Science.gov

Sample records for non-planar magnetohydrodynamic simulation

  1. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  2. Fast simulation methods for non-planar phase and multilayer defects in DUV and EUV photomasks for lithography

    NASA Astrophysics Data System (ADS)

    Lam, Michael Christopher

    This dissertation develops rapid modeling methodologies for the printability and inspectability of various types of defects on photomasks in DUV and EUV lithography. Several fast and approximate methods for defect simulation are introduced and validated by comparing their results with Finite Difference Time Domain (FDTD) calculations of scattering from the same geometry. The common strategy is to decompose the electromagnetic (EM) scattering into individual signal contributions by analyzing rigorous simulations, and then to develop efficient alternative models for each contribution. Two methods are introduced to calculate the observed scattering from DUV phase defects. First, the through focus behavior of an isolated defect can be used to extract two defect parameters, size and phase, which fully characterize the defect by means of an EM equivalent thin mask model. Post and void defects can also be differentiated based on the side of defocus that their peak signal occurs. Second, a defect projector methodology is introduced that allows results for an isolated defect and a defect-free pattern to be combined to predict their interaction for any defect location. The defect projector is four orders of magnitude faster than 3D FDTD simulation, and can correctly predict the defect induced dimension change to within 30% for worst case. The main emphasis of this dissertation is on scattering from non-planar multilayer structures to understand the printability of buried defects inside of EUV mask blanks. A new method based on ray tracing is developed by exploiting the small non-specular forward angular scattering of individual bilayers, which is 10X smaller than the back scatter, and its approximation as zero allows a new and tractable mathematical factoring. The method is tested for various deposition strategies, defect sizes, defect shapes, as well as various illumination angles of incidence and polarization. Smoothing of the defect shape during deposition is confirmed to

  3. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  4. Global magnetohydrodynamic simulations on multiple GPUs

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui

    2014-01-01

    Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.

  5. Lattice kinetic simulation of nonisothermal magnetohydrodynamics.

    PubMed

    Chatterjee, Dipankar; Amiroudine, Sakir

    2010-06-01

    In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results. PMID:20866540

  6. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  7. General Relativistic Magnetohydrodynamic Simulations of Collapsars

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Yamada, S.; Koider, S.; Shipata, K.

    2005-01-01

    We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of collapsars including a rotating black hole. Initially, we assume that the core collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a disklike structure and the generation of a jetlike outflow near the central black hole. The jetlike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is approximately 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.

  8. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  9. Magnetohydrodynamic simulations of turbulent magnetic reconnection

    SciTech Connect

    Fan Quanlin; Feng Xueshang; Xiang Changqing

    2004-12-01

    Turbulent reconnection process in a one-dimensional current sheet is investigated by means of a two-dimensional compressible one-fluid magnetohydrodynamic simulation with spatially uniform, fixed resistivity. Turbulence is set up by adding to the sheet pinch small but finite level of broadband random-phased magnetic field components. To clarify the nonlinear spatial-temporal nature of the turbulent reconnection process the reconnection system is treated as an unforced initial value problem without any anomalous resistivity model adopted. Numerical results demonstrate the duality of turbulent reconnection, i.e., a transition from Sweet-Parker-like slow reconnection to Petschek-like fast reconnection in its nonlinear evolutionary process. The initial slow reconnection phase is characterized by many independent microreconnection events confined within the sheet region and a global reconnection rate mainly dependent on the initially added turbulence and insensitive to variations of the plasma {beta} and resistivity. The formation and amplification of the major plasmoid leads the following reconnection process to a rapid reconnection stage with a fast reconnection rate of the order of 0.1 or even larger, drastically changing the topology of the global magnetic field. That is, the presence of magnetohydrodynamic turbulence in large-scale current sheets can raise the reconnection rate from small values on the order of the Sweet-Parker rate to high values on the order of the Petscheck rate through triggering an evolution toward fast magnetic reconnection. Meanwhile, the backward coupling between the small- and large-scale magnetic field dynamics has been properly represented through the present high resolution simulation. The undriven turbulent reconnection model established here expresses a solid numerical basis for the previous schematic two-step magnetic reconnection models and a possible explanation of two-stage energy release process of solar explosives.

  10. NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics

    SciTech Connect

    Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R

    2007-12-11

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

  11. NIMROD resistive magnetohydrodynamic simulations of spheromak physics

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Cohen, B. I.; McLean, H. S.; Wood, R. D.; Romero-Talamás, C. A.; Sovinec, C. R.

    2008-03-01

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

  12. Realistic magnetohydrodynamical simulation of solar local supergranulation

    NASA Astrophysics Data System (ADS)

    Ustyugov, Sergey D.

    2010-12-01

    Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with a size of 60×60 Mm2 in the horizontal direction and of depth 20 Mm from the level of the visible solar surface. We use a realistic initial model of the sun and apply the equation of state and opacities of stellar matter. The equations of fully compressible radiation magnetohydrodynamics (MHD) with dynamical viscosity and gravity are solved. We apply (i) the conservative total variation diminishing (TVD) difference scheme for MHD, (ii) the diffusion approximation for radiative transfer and (iii) dynamical viscosity from subgrid-scale modeling. In simulation, we take a uniform two-dimensional grid in the horizontal plane and a nonuniform grid in the vertical direction with the number of cells being 600×600×204. We use 512 processors with distributed memory multiprocessors on the supercomputer MVS-100k at the Joint Computational Centre of the Russian Academy of Sciences.

  13. Magnetohydrodynamic simulations of outflows from accretion disks

    NASA Technical Reports Server (NTRS)

    Ustyugova, G. V.; Koldoba, A. V.; Romanova, M. M.; Chechetkin, V. M.; Lovelace, R. V. E.

    1995-01-01

    Magnetohydrodynamic simulations have been made of the formation of outflows from a Keplerian disk threaded by a magnetic field. The disk is treated as a boundary condition, where matter is ejected with Keplerian azimuthal speed and poloidal speed less than the slow magnetosonic velocity, and where boundary conditions on the magnetic field correspond to a highly conducting disk. Initially, the space above the disk, the corona, is filled with high specific entropy plasma in thermal equilibrium in the gravitational potential of the central object. The initial magnetic field is poloidal and is represented by a superposition of monopoles located below the plane of the disk. The rotation of the disk twists the initial poloidal magnetic field, and this twist propagates into the corona pushing and collimating matter into jetlike outflow in a cylindrical region. Matter outflowing from the disk flows and accelerates in the z-direction owing to both the magnetic and pressure gradient forces. The flow accelerates through the slow magnetosonic and Alfven surfaces and at larger distances through the fast magnetosonic surface. The flow velocity of the jet is approximately parallel to the z-axis, and the collimation results from the pinching force of the toroidal magnetic field. For a nonrotating disk no collimation is observed.

  14. Magneto-hydrodynamics Simulation in Astrophysics

    NASA Astrophysics Data System (ADS)

    Pang, Bijia

    2011-08-01

    Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and

  15. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  16. Theory of non-planar orbits

    SciTech Connect

    Antillon, A.; Month, M.

    1985-01-01

    The basic dynamics of a planar accelerator is extended to the non-planar case. This is done using the geometrical concept of torsion and extending the Hamiltonian formalism. A generalized non-planar reference orbit is adopted which introduces torsion in appropriately chosen drift spaces. The parameters of the reference orbit are associated with uncoupled and coupled betatron parameters currently in use. 6 refs.

  17. Radiation Magnetohydrodynamic Simulations of Protostellar Collapse: Nonideal Magnetohydrodynamic Effects and Early Formation of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N.

    2015-03-01

    The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.

  18. Magnetic cycles in global magnetohydrodynamical simulations of solar convection

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.

    2011-12-01

    In this talk I will review some recent advances in our understanding of the solar magnetic cycle through global magnetohydrodynamical simulations of thermally-driven convection in a thick, stratified spherical shell of electrically conducting fluid. I will focus on three related issues: (1) the nature of the turbulent dynamo mechanism; (2) the nature of the mechanism(s) controlling the cycle amplitude; and (3) epochs of strongly suppressed cycle amplitudes, and the existence of possible precursor to such events to be found in the patterns of magnetically-driven torsional oscillations and meridional flow variations arising in the simulations.

  19. Magnetohydrodynamic simulations of hot jupiter upper atmospheres

    SciTech Connect

    Trammell, George B.; Li, Zhi-Yun; Arras, Phil E-mail: zl4h@virginia.edu

    2014-06-20

    Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth can be as

  20. MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Török, Tibor; Riley, Pete; Mikić, Zoran E-mail: cdowns@predsci.com E-mail: tibor@predsci.com E-mail: mikic@predsci.com

    2013-11-01

    We describe a new MHD model for the propagation of interplanetary coronal mass ejections (ICMEs) in the solar wind. Accurately following the propagation of ICMEs is important for determining space weather conditions. Our model solves the MHD equations in spherical coordinates from a lower boundary above the critical point to Earth and beyond. On this spherical surface, we prescribe the magnetic field, velocity, density, and temperature calculated typically directly from a coronal MHD model as time-dependent boundary conditions. However, any model that can provide such quantities either in the inertial or rotating frame of the Sun is suitable. We present two validations of the technique employed in our new model and a more realistic simulation of the propagation of an ICME from the Sun to Earth.

  1. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2013-07-10

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  2. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-03-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R˜ 0.05 and spin parameters of a/M=0,0.5,0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  3. FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2012-12-01

    We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.

  4. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-05-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity ~0.3c) is created, as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (τS=rS/c, where rS≡2GM/c2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r=3rS. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfvén waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the lack of streaming material from an accompanying star.

  5. COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS

    SciTech Connect

    Xu Hao; Li Hui; Collins, David C.; Govoni, Federica; Murgia, Matteo; Norman, Michael L.; Cen Renyue; Feretti, Luigina; Giovannini, Gabriele E-mail: hli@lanl.gov E-mail: mlnorman@ucsd.edu E-mail: matteo@oa-cagliari.inaf.it E-mail: lferetti@ira.inaf.it

    2012-11-01

    Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.

  6. Spin Vortex Resonance in Non-planar Ferromagnetic Dots

    PubMed Central

    Ding, Junjia; Lapa, Pavel; Jain, Shikha; Khaire, Trupti; Lendinez, Sergi; Zhang, Wei; Jungfleisch, Matthias B.; Posada, Christian M.; Yefremenko, Volodymyr G.; Pearson, John E.; Hoffmann, Axel; Novosad, Valentine

    2016-01-01

    In planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique. Two distinct regimes of vortex gyration were detected depending on the vortex core position. The experimental results are in qualitative agreement with micromagnetic simulations. PMID:27143405

  7. Spin Vortex Resonance in Non-planar Ferromagnetic Dots

    NASA Astrophysics Data System (ADS)

    Ding, Junjia; Lapa, Pavel; Jain, Shikha; Khaire, Trupti; Lendinez, Sergi; Zhang, Wei; Jungfleisch, Matthias B.; Posada, Christian M.; Yefremenko, Volodymyr G.; Pearson, John E.; Hoffmann, Axel; Novosad, Valentine

    2016-05-01

    In planar structures, the vortex resonance frequency changes little as a function of an in-plane magnetic field as long as the vortex state persists. Altering the topography of the element leads to a vastly different dynamic response that arises due to the local vortex core confinement effect. In this work, we studied the magnetic excitations in non-planar ferromagnetic dots using a broadband microwave spectroscopy technique. Two distinct regimes of vortex gyration were detected depending on the vortex core position. The experimental results are in qualitative agreement with micromagnetic simulations.

  8. RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: PROTOSTELLAR CORE FORMATION

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Hori, Yasunori; Saigo, Kazuya; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: tomisaka@th.nao.ac.jp E-mail: saigo.kazuya@nao.ac.jp E-mail: okuzumi@nagoya-u.jp

    2013-01-20

    We report the first three-dimensional radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse with and without Ohmic dissipation. We take into account many physical processes required to study star formation processes, including a realistic equation of state. We follow the evolution from molecular cloud cores until protostellar cores are formed with sufficiently high resolutions without introducing a sink particle. The physical processes involved in the simulations and adopted numerical methods are described in detail. We can calculate only about one year after the formation of the protostellar cores with our direct three-dimensional RMHD simulations because of the extremely short timescale in the deep interior of the formed protostellar cores, but successfully describe the early phase of star formation processes. The thermal evolution and the structure of the first and second (protostellar) cores are consistent with previous one-dimensional simulations using full radiation transfer, but differ considerably from preceding multi-dimensional studies with the barotropic approximation. The protostellar cores evolve virtually spherically symmetric in the ideal MHD models because of efficient angular momentum transport by magnetic fields, but Ohmic dissipation enables the formation of the circumstellar disks in the vicinity of the protostellar cores as in previous MHD studies with the barotropic approximation. The formed disks are still small (less than 0.35 AU) because we simulate only the earliest evolution. We also confirm that two different types of outflows are naturally launched by magnetic fields from the first cores and protostellar cores in the resistive MHD models.

  9. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    SciTech Connect

    Beresnyak, Andrey

    2014-04-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.

  10. Spectra of Strong Magnetohydrodynamic Turbulence from High-resolution Simulations

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2014-04-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 40963, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around -1.7, close to Kolmogorov's -5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The -1.5 slope for energy and the -2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.

  11. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-01-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.

  12. Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2004-01-01

    Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.

  13. Non-planar on-shell diagrams

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Galloni, Daniele; Penante, Brenda; Wen, Congkao

    2015-06-01

    We initiate a systematic study of non-planar on-shell diagrams in SYM and develop powerful technology for doing so. We introduce canonical variables generalizing face variables, which make the d log form of the on-shell form explicit. We make significant progress towards a general classification of arbitrary on-shell diagrams by means of two classes of combinatorial objects: generalized matching and matroid polytopes. We propose a boundary measurement that connects general on-shell diagrams to the Grassmannian. Our proposal exhibits two important and non-trivial properties: positivity in the planar case and it matches the combinatorial description of the diagrams in terms of generalized matroid polytopes. Interestingly, non-planar diagrams exhibit novel phenomena, such as the emergence of constraints on Plücker coordinates beyond Plücker relations when deleting edges, which are neatly captured by the generalized matching and matroid polytopes. This behavior is tied to the existence of a new type of poles in the on-shell form at which combinations of Plücker coordinates vanish. Finally, we introduce a prescription, applicable beyond the MHV case, for writing the on-shell form as a function of minors directly from the graph.

  14. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  15. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b

    SciTech Connect

    Rogers, T. M.; Showman, A. P. E-mail: showman@lpl.arizona.edu

    2014-02-10

    We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10{sup 17} W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.

  16. Solar Wind Collisional Age from a Global Magnetohydrodynamics Simulation

    NASA Astrophysics Data System (ADS)

    Chhiber, R.; Usmanov, AV; Matthaeus, WH; Goldstein, ML

    2016-04-01

    Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.

  17. Hybrid magneto-hydrodynamic simulation of a driven FRC

    SciTech Connect

    Rahman, H. U. Wessel, F. J.; Binderbauer, M. W.; Qerushi, A.; Rostoker, N.; Conti, F.; Ney, P.

    2014-03-15

    We simulate a field-reversed configuration (FRC), produced by an “inductively driven” FRC experiment; comprised of a central-flux coil and exterior-limiter coil. To account for the plasma kinetic behavior, a standard 2-dimensional magneto-hydrodynamic code is modified to preserve the azimuthal, two-fluid behavior. Simulations are run for the FRC's full-time history, sufficient to include: acceleration, formation, current neutralization, compression, and decay. At start-up, a net ion current develops that modifies the applied-magnetic field forming closed-field lines and a region of null-magnetic field (i.e., a FRC). After closed-field lines form, ion-electron drag increases the electron current, canceling a portion of the ion current. The equilibrium is lost as the total current eventually dissipates. The time evolution and magnitudes of the computed current, ion-rotation velocity, and plasma temperature agree with the experiments, as do the rigid-rotor-like, radial-profiles for the density and axial-magnetic field [cf. Conti et al. Phys. Plasmas 21, 022511 (2014)].

  18. Magnetohydrodynamical simulations of a deep tidal disruption in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Abarca, David

    2016-06-01

    We perform hydro- and magnetohydrodynamical general-relativistic simulations of a tidal disruption of a 0.1 M⊙ red dwarf approaching a 105 M⊙ non-rotating massive black hole on a close (impact parameter β = 10) elliptical (eccentricity e = 0.97) orbit. We track the debris self-interaction, circularization and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the hole. The effective viscosity in the debris disc stems from the original hydrodynamical turbulence, which dominates over the magnetic component. The radiative efficiency is very low because of low energetics of the gas crossing the horizon and large optical depth that results in photon trapping. Although the parameters of the simulated tidal disruption are probably not representative of most observed events, it is possible to extrapolate some of its properties towards more common configurations.

  19. Collisionless Plasma Turbulence: Insights from Magnetohydrodynamic and Hall Magnetohydrodynamic Simulations and Observations of the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Stawarz, Julia E.

    Turbulence is a ubiquitous phenomenon that occurs throughout the universe, in both neutral fluids and plasmas. For collisionless plasmas, kinetic effects, which alter the nonlinear dynamics and result in small-scale dissipation, are still not well understood in the context of turbulence. This work uses direct numerical simulations (DNS) and observations of Earth's magnetosphere to study plasma turbulence. Long-time relaxation in magnetohydrodynamic (MHD) turbulence is examined using DNS with particular focus on the role of magnetic and cross helicity and symmetries of the initial configurations. When strong symmetries are absent or broken through perturbations, flows evolve towards states predicted by statistical mechanics with an energy minimization principle, which features two main regimes; one magnetic helicity dominated and one with quasi-equipartition of kinetic and magnetic energy. The role of the Hall effect, which contributes to the dynamics of collisionless plasmas, is also explored numerically. At scales below the ion inertial length, a transition to a magnetically dominated state, associated with advection becoming subdominant to dissipation, occurs. Real-space current, vorticity, and electric fields are examined. Strong current structures are associated with alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. Turbulence within bursty bulk flow braking events, thought to be associated with near-Earth magnetotail reconnection, are then studied using the THEMIS spacecraft. It is proposed that strong field-aligned currents associated with turbulent intermittency destabilize into double layers, providing a collisionless dissipation mechanism for the turbulence. Plasma waves may also radiate from the region, removing energy from the turbulence and potentially depositing it in the aurora. Finally, evidence for turbulence in the Kelvin-Helmholtz instability (KHI) on the

  20. Forced turbulence in large-eddy simulation of compressible magnetohydrodynamic turbulence

    SciTech Connect

    Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.

    2010-10-15

    We present the large-eddy simulation method for studying forced compressible magnetohydrodynamic turbulence. The proposed method is based on a solution of the filtered basic equations of magnetohydrodynamics by finite-difference methods and on a linear representation of the driving forces in the momentum conservation equation and the magnetic induction equation. These forces supply the production of kinetic and magnetic energies. The emphasis is placed upon the important, and not investigated, question about the ability of the large-eddy simulation approach to reproduce Kolmogorov and Iroshnikov-Kraichnan scale-invariant spectra in compressible magnetohydrodynamic flows.

  1. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  2. Radiation magnetohydrodynamic simulations of protostellar collapse: Low-metallicity environments

    SciTech Connect

    Tomida, Kengo

    2014-05-10

    Among many physical processes involved in star formation, radiation transfer is one of the key processes because it dominantly controls the thermodynamics. Because metallicities control opacities, they are one of the important environmental parameters that affect star formation processes. In this work, I investigate protostellar collapse in solar-metallicity and low-metallicity (Z = 0.1 Z {sub ☉}) environments using three-dimensional radiation hydrodynamic and magnetohydrodynamic simulations. Because radiation cooling in high-density gas is more effective in low-metallicity environments, first cores are colder and have lower entropies. As a result, first cores are smaller, less massive, and have shorter lifetimes in low-metallicity clouds. Therefore, first cores would be less likely to be found in low-metallicity star forming clouds. This also implies that first cores tend to be more gravitationally unstable and susceptible to fragmentation. The evolution and structure of protostellar cores formed after the second collapse weakly depend on metallicities in the spherical and magnetized models, despite the large difference in the metallicities. Because this is due to the change of the heat capacity by dissociation and ionization of hydrogen, it is a general consequence of the second collapse as long as the effects of radiation cooling are not very large during the second collapse. On the other hand, the effects of different metallicities are more significant in the rotating models without magnetic fields, because they evolve slower than other models and therefore are more affected by radiation cooling.

  3. Magnetohydrodynamic and hybrid simulations of broadband fluctuations near interplanetary shocks

    SciTech Connect

    Agim, Y.Z.; Vinas, A.F.; Goldstein, M.L.

    1995-09-01

    We present results of a theoretical study of evolution of a spectrum of finite amplitude right-hand elliptically polarized magnetohydrodynamic (MHD) waves. The analysis includes use of one-and-a-half-dimensional solutions of the equations that describe compressible MHD together with one-and-a-half-dimensional hybrid simulation of the phenomenon. The motivation of the study is to understand the origin and properties of finite amplitude waves often observed in the vicinity of collisionless shocks in the heliosphere. The solutions of the MHD equations are compared with both the results of the hybrid simulations and observations previously reported by Vinas et al. in the vicinity of a quasi-parallel interplanetary shock. The initial conditions of the MHD solutions were constructed to model the observed spectrum of magnetic and velocity fluctuations; plasma parameters were also chosen to replicate the observed parameters. For the typical parameters of {beta} = 0.5, {sigma}B/B{sub 0} = 0.25 and a spectrum of parallel propagating, circularly polarized dispersive waves, initially the density and magnetic energy density correlations grow due to the (nonlinear) ponderomotive effect. The spectral features below the ion cyclotron frequency are established quickly on the Alfvenic timescale but then persist and match closely the observed fluctuations. The parametric decay instabilities that subsequently appear further enhance the density fluctuations and produce a high-frequency magnetic power spectrum consistent with the spacecraft observation. The MHD and hybrid simulations extend the previous picture of wave generation by a beam-driven ion cyclotron instability to the fully nonlinear stage. 64 refs., 24 figs.

  4. Time-dependent magnetohydrodynamic simulations of the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.

    2016-04-01

    This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process

  5. Cell projection of meshes with non-planar faces

    SciTech Connect

    Max, N; Williams, P; Silva, C

    2000-11-27

    Volume rendering converts a scalar function on a 3D volume into varying colors and opacities, and creates an image by integrating the color and opacity effects along viewing rays through each pixel [1]. For data specified on a regular grid, the ray tracing is straightforward [2,3,4,5], and similar effects can be obtained with 3D textures [6]. For curvilinear or irregular grids, these methods are only applicable after the data has been resampled. An alternative, which works directly on these more general grids, is cell projection [7,8,9]. The cells composited onto the image in back to front sorted order. The projections of the edges of a single cell divide the image plane into polygons, which can be scan converted and composited by standard graphics hardware. In references [9,10,11], we assumed that the cells were polyhedra with planar faces. A curvilinear grid maps a rectangular grid onto a curved volume, for example to fit next to an airplane wing or ship hull, and quadrilateral faces may map to non-planar surfaces. Irregular grids are fitted to complex geometries, for example mechanical parts, and even initially flat faces may become non-planar as the grid elements deform, for example, in a car crash simulation. Non-planar faces cause problems in the sorting and compositing when a viewing ray crosses the same face twice. We call such a face a ''problem face''. For example, the ray may leave cell A through face F, enter cell B , and then enter cell A again through the same face F. If a viewing ray intersects a cell like A in two disjoint segments, we call the cell a ''problem cell''. This makes it impossible to sort cells A and B in back-to-front compositing order. Our solution is to divide problem cells into tetrahedra, which have planar faces. A single hexahedron can be projected and composited more quickly than the five or six tetrahedra into which it is subdivided, so we subdivide only the problem cells. In the example above, cell B might not turn out to be a

  6. Simulations of Magnetohydrodynamic Waves Driven by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, Stuart

    2016-04-01

    This thesis investigates the properties of various modelled photospheric motions as generation mechanisms for magnetohydrodynamic (MHD) waves in the low solar atmosphere. The solar atmosphere is heated to million-degree temperatures, yet there is no fully understood heating mechanism which can provide the ≈ 300 W/m^2) required to keep the quiet corona at its observed temperatures. MHD waves are one mechanism by which this energy could be provided to the upper solar atmosphere, however, these waves need to be excited. The excitation of these waves, in or below the photosphere is a complex interaction between the plasma and the magnetic field embedded within it. This thesis studies a model of a small-scale magnetic flux tube based upon a magnetic bright point (MBP). These features are very common in the photosphere and have been observed to be affected by the plasma motions. The modelled flux tube has a foot point magnetic field strength of 120 mT and a FWHM of 90 km, and is embedded in a realistic, stratified solar atmosphere based upon the VALIIIc model. To better understand the excitation of MHD waves in this type of magnetic structures, a selection of velocity profiles are implemented to excite waves. Initially a study of five different driving profiles was performed. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers which mimic observed torsional motions in the solar photosphere, along with vertical and horizontal drivers to mimic different motions caused by convection in the photosphere. The results are then analysed using a novel method for extracting the parallel, perpendicular and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated, to enable

  7. Yangian-type symmetries of non-planar leading singularities

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Meidinger, David

    2016-05-01

    We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in {N}=4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.

  8. Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.

    2005-01-01

    This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.

  9. Simulation of operation modes of a centrifugal conductive magnetohydrodynamic pump

    NASA Astrophysics Data System (ADS)

    Katsnelson, S. S.; Pozdnyakov, G. A.

    2013-09-01

    A mathematical model of a centrifugal conductive magnetohydrodynamic (MHD) pump that calculates the distributions of velocity, current density, and pressure along the channel is developed. The viscous forces in the original system of MHD equations are taken into account on the basis of the known square law of the drag for a turbulent flow in a pipe, generalized for the case of plane flows in a channel. Dependences of the drag coefficient on the main governing parameters (metal flow rate, current intensity, and intensity of magnetic induction), which provide the agreement of the calculated and experimental data on the pressure at the pump outlet for different operation modes, are obtained. It is shown that these dependences have a universal character and the proposed model can be used to design pumps of this type and to manage their operation in production industry.

  10. Nonlinear magnetohydrodynamic simulation of Tore Supra hollow current profile discharges

    NASA Astrophysics Data System (ADS)

    Maget, P.; Huysmans, G. T. A.; Garbet, X.; Ottaviani, M.; Lütjens, H.; Luciani, J.-F.

    2007-05-01

    Magnetohydrodynamic (MHD) activity often undermines the realization of fully noninductive plasma discharges in the Tore Supra tokamak [J. Jacquinot, Nucl. Fusion 45, S118 (2005)], by producing large degradation of electron energy confinement in the plasma core and the bifurcation to a regime with permanent MHD activity. The nonlinear evolution of MHD modes in these hollow current density profile discharges is studied with the full-scale three-dimensional MHD code XTOR [K. Lerbinger and J.-F. Luciani, J. Comput. Phys. 97, 444 (1991)] and compared with experimental features. Large confinement degradation is predicted when q(0) is close to 2. This derives either from the full reconnection of an unstable double-tearing mode, or from the coupling between a single tearing mode and adjacent stable modes in a region with reduced magnetic shear.

  11. RADIATION MAGNETOHYDRODYNAMICS SIMULATION OF PROTO-STELLAR COLLAPSE: TWO-COMPONENT MOLECULAR OUTFLOW

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Ohsuga, Ken; Matsumoto, Tomoaki; Machida, Masahiro N.; Saigo, Kazuya E-mail: tomisaka@th.nao.ac.jp E-mail: masahiro.machida@nao.ac.jp E-mail: matsu@hosei.ac.jp

    2010-05-01

    We perform a three-dimensional nested-grid radiation magnetohydrodynamics (RMHD) simulation with self-gravity to study the early phase of the low-mass star formation process from a rotating molecular cloud core to a first adiabatic core just before the second collapse begins. Radiation transfer is implemented with the flux-limited diffusion approximation, operator-splitting, and implicit time integrator. In the RMHD simulation, the outer region of the first core attains a higher entropy and its size is larger than that in the magnetohydrodynamics simulations with the barotropic approximation. Bipolar molecular outflow consisting of two components is driven by magnetic Lorentz force via different mechanisms, and shock heating by the outflow is observed. Using the RMHD simulation we can predict and interpret the observed properties of star-forming clouds, first cores, and outflows with millimeter/submillimeter radio interferometers, especially the Atacama Large Millimeter/submillimeter Array.

  12. Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Mininni, P.; Dmitruk, P.; Odier, P.; Pinton, J.-F.; Plihon, N.; Verhille, G.; Volk, R.; Bourgoin, M.

    2014-05-01

    We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.

  13. SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND

    SciTech Connect

    Boldyrev, Stanislav; Carlos Perez, Jean; Borovsky, Joseph E.; Podesta, John J.

    2011-11-15

    The question is addressed as to what extent incompressible magnetohydrodynamics can describe random magnetic and velocity fluctuations measured in the solar wind. It is demonstrated that distributions of spectral indices for the velocity, magnetic field, and total energy obtained from high-resolution numerical simulations of magnetohydrodynamic turbulence are qualitatively and quantitatively similar to solar wind observations at 1 AU. Both simulations and observations show that in the inertial range the magnetic field spectrum E{sub b} is steeper than the velocity spectrum E{sub v} with E{sub b} {approx}> E{sub v} and that the magnitude of the residual energy E{sub R} = E{sub v} - E{sub b} decreases nearly following a k{sup -2}{sub perpendicular} scaling.

  14. Constrained Quantum Mechanics: Chaos in Non-Planar Billiards

    ERIC Educational Resources Information Center

    Salazar, R.; Tellez, G.

    2012-01-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…

  15. Magnetohydrodynamic Simulation of a Streamer Beside a Realistic Coronal Hole

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wu, S. T.; Wang, A. H.; Poletto, G.

    1994-01-01

    Existing models of coronal streamers establish their credibility and act as the initial state for transients. The models have produced satisfactory streamer simulations, but unsatisfactory coronal hole simulations. This is a consequence of the character of the models and the boundary conditions. The models all have higher densities in the magnetically open regions than occur in coronal holes (Noci, et al., 1993).

  16. Demonstration for novel self-organization theory by three-dimensional magnetohydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Kondoh, Yoshiomi; Hosaka, Yasuo; Liang, Jia-Ling

    1993-03-01

    It is demonstrated by three-dimensional simulations for resistive magnetohydrodynamic (MHD) plasmas with both 'spatially nonuniform resistivity eta' and 'uniform eta' that the attractor of the dissipative structure in the resistive MHD plasmas is given by del x (eta)j) = (alpha/2)B which is derived from a self-organization theory based on the minimum dissipation rate profile. It is shown by the simulations that the attractor is reduced to del x B = (lambda)B in the special case with the 'uniform eta' and no pressure gradient.

  17. EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav E-mail: cattaneo@flash.uchicago.edu E-mail: boldyrev@wisc.edu

    2011-07-10

    Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.

  18. Magnetohydrodynamic MACH Code Used to Simulate Magnetoplasmadynamic Thrusters

    NASA Technical Reports Server (NTRS)

    Mikellides, Pavlos G.; LaPointe, Michael R.

    2002-01-01

    The On-Board Propulsion program at the NASA Glenn Research Center is utilizing a state of-the-art numerical simulation to model the performance of high-power electromagnetic plasma thrusters. Such thrusters are envisioned for use in lunar and Mars cargo transport, piloted interplanetary expeditions, and deep-space robotic exploration of the solar system. The experimental portion of this program is described in reference 1. This article describes the numerical modeling program used to guide the experimental research. The synergistic use of numerical simulations and experimental research has spurred the rapid advancement of high-power thruster technologies for a variety of bold new NASA missions. From its inception as a U.S. Department of Defense code in the mid-1980's, the Multiblock Arbitrary Coordinate Hydromagnetic (MACH) simulation tool has been used by the plasma physics community to model a diverse range of plasma problems--including plasma opening switches, inertial confinement fusion concepts, compact toroid formation and acceleration, z-pinch implosion physics, laser-target interactions, and a variety of plasma thrusters. The MACH2 code used at Glenn is a time-dependent, two-dimensional, axisymmetric, multimaterial code with a multiblock structure. MACH3, a more recent three-dimensional version of the code, is currently undergoing beta tests. The MACH computational mesh moves in an arbitrary Lagrangian-Eulerian (ALE) fashion that allows the simulation of diffusive-dominated and dispersive-dominated problems, and the mesh can be refined via a variety of adaptive schemes to capture regions of varying characteristic scale. The mass continuity and momentum equations model a compressible viscous fluid, and three energy equations are used to simulate nonthermal equilibrium between electrons, ions, and the radiation field. Magnetic fields are modeled by an induction equation that includes resistive diffusion, the Hall effect, and a thermal source for magnetic

  19. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    SciTech Connect

    Christensen, J S; Hrousis, C A

    2010-03-09

    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  20. Simulations of Experiments on Electron Magnetohydrodynamic Reconnection in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia; Horton, Wendel

    2012-10-01

    Theory and simulations are developed to interpret laboratory electron magnetohydrodynamic reconnection experiments involving nonlinear whistlers by Stenzel et.al. [R.L. Stenzel, M.C. Griskey, J. M. Urrutia, and K.D. Strohmaier, Phys. Plasma 10, 2780 (2003)]. In that experiment, two current-carrying 30 cm antennas form a Helmholtz coil configuration and produce an elongated dipole field that opposes the uniform ambient field. The current is increased until a field-reversed-configuration with two 3D null points and a 2D null line has been established, and then the current is switched off. The EMHD dynamics are simulated with a 3D three-field nonlinear MHD code. The analytical model includes Poisson bracket nonlinearities that can give rise to vortices and couple energy to higher modes, as well as hyperviscosity to balance the energy exchange. Simulation field topology and dynamics are compared to the laboratory experiment as verification of the simulation code. The experimental setup and other variations are simulated and examined for occurrences of driven and undriven electron magnetohydrodynamic (EMHD) reconnection.

