien; Poulain, Julie; Da Silva, Corinne; Bézier, Annie; Musset, Karine; Moreau, Sébastien J. M.; Drezen, Jean-Michel

    2014-01-01

    ABSTRACT Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large

  10. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism

    PubMed Central

    Gupta, Simone; Ellis, Shannon E.; Ashar, Foram N.; Moes, Anna; Bader, Joel S.; Zhan, Jianan; West, Andrew B.; Arking, Dan E.

    2014-01-01

    Recent studies of genomic variation associated with autism have suggested the existence of extreme heterogeneity. Large-scale transcriptomics should complement these results to identify core molecular pathways underlying autism. Here we report results from a large-scale RNA sequencing effort, utilizing region-matched autism and control brains to identify neuronal and microglial genes robustly dysregulated in autism cortical brain. Remarkably, we note that a gene expression module corresponding to M2-activation states in microglia is negatively correlated with a differentially expressed neuronal module, implicating dysregulated microglial responses in concert with altered neuronal activity-dependent genes in autism brains. These observations provide pathways and candidate genes that highlight the interplay between innate immunity and neuronal activity in the aetiology of autism. PMID:25494366

  11. Genetic determinants of type 1 diabetes: immune response genes.

    PubMed

    Kumar, Neeraj; Kaur, Gurvinder; Mehra, Narinder

    2009-04-01

    Type 1 diabetes (T1D) is a polygenic autoimmune disease. Susceptibility to T1D is strongly linked to a major genetic locus that is the MHC, and several other minor loci including insulin, cytotoxic T-lymphocyte-associated antigen-4, PTPN22 and others that contribute to diabetes risk in an epistatic way. We have observed that there are three sets of DR3-positive autoimmunity-favoring haplotypes in the north-Indian population, including B50-DR3, B58-DR3 and B8-DR3. The classical Caucasian autoimmunity favoring AH8.1 (HLA-A1-B8-DR3) is rare in the Indian population, and has been replaced by a variant AH8.1v, which differs from the Caucasian AH8.1 at several gene loci. Similarly, there are additional HLA-DR3 haplotypes, A26-B8-DR3 (AH8.2), A24-B8-DR3 (AH8.3), A3-B8-DR3 (AH8.4) and A31-B8-DR3 (AH8.5), of which AH8.2 is the most common. The fact that disease-associated DR3-positive haplotypes show heterogeneity in different populations suggests that these might possess certain shared components that are involved in the development of autoimmunity. PMID:20477508

  12. ImmuCo: a database of gene co-expression in immune cells.

    PubMed

    Wang, Pingzhang; Qi, Huiying; Song, Shibin; Li, Shuang; Huang, Ningyu; Han, Wenling; Ma, Dalong

    2015-01-01

    Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20,283 human genes and 20,963 mouse genes. More than 8.6 × 10(8) and 7.4 × 10(8) probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database. PMID:25326331

  13. The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss

    PubMed Central

    Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas CG

    2007-01-01

    Background Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest - it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. Results To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-κB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Conclusion Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system. PMID:17437634

  14. Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum

    PubMed Central

    Harris, Caroline; Lambrechts, Louis; Rousset, François; Abate, Luc; Nsango, Sandrine E.; Fontenille, Didier; Morlais, Isabelle; Cohuet, Anna

    2010-01-01

    Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria. PMID:20862317

  15. Four plasmid genes are required for colicin V synthesis, export, and immunity.

    PubMed

    Gilson, L; Mahanty, H K; Kolter, R

    1987-06-01

    The colicin V production and immunity genes were isolated from plasmid pColV-K30. A HindIII-to-SalI fragment of 9.4 kilobases was cloned into the compatible vectors pBR322 and pACYC184. Mutants defective in colicin production were generated by Tn5 insertions and by constructing deletions in vitro. Physical analysis of these mutations identified a 4.4-kilobase region of this DNA which contains all the plasmid genes (cva) needed for the production of colicin V. The colicin V immunity determinant (cvi) is in a 700-base-pair fragment located within one end of this region. Complementation tests identified three genes, called cvaA, cvaB, and cvaC, required for colicin production. Analysis of the proteins labeled in minicells harboring various Tn5 insertions allowed us to identify protein products for the cvaA and cvaC genes. Mutations in cvaA and cvaB eliminated colicin activity in culture supernatants, but not within the cells. Mutations in cvaC, however, eliminated all detectable activity. From these results we conclude that the cvaC gene codes for the structural gene for colicin V, while cvaA and cvaB are apparently needed for the normal export of the colicin. PMID:3034857

  16. SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells

    PubMed Central

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang

    2012-01-01

    Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772

  17. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System

    PubMed Central

    Molina-Cruz, Alvaro; Garver, Lindsey S.; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C. L.; Sauerwein, Robert W.; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-01-01

    Summary The surface protein Pfs47 mediates Plasmodium falciparum evasion of the Anopheles gambiae complement-like immune system. Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  18. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek’s disease (MD) in the chicken is yet to be elucidated. Chicken embryo fi...

  19. Characterization of immune-related genes in the yellow catfish Pelteobagrus fulvidraco in response to LPS challenge.

    PubMed

    Liu, Qiu-Ning; Xin, Zhao-Zhe; Chai, Xin-Yue; Jiang, Sen-Hao; Li, Chao-Feng; Zhang, Hua-Bin; Ge, Bao-Ming; Zhang, Dai-Zhen; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-09-01

    Fish are considered an excellent model for studies in comparative immunology as they are a representative population of lower vertebrates linked to invertebrate evolution. To gain a better understanding of the immune response in fish, we constructed a subtractive cDNA library from the head kidney of lipopolysaccharide-stimulated yellow catfish (Pelteobagrus fulvidraco) using suppression subtractive hybridization (SSH). A total of 300 putative EST clones were identified which contained 95 genes, including 27 immune-related genes, 7 cytoskeleton-related genes, 3 genes involved in the cell cycle and apoptosis, 9 respiration and energy metabolism-related genes, 7 genes related to transport, 24 metabolism-related genes, 10 genes involved in stress responses, seven genes involved in regulation of transcription and translation and 59 unknown genes. Using real-time quantitative reverse transcription PCR, a subset of randomly selected genes involved in the immune response to lipopolysaccharide challenge were investigated to verify the reliability of the SSH data which identified 16 up-regulated genes. The genes identified in this study provide novel insight into the immune response in fish. PMID:27235365

  20. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    PubMed

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS. PMID:24031690

  1. Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides.

    PubMed

    Garrido, Paula Melisa; Antúnez, Karina; Martín, Mariana; Porrini, Martín Pablo; Zunino, Pablo; Eguaras, Martín Javier

    2013-01-01

    The mite Varroa destructor is an ectoparasite affecting honey bees worldwide. Synthetic acaricides have been among the principal tools available to beekeepers for its control, although several studies have shown its negative effects on honey bee physiology. Recent research suggests that those molecules strongly impact on immune signaling cascades and cellular immunity. In the present work, LC(50) in six-day-old bees were determined for the following acaricides: tau-fluvalinate, flumethrin, amitraz and coumaphos. According to this obtained value, a group of individuals was treated with each acaricide and then processed for qPCR analysis. Transcript levels for genes encoding antimicrobial peptides and immune-related proteins were assessed. Flumethrin increased the expression of hymenoptaecin when comparing treated and control bees. Significant differences were recorded between coumaphos and flumethrin treatments, while the first one reduced the expression of hymenoptaecin and abaecin, the last one up-regulated their expressions. No significant statistically changes were recorded in the expression levels of vitellogenin, lysozyme or glucose dehydrogenase among bees treated with acaricides and control bees. This work constitutes the first report, under laboratory conditions, about induction of immune related genes in response to synthetic miticides. PMID:23147024

  2. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    PubMed Central

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  3. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    PubMed Central

    2008-01-01

    Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9) might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria. PMID:18325105

  4. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M.; Baxter, Simon W.; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-01-01

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity. PMID:25943446

  5. [Roles of N-glycosylation in immunity of prME and NS1 gene of JEV].

