Science.gov

Sample records for nondestructive technique survey

  1. Nondestructive Technique Survey for Assessing Integrity of Composite Firing Vessel

    SciTech Connect

    Tran, A.

    2000-08-01

    The repeated use and limited lifetime of a composite tiring vessel compel a need to survey techniques for monitoring the structural integrity of the vessel in order to determine when it should be retired. Various nondestructive techniques were researched and evaluated based on their applicability to the vessel. The methods were visual inspection, liquid penetrant testing, magnetic particle testing, surface mounted strain gauges, thermal inspection, acoustic emission, ultrasonic testing, radiography, eddy current testing, and embedded fiber optic sensors. It was determined that embedded fiber optic sensor is the most promising technique due to their ability to be embedded within layers of composites and their immunity to electromagnetic interference.

  2. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  3. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  4. Application of nondestructive assay techniques in Kazakstan

    SciTech Connect

    Sprinkle, J.K. Jr.; Butler, G.; Collins, M.

    1997-11-01

    As Kazakstan has transitioned from being part of the Soviet Union to a nonweapons state (Treaty of Nonproliferation of Nuclear Weapons [NPT] signatory) under International Atomic Energy Agency (IAEA) inspections, significant changes have been required. Some of these changes have occurred in nuclear material protection, control, and accounting at the four nuclear facility sites in the Republic of Kazakstan. Specifically, the Republic of Kazakstan has changed from relying primarily on a subset of physical protection methods to a graded safeguards approach using a balance of material control, material accounting, and physical protection. Once more intensive material control and accounting procedures and systems are in place, a necessary step is to supply the accounting systems with measured values of high quality. This need can be met with destructive and nondestructive methods. Material control systems can also use qualitative nondestructive assay information as input. This paper will discuss the nondestructive assay techniques and systems the US Department of Energy (DOE) is providing to Kazakstan under both DOE programs and the Cooperative Threat Reduction Act as part of the nuclear material control and accounting upgrades at four facilities in Kazakstan. 4 refs., 6 figs.

  5. Nondestructive Technique To Assess Embrittlement In Steels

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Yost, William T.; Cantrell, John H.

    1990-01-01

    Recent research at NASA Langley Research Center led to identification of nondestructive technique for detection of temper embrittlement in HY80 steel. Measures magnetoacoustic emission associated with reversible motion of domain walls at low magnetic fields. Of interest to engineers responsible for reliability and safety of various dynamically loaded and/or thermally cycled steel parts. Applications include testing of landing gears, naval vessels, and parts subjected to heat, such as those found in steam-pipe fittings, boilers, turbine rotors, and nuclear pressure vessels.

  6. Nondestructive evaluation techniques for enhanced bridge inspection

    SciTech Connect

    Thomas, G.; Benson, S.; Durbin, P.; Del Grande, N.; Haskins, J.; Brown, A.; Schneberk, D.

    1993-10-01

    Nondestructive evaluation of bridges is a critical aspect in the US aging infrastructure problem. For example in California there are 26,000 bridges, 3000 are made of steel, and of the steel bridges, 1000 are fracture critical. California Department of Transportation (Caltrans), Federal Highway Administration, and Lawrence Livermore National Laboratory (LLNL) are collaborating to develop and field NDE techniques to improve bridge inspections. We have demonstrated our NDE technologies on several bridge inspection applications. An early collaboration was to ultrasonically evaluate the steel pins in the E-9 pier on the San Francisco Bay Bridge. Following the Loma-Prieta earthquake in 1989 and the road way collapse at the E-9 pier, a complete nondestructive evaluation was conducted by Caltrans inspectors and several ultrasonic indications were noted. LLNL worked with Caltrans to help identify the source of these reflections. Another project was to digitally enhance high energy radiographs of bridge components such as cable end caps. We demonstrated our ability to improve the detection of corrosion and fiber breakage inside the end cap. An extension of this technology is limited view computer tomography (CT). We implemented our limited view CT software and produced cross-sectional views of bridge cables from digitized radiographic films. Most recently, we are developing dual band infrared imaging techniques to assess bridge decks for delaminations. We have demonstrated the potential of our NDE technology for enhancing the inspection of the country`s aging bridges.