  1. Polarizability matrix retrieval of a non-planar chiral particle through scattering parameters

    NASA Astrophysics Data System (ADS)

    Karamanos, Theodosios; Kantartzis, Nikolaos

    2016-04-01

    An efficient technique for the polarizability matrix extraction of non-planar chiral particles is introduced in this paper. Assuming electrically small sizes, the particles are modeled via electric and magnetic dipoles, whose induced moments are derived from the surface S-parameter response of three normal wave incidences. Then, these moments are inserted in the initial convention and polarizabilities are acquired through a linear system formed by the measured or simulated S-parameters. To validate the novel method, the retrieved polarizabilities are involved in RCS calculations for diverse incidences and compared with simulated ones.

  2. Application of Random Ferns for non-planar object detection

    NASA Astrophysics Data System (ADS)

    Mastov, Alexey; Konovalenko, Ivan; Grigoryev, Anton

    2015-12-01

    The real time object detection task is considered as a part of a project devoted to development of autonomous ground robot. This problem has been successfully solved with Random Ferns algorithm, which belongs to keypoint-based method and uses fast machine learning algorithms for keypoint matching step. As objects in the real world are not always planar, in this article we describe experiments of applying this algorithm for non-planar objects. Also we introduce a method for fast detection of a special class of non-planar objects | those which can be decomposed into planar parts (e.g. faces of a box). This decomposition needs one detector for each side, which may significantly affect speed of detection. Proposed approach copes with it by omitting repeated steps for each detector and organizing special queue of detectors. It makes the algorithm three times faster than naive one.

  3. Highly conformal fabrication of nanopatterns on non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Massiot, Inès; Trompoukis, Christos; Lodewijks, Kristof; Depauw, Valérie; Dmitriev, Alexandre

    2016-06-01

    While the number of techniques for patterning materials at the nanoscale exponentially increases, only a handful of methods approach the conformal patterning of strongly non-planar surfaces. Here, using the direct surface self-assembly of colloids by electrostatics, we produce highly conformal bottom-up nanopatterns with a short-range order. We illustrate the potential of this approach by devising functional nanopatterns on highly non-planar substrates such as pyramid-textured silicon substrates and inherently rough polycrystalline films. We further produce functionalized polycrystalline thin-film silicon solar cells with enhanced optical performance. The perspective presented here to pattern essentially any surface at the nanoscale, in particular surfaces with high inherent roughness or with microscale features, opens new possibilities in a wide range of advanced technologies from affordable photovoltaics and optoelectronics to cellular engineering.

  4. Highly conformal fabrication of nanopatterns on non-planar surfaces.

    PubMed

    Massiot, Inès; Trompoukis, Christos; Lodewijks, Kristof; Depauw, Valérie; Dmitriev, Alexandre

    2016-06-01

    While the number of techniques for patterning materials at the nanoscale exponentially increases, only a handful of methods approach the conformal patterning of strongly non-planar surfaces. Here, using the direct surface self-assembly of colloids by electrostatics, we produce highly conformal bottom-up nanopatterns with a short-range order. We illustrate the potential of this approach by devising functional nanopatterns on highly non-planar substrates such as pyramid-textured silicon substrates and inherently rough polycrystalline films. We further produce functionalized polycrystalline thin-film silicon solar cells with enhanced optical performance. The perspective presented here to pattern essentially any surface at the nanoscale, in particular surfaces with high inherent roughness or with microscale features, opens new possibilities in a wide range of advanced technologies from affordable photovoltaics and optoelectronics to cellular engineering. PMID:27193504

  5. The Magnetohydrodynamic Response of Liquid Oxygen: Experimentation and Simulation

    NASA Astrophysics Data System (ADS)

    Boulware, J. C.; Wassom, S.; Jensen, S.; Ban, H.

    2010-04-01

    Experimental and theoretical studies have been conducted to establish the basic understanding and predictive capability for the dynamics of a liquid oxygen (LOX) slug subjected to magnetic fields within a solenoid. The electrically-pulsed solenoids around a 1.9 mm ID quartz tube were capable of producing up to 1.1 T when immersed in liquid nitrogen. The slug dynamics were measured by pressure changes in a closed volume on both sides of the slug. A theoretical model was developed which balances the magnetic, viscous, and pressure forces into a single equation of motion. The model was applied to a one-dimensional discretized algorithm that solved the coupled multiphysics problem of the Navier-Stokes and Maxwell's equations. The simulation and experimental results established LOX as a good candidate in a magnetic fluid system without moving parts for cryogenic applications.

  6. Fast magnetic reconnection in three-dimensional magnetohydrodynamics simulations

    SciTech Connect

    Pang Bijia; Pen, U.-L.; Vishniac, Ethan T.

    2010-10-15

    A constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box is presented. Reconnection is initiated by a strong, localized perturbation to the field lines. The solution is intrinsically three-dimensional and its gross properties do not depend on the details of the simulations. {approx}30% of the magnetic energy is released in an event which lasts about one Alfven time, but only after a delay during which the field lines evolve into a critical configuration. The physical picture of the process is presented. The reconnection regions are dynamical and mutually interacting. In the comoving frame of these regions, reconnection occurs through a x-like point, analogous to Petschek reconnection. The dynamics appear to be driven by global flows, not local processes.

  7. THE MAGNETOHYDRODYNAMIC RESPONSE OF LIQUID OXYGEN: EXPERIMENTATION AND SIMULATION

    SciTech Connect

    Boulware, J. C.; Ban, H.; Wassom, S.; Jensen, S.

    2010-04-09

    Experimental and theoretical studies have been conducted to establish the basic understanding and predictive capability for the dynamics of a liquid oxygen (LOX) slug subjected to magnetic fields within a solenoid. The electrically-pulsed solenoids around a 1.9 mm ID quartz tube were capable of producing up to 1.1 T when immersed in liquid nitrogen. The slug dynamics were measured by pressure changes in a closed volume on both sides of the slug. A theoretical model was developed which balances the magnetic, viscous, and pressure forces into a single equation of motion. The model was applied to a one-dimensional discretized algorithm that solved the coupled multiphysics problem of the Navier-Stokes and Maxwell's equations. The simulation and experimental results established LOX as a good candidate in a magnetic fluid system without moving parts for cryogenic applications.

  8. COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CLUSTER FORMATION WITH ANISOTROPIC THERMAL CONDUCTION

    SciTech Connect

    Ruszkowski, M.; Lee, D.; Parrish, I.; Oh, S. Peng E-mail: dongwook@flash.uchicago.edu E-mail: iparrish@astro.berkeley.edu

    2011-10-20

    The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the cluster center. At z = 0 the field is amplified by a factor of about 10{sup 6} compared to the uniform magnetic field that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM is more easily mixed and the winding up of the frozen-in magnetic

  9. General relativistic magnetohydrodynamical simulations of the jet in M 87

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, Monika; Falcke, Heino; Shiokawa, Hotaka

    2016-02-01

    Context. The connection between black hole, accretion disk, and radio jet can be constrained best by fitting models to observations of nearby low-luminosity galactic nuclei, in particular the well-studied sources Sgr A* and M 87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Aims: Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M 87. Methods: We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient in these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. Results: We find that the radio emission in M 87 is described well by a combination of a two-temperature accretion flow and a hot single-temperature jet. Most of the radio emission in our simulations comes from the jet sheath. The model fits the basic observed characteristics of the M 87 radio core: it is "edge-brightened", starts subluminally, has a flat spectrum, and increases in size with wavelength. The best fit model has a mass-accretion rate of Ṁ ~ 9 × 10-3M⊙ yr-1 and a total jet power of Pj ~ 1043 erg s-1. Emission at λ = 1.3 mm is produced by the counter-jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. Conclusions: The model was successfully derived from one for the supermassive black hole in the center of the Milky Way by appropriately scaling mass and

  10. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.; Li, Xujing

    2015-06-01

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97-104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  11. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    SciTech Connect

    Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  12. Reduced-magnetohydrodynamic simulations of toroidally and poloidally localized edge localized modes

    SciTech Connect

    Hoelzl, M.; Guenter, S.; Mueller, W.-C.; Lackner, K.; Krebs, I.; Wenninger, R. P.; Huysmans, G. T. A.; Collaboration: ASDEX Upgrade Team

    2012-08-15

    We use the non-linear reduced-magnetohydrodynamic code JOREK to study edge localized modes (ELMs) in the geometry of the ASDEX Upgrade tokamak. Toroidal mode numbers, poloidal filament sizes, and radial propagation speeds of filaments into the scrape-off layer are in good agreement with observations for type-I ELMs in ASDEX Upgrade. The observed instabilities exhibit a toroidal and poloidal localization of perturbations which is compatible with the 'solitary magnetic perturbations' recently discovered in ASDEX Upgrade [R. Wenninger et al., 'Solitary magnetic perturbations at the ELM onset,' Nucl. Fusion (accepted)]. This localization can only be described in numerical simulations with high toroidal resolution.

  13. Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations

    NASA Astrophysics Data System (ADS)

    Miura, Hideaki; Araki, Keisuke; Hamba, Fujihiro

    2016-07-01

    Effects of the Hall term on short-wave components of magnetohydrodynamic turbulence and sub-grid-scale modeling of the effects are studied. Direct numerical simulations of homogeneous magnetohydrodynamic turbulence with and without the Hall term are carried out. The Hall term excites short-wave components in the magnetic field, demanding a high numerical resolution to resolve the scales smaller than the ion skin depth. A k 7 / 3-like scaling-law in the magnetic energy spectrum associated with the excitation of the short-wave components is clearly shown by the use of both an isotropic spectrum and a one-dimensional spectrum. It is also shown that the introduction of the Hall term can cause a structural transition in the vorticity field from tubes to sheets. In order to overcome a strong demand on high-resolution in space and time and to enable quicker computations, large eddy simulations with a Smagorinsky-type sub-grid-scale model are carried out. It is shown that our large eddy simulations successfully reproduce not only the energy spectrum but also tubular vortex structures, reducing the computational cost considerably.

  14. 3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi

    2006-01-01

    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

  15. Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal

    SciTech Connect

    Guazzotto, L.; Betti, R.

    2011-09-15

    Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.

  16. Resistive magnetohydrodynamic simulations of helicity-injected startup plasmas in National Spherical Torus eXperiment

    SciTech Connect

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Ebrahimi, F.; Menard, J. E.

    2013-09-15

    The generation of helicity-injected startup plasmas in National Spherical Torus eXperiment (NSTX), including flux surface closure, is studied using resistive-magnetohydrodynamic simulations with plasma flows, currents, ohmic heating and anisotropic thermal conduction. An injection-voltage pulse shape is used that separates the injection and closure phases allowing elucidation of the physics. The formation of an X-point near the helicity-injection gap is triggered as the injector voltage drops to zero. Near the forming X-point, magnetic pressure due to toroidal field entrained in the E × B plasma flow from the helicity-injection gap drops, allowing resistive magnetic reconnection even though the total injected current is almost constant. Where appropriate, the simulations are compared with Transient Coaxial Helicity Injection experiments in the NSTX spherical tokamak, which have demonstrated the formation of a promising candidate for non-inductive startup plasmas [Raman et al., Phys. Rev. Lett. 90, 075005 (2003)].

  17. A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond I.; Ashour-Abdalla, Maha

    1992-01-01

    We have used a new high-resolution global magnetohydrodynamic simulation model to investigate the configuration of the magnetosphere when the interplanetary magnetic field (IMF) is northward. For northward IMF the magnetospheric configuration is dominated by magnetic reconnection at the tail lobe magnetopause tailward of the polar cusp. This results in a local thickening of the plasma sheet equatorward of the region of reconnection and the establishment of a convection system with two cells in each lobe. In the magnetosheath the plasma density and pressure decrease near the subsolar magnetopause, forming a depletion region. Along the flanks of the magnetosphere the magnetosheath flow is accelerated to values larger than the solar wind velocity. The magnetopause shape from the simulations is consistent with the empirically determined shape.

  18. Effects of anisotropic thermal conductivity in magnetohydrodynamics simulations of a reversed-field pinch.

    PubMed

    Onofri, M; Malara, F; Veltri, P

    2010-11-19

    A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity. PMID:21231314

  19. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  20. Studies of Low Luminosity Active Galactic Nuclei with Monte Carlo and Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Hilburn, Guy Louis

    Results from several studies are presented which detail explorations of the physical and spectral properties of low luminosity active galactic nuclei. An initial Sagittarius A* general relativistic magnetohydrodynamic simulation and Monte Carlo radiation transport model suggests accretion rate changes as the dominant flaring method. A similar study on M87 introduces new methods to the Monte Carlo model for increased consistency in highly energetic sources. Again, accretion rate variation seems most appropriate to explain spectral transients. To more closely resolve the methods of particle energization in active galactic nuclei accretion disks, a series of localized shearing box simulations explores the effect of numerical resolution on the development of current sheets. A particular focus on numerically describing converged current sheet formation will provide new methods for consideration of turbulence in accretion disks.

  1. On the relevance of magnetohydrodynamic pumping in solar coronal loop simulation experiments

    NASA Astrophysics Data System (ADS)

    Tenfelde, J.; Kempkes, P.; Mackel, F.; Ridder, S.; Stein, H.; Tacke, T.; Soltwisch, H.

    2012-07-01

    A magnetohydrodynamic pumping mechanism was proposed by Bellan [Phys. Plasmas 10, 1999 (2003)] to explain the formation of highly collimated plasma-filled magnetic flux tubes in certain solar coronal loop simulation experiments. In this paper, measurements on such an experiment are compared to the predictions of Bellan's pumping and collimation model. Significant discrepancies between theoretical implications and experimental observations have prompted more elaborate investigations by making use of pertinent modifications of the experimental device. On the basis of these studies, it is concluded that the proposed MHD pumping mechanism does not play a crucial role for the formation and temporal evolution of the arched plasma structures that are generated in the coronal loop simulation experiments under consideration.

  2. Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.

    PubMed

    Gibbon, J D; Gupta, A; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J

    2016-04-01

    It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014)NONLE50951-771510.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q^{±} that characterize the inertial range power-law dependencies of the z^{±} energy spectra, E^{±}(k), are then examined, and bounds are obtained. Comments are also made on  (a) the generalization of our results to the case P_{M}≠1 and (b) the relation between D_{m}^{±} and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows. PMID:27176387

  3. Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations

    NASA Astrophysics Data System (ADS)

    Gibbon, J. D.; Gupta, A.; Krstulovic, G.; Pandit, R.; Politano, H.; Ponty, Y.; Pouquet, A.; Sahoo, G.; Stawarz, J.

    2016-04-01

    It is shown how suitably scaled, order-m moments, Dm±, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number PM=1 . These vorticity fields are defined by ω±=curlz±=ω ±j , where z± are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014), 10.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q± that characterize the inertial range power-law dependencies of the z± energy spectra, E±(k ) , are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case PM≠1 and (b) the relation between Dm± and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.

  4. A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.

    2004-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.

  5. Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak

    SciTech Connect

    Sovinec, C.R.

    1995-12-31

    Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.

  6. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Hotta, H.; Rempel, M.; Yokoyama, T.

    2016-03-01

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲1012square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities—that is, large Reynolds numbers.

  7. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  8. Three-dimensional Simulations of Magnetohydrodynamic Waves in Magnetized Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Fedun, V.; Hasan, S. S.; Erdélyi, R.

    2012-08-01

    We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.

  9. THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC WAVES IN MAGNETIZED SOLAR ATMOSPHERE

    SciTech Connect

    Vigeesh, G.; Fedun, V.; Erdelyi, R.; Hasan, S. S.

    2012-08-10

    We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.

  10. Magnetohydrodynamic electrical power generation using convexly divergent channel: II. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2011-05-01

    We describe quasi-three-dimensional numerical calculations based on large eddy simulation model for magnetohydrodynamic (MHD) electrical power generators equipped with modified wall configurations. The wall profile of the MHD channel is finely tuned in four types of geometry, that is, a concavely divergent channel, a linearly divergent channel, a convexly divergent channel and a highly convexed channel. The plasma-fluid properties and energy conversion efficiency are examined in detail. Although the deterioration in the plasma-fluid behaviour is not completely overcome, the advantages of the convexly divergent channel are notable. The convexly divergent channel exhibits the highest energy conversion performance, which is followed by the highly convexed, linearly and concavely divergent channels in order. The effect of the channel geometry modification on the generator performance is clearly quantified using a convexity parameter. This paper is the second part of a duology.

  11. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1989-01-01

    Dayside magnetic reconnection was studied by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. Two different mechanisms were found for the formation of magnetic flux tubes at the dayside magnetopause, which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B(y) component. When the B(y) component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  12. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  13. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. PMID:27013727

  14. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. III. ROTATING RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-09-20

    We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. We find that, in accordance with the linear stability theory, the development of the instability depends on the lateral distribution of the poloidal magnetic field. If the poloidal field significantly decreases outward from the axis, then the initial small perturbations grow strongly, and if multiple wavelengths are excited, then nonlinear interaction eventually disrupts the initial cylindrical configuration. When the profile of the poloidal field is shallow, the instability develops slowly and eventually saturates. We briefly discuss implications of our findings for Poynting-dominated jets.

  15. SPICULE-LIKE STRUCTURES OBSERVED IN THREE-DIMENSIONAL REALISTIC MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats; De Pontieu, Bart E-mail: viggo.hansteen@astro.uio.no E-mail: bdp@lmsal.com

    2009-08-20

    We analyze features that resemble type I spicules in two different three-dimensional numerical simulations in which we include horizontal magnetic flux emergence in a computational domain spanning the upper layers of the convection zone to the lower corona. The two simulations differ mainly in the pre-existing ambient magnetic field strength and in the properties of the inserted flux tube. We use the Oslo Staggered Code to solve the full magnetohydrodynamic equations with nongray and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We find a multitude of features that show a spatiotemporal evolution that is similar to that observed in type I spicules, which are characterized by parabolic height versus time profiles, and are dominated by rapid upward motion at speeds of 10-30 km s{sup -1}, followed by downward motion at similar velocities. We measured the parameters of the parabolic profile of the spicules and find similar correlations between the parameters as those found in observations. The values for height (or length) and duration of the spicules found in the simulations are more limited in range than those in the observations. The spicules found in the simulation with higher pre-existing ambient field have shorter length and smaller velocities. From the simulations, it appears that these kinds of spicules can, in principle, be driven by a variety of mechanisms that include p-modes, collapsing granules, magnetic energy release in the photosphere and lower chromosphere, and convective buffeting of flux concentrations.

  16. MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE

    SciTech Connect

    Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie E-mail: paulchar@astro.umontreal.ca

    2013-05-01

    We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.

  17. Magnetohydrodynamic Simulation-driven Kinematic Mean Field Model of the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Simard, Corinne; Charbonneau, Paul; Bouchat, Amélie

    2013-05-01

    We construct a series of kinematic axisymmetric mean-field dynamo models operating in the αΩ, α2Ω and α2 regimes, all using the full α-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An α2Ω mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with α2 and αΩ mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating α2 solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.

  18. Discrete filters for large-eddy simulation of forced compressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Petrosyan, A. S.

    2016-06-01

    We discuss results of the applicability of discrete filters for the large-eddy simulation (LES) method of forced compressible magnetohydrodynamic (MHD) turbulent flows with the scale-similarity model. New results are obtained for cross-helicity and residual energy. Cross-helicity and residual energy are important quantities in magnetohydrodynamic turbulence and have no hydrodynamic counterpart. The influences and effects of discrete filter shapes on the scale-similarity model are examined in physical space using finite-difference numerical schemes. We restrict ourselves to the Gaussian filter and the top-hat filter. Representations of this subgrid-scale model, which correspond to various 3- and 5-point approximations of both Gaussian and top-hat filters for different values of parameter ε (the ratio of the cut-off length-scale of the filter to the mesh size), are investigated. Discrete filters produce more discrepancies for the magnetic field. It is shown that the Gaussian filter is more sensitive to the parameter ɛ than the top-hat filter in compressible forced MHD turbulence. The 3-point filters at ε =2 and ε =3 give the least accurate results whereas the 5-point Gaussian filter shows the best results at ε =2 and ε =3. There are only very small differences deep into the dissipation region in favor of ε =2. For cross-helicity, the 5-point discrete filters are in good agreement with the results of direct numerical simulation (DNS), while the 3-point filter produces the largest discrepancies with DNS results. There is no strong dependence on the choice of the parameter ε and order approximation is a much more important factor for the cross-helicity. The difference between the filters is less for the residual energy compared with total energy. Thus, the total energy is more sensitive to the choice of discrete filter in the modeling of compressible MHD turbulence using the LES method.

  19. Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.

    2016-02-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  20. Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation

    SciTech Connect

    Sondak, David; Oberai, Assad A.

    2012-10-15

    Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation of LES to the equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is introduced for MHD. A mixed LES model that combines the strengths of both of these models is also derived. The new models result in a consistent numerical method that is relatively simple to implement. The need for a dynamic procedure in determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical LES turbulence models. The LES simulations are run in a periodic box of size [-{pi}, {pi}]{sup 3} with 32 modes in each direction and are compared to a direct numerical simulation (DNS) with 512 modes in each direction. The new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by Pouquet et al.['The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD,' Geophys. Astrophys. Fluid Dyn. 104, 115-134 (2010)], for which the ratio of DNS modes to LES modes is 262:144.

  1. Three-dimensional magnetohydrodynamics simulations of counter-helicity spheromak merging in the Swarthmore Spheromak Experiment

    SciTech Connect

    Myers, C. E.; Belova, E. V.; Brown, M. R.; Gray, T.; Cothran, C. D.; Schaffer, M. J.

    2011-11-15

    Recent counter-helicity spheromak merging experiments in the Swarthmore Spheromak Experiment (SSX) have produced a novel compact torus (CT) with unusual features. These include a persistent antisymmetric toroidal magnetic field profile and a slow, nonlinear emergence of the n = 1 tilt mode. Experimental measurements are inconclusive as to whether this unique CT is a fully merged field-reversed configuration (FRC) with strong toroidal field or a partially merged ''doublet CT'' configuration with both spheromak- and FRC-like characteristics. In this paper, the SSX merging process is studied in detail using three-dimensional resistive MHD simulations from the Hybrid Magnetohydrodynamics (HYM) code. These simulations show that merging plasmas in the SSX parameter regime only partially reconnect, leaving behind a doublet CT rather than an FRC. Through direct comparisons, we show that the magnetic structure in the simulations is highly consistent with the SSX experimental observations. We also find that the n = 1 tilt mode begins as a fast growing linear mode that evolves into a slower-growing nonlinear mode before being detected experimentally. A simulation parameter scan over resistivity, viscosity, and line-tying shows that these parameters can strongly affect the behavior of both the merging process and the tilt mode. In fact, merging in certain parameter regimes is found to produce a toroidal-field-free FRC rather than a doublet CT.

  2. 3D Global Magnetohydrodynamic Simulations of the Solar Wind/Earth's Magnetosphere Interaction

    NASA Astrophysics Data System (ADS)

    Yalim, M. S.; Poedts, S.

    2014-09-01

    In this paper, we present results of real-time 3D global magnetohydrodynamic (MHD) simulations of the solar wind interaction with the Earth's magnetosphere using time-varying data from the NASA Advanced Composition Explorer (ACE) satellite during a few big magnetic storm events of the previous and current solar cycles, namely the 06 April 2000, 20 November 2003 and 05 April 2010 storms. We introduce a numerical magnetic storm index and compare the geo-effectiveness of these events in terms of this storm index which is a measure for the resulting global perturbation of the Earth's magnetic field. Steady simulations show that the upstream solar wind plasma parameters enter the low-β switch-on regime for some time intervals during a magnetic storm causing a complex dimpled bow shock structure. We also investigate the traces of such bow shock structures during time-dependent simulations of the events. We utilize a 3D, implicit, parallel, unstructured grid, compressible finite volume ideal MHD solver with an anisotropic grid adaptation technique for the computer simulations.

  3. Earth's Magnetosphere 3D Simulation by Coupling Particle-In-Cell and Magnetohydrodynamics Models: Parametric Study

    NASA Astrophysics Data System (ADS)

    Baraka, S. M.; Ben-Jaffel, L. B.

    2014-12-01

    We use particle-in-cell PIC 3D Electromagnetic, relativistic global code to address large-scale problems in magnetosphere electrodynamics. Terrestrial bow shock is simulated as an example. 3D Magnetohydrodynamics model ,MHD GUMICS in CCMC project, have been used in parallel with PIC under same scaled Solar wind (SW) and IMF conditions. We report new results from the coupling between the two models. Further investigations are required for confirmations of these results. In both codes the Earth's bow shock position is found at ~14.8 RE along the Sun-Earth line, and ~29 RE on the dusk side which is consistent with past in situ observation. Both simulations reproduce the theoretical jump conditions at the shock. However, PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to MHD results. Reflected ions upstream of the bow shock may cause this sunward shift for density and temperature. Distribution of reflected ions and electrons are shown in the foreshock region, within the transition of the shock and in the downstream. The current version of PIC code can be run under modest computing facilities and resources. Additionally, existing MHD simulations should be useful to calibrate scaled properties of plasma resulting from PIC simulations for comparison with observations. Similarities and drawbacks of the results obtained by the two models are listed. The ultimate goal of using these different models in a complimentary manner rather than competitive is to better understand the macrostructure of the magnetosphere

  4. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  5. SGBEM-FEM Alternating Method for Analyzing 3D Non-Planar Cracks and Their Growth in Structural Components

    NASA Technical Reports Server (NTRS)

    Nikishkov, G. P.; Park, J. H.; Atluri, S. N.

    2001-01-01

    The highly accurate and efficient Symmetric Galerkin Boundary Element Method (SGBEM), a Finite Element Method (FEM)-based alternating method, is proposed for analyzing three-dimensional non-planar cracks and their growth. The cracks are modeled using the symmetric Galerkin boundary element method as a distribution of displacement discontinuities, simulating an infinite medium. The finite element method only analyzes the stress for the uncracked body. The solution for the cracked structural component is determined by an iteration procedure. This process alternates between an FEM solution for the uncracked body and the SGBEM solution for a crack in an infinite body. Numerical analysis, and the Java code used, evaluate stress intensity factors and model fatigue crack growth. Examples of non-planar cracks in infinite media and planar cracks in finite bodies, as well as growth under fatigue, show the accuracy of the method.

  6. Magnetohydrodynamic simulation of current switching by explosive opening switches of different types

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. V.

    2015-01-01

    The MEG-2D two-dimensional Eulerian design procedure was used for magnetohydrodynamic simulation of the megaampere current switching process by an explosive opening switch. This paper presents simulation results for the current switching of a helical magnetocumulative generator (MCG) by explosive opening switches of different types at the same parameters of the switching scheme, thickness of the breaking conductor made of copper foil, the breaking current, and the number of opening switch elements. Simulation results for current switching by an explosive opening switch with a ribbed barrier for different thickness of the broken copper foil conductor are also presented. In the case of using a foil 0.3 mm thick, a ribbed barrier with steel inserts on the ribs with optimal parameters was investigated. It is shown that at a foil thickness less than 0.2 mm, decreasing the depth of the groove in the barrier does not lead to an increases in the time of triggering of the opening switch.

  7. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bakhsh, A.; Gao, S.; Samtaney, R.; Wheatley, V.

    2016-03-01

    Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability (RMI) is suppressed in ideal magnetohydrodynamics (MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β = /2 p Br 2 ) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.

  8. Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Miesch, Mark; Matthaeus, William; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco

    2015-11-01

    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.

  9. Magnetohydrodynamic Simulations of Disk GalaxyFormation: the Magnetization of The Cold and Warm Medium

    SciTech Connect

    Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP

    2007-12-18

    Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.

  10. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. II. MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)-an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf-with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.

  11. Magnetic field line random walk in models and simulations of reduced magnetohydrodynamic turbulence

    SciTech Connect

    Snodin, A. P.; Ruffolo, D.; Oughton, S.; Servidio, S.; Matthaeus, W. H.

    2013-12-10

    The random walk of magnetic field lines is examined numerically and analytically in the context of reduced magnetohydrodynamic (RMHD) turbulence, which provides a useful description of plasmas dominated by a strong mean field, such as in the solar corona. A recently developed non-perturbative theory of magnetic field line diffusion is compared with the diffusion coefficients obtained by accurate numerical tracing of magnetic field lines for both synthetic models and direct numerical simulations of RMHD. Statistical analysis of an ensemble of trajectories confirms the applicability of the theory, which very closely matches the numerical field line diffusion coefficient as a function of distance z along the mean magnetic field for a wide range of the Kubo number R. This theory employs Corrsin's independence hypothesis, sometimes thought to be valid only at low R. However, the results demonstrate that it works well up to R = 10, both for a synthetic RMHD model and an RMHD simulation. The numerical results from the RMHD simulation are compared with and without phase randomization, demonstrating a clear effect of coherent structures on the field line random walk for a very low Kubo number.

  12. Oblique magnetohydrodynamic cosmic-ray-modified shocks: Two-fluid numerical simulations

    NASA Technical Reports Server (NTRS)

    Frank, Adam; Jones, T. W.; Ryu, Dongsu

    1994-01-01

    We present the first results of time-dependent two-fluid cosmic-ray (CR) modified magnetohydrodynamic (MHD) shock simulations. The calculations were carried out with a new numerical code for one-dimensional ideal MHD. By coupling this code with the CR energy transport equation we can simulate the time-dependent evolution of MHD shocks, including the acceleration of the CR and their feedback on the shock structures. We report tests of the combined numerical method including comparisons with analytical steady state results published earlier by Webb, as well as internal consistency checks for more general MHD CR shock structures after they apppear to have converged to dynamical steady states. We also present results from an initial time-dependent simulation which extends the parameter space domain of previous analytical models. These new results support Webb's suggestion that equilibrium oblique shocks are less effective than parallel shocks in the acceleration of CR. However, for realistic models of anisotropic CR diffusion, oblique shocks may achieve dynamical equilibrium on shorter timescales than parallel shocks.

  13. MAGNETOHYDRODYNAMIC EFFECTS ON PULSED YOUNG STELLAR OBJECT JETS. I. 2.5D SIMULATIONS

    SciTech Connect

    Hansen, E. C.; Frank, A.; Hartigan, P.

    2015-02-10

    In this paper, we explore the dynamics of radiative axisymmetric magnetohydrodynamic (MHD) jets at high resolution using adaptive mesh refinement methods. The goal of the study is to determine both the dynamics and emission properties of such jets. To that end, we have implemented microphysics enabling us to produce synthetic maps of Hα and [S II]. The jets are pulsed either sinusoidally or randomly via a time-dependent ejection velocity which leads to a complicated structure of internal shocks and rarefactions as has been seen in previous simulations. The high resolution of our simulations allows us to explore in great detail the effect of pinch forces (due to the jet's toroidal magnetic field) within the ''working surfaces'' where pulses interact. We map the strong Hα emission marking shock fronts and the strong [S II] emission inside cooling regions behind shocks as observed with high-resolution images of jets. We find that pinch forces in the stronger field cases produce additional emission regions along the axis as compared with purely hydrodynamic runs. These simulations are a first step to understanding the full three-dimensional emission properties of radiative MHD jets.

  14. General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses?

    NASA Astrophysics Data System (ADS)

    Dibi, S.; Drappeau, S.; Fragile, P. C.; Markoff, S.; Dexter, J.

    2012-11-01

    We present general relativistic magnetohydrodynamic numerical simulations of the accretion flow around the supermassive black hole in the Galactic Centre, Sagittarius A* (Sgr A*). The simulations include for the first time radiative cooling processes (synchrotron, bremsstrahlung and inverse Compton) self-consistently in the dynamics, allowing us to test the common simplification of ignoring all cooling losses in the modelling of Sgr A*. We confirm that for Sgr A*, neglecting the cooling losses is a reasonable approximation if the Galactic Centre is accreting below ˜10-8 M⊙ yr-1, i.e. M⊙<10-7M⊙ Edd . However, above this limit, we show that radiative losses should be taken into account as significant differences appear in the dynamics and the resulting spectra when comparing simulations with and without cooling. This limit implies that most nearby low-luminosity active galactic nuclei are in the regime where cooling should be taken into account. We further make a parameter study of axisymmetric gas accretion around the supermassive black hole at the Galactic Centre. This approach allows us to investigate the physics of gas accretion in general, while confronting our results with the well-studied and observed source, Sgr A*, as a test case. We confirm that the nature of the accretion flow and outflow is strongly dependent on the initial geometry of the magnetic field. For example, we find it difficult, even with very high spins, to generate powerful outflows from discs threaded with multiple, separate poloidal field loops.

  15. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  16. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  17. Theory and Simulation Basis for Magnetohydrodynamic Stability in DIII-D

    SciTech Connect

    Turnbull, A.D.; Brennan, D.P.; Chu, M.S.; Lao, L.L.; Snyder, P.B.

    2005-10-15

    Theory and simulation have provided one of the critical foundations for many of the significant achievements in magnetohydrodynamic (MHD) stability in DIII-D over the past two decades. Early signature achievements included the validation of tokamak MHD stability limits, beta and performance optimization through cross-section shaping and profiles, and the development of new operational regimes. More recent accomplishments encompass the realization and sustainment of wall stabilization using plasma rotation and active feedback, a new understanding of edge stability and its relation to edge-localized modes, and recent successes in predicting resistive tearing and interchange instabilities. The key to success has been the synergistic tie between the theory effort and the experiment made possible by the detailed equilibrium reconstruction data available in DIII-D and the corresponding attention to the measured details in the modeling. This interaction fosters an emphasis on the important phenomena and leads to testable theoretical predictions. Also important is the application of a range of analytic and simulation techniques, coupled with a program of numerical tool development. The result is a comprehensive integrated approach to fusion science and improving the tokamak approach to burning plasmas.