    PubMed

    Zhang, Zi-Zhong; Wang, Xue; Zai, Jun-Jie; Sun, Le-Qiang; Song, Yun-Feng; Chen, Huan-Chun

    2012-05-01

    PrME and NS1 gene were the two main immuneprotect proteins of Japanese encephalitis virus (JEV), and they were also N-linked glycosylation proteins. To clear the effect of N-glycosylation on JEV immunity, the N-glycosylation site of prME and NS1 gene were eliminated by site-directed mutant PCR, subtituting the N to Q. And the the mutant genes were subcloned into eukaryotic expression plasmid. Four-weeks female mice were immuned with the wildtype and mutant gene by twice. The antibodies against prME were detected by ELISA and the neutralization antibodies were tested by viral neutralizing assay. The immunoprotection were determined by attack with JEV virulent strain. Compare with the wild-type gene immuned-groups, one N-glycan eliminated prME gene could induce a little higher ELISA antibody, neutralization antibody and immunoprotection, but the immunity of gene with both N-glycan absence was decreased. The similar status were observed in the wildtype and mutant NS1 groups. Thus these results show that the N-linked glycosylation in the prME and NS1 gene were correlated with the immunity, one glycan absent would enhance the immunity but both two loss would impair it. PMID:22764522

  6. Effect of inhibin gene immunization on antibody production and reproductive performance in Partridge Shank hens.

    PubMed

    Mao, Dagan; Bai, Wujiao; Hui, Fengming; Yang, Liguo; Cao, Shaoxian; Xu, Yinxue

    2016-04-01

    To investigate the effect of inhibin gene immunization on antibody production and reproductive performance in broiler breeder females, Partridge Shank hens aged 380 days were immunized with inhibin recombinant plasmid pcISI. One hundred and twenty hens were randomly assigned to four groups and treated intramuscularly with 25, 75, or 125 μg/300-μL inhibin recombinant plasmid pcISI (T1∼T3) or 300-μL saline as control (C), respectively. Booster immunization was given with the same dosage 20 days later. Blood and egg samples were collected to detect the antibody against inhibin by enzyme-linked immunosorbent assay and to evaluate egg performance. The ovaries were collected to classify the follicles and detect the FSH receptor (FSHR) messenger RNA (mRNA) expression by reverse transcription-PCR. The results showed that immunization against pcISI could elicit antibody against inhibin in both plasma and egg yolk compared with the control (P < 0.05), whereas booster immunization did not increase the antibody level in plasma. Vaccination promoted egg lay during the first 30 days after primary vaccination (P < 0.05) with no effect on egg quality and hatching rate. Immunization increased the amounts of dominant, small yellow and large white follicles in the ovary (P < 0.05). Reverse transcription-PCR results showed that immunization increased the FSHR mRNA in the large white follicles, whereas decreased the FSHR mRNA in the small yellow follicles (P < 0.05). In conclusion, inhibin vaccine pcISI can stimulate the production of antibody against inhibin as well as the follicle development and egg laying performance in Partridge Shank hens, which provides a good foundation for the application of inhibin DNA vaccine in avian production. PMID:26739531

  7. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-01-01

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice. PMID:25966074

  8. Identification and characterization of a TAB1 gene involved in innate immunity of amphioxus (Branchiostoma belcheri).

    PubMed

    Yin, Denghua; Li, Wenjuan; Fu, Meili; Chen, Liming; Ma, Fei; Jin, Ping

    2016-01-10

    Transforming growth factor-β activated kinase-1 (TAK1) is an essential regulator in toll-like receptor (TLR), tumor necrosis factor (TNF) and interleukin-1 (IL-1) signaling pathways, and plays very important roles in animal innate immunity. TAK1-binding protein, TAB1, can specifically regulate the activation of TAK1. However, the TAB1 gene in amphioxus has not yet been identified to date. In this study, we identified and characterized a TAB1 gene from Branchiostoma belcheri (designed as AmphiTAB1). Our results showed that the full-length cDNA of AmphiTAB1 is 2281bp long with an open reading frame (ORF) of 1659bp that encodes a predicted protein of 553 amino acids containing a typical PP2Cc domain. Phylogenetic analysis indicated that the AmphiTAB1 gene was located between invertebrates and vertebrates, suggesting that the AmphiTAB1 gene is a member of the TAB1 gene family. Real-time PCR analysis indicated that the AmphiTAB1 was ubiquitously and differentially expressed in six investigated tissues (gills, hepatic cecum, intestine, muscles, notochord and gonad). After lipopolysaccharide stimulation, the expression of AmphiTAB1 was significantly up-regulated at 6h, which shows that AmphiTAB1 may be involved in the host immune response. In addition, the recombinant TAB1 expressed in vitro shows a molecular mass of 62kDa and Western blot confirmed it, which proved it is an encoding isoform. Taken together, our findings provide an insight into innate immune response of amphioxus and evolution of the TAB1 gene family. PMID:26341057

  9. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    PubMed

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia. PMID:27242348

  10. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGESBeta

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; Mack, Wendy J.; Lee, Ha Youn

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  11. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    PubMed Central

    2012-01-01

    Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I

  12. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    PubMed Central

    González-Polo, Rosa A.; Soler, Germán; Fuentes, José M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity measurement as well as nitric oxide determination to discover whether two specific genes were expressed by cytokine-stimulated dendritic cells. The experiment served as the basis for discussing the importance of differential gene expression inside the eukaryotic cell and the importance of cytokines in the immune system. PMID:17012221

  13. Marek's disease virus challenge induced immune-related gene expression and chicken repeat 1 (CR1) methylation alterations in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) challenge induces lymphoma in susceptible chickens. Host genes, especially immune related genes, are activated by the virus. DNA methylation is an epigenetic mechanism that governs gene transcription. In the present study, we found that expression of signal transducer and...

  14. Esophageal Cancer Related Gene-4 (ECRG4) Interactions with the Innate Immunity Receptor Complex

    PubMed Central

    Podvin, Sonia; Dang, Xitong; Meads, Morgan; Kurabi, Arwa; Costantini, Todd; Eliceiri, Brian P.; Baird, Andrew; Coimbra, Raul

    2014-01-01

    Objective and design The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex. Methods Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, co-immunoprecipitation. Phage display was used for ligand-targeting to cells that over express the TLR4-MD2-CD14. Results Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4-MD2-CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14+ and CD16+ leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4133–148), appears processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence can internalizes into cells through the TLR4/CD14/MD2 complex but modulates inflammation through non-canonical, NFκB signal transduction. Conclusions ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action. PMID:25511108

  15. Mutanome and expression of immune response genes in microsatellite stable colon cancer

    PubMed Central

    Sanz-Pamplona, Rebeca; Gil-Hoyos, Raúl; López-Doriga, Adriana; Alonso, M. Henar; Aussó, Susanna; Molleví, David G.; Santos, Cristina; Sanjuán, Xavier; Salazar, Ramón; Alemany, Ramón; Moreno, Víctor

    2016-01-01

    The aim of this study was to analyze the impact of the mutanome in the prognosis of microsatellite stable stage II CRC tumors. The exome of 42 stage II, microsatellite stable, colon tumors (21 of them relapse) and their paired mucosa were sequenced and analyzed. Although some pathways accumulated more mutations in patients exhibiting good or poor prognosis, no single somatic mutation was associated with prognosis. Exome sequencing data is also valuable to infer tumor neoantigens able to elicit a host immune response. Hence, putative neoantigens were identified by combining information about missense mutations in each tumor and HLAs genotypes of the patients. Under the hypothesis that neoantigens should be correctly presented in order to activate the immune response, expression levels of genes involved in the antigen presentation machinery were also assessed. In addition, CD8A level (as a marker of T-cell infiltration) was measured. We found that tumors with better prognosis showed a tendency to generate a higher number of immunogenic epitopes, and up-regulated genes involved in the antigen processing machinery. Moreover, tumors with higher T-cell infiltration also showed better prognosis. Stratifying by consensus molecular subtype, CMS4 tumors showed the highest association of expression levels of genes involved in the antigen presentation machinery with prognosis. Thus, we hypothesize that a subset of stage II microsatellite stable CRC tumors are able to generate an immune response in the host via MHC class I antigen presentation, directly related with a better prognosis. PMID:26871478

  16. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks.

    PubMed

    Huang, Yun; Chain, Frédéric J J; Panchal, Mahesh; Eizaguirre, Christophe; Kalbe, Martin; Lenz, Tobias L; Samonte, Irene E; Stoll, Monika; Bornberg-Bauer, Erich; Reusch, Thorsten B H; Milinski, Manfred; Feulner, Philine G D

    2016-02-01

    The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats. PMID:26749022

  17. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression

    PubMed Central

    Sperandio, Brice; Regnault, Béatrice; Guo, Jianhua; Zhang, Zhi; Stanley, Samuel L.; Sansonetti, Philippe J.; Pédron, Thierry

    2008-01-01

    Antimicrobial factors are efficient defense components of the innate immunity, playing a crucial role in the intestinal homeostasis and protection against pathogens. In this study, we report that upon infection of polarized human intestinal cells in vitro, virulent Shigella flexneri suppress transcription of several genes encoding antimicrobial cationic peptides, particularly the human β-defensin hBD-3, which we show to be especially active against S. flexneri. This is an example of targeted survival strategy. We also identify the MxiE bacterial regulator, which controls a regulon encompassing a set of virulence plasmid-encoded effectors injected into host cells and regulating innate signaling, as being responsible for this dedicated regulatory process. In vivo, in a model of human intestinal xenotransplant, we confirm at the transcriptional and translational level, the presence of a dedicated MxiE-dependent system allowing S. flexneri to suppress expression of antimicrobial cationic peptides and promoting its deeper progression toward intestinal crypts. We demonstrate that this system is also able to down-regulate additional innate immunity genes, such as the chemokine CCL20 gene, leading to compromised recruitment of dendritic cells to the lamina propria of infected tissues. Thus, S. flexneri has developed a dedicated strategy to weaken the innate immunity to manage its survival and colonization ability in the intestine. PMID:18426984

  18. Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax Reticulocyte Binding Proteins

    PubMed Central

    Hietanen, Jenni; Chim-ong, Anongruk; Chiramanewong, Thanprakorn; Gruszczyk, Jakub; Roobsoong, Wanlapa; Sattabongkot, Jetsumon

    2015-01-01

    Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion. PMID:26712206

  19. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    PubMed

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. PMID:21925121

  20. Gene Networks Specific for Innate Immunity Define Post-Traumatic Stress Disorder

    PubMed Central

    Breen, Michael S.; Maihofer, Adam X.; Glatt, Stephen J.; Tylee, Daniel S.; Chandler, Sharon D.; Tsuang, Ming T.; Risbrough, Victoria B.; Baker, Dewleen G.; O’Connor, Daniel T.; Nievergelt, Caroline M.; Woelk, Christopher H.