  7. Techniques for enhancing laser ultrasonic nondestructive evaluation

    SciTech Connect

    Candy, J; Chinn, D; Huber, R; Spicer, J; Thomas, G

    1999-02-16

    Ultrasonic nondestructive evaluation is an extremely powerful tool for characterizing materials and detecting defects. A majority of the ultrasonic nondestructive evaluation is performed with piezoelectric transducers that generate and detect high frequency acoustic energy. The liquid needed to couple the high frequency acoustic energy from the piezoelectric transducers restricts the applicability of ultrasonics. For example, traditional ultrasonics cannot evaluate parts at elevated temperatures or components that would be damaged by contact with a fluid. They are developing a technology that remotely generates and detects the ultrasonic pulses with lasers and consequently there is no requirement for liquids. Thus the research in laser-based ultrasound allows them to solve inspection problems with ultrasonics that could not be done before. This technology has wide application in many Lawrence Livermore National Laboratory programs, especially when remote and/or non-contact sensing is necessary.

  8. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  9. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  10. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  11. Fault determinations in electroexplosive devices by nondestructive techniques

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Rosenthal, L. A.

    1972-01-01

    Several nondestructive test techniques were developed for electroexplosive devices. The bridgewire responds, when pulsed with a safe level current, by generating a characteristic heating curve. The response is indicative of the electrothermal behavior of the bridgewire-explosive interface. Bridgewires which deviate from the characteristic heating curve were dissected and examined to determine the cause of the abnormality. Deliberate faults were fabricated into squibs. The relationship of the specific abnormality and the fault associated with it is demonstrated.

  12. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  13. Nondestructive evaluation technique using infrared thermography and terahertz imaging

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Tamaki, Yoshitaka; Iwama, Tatsuya

    2016-05-01

    Nondestructive testing (NDT) techniques using pulse heating infrared thermography and terahertz (THz) imaging were developed for detecting deterioration of oil tank floor, such as blister and delamination of corrosion protection coating, or corrosion of the bottom steel plate under coating. Experimental studies were conducted to demonstrate the practicability of developed techniques. It was found that the pulse heating infrared thermography was utilized for effective screening inspection and THz-TDS imaging technique performed well for the detailed inspection of coating deterioration and steel corrosion.

  14. Determining plutonium in spent fuel with nondestructive assay techniques

    SciTech Connect

    Tobin, Stephen J; Charlton, William S; Fensin, Michael L; Menlove, Howard O; Hoover, A S; Quiter, B J; Rajasingam, A; Swinhoe, M T; Thompson, S J; Charlton, W S; Ehinger, M H; Sandoval, N P; Saavedra, S F; Strohmeyer, D

    2009-01-01

    There are a variety of motivations for quantifying plutonium in used (spent) fuel assemblies by means of nondestructive assay including the following: shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories or fuel storage facilities. Twelve NDA techniques were identified that provide information about the composition of an assembly. Unfortunately, none of these techniques is capable of determining the Pu mass in an assembly on its own. However, it is expected that the Pu mass can be quantified by combining a few of the techniques. Determining which techniques to combine and estimating the expected performance of such a system is the purpose of the research effort recently begun. The research presented here is a complimentarily experimental effort. This paper will focus on experimental results of one of the twelve non-destructive assay techniques - passive neutron albedo reactivity. The passive neutron albedo reactivity techniques work by changing the multiplication the pin experiences between two separate measurements. Since a single spent fuel pin has very little multiplication, this is a challenging measurement situation for the technique. Singles and Doubles neutron count rate were measured at Oak Ridge National Laboratory for three different burnup pins to test the capability of the passive neutron albedo reactivity technique.

  15. Development of Nondestructive Measuring Technique of Environmental Radioactive Strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    The Fukushima first nuclear power plant accident was triggered by the Japanese big earthquake in 2011. The main radioactivity concerned after the accident are I-131 (half-life 8.0 days), Cs-134 (2.1 years) and 137 (30 years), Sr-89 (51 days) and 90 (29 years). We are aiming to establish a new detection technique which enables us to realize quantitative evaluation of the strontium radioactivity by means of nondestructive measurement without chemical separation processing, which is concerned to be included inside foods, environmental water and soil around us, in order to prevent us from undesired internal exposure to the radiation.