  18. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.

    2015-04-15

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{sub ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  19. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    PubMed

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  20. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE FORMATION OF COLD FRONTS IN CLUSTERS OF GALAXIES: EFFECTS OF ANISOTROPIC VISCOSITY

    SciTech Connect

    Suzuki, Kentaro; Ogawa, Takayuki; Matsumoto, Yosuke; Matsumoto, Ryoji E-mail: ogawa@astro.s.chiba-u.ac.jp E-mail: matumoto@astro.s.chiba-u.ac.jp

    2013-05-10

    We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We found that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to {beta}{sup -1} {approx} 0.01 in models with viscosity, whereas they are amplified up to {beta}{sup -1} {approx} 0.1 in models without viscosity, where {beta} is the ratio of gas pressure to magnetic pressure.

  1. Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation

    SciTech Connect

    Bailey, Nicole D.; Basu, Shantanu E-mail: basu@uwo.ca

    2014-01-01

    We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, so that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.

  2. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    PubMed

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative. PMID:21053082

  3. General relativistic magnetohydrodynamic simulations of binary neutron star mergers with the APR4 equation of state

    NASA Astrophysics Data System (ADS)

    Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.

    2016-08-01

    We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.

  4. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  5. Magnetohydrodynamic Simulations of Current-Sheet Formation and Reconnection at a Magnetic X Line

    NASA Astrophysics Data System (ADS)

    DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.; Black, C.

    2011-12-01

    Phenomena ranging from the quiescent heating of the ambient plasma to the highly explosive release of energy and acceleration of particles in flares are conjectured to result from magnetic reconnection at electric current sheets in the Sun's corona. We are investigating numerically, using a macroscopic magnetohydrodynamic (MHD) model with adaptive mesh refinement, the formation and reconnection of a current sheet in an initially potential 2D magnetic field containing a null. Subjecting this simple configuration to unequal stresses in the four quadrants bounded by the X-line separatrix distorts the potential null into a double-Y-line current sheet. We find that even small distortions of the magnetic field induce the formation of a tangential discontinuity in the high-beta region around the null. A continuously applied stress eventually leads to the onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands. We compare the current-sheet development and evolution for three cases: quasi-ideal MHD with numerical resistivity only; uniformly resistive MHD; and MHD with an embedded kinetic reconnection model. Analogous kinetic simulations using particle-in-cell (PIC) methods to investigate the small-scale dynamics of the system also are being pursued (C. Black et al., this meeting). Our progress toward understanding this simple system will be reported, as will the implications of our results for the dynamic activity associated with coronal current sheets and for general multiscale modeling of magnetized plasmas in the Heliosphere. Our research was supported by NASA.

  6. Extended Magnetohydrodynamics with Embedded Particle-in-Cell (XMHD-EPIC) Simulations of Magnetospheric Reconnection

    NASA Astrophysics Data System (ADS)

    Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni

    2016-04-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.

  7. Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2008-01-01

    We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.

  8. Diagnostics of the solar corona from comparison between Faraday rotation measurements and magnetohydrodynamic simulations

    SciTech Connect

    Le Chat, G.; Cohen, O.; Kasper, J. C.; Spangler, S. R.

    2014-07-10

    Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.

  9. Performance Evaluation of Lattice-Boltzmann MagnetohydrodynamicsSimulations on Modern Parallel Vector Systems

    SciTech Connect

    Carter, Jonathan; Oliker, Leonid

    2006-01-09

    The last decade has witnessed a rapid proliferation of superscalarcache-based microprocessors to build high-end computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the growing gap between sustained and peak performance for full-scale scientific applications on such platforms has become major concern in high performance computing. The latest generation of custom-built parallel vector systems have the potential to address this concern for numerical algorithms with sufficient regularity in their computational structure. In this work, we explore two and three dimensional implementations of a lattice-Boltzmann magnetohydrodynamics (MHD) physics application, on some of today's most powerful supercomputing platforms. Results compare performance between the vector-based Cray X1, Earth Simulator, and newly-released NEC SX-8, with the commodity-based superscalar platforms of the IBM Power3, IntelItanium2, and AMD Opteron. Overall results show that the SX-8 attains unprecedented aggregate performance across our evaluated applications.

  10. SIMULATIONS OF MAGNETOHYDRODYNAMICS INSTABILITIES IN INTRACLUSTER MEDIUM INCLUDING ANISOTROPIC THERMAL CONDUCTION

    SciTech Connect

    Bogdanovic, Tamara; Reynolds, Christopher S.; Balbus, Steven A.; Parrish, Ian J. E-mail: chris@astro.umd.ed E-mail: iparrish@astro.berkeley.ed

    2009-10-10

    We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow the three-dimensional magnetohydrodynamics of cooling cluster cores and capture the effects of anisotropic heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters or the presence of active galactic nuclei (AGNs). Our model clusters can be divided into three groups according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled cores that are reminiscent of real cluster cores show evolution toward thermal collapse on a timescale which is prolonged by a factor of approx2-10 compared with the zero-conduction cases. The principal effect of the HBI is to re-orient field lines to be perpendicular to the temperature gradient. Once the field has been wrapped up onto spherical surfaces surrounding the core, the core is insulated from further conductive heating (with the effective thermal conduction suppressed to less than 10{sup -2} of the Spitzer value) and proceeds to collapse. We speculate that, in real clusters, the central AGN and possibly mergers play the role of 'stirrers', periodically disrupting the azimuthal field structure and allowing thermal conduction to sporadically heat the core.

  11. Implicit predictor-corrector central finite difference scheme for the equations of magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.

    2015-11-01

    Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.

  12. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF PLANET MIGRATION IN TURBULENT STRATIFIED DISKS

    SciTech Connect

    Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.

    2011-08-01

    We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = M{sub p} /M{sub s} . In agreement with previous studies, for the low-mass planet cases (q = 5 x 10{sup -6} and 10{sup -5}), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = M{sub p} /M{sub s} = 10{sup -3} for M{sub s} = 1M{sub sun}), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an {alpha} viscosity. For the intermediate-mass planets (q = 5 x 10{sup -5}, 10{sup -4}, and 2 x 10{sup -4}), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).

  13. Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments

    SciTech Connect

    Sheehey, P.T.

    1994-02-01

    Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.

  14. Three-dimensional Magnetohydrodynamic Simulations of Planet Migration in Turbulent Stratified Disks

    NASA Astrophysics Data System (ADS)

    Uribe, A. L.; Klahr, H.; Flock, M.; Henning, Th.

    2011-08-01

    We performed three-dimensional magnetohydrodynamic simulations of planet migration in stratified disks using the Godunov code PLUTO, where the disk is turbulent due to the magnetorotational instability. We study the migration for planets with different planet-star mass ratios q = Mp /Ms . In agreement with previous studies, for the low-mass planet cases (q = 5 × 10-6 and 10-5), migration is dominated by random fluctuations in the torque. For a Jupiter-mass planet (q = Mp /Ms = 10-3 for Ms = 1M sun), we find a reduction of the magnetic stress inside the orbit of the planet and around the gap region. After an initial stage where the torque on the planet is positive, it reverses and we recover migration rates similar to those found in disks where the turbulent viscosity is modeled by an α viscosity. For the intermediate-mass planets (q = 5 × 10-5, 10-4, and 2 × 10-4), we find a new and so far unexpected behavior. In some cases they experience sustained and systematic outward migration for the entire duration of the simulation. For this case, the horseshoe region is resolved and torques coming from the corotation region can remain unsaturated due to the stresses in the disk. These stresses are generated directly by the magnetic field. The magnitude of the horseshoe drag can overcome the negative Lindblad contribution when the local surface density profile is flat or increasing outward, which we see in certain locations in our simulations due to the presence of a zonal flow. The intermediate-mass planet is migrating radially outward in locations where there is a positive gradient of a pressure bump (zonal flow).

  15. UTILIZATION OF MULTIPLE MEASUREMENTS FOR GLOBAL THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Wang, A. H.; Wu, S. T.; Tandberg-Hanssen, E.; Hill, Frank

    2011-05-01

    Magnetic field measurements, line of sight (LOS) and/or vector magnetograms, have been used in a variety of solar physics studies. Currently, the global transverse velocity measurements near the photosphere from the Global Oscillation Network Group (GONG) are available. We have utilized these multiple observational data, for the first time, to present a data-driven global three-dimensional and resistive magnetohydrodynamic (MHD) simulation, and to investigate the energy transport across the photosphere to the corona. The measurements of the LOS magnetic field and transverse velocity reflect the effects of convective zone dynamics and provide information from the sub-photosphere to the corona. In order to self-consistently include the observables on the lower boundary as the inputs to drive the model, a set of time-dependent boundary conditions is derived by using the method of characteristics. We selected GONG's global transverse velocity measurements of synoptic chart CR2009 near the photosphere and SOLIS full-resolution LOS magnetic field maps of synoptic chart CR2009 on the photosphere to simulate the equilibrium state and compute the energy transport across the photosphere. To show the advantage of using both observed magnetic field and transverse velocity data, we have studied two cases: (1) with the inputs of the LOS magnetic field and transverse velocity measurements, and (2) with the input of the LOS magnetic field and without the input of transverse velocity measurements. For these two cases, the simulation results presented here are a three-dimensional coronal magnetic field configuration, density distributions on the photosphere and at 1.5 solar radii, and the solar wind in the corona. The deduced physical characteristics are the total current helicity and the synthetic emission. By comparing all the physical parameters of case 1 and case 2 and their synthetic emission images with the EIT image, we find that using both the measured magnetic field and the

  16. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGESBeta

    Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  17. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smaller simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  18. A High Resolution Magnetohydrodynamic Simulation Study of Kronian Field-Aligned Currents and Aurora

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Ogino, T.; Walker, R. J.

    2011-12-01

    Magnetohydrodynamic simulations of the interaction of Saturn's magnetosphere with the solar wind indicate that Kelvin-Helmholtz (K-H) waves can form on the dayside magnetopause when the interplanetary magnetic field (IMF) is northward. Dayside magnetic reconnection occurs at Saturn for northward IMF. The combination of K-H waves and reconnection caused enhanced vorticity in Saturn's magnetosphere. We have used a very high resolution version (grid interval is 0.1 RS) of our simulation code to study the consequences of the vortices and reconnection for the generation of field aligned currents (FAC) and aurorae in Saturn's ionosphere. We found three bands of alternating FAC toward and away from the dawn side of the ionosphere and two sets on the dusk side. The K-H waves generated a series of toward and away currents along the dayside side magnetopause. In the ionosphere they appear as a series of spots of up and down current. The K-H field aligned currents are adjacent to nearly continuous currents located from 1600 LT around past midnight to about 0700 LT The largest currents (jpara> 5×10-8 A /m-2) are found are at the highest latitudes. They map to the magnetopause and to the near-Earth tail region. In analogy with the Earth's ionosphere the field aligned currents away from Saturn can serve as a proxy for discrete aurorae. We used the away current density and the Knight relationship to estimate the energy flux from discrete aurorae and obtained ~1 mW /m-2 in the region with the strongest currents. Similar energy fluxes were found in the K-H related aurorae. This gave approximately 70 GW for the auroral power. We also investigated diffuse aurorae by using the energy flux in the absence of the field aligned currents. We found a region of enhanced thermal energy flux in the region where cusp aurorae are observed.

  19. A magnetohydrodynamic simulation study of Kronian field-aligned currents and auroras

    NASA Astrophysics Data System (ADS)

    Fukazawa, Keiichiro; Ogino, Tatsuki; Walker, Raymond J.

    2012-02-01

    Magnetohydrodynamic simulations of the interaction of Saturn's magnetosphere with the solar wind indicate that Kelvin-Helmholtz (K-H) waves can form on the dayside magnetopause when the interplanetary magnetic field (IMF) is northward. Dayside magnetic reconnection occurs at Saturn for northward IMF, and the combination of K-H waves and reconnection caused enhanced vorticity in Saturn's magnetosphere. We have used a very high resolution version (Δx = 0.1 RS) of our simulation code to study the consequences of the vortices and reconnection for the generation of field-aligned currents (FACs) and auroras in Saturn's ionosphere. We found three bands of alternating FACs toward and away from the dawn side of the ionosphere and two sets on the dusk side. The K-H waves generated a series of toward and away currents along the dayside magnetopause. In the ionosphere they appear as a series of spots of up and down currents. The K-H field-aligned currents are adjacent to nearly continuous currents located from 16:00 LT, to around past midnight, and to about 07:00 LT. The largest currents densities (j∥ > 5 × 10-8 A m-2) are found at the highest latitudes. They map to the magnetopause and to the near-Saturn tail region. We used the away current density and the Knight relationship to estimate the energy flux related to discrete auroras and obtained ˜1 mW m-2 in the region with the strongest currents. This gives approximately 7 GW for the auroral UV emitted power. We found a region of enhanced thermal energy flux in the region where cusp auroras are observed.

  20. COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF GALAXY CLUSTER RADIO RELICS: INSIGHTS AND WARNINGS FOR OBSERVATIONS

    SciTech Connect

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Xu, Hao; Li, Hui; Collins, David C.; O'Shea, Brian W.; Norman, Michael L.

    2013-03-01

    Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.

  1. Magnetohydrodynamical simulation of the formation of clumps and filaments in quiescent diffuse medium by thermal instability

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.

    2016-06-01

    We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.

  2. Magnetospheric Simulations With the Three-Dimensional Magnetohydrodynamics With Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.

    2015-12-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and

  3. Theory and Simulation of Magnetohydrodynamic Dynamos and Faraday Rotation for Plasmas of General Composition

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2013-03-01

    Many astrophysical phenomena depend on the underlying dynamics of magnetic fields. The observations of accretion disks and their jets, stellar coronae, and the solar corona are all best explained by models where magnetic fields play a central role. Understanding these phenomena requires studying the basic physics of magnetic field generation, magnetic energy transfer into radiating particles, angular momentum transport, and the observational implications of these processes. Each of these topics comprises a large enterprise of research. However, more practically speaking, the nonlinearity in large scale dynamo is known to be determined by magnetic helicity(>), the topological linked number of knotted magnetic field. Magnetic helicity, which is also observed in solar physics, has become an important tool for observational and theoretical study. The first part of my work addresses one aspect of the observational implications of magnetic fields, namely Faraday rotation. It is shown that plasma composition affects the interpretation of Faraday rotation measurements of the field, and in turn how this can be used to help constrain unknown plasma composition. The results are applied to observations of astrophysical jets. The thesis then focuses on the evolution of magnetic fields. In particular, the dynamo amplification of large scale magnetic fields is studied with an emphasis on the basic physics using both numerical simulations and analytic methods. In particular, without differential rotation, a two and three scale mean field (large scale value + fluctuation scales) dynamo theory and statistical methods are introduced. The results are compared to magnetohydrodynamic (MHD) simulations of the Pencil code, which utilizes high order finite difference methods. Simulations in which the energy is initially driven into the system in the form of helical kinetic energy (via kinetic helicity) or helical magnetic energy (via magnetic helicity) reveal the exponential growth of

  4. Radiation-magnetohydrodynamic simulations of H II regions and their associated PDRs in turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Arthur, S. J.; Henney, W. J.; Mellema, G.; de Colle, F.; Vázquez-Semadeni, E.

    2011-06-01

    We present the results of radiation-magnetohydrodynamic simulations of the formation and expansion of H II regions and their surrounding photodissociation regions (PDRs) in turbulent, magnetized, molecular clouds on scales of up to 4 pc. We include the effects of ionizing and non-ionizing ultraviolet radiation and X-rays from population synthesis models of young star clusters. For all our simulations we find that the H II region expansion reduces the disordered component of the magnetic field, imposing a large-scale order on the field around its border, with the field in the neutral gas tending to lie along the ionization front, while the field in the ionized gas tends to be perpendicular to the front. The highest pressure-compressed neutral and molecular gas is driven towards approximate equipartition between thermal, magnetic and turbulent energy densities, whereas lower pressure neutral/molecular gas bifurcates into, on the one hand, quiescent, magnetically dominated regions and, on the other hand, turbulent, demagnetized regions. The ionized gas shows approximate equipartition between thermal and turbulent energy densities, but with magnetic energy densities that are 1-3 orders of magnitude lower. A high velocity dispersion (˜8 km s-1) is maintained in the ionized gas throughout our simulations, despite the mean expansion velocity being significantly lower. The magnetic field does not significantly brake the large-scale H II region expansion on the length and time-scales accessible to our simulations, but it does tend to suppress the smallest scale fragmentation and radiation-driven implosion of neutral/molecular gas that forms globules and pillars at the edge of the H II region. However, the relative luminosity of ionizing and non-ionizing radiation has a much larger influence than the presence or absence of the magnetic field. When the star cluster radiation field is relatively soft (as in the case of a lower mass cluster, containing an earliest spectral

  5. Magnetohydrodynamic Simulations of the Effects of the Solar Wind on the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ogino, Tatsuki; Kivelson, Margaret G.

    2001-01-01

    We have used a three-dimensional magnetohydrodynamic simulation of the interaction between the solar wind and a rapidly rotating magnetosphere to study the effects of the solar wind dynamic pressure and the interplanetary magnetic field IMF on the configuration of the Jovian magnetosphere. Both the solar wind dynamic pressure and the IMF can cause substantial changes in the magnetosphere. On the dayside when the pressure increases the bow shock and magnetopause move toward Jupiter and the equatorial magnetic field in the middle magnetosphere becomes more dipole-like. When the pressure decreases the boundaries move farther from Jupiter and the dayside magnetic field becomes stretched out into a more tail-like configuration. For northward IMF the boundaries move toward Jupiter but the field becomes more tail-like. Finally, for southward IMF the boundaries move away and the field becomes more dipole-like. These changes are qualitatively consistent with those observed on spacecraft passing through the dayside magnetosphere. However, we were not always able to get quantitative agreement. In particular the model does not reproduce the extremely tail-like magnetic field observed during the Pioneer 10 and Ulysses inbound passes. The solar wind and IMF also influence the configuration of the middle magnetosphere in the magnetotail. Tailward flows were found in the nightside equatorial plasma sheet for most IMF orientations. Both inertial effects and the IMF influence reconnection in the tail. The only time the tailward flow in the magnetotail stopped was during prolonged intervals with southward IMF. Then reconnection in the polar cusp caused the flow to move out of the equatorial plane.

  6. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    SciTech Connect

    Chen, Qiang Chen, Bin Xiong, Run; Cai, Zhaoyang; Chen, P. F.

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs flux splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.

  7. X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu

    2013-06-01

    We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  8. TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

    SciTech Connect

    Flock, M.; Dzyurkevich, N.; Klahr, H.; Turner, N. J.; Henning, Th.

    2011-07-10

    We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.

  9. A multifluid magnetohydrodynamic simulation of the interaction between Jupiter's magnetosphere and its moon Europa

    NASA Astrophysics Data System (ADS)

    Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.

    2015-12-01

    Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.

  10. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  11. Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization

    SciTech Connect

    Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.; Schneider, Kai

    2014-10-01

    A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.

  12. Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization

    NASA Astrophysics Data System (ADS)

    Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J. T.; Schneider, Kai

    2014-10-01

    A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analytical solutions. The test cases considered are two-dimensional Taylo-Couette flow, the z-pinch configuration, three dimensional Orszag-Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylo-Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.

  13. General-relativistic magnetohydrodynamics simulations of black hole accretion disks: Dynamics and radiative properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka

    The goal of the series of studies in this thesis is to understand the black hole accretion process and predict its observational properties. The highly non-linear process involves a turbulent magnetized plasma in a general relativistic regime, thus making it hard to study analytically. We use numerical simulations, specifically general relativistic magnetohydrodynamics (GRMHD), to construct a realistic dynamical and radiation model of accretion disks. Our simulations are for black holes in low luminous regimes that probably possesses a hot and thick accretion disk. Flows in this regime are called radiatively inefficient accretion flows (RIAF). The most plausible mechanism for transporting angular momentum is turbulence induced by magnetorotational instability (MRI). The RIAF model has been used to model the supermassive black hole at the center of our Milky Way galaxy, Sagittarius A* (Sgr A*). Owing to its proximity, rich observational data of Sgr A* is available to compare with the simulation results. We focus mainly on four topics. First, we analyse numerical convergence of 3D GRMHD global disk simulations. Convergence is one of the essential factors in deciding quantitative outcomes of the simulations. We analyzed dimensionless shell-averaged quantities such as plasma beta, the azimuthal correlation length (angle) of fluid variables, and spectra of the source for four different resolutions. We found that all the variables converged with the highest resolution (384x384x256 in radial, poloidal, and azimuthal directions) except the magnetic field correlation length. It probably requires another factor of 2 in resolution to achieve convergence. Second, we studied the effect of equation of state on dynamics of GRMHD simulation and radiative transfer. Temperature of RIAF gas is high, and all the electrons are relativistic, but not the ions. In addition, the dynamical time scale of the accretion disk is shorter than the collisional time scale of electrons and ions

  14. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  15. Fabrication of small-scale structures with non-planar features

    SciTech Connect

    Burckel, David B.; Ten Eyck, Gregory A.

    2015-11-19

    The fabrication of small-scale structures is disclosed. A unit-cell of a small-scale structure with non-planar features is fabricated by forming a membrane on a suitable material. A pattern is formed in the membrane and a portion of the substrate underneath the membrane is removed to form a cavity. Resonators are then directionally deposited on the wall or sides of the cavity. The cavity may be rotated during deposition to form closed-loop resonators. The resonators may be non-planar. The unit-cells can be formed in a layer that includes an array of unit-cells.

  16. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Bauer, B. S.; Makhin, V.; Siemon, R. E.; Lindemuth, I. R.; Awe, T. J.; Reinovsky, R. E.; Struve, K. W.; Desjarlais, M. P.; Mehlhorn, T. A.

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the “core-corona” behavior in which a heterogeneous Z -pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16eV . The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

  17. A data-constrained three-dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhou, Yufen; Jiang, Chaowei; Feng, Xueshang; Wu, Chin-Chun; Hu, Qiang

    2016-02-01

    In this study, we present a three-dimensional magnetohydrodynamic model based on an observed eruptive twisted flux rope (sigmoid) deduced from solar vector magnetograms. This model is a combination of our two very well tested MHD models: (i) data-driven 3-D magnetohydrodynamic (MHD) active region evolution (MHD-DARE) model for the reconstruction of the observed flux rope and (ii) 3-D MHD global coronal-heliosphere evolution (MHD-GCHE) model to track the propagation of the observed flux rope. The 6 September 2011, AR11283, event is used to test this model. First, the formation of the flux rope (sigmoid) from AR11283 is reproduced by the MHD-DARE model with input from the measured vector magnetograms given by Solar Dynamics Observatory/Helioseismic and Magnetic Imager. Second, these results are used as the initial boundary condition for our MHD-GCHE model for the initiation of a coronal mass ejection (CME) as observed. The model output indicates that the flux rope resulting from MHD-DARE produces the physical properties of a CME, and the morphology resembles the observations made by STEREO/COR-1.

  18. Episodic slow slip events in a non-planar subduction fault model for northern Cascadia

    NASA Astrophysics Data System (ADS)

    Li, D.; Liu, Y.; Matsuzawa, T.; Shibazaki, B.

    2014-12-01

    Episodic tremor and slow slip (ETS) events have been detected along the Cascadia margin, as well as many other subduction zones, by increasingly dense seismic and geodetic networks over the past decade. In northern Cascadia, ETS events arise on the thrust fault interface of 30~50 km depth, coincident with metamorphic dehydration of the subducting oceanic slab around temperatures of 350. Previous numerical simulations (e.g., Liu and Rice 2007) suggested that near-lithostatic pore pressure in the rate-state friction stability transition zone could give rise to slow slip events (SSE) down-dip of the seismogenic zone, which provides a plausible physical mechanism for these phenomena. Here we present a 3-D numerical simulation of inter-seismic SSEs based on the rate- and state- friction law, incorporating a non-planar, realistic northern Cascadia slab geometry compiled by McCrory et al. (2012) using triangular dislocation elements. Preliminary results show that the width and pore pressure level of the transition zone can remarkably affect the recurrence of SSEs. With effective normal stress of ~1-2 MPa and characteristic slip distance of ~1.4 mm, inter-seismic SSEs can arise about every year. The duration of each event is about 2~3 weeks, with the propagating speed along strike in the range of km/day. Furthermore, the slab bending beneath southern Vancouver Island and northern Washington State appears to accelerate the along-strike propagation of SSEs. Our next step is to constrain the rate-state frictional properties using geodetic inversion of SSE slip and inter-SSE plate coupling from the Plate Boundary Observatory (PBO) GPS measurements. Incorporating the realistic fault geometry into a physics model constrained by geodetic data will enable us to transition from a conceptual towards a quantitative and predictive understanding of SSEs mechanism.

  19. Large-eddy simulation of very large kinetic and magnetic Reynolds number isotropic magnetohydrodynamic turbulence using a spectral subgrid model

    SciTech Connect

    Gomez, T; Sagaut, P; Schilling, O; Zhou, Y

    2006-07-05

    A spectral subggrid-scale eddy viscosity and magnetic resisitivity model based on the eddy-damped quasi-normal Markovian (EDQNM) spectral kinetic and magnetic energy transfer presented in [12] is used in large-eddy simulation (LES) of large kinetic and magnetic Reynold number magneto-hydrodynamic (MHD) turbulence. The proposed model is assessed via a posteri tests on three-dimensional, incompressible, isotropic, non-helical, freely-decaying MHD turbulence at asymptotically large Reynolds numbers. Using LES with an initial condition characterized by an Alfv{acute e}n ratio of kinetic to magnetic energy {tau}{sub A} equal to unity, it is shown that at the kinetic energy spectrum E{sub K}(k) and magnetic energy spectrum E{sub M}(k) exhibit Kolmogorov -5/3 inertial subrange scalings in the LES, consistent with the EDQNM model.

  20. Magnetohydrodynamic Simulations of the Formation of Molecular Columns Found toward the Double Helix Nebulae in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Asahina, Yuta; Matsumoto, Ryoji; Ogawa, Takayuki

    NANTEN2 observations of the galactic molecular gas revealed that molecular columns surround the double helix nebulae at our Galactic center (Enokiya et al. 2014). In order to study the formation mechanism of the double helix nebulae and molecular columns, we carried out magnetohydrodynamic (MHD) simulations of the interaction of a magnetic tower jet ejected from the galactic center with interstellar neutral hydrogen (HI) gas taking into account the interstellar cooling. The HI gas compressed by the bow shock ahead of the jet is cooled down by cooling instability triggered by the density enhancement. As a result, cold, dense region is formed around the helical magnetic tower jet. These molecular columns can be the evidences of the past activity near the galactic center black hole.

  1. Comparison of physical properties of quiet and active regions through the analysis of magnetohydrodynamic simulations of the solar photosphere

    SciTech Connect

    Criscuoli, S.

    2013-11-20

    Recent observations have shown that the photometric and dynamic properties of granulation and small-scale magnetic features depend on the amount of magnetic flux of the region they are embedded in. We analyze results from numerical hydrodynamic and magnetohydrodynamic simulations characterized by different amounts of average magnetic flux and find qualitatively the same differences as those reported from observations. We show that these different physical properties result from the inhibition of convection induced by the presence of the magnetic field, which changes the temperature stratification of both quiet and magnetic regions. Our results are relevant for solar irradiance variations studies, as such differences are still not properly taken into account in irradiance reconstruction models.

  2. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    SciTech Connect

    Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.

  3. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  4. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-01

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  5. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME)

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Kataoka, R.

    2016-02-01

    Coronal mass ejections (CMEs) are the most important drivers of various types of space weather disturbance. Here we report a newly developed magnetohydrodynamic (MHD) simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields. First, the polarity of the spheromak magnetic field is set as determined automatically according to the Hale-Nicholson law and the chirality law of Bothmer and Schwenn. The MHD simulation is therefore capable of predicting the time profile of the southward interplanetary magnetic field at the Earth, in relation to the passage of a magnetic cloud within a CME. This profile is the most important parameter for space weather forecasts of magnetic storms. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003, and present the result of a simulation of the solar wind parameters at the Earth during the 2003 Halloween storms. We succeeded in reproducing the arrival at the Earth's position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm. We find that the observed complex time profile of the solar wind parameters at the Earth could be reasonably well understood by the interaction of a few specific CMEs.

  6. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  7. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind; Jiang, Shu

    2015-10-01

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of

  8. Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  9. Evidence of the Correspondence of EIT Waves and Coronal Mass Ejections Induced Waves Using a Three-Dimensional Magnetohydrodynamic Simulation

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Wu, C.-C.; Liou, K.

    2013-04-01

    Before the discovery of EIT waves and coronal mass ejections (CMEs) it was already known that Moreton waves were observed to propagate across the solar disk during some solar flares. This magnetohydrodynamic wave was explained as the intersecting line between the edge of an expanding global coronal wavefront and the chromosphere (Uchida, 1968) where Uchida concluded that the Moreton wave was a fast mode MHD wave. In this presentation, we will show that the EIT wave could be a part of a CME induced wave propagating across the solar disk. To illustrate this scenario, we have employed a global 3D MHD model (Wu et al. 2001) to simulate this phenomenon for the May 12, 1997 event which was an Earth-directed CME observed by SOHO/EIT (Thompson et al. 1998). To carry out this simulation, the measured global magnetic fields obtained from the Stanford University Wilcox Solar Observatory (WSO) were used as the inputs to the simulation model. We were able to show that the scenario suggested by Uchida (1968), namely, the observed EIT wave propagating across the solar disk could be caused by the intersection line between the edge of an expanding CME induced wave front and the chromosphere. In addition to the flare source scenario, we concluded that an EIT (or EUV) wave can also be a part of a flare induced coronal wave with its foot print on the Sun's surface.

  10. Three-Dimensional Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. I. Instability of a Static Column

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2009-07-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic magnetohydrodynamic simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the nonlinear regime, the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depend moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and reaches the nonlinear regime at a later time than the case with constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the nonlinear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the nonlinear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the nonlinear regime nearly ceases for increasing magnetic pitch.

  11. Simulation of Alfvén eigenmode bursts using a hybrid code for nonlinear magnetohydrodynamics and energetic particles

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-03-01

    A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.

  12. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.

    2015-05-01

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  13. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  14. Magnetohydrodynamic Simulation of the Chordal Wire-Array Plasma Flow Switch

    NASA Astrophysics Data System (ADS)

    Domonkos, Matthew; Amdahl, David

    2015-11-01

    The coaxial plasma flow switch (PFS) using a chordal wire array armature was first studied experimentally and computationally in the 1980's. That work revealed significant current interruption (dI/dt ~ 5 MA/ μs) as well as continuum x-ray emission representative of 30-45 keV bremsstrahlung. The work concluded that the voltage spike associated with the current interruption accelerated highly magnetized ions downstream at high velocity, and that energy exchange between the ions and electrons and their subsequent acceleration at the downstream boundary of the apparatus were responsible for the x-ray production. This work revisits the PFS operation up to and just beyond the point of armature lift-off from the coaxial section, where the magnetohydrodynamic model is valid and relevant. The early-time energy deposition in the wires from the pulse discharge is modeled in high-resolution 1-D and is used to set the initial conditions for the full-scale 3-D calculation. The wire array is assumed to have expanded from the initial r =0.01 cm uniformly and only in the axial direction, while the areal mass density retains its intended variation with radius. 3-D calculations are used to examine the armature, including magnetic field diffusion, as it is propelled along the coaxial geometry. These calculations will be used to set the initial conditions for follow-on particle or particle-fluid hybrid calculations of the propagation of ions and electrons to downstream obstacles and to calculate the x-ray production from the interactions of the flowing plasma with the obstacles.

  15. Efficient magnetohydrodynamic simulations on distributed multi-GPU systems using a novel GPU Direct-MPI hybrid approach

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng

    2014-07-01

    Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.

  16. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Mortara, Karl W.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1992-01-01

    The goal of the work reported herein is to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a free wake has been coupled with a panel method. The induced drag prediction technique is based on the application of the Kutta-Joukowski law at the trailing edge. Until now, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more commonly used techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these methods, it is demonstrated that a reduction in induced drag can be achieved through non-planar wing geometries. It remains to determine what overall drag reductions are possible when the induced drag reduction is traded-off against increased wetted area. With the design methodology that is described herein, such trade studies can be performed in which the non-linear effects of the free wake are taken into account.