    2015-01-01

    The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD. PMID:25754082

  1. Immune response-associated gene analysis of 1,000 cancer patients using whole-exome sequencing and gene expression profiling-Project HOPE.

    PubMed

    Akiyama, Yasuto; Kondou, Ryota; Iizuka, Akira; Ohshima, Keiichi; Urakami, Kenichi; Nagashima, Takeshi; Shimoda, Yuji; Tanabe, Tomoe; Ohnami, Sumiko; Ohnami, Shumpei; Kusuhara, Masatoshi; Mochizuki, Tohru; Yamaguchi, Ken

    2016-01-01

    Project HOPE (High-tech Omics-based Patient Evaluation) has been progressing since its implementation in 2014 using whole-exome sequencing (WES) and gene expression profiling (GEP). With the aim of evaluating immune status in cancer patients, a gene panel consisting of 164 immune response-associated genes (56 antigen-presenting cell and T-cell-associated genes, 34 cytokine- and metabolism-associated genes, 47 TNF and TNF receptor superfamily genes, and 27 regulatory T-cell-associated genes) was established, and its expression and mutation status were investigated using 1,000 cancer patient-derived tumors. Regarding WES, sequencing and variant calling were performed using the Ion Proton system. The average number of single-nucleotide variants (SNVs) detected per sample was 183 ± 507, and the number of hypermutators with more than 500 total SNVs was 51 cases. Regarding GEP, seven immune response-associated genes (VTCN1, IL2RA, ULBP2, TREM1, MSR1, TNFSF9 and TNFRSF12A) were more than 2-fold overexpressed compared with normal tissues in more than 2 organs. Specifically, the positive rate of PD-L1 expression in all patients was 25.8%, and PD-L1 expression was significantly upregulated in hypermutators. The simultaneous analyses of WES and GEP based on immune response-associated genes are very intriguing tools to screen cancer patients suitable for immune checkpoint antibody therapy. PMID:27544999

  2. Innate immunity gene expression changes in critically ill patients with sepsis and disease-related malnutrition

    PubMed Central

    Sarnecka, Agnieszka; Dąbrowska, Aleksandra; Kosałka, Katarzyna; Wachowska, Ewelina; Bałan, Barbara J.; Jankowska, Marta; Korta, Teresa; Niewiński, Grzegorz; Kański, Andrzej; Mikaszewska-Sokolewicz, Małgorzata; Omidi, Mohammad; Majewska, Krystyna; Słotwińska, Sylwia M.

    2015-01-01

    The aim of this study was an attempt to determine whether the expression of genes involved in innate antibacterial response (TL R2, NOD 1, TRAF6, HMGB 1 and Hsp70) in peripheral blood leukocytes in critically ill patients, may undergo significant changes depending on the severity of the infection and the degree of malnutrition. The study was performed in a group of 128 patients with infections treated in the intensive care and surgical ward. In 103/80.5% of patients, infections had a severe course (sepsis, severe sepsis, septic shock, mechanical ventilation of the lungs). Clinical monitoring included diagnosis of severe infection (according to the criteria of the ACC P/SCC M), assessment of severity of the patient condition and risk of death (APACHE II and SAPS II), nutritional assessment (NRS 2002 and SGA scales) and the observation of the early results of treatment. Gene expression at the mRNA level was analyzed by real-time PCR. The results of the present study indicate that in critically ill patients treated in the IC U there are significant disturbances in the expression of genes associated with innate antimicrobial immunity, which may have a significant impact on the clinical outcome. The expression of these genes varies depending on the severity of the patient condition, severity of infection and nutritional status. Expression disorders of genes belonging to innate antimicrobial immunity should be diagnosed as early as possible, monitored during the treatment and taken into account during early therapeutic treatment (including early nutrition to support the functions of immune cells). PMID:26648775

  3. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    PubMed

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. PMID:25973601

  4. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection

    PubMed Central

    Fitzmaurice, Karen; Hurst, Jacob; Dring, Megan; Rauch, Andri; McLaren, Paul J; Günthard, Huldrych F; Gardiner, Clair; Klenerman, Paul

    2015-01-01

    Background Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. Objective This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. Design We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. Results Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 ‘T’ allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. Conclusions This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response. PMID:24996883

  5. Major Histocompatibility Complex and Background Genes in Chickens Influence Susceptibility to High Pathogenicity Avian Influenza Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both line...

  6. Pathway-focused genetic evaluation of immune and inflammation related genes with chronic fatigue syndrome.

    PubMed

    Rajeevan, Mangalathu S; Dimulescu, Irina; Murray, Janna; Falkenberg, Virginia R; Unger, Elizabeth R

    2015-08-01

    Recent evidence suggests immune and inflammatory alterations are important in chronic fatigue syndrome (CFS). This study was done to explore the association of functionally important genetic variants in inflammation and immune pathways with CFS. Peripheral blood DNA was isolated from 50 CFS and 121 non-fatigued (NF) control participants in a population-based study. Genotyping was performed with the Affymetrix Immune and Inflammation Chip that covers 11K single nucleotide polymorphisms (SNPs) following the manufacturer's protocol. Genotyping accuracy for specific genes was validated by pyrosequencing. Golden Helix SVS software was used for genetic analysis. SNP functional annotation was done using SPOT and GenomePipe programs. CFS was associated with 32 functionally important SNPs: 11 missense variants, 4 synonymous variants, 11 untranslated regulatory region (UTR) variants and 6 intronic variants. Some of these SNPs were in genes within pathways related to complement cascade (SERPINA5, CFB, CFH, MASP1 and C6), chemokines (CXCL16, CCR4, CCL27), cytokine signaling (IL18, IL17B, IL2RB), and toll-like receptor signaling (TIRAP, IRAK4). Of particular interest is association of CFS with two missense variants in genes of complement activation, rs4151667 (L9H) in CFB and rs1061170 (Y402H) in CFH. A 5' UTR polymorphism (rs11214105) in IL18 also associated with physical fatigue, body pain and score for CFS case defining symptoms. This study identified new associations of CFS with genetic variants in pathways including complement activation providing additional support for altered innate immune response in CFS. Additional studies are needed to validate the findings of this exploratory study. PMID:26116897

  7. Midgut expression of immune-related genes in Glossina palpalis gambiensis challenged with Trypanosoma brucei gambiense

    PubMed Central

    Hamidou Soumana, Illiassou; Tchicaya, Bernadette; Chuchana, Paul; Geiger, Anne

    2014-01-01

    Tsetse flies from the subspecies Glossina morsitans morsitans and Glossina palpalis gambiensis, respectively, transmit Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. The former causes the acute form of sleeping sickness, and the latter provokes the chronic form. Although several articles have reported G. m. morsitans gene expression following trypanosome infection, no comparable investigation has been performed for G. p. gambiensis. This report presents results on the differential expression of immune-related genes in G. p. gambiensis challenged with T. b. gambiense. The aim was to characterize transcriptomic events occurring in the tsetse gut during the parasite establishment step, which is the crucial first step in the parasite development cycle within its vector. The selected genes were chosen from those previously shown to be highly expressed in G. m. morsitans, to allow further comparison of gene expression in both Glossina species. Using quantitative PCR, genes were amplified from the dissected midguts of trypanosome-stimulated, infected, non-infected, and self-cleared flies at three sampling timepoints (3, 10, and 20 days) after a bloodmeal. At the 3-day sampling point, transferrin transcripts were significantly up-regulated in trypanosome-challenged flies versus flies fed on non-infected mice. In self-cleared flies, serpin-2 and thioredoxin peroxidase-3 transcripts were significantly up-regulated 10 days after trypanosome challenge, whereas nitric oxide synthase and chitin-binding protein transcripts were up-regulated after 20 days. Although the expression levels of the other genes were highly variable, the expression of immune-related genes in G. p. gambiensis appears to be a time-dependent process. The possible biological significance of these findings is discussed, and the results are compared with previous reports for G. m. morsitans. PMID:25426112

  8. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris).