  16. Electro-thermography technique for nondestructive testing (NDT) applications

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Hung, Y. Y.; Liu, L.

    2008-11-01

    In this paper, Electro-Thermography is introduced in nondestructive testing applications. Electro-Thermography is one of the novel active thermography techniques for nondestructive testing. It gains the advantages from the optical and electromagnetic properties in full-field, non-contact, high inspection speed, and sensitivity in geometry variation. It is mostly applicable to all kind of ferrous-metal, some composites materials. A fundamental difference among electro-thermography and other active thermography techniques are the excitation mechanism. Electro-Thermography is a combination of the electromagnetic induction and surface thermal radiation measuring technique; it used the induction method to excite the object, and then it used the radiation properties to measure the distribution of surface temperature of the object. It detects flaws by the flaw's anomalous heating and heat transfer response. The method of excitation is also different from others irradiation excitation. Electro-Thermography needs an electromagnetic coil to generate eddy current through induction to change the surface and subsurface temperature. Electro-Thermography can detect surface and sub-surface flaws, unless the flaw is too remote and tiny from the surface. Some experiments in flaw detections and other types of inspections are demonstrated.

  17. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  18. Study of Beamforming Techniques for Ultrasound Imaging in Nondestructive Testing.

    NASA Astrophysics Data System (ADS)

    Ghorayeb, Sleiman Riad

    Many of the innovations in modern materials testing technology make use of ultrasound. Therefore, the theory and application of ultrasound have become of extreme importance in nondestructive inspection of complete engineered systems. However, despite the fact that most of these ultrasound inspection techniques are based on well-established phenomena, two key problems pertaining to their application still remain unresolved. These problems can be identified as (1) the material being tested is assumed to be isotropic and homogeneous by nature, and (2) the scanning/data collection process, prior to the reconstruction scheme, is very time consuming. As a result, techniques for fast, accurate testing of anisotropic and nonhomogeneous media have been the focus of attention in modern non-destructive testing research. This dissertation first describes the development and implementation of a time domain synthetic aperture focusing technique (SAFT) to reconstruct flaws imbedded within Plexiglass^{rm TM/ } and Graphite/Epoxy samples. A modification to the present SAFT algorithm is then proposed in order to improve the quality of the images produced by SAFT when applied to composites. In addition, since the finite element method (FEM) can be used to solve hyperbolic partial differential equations, which govern wave propagation, FEM solutions are used to mimic a SAFT measurement. That is, the FEM is used to simulate the action of a transducer array. This is done to study the sensitivity of parameters involved in the SAFT algorithm. Using the same FEM model as a test bed, the data independent beamformer, in its basic form, is studied to determine its performance in reducing data acquisition time. It is seen that this technique is capable of adjusting the weights of the interpolating filter (beamformer) to predict an incoming signal from a desired direction while discriminating against other signals from different directions. SAFT results indicate that the FEM model can be used as

  19. Theory and experimental technique for nondestructive evaluation of ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    The important ultrasonic scattering mechanisms for SiC and Si3N4 ceramic composites were identified by examining the interaction of ultrasound with individual fibers, pores, and grains. The dominant scattering mechanisms were identified as asymmetric refractive scattering due to porosity gradients in the matrix material, and symmetric diffractive scattering at the fiber-to-matrix interface and at individual pores. The effect of the ultrasonic reflection coefficient and surface roughness in the ultrasonic evaluation was highlighted. A new nonintrusive ultrasonic evaluation technique, angular power spectrum scanning (APSS), was presented that is sensitive to microstructural variations in composites. Preliminary results indicate that APSS will yield information on the composite microstructure that is not available by any other nondestructive technique.

  20. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones. PMID:25824342

  1. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  2. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  3. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  4. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  5. Low-frequency electromagnetic technique for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Dalichaouch, Yacine; Singsaas, Alan L.; Putris, Firas; Perry, Alexander R.; Czipott, Peter V.