  17. Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; He, Zhu; Feng, Naixiang

    2013-12-01

    A three-dimensional (3D) transient mathematical model has been developed to understand the effect of innovative cathode on molten cryolite (bath)/molten aluminum (metal) interface fluctuation as well as energy-saving mechanism in aluminum electrolytic cell with innovative cathode. Based on the finite element method, the steady charge conservation law, Ohm's law, and steady-state Maxwell's equations were solved in order to investigate electric current field, magnetic field, and electromagnetic force (EMF) field. Then, an inhomogeneous multiphase flow model of three phases including bath, metal, and gas bubbles, based on the finite volume method, was implemented using the Euler/Euler approach to investigate melt motion and bath/metal interface fluctuation. EMF was incorporated into the momentum equations of bath and metal as a source term. Additionally, the interphase drag force was employed to consider different phase interactions. Thus, present work owns three main features: (1) magnetohydrodynamic multiphase flow are demonstrated in detail both in aluminum electrolytic cell with traditional cathode and innovative cathode; (2) bath/metal interface fluctuation due to different driving forces of gas bubbles, EMF, and the combined effect of the two driving forces is investigated, which is critical to the energy saving; and (3) the effect of innovative cathode on melt flow and motion of gas bubbles. A good agreement between the predicated results and measurement is obtained. The velocity difference leading to the melt oscillation decreases due to more uniform flow field. The average velocity of metal in the cell with innovative cathode decreases by approximately 33.98 pct. The gas bubbles in the cell with innovative cathode releases more quickly under the effect of protrusion on the cathode. The average bubble release frequency increases from 1.1 to 1.98 Hz. Hence, the voltage drop caused by gas bubbles would decrease significantly. In addition, the two large vortices

  18. Simulation of magnetohydrodynamics turbulence with application to plasma-assisted supersonic combustion

    NASA Astrophysics Data System (ADS)

    Miki, Kenji

    Plasma assisted combustion (PAC) is a promising alternative to hold or ignite a fuel and air mixture in a supersonic environment. Efficient supersonic combustion is of primary importance for SCRAMJET technology. The advantages of PAC is the addition of large amounts of energy to specific regions of the SCRAMJET flow-field for short periods of time, and as a result accelerate the fuel/air kinetic rates to achieve a self-sustaining condition. Moreover, the promise of enhancement of fuel-air mixing by magnetohydrodynamics (MHD) flow control offers significant improvement of combustion performance. The development of a numerical tool for investigating high-temperature chemistry and plasmadynamic effects of a discharge arc is desired to gain understanding of PAC technology and the potential improvement of the operational efficiency of SCRAMJET engines. The main objective of this research is to develop a comprehensive model with the capability of modeling both high Reynolds number and high magnetic Reynolds number turbulent flow for application to supersonic combustor. The development of this model can be divided into three categories: first, the development of a self-consistent MHD numerical model capable of modeling magnetic turbulence in high magnetic Reynolds number applications. Second, the development of a gas discharge model which models the interaction of externally applied fields in conductive medium. Third, the development of models necessary for studying supersonic combustion applications with plasma-assistance such the extension of chemical kinetics models to extremely high temperature and non-equilibrium phenomenon. Finally, these models are combined and utilized to model plasma assisted combustion in a SCRAMJET. Two types of plasmas are investigated: an equilibrium electrical discharge (arc) and a non-equilibrium plasma jet. It is shown that both plasmas significantly increase the concentration of radicals such as O, OH and H, and both have positive impact

  19. Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations

    PubMed Central

    Nakamura, T. K. M.; Hasegawa, H.; Shinohara, I.

    2010-01-01

    Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin–Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω<0 case than in B⋅Ω>0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω<0 (B⋅Ω>0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω<0 (B⋅Ω>0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth. PMID:20838425

  20. Two-dimensional Simulation of Magnetohydrodynamic Flow in a Liquid Metal MHD Generator Taking the Induced Magnetic Field into Consideration

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuya; Maeda, Tetsuhiko; Hasegawa, Yasuo

    The magnetohydrodynamic flow in a liquid metal MHD generator is investigated with two-dimensional numerical simulation, where the induced magnetic field is considered. Numerical results indicate that the power output becomes the highest at the loading parameter of 0.64, which is higher than the loading parameter of 0.5 giving the highest power output in the theoretical analysis without the induced magnetic field. This results from the strong negative induced magnetic field with the low loading parameter. It is shown that the eddy current exists in the upstream and downstream region of the generator channel. And the induced magnetic flux density is the strongest at the center of the eddy current. This is because x-direction electric field is generated near the upstream and downstream edge of the electrodes. It is observed that the distributions of the x-direction velocity become M-shaped in the generator channel. In the downstream region, the M-shaped Hartmann velocity profile is developed with the high loading parameter. With the low loading parameter, on the contrary, the velocity in the main flow is higher than that near the wall.

  1. Three-dimensional magnetohydrodynamic simulation of the solar magnetic flux emergence. Parametric study on the horizontal divergent flow

    NASA Astrophysics Data System (ADS)

    Toriumi, S.; Yokoyama, T.

    2013-05-01

    Context. Solar active regions are formed through the emergence of magnetic flux from the deeper convection zone. Recent satellite observations have shown that a horizontal divergent flow (HDF) stretches out over the solar surface just before the magnetic flux appearance. Aims: The aims of this study are to investigate the driver of the HDF and to see the dependency of the HDF on the parameters of the magnetic flux in the convection zone. Methods: We conducted three-dimensional magnetohydrodynamic (3D MHD) numerical simulations of the magnetic flux emergence and varied the parameters in the initial conditions. An analytical approach was also taken to explain the dependency. Results: The horizontal gas pressure gradient is found to be the main driver of the HDF. The maximum HDF speed shows positive correlations with the field strength and twist intensity. The HDF duration has a weak relation with the twist, while it shows negative dependency on the field strength only in the case of the stronger field regime. Conclusions: Parametric dependencies analyzed in this study may allow us to probe the structure of the subsurface magnetic flux by observing properties of the HDF.

  2. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Myers, Andrew T.; Klein, Richard I.; McKee, Christopher F.

    2016-08-01

    As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical time-scale, the opacity limit for fragmentation, at ˜0.01 M⊙. However, the observed peak of the initial mass function (IMF) lies a factor of 20-30 higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. In this paper we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, ˜0.01 M⊙, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why ˜0.01 M⊙ objects are rare: unless an outside agent intervenes (e.g. a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of ˜0.2 M⊙, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at ˜0.2 M⊙.

  3. Magnetohydrodynamic simulation of the x2.2 solar flare on 2011 February 15. I. Comparison with the observations

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Park, Y. D.

    2014-06-20

    We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the dramatic dynamics seen in observations, i.e., it is in a stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, they consequently erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this, the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriately maps the distribution of the observed two-ribbon flares. Interestingly, after the flare, the reconnected field lines convert into a structure like the post-flare loops, which is analogous to the extreme ultraviolet image taken by the Solar Dynamics Observatory. Eventually, we found that the twisted lines exceed a critical height at which the flux tube becomes unstable to the torus instability. These results illustrate the reliability of our simulation and also provide an important relationship between flare and coronal mass ejection dynamics.

  4. Magnetohydrodynamic Numerical Simulation of Wind Production from Hot Accretion Flows around Black Holes at Very Large Radii

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Yuan, Feng; Gan, Zhao-Ming; Yang, Xiao-Hong

    2016-06-01

    Numerical simulations of hot accretion flows around black holes have shown the existence of strong wind. Those works focused only on the region close to the black hole and thus it is unknown whether or where the wind production stops at large radii. To address this question, we have recently performed hydrodynamic (HD) simulations by taking into account the gravitational potential of both the black hole and the nuclear star cluster. The latter is assumed to be proportional to {σ }2{ln}(r), with σ being the velocity dispersion of stars and r the distance from the center of the galaxy. It was found that when the gravity is dominated by nuclear stars, i.e., outside a radius {R}A\\equiv {{GM}}{{BH}}/{σ }2, winds can no longer be produced. That work, however, neglects the magnetic field, which is believed to play a crucial dynamical role in the accretion and thus must be taken into account. In this paper, we revisit this problem by performing magnetohydrodynamic (MHD) simulations. We confirm the result of our previous paper, namely that wind cannot be produced in the region R\\gt {R}A. Our result, combined with recent results of Yuan et al., indicates that the formula describing the mass flux of wind, {\\dot{M}}{{wind}}={\\dot{M}}{{BH}}(r/20{r}s), can only be applied to the region where the black hole potential is dominant. Here {\\dot{M}}{{BH}} is the mass accretion rate at the black hole horizon and the value of R A is similar to the Bondi radius.

  5. What physics determines the peak of the IMF? Insights from the structure of cores in radiation-magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Myers, Andrew T.; Klein, Richard I.; McKee, Christopher F.

    2016-08-01

    As star-forming clouds collapse, the gas within them fragments to ever-smaller masses. Naively one might expect this process to continue down to the smallest mass that is able to radiate away its binding energy on a dynamical timescale, the opacity limit for fragmentation, at $\\sim 0.01$ $M_\\odot$. However, the observed peak of the initial mass function (IMF) lies a factor of $20-30$ higher in mass, suggesting that some other mechanism halts fragmentation before the opacity limit is reached. In this paper we analyse radiation-magnetohydrodynamic simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, $\\sim 0.01$ $M_\\odot$, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, and instead is likely to accrete. This mechanism explains why $\\sim 0.01$ $M_\\odot$ objects are rare: unless an outside agent intervenes (e.g., a shock strips away the gas around them), they will grow by accreting the warmed gas around them. In contrast, by the time stars grow to masses of $\\sim 0.2$ $M_\\odot$, the mass of heated gas is only tens of percent of the central star mass, too small to alter its final mass by a large factor. This naturally explains why the IMF peak is at $\\sim 0.2$ $M_\\odot$.

  6. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ∼ 30{r}{{g}} for \\dot{M}∼ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ∼ 10{r}{{g}} with increasing mass accretion rate \\dot{M}∼ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  7. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  8. Variability Profiles of Millisecond X-Ray Pulsars: Results of Pseudo-Newtonian Three-dimensional Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. K.; Romanova, M. M.

    2005-11-01

    We model the variability profiles of millisecond-period X-ray pulsars. We performed three-dimensional magnetohydrodynamic simulations of disk accretion to millisecond-period neutron stars with a misaligned magnetic dipole moment, using the pseudo-Newtonian Paczyński-Wiita potential to model general relativistic effects. We found that the shapes of the resulting funnel streams of accreting matter and the hot spots on the surface of the star are quite similar to those for more slowly rotating stars obtained from earlier simulations using the Newtonian potential. The funnel streams and hot spots rotate approximately with the same angular velocity as the star. The spots are bow-shaped (bar-shaped) for small (large) misalignment angles. We found that the matter falling on the star has a higher Mach number when we use the Paczyński-Wiita potential than in the Newtonian case. Having obtained the surface distribution of the emitted flux, we calculated the variability curves of the star, taking into account general relativistic, Doppler, and light-travel time effects. We found that general relativistic effects decrease the pulse fraction (flatten the light curve), while Doppler and light-travel time effects increase it and distort the light curve. We also found that the light curves from our hot spots are reproduced reasonably well by spots with a Gaussian flux distribution centered at the magnetic poles. We also calculated the observed image of the star in a few cases and saw that for certain orientations, both the antipodal hot spots are simultaneously visible, as noted by earlier authors.

  9. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    SciTech Connect

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-10

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  10. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  11. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  12. Nanoscale dielectric microscopy of non-planar samples by lift-mode electrostatic force microscopy.

    PubMed

    Van Der Hofstadt, M; Fabregas, R; Biagi, M C; Fumagalli, L; Gomila, G

    2016-10-01

    Lift-mode electrostatic force microscopy (EFM) is one of the most convenient imaging modes to study the local dielectric properties of non-planar samples. Here we present the quantitative analysis of this imaging mode. We introduce a method to quantify and subtract the topographic crosstalk from the lift-mode EFM images, and a 3D numerical approach that allows for extracting the local dielectric constant with nanoscale spatial resolution free from topographic artifacts. We demonstrate this procedure by measuring the dielectric properties of micropatterned SiO2 pillars and of single bacteria cells, thus illustrating the wide applicability of our approach from materials science to biology. PMID:27597315

  13. A Compact Non-Planar Coil Design for the SFLM Hybrid

    NASA Astrophysics Data System (ADS)

    Hagnestål, A.; Ågren, O.; Moiseenko, V. E.

    2012-08-01

    A non-planar single layer semiconductor coil set for a version of the Straight Field Line Mirror Hybrid concept with reduced magnetic field has been computed. The coil set consists of 30 coils that are somewhat similar to baseball coils with skewed sides. The coil set has been modeled with filamentary current distributions and basic scaling assumptions have been made regarding the coil widths. This coil set is expected to be considerably cheaper than a previous computed coil set. The coils can probably be produced with technologies known today.

  14. Non-Planar Vibrations of a Pipe Conveying Fluid with a Spring-Supported End

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyotaka; Yoshizawa, Masatsugu; Hirose, Yuuki; Taniguchi, Akira

    A theoretical and experimental investigation was conducted into the spatial behavior of a flexible pipe through which fluid flows and which is built-in at one end and has an asymmetric spring-support at the other end. Planar, non-planar and beating type vibrations occur in such a system and depend on the flow velocity and spring coefficients. Equations governing amplitudes and the phase were derived and used to clarify numerically the above specific cases. Corresponding actual pipe displacements were then measured experimentally using an image processing system employing two CCD cameras. Qualitative agreement was demonstrated between the experimental and theoretical results.

  15. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  16. Magnetohydrodynamic instability

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.

    1986-01-01

    There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.

  17. Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected into an Oblique Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Koide, Shinji; Sakai, Jun-ichi; Christodoulou, Dimitris M.; Sol, Hélène; Mutel, Robert L.

    1998-05-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (1) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (2) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy, and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese ``noren'' or vertical venetian blinds out of the way while the slats are allowed to bend in three-dimensional space rather than as a two-dimensional slab structure. Applied to relativistic extragalactic jets from blazars, the new results are encouraging, since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized--but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  18. Three-Dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    O'Neill, Sean M.; De Young, David S.; Jones, Thomas W.

    2009-12-01

    We present the results of numerical models of bubble dynamics and morphology in magnetized galaxy cluster environments. Our set of simulations follows the evolution of initially spherical bubbles that rise buoyantly through the intracluster medium. As a result of commonly used initial conditions, such bubbles quickly develop into a toroidal shape that is stable against fragmentation in the absence of magnetic forces. The inclusion of even modest ambient magnetic fields, however, substantially affects such structures, and we discuss how bubble evolution depends upon ambient field strength and geometry.

  19. TWO-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF THE IMPORTANCE OF PARTIAL IONIZATION IN THE CHROMOSPHERE

    SciTech Connect

    Martinez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo

    2012-07-10

    The bulk of the solar chromosphere is weakly ionized and interactions between ionized particles and neutral particles likely have significant consequences for the thermodynamics of the chromospheric plasma. We investigate the importance of introducing neutral particles into the MHD equations using numerical 2.5D radiative MHD simulations obtained with the Bifrost code. The models span the solar atmosphere from the upper layers of the convection zone to the low corona, and solve the full MHD equations with non-gray and non-LTE radiative transfer, and thermal conduction along the magnetic field. The effects of partial ionization are implemented using the generalized Ohm's law, i.e., we consider the effects of the Hall term and ambipolar diffusion in the induction equation. The approximations required in going from three fluids to the generalized Ohm's law are tested in our simulations. The Ohmic diffusion, Hall term, and ambipolar diffusion show strong variations in the chromosphere. These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has been common for these types of studies, using the semi-empirical VAL-C model as a basis for estimates. In addition, we find that differences in estimating the magnitude of ambipolar diffusion arise depending on which method is used to calculate the ion-neutral collision frequency. These differences cause uncertainties in the different magnetic diffusivity terms. In the chromosphere, we find that the ambipolar diffusion is of the same order of magnitude or even larger than the numerical diffusion used to stabilize our code. As a consequence, ambipolar diffusion produces a strong impact on the modeled atmosphere. Perhaps more importantly, it suggests that at least in the chromospheric domain, self-consistent simulations of the solar atmosphere driven by magnetoconvection can accurately describe the impact of the dominant form of resistivity, i.e., ambipolar diffusion. This

  20. Numerical magnetohydrodynamic simulations of expanding flux ropes: Influence of boundary driving

    SciTech Connect

    Tacke, Thomas; Dreher, Jürgen; Sydora, Richard D.

    2013-07-15

    The expansion dynamics of a magnetized, current-carrying plasma arch is studied by means of time-dependent ideal MHD simulations. Initial conditions model the setup used in recent laboratory experiments that in turn simulate coronal loops [J. Tenfelde et al., Phys. Plasmas 19, 072513 (2012); E. V. Stenson and P. M. Bellan, Plasma Phys. Controlled Fusion 54, 124017 (2012)]. Boundary conditions of the electric field at the “lower” boundary, intersected by the arch, are chosen such that poloidal magnetic flux is injected into the domain, either localized at the arch footpoints themselves or halfway between them. These conditions are motivated by the tangential electric field expected to exist in the laboratory experiments due to the external circuit that drives the plasma current. The boundary driving is found to systematically enhance the expansion velocity of the plasma arch. While perturbations at the arch footpoints also deform its legs and create characteristic elongated segments, a perturbation between the footpoints tends to push the entire structure upwards, retaining an ellipsoidal shape.

  1. MHD-EPIC: Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.

    2014-12-01

    We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.

  2. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    SciTech Connect

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  3. Nonlinear excitation of low-n harmonics in reduced magnetohydrodynamic simulations of edge-localized modes

    SciTech Connect

    Krebs, I.; Hölzl, M.; Lackner, K.; Günter, S.

    2013-08-15

    Nonlinear simulations of the early edge-localized mode (ELM) phase based on a typical type-I ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK. The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies comparable with linearly dominant harmonics. A simple model is developed, based on the idea that energy is transferred among the toroidal harmonics via second order nonlinear interaction. The simple model reproduces and explains very well the early nonlinear evolution of the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that its spatial structure changes significantly during the transition from linear to nonlinearly driven growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the plasma core. In contrast, the nonlinearly driven n= 1 has a rigidly growing structure localized at the plasma edge, where the dominant toroidal harmonics driving the n = 1 are maximal and in phase. The presented quadratic coupling model might explain the recent experimental observation of strong low-n components in magnetic measurements [Wenninger et al., “Non-linear magnetic perturbations during edge localized modes in TCV dominated by low n mode components,” Nucl. Fusion (submitted)].

  4. SIMULATION OF MAGNETOHYDRODYNAMIC SHOCK WAVE GENERATION, PROPAGATION, AND HEATING IN THE PHOTOSPHERE AND CHROMOSPHERE USING A COMPLETE ELECTRICAL CONDUCTIVITY TENSOR

    SciTech Connect

    Goodman, Michael L.; Kazeminezhad, Farzad E-mail: fkazemin@earthlink.ne

    2010-01-01

    An electrical conductivity tensor is used in a 1.5D magnetohydrodynamic (MHD) simulation to describe how MHD shock waves may form, propagate, and heat the photosphere and chromosphere by compression and resistive dissipation. The spatial resolution is 1 km. A train of six shock waves is generated by a sinusoidal magnetic field driver in the photosphere with a period T = 30 s, mean of 500 G, and variation of 250 G. The duration of the simulation is 200 s. Waves generated in the photosphere evolve into shock waves at a height z approx 375 km above the photosphere. The transition of the atmosphere from weakly to strongly magnetized with increasing height causes the Pedersen resistivity eta{sub P} to increase to approx2000 times the Spitzer resistivity. This transition occurs over a height range of a few hundred kilometers near the temperature minimum of the initial state at z approx 500 km. The initial state is a model atmosphere derived by Fontenla et al., plus a background magnetic field. The increase in eta{sub P} is associated with an increase in the resistive heating rate Q. Shock layer thicknesses are approx10-20 km. They are nonzero due to the presence of resistive dissipation, so magnetization-induced resistivity plays a role in determining shock structure, and hence the compressive heating rate Q{sub c} . At t = 200 s the solution has the following properties. Within shock layers, Q{sub maximum} approx 1.4-7 erg cm{sup -3} s{sup -1}, and Q{sub c,maximum} approx 10-10{sup 3} Q{sub maximum}. Between shock waves, and at some points within shock layers, Q{sub c} < 0, indicating cooling by rarefaction. The integrals of Q and Q{sub c} over the shock wave train are F approx 4.6 x 10{sup 6} erg cm{sup -2} s{sup -1} and F{sub c} approx 1.24 x 10{sup 9} erg cm{sup -2} s{sup -1}. A method based on the thermal, mechanical, and electromagnetic energy conservation equations is presented for checking the accuracy of the numerical solution, and gaining insight into energy

  5. Shear-induced instability and arch filament eruption - A magnetohydrodynamic (MHD) numerical simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Song, M. T.; Martens, P. C. H.; Dryer, M.

    1991-01-01

    A situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere undergoes symmetrical shear motion at the footpoints is investigated via a 2D (nonplanar) MHD simulation. It was found that the vertical plasma flow velocities grow exponentially, leading to a new type of global MHD instability. The growth rate increases almost linearly until it reaches the same order of magnitude as the Alfven speed. Then a nonlinear MHD instability occurs beyond this point. It was found that the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. The nonlinear dynamical shearing instability is illustrated by a numerical example that is given for three different values of the plasma beta that span several orders of magnitude.

  6. Non-linear magnetohydrodynamic simulations of density evolution in Tore Supra sawtoothing plasmas

    NASA Astrophysics Data System (ADS)

    Nicolas, T.; Sabot, R.; Garbet, X.; Lütjens, H.; Luciani, J.-F.; Guimaraes-Filho, Z.; Decker, J.; Merle, A.

    2012-11-01

    The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed.

  7. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    NASA Astrophysics Data System (ADS)

    Patterson, A. A.; Akinwande, A. I.

    2015-05-01

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  8. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  9. Growth of ternary and quaternary compounds on non-planar InP substrates

    SciTech Connect

    Mullan, C.A.; Robinson, B.J.; Thompson, D.A.; Weatherly, G.C.

    1996-12-31

    InP based ternary and quaternary materials are in wide use for optoelectronic systems. It has been well documented that phase separation occurs when these are deposited onto planar substrates. The use of non-planar substrates is becoming increasingly popular for the fabrication of novel devices. Obviously, epitaxial growth of these materials onto a non-planar surface will differ from growth on a planar surface. The effect of simultaneously growing on two or more crystal planes which have different atom migration lengths and sticking coefficients must now be considered. Since phase segregation occurs in InP-based materials the question arises, what effect will growth on a patterned substrate have? The authors have previously shown how InP, InGaAs and InGaAsP deposited onto etched DFB gratings under the same conditions act differently and here they will show both how the atomic concentrations change in deposited InGaAs and InGaAsP layers with position above the grating and how the total incorporation rate changes when compared to growth on a planar substrate.

  10. Evaluation of the aromaticity of non-planar and bowl-shaped molecules by NICS criterion.

    PubMed

    Reisi-Vanani, Adel; Rezaei, Ali Asghar

    2015-09-01

    Nucleus independent chemical shift (NICS) criterion was used to gauge the amount of aromaticity in a lot of publications in two last decades. Non-planar molecules with many polygons in different sheets that make angle together have not been studied by this criterion. Perhaps, one ascribes this deficiency to NICS index, but we think it is concern to depauperation in evaluation methods. Therefore, in this work, we try to evaluate aromaticity of two fullerene substructures bowl-shaped molecules, namely corannulene and sumanene as typical non-planar molecules by using of the NICSzz-scan method. The gauge-independent atomic orbital (GIAO) NMR calculations were done at B3LYP/6-311+G(d) level of theory. Energetic criterion as another tool for evaluation of the aromaticity of compounds was used and discussed. Results shows that pentagon and hexagon rings in corannulene have antiaromatic and aromatic character, respectively and in sumanene, pentagon and outer hexagon rings have antiaromatic and aromatic character, respectively. However, the picture obtained based on the NICS computations did not provide any insight towards the real nature of current density in the corannulene and sumanene. PMID:26188797

  11. Energy loss to conductors operated at lineal current densities ≤10MA/cm: Semianalytic model, magnetohydrodynamic simulations, and experiment

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Rosenthal, S. E.; Ives, H. C.; Wagoner, T. C.; Allshouse, G. O.; Androlewicz, K. E.; Donovan, G. L.; Fehl, D. L.; Frese, M. H.; Gilliland, T. L.; Johnson, M. F.; Mills, J. A.; Reisman, D. B.; Reynolds, P. G.; Speas, C. S.; Spielman, R. B.; Struve, K. W.; Toor, A.; Waisman, E. M.

    2008-12-01

    We have developed a semianalytic expression for the total energy loss to a vacuum transmission-line electrode operated at high lineal current densities. (We define the lineal current density jℓ≡B/μ0 to be the current per unit electrode width, where B is the magnetic field at the electrode surface and μ0 is the permeability of free space.) The expression accounts for energy loss due to Ohmic heating, magnetic diffusion, j×B work, and the increase in the transmission line’s vacuum inductance due to motion of the vacuum-electrode boundary. The sum of these four terms constitutes the Poynting fluence at the original location of the boundary. The expression assumes that (i) the current distribution in the electrode can be approximated as one-dimensional and planar; (ii) the current I(t)=0 for t<0, and I(t)∝t for t≥0; (iii) jℓ≤10MA/cm; and (iv) the current-pulse width is between 50 and 300 ns. Under these conditions we find that, to first order, the total energy lost per unit electrode-surface area is given by Wt(t)=αtβBγ(t)+ζtκBλ(t), where B(t) is the nominal magnetic field at the surface. The quantities α, β, γ, ζ, κ, and λ are material constants that are determined by normalizing the expression for Wt(t) to the results of 1D magnetohydrodynamic MACH2 simulations. For stainless-steel electrodes operated at current densities between 0.5 and 10MA/cm, we find that α=3.36×105, β=1/2, γ=2, ζ=4.47×104, κ=5/4, and λ=4 (in SI units). An effective time-dependent resistance, appropriate for circuit simulations of pulsed-power accelerators, is derived from Wt(t). Resistance-model predictions are compared to energy-loss measurements made with stainless-steel electrodes operated at peak lineal current densities as high as 12MA/cm (and peak currents as high as 23 MA). The predictions are consistent with the measurements, to within experimental uncertainties. We also find that a previously used electrode-energy-loss model overpredicts the

  12. Numerical simulations of resistive magnetohydrodynamic instabilities in a poloidal divertor tokamak

    NASA Astrophysics Data System (ADS)

    Uchimoto, E.

    1988-03-01

    A new 3-D resistive MHD initial value code RPD has been successfully developed from scratch to study the linear and nonlinear evolution of long wavelength resistive MHD instabilities in a square cross-section tokamak with or without a poloidal divertor. The code numerically advances the full set of compressible resistive MHD equations in a toroidal geometry, with an important option of permitting the divertor separatrix and the region outside it to be in the computational domain. A severe temporal step size restriction for numerical stability imposed by the fast compressional waves was removed by developing and implementing a new, efficient semi-implicit scheme extending one first proposed by Harned and Kerner. As a result, the code typically runs faster than that with a mostly explicit scheme by a factor of about the aspect ratio. The equilibrium input for RPD is generated by a new 2-D code EQPD that is based on the Chodura-Schluter method. The RPD code, as well as the new semi-implicit scheme, has passed very extensive numerical tests in both divertor and divertorless geometries. Linear and nonlinear simulations in a divertorless geometry have reproduced the standard, previously known results. In a geometry with a four-node divertor the m = 2, n = 1 (2/1) tearing mode tends to be linearly stabilized as the q = 2 surface approaches the divertor separatrix. However, the m = 1, n = 1 (1/1) resistive kink mode remains relatively unaffected by the nearness of the q = 1 surface to the divertor separatrix. When plasma current is added to the region outside the divertor separatrix, the 2/1 tearing mode is linearly stabilized not by this current, but by the profile modifications induced near the q = 2 surface and the divertor separatrix. A similar stabilization effect is seen for the 1/1 resistive kink mode, but to a lesser extent.

  13. Numerical simulations of magnetohydrodynamic flows driven by a moving permanent magnet

    NASA Astrophysics Data System (ADS)

    Prinz, S.; Bandaru, V.; Kolesnikov, Y.; Krasnov, D.; Boeck, T.

    2016-08-01

    We present results from numerical reconstructions of magnetic obstacle experiments performed in liquid metal flows. The experimental setup consists of an open rectangular container filled with a thin layer of liquid metal (GaInSn). A permanent magnet is installed on a rail beneath the container and is moved with a constant velocity U0, which in turn induces a flow inside the liquid metal due to Lorentz forces. The setup allows experiments in a parameter range that is accessible by direct numerical simulations (DNS). We present results from realizations with four different parameter sets, covering flows with stable stationary vortex structures in the reference system of the moving magnet as well as time-dependent flow regimes. Although the liquid metal layer is very thin, the flow shows a highly three-dimensional character in the near and in the far wake of the magnetic obstacle. We conclude that the streamline visualization in the experiment (using gas bubbles at the surface of the liquid metal layer) is insufficient to picture the flow structure occurring in the liquid metal. To underpin our conclusions, we introduce a modified numerical model which aims to mimic the movement of these gas bubbles. Although this model is a strong simplification of the highly complicated behavior of bubbles at a fluid-fluid interface, it captures the main effects and provides a good reproduction of the experimental results. Furthermore, transient effects are investigated when the flow is initiated, i.e., when the magnet approaches the container and crosses its front wall. We conclude that the process of vortex formation is accompanied by a decrease of the streamwise component of the Lorentz force compared to the time when the fluid is still quiescent. This decrease occurs only for flows with stable vortex structures, which might be of interest for practical applications like Lorentz force velocimetry. The Lorentz forces obtained from our DNS are in good agreement with the values

  14. MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION

    SciTech Connect

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-11-01

    When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.

  15. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Testa, Paola; De Pontieu, Bart; Martinez-Sykora, Juan; Hansteen, Viggo; Carlsson, Mats

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  16. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  17. Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique

    NASA Astrophysics Data System (ADS)

    Zhang, Tiangang; Koshizuka, Seiichi; Murotani, Kohei; Shibata, Kazuya; Ishii, Eiji; Ishikawa, Masanori

    2016-02-01

    The boundary conditions represented by polygons in moving particle semi-implicit (MPS) method (Koshizuka and Oka, Nuclear Science and Engineering, 1996) have been widely used in the industry simulations since it can simply simulate complex geometry with high efficiency. However, the inaccurate particle number density near non-planar wall boundaries dramatically affects the accuracy of simulations. In this paper, we propose an initial boundary particle arrangement technique coupled with the wall weight function method (Zhang et al. Transaction of JSCES, 2015) to improve the particle number density near slopes and curved surfaces with boundary conditions represented by polygons in three dimensions. Two uniform grids are utilized in the proposed technique. The grid points in the first uniform grid are used to construct boundary particles, and the second uniform grid stores the same information as in the work by Zhang et al. The wall weight functions of the grid points in the second uniform grid are calculated by newly constructed boundary particles. The wall weight functions of the fluid particles are interpolated from the values stored on the grid points in the second uniform grid. Because boundary particles are located on the polygons, complex geometries can be accurately represented. The proposed method can dramatically improve the particle number density and maintain the high efficiency. The performance of the previously proposed wall weight function (Zhang et al.) with the boundary particle arrangement technique is verified in comparison with the wall weight function without boundary particle arrangement by investigating two example geometries. The simulations of a water tank with a wedge and a complex geometry show the general applicability of the boundary particle arrangement technique to complex geometries and demonstrate its improvement of the wall weight function near the slopes and curved surfaces.

  18. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    SciTech Connect

    Tsiklauri, D.

    2014-05-15

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S{sup 1∕3} and in the latter as log(S), where S is the Lundquist number. In this work, linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is

  19. Three dimensional magnetohydrodynamic simulation of linearly polarised Alfven wave dynamics in Arnold-Beltrami-Childress magnetic field

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2015-04-01

    Previous studies (e.g., Malara et al., Astrophys. J. 533, 523 (2000)) considered small-amplitude Alfven wave (AW) packets in Arnold-Beltrami-Childress (ABC) magnetic field using WKB approximation. They draw a distinction between 2D AW dissipation via phase mixing and 3D AW dissipation via exponentially divergent magnetic field lines. In the former case, AW dissipation time scales as S 1/3 and in the latter as log(S) , where S is the Lundquist number. In this work [1], linearly polarised Alfven wave dynamics in ABC magnetic field via direct 3D magnetohydrodynamic (MHD) numerical simulation is studied for the first time. A Gaussian AW pulse with length-scale much shorter than ABC domain length and a harmonic AW with wavelength equal to ABC domain length are studied for four different resistivities. While it is found that AWs dissipate quickly in the ABC field, contrary to an expectation, it is found the AW perturbation energy increases in time. In the case of the harmonic AW, the perturbation energy growth is transient in time, attaining peaks in both velocity and magnetic perturbation energies within timescales much smaller than the resistive time. In the case of the Gaussian AW pulse, the velocity perturbation energy growth is still transient in time, attaining a peak within few resistive times, while magnetic perturbation energy continues to grow. It is also shown that the total magnetic energy decreases in time and this is governed by the resistive evolution of the background ABC magnetic field rather than AW damping. On contrary, when the background magnetic field is uniform, the total magnetic energy decrease is prescribed by AW damping, because there is no resistive evolution of the background. By considering runs with different amplitudes and by analysing the perturbation spectra, possible dynamo action by AW perturbation-induced peristaltic flow and inverse cascade of magnetic energy have been excluded. Therefore, the perturbation energy growth is attributed

  20. Fabrication of non-planar silver nano-arc-gap arrays.

    PubMed

    Shen, Yang; Liu, Mingkai; Wang, Qianjin; Zhan, Peng; Wang, Zhenlin; Zhu, Qiangzhong; Chen, Xia; Jiang, Shaoji; Wang, Xuehua; Jin, Chongjun

    2012-04-01

    We developed a method to fabricate an array of silver non-planar nano-arc-gaps via inverted hemispherical colloidal lithography and shadow metal evaporation methods. It is found that there is a localized surface plasmon mode which results in extraordinary optical transmission. The electric field is strongly localized at the nano-arc-gap region and therefore induces a resonance that has an ultra-small mode volume of less than 2.44 × 10(-6) μm(3). The ratio of the quality factor to the mode volume is as high as 1.44 × 10(6) μm(-3). This would be valuable for the design of optoelectric circuits. PMID:22398454

  1. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  2. Multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates.