    PubMed

    Erler, Silvio; Popp, Mario; Lattorff, H Michael G

    2011-01-01

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription

  9. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    SciTech Connect

    Shen, M.; Vermeulen, R.; Rajaraman, P.; Menashe, I.; He, X.Z.; Chapman, R.S.; Yeager, M.; Thomas, G.; Burdett, L.; Hutchinson, A.; Yuenger, J.; Chanock, S.; Lan, Q.

    2009-05-15

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% Cl: 0.16-0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P-interaction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P-interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy.

  10. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    PubMed Central

    Shen, Min; Vermeulen, Roel; Rajaraman, Preetha; Menashe, Idan; He, Xingzhou; Chapman, Robert S.; Yeager, Meredith; Thomas, Gilles; Burdett, Laurie; Hutchinson, Amy; Yuenger, Jeff; Chanock, Stephen; Lan, Qing

    2009-01-01

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons. The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNP) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% CI: 0.16–0.55; P, 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P interaction = 0.07), and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the carcinogenesis of lung cancer caused by polycyclic aromatic hydrocarbon-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particular noteworthy. PMID:19170196

  11. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL. PMID:25523759

  12. IL-10 Gene Polymorphisms and Their Association with Immune Traits in Four Rabbit Populations

    PubMed Central

    WAN, Xiaoying; MAO, Liuliu; LI, Ting; QIN, Lizhi; PAN, Yulai; LI, Bichun; WU, Xinsheng

    2013-01-01

    ABSTRACT Interleukin-10 (IL-10) has been recently identified as a multifunctional cytokine, because of its close link with immunoregulation and anti-inflammatory responses. This study investigated the association of IL-10 genetic polymorphisms with the immune traits of New Zealand white rabbits (N-W), Fujian yellow rabbits (F-Y) and their reciprocal crosses (N-Y and Y-N, respectively). SNPs on five exons of the IL-10 gene were genotyped in 204 healthy rabbits via PCR-SSCP and DNA sequencing. Two SNPs (A1435G and G1519A, both were synonymous mutations) and six genotypes (AA, BB, CC, AB, AC and BC) were found on exon 3 and one SNP (T base insertion between loci 2532 and 2533, which caused a frameshift mutation), and three genotypes (OO, TT and TO) were present on exon 4. Allele A was the most frequent allele on exon 3 (from 0.548 to 0.771), whereas O was the most frequent on exon 4 (from 0.808 to 0.968). These four populations were all in Hardy-Weinberg equilibrium on both exon3 and exon4. Association analysis between polymorphisms and immune parameters showed that SNPs on exon 3 were significantly associated with immune traits, while SNP on exon 4 may not significantly affect immune traits, but the mechanism is yet to be further studied. PMID:24240540

  13. The heterogeneous immune microenvironment in breast cancer is affected by hypoxia-related genes.

    PubMed

    Duechler, Markus; Peczek, Lukasz; Zuk, Karolina; Zalesna, Izabela; Jeziorski, Arkadiusz; Czyz, Malgorzata

    2014-02-01

    The immune system constitutes an important first-line defence against malignant transformation. However, cancer mediated immunosuppression inactivates the mechanisms of host immune surveillance. Cancer cells shut down anti-cancer immunity through direct cell-cell interactions with leukocytes and through soluble factors, establishing an immunosuppressive environment for unimpeded cancer growth. The composition of the immunosuppressive microenvironment in breast tumours is not well documented. To address this question, selected immunosuppressive factors were analyzed in tumour specimens from 33 breast cancer patients after surgery. The mRNA expression of selected genes was quantified in fresh tumour samples. Tumour infiltrating leukocytes were characterized by flow cytometry to identify regulatory T cells, myeloid derived suppressor cells, and type 2 macrophages. Statistical analysis revealed several interesting correlations between the studied parameters and clinical features. Overall, a surprisingly high degree of heterogeneity in the composition of the immunosuppressive environment was found across all breast cancer samples which adds to the complexity of this disease. The influence of the hypoxia inducible factors (HIFs) on the immune microenvironment was also addressed. The level of HIFs correlated with hormone receptor status and the expression of several immunosuppressive molecules. Targeting HIFs might not only sensitize breast tumours for radiation and chemotherapies but also interfere with cancer immunosuppression. PMID:24091277

  14. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Li, Rong; Li, Ning; Zhang, Jinzhou; Wang, Yao; Liu, Jiyuan; Cai, Yumei; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis. PMID:27199963

  15. Improved Induction of Immune Tolerance to Factor IX by Hepatic AAV-8 Gene Transfer

    PubMed Central

    Cooper, Mario; Nayak, Sushrusha; Hoffman, Brad E.; Terhorst, Cox; Cao, Ou

    2009-01-01

    Abstract Gene therapy for hemophilia B has been shown to result in long-term expression and immune tolerance to factor IX (F.IX) after in vivo transduction of hepatocytes with adeno-associated viral (AAV-2) vectors in experimental animals. An optimized protocol was effective in several strains of mice with a factor 9 gene deletion (F9−/−). However, immune responses against F.IX were repeatedly observed in C3H/HeJ F9−/− mice. We sought to establish a gene transfer protocol that results in sustained expression without a requirement for additional manipulation of the immune system. Compared with AAV-2, AAV-8 was more efficient in transgene expression and induction of tolerance to F.IX in three different strains of wild-type mice. At equal vector doses, AAV-8 induced transgene product-specific regulatory CD4+CD25+FoxP3+ T cells at significantly higher frequency. Moreover, sustained correction of hemophilia B in C3H/HeJ F9−/− mice without antibody formation was documented in all animals treated with ≥4 × 1011 vector genomes (VG)/kg and in 80% of mice treated with 8 × 1010 VG/kg. Therefore, it is possible to develop a gene transfer protocol that reliably induces tolerance to F.IX largely independent of genetic factors. A comparison with other studies suggests that additional parameters besides plateau levels of F.IX expression contributed to the improved success rate of tolerance induction. PMID:19309290

  16. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  17. Tamoxifen Induces Expression of Immune Response-Related Genes in Cultured Normal Human Mammary Epithelial Cells

    PubMed Central

    Schild-Hay, Laura J.; Leil, Tarek A.; Divi, Rao L.; Olivero, Ofelia, A.; Weston, Ainsley; Poirier, Miriam C.

    2008-01-01

    Use of tamoxifen (TAM) is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented TAM-induced gene expression changes in cultured normal human mammary epithelial cells (NHMEC strains numbered 5, 16 and 40), established from tissue taken at reduction mammoplasty from 3 individuals. Cells exposed to 0, 10 or 50 μM TAM for 48 hours were evaluated for (E)-α-(deoxyguanosin-N2-yl)-tamoxifen (dG-N2-TAM) adduct formation by TAM-DNA (DNA modified with dG-N2-TAM) chemiluminescence immunoassay (CIA), gene expression changes using NCI DNA-oligonucleotide microarray, and real time (RT)-PCR. At 48 hr, cells exposed to 10 μM and 50 μM TAM were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N2-TAM adducts. For microarray, cells were exposed to 10 μM TAM and genes with expression changes of ≥ 3-fold were as follows: thirteen genes up-regulated and one down-related for strain 16; seventeen genes up-regulated for strain 5; and eleven genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, IFNA1, MXI and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all 3 strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. RT-PCR revealed up-regulation of interferon α (IFNA1) and confirmed the TAM-induced up-regulation of the genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of interferon-related genes in the three NHMEC strains suggests that, in addition to hormonal effects, TAM exposure may enhance immune response in normal breast tissue. PMID:19155303

  18. Evolution of African swine fever virus genes related to evasion of host immune response.

    PubMed

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. PMID:27599940

  19. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    PubMed

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  20. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  1. The Equine Embryo Influences Immune-Related Gene Expression in the Oviduct.