    2000-05-01

    We have developed a low frequency electromagnetic technique using sensitive room temperature magnetoresistive (MR) sensors for a variety of nondestructive evaluation (NDE) applications. These applications include the NDE of medical implants and aircraft structures, the detection of cracks and corrosion in metals, the detection of ferromagnetic foreign objects in the eye and the brain, and the noninvasive determination of iron content in the liver. Our technique consists of applying a low frequency ac magnetic field to the sample and detecting the sample response. The low excitation frequency enables us to probe deep into metal structures; the sensitivity of the MR sensor allows us to detect weak responses from the sample without applying too large an excitation field, particularly in the case of human tissue. The MR sensors are small and relatively inexpensive compared to other sensitive magnetic field sensors such as fluxgates and superconducting quantum interference devices or SQUIDs; hence the resulting NDE instrument will be compact and cost-efficient, enabling its commercialization for practical applications. In this paper, we focus primarily on NDE of orthopedic implants.

  6. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  7. [Application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality].

    PubMed

    Xie, Li-Juan; Ying, Yi-Bin; Yu, Hai-Yan; Fu, Xia-Ping

    2007-06-01

    Nondestructive detection techniques of vegetable include electrical properties, optical reflectance and transmission, sonic vibration, nuclear magnetic resonance (NMR), machine vision, aromatic volatile emission, vibration characteristics and others. The most widely employed and successful technique is to use its optical property. Near infrared spectroscopy technique is extremely fast, highly efficient, cheap to implement, of good recurrence and no sample preparation, and is a rapid and non-destructive modern measuring technique that has been widely used in many fields. In the present paper, the application of near infrared spectroscopy technique to nondestructive measurement of vegetable quality was briefly introduced. Some considerable aspects existing in the application were also discussed, and it is pointed out that because of vegetable's diversity and rot-proneness, automation analysis machine should be developed to improve the speed of quality detection, and cooperating with several other nondestructive techniques, such as NMR and machine vision, is the research trend. PMID:17763775

  8. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    SciTech Connect

    Miller, Karen A.

    2012-05-02

    Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential

  9. Nondestructive evaluation: A survey of NASA contributions, chapter 1, Chapter 11, cover page, acknowledgements, and contents

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A survey of nondestructive evaluation (NDE) technology, which is discussed in terms of popular demands for a greater degree of quality, reliability, and safety in industrial products, is presented as an overview of the NDE field to serve the needs of middle management. Three NDE methods are presented: acoustic emission, the use of coherent (laser)light, and ultrasonic holography.

  10. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-2, Leak Tests.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This second in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the predominantly used leak test methods in nuclear power plants. More specifically, the module describes these test methods, the testing techniques, and the associated quality assurance requirements. The module follows a typical…

  11. Nondestructive evaluation techniques for nickel-cadmium aerospace battery cells

    NASA Technical Reports Server (NTRS)

    Haak, R.; Tench, D.

    1982-01-01

    The ac impedance characteristics of Ni-Cd cells as an in-situ, nondestructive means of determining cell lifetime, particularly with respect to the probability of premature failure were evaluated. Emphasis was on evaluating Ni-Cd cell impedance over a wide frequency range (10,000 to 0.0004 Hz) as the cells were subjected to charge/discharge cycle testing. The results indicate that cell degradation is reflected in the low frequency (Warburg) impedance characteristics associated with diffusion processes. The Warburg slope (W) was found to steadily increase as a function of cell aging for completely discharged cells. In addition, based on data for two cells, a high or rapidly increasing value for W signals imminent cell failure by one mechanism. Degradation by another mechanism is apparently reflected in a fall-off (roll-over) of W at lower frequencies. As a secondary result, the frequency dependence of the absolute cell impedance at low frequencies (5 - 500 mHz) was found to be a good indication of the cell state-of-charge.

  12. NONDESTRUCTIVE TESTING (NDT) TECHNIQUES TO DETECT CONTAINED SUBSURFACE HAZARDOUS WASTE

    EPA Science Inventory

    The project involves the detection of buried containers with NDT (remote-sensing) techniques. Seventeen techniques were considered and four were ultimately decided upon. They were: electromagnetic induction (EMI); metal detection (MD); magnetometer (MAG); and ground penetrating r...