    SciTech Connect

    Chen, Ken Shuang

    2004-11-01

    This report documents the author's efforts in the deterministic modeling of copper-sulfidation corrosion on non-planar substrates such as diodes and electrical connectors. A new framework based on Goma was developed for multi-dimensional modeling of atmospheric copper-sulfidation corrosion on non-planar substrates. In this framework, the moving sulfidation front is explicitly tracked by treating the finite-element mesh as a pseudo solid with an arbitrary Lagrangian-Eulerian formulation and repeatedly performing re-meshing using CUBIT and re-mapping using MAPVAR. Three one-dimensional studies were performed for verifying the framework in asymptotic regimes. Limited model validation was also carried out by comparing computed copper-sulfide thickness with experimental data. The framework was first demonstrated in modeling one-dimensional copper sulfidation with charge separation. It was found that both the thickness of the space-charge layers and the electrical potential at the sulfidation surface decrease rapidly as the Cu{sub 2}S layer thickens initially but eventually reach equilibrium values as Cu{sub 2}S layer becomes sufficiently thick; it was also found that electroneutrality is a reasonable approximation and that the electro-migration flux may be estimated by using the equilibrium potential difference between the sulfidation and annihilation surfaces when the Cu{sub 2}S layer is sufficiently thick. The framework was then employed to model copper sulfidation in the solid-state-diffusion controlled regime (i.e. stage II sulfidation) on a prototypical diode until a continuous Cu{sub 2}S film was formed on the diode surface. The framework was also applied to model copper sulfidation on an intermittent electrical contact between a gold-plated copper pin and gold-plated copper pad; the presence of Cu{sub 2}S was found to raise the effective electrical resistance drastically. Lastly, future research needs in modeling atmospheric copper sulfidation are discussed.

  3. Effect of an applied electric field on a weakly anchored non-planar Nematic Liquid Crystal (NLC) layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda J.; Kondic, Lou

    We consider a mathematical model that consists of a NLC layer sandwiched between two parallel bounding plates, across which an external field is applied. We investigate its effect on the director orientation by considering the dielectric and flexoelectric contributions and varying parameters that represent the anchoring conditions and the electric field strength. In particular, we investigate possible director configurations that occur in weakly anchored and non-planar systems. We observe that non-planar anchoring angles destroy any hysteresis seen in a planar system by eliminating the fully vertical director configuration and the ''saturation threshold'' seen in weakly anchored planar Freedericksz cells. Supported by NSF Grant No. DMS-1211713.

  4. Magnetohydrodynamic Waves

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.

    2007-07-01

    The heating of solar atmosphere from chromosphere to corona is one of the key fundamental and yet unresolved questions of modern space and plasma physics. In spite of the multi-fold efforts spanning over half a century including the many superb technological advances and theoretical developments (both analytical and computational) the unveiling of the subtle of coronal heating still remains an exciting job for the 21st century! In the present paper I review the various popular heating mechanisms put forward in the existing extensive literature. The heating processes are, somewhat arbitrarily, classified as hydrodynamic (HD), magnetohydrodynamic (MHD) or kinetic based on the model medium. These mechanisms are further divided based on the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent heating). In particular, attention is paid to discuss shock dissipation, Landau damping, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, I briefly review the various observational consequences of the many proposed heating mechanisms and confront them with high-resolution ground-based and satellite data currently available.

  5. Rayleigh-Taylor-unstable accretion to and variability of magnetized stars: Global three-dimensional magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kulkanarni, Akshay Kishor

    We present results of three-dimensional (3D) simulations of magnetohydrodynamic (MHD) instabilities at the accretion disk-magnetosphere boundary in accreting magnetized stars. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane, instead of flowing around the magnetosphere as in the canonical accretion picture. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, theta ≲ 30°, between the star's rotation and magnetic axes, and is associated with relatively high accretion rates. We then calculate the photometric variability due to emission from the hot spots that the accreting matter produces on the stellar surface. For neutron stars, we take relativistic effects into account in calculating the observed energy flux. Our goal is to compare the features of the lightcurve during stable and unstable accretion, and to look for possible quasi-periodic oscillations (QPOs), which produce broad peaks in the Fourier power spectra of these objects. The lightcurves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, lightcurves during unstable accretion are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots is close to the inner-disk orbital frequency, except in the most

  6. Final Report for "Tech-X Corporation work for the SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM)"

    SciTech Connect

    Jenkins, Thomas G.; Kruger, Scott E.

    2013-03-25

    Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived and the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.

  7. Asymptotic expansion for stellarator equilibria with a non-planar magnetic axis: Numerical results

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey; Cerfon, Antoine; Parra, Felix

    2012-10-01

    We have recently presented a new asymptotic expansion for stellarator equilibria that generalizes the classic Greene-Johnson expansion [1] to allow for 3D equilibria with a non-planar magnetic axis [2]. Our expansion achieves the two goals of reducing the complexity of the three-dimensional MHD equilibrium equations and of describing equilibria in modern stellarator experiments. The end result of our analysis is a set of two coupled partial differential equations for the plasma pressure and the toroidal vector potential which fully determine the stellarator equilibrium. Both equations are advection equations in which the toroidal angle plays the role of time. We show that the method of characteristics, following magnetic field lines, is a convenient way of solving these equations, avoiding the difficulties associated with the periodicity of the solution in the toroidal angle. By combining the method of characteristics with Green's function integrals for the evaluation of the magnetic field due to the plasma current, we obtain an efficient numerical solver for our expansion. Numerical equilibria thus calculated will be given.[4pt] [1] J.M. Greene and J.L. Johnson, Phys. Fluids 4, 875 (1961)[0pt] [2] A.J. Cerfon, J.P. Freidberg, and F.I. Parra, Bull. Am. Phys. Soc. 56, 16 GP9.00081 (2011)

  8. Asymptotic expansion for stellarator equilibria with a non-planar magnetic axis: Numerical progress

    NASA Astrophysics Data System (ADS)

    Cerfon, Antoine; Freidberg, Jeffrey; Parra, Felix

    2012-03-01

    We have recently presented a new asymptotic analysis [1], which reduces the complexity of the MHD equilibrium equations in stellarators and generalizes the asymptotic approach followed by Greene and Johnson in their classic paper [2]. As in [2], our expansion relies on the small ratio of the helical magnetic field to the vacuum toroidal field. However, our ordering relaxes the Greene and Johnson constraint which assumes a strong separation in length scales between the helical period and the major radius. In our expansion these two length scales are of comparable order, which provides a better match with modern stellarator experiments. Toroidal effects enter the analysis in the same order as helical effects, allowing the calculations of equilibria with multiple helicities and a non-planar magnetic axis. The end result of our analysis is a set of two coupled PDEs for the plasma pressure and the magnetic vector potential, which fully determine the stellarator equilibrium. We present simple analytic solutions to these equations, and discuss the numerical methods we are developping to calculate more general stellarator equilibria.[4pt] [1] A.J. Cerfon, J.P. Freidberg, and F.I. Parra, Bull. Am. Phys. Soc. 56, 16 GP9.00081[0pt] [2] J.M. Greene and J.L. Johnson, Phys. Fluids 4, 875 (1961)

  9. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    NASA Astrophysics Data System (ADS)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  10. A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Whitesides, George M.; Capasso, Federico

    2009-01-01

    Conventional lithographic methods (e.g. electron-beam writing, photolithography) are capable of producing high-resolution structures over large areas, but are generally limited to large (>1 cm2) planar substrates. Incorporation of these features on unconventional substrates (i.e., small (<1 mm2) and/or non-planar substrates) would open possibilities for many applications, including remote fiber-based sensing, nanoscale optical lithography, three-dimensional fabrication, and integration of compact optical elements on fiber and semiconductor lasers. Here we introduce a simple method in which a thin thiol-ene film strips arbitrary nanoscale metallic features from one substrate and is then transferred, along with the attached features, to a substrate that would be difficult or impossible to pattern with conventional lithographic techniques. An oxygen plasma removes the sacrificial film, leaving behind the metallic features. The transfer of dense and sparse patterns of isolated and connected gold features ranging from 30 nm to 1 μm, to both an optical fiber facet and a silica microsphere, demonstrates the versatility of the method. A distinguishing feature of this technique is the use of a thin, sacrificial film to strip and transfer metallic nanopatterns and its ability to directly transfer metallic structures produced by conventional lithography. PMID:19206249

  11. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing

    NASA Astrophysics Data System (ADS)

    Cheng, Yongzhi; Mao, Xue Song; Wu, Chenjun; Wu, Lin; Gong, RongZhou

    2016-03-01

    We present a non-planar all-metal plasmonic perfect absorber (PA) with response polarization independent in infrared region, which can be served as a sensor for enhanced refractive index sensing. Distinct from previous designs, the proposed PA consisted of all metal structured film constructed with an assembly of four-tined rod resonators (FRRs). The PA with a high quality-factor (Q-factor) of 41.2 and an absorbance of 99.9% at 142.6 THz has been demonstrated numerically. The resonance behavior occurs in the space between the rods of the FRRs, which is remarkable different conventional sandwiched structural PAs. Based on equivalent LC circuit theory, the absorption peak can be finely tuned by varying the geometrical dimensions of the FRRs. Furthermore, the resonance frequency shows highly sensitive response to the change of refractive index in the surrounding medium. A careful design for refractive index sensor can yield a sensitivity of 1445 nm/refractive index unit (RIU) and a figure of merit (FOM) of 28.8. The demonstrated design of the plasmonic PA for sensing provides great potential application in enhancing refractive index sensors and the enhanced infrared spectroscopy.

  12. High-Reliability Pump Module for Non-Planar Ring Oscillator Laser

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak

    2007-01-01

    We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.

  13. SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE

    SciTech Connect

    Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.

    2009-06-15

    A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.

  14. Structural stability, C-N internal rotations and vibrational spectral analysis of non-planar phenylurea and phenylthiourea

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2009-04-01

    The structural stability and C-N internal rotations of phenylurea and phenylthiourea were investigated by DFT-B3LYP and ab initio MP2 and MP4//MP2 calculations with 6-311G** and/or 6-311+G** basis sets. The complex multirotor internal rotations in phenylurea and phenylthiourea were investigated at the B3LYP/6-311+G** level of theory from which several clear minima were predicted in the calculated potential energy scans of both molecules. For phenylurea two minima that correspond to non-planar- (CNCC dihedral angle of about 45°) cis (CNCO dihedral angle is near 0°) and trans (CNCO dihedral angle is near 180°) structures were predicted to have real frequency. For phenylthiourea only the non- planar- trans structure was predicted to be the low energy minimum for the molecule. The vibrational frequencies of the lowest energy non-planar-trans conformer of each of the two molecules were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.

  15. Magneto-hydrodynamic simulation of hypervelocity neutral plasma jets and their interactions with materials generating extreme conditions

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan; Sitaraman, Hariswaran

    2014-10-01

    The development of a Magneto-hydrodynamics (MHD) numerical tool to study high density thermal plasma in a co-axial plasma gun is presented. The MHD governing equations are numerically solved using a matrix free implicit scheme in an unstructured grid finite volume framework. The MHD model is used to characterize the high energy jet which emanates from the accelerator. The solver is then used to predict the conditions created at the surface of a flat plate placed at a fixed distance from the exit of the gun. The model parameters are adjusted so that the energy density of the jet impacting the plate is of the same order of magnitude as that of the Edge Localized Mode (ELM) disruptions in thermonuclear fusion reactors. The idea is to use the pressure and temperature on the plate surface to obtain an estimate of the stress created on the plate due to jet impact. The model is used to quantify damage caused by ELM disruptions on the confining material surface.

  16. Finite Element Modeling of Dynamic Shear Rupture Experiments Along Non-Planar Faults

    NASA Astrophysics Data System (ADS)

    Templeton, E. L.; Baudet, A.; Bhat, H. S.; Rice, J. R.

    2004-12-01

    The study of dynamically propagating shear cracks along weak paths like faults is of great interest for the study of earthquakes. We adapted the ABAQUS/Explicit dynamic finite element program to analyze the nucleation and propagation of shear cracks along a non-planar, kinked, weak path corresponding to the one that was used in recent laboratory fracture studies by Rousseau and Rosakis [JGR, 2003]. Their experiments involved impact loading of thin plates of Homalite-100, a photoelastically sensitive brittle polymer, which had been cut along a kinked path and then weakly glued back together everywhere except along a starter notch near the impact site. Under different conditions, propagation speeds were observed in both the sub-Rayleigh and intersonic (supershear) regimes. Strain gage recordings and high speed photography of isochromatic lines (lines of constant difference between the in-plane principal strains) provided characterization of the transient deformation fields associated with the impact and fracture propagation. For the finite element analyses, we implemented a slip-weakening failure model through an option in the ABAQUS program allowing user defined constitutive relations. The analyses of impact loading and of rupture nucleation and propagation were then carried out in the 2D framework of plane stress. In a first set of studies of nucleation and propagation of rupture along a straight fault, we determined after some trial and error an appropriate CFL number, and examined different element types and layouts, finding that the most acceptable results were obtained for low order elements. We used constant strain triangles, arrayed in groups of four to effectively form four-sided elements with corner nodes and one internal node. The studies also showed that to obtain representations of slip rate and shear stress near the propagating rupture tip that were relatively free from numerical oscillations, it was necessary to have element side lengths of order Ro/50

  17. Levels and sources of planar and non-planar PCBs in pine needles across Poland.

    PubMed

    Falandysz, Jerzy; Orlikowska, Anna; Jarzyńska, Grażyna; Bochentin, Ilona; Wyrzykowska, Barbara; Drewnowska, Małgorzata; Hanari, Nobuyashi; Horii, Yuichi; Yamashita, Nobuyoshi

    2012-01-01

    Under a small project, one-year-old Scots Pine needles collected from 25 spatially distant sites were examined in monitoring the extent of environmental diffusion and possible sources of polychlorinated biphenyls (PCBs) in ambient air, their depositions and uptake by plants in Poland. The congener-specific determination of planar and non-planar chlorobiphenyls was achieved by isotope dilution HRGC-HRMS method after a highly refined extraction on multi-layer column of silica gel and alumina layer and clean-up, and fractionations, followed by Hypercarb-HPLC and PYE-HPLC sub-fractionation steps. Contents of 117 chlorobiphenyls determined in pine needles varied for the 25 sites studied and is between 2.7 and 49 ng/g wet weight. The PCBs pollution and congener-specific composition of pine needles to some degree varied according to the site or region surveyed depending on population density and industrialization. Many of the country-side areas showed lower concentrations between 2.7 and 8.9 ng/g ww. Pine needles in areas close to well populated and industrial regions of Opole, Kutno, Włocławek and Dębica showed the highest PCB pollution with concentrations varying between 30 and 49 ng/g ww. The Kutno site showed the highest pollution and this fact probably can be explained by possible emission from transformer manufactures located at some distance west of the Kutno area. Factor analysis (FA) and depending on the site revealed on relationship of PCBs composition of pine needles both with highly chlorinated PCB constituents of the mixtures such as Chlorofen, Aroclor 1254, Aroclor 1268 and Sovol but also of lower chlorinated PCB constituents of Aroclor 1242, Aroclor 1248, Clophen A40 or Delor 103. Thermal processes were considered a less significant source of PCBs in ambient air over Poland compared to evaporative sources related to technical PCB formulations. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of

  18. THE DYNAMICS OF STELLAR CORONAE HARBORING HOT JUPITERS. I. A TIME-DEPENDENT MAGNETOHYDRODYNAMIC SIMULATION OF THE INTERPLANETARY ENVIRONMENT IN THE HD 189733 PLANETARY SYSTEM

    SciTech Connect

    Cohen, O.; Kashyap, V. L.; Drake, J. J.; Garraffo, C.; Sokolov, I. V.; Gombosi, T. I.

    2011-05-20

    We carry out the first time-dependent numerical magnetohydrodynamic modeling of an extrasolar planetary system to study the interaction of the stellar magnetic field and wind with the planetary magnetosphere and outflow. We base our model on the parameters of the HD 189733 system, which harbors a close-in giant planet. Our simulation reveals a highly structured stellar corona characterized by sectors with different plasma properties. The star-planet interaction (SPI) varies in magnitude and complexity, depending on the planetary phase, planetary magnetic field strength, and the relative orientation of the stellar and planetary fields. It also reveals a long, comet-like tail which is a result of the wrapping of the planetary magnetospheric tail by its fast orbital motion. A reconnection event occurs at a specific orbital phase, causing mass loss from the planetary magnetosphere that can generate a hot spot on the stellar surface. The simulation also shows that the system has sufficient energy to produce hot spots observed in Ca II lines in giant planet hosting stars. However, the short duration of the reconnection event suggests that such SPI cannot be observed persistently.

  19. General Relativistic Magnetohydrodynamic Simulations of Jets from Black Hole Accretions Disks: Two-Component Jets Driven by Nonsteady Accretion of Magnetized Disks

    NASA Astrophysics Data System (ADS)

    Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro

    1998-03-01

    The radio observations have revealed the compelling evidence of the existence of relativistic jets not only from active galactic nuclei but also from ``microquasars'' in our Galaxy. In the cores of these objects, it is believed that a black hole exists and that violent phenomena occur in the black hole magnetosphere, forming the relativistic jets. To simulate the jet formation in the magnetosphere, we have newly developed the general relativistic magnetohydrodynamic code. Using the code, we present a model of these relativistic jets, in which magnetic fields penetrating the accretion disk around a black hole play a fundamental role of inducing nonsteady accretion and ejection of plasmas. According to our simulations, a jet is ejected from a close vicinity to a black hole (inside 3rS, where rS is the Schwarzschild radius) at a maximum speed of ~90% of the light velocity (i.e., a Lorentz factor of ~2). The jet has a two-layered shell structure consisting of a fast gas pressure-driven jet in the inner part and a slow magnetically driven jet in the outer part, both of which are collimated by the global poloidal magnetic field penetrating the disk. The former jet is a result of a strong pressure increase due to shock formation in the disk through fast accretion flow (``advection-dominated disk'') inside 3rS, which has never been seen in the nonrelativistic calculations.

  20. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness: 2. Oblique collision

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2006-11-01

    Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5-dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC (Xiong, 2006). The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the MC is restored to its oblate morphology. With the decrease of MC-shock commencement interval, the shock front at 1 AU traverses MC body and is responsible for the same change trend of the latitude of the greatest geoeffectiveness of MC-shock compound. Regardless of shock orientation, shock penetration location regarding the maximum geoeffectiveness is right at MC core on the condition of very strong shock intensity. An appropriate angular difference between the initial eruption of an MC and an overtaking shock leads to the maximum deflection of the MC body. The larger the shock intensity is, the greater is the deflection angle. The interaction of MCs with other disturbances could be a cause of deflected propagation of interplanetary coronal mass ejection (ICME).

  1. The Distant Tail at 200 R(sub E): Comparison Between Geotail Observations and the Results from a Global Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.

  2. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision

    NASA Astrophysics Data System (ADS)

    Xiong, Ming; Zheng, Huinan; Wang, Shui

    2009-11-01

    The numerical studies of the interplanetary coupling between multiple magnetic clouds (MCs) are continued by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. The interplanetary direct collision (DC)/oblique collision (OC) between both MCs results from their same/different initial propagation orientations. Here the OC is explored in contrast to the results of the DC. Both the slow MC1 and fast MC2 are consequently injected from the different heliospheric latitudes to form a compound stream during the interplanetary propagation. The MC1 and MC2 undergo contrary deflections during the process of oblique collision. Their deflection angles of ∣δ$\\theta$1∣ and ∣δ$\\theta$2∣ continuously increase until both MC-driven shock fronts are merged into a stronger compound one. The ∣δ$\\theta$1∣, ∣δ$\\theta$2∣, and total deflection angle Δ$\\theta$ (Δ$\\theta$ = ∣δ$\\theta$1∣ + ∣δ$\\theta$2∣) reach their corresponding maxima when the initial eruptions of both MCs are at an appropriate angular difference. Moreover, with the increase of MC2's initial speed, the OC becomes more intense, and the enhancement of δ$\\theta$1 is much more sensitive to δ$\\theta$2. The ∣δ$\\theta$1∣ is generally far less than the ∣δ$\\theta$2∣, and the unusual case of ∣δ$\\theta$1∣ $\\simeq$ ∣δ$\\theta$2∣ only occurs for an extremely violent OC. But because of the elasticity of the MC body to buffer the collision, this deflection would gradually approach an asymptotic degree. As a result, the opposite deflection between the two MCs, together with the inherent magnetic elasticity of each MC, could efficiently relieve the external compression for the OC in the interplanetary space. Such a deflection effect for the OC case is essentially absent for the DC case. Therefore, besides the magnetic elasticity, magnetic helicity, and reciprocal compression, the deflection due to the OC should be considered for the

  3. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2001-01-01

    This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.

  4. Magnetic reconnection in a comparison of topology and helicities in two and three dimensional resistive magnetohydrodynamic simulations

    SciTech Connect

    Čemeljić, M. Huang, R.-Y.

    2014-03-15

    Through a direct comparison between numerical simulations in two and three dimensions, we investigate topological effects in reconnection. A simple estimate on increase in reconnection rate in three dimensions by a factor of √(2), when compared with a two-dimensional case, is confirmed in our simulations. We also show that both the reconnection rate and the fraction of magnetic energy in the simulations depend linearly on the height of the reconnection region. The degree of structural complexity of a magnetic field and the underlying flow is measured by current helicity and cross-helicity. We compare results in simulations with different computational box heights.

  5. Filamentary magnetohydrodynamic plasmas

    SciTech Connect

    Kinney, R.; Tajima, T. ); McWilliams, J.C. ); Petviashvili, N. )

    1994-02-01

    A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elsaesser variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested.

  6. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  7. Experiments in Magnetohydrodynamics

    ERIC Educational Resources Information Center

    Rayner, J. P.

    1970-01-01

    Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)

  8. Gyroscopic analog for magnetohydrodynamics

    SciTech Connect

    Holm, D.D.

    1981-01-01

    The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.

  9. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  10. Filamentary magnetohydrodynamic plasmas

    SciTech Connect

    Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.

    1993-05-01

    A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.

  11. Filamentary magnetohydrodynamic plasmas

    NASA Astrophysics Data System (ADS)

    Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J. C.

    1993-05-01

    A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.

  12. Magnetohydrodynamic fluidic system

    DOEpatents

    Lee, Abraham P.; Bachman, Mark G.

    2004-08-24

    A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.

  13. Direct comparisons of compressible magnetohydrodynamics and reduced magnetohydrodynamics turbulence

    NASA Astrophysics Data System (ADS)

    Dmitruk, Pablo; Matthaeus, William H.; Oughton, Sean

    2005-11-01

    Direct numerical simulations of low Mach number compressible three-dimensional magnetohydrodynamic (CMHD3D) turbulence in the presence of a strong mean magnetic field are compared with simulations of reduced magnetohydrodynamics (RMHD). Periodic boundary conditions in the three spatial coordinates are considered. Different sets of initial conditions are chosen to explore the applicability of RMHD and to study how close the solution remains to the full compressible MHD solution as both freely evolve in time. In a first set, the initial state is prepared to satisfy the conditions assumed in the derivation of RMHD, namely, a strong mean magnetic field and plane-polarized fluctuations, varying weakly along the mean magnetic field. In those circumstances, simulations show that RMHD and CMHD3D evolve almost indistinguishably from one another. When some of the conditions are relaxed the agreement worsens but RMHD remains fairly close to CMHD3D, especially when the mean magnetic field is large enough. Moreover, the well-known spectral anisotropy effect promotes the dynamical attainment of the conditions for RMHD applicability. Global quantities (mean energies, mean-square current, and vorticity) and energy spectra from the two solutions are compared and point-to-point separation estimations are computed. The specific results shown here give support to the use of RMHD as a valid approximation of compressible MHD with a mean magnetic field under certain but quite practical conditions.

  14. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  15. Global magnetohydrodynamic simulation of the 15 March 2013 coronal mass ejection event—Interpretation of the 30-80 MeV proton flux

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Chun; Liou, Kan; Vourlidas, Angelos; Plunkett, Simon; Dryer, Murray; Wu, S. T.; Mewaldt, Richard A.

    2016-01-01

    The coronal mass ejection (CME) event on 15 March 2013 is one of the few solar events in Cycle 24 that produced a large solar energetic particle (SEP) event and severe geomagnetic activity. Observations of SEP from the ACE spacecraft show a complex time-intensity SEP profile that is not easily understood with current empirical SEP models. In this study, we employ a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation to help interpret the observations. The simulation is based on the H3DMHD code and incorporates extrapolations of photospheric magnetic field as the inner boundary condition at a solar radial distance (r) of 2.5 solar radii. A Gaussian-shaped velocity pulse is imposed at the inner boundary as a proxy for the complex physical conditions that initiated the CME. It is found that the time-intensity profile of the high-energy (>10 MeV) SEPs can be explained by the evolution of the CME-driven shock and its interaction with the heliospheric current sheet and the nonuniform solar wind. We also demonstrate in more detail that the simulated fast-mode shock Mach number at the magnetically connected shock location is well correlated (rcc ≥ 0.7) with the concurrent 30-80 MeV proton flux. A better correlation occurs when the 30-80 MeV proton flux is scaled by r-1.4(rcc = 0.87). When scaled by r-2.8, the correlation for 10-30 MeV proton flux improves significantly from rcc = 0.12 to rcc = 0.73, with 1 h delay. The present study suggests that (1) sector boundary can act as an obstacle to the propagation of SEPs; (2) the background solar wind is an important factor in the variation of IP shock strength and thus plays an important role in manipulation of SEP flux; (3) at least 50% of the variance in SEP flux can be explained by the fast-mode shock Mach number. This study demonstrates that global MHD simulation, despite the limitation implied by its physics-based ideal fluid continuum assumption, can be a viable tool for SEP data analysis.

  16. A STUDY OF THE HELIOCENTRIC DEPENDENCE OF SHOCK STANDOFF DISTANCE AND GEOMETRY USING 2.5D MAGNETOHYDRODYNAMIC SIMULATIONS OF CORONAL MASS EJECTION DRIVEN SHOCKS

    SciTech Connect

    Savani, N. P.; Shiota, D.; Kusano, K.; Vourlidas, A.; Lugaz, N.

    2012-11-10

    We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.

  17. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyα Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    NASA Astrophysics Data System (ADS)

    Štěpán, J.; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-04-01

    Probing the magnetism of the upper solar chromosphere requires measuring and modeling the scattering polarization produced by anisotropic radiation pumping in UV spectral lines. Here we apply PORTA (a novel radiative transfer code) to investigate the hydrogen Lyα line in a three-dimensional model of the solar atmosphere resulting from a state of the art magnetohydrodynamic (MHD) simulation. At full spatial resolution the linear polarization signals are very significant all over the solar disk, with a large fraction of the field of view (FOV) showing line-center amplitudes well above the 1% level. Via the Hanle effect the line-center polarization signals are sensitive to the magnetic field of the model's transition region, even when its mean field strength is only 15 G. The breaking of the axial symmetry of the radiation field produces significant forward-scattering polarization in Lyα, without the need of an inclined magnetic field. Interestingly, the Hanle effect tends to decrease such forward-scattering polarization signals in most of the points of the FOV. When the spatial resolution is degraded, the line-center polarization of Lyα drops below the 1% level, reaching values similar to those previously found in one-dimensional (1D) semi-empirical models (i.e., up to about 0.5 %). The center to limb variation (CLV) of the spatially averaged polarization signals is qualitatively similar to that found in 1D models, with the largest line-center amplitudes at μ =cos θ ≈ 0.4 (θ being the heliocentric angle). These results are important, both for designing the needed space-based instrumentation and for a reliable interpretation of future observations of the Lyα polarization.

  18. Filamentary magnetohydrodynamic plasmas

    NASA Astrophysics Data System (ADS)

    Kinney, R.; Tajima, T.; McWilliams, J. C.; Petviashvili, N.

    1994-02-01

    A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elsässer variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested.

  19. Magnetohydrodynamically generated velocities in confined plasma

    SciTech Connect

    Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.

    2015-04-15

    We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.

  20. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  1. The influence of non-planar geometry on the flow within a distal end-to-side anastomosis

    NASA Astrophysics Data System (ADS)

    Sherwin, S. J.; Doorly, D. J.; Peiro, J.; Caro, C. G.

    1998-11-01

    The pattern of the flow in arteries is strongly influenced by the three-dimensional shape of the geometry. Curvature and torsion of the wall geometry alters the axial velocity distribution, and introduces cross flow velocity components. In this investigation we have considered flow in a model geometry of a fully occluded 45^o distal end-to-side anastomosis. Previous investigations have typically focused on planar end-to-side anastomoses where the bypass and host vessels have a plane of symmetry. We have increased the complexity of the model by considering a non-planar geometry produced by deforming the bypass vessel out of the plane of symmetry. The flows have been numerically and experimentally investigated using a spectral/hp element algorithm and magnetic resonance imaging. The significant effect of the non-planar geometry is to introduce a bulk rotation of the two secondary flow cells present in flow within a planar geometry. A reduction in wall shear stress is observed at the bed of the anastomosis and a larger absolute flux of velocity is seen within the occluded region proximal to the anastomosis. Current investigations have considered the role of pulsatility in the form of a non-reversing sinusoidal oscillation. In this case a separation bubble, not present in the steady case, is seen at the toe of the anastomosis during the systolic part of the cycle. The role of geometry and pulsatility on particle motion has also been addressed with a view to determining the shear exposure on particle within these types of flows.

  2. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVENIC JET: TEMPORAL PROPERTIES

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2011-06-10

    We have investigated the influence of a velocity shear surface on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria in three dimensions. In this study, we follow the temporal development within a periodic computational box and concentrate on flows that are sub-Alfvenic on the cylindrical jet's axis. Displacement of the initial force-free helical magnetic field leads to the growth of CD kink instability. We find that helically distorted density structure propagates along the jet with speed and flow structure dependent on the radius of the velocity shear surface relative to the characteristic radius of the helically twisted force-free magnetic field. At small velocity shear surface radius, the plasma flows through the kink with minimal kink propagation speed. The kink propagation speed increases as the velocity shear radius increases and the kink becomes more embedded in the plasma flow. A decreasing magnetic pitch profile and faster flow enhance the influence of velocity shear. Simulations show continuous transverse growth in the nonlinear phase of the instability. The growth rate of the CD kink instability and the nonlinear behavior also depend on the velocity shear surface radius and flow speed, and the magnetic pitch radial profile. Larger velocity shear radius leads to slower linear growth, makes a later transition to the nonlinear stage, and with larger maximum amplitude than that occuring for a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and nonlinear development can be similar to the development of a static plasma column.

  3. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  4. Compressible magnetohydrodynamic sawtooth crash

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.

    2014-02-01

    In a toroidal magnetically confined plasma at low resistivity, compressible magnetohydrodynamic (MHD) predicts that an m = 1/n = 1 sawtooth has a fast, explosive crash phase with abrupt onset, rate nearly independent of resistivity, and localized temperature redistribution similar to experimental observations. Large scale numerical simulations show that the 1/1 MHD internal kink grows exponentially at a resistive rate until a critical amplitude, when the plasma motion accelerates rapidly, culminating in fast loss of the temperature and magnetic structure inside q < 1, with somewhat slower density redistribution. Nonlinearly, for small effective growth rate the perpendicular momentum rate of change remains small compared to its individual terms ∇p and J × B until the fast crash, so that the compressible growth rate is determined by higher order terms in a large aspect ratio expansion, as in the linear eigenmode. Reduced MHD fails completely to describe the toroidal mode; no Sweet-Parker-like reconnection layer develops. Important differences result from toroidal mode coupling effects. A set of large aspect ratio compressible MHD equations shows that the large aspect ratio expansion also breaks down in typical tokamaks with rq =1/Ro≃1/10 and a /Ro≃1/3. In the large aspect ratio limit, failure extends down to much smaller inverse aspect ratio, at growth rate scalings γ =O(ɛ2). Higher order aspect ratio terms, including B˜ϕ, become important. Nonlinearly, higher toroidal harmonics develop faster and to a greater degree than for large aspect ratio and help to accelerate the fast crash. The perpendicular momentum property applies to other transverse MHD instabilities, including m ≥ 2 magnetic islands and the plasma edge.

  5. Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.

    2003-01-01

    This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.

  6. Nonlinear magnetohydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Betancourt, O.; Garabedian, P.

    1981-01-01

    The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.

  7. Numerical Simulations for Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Dai, Wenlong

    An approximate Riemann solver needed in a high -order Godunov-type scheme for ideal MHD is developed in this thesis. The Riemann solver consists of the initial guess, the calculation of the two fast shock speeds and post-shock states, the performance of two possible rotations, the calculation of the two slow shock speeds and post-shock states, and the improvement of the initial guess. The Riemann solver includes all the discontinuities in ideal MHD. The extension of the Piecewise Parabolic Method in ideal MHD is presented based on the Riemann solver. The code starts from a set of normal physical variables. A cubic polynomial is used to interpolate each of Riemann invariants. The values of those physical variables at edges of computational zones are obtained through the interpolated Riemann invariants. The monotonicity constraint is applied to those point values of physical variables. A parabola is used for the internal structure of a zone. The set of time-averaged fluxes is calculated by the Riemann solver. The conserved quantities are updated by adding the net flux advected into each zone. After the dynamical step in a Lagrangian grid, the conserved quantities are mapped onto a fixed Eulerian grid. The two-dimensional scheme is built upon the technique of dimension splitting. The scheme is applied to wave steepening, propagation of shocks, various shock tube problems, the penetration of a solar wind filament, and MHD shock interactions with a cloud. The results of these applications show that the scheme has the principal advantages of a Godunov-type scheme, i.e., the robust operation in the presence of very strong discontinuities, thin shock fronts with little attendant noise generation, and thin contact and tangential discontinuities.