    PubMed

    Smits, Katrien; De Coninck, Dieter I M; Van Nieuwerburgh, Filip; Govaere, Jan; Van Poucke, Mario; Peelman, Luc; Deforce, Dieter; Van Soom, Ann

    2016-02-01

    Although the equine oviduct clearly affects early embryo development and the selective transport of equine embryos through the oviduct indicates a reciprocal interaction, the influence of the embryo on gene expression in the oviduct remains to be determined in the horse. The aim of this study was to examine this by means of RNA sequencing. Four days after ovulation, epithelial cells ipsilateral and contralateral to the ovulation side from five cyclic and five pregnant mares were collected from the oviduct. RNA was extracted, samples were sequenced, and data analysis was performed to determine differentially expressed genes (DEGs) (P value ≤0.05 and absolute fold change ≥2) and to provide functional interpretation. A total of 10 743 transcripts were identified and 253 genes were found to be upregulated and 108 to be downregulated in the pregnant ipsilateral oviduct when compared to the cyclic ipsilateral oviduct. Comparison of the ipsilateral and the contralateral oviduct indicated 164 DEGs in pregnant mares and 77 DEGs in cyclic mares. Enriched functional categories were detected only in the comparison of pregnant and cyclic ipsilateral oviducts and showed that the equine embryo affects the expression of immune response-related genes in the oviduct, with marked upregulation of interferon-associated genes. This research represents the foundation for further assessment of the role of specific genes in the early embryo-maternal dialogue of the horse. PMID:26740593

  2. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  3. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    PubMed

    Allam, Uday Shankar; Krishna, M Gopala; Lahiri, Amit; Joy, Omana; Chakravortty, Dipshikha

    2011-01-01

    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate. PMID:21347426

  4. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant

    PubMed Central

    Rady, Hamada F.; Dai, Guixiang; Huang, Weitao; Shellito, Judd E.; Ramsay, Alistair J.

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  5. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    PubMed

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  6. Lack of strong anti-viral immune gene stimulation in Torque Teno Sus Virus1 infected macrophage cells.

    PubMed

    Singh, P; Ramamoorthy, S

    2016-08-01

    While recent findings suggest that swine TTVs (TTSuVs) can act as primary or co-infecting pathogens, very little is known about viral immunity. To determine whether TTSuVs downregulate key host immune responses to facilitate their own survival, a swine macrophage cell line, 3D4/31, was used to over-express recombinant TTSuV1 viral particles or the ORF3 protein. Immune gene expression profiles were assessed by a quantitative PCR panel consisting of 22 immune genes, in cell samples collected at 6, 12, 24 and 48h post-transfection. Despite the upregulation of IFN-β and TLR9, interferon stimulated innate genes and pro-inflammatory genes were not upregulated in virally infected cells. The adaptive immune genes, IL-4 and IL-13, were significantly downregulated at 6h post-transfection. The ORF3 protein did not appear do not have a major immuno-suppressive effect, nor did it stimulate anti-viral immunity. Data from this study warrants further investigation into the mechanisms of TTV related immuno-pathogenesis. PMID:27179346

  7. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    PubMed

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines. PMID:26116253

  8. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD

    PubMed Central

    2013-01-01

    Background Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. Methods Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. Results COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. Conclusions COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD. PMID:23384071

  9. Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies.

    PubMed

    Randolph, R K; Gellenbeck, K; Stonebrook, K; Brovelli, E; Qian, Y; Bankaitis-Davis, D; Cheronis, J

    2003-10-01

    Consumption of Echinacea at the first sign of symptoms has been clinically shown to reduce both the severity and duration of cold and flu. Quantitative polymerase chain reaction optimized for precision and reproducibility was utilized to explore in vitro and in vivo changes in the expression of immunomodulatory genes in response to Echinacea. In vitro exposure of THP-1 cells to 250 microg/ml of Echinacea species extracts induced expression (up to 10-fold) of the interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, interleukin-8, and interleukin-10 genes. This preliminary result is consistent with a general immune response and activation of the nonspecific immune response cytokines. In vivo gene expression within peripheral leukocytes was evaluated in six healthy nonsmoking subjects (18-65 years of age). Blood samples were obtained at baseline and on Days 2, 3, 5, and 12 after consuming a commercial blended Echinacea product, three tablets three times daily (1518 mg/day) for two days plus one additional dose (506 mg) on day three. Serum chemistry and hematological values were not different from baseline, suggesting that liver or bone marrow responses were not involved in acute responses to Echinacea. The overall gene expression pattern at 48 hr to 12 days after taking Echinacea was consistent with an antiinflammatory response. The expression of interleukin-1beta, tumor necrosis factor-alpha, intracellular adhesion molecule, and interleukin-8 was modestly decreased up through Day 5, returning to baseline by day 12. The expression of interferon-alpha steadily rose through Day 12, consistent with an antiviral response. These preliminary data present a gene expression response pattern that is consistent with Echinacea's reported ability to reduce both the duration and intensity of cold and flu symptoms. PMID:14530514

  10. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species

    PubMed Central

    Árnason, Einar

    2015-01-01

    Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of

  11. De Novo Transcriptomic Analysis of Peripheral Blood Lymphocytes from the Chinese Goose: Gene Discovery and Immune System Pathway Description

    PubMed Central

    Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun

    2015-01-01

    Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with

  12. Major histocompatibility complex and host background genes in chickens influence resistance to high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has a profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both li...

  13. Immune response in mice and cattle after immunization with a Boophilus microplus DNA vaccine containing bm86 gene.

    PubMed

    Ruiz, Lina María; Orduz, Sergio; López, Elkin D; Guzmán, Fanny; Patarroyo, Manuel E; Armengol, Gemma

    2007-03-15

    Plasmid pBMC2 encoding antigen Bm86 from a Colombian strain of cattle tick Boophilus microplus, was used for DNA-mediated immunization of BALB/c mice, employing doses of 10 and 50microg, delivered by intradermic and intramuscular routes. Anti-Bm86 antibody levels were significantly higher compared to control mice treated with PBS. In the evaluation of immunoglobulin isotypes, significant levels of IgG2a and IgG2b were observed in mice immunized with 50microg of pBMC2. Measurement of interleukine (IL) levels (IL-4, IL-5, IL-12(p40)) and interferon-gamma (IFN-gamma) in the sera of mice immunized with pBMC2 indicated high levels of IL-4 and IL-5, although there were also significant levels of IFN-gamma. Mice immunized with pBMC2 showed antigen-specific stimulation of splenocytes according to the incorporation of bromodeoxyuridine and IFN-gamma secretion. In all trials, mice injected intramuscularly with 50microg of pBMC2 presented the highest immune response. Moreover, cattle immunized with this DNA vaccine showed antibody production significantly different to the negative control. In conclusion, these results suggest the potential of DNA immunization with pBMC2 to induce humoral and cellular immune responses against B. microplus. PMID:17055651

  14. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster

    SciTech Connect

    Rodriguez, A.; Zhou, Zhijian; Tang, My Lien

    1996-06-01

    We are using Drosophila as a model system for analysis of immunity and tumor formation and have conducted two types of screens using enhancer detector strains to find genes related to these processes: genes expressed in the immune system (type A; hemocytes, lymph glands and fat body) and genes increased in expression by bacterial infection (type B). For type A, tissue-specific reporter gene activity was determined. For type B, a variation of enhancer detection was devised in which {beta}-galactosidase is assayed spectrophotometrically with and without bacterial infection. Because of immune system involvement in melanotic tumor formation, a third type was hypothesized to be found among types A and B: genes that, when mutated, have a melanotic tumor phenotype. Enhancer detector strains (2800) were screened for type A, 900 for B, and 11 retained for further analysis. Complementation tests, cytological mapping, P-element mobilization, and determination of lethal phase and mutant phenotype have identified six novel genes, Dorothy, wizard, toto, viking, Thor and dappled, and one previously identified gene, Collagen IV. All are associated with reporter gene expression in at least one immune system tissue. Thor has increased expression upon infection. Mutations of wizard and dappled have a melanotic tumor phenotype. 72 refs., 6 figs., 3 tabs.

  15. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    PubMed Central

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  16. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis

    PubMed Central

    de Jong, Simone; Newhouse, Stephen J.; Patel, Hamel; Lee, Sanghyuck; Dempster, David; Curtis, Charles; Paya-Cano, Jose; Murphy, Declan; Wilson, C. Ellie; Horder, Jamie; Mendez, M. Andreina; Asherson, Philip; Rivera, Margarita; Costello, Helen; Maltezos, Stefanos; Whitwell, Susannah; Pitts, Mark; Tye, Charlotte; Ashwood, Karen L.; Bolton, Patrick; Curran, Sarah; McGuffin, Peter; Dobson, Richard; Breen, Gerome

    2016-01-01

    Background Recent studies point to overlap between neuropsychiatric disorders in symptomatology and genetic aetiology. Aims To systematically investigate genomics overlap between childhood and adult attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). Method Analysis of whole-genome blood gene expression and genetic risk scores of 318 individuals. Participants included individuals affected with adult ADHD (n = 93), childhood ADHD (n = 17), MDD (n = 63), ASD (n = 51), childhood dual diagnosis of ADHD–ASD (n = 16) and healthy controls (n = 78). Results Weighted gene co-expression analysis results reveal disorder-specific signatures for childhood ADHD and MDD, and also highlight two immune-related gene co-expression modules correlating inversely with MDD and adult ADHD disease status. We find no significant relationship between polygenic risk scores and gene expression signatures. Conclusions Our results reveal disorder overlap and specificity at the genetic and gene expression level. They suggest new pathways contributing to distinct pathophysiology in psychiatric disorders and shed light on potential shared genomic risk factors. PMID:27151072

  17. KIR Genes and Patterns Given by the A Priori Algorithm: Immunity for Haematological Malignancies

    PubMed Central

    Rodríguez-Escobedo, J. Gilberto; García-Sepúlveda, Christian A.; Cuevas-Tello, Juan C.