  13. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  14. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    SciTech Connect

    Phillips, J.R.; Halbig, J.K.; Lee, D.M.; Beach, S.E.; Bement, T.R.; Dermendjiev, E.; Hatcher, C.R.; Kaieda, K.; Medina, E.G.

    1980-05-01

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(..gamma..,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup.

  15. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-5, Fundamentals of Radiography.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This fifth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains the radiographic process, from radiation source selection to equipment and specimen selection and arrangement, and film processing. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  16. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  17. Nondestructive Inspection Techniques for Friction Stir Weld Verification on the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Suits, Michael W.; Leak, Jeffery; Bryson, Craig

    2003-01-01

    Friction Stir Welding (FSW) has gained wide acceptance as a reliable joining process for aerospace hardware as witnessed by its recent incorporation into the Delta Launch vehicle cryotanks. This paper describes the development of nondestructive evaluation methods and techniques used to verify the FSW process for NASA's Space Shuttle.

  18. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products.

    PubMed

    He, Hong-Ju; Wu, Di; Sun, Da-Wen

    2015-01-01

    Nowadays, people have increasingly realized the importance of acquiring high quality and nutritional values of fish and fish products in their daily diet. Quality evaluation and assessment are always expected and conducted by using rapid and nondestructive methods in order to satisfy both producers and consumers. During the past two decades, spectroscopic and imaging techniques have been developed to nondestructively estimate and measure quality attributes of fish and fish products. Among these noninvasive methods, visible/near-infrared (VIS/NIR) spectroscopy, computer/machine vision, and hyperspectral imaging have been regarded as powerful and effective analytical tools for fish quality analysis and control. VIS/NIR spectroscopy has been widely applied to determine intrinsic quality characteristics of fish samples, such as moisture, protein, fat, and salt. Computer/machine vision on the other hand mainly focuses on the estimation of external features like color, weight, size, and surface defects. Recently, by incorporating both spectroscopy and imaging techniques in one system, hyperspectral imaging cannot only measure the contents of different quality attributes simultaneously, but also obtain the spatial distribution of such attributes when the quality of fish samples are evaluated and measured. This paper systematically reviews the research advances of these three nondestructive optical techniques in the application of fish quality evaluation and determination and discuss future trends in the developments of nondestructive technologies for further quality characterization in fish and fish products. PMID:24915393

  19. Non-destructive evaluation techniques for chemical weapons destruction

    SciTech Connect

    Hartwell, J.K.; Caffrey, A.J.

    1996-09-01

    fThe safe and verifiable disposition, either by incineration or chemical neutralization of chemical warfare (CW) agents requires correct {ital a priori} identification of each munition or container to be processed. A variety of NDE techniques have been used or tested for the examination and characterization of munitions. In the U.S., three widely used techniques are X-ray radiography, acoustic resonance spectroscopy (ARS), and prompt gamma ray neutron activation analysis (PINS). The technical bases, instrumental implementations, and applications of the U.S. versions of these methods are briefly discussed. 10 refs., 2 figs., 1 tab.

  20. Laryngoscope decontamination techniques: A survey

    PubMed Central

    Chawla, Rajiv; Gupta, Akhilesh; Gupta, Anshu; Kumar, Mritunjay

    2016-01-01

    Background and Aims: India is a vast country with variable, nonuniform healthcare practices. A laryngoscope is an important tool during general anesthesia and resuscitation. The study aimed to determine the current practices of laryngoscope decontamination in India. Material and Methods: An online survey was conducted amongst 100 anesthesiologists to determine the common methods of laryngoscope decontamination adopted in their settings. The survey was done over 6 months after validating the questionnaire. Results: A total of 73 responses were received out of 100. The result of the survey revealed that there is no uniform technique of laryngoscope decontamination. There is marked variability in techniques followed not only among different institutions, but also within the same institution. Conclusion: There are no fixed protocols adopted for laryngoscope decontamination. Thus, there is a need to develop definitive guidelines on this subject, which can be implemented in India. PMID:27006551

  1. Destructive and Non-Destructive Analysis Techniques for Failure Detection of QFN Packages

    NASA Astrophysics Data System (ADS)

    Adhila, M. N.; Wedianti, S.; Suhaimi, W. S. W. M.; Aishah, I.