  8. New Efficient Dynamic 3-D Boundary Integral Equation Method and Application to Non-Planar Fault Geometry Dipping in Elastic Half Space

    NASA Astrophysics Data System (ADS)

    Ando, R.

    2014-12-01

    The boundary integral equation method formulated in the real space and time domain (BIEM-ST) has been used as a powerful tool to analyze the earthquake rupture dynamics on non-planar faults. Generally, BIEM is more accurate than volumetric methods such as the finite difference method and the finite difference method. With the recent development of the high performance computing environment, the earthquake rupture simulation studies have been conducted considering three dimensional realistic fault geometry models. However, the utility of BIEM-ST has been limited due to its heavy computational demanding increased depending on square of time steps (N2), which was needed to evaluate the historic integration. While BIEM can be efficient with the spectral domain formulation, the applications of such a method are limited to planar fault cases. In this study, we propose a new method to reduce the calculation time of BIEM-ST to linear of time step (N) without degrading the accuracy in the 3 dimensional modeling space. We extends the method proposed earlier for the case of the 2 dimensional framework, applying the asymptotic expressions of the elasto-dynamic Green's functions. This method uses the physical nature of the stress Green's function as dividing the causality cone according to the distances from the wave-fronts. The scalability of this method is shown on the parallel computing environment of the distributed memory. We demonstrate the applicability to analyses of subduction earthquake cases, suffering long time from the numerical limitations of previously available BIEMs. We analyze the dynamic rupture processes on dipping reverse faults embed in a three dimensional elastic half space.

  9. Local propagation speed constrained estimation of the slowness vector from non-planar array observations.

    PubMed

    Nouvellet, Adrien; Roueff, François; Le Pichon, Alexis; Charbit, Maurice; Vergoz, Julien; Kallel, Mohamed; Mejri, Chourouq

    2016-01-01

    The estimation of the slowness vector of infrasound waves propagating across an array is a critical process leading to the determination of parameters of interest such as the direction of arrival. The sensors of an array are often considered to be located in a horizontal plane. However, due to topography, the altitudes of the sensors are not identical and introduce a bias on the estimate if neglected. However, the unbiased 3D estimation procedure, while suppressing the bias, leads to an increase of the variance. Accounting for an a priori constraint on the slowness vector significantly reduces the variance and could therefore improve the performance of the estimation if the introduced bias by incorrect a priori information remains negligible. This study focuses on measuring the benefits of this approach with a thorough investigation of the bias and variance of the constrained 3D estimator, which is not available in the existing literature. This contribution provides such computations based on an asymptotic Gaussian approximation. Simulations are carried out to assess the theoretical results both with synthetic and real data. Thus, a constrained 3D estimator is proposed yielding the best bias/variance compromise if good knowledge of the propagation wave speed is accessible. PMID:26827049

  10. Synthesis and processing strategies to tune the film structure and optoelectronic properties of non-planar molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Hiszpanski, Anna Maria

    Molecular semiconductors have generated significant interest for their potential use in lightweight and mechanically flexible electronic devices. Yet, predicting how new molecular semiconductors will perform in devices remains a challenge because devices are comprised of polycrystalline thin films of molecular semiconductors, and charge transport in these films depends greatly on the details of their microstructure whose heterogeneities can span multiple length scales. The microstructure typically evolves during deposition, and thus developing organic electronics not only hinges on the success of materials discovery, but also on the ability to fine-tune deposition and processing parameters to access the thin-film structure most conducive for charge transport. This thesis explores chemical modification of a non-planar organic semiconductor, contorted hexabenzocoronene, cHBC, to tune its optoelectronic properties and processing strategies to induce structural changes in thin films. We primarily explore fluorine- and chlorine-substitution at the peripheral aromatic rings of cHBC to lower its energy levels and optical bandgap, and we demonstrate such halogenated derivatives as electron acceptors in organic solar cells. Substitution with these larger atoms also increases cHBC's intramolecular steric hindrance, providing access to an alternative molecular conformation with an order of magnitude higher solubility and systematic shifts in absorption and emission characteristics. cHBC's non-planarity provides an added dimension of tunability as it frustrates crystallization during deposition, producing amorphous films that can be subsequently crystallized with post-deposition processing. Decoupling structural development from deposition allows us to fabricate transistors from differently treated cHBC films and elucidate the effects of changes in film structure on charge transport, as measured by the field-effect mobility. With different processing, the extent of c

  11. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces.

    PubMed

    Chen, Jianwei; Gu, Chenglin; Lin, Hui; Chen, Shih-Chi

    2015-08-10

    Patterning micro- and nano-scale optical elements on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes. A low-cost, high-precision fabrication process is thus highly desired and can have significant impact on manufacturing that leads to wider applications. In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on non-planar substrates. In this process, a flexible elastomer stamp, i.e., PDMS, was used as a mold to perform hot-embossing on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows non-clean room operation as well as precise control of all process parameters, e.g., pressure, temperature and time. Surface profiles and optical properties of the fabricated components, including micro-lens array and optical gratings, were characterized quantitatively, e.g., RMS ~λ/30 for a micro-lens, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication. PMID:26367950

  12. Fabrication of silicon molds with multi-level, non-planar, micro- and nano-scale features.

    PubMed

    Azimi, S; Dang, Z Y; Ansari, K; Breese, M B H

    2014-09-19

    A method for single-step fabrication of arbitrary, complex, three-dimensional (3D) silicon structures from the nano- to millimeter-scale at multiple levels on non-planar, curved, or domed surfaces is reported. The fabrication is based on focused or masked ion beam irradiation of p-type silicon followed by electrochemical anodization. The process allows fabrication of a wide range of surface features at multiple heights and with arbitrary orientations by varying the irradiated feature width, ion type, energy fluence, and subsequent anodization conditions. The technology has achieved depth resolution of 10 nm as step heights and is capable of creating lateral features down to 7 nm at high aspect ratios of up to 40, with surface roughness down to 1 nm scaled up to full wafer areas. The single-step ability has seamlessly interfaced a network of complex, integrated micro- to nano-structures in 3D orientations with no alignment required. The final template has been converted to a master copy for nano-imprinting lithography of 3D fluidic structures and optical components. PMID:25148117

  13. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2014-01-01

    The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.

  14. Electron magnetohydrodynamic turbulence: universal features

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    2015-02-01

    The energy cascade of electron magnetohydrodynamic (EMHD) turbulence is considered. Fractal and multi-fractal models for the energy dissipation field are used to determine the spatial intermittency corrections to the scaling behavior in the high-wavenumber (electron hydrodynamic limit) and low-wavenumber (magnetization limit) asymptotic regimes of the inertial range. Extrapolation of the multi-fractal scaling down to the dissipative microscales confirms in these asymptotic regimes a dissipative anomaly previously indicated by the numerical simulations of EMHD turbulence. Several basic features of the EMHD turbulent system are found to be universal which seem to transcend the existence of the characteristic length scale d e (which is the electron skin depth) in the EMHD problem: equipartition spectrum; Reynolds-number scaling of the dissipative microscales; scaling of the probability distribution function (PDF) of the electron-flow velocity (or magnetic field) gradient (even with intermittency corrections); dissipative anomaly; and critical exponent scaling.

  15. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  16. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  17. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  18. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non-planar

  19. Excretion pattern of co-planar and non-planar tetra- and hexa-chlorobiphenyls in ovine milk and faeces

    SciTech Connect

    Vrecl, Milka . E-mail: milka.vrecl@vf.uni-lj.si; Ursic, Matjaz; Pogacnik, Azra; Zupancic-Kralj, Lucija; Jan, Janja

    2005-04-15

    This study employed the gas chromatography with electron capture detection to determine residual levels and excretion patterns of two pairs of structurally diverse polychlorinated biphenyl (PCB) congeners (IUPAC Nos. 54, 80, 155, and 169) administered to lactating sheep by intramuscular injection. PCB levels and excretion patterns in blood, milk, and faeces were time-dependent and differed from the composition of PCB congeners administered. Lactational transfer substantially exceeded the faecal transfer. Between days 3 and 7, the amount of PCB congeners 54 and 169 excreted in milk was around 50- and 800-fold higher than the amount of these two congeners excreted via faeces. During the same period, the relative contribution of co-planar PCB congeners (80 and 169) in PCB pattern decreased in blood and increased in milk and faeces compared with non-planar PCBs (54 and 155). On day 3, the ratio PCB 169 to 54 was 7-fold higher in milk than in faeces. PCB congeners with log K{sub ow} values under 6.5 reached peaks of their excretion in milk within the first three days after administration, while the super-lipophilic PCB 169 congener with log K{sub ow} value of over 7 has not reached the plateau until day 10, but afterwards, its level remained relatively high throughout the observation period. During the 57-day follow-up period, the excretion of PCB 80, 155, and 169 in milk was 4.5-, 14-, and 46-fold greater compared with PCB 54. Differences in levels and patterns were explained with some physico-chemical properties of individual PCB congeners, such as lipophilicity, planarity, metabolic stability, sorption/diffusion properties.

  20. Guiding center equations for ideal magnetohydrodynamic modes

    SciTech Connect

    White, R. B.

    2013-04-15

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through {delta}B-vector={nabla} Multiplication-Sign ({xi}-vector Multiplication-Sign B-vector), however, perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories, the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement {xi}-vector are derived which preserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  1. Guiding Center Equations for Ideal Magnetohydrodynamic Modes

    SciTech Connect

    Roscoe B. White

    2013-02-21

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ~B = ∇ X (ξ X B) however perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement ξ are derived which perserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  2. Magnetohydrodynamics of fractal media

    SciTech Connect

    Tarasov, Vasily E.

    2006-05-15

    The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.

  3. Unstrained and strained semiconductor nanostructure fabrication via molecular beam epitaxical growth on non-planar patterned gallium arsenide(001) substrates

    NASA Astrophysics Data System (ADS)

    Konkar, Atul Ashok

    1999-11-01

    This dissertation contributes to three areas in the emerging field of nanostructures: (i) fabrication of quantum wires (QWR) and quantum dots (QD) via molecular beam epitaxy (MBE) on non-planar patterned substrates (NPPS), (ii) nature of mesa profile evolution with MBE growth, and (iii) nature of highly strained epitaxy on nanoscale mesas. Using the approach of substrate-encoded size-reducing epitaxy (SESRE) we have successfully fabricated QWRs and QBs in the unstrained GaAs/AlGaAs system and QBs in the highly strained InAs/GaAs system on GaAs (001) mesas with edges oriented along the <100> directions. By controlling the InAs delivery just below that required for 3D island formation on planar GaAs (001) substrates and optimizing the growth conditions, we have been able to selectively position 3D InAs islands on stripe mesas with appropriate shape, size, and orientation. Studies of the effect of growth interruption on the mesa growth profile evolution reveal the dynamic nature of the NPPS surface at typical MBE growth conditions. In the case of [100] oriented stripe mesas, during growth adatom migration was seen from the {101}, sidewalls to the (001) mesa top, whereas during growth interruption adatom migration from the mesa top to the sidewalls was observed. These results have significant implications for the relative magnitudes of the energy barriers relevant to the crystal growth processes on different surfaces. Studies of growth profile evolution dependence on the orientation and the sidewall profile of mesas created via focused ion beam assisted chemical etching evidenced the mesa profiles suitable for nanostructure fabrication via SESRE. We observe a dramatic suppression of 3D island formation during InAs deposition on nanoscale square mesas due to the strain relief available at the free edges of the mesa and substantial strain accommodation in the underlying mesa. The interplay between the strain build-up and the interfacet migration kinetics causes reversal

  4. Computational Methods for Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kercher, Andrew D.

    Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency

  5. Spectrum of anomalous magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-05-01

    The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.

  6. Potential vorticity in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Mace, R. L.

    2015-01-01

    A version of Noether's second theorem using Lagrange multipliers is used to investigate fluid relabelling symmetries conservation laws in magnetohydrodynamics (MHD). We obtain a new generalized potential vorticity type conservation equation for MHD which takes into account entropy gradients and the J × B force on the plasma due to the current J and magnetic induction B. This new conservation law for MHD is derived by using Noether's second theorem in conjunction with a class of fluid relabelling symmetries in which the symmetry generator for the Lagrange label transformations is non-parallel to the magnetic field induction in Lagrange label space. This is associated with an Abelian Lie pseudo algebra and a foliated phase space in Lagrange label space. It contains as a special case Ertel's theorem in ideal fluid mechanics. An independent derivation shows that the new conservation law is also valid for more general physical situations.

  7. Magnetohydrodynamic inertial reference system

    NASA Astrophysics Data System (ADS)

    Eckelkamp-Baker, Dan; Sebesta, Henry R.; Burkhard, Kevin

    2000-07-01

    Optical platforms increasingly require attitude knowledge and optical instrument pointing at sub-microradian accuracy. No low-cost commercial system exists to provide this level of accuracy for guidance, navigation, and control. The need for small, inexpensive inertial sensors, which may be employed in pointing control systems that are required to satisfy angular line-of-sight stabilization jitter error budgets to levels of 1-3 microradian rms and less, has existed for at least two decades. Innovations and evolutions in small, low-noise inertial angular motion sensor technology and advances in the applications of the global positioning system have converged to allow improvement in acquisition, tracking and pointing solutions for a wide variety of payloads. We are developing a small, inexpensive, and high-performance inertial attitude reference system that uses our innovative magnetohydrodynamic angular rate sensor technology.

  8. Conservation of circulation in magnetohydrodynamics

    PubMed

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118

  9. Bayesian Estimation of 3D Non-planar Fault Geometry and Slip: An application to the 2011 Megathrust (Mw 9.1) Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Jónsson, Sigurjón

    2016-04-01

    Earthquake faults are generally considered planar (or of other simple geometry) in earthquake source parameter estimations. However, simplistic fault geometries likely result in biases in estimated slip distributions and increased fault slip uncertainties. In case of large subduction zone earthquakes, these biases and uncertainties propagate into tsunami waveform modeling and other calculations related to postseismic studies, Coulomb failure stresses, etc. In this research, we parameterize 3D non-planar fault geometry for the 2011 Tohoku-Oki earthquake (Mw 9.1) and estimate these geometrical parameters along with fault slip parameters from onland and offshore GPS using Bayesian inference. This non-planar fault is formed using several 3rd degree polynomials in along-strike (X-Y plane) and along-dip (X-Z plane) directions that are tied together using a triangular mesh. The coefficients of these polynomials constitute the fault geometrical parameters. We use the trench and locations of past seismicity as a priori information to constrain these fault geometrical parameters and the Laplacian to characterize the fault slip smoothness. Hyper-parameters associated to these a priori constraints are estimated empirically and the posterior probability distribution of the model (fault geometry and slip) parameters is sampled using an adaptive Metropolis Hastings algorithm. The across-strike uncertainties in the fault geometry (effectively the local fault location) around high-slip patches increases from 6 km at 10km depth to about 35 km at 50km depth, whereas around low-slip patches the uncertainties are larger (from 7 km to 70 km). Uncertainties in reverse slip are found to be higher at high slip patches than at low slip patches. In addition, there appears to be high correlation between adjacent patches of high slip. Our results demonstrate that we can constrain complex non-planar fault geometry together with fault slip from GPS data using past seismicity as a priori

  10. BOOK REVIEW: Nonlinear Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shafranov, V.

    1998-08-01

    Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium

  11. Intrinsic rotation of toroidally confined magnetohydrodynamics.

    PubMed

    Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C

    2012-10-26

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum. PMID:23215195

  12. Magnetohydrodynamic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    1995-01-01

    The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.

  13. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  14. Generalized reduced magnetohydrodynamic equations

    SciTech Connect

    Kruger, S.E.

    1999-02-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.

  15. Multi-symplectic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank

    2014-10-01

    A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential à where α=Ã. d x is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

  16. Non-Planar Structures of the High-Energy Rotational Conformers of 2-METHYLBUTA-1,3-DIENE (isoprene) and 2,3-DIMETHYLBUTA-1,3-DIENE

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu. N.; Bock, Ch. W.; Larkin, J. D.; Abramenkov, A. V.; Kühnemann, F.

    2009-06-01

    Optimization of the geometrical parameters and determination of the force fields for rotamers of the title molecules were performed at the MP2(FC)/aug-cc-pVDZ//MP2(FC)/aug-cc-pVDZ computational level. The vibrational analyses of these conformers were carried out using scaled quantum-mechanical force field methodology. Recent experimental wavenumbers for these conformers and their deuteroisomers were incorporated into these analyses. The theoretical non-planar structures of the high-energy conformers of 2-methylbuta-1,3-diene (isoprene) and 2,3-dimethylbuta-1,3-diene were corroborated by good agreement between the experimental and theoretical wavenumbers of the molecules under investigation. The dihedral angles of the non-planar high-energy conformers for rotation around the =C-C= bond are as follows: 41.6^° for 2-methylbuta-1,3-diene (isoprene) and 47.0^° for 2,3-dimethylbuta-1,3-diene. Previous studies performed at the HF/6-31G level gave 41.0^° and 48.5^° for the first and second compounds, respectively. Yu. N. Panchenko, Ch. W. Bock, J. D. Larkin, A. V. Abramenkov, F. Kühnemann, Struct. Chem. 19, 421 (2008). Yu. N. Panchenko, Ch. W. Bock, J. D. Larkin, A. V. Abramenkov, Struct. Chem. 19, 793 (2008)

  17. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  18. MAGNETOHYDRODYNAMICS OF THE WEAKLY IONIZED SOLAR PHOTOSPHERE

    SciTech Connect

    Cheung, Mark C. M.; Cameron, Robert H.

    2012-05-01

    We investigate the importance of ambipolar diffusion and Hall currents for high-resolution comprehensive ({sup r}ealistic{sup )} photospheric simulations. To do so, we extended the radiative magnetohydrodynamics code MURaM to use the generalized Ohm's law under the assumption of local thermodynamic equilibrium. We present test cases comparing analytical solutions with numerical simulations for validation of the code. Furthermore, we carried out a number of numerical experiments to investigate the impact of these neutral-ion effects in the photosphere. We find that, at the spatial resolutions currently used (5-20 km per grid point), the Hall currents and ambipolar diffusion begin to become significant-with flows of 100 m s{sup -1} in sunspot light bridges, and changes of a few percent in the thermodynamic structure of quiet-Sun magnetic features. The magnitude of the effects is expected to increase rapidly as smaller-scale variations are resolved by the simulations.

  19. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  20. Pulsar Magnetohydrodynamic Winds

    NASA Astrophysics Data System (ADS)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a

  1. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-01

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light. PMID:25968805

  2. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  3. A first approach to the detection and equalization of distorted latent fingerprints and microtraces on non-planar surfaces with confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Clausing, Eric; Dittmann, Jana; Vielhauer, Claus

    2012-10-01

    Fingerprints and microtraces play an important role as evidence within the field of criminalistics. Their conservative acquisition processes, are established, but are altering and impurifying the traces often. In case of microtraces even the integrity of the trace complex is affected. Using contactless methods, the acquisition process becomes non-invasiv and repeatable, but might be distorting on the other hand, when non-planar substrates are in use. Detecting and dealing with distortion in contactless aquired scans of non-planar surfaces is a novel field of research. Nowadays highly distorted fingerprints can only be used, if the substrate can be manually distorted by destroying or deforming it. In this paper we suggest methods for detection and equalization of distortion for use in combination of types of traces. Therefore we define different types of distortion in fingerprints and microtraces. A standardization of types is necessary to develop different solution for equalization. For usage within the field of forensics, each method is evaluated via proper error rates and adaptively used to acquire fingerprints and microtraces. Using our techniques, we are able to detect distortion and equalize fingerprints to support the investigators work. In case of microtraces the presented methods can even be used to equalize mircotraces themselves for better determination of their scale and topology. For all scans the confocal 3D laser microscope "Keyence VK-X110" is used to gather color-, intensity- and topography information in 22 different measurement conditions within 6 different samples consisting of a total of 880 scans. Despite our achievements in the field of distortion detection and equalization there are still challenges, like the non-isometric projection, that need to be focused on. Also, the presented equalization methods may not completely remove any kind of distortion, such as added by deformation. Therefore we suggest and discuss future work for improving the

  4. Magnetohydrodynamic flow at microelectrodes

    NASA Astrophysics Data System (ADS)

    Ragsdale, Steven Ronald

    1998-12-01

    Voltammetric reduction of nitrobenzene (NB) at a 12.5 μm-radius Pt microdisk electrode in acetonitrile solutions containing 0.001/le x NB/le 0.999 is reported (x NB is the mole fraction of NB). The voltammetric response displays a reversible, sigmoidalshape wave, corresponding to the one-electron reduction of NB. The maximum limiting current occurs in solutions containing intermediate redox concentrations, x NB/le0.2. Voltammetric currents are analyzed using the Cullinan-Vignes model to describe the interdiffusion of the redox species and solvent. Mutual diffusivities are corrected for activity effects using isothermal liquid-vapor equilibrium data. Application of the activity-corrected diffusivities in the Cullinan- Vignes model yields reasonably accurate predictions of the dependence of the voltammetric current on solution composition. The influence of an external magnetic field (0-1 Tesla) on the voltammetric response of Pt and Au microdisk electrodes (0.1, 6.4, 12.5 and 25 μm radius) is described. Magnetohydrodynamic (MHD) flow within a microscopic volume element adjacent to the microdisk surface results from the magnetic force generated by the flux of electrogenerated ions through the magnetic field. An analytic expression is presented for the magnetic force generated during steady-state voltammetry at a hemispherical microelectrode immersed in a uniform magnetic field. The magnetic volume force, F/bf mag (N/m3), is shown to decrease as r-2 (where r is the distance from the center of the electrode). The dependence of F/bf mag on r-2 confines the MHD flow to small volumes very close to the electrode surface (e.g., ~2×10-9 L for a 12.5 μm-radius electrode). Scanning electrochemical microscopy (SECM) is used to map MHD flows at a 25 μm-radius Pt microdisk electrode during the one-electron reduction of NB. Unidirectional lateral flow is observed when the magnetic field is aligned parallel to the electrode surface; rotational or cyclotron flow is observed when

  5. Giant Chromospheric Anemone Jet Observed with Hinode and Comparison with Magnetohydrodynamic Simulations: Evidence of Propagating Alfvén Waves and Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Shimizu, M.; Nakamura, T.; Otsuji, K.; Okamoto, T. J.; Katsukawa, Y.; Shibata, K.

    2008-08-01

    Hinode discovered a beautiful giant jet with both cool and hot components at the solar limb on 2007 February 9. Simultaneous observations by the Hinode SOT, XRT, and TRACE 195 Å satellites revealed that hot (~5 × 106 K) and cool (~104 K) jets were located side by side and that the hot jet preceded the associated cool jet (~1-2 minutes). A current-sheet-like structure was seen in optical (Ca II H), EUV (195 Å), and soft X-ray emissions, suggesting that magnetic reconnection is occurring in the transition region or upper chromosphere. Alfvén waves were also observed with Hinode SOT. These propagated along the jet at velocities of ~200 km s-1 with amplitudes (transverse velocity) of ~5-15 km s-1 and a period of ~200 s. We performed two-dimensional MHD simulation of the jets on the basis of the emerging flux-reconnection model, by extending Yokoyama and Shibata's model. We extended the model with a more realistic initial condition (~106 K corona) and compared our model with multiwavelength observations. The improvement of the coronal temperature and density in the simulation model allowed for the first time the reproduction of the structure and evolution of both the cool and hot jets quantitatively, supporting the magnetic reconnection model. The generation and the propagation of Alfvén waves are also reproduced self-consistently in the simulation model.

  6. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  7. Scale-locality of magnetohydrodynamic turbulence

    SciTech Connect

    Aluie, Hussein; Eyink, Gregory L

    2009-01-01

    We investigate the scale-locality of cascades of conserved invariants at high kinetic and magnetic Reynolds numbers in the 'inertial-inductive range' of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross-helicity - or, equivalently, fluxes of Elsaesser energies - are dominated by the contributions of local triads. Corresponding spectral transfers are also scale-local when defined using octave wavenumber bands. Flux and transfer of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term also may be dominated by non-local triads but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion non locally between disparate scales. We present supporting data from a 1024{sup 3} simulation of forced MHD turbulence.

  8. Representation of Ideal Magnetohydrodynamic Modes

    SciTech Connect

    Roscoe B. White

    2013-01-15

    One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ Β = ∇ X (xi X B) ensures that δ B • ∇ ψ = 0 at a resonance, with ψ labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation δ Β = ∇ X αB. These two representations are equivalent, but the vanishing of δ B • ∇ψ at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in xi to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed

  9. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2015-07-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  10. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    SciTech Connect

    Yi, Jianjia; Burokur, Shah Nawaz Lustrac, André de; Piau, Gérard-Pascal

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  11. Role of the deposition temperature on the self-assembly of the non-planar molecule benzene-1,3,5-triphosphonic acid (BTP) at the liquid-solid interface.

    PubMed

    Nguyen, Doan Chau Yen; Smykalla, Lars; Nguyen, Thi Ngoc Ha; Mehring, Michael; Hietschold, Michael

    2016-09-21

    Benzene-1,3,5-triphosphonic acid (BTP) contains three non-planar phosphonic acid groups which enable three-dimensional hydrogen bonding. Because of these versatile 3D functional groups, BTP is an interesting intermediate to design both 2D and 3D supramolecular hydrogen-bonded architectures and organic-inorganic hybrid frameworks. However, the adsorption of BTP has surprisingly not been the subject of scanning tunneling microscopy (STM) investigations so far. Here a STM study of the adsorption pattern of BTP as obtained from deposition out of a solution in undecanol on an interface to highly-oriented pyrolytic graphite (HOPG) is presented. Furthermore, the influence of the substrate temperature during the deposition from solution on the self-assembly is investigated. High-resolution STM images reveal that the BTB molecules usually form various structures by co-adsorption with undecanol and that the BTP molecules as parts of self-assembled aggregates adsorb with their benzene ring planes tilted with respect to the substrate plane. The specific supramolecular pattern and the 2D packing density of BTP can be precisely tuned by adjusting the initial substrate temperature during deposition. The experimental results are compared to corresponding model structures obtained from semi-empirical simulations and explained by the influence of temperature on the concentration at the solution-solid interface and the kinetics of the self-assembly process. Based on these results, the control of the deposition substrate temperature has been proven to be a versatile tool to control the polymorphism of molecular patterns deposited out of solutions. PMID:27530556

  12. Rapid alignment of velocity and magnetic field in magnetohydrodynamic turbulence.

    PubMed

    Matthaeus, W H; Pouquet, A; Mininni, P D; Dmitruk, P; Breech, B

    2008-02-29

    We show that local directional alignment of the velocity and magnetic field fluctuations occurs rapidly in magnetohydrodynamics for a variety of parameters and is seen both in direct numerical simulations and in solar wind data. The phenomenon is due to an alignment between magnetic field and gradients of either pressure or kinetic energy, and is similar to alignment of velocity and vorticity in Navier-Stokes turbulence. This rapid and robust relaxation process leads to a local weakening of nonlinear terms. PMID:18352632

  13. Hyperbolic Divergence Cleaning Method for Godunov Smoothed Particle Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Iwasaki, K.; Inutsuka, S.-I.

    2013-04-01

    In this paper, we implement a divergence cleaning method into Godunov smoothed particle magnetohydrodynamics (GSPM). In the GSPM, to describe MHD shocks accurately, a Riemann solver is applied to the SPH method instead of artificial viscosity and resistivity that have been used in previous works. We confirmed that the divergence cleaning method reduces divergence errors significantly. The performance of the method is demonstrated in the numerical simulations of a strongly magnetized gas and bipolar outflow from the first core.

  14. Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Politano, H.; Pouquet, A.; Sulem, P. L.

    1995-08-01

    Spectral numerical simulations of homogeneous incompressible magnetohydrodynamic turbulence at Reynolds mumbers up to about 500, are performed using a uniform grid of 1803 collocation points. Strong vorticity and current sheets obtain both in the presence and in the absence of magnetic nulls. Contrary to vortex sheets in hydrodynamics, these structures do not destabilize into filaments, but are locally disrupted. They are the main loci of kinetic and magnetic dissipations.

  15. Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence

    SciTech Connect

    Politano, H.; Pouquet, A.; Sulem, P.L.

    1995-08-01

    Spectral numerical simulations of homogeneous incompressible magnetohydrodynamic turbulence at Reynolds mumbers up to about 500, are performed using a uniform grid of 180{sup 3} collocation points. Strong vorticity and current sheets obtain both in the presence and in the absence of magnetic nulls. Contrary to vortex sheets in hydrodynamics, these structures do not destabilize into filaments, but are locally disrupted. They are the main loci of kinetic and magnetic dissipations. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Non-Planar Pad-Printed Thick-Film Focused High-Frequency Ultrasonic Transducers for Imaging and Therapeutic Applications

    PubMed Central

    Lethiecq, Marc; Lou-Moeller, Rasmus; Ketterling, Jeffrey A.; Levassort, Franck; Tran-Huu-Hue, Louis Pascal; Filoux, Erwan; Silverman, Ronald H.; Wolny, Wanda W.

    2013-01-01

    Pad-printed thick-film transducers have been shown to be an interesting alternative to lapped bulk piezoceramics, because the film is deposited with the required thickness, size, and geometry, thus avoiding any subsequent machining to achieve geometrical focusing. Their electromechanical properties are close to those of bulk ceramics with similar composition despite having a higher porosity. In this paper, pad-printed high-frequency transducers based on a low-loss piezoceramic composition are designed and fabricated. High-porosity ceramic cylinders with a spherical top surface are used as the backing substrate. The transducers are characterized in view of imaging applications and their imaging capabilities are evaluated with phantoms containing spherical inclusions and in different biological tissues. In addition, the transducers are evaluated for their capability to produce high-acoustic intensities at frequencies around 20 MHz. High-intensity measurements, obtained with a calibrated hydrophone, show that transducer performance is promising for applications that would require the same device to be used for imaging and for therapy. Nevertheless, the transducer design can be improved, and simulation studies are performed to find a better compromise between low-power and high-power performance. The size, geometry, and constitutive materials of optimized configurations are proposed and their feasibility is discussed. PMID:23007770

  17. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    SciTech Connect

    Carl R. Sovinec

    2008-02-15

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large

  18. Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non-planar Fault Model

    NASA Astrophysics Data System (ADS)

    Okuwaki, Ryo; Yagi, Yuji; Hirano, Shiro

    2014-11-01

    High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5-2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events.

  19. Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non-planar Fault Model

    PubMed Central

    Okuwaki, Ryo; Yagi, Yuji; Hirano, Shiro

    2014-01-01

    High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5–2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events. PMID:25406638

  20. Relationship between high-frequency radiation and asperity ruptures, revealed by hybrid back-projection with a non-planar fault model.

    PubMed

    Okuwaki, Ryo; Yagi, Yuji; Hirano, Shiro

    2014-01-01

    High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry. We applied it to teleseismic P-waveforms of the Mw 8.8 2010 Chile earthquake to estimate the spatiotemporal distribution of high-frequency (0.5-2.0 Hz) radiation. By comparing the result with the coseismic slip distribution obtained by waveform inversion, we found that strong high-frequency radiation can precede and may trigger a large asperity rupture. Moreover, in between the large slip events, high-frequency radiation of intermediate strength was concentrated along the rupture front. This distribution suggests that by bridging the two large slips, this intermediate-strength high-frequency radiation might play a key role in the interaction of the large slip events. PMID:25406638

  1. Tissue distribution of co-planar and non-planar tetra- and hexa-chlorobiphenyl isomers in guinea pigs after oral ingestion

    SciTech Connect

    Jan, J.; Logar, B.; Jan, J.

    1996-03-01

    Food ingestion is the most important route for the uptake of lipophilic organochlorine contaminants. Uptake and transfer of the contaminants from the digestive tract to target organs can be used for risk evaluation. The bioconcentration and migration of polychlorobiphenyls (PCBs) is highly structure - dependent. Bioconcentration is correlated with lipophilicity on the basis of the n-octanol/water partition coefficient in its logarithmic form - logKow. However, some factors e.g. diffusion through cell membranes, accumulation in specific organs and tissues, uptake and deputation kinetics and metabolism can also influence the bioconcentration. Individual PCB compounds of commercial PCB preparation are taken up by organisms to markedly different extents. Until now little is known about the distribution of non-planar and co-planar PCBs in different tissues. Co-planar PCBs have dioxin - like toxicity. This study examines differences in the bioconcentration of two pairs of tetra and hexa chlorobiphenyls from the digestive tract and their distribution in different tissues of guinea pigs.

  2. Structures in magnetohydrodynamic turbulence: detection and scaling.

    PubMed

    Uritsky, V M; Pouquet, A; Rosenberg, D; Mininni, P D; Donovan, E F

    2010-11-01

    We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536³ points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities. PMID:21230595

  3. Structures in magnetohydrodynamic turbulence: Detection and scaling

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Pouquet, A.; Rosenberg, D.; Mininni, P. D.; Donovan, E. F.

    2010-11-01

    We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn’old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.

  4. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  5. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  6. General relativistic magneto-hydrodynamics with the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik

    2013-04-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.

  7. Intermittency in Hall-magnetohydrodynamics with a strong guide field

    SciTech Connect

    Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.

    2013-05-15

    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.