    2015-01-01

    Killer-cell immunoglobulin-like receptors (KIRs) are membrane proteins expressed by cells of innate and adaptive immunity. The KIR system consists of 17 genes and 614 alleles arranged into different haplotypes. KIR genes modulate susceptibility to haematological malignancies, viral infections, and autoimmune diseases. Molecular epidemiology studies rely on traditional statistical methods to identify associations between KIR genes and disease. We have previously described our results by applying support vector machines to identify associations between KIR genes and disease. However, rules specifying which haplotypes are associated with greater susceptibility to malignancies are lacking. Here we present the results of our investigation into the rules governing haematological malignancy susceptibility. We have studied the different haplotypic combinations of 17 KIR genes in 300 healthy individuals and 43 patients with haematological malignancies (25 with leukaemia and 18 with lymphomas). We compare two machine learning algorithms against traditional statistical analysis and show that the “a priori” algorithm is capable of discovering patterns unrevealed by previous algorithms and statistical approaches. PMID:26495028

  18. Transcriptome profiling analysis of naked carp (Gymnocypris przewalskii) provides insights into the immune-related genes in highland fish.

    PubMed

    Tong, Chao; Zhang, Cunfang; Zhang, Renyi; Zhao, Kai

    2015-10-01

    The naked carp, Gymnocypris przewalskii, is one of the dominant aquaculture fish species in Qinghai Province, China. Its wild stocks have severely suffered from overfishing, and the farming species are vulnerable to various pathogens infections. Here we report the first immune-related tissues transcriptome of a wild naked carp using a deep sequencing approach. A total of 158,087 unigenes are generated, 2687 gill-specific gene and 3215 kidney-specific genes are identified, respectively. Gene ontology analysis shows that 51,671 unigenes are involved in three major functional categories: biological process, cellular component, and molecular function. Further analysis shows that numerous consensus sequences are homologous to known immune-related genes. Pathways mapping annotate 56,270 unigenes and identify a large number of immune-related pathways. In addition, we focus on the immune-related genes and gene family in Toll-like receptor signaling pathway involved in innate immunity, including toll-like receptors (TLRs), interferon regulatory factors (IRFs), interleukins (ILs) and tumor necrosis factors (TNFs). Eventually, we identify 5 TLRs, 4 IRFs, 3 ILs and 2 TNFs with a completed coding sequence though mining the transcriptome data. Phylogeny analysis shows these genes of naked carp are mostly close to zebrafish. Protein domain and selection pressure analyses together show that all these genes are highly conserved in gene sequence and protein domain structure with other species, and purifying selection underwent in these genes, implied functionally important features are conserved in the genes above. Intriguingly, we detect positive selection signals in naked carp TLR4, and significant divergence occurred among tested species TLR4, suggested that naked carp TLR4 function may be affected. Finally, we identify 23,867 simple sequence repeat (SSR) marks in this transcriptome. Taken together, this study not only contributes a large number of candidate genes in naked carp

  19. Gene expression profiling of coelomic cells and discovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags.

    PubMed

    Tak, Eun Sik; Cho, Sung-Jin; Park, Soon Cheol

    2015-01-01

    The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system. PMID:25496401

  20. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens

    PubMed Central

    Zink, Steven D.; Van Slyke, Greta A.; Palumbo, Michael J.; Kramer, Laura D.; Ciota, Alexander T.

    2015-01-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance in WNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  1. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  2. The effect of PDIA3 gene knockout on the mucosal immune function in IBS rats

    PubMed Central

    Zhuang, Zhao-Meng; Wang, Xiao-Teng; Zhang, Lu; Tao, Li-Yuan; Lv, Bin

    2015-01-01

    Objective: To observe the changes of intestinal inflammation on PDIA3 gene knockout IBS rats and its effect on immune function. Methods: 36 SD rats were randomly divided into four groups: the control group (n = 8); IBS- empty virus group (IBS-GFP, which); IBS-PDIA3 knockout group (n = 12); IBS- the control group (n = 12). After modeling, colon and ileocecal tissue pathology in each group were observed separately. Changes of immune and inflammatory markers were measured. At the same time, ultrastructural changes in each group were observed by electron microscopy. Results: Compared with the IBS control group, inflammation was reduced significantly in IBS-PDIA3 knockout group. IgE, IL-4 and IL-9 and the level of intestinal trypsin type were decreased significantly. Furthermore, mast cell degranulation and PAR 2 receptor reduced significantly. Conclusion: PDIA3 may play an important role in the development of IBS by mediating through immune responses of mucosal abnormalities. However, the mechanism needs to be confirmed in further study. PMID:26221224

  3. Characterization of two thymosins as immune-related genes in common carp (Cyprinus carpio L.).

    PubMed

    Xiao, Zhangang; Shen, Jing; Feng, Hong; Liu, Hong; Wang, Yaping; Huang, Rong; Guo, Qionglin

    2015-05-01

    Prothymosin alpha (ProTα) and thymosin beta (Tβ) belong to thymosin family, which consists of a series of highly conserved peptides involved in stimulating immune responses. ProTα b and Tβ are still poorly studied in teleost. Here, the full-length cDNAs of ProTα b and Tβ-like (Tβ-l) were cloned and identified in common carp (Cyprinus carpio L.). The expressions of carp ProTα b and Tβ-l exhibited rise-fall pattern and then trended to be stable during early development. After spring viraemia of carp virus (SVCV) infection, the carp ProTα b and Tβ-l transcripts were significantly up-regulated in some immune-related organs. When transiently over-expressed carp ProTα b and Tβ-l in zebrafish, these two proteins up-regulated the expressions of T lymphocytes-related genes (Rag 1, TCR-γ, CD4 and CD8α). These results suggest that carp ProTα b and Tβ may ultimately enhance the immune response during viral infection and modulate the development of T lymphocytes in teleost. PMID:25596145

  4. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis

    PubMed Central

    Assas, Bakri M.; Pennock, Joanne I.; Miyan, Jaleel A.

    2014-01-01

    The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis. PMID:24592205

  5. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  6. Innate immune responses: Crosstalk of signaling and regulation of gene transcription

    SciTech Connect

    Zhong Bo; Tien Po; Shu Hongbing . E-mail: shuh@whu.edu.cn

    2006-08-15

    Innate immune responses to pathogens such as bacteria and viruses are triggered by recognition of specific structures of invading pathogens called pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs) that are located at plasma membrane or inside cells. Stimulation of different PAMPs activates Toll-like receptor (TLR)-dependent and -independent signaling pathways that lead to activation of transcription factors nuclear factor-{kappa}B (NF-{kappa}B), interferon regulatory factor 3/7 (IRF3/7) and/or activator protein-1 (AP-1), which collaborate to induce transcription of a large number of downstream genes. This review focuses on the rapid progress that has recently improved our understanding of the crosstalk among the pathways and the precise regulation of transcription of the downstream genes.

  7. Transcriptome Analysis of the White Body of the Squid Euprymna tasmanica with Emphasis on Immune and Hematopoietic Gene Discovery

    PubMed Central

    Salazar, Karla A.; Joffe, Nina R.; Dinguirard, Nathalie; Houde, Peter; Castillo, Maria G.

    2015-01-01

    In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica’s sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue. PMID:25775132

  8. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination

    PubMed Central

    Zimmermann, Michael T.; Oberg, Ann L.; Grill, Diane E.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Poland, Gregory A.