  8. Anomalous k⊥(-8/3) spectrum in electron magnetohydrodynamic turbulence.

    PubMed

    Meyrand, Romain; Galtier, Sébastien

    2013-12-27

    Electron magnetohydrodynamic turbulence is investigated under the presence of a relatively strong external magnetic field b0e∥ and through three-dimensional direct numerical simulations. Our study reveals the emergence of a k⊥(-8/3) scaling for the magnetic energy spectrum at scales k∥(D)≤k⊥≤k⊥(D), where k∥(D) and k⊥(D) are, respectively, the typical largest dissipative scales along and transverse to the b0 direction. Unlike standard magnetohydrodynamic, this turbulence regime is characterized by filaments of electric currents parallel to b0. The anomalous scaling is in agreement with a heuristic model in which the transfer in the parallel direction is negligible. Implications for solar wind turbulence are discussed. PMID:24483798

  9. Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence

    SciTech Connect

    Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.

    2014-10-15

    We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle θ≈(π)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.

  10. On the nature of incompressible magnetohydrodynamic turbulence

    SciTech Connect

    Gogoberidze, G.

    2007-02-15

    A novel model of incompressible magnetohydrodynamic turbulence in the presence of a strong external magnetic field is proposed for the explanation of recent numerical results. According to the proposed model, in the presence of the strong external magnetic field, incompressible magnetohydrodynamic turbulence becomes nonlocal in the sense that low-frequency modes cause decorrelation of interacting high-frequency modes from the inertial interval. It is shown that the obtained nonlocal spectrum of the inertial range of incompressible magnetohydrodynamic turbulence represents an anisotropic analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on the analysis performed in the framework of the weak-coupling approximation, which represents one of the equivalent formulations of the direct interaction approximation, it is shown that incompressible magnetohydrodynamic turbulence could be both local and nonlocal, and therefore anisotropic analogues of both the Kolmogorov and Kraichnan spectra are realizable in incompressible magnetohydrodynamic turbulence.

  11. Variational integrators for reduced magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Tassi, Emanuele; Grasso, Daniela

    2016-09-01

    Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.

  12. Representation of ideal magnetohydrodynamic modes

    SciTech Connect

    White, R. B.

    2013-02-15

    One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through {delta}B(vector sign)={nabla} Multiplication-Sign ({xi}(vector sign) Multiplication-Sign B(vector sign)) ensures that {delta}B(vector sign){center_dot}{nabla}{psi}=0 at a resonance, with {psi} labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation {delta}B(vector sign)={nabla} Multiplication-Sign {alpha}B(vector sign). These two representations are equivalent, but the vanishing of {delta}B(vector sign){center_dot}{nabla}{psi} at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in {xi}(vector sign) to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed.

  13. DFT versus Møller-Plesset conformational profile and vibrational assignments of non- planar phenoxyacetic acid and 2,3,4,5,6-pentafluorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Badawi, Hassan M.

    2010-08-01

    The structural stability of phenoxyacetic acid and 2,3,4,5,6-pentafluorphenoxyacetic acid was investigated by the DFT-B3LYP and the ab initio MP2 calculations with the 6-311G ** basis set. For the parent acid the calculations were extended to the MP4(SDQ) level of theory. At the DFT-B3LYP level of calculation the planar Tttp ( transoid O dbnd C sbnd O sbnd H) was predicted to be about 0.5 and 1.3 kcal/mol lower in energy than the non-planar Cgcpp and Tgcpp ( cisoid O dbnd C sbnd O sbnd H) forms, respectively. At the MP2 and the MP4(SDQ) levels the Cgcpp form was predicted to be about 0.8 and 1.4 kcal/mol lower in energy than the Tgcpp and the Tttcp structures, respectively. On the basis of the Møller-Plesset calculations the Cgcpp and the Tgcpp conformations were adopted as the low and high energy structures of phenoxyacetic acid. The observed spectral intensities of phenoxyacetic acid were consistence with the Cgcpp conformation being the predominant form of the acid at room temperature. At the DFT and MP2 levels of theory 2,3,4,5,6-pentafluorophenoxyacetic acid was predicted to exist predominantly in the Cgcpp structure. The vibrational wavenumbers were computed at the B3LYP level of theory and tentative vibrational assignments were provided on the basis of combined theoretical and experimental infrared and Raman data of both molecules.

  14. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere. PMID:26382548

  15. Magnetohydrodynamic stability of broad line region clouds

    NASA Astrophysics Data System (ADS)

    Krause, Martin; Schartmann, Marc; Burkert, Andreas

    2012-10-01

    Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilization by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields are present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few gauss for a sample of active galactic nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axisymmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and column density instabilities lead to a filamentary fragmentation of the cloud. This radiative dispersion continues until the cloud is shredded down to the resolution level. For a helical magnetic field configuration, a much more stable cloud core survives with a stationary density histogram which takes the form of a power law. Our simulated clouds develop sub-Alfvénic internal motions on the level of a few hundred km s-1.

  16. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  17. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing

    2007-01-01

    We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  18. Hall-magnetohydrodynamic small-scale dynamos.

    PubMed

    Gómez, Daniel O; Mininni, Pablo D; Dmitruk, Pablo

    2010-09-01

    Magnetic field generation by dynamo action is often studied within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect may become non-negligible. We present results from three-dimensional simulations of the Hall-MHD equations subjected to random nonhelical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter. For small values of the Hall parameter, the small-scale dynamo is more efficient, displaying faster growth and saturating at larger amplitudes of the magnetic field. For larger values of the Hall parameter, saturation of the magnetic field is reached at smaller amplitudes than in the MHD case. We also study energy transfer rates among spatial scales and show that the Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, therefore leading to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in the hot and diffuse interstellar medium. In the range of magnetic Prandtl numbers considered, the Hall effect moves the peak of the magnetic energy spectrum as well as other relevant magnetic length scales toward the Hall scale. PMID:21230195

  19. Lattice Boltzmann formulation for Braginskii magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Dellar, Paul

    2012-03-01

    We present a lattice Boltzmann formulation of the Braginskii magnetohydrodynamic equations that describe large-scale motions in strongly magnetised plasmas. Fluid quantities, density, velocity and stress, are represented by a finite set of distribution functions associated with particles moving on a square or cubic lattice. Equilibrium distributions are constructed from Hermite moment expansions, so slowly varying solutions of the discrete kinetic equation exactly satisfy the Navier--Stokes or MHD momentum equations. Electromagnetic quantities are represented by a second kinetic equation for a set of vector-valued distribution functions. Maxwell's equations and the resistive MHD induction equation may be recovered from slowly varying solutions using different scalings. The resulting algorithm, comprising only local operations at grid points and data copying between adjacent points, readily lends itself to large-scale parallel computations. We modify the collision operator to apply different relaxation times to components of the stress parallel and perpendicular to the local magnetic field, simulating a form of the Braginskii MHD equations encountered in astrophysics. Large shears develop in simulations where the fluid velocity perpendicular to the field lines reverses.

  20. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  1. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  2. Magnetohydrodynamics of chiral relativistic fluids

    NASA Astrophysics Data System (ADS)

    Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg

    2015-08-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫m , where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magnetohydrodynamical description of the evolution of such a plasma. We show that, compared to conventional magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  3. Scaling laws in magnetohydrodynamic turbulence

    SciTech Connect

    Campanelli, Leonardo

    2004-10-15

    We analyze the decay laws of the kinetic and magnetic energies and the evolution of correlation lengths in freely decaying incompressible magnetohydrodynamic (MHD) turbulence. Scale invariance of MHD equations assures that, in the case of constant dissipation parameters (i.e., kinematic viscosity and resistivity) and null magnetic helicity, the kinetic and magnetic energies decay in time as E{approx}t{sup -1}, and the correlation lengths evolve as {xi}{approx}t{sup 1/2}. In the helical case, assuming that the magnetic field evolves towards a force-free state, we show that (in the limit of large magnetic Reynolds number) the magnetic helicity remains constant, and the kinetic and magnetic energies decay as E{sub v}{approx}t{sup -1} and E{sub B}{approx}t{sup -1/2} respectively, while both the kinetic and magnetic correlation lengths grow as {xi}{approx}t{sup 1/2}.

  4. Anisotropic scaling of magnetohydrodynamic turbulence.

    PubMed

    Horbury, Timothy S; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3. PMID:18999759

  5. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  6. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-03-10

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.

  7. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    SciTech Connect

    Seyler, C. E.; Martin, M. R.

    2011-01-15

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  8. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a

  9. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Walker, Raymond J.

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5RJ. The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by Cmax)(Delta)t/(Deltax less than 1 where Cmax is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is Cw and the flow speed is Cf, Cmax = Cw + Cf. Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute

  10. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  11. Modeling eruptive coronal magnetohydrodynamic systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.

    In this dissertation I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to directly observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if reconnection is a necessary component of these eruptions. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a metastable confined flux rope theory for coronal mass ejection (CME) initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal magnetohydrodynamic (MHD) instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. My work has demonstrated that some of the observed eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  12. Multiple time scale methods in tokamak magnetohydrodynamics

    SciTech Connect

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  13. Magnetohydrodynamic Origin of Jets from Accretion Disks

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  14. Finite dissipation and intermittency in magnetohydrodynamics.

    PubMed

    Mininni, P D; Pouquet, A

    2009-08-01

    We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. PMID:19792189

  15. Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon

    2016-07-01

    We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance < {P}2> \\propto {λ }-2 or < {P}2> \\propto {λ }-2-2m, respectively. At small η, i.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.

  16. Scalings of intermittent structures in magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Uzdensky, Dmitri A.

    2016-05-01

    Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strong guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulations, intermittent structures in the current density, vorticity, and Elsässer vorticities all have nearly identical statistical properties. We propose phenomenological explanations for the scalings based on general considerations of Elsässer vorticity structures. Finally, we examine the broader implications of intermittency for astrophysical systems.

  17. Development of anisotropy in incompressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Bigot, Barbara; Galtier, Sébastien; Politano, Hélène

    2008-12-01

    We present a set of three-dimensional direct numerical simulations of incompressible decaying magnetohydrodynamic turbulence in which we investigate the influence of an external uniform magnetic field B0 . A parametric study in terms of B0 intensity is made where, in particular, we distinguish the shear-from the pseudo-Alfvén waves dynamics. The initial kinetic and magnetic energies are equal with a negligible cross correlation. Both the temporal and spectral effects of B0 are discussed. A subcritical balance is found between the Alfvén and nonlinear times with both a global and a spectral definition. The nonlinear dynamics of strongly magnetized flows is characterized by a different k⊥ spectrum (where B0 defines the parallel direction) if it is plotted at a fixed k∥ (two-dimensional spectrum) or if it is integrated (averaged) over all k∥ (one-dimensional spectrum). In the former case a much wider inertial range is found with a steep power law, closer to the wave turbulence prediction than the Kolmogorov one such as in the latter case. It is believed that the averaging effect may be a source of difficulty to detect the transition towards wave turbulence in natural plasmas. Another important result of this paper is the formation of filaments reported within current and vorticity sheets in strongly magnetized flows, which modifies our classical picture of dissipative sheets in conductive flows.

  18. 'Reduced' magnetohydrodynamics and minimum dissipation rates

    NASA Technical Reports Server (NTRS)

    Montgomery, David

    1992-01-01

    It is demonstrated that all solutions of the equations of 'reduced' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs.

  19. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor 8 and half-opening angles below 1 degree are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic Lorentz

  20. The role of magnetohydrodynamics in heliospheric space plasma physics research

    NASA Technical Reports Server (NTRS)

    Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan

    1988-01-01

    Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.

  1. A Magnetohydrodynamic Boost for Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, dieter; Nishikwa, Ken-Ichi; Zhang, Bing

    2006-01-01

    We have performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field may change the properties of the shock interface between the tenuous, overpressured jet (V(sub j) (sup z)) flowing tangentially to a dense external medium. Magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A poloidal magnetic field (B(sup z)), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to a larger Lorentz factors than those obtained in the pure-hydrodynamic case. In contrast, a strong toroidal magnetic field (B(sup y)), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case, but to a lesser extent than found for the poloidal case due to the fact that the velocity component normal to the shock interface is now much smaller. Overall, the acceleration efficiency in the toroidal case is less than that of the poloidal case but both geometries still result in higher Lorentz factors than the pure-hydrodynamic case. Thus, the presence and relative orientation of a magnetic field in relativistic jets can have a significant influence on the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  2. NONIDEAL MAGNETOHYDRODYNAMIC TURBULENT DECAY IN MOLECULAR CLOUDS

    SciTech Connect

    Downes, T. P.; O'Sullivan, S.

    2009-08-20

    It is well known that nonideal magnetohydrodynamic (MHD) effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512{sup 3} of turbulent decay in molecular clouds, incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfvenic and hypersonic, through to trans-Alfvenic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from t {sup -1.25} to t {sup -1.4}. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity, and the magnetic field are all affected by the nonideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power-spectra components change from {approx}1.4 to {approx}2.1 for the ideal and nonideal simulations respectively, and power spectra of the other variables all show similar modifications when nonideal effects are considered. Again, the dominant source of these changes is ambipolar diffusion rather than the Hall effect. There is also a decoupling between the velocity field and the magnetic field at short length scales. The Hall effect leads to enhanced magnetic reconnection, and hence less power, at short length scales. The dependence of the velocity dispersion on the characteristic length scale is studied and found not to be power law in nature.

  3. Buoyancy-driven Magnetohydrodynamic Waves

    NASA Astrophysics Data System (ADS)

    Hague, A.; Erdélyi, R.

    2016-09-01

    Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt–Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.

  4. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  5. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331

  6. Magnetohydrodynamic Propulsion for the Classroom

    NASA Astrophysics Data System (ADS)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  7. Magnetohydrodynamic (MHD) analyses of various forms of activity and their propagation through helio spheric space

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.

  8. Magnetohydrodynamic models of bipolar knotty jet in henize 2-90

    NASA Technical Reports Server (NTRS)

    Lee, C.; Sahai, R.

    2004-01-01

    A remarkably linear, bipolar, knotty jet was recently discovered in Hen 2-90, an object classified as a young planetary nebula. Using two-dimensional, magnetohydrodynamic simulations, we investigate periodic variations in jet density and velocity as the mechanism for producing the jet and its knotty structures.

  9. Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Martí, José María; Müller, Ewald

    2015-12-01

    An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution of the Riemann problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates.

  10. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    SciTech Connect

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  11. A numerical algorithm for magnetohydrodynamics of ablated materials.

    PubMed

    Lu, Tianshi; Du, Jian; Samulyak, Roman

    2008-07-01

    A numerical algorithm for the simulation of magnetohydrodynamics in partially ionized ablated material is described. For the hydro part, the hyperbolic conservation laws with electromagnetic terms is solved using techniques developed for free surface flows; for the electromagnetic part, the electrostatic approximation is applied and an elliptic equation for electric potential is solved. The algorithm has been implemented in the frame of front tracking, which explicitly tracks geometrically complex evolving interfaces. An elliptic solver based on the embedded boundary method were implemented for both two- and three-dimensional simulations. A surface model on the interface between the solid target and the ablated vapor has also been developed as well as a numerical model for the equation of state which accounts for atomic processes in the ablated material. The code has been applied to simulations of the pellet ablation in a magnetically confined plasma and the laser-ablated plasma plume expansion in magnetic fields. PMID:19051925

  12. From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.

    ERIC Educational Resources Information Center

    Povh, I. L.; Barinberg, A. D.

    1979-01-01

    Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)

  13. 1 W of stable single-frequency output at 1.03 mum from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature.

    PubMed

    Burdack, Peer; Fox, Thomas; Bode, Markus; Freitag, Ingo

    2006-05-15

    We demonstrate, for the first time to our knowledge, a longitudinally diode-pumped, monolithic ytterbium ion-doped YAG non-planar ring laser (NPRO). We achieved a continuous-wave (cw) single-frequency output power of 1 W with 45.0% slope efficiency and a beam quality factor of M(2)<1.1. In view of iodine frequency stabilization we have characterized the frequency tuning properties and have measured the relative intensity noise. Additionally, 6.1 mW second harmonic power at 515 nm was achieved using a periodically poled KTP crystal in a single-pass setup. PMID:19516588

  14. Electron magnetohydrodynamics: dynamics and turbulence.

    PubMed

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated. PMID:24329368

  15. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  16. Electron magnetohydrodynamics: Dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k1=k2 do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade ∝k-2. The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  17. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284

  18. New approach to nonrelativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Kumar, Kuldeep

    2016-07-01

    We provide a novel action principle for nonrelativistic ideal magnetohydrodynamics in the Eulerian scheme exploiting a Clebsch-type parametrisation. Both Lagrangian and Hamiltonian formulations have been considered. Within the Hamiltonian framework, two complementary approaches have been discussed using Dirac's constraint analysis. In one case the Hamiltonian is canonical involving only physical variables but the brackets have a noncanonical structure, while the other retains the canonical structure of brackets by enlarging the phase space. The special case of incompressible magnetohydrodynamics is also considered where, again, both the approaches are discussed in the Hamiltonian framework. The conservation of the stress tensor reveals interesting aspects of the theory.

  19. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    SciTech Connect

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-11-15

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  20. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  1. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE PAGESBeta

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  2. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  3. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  4. Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, Terrence

    2016-01-01

    Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.

  5. On energy conservation in extended magnetohydrodynamics

    SciTech Connect

    Kimura, Keiji; Morrison, P. J.

    2014-08-15

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.

  6. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  7. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1981-05-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  8. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    SciTech Connect

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  9. Validation of Magnetospheric Magnetohydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Curtis, Brian

    Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar

  10. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a

  11. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction

  12. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    SciTech Connect

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  13. A multidimensional numerical scheme for two-fluid relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim; Komissarov, Serguei S.; Korolev, Vitaly; Zankovich, Andrey

    2014-02-01

    This paper describes an explicit multidimensional numerical scheme for special relativistic two-fluid magnetohydrodynamics of electron-positron plasma and a suit of test problems. The scheme utilizes Cartesian grid and the third-order weighted essentially non-oscillatory interpolation. Time integration is carried out using the third-order total variation diminishing method of Runge-Kutta type, thus ensuring overall third-order accuracy on smooth solutions. The magnetic field is kept near divergence-free by means of the method of generalized Lagrange multiplier. The test simulations, which include linear and non-linear continuous plasma waves, shock waves, strong explosions and the tearing instability, show that the scheme is sufficiently robust and confirm its accuracy.

  14. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    PubMed

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387

  15. Lagrangian Frequency Spectrum as a Diagnostic for Magnetohydrodynamic Turbulence Dynamics

    SciTech Connect

    Busse, Angela; Mueller, Wolf-Christian; Gogoberidze, Grigol

    2010-12-03

    For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations {tau}{sub ac} and the associated cascade time scale {tau}{sub cas}. Thus, the Lagrangian energy spectrum can serve to identify weak ({tau}{sub ac}<<{tau}{sub cas}) and strong ({tau}{sub ac{approx}{tau}cas}) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.

  16. Marginal turbulent magnetohydrodynamic flow in a square duct

    NASA Astrophysics Data System (ADS)

    Shatrov, Victor; Gerbeth, Gunter

    2010-08-01

    Direct numerical simulations using a high-order finite-difference method were performed of the turbulent flow in a straight square duct in a transverse magnetic field. Without magnetic field the turbulence can be maintained for values of the bulk Reynolds number above approximately Re=1077 [M. Uhlmann et al., "Marginally turbulent flow in a square duct," J. Fluid Mech. 588, 153 (2007)]. In the magnetohydrodynamic case this minimal value of the bulk Reynolds number increases with the Hartmann number. The flow is laminar at Re=3000 when the Hartmann number is larger than Ha=12.5 and the flow is turbulent for Ha≦12.0. The secondary mean flow structure at Re=3000 consists of eight vortices located mainly at the Hartmann walls.

  17. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    PubMed

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade. PMID:25723225

  18. Perpendicular diffusion of energetic particles in noisy reduced magnetohydrodynamic turbulence

    SciTech Connect

    Shalchi, A.; Hussein, M. E-mail: m_hussein@physics.umanitoba.ca

    2014-10-10

    A model for noisy reduced magnetohydrodynamic turbulence was recently proposed. This model was already used to study the random walk of magnetic field lines. In the current article we use the same model to investigate the diffusion of energetic particles across the mean magnetic field. To compute the perpendicular diffusion coefficient, two analytical theories are used, namely, the Non-Linear Guiding Center theory and the Unified Non-Linear Transport (UNLT) theory. It is shown that the two theories provide different results for the perpendicular diffusion coefficient. We also perform test-particle simulations for the aforementioned turbulence model. We show that only the UNLT theory describes perpendicular transport accurately, confirming that this is a powerful tool in diffusion theory.

  19. Multi-region relaxed magnetohydrodynamics with flow

    SciTech Connect

    Dennis, G. R. Dewar, R. L.; Hole, M. J.; Hudson, S. R.

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  20. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  1. Coal-burning magnetohydrodynamic power generation

    SciTech Connect

    Kessler, R.; Hals, F. )

    1992-01-01

    In this paper, coal-burning magnetohydrodynamic (MHD) electric power generation technology is described, and its economic and environmental advantages are discussed. advanced MHD/steam plants can achieve efficiencies of 55%-60% with less environmental intrusion than form conventional coal-burning steam plants. The national program for development of MHD power generation is outlined and the development status of individual components and subsystems is presented.

  2. Potential vorticity formulation of compressible magnetohydrodynamics.

    PubMed

    Arter, Wayne

    2013-01-01

    Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed. PMID:23383802

  3. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    SciTech Connect

    Cicogna, G.; Pegoraro, F.

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  4. Turbulent Magnetohydrodynamic Reconnection Mediated by the Plasmoid Instability

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min; Bhattacharjee, A.

    2016-02-01

    It has been established that the Sweet-Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet-Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from -2.3 to -2.1, while the kinetic energy spectral index is slightly steeper, in the range from -2.5 to -2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich-Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.

  5. AstroBEAR: Adaptive Mesh Refinement Code for Ideal Hydrodynamics & Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.; Frank, Adam; Varniere, Peggy; Mitran, Sorin; Jones, Thomas W.

    2011-04-01

    AstroBEAR is a modular hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications. It uses the BEARCLAW package, a multidimensional, Eulerian computational code used to solve hyperbolic systems of equations. AstroBEAR allows adaptive-mesh-refinment (AMR) simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates. Parallel applications are supported through the MPI architecture. AstroBEAR is written in Fortran 90/95 using standard libraries. AstroBEAR supports hydrodynamic (HD) and magnetohydrodynamic (MHD) applications using a variety of spatial and temporal methods. MHD simulations are kept divergence-free via the constrained transport (CT) methods of Balsara & Spicer. Three different equation of state environments are available: ideal gas, gas with differing isentropic γ, and the analytic Thomas-Fermi formulation of A.R. Bell [2]. Current work is being done to develop a more advanced real gas equation of state.

  6. Inertial ranges and resistive instabilities in two-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Politano, H.; Pouquet, A.; Sulem, P. L.

    1989-12-01

    Direct numerical simulations of decaying two-dimensional magnetohydrodynamic flows at Reynolds numbers of several thousand are performed, using resolutions of 1024-squared collocation points. An inertial range extending to about one decade is observed, with spectral properties depending on the velocity-magnetic field correlation. At very small scales, resistive tearing destabilizes current sheets generated by the inertial dynamics and leads to the formation of small-scale magnetic islands, which may then grow and reach the size of inertial scales.

  7. Magnetohydrodynamic convection in liquid gallium.

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Mullin, Tom

    1996-11-01

    Results are presented from a study of convective flow of liquid gallium confined in a rectangular cavity of length/depth ratio 4, subject to a horizontal temperature gradient. The origin of the problem lies in the area of crystal growth, where it is known that the dynamics of the fluid flow in semiconductor geometries are of vital importance in determining the quality of the crystal. Application of a magnetic field, for instance, damps out the time-dependent convection in the liquid phase that creates striations in the crystal and reduces its quality. Prior to the study of dynamical phenomena, the nature of the steady flow is investigated. In the absence of a magnetic field, a direct comparison between experimental results, the Hadley cell model and two and three-dimensional numerical simulations clearly shows that the flow is three-dimensional in nature. The effect of a uniform transverse magnetic field is then examined. Direct comparison between experimental results and three dimensional simulations shows identical damping of the convective circulation. Numerically, it is found that the magnetic field restricts the flow to 2d motion. Experimentally, this is confirmed from the measurement of isotherms. Hence, the detailed knowledge of the steady flow provides us with a robust basis for studies of time dependent behaviour.

  8. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  9. SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu

    2014-09-20

    Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.

  10. The infinite interface limit of multiple-region relaxed magnetohydrodynamics

    SciTech Connect

    Dennis, G. R.; Dewar, R. L.; Hole, M. J.; Hudson, S. R.

    2013-03-15

    We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.

  11. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  12. Lithium-sulfur hexafluoride magnetohydrodynamic power system

    SciTech Connect

    Dobran, F.

    1987-02-24

    A method is described to operate a two-phase flow magnetohydrodynamic electric power generation system with liquid lithium and gaseous sulfur-hexafluoride flowing through a diverging channel, with side electrodes to remove the electric current generated in the flowing liquid lithium, across the applied magnetic field that is perpendicular to both the flow velocity and electrodes. Sulfur-hexafluoride is dispersed in the form of small bubbles and reacts with liquid lithium that forms a continuous phase to conduct the current between the electrodes so as to produce a near isothermal two-phase flow mixture and provides for an expansion of lithium across the magnetic field in the generator.

  13. Thermoelectric Magnetohydrodynamic Stirring of Liquid Metals

    NASA Astrophysics Data System (ADS)

    Jaworski, M. A.; Gray, T. K.; Antonelli, M.; Kim, J. J.; Lau, C. Y.; Lee, M. B.; Neumann, M. J.; Xu, W.; Ruzic, D. N.

    2010-03-01

    The direct observation of a thermoelectric magnetohydrodynamic (TEMHD) flow has been achieved and is reported here. The origin of the flow is identified based on a series of qualitative tests and corresponds, quantitatively, with a swirling flow TEMHD model. A theory for determining the dominant driver of a free-surface flow, TEMHD or thermocapillary (TC), is found to be consistent with the experimental results. The use of the analytical form for an open geometry develops a new dimensionless parameter describing the ratio of TEMHD to TC generated flows.

  14. Magnetohydrodynamic effects in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Galindo, V.; Kasprzyk, C.; Landgraf, S.; Seilmayer, M.; Starace, M.; Weber, N.; Weier, T.

    2016-07-01

    Liquid metal batteries (LMBs) consist of two liquid metal electrodes and a molten salt ionic conductor sandwiched between them. The density ratios allow for a stable stratification of the three layers. LMBs were already considered as part of energy conversion systems in the 1960s and have recently received renewed interest for economical large-scale energy storage. In this paper, we concentrate on the magnetohydrodynamic aspects of this cell type with special focus on electro-vortex flows and possible effects of the Tayler instability.

  15. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors

    NASA Astrophysics Data System (ADS)

    Brusentsov, Nikolay A.; Brusentsova, Tatiana N.; Filinova, Elena Yu.; Jurchenko, Nikolay Y.; Kupriyanov, Dmitry A.; Pirogov, Yuri A.; Dubina, Andry I.; Shumskikh, Maxim N.; Shumakov, Leonid I.; Anashkina, Ekaterina N.; Shevelev, Alexandr A.; Uchevatkin, Andry A.

    2007-04-01

    A dextran-ferrite magnetic fluid was successfully tested as magnetic resonance imaging (MRI) contrast agent. The same magnetic fluid was then combined with Melphalan, a chemotherapeutic drug, and used for magnetohydrodynamic thermochemotherapy of different tumors. The placement of the tumors in an AC magnetic field led to hyperthermia at 46 °C for 30 min. In combination with tumor slime aspiration, a 30% regression of ˜130 mm 3 non-metastatic P388 tumors in BDF 1 mice was reached, together with a life span increase of 290%. The same procedure associated with cyclophosphamide treatment of ˜500 mm 3 metastases tumor increased the animal's life span by 180%.

  16. Broken symmetry in ideal magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.

  17. The Role of the Equation of State in Resistive Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke

    2013-03-01

    We have investigated the role of the equation of state in resistive relativistic magnetohydrodynamics using a newly developed resistive relativistic magnetohydrodynamic code. A number of numerical tests in one dimension and multi-dimensions are carried out in order to check the robustness and accuracy of the new code. The code passes all the tests in situations involving both small and large uniform conductivities. Equations of state that closely approximate the single-component perfect relativistic gas are introduced. Results from selected numerical tests using different equations of state are compared. The main conclusion is that the choice of the equation of state as well as the value of the electric conductivity can result in considerable dynamical differences in simulations involving shocks, instabilities, and magnetic reconnection.

  18. PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. II. IMPLEMENTATION AND TESTS

    SciTech Connect

    McNally, Colin P.; Mac Low, Mordecai-Mark; Maron, Jason L. E-mail: jmaron@amnh.org

    2012-05-01

    We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is required to ensure the particles fill the computational volume and gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. We have parallelized the code by adapting the framework provided by GADGET-2. A set of standard test problems, including 10{sup -6} amplitude linear magnetohydrodynamics waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities is presented. Finally, we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. This paper documents the Phurbas algorithm as implemented in Phurbas version 1.1.

  19. Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics

    NASA Astrophysics Data System (ADS)

    Mostert, W.; Wheatley, V.; Samtaney, R.; Pullin, D. I.

    2014-12-01

    The effects of various seed magnetic fields on the dynamics of cylindrical and spherical implosions in ideal magnetohydrodynamics are investigated. Here, we present a fundamental investigation of this problem utilizing cylindrical and spherical Riemann problems under three seed field configurations to initialize the implosions. The resulting flows are simulated numerically, revealing rich flow structures, including multiple families of magnetohydrodynamic shocks and rarefactions that interact non-linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out of the configurations investigated, a seed field for which the implosion centre is a saddle point in at least one plane exhibits the least degree of asymmetry during implosion.

  20. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  1. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  2. Magnetohydrodynamic boundary conditions for global models

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.

    1988-01-01

    Boundary conditions in the ionosphere and the upstream solar wind are important in determining the dynamics of global magnetohydrodynamic models of the magnetosphere. It is generally recognized that the orientation of the magnetic field in the upstream solar wind strongly modulates the rate of energy input into the magnetosphere by magnetic reconnection. However, other aspects of the upstream boundary conditions may determine whether the reconnection occurs in a patchy manner, as in flux transfer events, or in a global manner, as in the Paschmann et al. (1979) events. Ionospheric boundary conditions should also affect the reconnection process. For example, ionospheric line-tying can cause x-line motion in the outer magnetosphere. If it is assumed that auroras occur on field lines mapping to x-lines, then auroral motions are different than the local convective motion of the plasma in which they occur. Global magnetohydrodynamic models which incorporate both magnetospheric reconnection and ionospheric convection could be used to investigate the effect of reconnection and convection upon dayside and nightside auroral motions during the course of a magnetic substorm.

  3. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  4. Efficient acceleration of relativistic magnetohydrodynamic jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2013-08-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.

  5. Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence

    SciTech Connect

    Zhou Ye; Oughton, Sean

    2011-07-15

    Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic and magnetic Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced all of the most influential physics of the flows and magnetic fields? In this paper, a metric is defined to indicate whether the necessary physics of interest has been captured. It is found that current computing resources will typically not be sufficient to achieve this minimum state metric.

  6. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-08-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  7. THE SIGNATURE OF INITIAL CONDITIONS ON MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Dallas, V.; Alexakis, A. E-mail: alexakis@lps.ens.fr

    2014-06-20

    We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a E∝k {sup –2} power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k {sup –2} toward k {sup –5/3}. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re{sub λ}{sup −3/2}. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Re{sub λ} ≅ 440 with 2048{sup 3} grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.

  8. Kinetic effects on robustness of electron magnetohydrodynamic structures

    SciTech Connect

    Hata, M.; Sakagami, H.; Das, A.

    2013-04-15

    Following recent remarkable progress in the development of high-power short-pulse lasers, exploration is ongoing into hitherto unknown phenomena at fast time scales of electrons, the understanding of which is becoming crucial. For a simplified description of such phenomena, the Electron Magnetohydrodynamics (EMHDs) fluid description is often adopted. For the possibility of electron transport in high-density plasma, exact solutions of the EMHD model in the form of electron vortex currents, together with their associated magnetic fields, have been considered. However, the fluid EMHD model does not incorporate kinetic effects. Here, the finite Larmor radius effects owing to a finite electron temperature on the robustness of the exact EMHD structures are investigated using two-dimensional particle-in-cell simulations. It is found that larger EMHD vortex structures can sustain themselves for long periods, even in high temperature plasma; however, sustaining structures at higher temperatures tends to be difficult. With increasing temperature, electrons with finite Larmor radii become disengaged from the localized region. It is also shown that structures localized in smaller regions are more difficult to sustain. A quantitative criterion in terms of the structure size and Larmor radius has been established by simulations over a wide range of parameters. Finally, we conclude that a structure, larger than about eight times the typical Larmor radius at r=R, could form and exist even under the effects of finite electron temperature.

  9. Resistive magnetohydrodynamic reconnection: Resolving long-term, chaotic dynamics

    SciTech Connect

    Keppens, R.; Restante, A. L.; Lapenta, G.; Porth, O.; Galsgaard, K.; Frederiksen, J. T.; Parnell, C.

    2013-09-15

    In this paper, we address the long-term evolution of an idealised double current system entering reconnection regimes where chaotic behavior plays a prominent role. Our aim is to quantify the energetics in high magnetic Reynolds number evolutions, enriched by secondary tearing events, multiple magnetic island coalescence, and compressive versus resistive heating scenarios. Our study will pay particular attention to the required numerical resolutions achievable by modern (grid-adaptive) computations, and comment on the challenge associated with resolving chaotic island formation and interaction. We will use shock-capturing, conservative, grid-adaptive simulations for investigating trends dominated by both physical (resistivity) and numerical (resolution) parameters, and confront them with (visco-)resistive magnetohydrodynamic simulations performed with very different, but equally widely used discretization schemes. This will allow us to comment on the obtained evolutions in a manner irrespective of the adopted discretization strategy. Our findings demonstrate that all schemes used (finite volume based shock-capturing, high order finite differences, and particle in cell-like methods) qualitatively agree on the various evolutionary stages, and that resistivity values of order 0.001 already can lead to chaotic island appearance. However, none of the methods exploited demonstrates convergence in the strong sense in these chaotic regimes. At the same time, nonperturbed tests for showing convergence over long time scales in ideal to resistive regimes are provided as well, where all methods are shown to agree. Both the advantages and disadvantages of specific discretizations as applied to this challenging problem are discussed.

  10. The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, T. S.; Price, D. J.; Federrath, C.

    2016-05-01

    Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small- scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of starforming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve ∇ • B = 0 to machine precision, albeit at significant computational expense.

  11. Resistive magnetohydrodynamic reconnection: Resolving long-term, chaotic dynamics

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Galsgaard, K.; Frederiksen, J. T.; Restante, A. L.; Lapenta, G.; Parnell, C.

    2013-09-01

    In this paper, we address the long-term evolution of an idealised double current system entering reconnection regimes where chaotic behavior plays a prominent role. Our aim is to quantify the energetics in high magnetic Reynolds number evolutions, enriched by secondary tearing events, multiple magnetic island coalescence, and compressive versus resistive heating scenarios. Our study will pay particular attention to the required numerical resolutions achievable by modern (grid-adaptive) computations, and comment on the challenge associated with resolving chaotic island formation and interaction. We will use shock-capturing, conservative, grid-adaptive simulations for investigating trends dominated by both physical (resistivity) and numerical (resolution) parameters, and confront them with (visco-)resistive magnetohydrodynamic simulations performed with very different, but equally widely used discretization schemes. This will allow us to comment on the obtained evolutions in a manner irrespective of the adopted discretization strategy. Our findings demonstrate that all schemes used (finite volume based shock-capturing, high order finite differences, and particle in cell-like methods) qualitatively agree on the various evolutionary stages, and that resistivity values of order 0.001 already can lead to chaotic island appearance. However, none of the methods exploited demonstrates convergence in the strong sense in these chaotic regimes. At the same time, nonperturbed tests for showing convergence over long time scales in ideal to resistive regimes are provided as well, where all methods are shown to agree. Both the advantages and disadvantages of specific discretizations as applied to this challenging problem are discussed.

  12. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  13. ZEUS-2D: A Radiation Magnetohydrodynamics Code for Astrophysical Flows in Two Space Dimensions. II. The Magnetohydrodynamic Algorithms and Tests

    NASA Astrophysics Data System (ADS)

    Stone, James M.; Norman, Michael L.

    1992-06-01

    In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.

  14. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Lynn, Jacob W.; Parrish, Ian J.; Quataert, Eliot; Chandran, Benjamin D. G.

    2012-10-20

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with {beta} {approx} 1, where {beta} is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for v{sub s} >> v{sub A} (e.g., electrons), where v{sub s} is the thermal speed of species s and v{sub A} is the Alfven speed, while FTB dominates for v{sub s} << v{sub A} (e.g., minor ions). Proton heating rates for {beta} {approx} 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  15. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  16. Dynamo Effect in the Kraichnan Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Arponen, Heikki; Horvai, Peter

    2007-10-01

    The existence of a dynamo effect in a simplified magnetohydrodynamic model of turbulence is considered when the magnetic Prandtl number approaches zero or infinity. The magnetic field is interacting with an incompressible Kraichnan-Kazantsev model velocity field which incorporates also a viscous cutoff scale. An approximate system of equations in the different scaling ranges can be formulated and solved, so that the solution tends to the exact one when the viscous and magnetic-diffusive cutoffs approach zero. In this approximation we are able to determine analytically the conditions for the existence of a dynamo effect and give an estimate of the dynamo growth rate. Among other things we show that in the large magnetic Prandtl number case the dynamo effect is always present. Our analytical estimates are in good agreement with previous numerical studies of the Kraichnan-Kazantsev dynamo by Vincenzi (J. Stat. Phys. 106:1073-1091, 2002).

  17. Ideal magnetohydrodynamic interchanges in low density plasmas

    SciTech Connect

    Huang Yimin; Goel, Deepak; Hassam, A.B.

    2005-03-01

    The ideal magnetohydrodynamic equations are usually derived under the assumption V{sub A}<

  18. Magnetohydrodynamic stability of a compound liquid jet

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.

    1989-10-01

    The magnetohydrodynamics (MHD) stability of a compound nonmiscible fluid jet is discussed. A general eigenvalue relation, for that model which involves the fluid inertia, capillarity and electromagnetic forces, is derived. The model is capillary unstable only for small axisymmetric disturbances and stable for the rest. The magnetic fields interior and exterior to the gas-mantle jet have always a stabilizing influence. The radii ratio of the concentric jets plays an important role in the (instability) stability states and are (decreasing) increasing with increasing magnetic field intensity as the exterior radius is much larger than the interior radius; under some restrictions of the radii ratio and above a certain value of the magnetic field the capillary instability is omitted and completely suppressed and then stability sets in. The latter result is verified analytically and confirmed numerically in the case in which the cylindrical surface of the outer jet is sited at infinity.

  19. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    SciTech Connect

    Sapountzis, Konstantinos Vlahakis, Nektarios

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  20. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    SciTech Connect

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  1. Entropy generation analysis of magnetohydrodynamic induction devices

    NASA Astrophysics Data System (ADS)

    Salas, Hugo; Cuevas, Sergio; López de Haro, Mariano

    1999-10-01

    Magnetohydrodynamic (MHD) induction devices such as electromagnetic pumps or electric generators are analysed within the approach of entropy generation. The flow of an electrically-conducting incompressible fluid in an MHD induction machine is described through the well known Hartmann model. Irreversibilities in the system due to ohmic dissipation, flow friction and heat flow are included in the entropy-generation rate. This quantity is used to define an overall efficiency for the induction machine that considers the total loss caused by process irreversibility. For an MHD generator working at maximum power output with walls at constant temperature, an optimum magnetic field strength (i.e. Hartmann number) is found based on the maximum overall efficiency.

  2. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    SciTech Connect

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.

  3. Extended inertial range phenomenology of magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, William H.; Zhou, YE

    1989-01-01

    A phenomenological treatment of the inertial range of isotropic statistically steady magnetohydrodynamic turbulence is presented, extending the theory of Kraichnan (1965). The role of Alfven wave propagation is treated on equal footing with nonlinear convection, leading to a simple generalization of the relations between the times characteristic of wave propagation, convection, energy transfer, and decay of triple correlations. The theory leads to a closed-form steady inertial range spectral law that reduces to the Kraichnan and Kolmogorov laws in appropriate limits. The Kraichnan constant is found to be related in a simple way to the Kolmogorov constant; for typical values of the latter constant, the former has values in the range 1.22-1.87. Estimates of the time scale associated with spectral transfer of energy also emerge from the new approach, generalizing previously presented 'golden rules' for relating the spectral transfer time scale to the Alfven and eddy-turnover time scales.

  4. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  5. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.

    1987-05-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions.

  6. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    SciTech Connect

    Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )

    1992-10-20

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.

  7. Remarkable connections between extended magnetohydrodynamics models

    SciTech Connect

    Lingam, M. Morrison, P. J. Miloshevich, G.

    2015-07-15

    Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.

  8. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    PubMed

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)

  9. A photolithographic fabrication technique for magnetohydrodynamic micropumps

    NASA Astrophysics Data System (ADS)

    Kuenstner, Stephen; Baylor, Martha-Elizabeth

    2014-03-01

    Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.

  10. Action principles for extended magnetohydrodynamic models

    SciTech Connect

    Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L.; Wurm, A.

    2014-09-15

    The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.

  11. Integrated non-planar ferroelectric nanostructures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen Sommers

    Ferroelectrics (FEs) exhibit stable spontaneous polarization states in the absence of an applied electric field, analogous to other ferroic systems such as ferromagnetics and ferroelastics. Incomplete screening of surface charges along the FE-electrode interface creates a potential gradient across the FE layer. This yields a depolarizing field which greatly suppresses polarization, particularily in systems approaching finite sizes, where surface and interface effects exhibit far more influence than in the bulk. Identifying mechanisms for reducing the detrimental effects of the depolarizing field and maintaining FE stability in finite dimensions remains the largest obstacle in FEs realizing their potential as next generation devices such as electrocaloric coolers, actuators, sensors, photovoltaics, and non-volatile memory elements. This thesis aims to develop a reproducible, versatile synthetic approach towards cylindrical conductive core-ferroelectric perovskite oxide shell nanostructures. The inherent finite curvature produces surface-tension based stresses which may be used to nonlinearily couple to charge, thus mitigating the destabilizing effects of the depolarizing field. This study will show that FE stability is enhanced in curved nanostructures as compared to their planar counterparts. Piezoresponse force microscopy, a modified scan probe technique, will be used to elucidate these effects via imaging and static hysteresis collection. The improved FE stability enables the demonstration of a single, integrated FE field effect transistor test structure, showing nanoscale integration of a FE layer in direct contact with silicon, a notable challenge in developing semiconductor industrial applications.

  12. Channel-wall limitations in the magnetohydrodynamic induction generator

    NASA Technical Reports Server (NTRS)

    Jackson, W. D.; Pierson, E. S.

    1969-01-01

    Discussion of magnetohydrodynamic induction generator examines the machine in detail and materials problems influencing its design. The higher upper-temperature limit of the MHD system promises to be more efficient than present turbine systems for generating electricity.

  13. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    SciTech Connect

    Joseph, Ilon

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  14. In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Ali, H. K.; Braun, R. D.

    2014-06-01

    This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.

  15. Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited

    NASA Astrophysics Data System (ADS)

    Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.

    2016-08-01

    Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula, hence its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two dimensional numerical simulations, the linear phase and the subsequent nonlinear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics, as appropriate in situations where the Alfven velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S^-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal" tearing regime is retrieved, with modes growing independently on S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfven velocity. In the fully nonlinear stage we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfven speed from the X-point, and a fast reconnection rate at the predicted value R~(ln S)^-1.

  16. Jet Rotation Driven by Magnetohydrodynamic Shocks in Helical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fendt, Christian

    2011-08-01

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfvén Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  17. Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?

    NASA Astrophysics Data System (ADS)

    Wurster, James; Price, Daniel J.; Bate, Matthew R.

    2016-03-01

    We investigate whether or not the low ionization fractions in molecular cloud cores can solve the `magnetic braking catastrophe', where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.

  18. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    PubMed

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures. PMID:22680875

  19. The classification of magnetohydrodynamic regimes of thermonuclear combustion

    SciTech Connect

    Remming, Ian S.; Khokhlov, Alexei M.

    2014-10-10

    Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.

  20. The interaction of a magnetohydrodynamical shock with a filament

    NASA Astrophysics Data System (ADS)

    Goldsmith, K. J. A.; Pittard, J. M.

    2016-09-01

    We present 3D magnetohydrodynamic numerical simulations of the adiabatic interaction of a shock with a dense, filamentary cloud. We investigate the effects of various filament lengths and orientations on the interaction using different orientations of the magnetic field, and vary the Mach number of the shock, the density contrast of the filament χ, and the plasma beta, in order to determine their effect on the evolution and lifetime of the filament. We find that in a parallel magnetic field filaments have longer lifetimes if they are orientated more `broadside' to the shock front, and that an increase in χ hastens the destruction of the cloud, in terms of the modified cloud-crushing time-scale, tcs. The combination of a mild shock and a perpendicular or oblique field provides the best condition for extending the life of the filament, with some filaments able to survive almost indefinitely since they are cocooned by the magnetic field. A high value for χ does not initiate large turbulent instabilities in either the perpendicular or oblique field cases but rather draws the filament out into long tendrils which may eventually fragment. In addition, flux ropes are only formed in parallel magnetic fields. The length of the filament is, however, not as important for the evolution and destruction of a filament.

  1. Two-dimensional state in driven magnetohydrodynamic turbulence

    SciTech Connect

    Bigot, Barbara; Galtier, Sebastien

    2011-02-15

    The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k{sub ||}=0 and in the area k{sub ||}>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvenic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.

  2. Statistics of passive tracers in three-dimensional magnetohydrodynamic turbulence

    SciTech Connect

    Busse, Angela; Mueller, Wolf-Christian; Homann, Holger; Grauer, Rainer

    2007-12-15

    Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbulence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian structure functions display a lower level of intermittency as compared to the Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments [H. Homann, R. Grauer, A. Busse, and W.-C. Mueller, J. Plasma Phys. 73, 821 (2007)] but also holds for increments up to the order of the integral time scale. The apparent discrepancy can be explained by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.

  3. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    PubMed

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition. PMID:23698445

  4. Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or Nanoflares?

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven

    2014-10-01

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent, occurring mainly in current sheets. However, the question remains whether the overall energy dissipation is dominated by small (dissipation-scale) structures or by large (inertial-range) structures. To systematically investigate this question, we develop and apply a procedure to identify and characterize dissipative structures in numerical simulations of reduced MHD. We find that the probability distribution of energy dissipation rates exhibits a power law tail with index very close to the critical value of -2.0, indicating that structures of all intensities contribute equally to the overall energy dissipation. We then measure the characteristic spatial scales of structures using two methods: one based on the linear scales across the structure and the other based on the Minkowski functionals, which rigorously characterize the morphology of any shape. We find that energy dissipation is dominated by coherent structures with lengths and widths uniformly distributed across the inertial range, while thicknesses lie deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. The current sheets therefore exhibit features of both coherent structures and nanoflares.

  5. Turbulent energy dissipation and intermittency in ambipolar diffusion magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Momferratos, G.; Lesaffre, P.; Falgarone, E.; Pineau des Forêts, G.

    2014-09-01

    The dissipation of kinetic and magnetic energy in the interstellar medium (ISM) can proceed through viscous, Ohmic or ambipolar diffusion (AD). It occurs at very small scales compared to the scales at which energy is presumed to be injected. This localized heating may impact the ISM evolution but also its chemistry, thus providing observable features. Here, we perform 3D spectral simulations of decaying magnetohydrodynamic turbulence including the effects of AD. We find that the AD heating power spectrum peaks at scales in the inertial range, due to a strong alignment of the magnetic and current vectors in the dissipative range. AD affects much greater scales than the AD scale predicted by dimensional analysis. We find that energy dissipation is highly concentrated on thin sheets. Its probability density function follows a lognormal law with a power-law tail which hints at intermittency, a property which we quantify by use of structure function exponents. Finally, we extract structures of high dissipation, defined as connected sets of points where the total dissipation is most intense and we measure the scaling exponents of their geometric and dynamical characteristics: the inclusion of AD favours small sizes in the dissipative range.

  6. PHURBAS: AN ADAPTIVE, LAGRANGIAN, MESHLESS, MAGNETOHYDRODYNAMICS CODE. I. ALGORITHM

    SciTech Connect

    Maron, Jason L.; McNally, Colin P.; Mac Low, Mordecai-Mark E-mail: cmcnally@amnh.org

    2012-05-01

    We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second-order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. This paper derives and documents the Phurbas algorithm as implemented in Phurbas version 1.1. A following paper presents the implementation and test problem results.

  7. Extended generalized Lagrangian multipliers for magnetohydrodynamics using adaptive multiresolution methods

    NASA Astrophysics Data System (ADS)

    Domingues, Margarete O.; Gomes, Anna Karina F.; Mendes, Odim; Schneider, Kai

    2013-10-01

    We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge-Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of the magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution. This work was supported by the contract SiCoMHD (ANR-Blanc 2011-045).

  8. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  9. The Classification of Magnetohydrodynamic Regimes of Thermonuclear Combustion

    NASA Astrophysics Data System (ADS)

    Remming, Ian S.; Khokhlov, Alexei M.

    2014-10-01

    Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.

  10. Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Dallas, V.; Alexakis, A.

    2013-10-01

    The topological and dynamical features of small scales are studied in the context of decaying magnetohydrodynamic turbulent flows using direct numerical simulations. Joint probability density functions (PDFs) of the invariants of gradient quantities related to the velocity and the magnetic fields demonstrate that structures and dynamics at the time of maximum dissipation depend on the large scale initial conditions at the examined Reynolds numbers. This is evident in particular from the fact that each flow has a different shape for the joint PDF of the invariants of the velocity gradient in contrast to the universal teardrop shape of hydrodynamic turbulence. The general picture that emerges from the analysis of the invariants is that regions of high vorticity are correlated with regions of high strain rate S also in contrast to hydrodynamic turbulent flows. Magnetic strain dominated regions are also well correlated with region of high current density j. Viscous dissipation ({∝ } S^2) as well as Ohmic dissipation ({∝ } j^2) resides in regions where strain and rotation are locally almost in balance. The structures related to the velocity gradient possess different characteristics than those associated with the magnetic field gradient with the latter being locally more quasi-two dimensional.

  11. Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations

    NASA Astrophysics Data System (ADS)

    Kudoh, Yuki; Hanawa, Tomoyuki

    2016-08-01

    We analyze the cosmic-ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR "number" conservation, where the CR number density is defined as the three fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. (2006) for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second order accuracy in space and time. Our numerical examples include an expansion of high pressure sphere in an magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.

  12. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.

    2016-08-01

    Auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate of the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. The projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code Sovinec et al. [17], provided that the projections introduce numerical dissipation.

  13. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph

    2015-02-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.

  14. Characterizing Magnetohydrodynamic Turbulence in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Burkhart, Blakesley K.

    2010-01-01

    We investigate the nature of turbulence in the Small Magellanic Cloud (SMC) using several diagnostics known to provide information on magnetohydrodynamic sonic and Alfven Mach numbers. We calculated the 2nd, 3rd and 4th statistical moments of the SMC, i.e. variance, skewness and kurtosis, respectively. It is known that a strong dependence of variance, skewness and kurtosis with Ms exists. An analysis of 3rd and 4th order moments give us a average Ms=3-4 for the SMC. We explore moments of smaller scale features in the SMC by making 'moment maps’ with a circular beam aperture. These maps indicate large turbulence in star forming regions and at regions on the interface of supershells. We also investigate how the spatial power spectral slope, which is known to get shallower with increasing sonic Mach number, of the SMC compares with that of simulations. We find that this method gives Ms 3 and suggests the SMC may be super-Alfvenic. We also calculate the sonic Mach number of the SMC using the ratio of kinetic to spin temperature, and obtain a median value for the cold gas of Ms = 7.12 ± 3.41. In addition to these techniques we apply the bispectrum, a new tool for statistical studies of the interstellar medium, in order to study turbulence wave-wave interactions. Unlike the ordinary power spectrum, the bispectrum preserves phase information in the stochastic field. We compare the bispectrum of the SMC with that of 3D isothermal simulations. We explore the bispectrum of the SMC for a variety of velocity channel samplings. We compare the bispectrum of the SMC to bispectrum of simulations of strong and weakly magnetized turbulence and find that the bispectrum of the SMC shows similar properties to supersonic turbulence. This work was in part supported by the NSF Graduate Research Fellowship

  15. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  16. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  17. Evidence for Nonlinear Development of Magnetohydrodynamic Scale Intermittency in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Greco, A.; Matthaeus, W. H.; D'Amicis, R.; Servidio, S.; Dmitruk, P.

    2012-04-01

    The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2 mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.

  18. Investigation of Intermittency in Magnetohydrodynamics and Solar Wind Turbulence: Scale-dependent Kurtosis

    NASA Astrophysics Data System (ADS)

    Wan, Minping; Osman, Kareem T.; Matthaeus, William H.; Oughton, Sean

    2012-01-01

    The behavior of scale-dependent (or filtered) kurtosis is studied in the solar wind using magnetic field measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution magnetohydrodynamic spectral simulations. In each case the filtered kurtosis increases with wavenumber, implying the presence of coherent structures at the smallest scales. This phase coupling is related to intermittency in solar wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.

  19. Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Busse, A.; Müller, W.-C.

    2013-09-01

    Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate on time scales that are longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear bursts are a significant driver of dynamo action in turbulent magnetoconvection.

  20. Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Joyce, G.; Montgomery, D.

    1977-01-01

    Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wavenumbers simultaneously with a cascade of mean square vector potential to lower wavenumbers, leading to an omni-directional magnetic energy spectrum.

  1. Extended magneto-hydro-dynamic model for neoclassical tearing mode computations

    NASA Astrophysics Data System (ADS)

    Maget, Patrick; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich; Luciani, Jean-Francois; Marx, Alain

    2016-08-01

    A self-consistent fluid model for describing neoclassical tearing modes in global magneto-hydro-dynamic simulations is presented. It is illustrated by its application to a simple toroidal configuration unstable to the (2, 1) tearing mode. The island saturation is verified to increase with the bootstrap current fraction. New features that are specific to this model are evidenced, like the unsteady saturated state of the island, and its deformation to a droplet shape, when the magnetic Prandtl number is not too high. Synthetic diagnostics demonstrate that diamagnetic and neoclassical effects should have in this case a measurable impact on the signature of magnetic islands.

  2. Three-dimensional magnetohydrodynamic equilibrium of quiescent H-modes in tokamak systems

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Duval, B. P.; Sauter, O.; Faustin, J. M.; Kleiner, A.; Lanthaler, S.; Patten, H.; Raghunathan, M.; Tran, T.-M.; Chapman, I. T.; Ham, C. J.

    2016-06-01

    Three dimensional free boundary magnetohydrodynamic equilibria that recover saturated ideal kink/peeling structures are obtained numerically. Simulations that model the JET tokamak at fixed < β > =1.7% with a large edge bootstrap current that flattens the q-profile near the plasma boundary demonstrate that a radial parallel current density ribbon with a dominant m /n  =  5/1 Fourier component at {{I}\\text{t}}=2.2 MA develops into a broadband spectrum when the toroidal current I t is increased to 2.5 MA.

  3. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Pratt, J.; Ayten, B.

    2015-03-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics (MHD) is modified as E + v × B = η(J - JECCD). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic islands.

  4. INVESTIGATION OF INTERMITTENCY IN MAGNETOHYDRODYNAMICS AND SOLAR WIND TURBULENCE: SCALE-DEPENDENT KURTOSIS

    SciTech Connect

    Wan Minping; Osman, Kareem T.; Matthaeus, William H.; Oughton, Sean

    2012-01-10

    The behavior of scale-dependent (or filtered) kurtosis is studied in the solar wind using magnetic field measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution magnetohydrodynamic spectral simulations. In each case the filtered kurtosis increases with wavenumber, implying the presence of coherent structures at the smallest scales. This phase coupling is related to intermittency in solar wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.

  5. Formation of sheet plumes, current coils, and helical magnetic fields in a spherical magnetohydrodynamic dynamo

    NASA Astrophysics Data System (ADS)

    Miyagoshi, Takehiro; Kageyama, Akira; Sato, Tetsuya

    2011-07-01

    Aiming at understanding of magnetic field generation process in rapidly rotating stars and planets represented by the Earth, computer simulations of magnetohydrodynamic (MHD) dynamo were performed in a rotating spherical shell geometry. Thermal convection and dynamo process with Ekman number of the order of 10-7 were studied. New structures of convection motion, dynamo-generated electrical current, and magnetic field are found. The flow is organized as a set of thin, sheet-like plumes. The current is made of small-scale coil structure with magnetic flux tubes within each of the coil. These flux tubes are connected each other to form a large scale helical magnetic field structure.

  6. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  7. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  8. One-dimensional magnetohydrodynamics of a cylindrical liner imploded by an azimuthal magnetic field and compressing an axial field

    SciTech Connect

    Hamann, F. Combis, P.; Videau, L.

    2015-08-15

    The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas.

  9. Geometrical influences on neoclassical magnetohydrodynamic tearing modes

    NASA Astrophysics Data System (ADS)

    Kruger, S. E.; Hegna, C. C.; Callen, J. D.

    1998-02-01

    The influence of geometry on the pressure drives of nonideal magnetohydrodynamic tearing modes is presented. In order to study the effects of elongation, triangularity, and aspect ratio, three different machines are considered to provide a range of tokamak configurations: Tokamak Fusion Test Reactor (circular) [Fusion Technol. 21, 1324 (1992)], DIII-D (D-shaped) [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159], and Pegasus (extremely low aspect ratio) [Fonck et al., Bull. Am. Phys. Soc. 41, 1400 (1996)]. For large aspect ratio tokamaks, shaping does very little to influence the pressure gradient drives, while at low aspect ratios, a very strong sensitivity to the profiles is found. In particular, this sensitivity is connected to the strong dependence on the magnetic shear. This suggests that at low aspect ratio it may be possible to stabilize neoclassical tearing modes by a flattening the q profile near low order rational surfaces (e.g., q=2/1) using a combination of shaping and localized current drive, whereas at large aspect ratio it is more difficult.

  10. Nonlinear entropy production operators for magnetohydrodynamic plasmas

    SciTech Connect

    Siregar, E.; Ghosh, S.; Goldstein, M.L.

    1995-05-01

    A method for constructing closure relations based on the invariants of the tensors representing nonequilibrium thermodynamic forcing within the plasma is presented. This approach leads to closure relations that describe all higher-order forcing effects contained within the continuum description. Nonlinear convective-momentum transport and nonlinear momentum-exchange operators are constructed as applications of the method. Closure is achieved by relating the pressure tensor to invariants of the rate of strain tensor, and the momentum-exchange operator to invariants of the gradient of magnetic field tensor. These operators lead to positive definite viscous and Joule entropy production and enhance high wave number dissipative couplings over all other dissipative couplings. The nonlinear dissipative action is localized in physical space, where velocity and magnetic gradients are large, while allowing nearly ideal behavior elsewhere. The operators are computationally tested against the standard magnetohydrodynamic (MHD) operators using three-dimensional configurations that lead to vortex street formation and magnetic reconnection. The nonlinear operators allow greater spatial structure and have flatter modal energy spectra than the standard MHD dissipation operators. Closures that describe the plasma response to nonequilibrium thermodynamic forcing of all orders can be constructed using this approach. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Magneto-hydrodynamically stable axisymmetric mirrorsa)

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.

    2011-09-01

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  12. Perfect magnetohydrodynamics as a field theory

    SciTech Connect

    Bekenstein, Jacob D.; Betschart, Gerold

    2006-10-15

    We propose the generally covariant action for the theory of a self-coupled complex scalar field and electromagnetism which by virtue of constraints is equivalent, in the regime of long wavelengths, to perfect magnetohydrodynamics (MHD). We recover from it the Euler equation with Lorentz force, and the thermodynamic relations for a prefect fluid. The equation of state of the latter is related to the scalar field's self potential. We introduce 1+3 notation to elucidate the relation between MHD and field variables. In our approach the requirement that the scalar field be single valued leads to the quantization of a certain circulation in steps of ({Dirac_h}/2{pi}); this feature leads, in the classical limit, to the conservation of that circulation. The circulation is identical to that in Oron's generalization of Kelvin's circulation theorem to perfect MHD; we here characterize the new conserved helicity associated with it. We also demonstrate the existence for MHD of two Bernoulli-like theorems for each spacetime symmetry of the flow and geometry; one of these is pertinent to suitably defined potential flow. We exhibit the conserved quantities explicitly in the case that two symmetries are simultaneously present, and give examples. Also in this case we exhibit a new conserved MHD circulation distinct from Oron's, and provide an example.

  13. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  14. Loaded magnetohydrodynamic flows in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Globus, Noemie; Levinson, Amir

    2013-10-01

    The effect of mass and energy loading on the efficiency at which energy can be extracted magnetically from a Kerr black hole is explored, using a semianalytic, ideal magnetohydrodynamics model that incorporates plasma injection on magnetic field lines. We find a critical load below which the specific energy of the plasma inflowing into the black hole is negative, and above which it is positive, and identify two types of flows with distinct properties; at subcritical loads a magnetic outflow is launched from the ergosphere, owing to extraction of the black hole spin energy, as originally proposed by Blandford and Znajek. At supercritical loads the structure of the flow depends on the details of the injection process. In cases where the injected plasma is relativistically hot, a pressure-driven, double transmagnetosonic flow is launched from a stagnation point located outside the ergosphere, between the inner and outer light cylinders. Some fraction of the energy deposited in the magnetosphere is then absorbed by the black hole and the rest emerges at infinity in the form of a relativistic outflow. When the injected plasma is cold an outflow may not form at all. We discuss the implications of our results to gamma ray bursts and active galactic nuclei.

  15. Nucleosynthesis in Magnetohydrodynamical Jets from Collapsars

    SciTech Connect

    Ono, M.; Hashimoto, M.; Fujimoto, S.; Kotake, K.

    2011-10-28

    We investigate the heavy-element nucleosynthesis of a massive star whose mass in the main sequence stage is M{sub ms} = 70 M{sub {center_dot}}. Detailed calculations of the nucleosynthesis are performed during the hydrostatic stellar evolution until the core composed of iron-group nuclei begins to collapse. As a supernova explosion model, a collapsar model is constructed whose jets are driven by magnetohydrodynamical effects of a differentially rotating core. The heavy-element nucleosynthesis inside the jet of a collapsar model is followed along the trajectories of stream lines of the jet. We combine the results of both hydrostatic and heavy-element nucleosyntheses to compare with the solar abundances. We find that neutron-rich elements of 70140.

  16. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  17. EXACT VECTORIAL LAW FOR AXISYMMETRIC MAGNETOHYDRODYNAMICS TURBULENCE

    SciTech Connect

    Galtier, S.

    2009-10-20

    Three-dimensional incompressible magnetohydrodynamics turbulence is investigated under the assumptions of homogeneity and axisymmetry. We demonstrate that previous works of Chandrasekhar may be improved significantly by using a different formalism for the representation of two-point correlation tensors. From this axisymmetric kinematics, the equations a la von Karman-Howarth are derived from which an exact relation is found in terms of measurable correlations. The relation is then analyzed in the particular case of a medium permeated by an imposed magnetic field B{sub 0} . We make the ansatz that the development of anisotropy implies an algebraic relation between the axial and the radial components of the separation vector r and we derive an exact vectorial law which is parameterized by the intensity of anisotropy. The critical balance proposed by Goldreich and Sridhar is used to fix this parameter and to obtain a unique exact expression; the particular limits of correlations transverse and parallel to B{sub 0} are given for which simple expressions are found. Predictions for the energy spectra are also proposed by a straightforward dimensional analysis of the exact law; it gives a stronger theoretical background to the heuristic spectra previously proposed in the context of the critical balance. We also discuss the wave turbulence limit of an asymptotically large external magnetic field which appears as a natural limit of the vectorial relation. A new interpretation of the anisotropic solar wind observations is eventually discussed.

  18. Magnetohydrodynamic waves in fusion and astrophysical plasmas.

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    Macroscopic plasma dynamics in both controlled thermonuclear confinement machines and in the atmospheres of X-ray emitting stars is described by the equations of magnetohydrodynamics. This provides a vast area of overlapping research activities which is presently actively pursued. In this lecture the author concentrates on some important differences in the dynamics of the two confined plasma systems related to the very different geometries that are encountered and, thus, the role of the different boundary conditions that have to be posed. As a result, the basic MHD waves in a tokamak are quite different from those found in a solar magnetic flux tube. The result is that, whereas the three well-known MHD waves can be traced stepwise in the curved geometry of a tokamak, their separate existence is eliminated right from the start in a line-tied coronal loop because line-tying in general conflicts with the phase relationships between the vector components of the three velocity fields. The consequences are far-reaching, viz. completely different resonant frequencies and continuous spectra, absence of rational magnetic surfaces, and irrelevance of local marginal stability theory for coronal magnetic loops.

  19. A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.

    2012-08-01

    This thesis presents an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. Local, third-order, least-squares, polynomial interpolations (Moving Least Squares interpolations) are calculated from the field values of neighboring particles to obtain field values and spatial derivatives at the particle position. Field values and particle positions are advanced in time with a second order predictor-corrector scheme. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is implemented to ensure the particles fill the computational volume, which gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. Particle addition and deletion is based on a local void and clump detection algorithm. Dynamic artificial viscosity fields provide stability to the integration. The resulting algorithm provides a robust solution for modeling flows that require Lagrangian or adaptive discretizations to resolve. The code has been parallelized by adapting the framework provided by Gadget-2. A set of standard test problems, including one part in a million amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities are presented. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. We provide a rigorous methodology for verifying a numerical method on two dimensional Kelvin-Helmholtz instability. The test problem was run in the Pencil Code, Athena, Enzo, NDSPHMHD, and Phurbas. A strict comparison, judgment, or ranking, between codes is beyond the scope of this work, although this work provides the mathematical framewor! k needed for such a

  20. Magneto-Hydrodynamic Modeling in the Design and Interpretation of Wire Array Z-pinches

    SciTech Connect

    Chittenden, J. P.; Niasse, N. P.; Jennings, C. A.

    2009-01-21

    Magneto-hydrodynamic simulations provide a powerful tool for improving our understanding of the complex physical processes underlying the behavior of wire array Z-pinches. We show how, by using large scale parallel 3D simulations of the array as a whole, it is possible to encompass all of the important features of the wire ablation, implosion and stagnation phases and to observe how these phenomena control the X-ray pulse that is achieved. Comparison of code results with experimental data from the 'Z' and MAGPIE pulsed power generators is shown to provide a detailed benchmark test for the models. The simulation results are also used to highlight key areas for future research.