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50–74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant’s propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens. PMID:27031986

  9. Identification, gene expression and immune function of the novel Bm-STAT gene in virus-infected Bombyx mori.

    PubMed

    Zhang, Xiaoli; Guo, Rui; Kumar, Dhiraj; Ma, Huanyan; Liu, Jiabin; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-02-10

    Genes in the signal transducer and activator of transcription (STAT) family are vital for activities including gene expression and immune response. To investigate the functions of the silkworm Bombyx mori STAT (Bm-STAT) gene in antiviral immunity, two Bm-STAT gene isoforms, Bm-STAT-L for long form and Bm-STAT-S for short form, were cloned. Sequencing showed that the open reading frames were 2313 bp encoding 770 amino acid residues for Bm-STAT-L and 2202 bp encoding 734 amino acid residues for Bm-STAT-S. The C-terminal 42 amino acid residues of Bm-STAT-L were different from the last 7 amino acid residues of Bm-STAT-S. Immunofluorescence showed that Bm-STAT was primarily distributed in the nucleus. Transcription levels of Bm-STAT in different tissues were determined by quantitative PCR, and the results revealed Bm-STAT was mainly expressed in testes. Western blots showed two bands with molecular weights of 70 kDa and 130 kDa in testes, but no bands were detected in ovaries by using anti-Bm-STAT antibody as the primary antibody. Expression of Bm-STAT in hemolymph at 48 h post infection with B. mori macula-like virus (BmMLV) was slightly enhanced compared with controls, suggesting a weak response induced by infection with BmMLV. Hemocyte immunofluorescence showed that Bm-STAT expression was elevated in B. mori nucleopolyhedrovirus (BmNPV)-infected cells. Moreover, resistance of BmN cells to BmNPV was reduced by downregulation of Bm-STAT expression and increased by upregulation. Resistance of BmN cells to BmCPV was not significantly improved by upregulating Bm-STAT expression. Therefore, we concluded that Bm-STAT is a newly identified insect gene of the STAT family. The JAK-STAT pathway has a more specialized role in antiviral defense in silkworms, but JAK-STAT pathway is not triggered in response to all viruses. PMID:26592694

  10. Expression patterns of immune-associated genes in external genital and perianal warts treated with sinecatechins.

    PubMed

    Doan, Hung Q; Nguyen, Harrison P; Rady, Peter; Tyring, Stephen K

    2015-05-01

    The role of human papillomavirus (HPV) in human disease includes external genital and perianal warts (EGW), with some HPV genotypes having oncogenic potential (i.e., HPV-16 and -18). While green-tea extracts have antitumor and antiproliferative effects in vitro, the mechanism of action of sinecatechins in the treatment of EGW is not well understood. To investigate the role of immune-regulated genes further, an open-label, single institution, prospective study was conducted enrolling patients with clinically diagnosed EGW. Thirty subjects were enrolled, and 18 completed the trial. All patients applied sinecatechins 15% ointment to target lesions in the study. RNA expression microarrays were obtained from treated EGW lesions and analyzed for differential gene expression of immune-regulated genes. HPV types were analyzed and, based on copy number, were stratified into virological responders (VR) or nonresponders (VNR). Gene expression analysis of RNA samples was performed using TaqMan arrays for human T cell receptor and CD3 complex (TCR), Toll-like receptors (TLR) pathway, interferon (IFN) pathway, and antigen processing pathway. A total of 256 genes were analyzed across the four arrays. Genes that were significantly regulated between VRs and VNRs were CREB3L4, HIST1H3A, HIST1H3H, IFNA1, IFNA4, IFNA5, IFNA6, IFNA8, IFNA14, IFNG, IFNAR1, IL6, IRF9, MAPK4, MAPK5, MAPK14, NET1, and PIK3C2A in the IFN array. In the TCR array, HLA_B was found to be statistically significantly upregulated in both the VR and VNR groups; concomitantly, CD8A was found to be statistically significantly downregulated only in VRs. In the TLR array, only LBP and MAPK8 were found to be differentially regulated. In the antigen processing array, HLA-A, HLA-C, HLA-DMA, HLA-DMB, HLA-F, PSMA5, PSMB8, and PSMB9 were differentially downregulated. Based on these findings, it was determined that sinecatechins treatment modulates and downregulates genes involved in the pro-inflammatory response to HPV

  11. Immune response gene expression in spleens of diverse chicken lines fed dietary immunomodulators.

    PubMed

    Kumar, S; Ciraci, C; Redmond, S B; Chuammitri, P; Andreasen, C B; Palic, D; Lamont, S J

    2011-05-01

    Vaccines, antibiotics, and other therapeutic agents used to combat disease in poultry generate recurring costs and the potential of residues in poultry products. Enhancing the immune response using alternative approaches such as selection for increased disease resistance or dietary immunomodulation may be effective additions to the portfolio of strategies the industry applies in poultry health management. The objective of this study was to characterize the effects of dietary supplementation with 3 immunomodulators [ascorbic acid, 1,3-1,6 β-glucans from baker's yeast, and corticosterone] on cytokine gene expression in the spleen of 3 distinct genetic lines of chickens. Relative mRNA expression levels were determined using quantitative reverse transcriptase PCR for IL-1β, IL-2, inducible nitric oxide synthase, and toll-like receptors 4 and 15, all of which play important roles in chicken immune function. Expression data were analyzed by mixed model analysis. The only significant effect detected was sex effect (P < 0.04) on expression of IL-1β. The present findings suggest the need for further investigations into the effects of dietary immunomodulators on cytokine gene expression in chickens so as to generate a better understanding of the immunomodulation process. PMID:21489947

  12. Identification of Aadnr1, a novel gene related to innate immunity and apoptosis in Aedes albopictus.

    PubMed

    Li, Xiaomei; Meng, Kun; Qiao, Jialu; Liu, Hao; Zhong, Chunyan; Liu, Qingzhen

    2016-08-01

    Innate immunity and apoptosis play critical roles in defending pathogens in insects. In Drosophila, Dnr1 was reported as a negative regulator of apoptosis and immune deficiency (Imd) pathway which belongs to innate immunity. Aedes albopictus is an important kind of arbovirus vector and becoming a significant threat to public health due to its rapid global expansion. Here we identified an ortholog of dnr1 from A. albopictus, named as Aadnr1. Aadnr1 encoded a putative protein containing an N-terminal FERM domain and a C-terminal RING domain. AaDnr1 shared high identity with dipteran insects Dnr1 orthologs. Phylogenetic analyses showed that the closest relative of AaDnr1 was Aedes aegypti Dnr1. Real-time PCR proved that Aadnr1 mRNA was expressed ubiquitously during developmental and adult stages. Transcriptional levels of Aadnr1 were decreased drastically in C6/36 cells underwent apoptosis induced by Actinomycin D (Act D) treatment. Partial silence of Aadnr1 enhanced Act D-induced caspase activity. When challenged by heat-inactivated E. coli, transcriptional level of Aadnr1 was also decreased dramatically in C6/36 cells. While when C6/36 cells were infected with Sindbis virus TE/GFP, transcriptional level of Aadnr1 was reduced and recovered repeatedly, with an overall decreasing trend. It was also shown in this study that similar to Drosophila Dnr1, RING domain destabilized AaDnr1 protein. Taken together, the study identified an innate immunity and apoptosis related gene Aadnr1 in A. albopictus. PMID:27045774

  13. Immune response genes and pathogen presence predict migration survival in wild salmon smolts.

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Gale, Marika Kirstin; Clark, Timothy D; Lotto, Andrew G; Casselman, Matthew T; Li, Shaorong; Rechisky, Erin L; Porter, Aswea D; Welch, David W; Miller, Kristina M

    2014-12-01

    We present the first data to link physiological responses and pathogen presence with subsequent fate during migration of wild salmonid smolts. We tagged and non-lethally sampled gill tissue from sockeye salmon (Oncorhynchus nerka) smolts as they left their nursery lake (Chilko Lake, BC, Canada) to compare gene expression profiles and freshwater pathogen loads with migration success over the first ~1150 km of their migration to the North Pacific Ocean using acoustic telemetry. Fifteen per cent of smolts were never detected again after release, and these fish had gene expression profiles consistent with an immune response to one or more viral pathogens compared with fish that survived their freshwater migration. Among the significantly upregulated genes of the fish that were never detected postrelease were MX (interferon-induced GTP-binding protein Mx) and STAT1 (signal transducer and activator of transcription 1-alpha/beta), which are characteristic of a type I interferon response to viral pathogens. The most commonly detected pathogen in the smolts leaving the nursery lake was infectious haematopoietic necrosis virus (IHNV). Collectively, these data show that some of the fish assumed to have died after leaving the nursery lake appeared to be responding to one or more viral pathogens and had elevated stress levels that could have contributed to some of the mortality shortly after release. We present the first evidence that changes in gene expression may be predictive of some of the freshwater migration mortality in wild salmonid smolts. PMID:25354752

  14. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  15. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  16. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. PMID:27417232

  17. Ontology based molecular signatures for immune cell types via gene expression analysis

    PubMed Central

    2013-01-01

    Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. PMID:24004649

  18. Echinoderm immunity.

    PubMed

    Smith, L Courtney; Ghosh, Julie; Buckley, Katherine M; Clow, Lori A; Dheilly, Nolwenn M; Haug, Tor; Henson, John H; Li, Chun; Lun, Cheng Man; Majeske, Audrey J; Matranga, Valeria; Nair, Sham V; Rast, Jonathan P; Raftos, David A; Roth, Mattias; Sacchi, Sandro; Schrankel, Catherine S; Stensvåg, Klara

    2010-01-01

    A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats. PMID:21528703

  19. RNA-Seq analysis of immune-relevant genes in Lateolabrax japonicus during Vibrio anguillarum infection.

    PubMed

    Zhao, Chao; Fu, Mingjun; Wang, Chengyang; Jiao, Zongyao; Qiu, Lihua

    2016-05-01

    Lateolabrax japonicus is one of the main marine aquatic fish species, and is popularly cultured in East Asia due to its highly commercial value. In recent years, because of large-scale and intensive farming and seawater pollution, fish diseases keep breaking out. However, systematic study on L. japonicus immunogenetics is limited due to the deficiency of deep sequencing technologies and genome backgrounds. In this study, the widely analysis at the transcriptome level for L. japonicus that infected with Vibrio anguillarum was performed. In total, 334,388,688 high quality reads were obtained in six libraries (HK-VA, HK-PBS, LI-VA, LI-PBS, SP-VA and SP-PBS) and de novo assembled into 101,860 Unigenes with an average unigene length of 879 bp. Based on sequence similarity 30,142 unigenes (29.59%) were annotated in the public databases. Comparative analysis revealed, 1,202, 3034 and 3519 differentially expressed genes (DEGs) were identified in three comparisons (HK-PBS VS HK-VA, LI-PBS VS LI-VA and SP-PBS VS SP-VA). Enrichment and pathway analysis of the DEGs was also carried out to excavate the candidate genes related to immunity. In conclusion, this study identifies and evaluates dozen of potential immune related pathways and candidate genes, which are indispensable for padding genomic resources of L. japonicus, and would lay the foundation for further studying and illuminating the mechanism of host-pathogen interactions. PMID:26945936

  20. Transcriptome analysis of head kidney in grass carp and discovery of immune-related genes

    PubMed Central

    2012-01-01

    Background Grass carp (Ctenopharyngodon idella) is one of the most economically important freshwater fish, but its production is often affected by diseases that cause serious economic losses. To date, no good breeding varieties have been obtained using the oriented cultivation technique. The ability to identify disease resistance genes in grass carp is important to cultivate disease-resistant varieties of grass carp. Results In this study, we constructed a non-normalized cDNA library of head kidney in grass carp, and, after clustering and assembly, we obtained 3,027 high-quality unigenes. Solexa sequencing was used to generate sequence tags from the transcriptomes of the head kidney in grass carp before and after grass carp reovirus (GCRV) infection. After processing, we obtained 22,144 tags that were differentially expressed by more than 2-fold between the uninfected and infected groups. 679 of the differentially expressed tags (3.1%) mapped to 483 of the unigenes (16.0%). The up-regulated and down-regulated unigenes were annotated using gene ontology terms; 16 were annotated as immune-related and 42 were of unknown function having no matches to any of the sequences in the databases that were used in the similarity searches. Semi-quantitative RT-PCR revealed four unknown unigenes that showed significant responses to the viral infection. Based on domain structure predictions, one of these sequences was found to encode a protein that contained two transmembrane domains and, therefore, may be a transmembrane protein. Here, we proposed that this novel unigene may encode a virus receptor or a protein that mediates the immune signalling pathway at the cell surface. Conclusion This study enriches the molecular basis data of grass carp and further confirms that, based on fish tissue-specific EST databases, transcriptome analysis is an effective route to discover novel functional genes. PMID:22776770

  1. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood.

    PubMed

    Pennings, Jeroen L A; Jennen, Danyel G J; Nygaard, Unni C; Namork, Ellen; Haug, Line S; van Loveren, Henk; Granum, Berit

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances. PMID:25812627

  2. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. PMID:26631806

  3. Systems Biology Analysis of Gene Expression during In Vivo Mycobacterium avium paratuberculosis Enteric Colonization Reveals Role for Immune Tolerance

    PubMed Central

    Khare, Sangeeta; Lawhon, Sara D.; Drake, Kenneth L.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris A.; Galindo, Cristi L.; Garner, Harold R.; Adams, Leslie Garry

    2012-01-01

    Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways

  4. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli.

    PubMed

    Dalgaard, Tina S; Skovgaard, Kerstin; Norup, Liselotte R; Pleidrup, Janne; Permin, Anders; Schou, Torben W; Vadekær, Dorte F; Jungersen, Gregers; Juul-Madsen, Helle R

    2015-03-15

    Ascaridia galli is a gastrointestinal nematode infecting chickens. Chickens kept in alternative rearing systems or at free-range experience increased risk for infection with resulting high prevalences. A. galli infection causes reduced weight gain, decreased egg production and in severe cases increased mortality. More importantly, the parasitised chickens are more susceptible to secondary infections and their ability to develop vaccine-induced protective immunity against other diseases may be compromised. Detailed information about the immune response to the natural infection may be exploited to enable future vaccine development. In the present study, expression of immune genes in the chicken spleen during an experimental infection with A. galli was investigated using the Fluidigm(®) BioMark™ microfluidic qPCR platform which combines automatic high-throughput with attractive low sample and reagent consumption. Spleenic transcription of immunological genes was compared between infected chickens and non-infected controls at week 2, 6, and 9 p.i. corresponding to different stages of parasite development/maturation. At week 2 p.i. increased expression of IL-13 was observed in infected chickens. Increased expression of MBL, CRP, IFN-α, IL-1β, IL-8, IL-12β and IL-18 followed at week 6 p.i. and at both week 6 and 9 p.i. expression of DEFβ1 was highly increased in infected chickens. In summary, apart from also earlier reported increased expression of the Th2 signature cytokine IL-13 we observed only few differentially expressed genes at week 2 p.i. which corresponds to the larvae histotrophic phase. In contrast, we observed increased expression of pro-inflammatory cytokines and acute phase proteins in infected chickens, by week 6 p.i. where the larvae re-enter the intestinal lumen. Increased expression of DEFβ1 was observed in infected chickens at week 6 p.i. but also at week 9 p.i. which corresponds to a matured stage where adult worms are present in the

  5. Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes

    PubMed Central

    Grueber, Catherine E.; Wallis, Graham P.; Jamieson, Ian G.

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased positive selection was observed at the extracellular domain, consistent with theoretical predictions. Our results provide evidence that episodic positive selection has played an important role in the evolution of most avian TLRs, consistent with the role of these loci in pathogen recognition and a mechanism of host-pathogen coevolution. PMID:24595315

  6. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2013-01-01

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  7. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  8. Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs

    PubMed Central

    Sidler, Corinne; Wóycicki, Rafał; Ilnytskyy, Yaroslav; Metz, Gerlinde; Kovalchuk, Igor; Kovalchuk, Olga

    2013-01-01

    Deterioration of the immune system (immunosenescence) with age is associated with an increased susceptibility to infection, autoimmune disease and cancer, and reduced responsiveness to vaccination. Immunosenescence entails a reduced supply of naïve T cells from the thymus and increased specialization of peripheral T cell clones. Both thymic involution and peripheral T cell homeostasis are thought to involve cellular senescence. In order to analyze this at the molecular level, we studied gene expression profiles, epigenetic status, and genome stability in the thymus and spleen of 1-, 4-, and 18-month-old Long Evans rats. In the thymus, altered gene expression, DNA and histone H3K9 hypomethylation, increased genome instability, and apoptosis were observed in 18-month-old animals compared to 1- and 4-month-old animals. In the spleen, alterations in gene expression and epigenetic regulation occurred already by the age of 4 months compared to 1 month and persisted in 18-month-old compared to 1-month-old rats. In both organs, these changes were accompanied by the altered composition of resident T cell populations. Our study suggests that both senescence and apoptosis may be involved in altered organ function. PMID:24151501

  9. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials

    PubMed Central

    Salio, Mariolina; Cerundolo, Vincenzo

    2015-01-01

    Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1–lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens. PMID:26284072

  10. The effects of Ficus carica polysaccharide on immune response and expression of some immune-related genes in grass carp, Ctenopharyngodon idella.

    PubMed

    Yang, Xia; Guo, Jian Lin; Ye, Jin Yun; Zhang, Yi Xiang; Wang, Wei

    2015-01-01

    The present study investigated the effect of Ficus carica polysaccharide (FCP), isolated from the fruit of F. carica L., at 0%, 0.1%, 0.5% and 1.0% doses supplementation with feed on genes Interleukin 1-β (IL-1β), Tumor Necrosis Factor α (TNF-α) and heat shock protein 70 (HSP70) gene expression in blood, humoral innate immune parameters and resistant to Flavobacterium columnare of grass carp at weeks 1, 2 and 3. The results revealed that administration of FCP significantly (P<0.05) up regulated IL-1β and TNF-α gene expression. HSP70 gene expression was significantly (P<0.05) lower in FCP-fed fish at the end of trial. The serum total protein, albumin and globulin did not significantly increased in any diet on the first week whereas it was significantly enhanced in 0.5% and 1.0% supplementation diets on weeks 2 and 3 when compared to control. The serum complement C3 was significantly (P<0.05) increased on weeks 1 and 2 when compared to control, however, no significant difference was found in this activity after 3 weeks of treatment. All diets significantly enhanced the serum lysozyme activity, bactericidal activity from weeks 1-2 as compared to control. Grass carp fed with FCP showed remarkably higher resistance against F. columnare (60% survival) compared to the control group (30% survival). These results confirm that FCP can up regulate immune related genes expression, stimulates immune response that per se enhances disease resistance in grass carp. PMID:25449378