    2010-03-01

    One of the latest developments in packaging technology is the QFN (Quad Flat Non-Lead) packages, which is both a chip scale package and plastic encapsulated package with lead pad at the bottom. In this paper, different type of commercial QFN single die packages were characterized by using destructive and non-destructive techniques. Non-destructive techniques such as Scanning Acoustic Microscope (SAM) and X-Ray analysis were used to observe package cracking, delamination and other failure mode. Application of SAM include detection of delaminations between lead frame, die face, paddle, heat sink, cracks and plastic encapsulant. In comparison to other techniques, SAM is sensitive to detect beneath the surface of devices which would be inaccessible otherwise by both conventional optical and electron microscopy inspection methods. Destructive technique such as Field Emission Electron Microscopy (FESEM) was implemented to address the failures of the QFN single die packages such as die cracking, lifted ball bonds and other failure mode.

  2. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  3. Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay

    2014-01-01

    The paper deals with the infrared flash thermography inspection to detect and analyze delamination-like anomalies in nonmetallic materials. It provides information on an IR Contrast technique that involves extracting normalized contrast verses time evolutions from the flash thermography infrared video data. The paper provides the analytical model used in the simulation of infrared image contrast. The contrast evolution simulation is achieved through calibration on measured contrast evolutions from many flat bottom holes in the subject material. The paper also provides formulas to calculate values of the thermal measurement features from the measured contrast evolution curve. Many thermal measurement features of the contrast evolution that relate to the anomaly characteristics are calculated. The measurement features and the contrast simulation are used to evaluate flash thermography inspection data in order to characterize the delamination-like anomalies. In addition, the contrast evolution prediction is matched to the measured anomaly contrast evolution to provide an assessment of the anomaly depth and width in terms of depth and diameter of the corresponding equivalent flat-bottom hole (EFBH) or equivalent uniform gap (EUG). The paper provides anomaly edge detection technique called the half-max technique which is also used to estimate width of an indication. The EFBH/EUG and half-max width estimations are used to assess anomaly size. The paper also provides some information on the "IR Contrast" software application, half-max technique and IR Contrast feature imaging application, which are based on models provided in this paper.

  4. Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Moslehy, Faissal A.

    1994-02-01

    This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.

  5. Development of a nondestructive vibration technique for bond assessment of Space Shuttle tiles

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1994-01-01

    This final report describes the achievements of the above titled project. The project is funded by NASA-KSC (Grant No. NAG 10-0117) for the period of 1 Jan. to 31 Dec. 1993. The purpose of this project was to develop a nondestructive, noncontact technique based on 'vibration signature' of tile systems to quantify the bond conditions of the thermal protection system) tiles of Space Shuttle orbiters. The technique uses a laser rapid scan system, modal measurements, and finite element modeling. Finite element models were developed for tiles bonded to both clamped and deformable integrated skin-stringer orbiter mid-fuselage. Results showed that the size and location of a disbonded tile can be determined from frequency and mode shape information. Moreover, a frequency response survey was used to quickly identify the disbonded tiles. The finite element results were compared with experimentally determined frequency responses of a 17-tile test panel, where a rapidscan laser system was employed. An excellent degree of correlation between the mathematical simulation and experimental results was realized. An inverse solution for single-tile assemblies was also derived and is being implemented into a computer program that can interact with the modal testing software. The output of the program displays the size and location of disbond. This program has been tested with simulated input (i.e., finite element data), and excellent agreement between predicted and simulated disbonds was shown. Finally, laser vibration imaging and acoustic emission techniques were shown to be well suited for detecting and monitoring the progressive damage in Graphite/Epoxy composite materials.

  6. Split spectrum technique as a preprocessor for ultrasonic nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Karpur, Prasanna

    Split-spectrum preprocessing (SSP) is shown in light of the present results to process A-scans in a way that allows its incorporation into artificial neural networks and other AI methods, as well as into feature-analysis techniques. SSP is consistently nonlinear in A-scan processing. Attention is given to the results obtained from the use of the magnitude spectra of the SSP-processed A-scans as inputs to a back-propagation artificial neural network.

  7. Nondestructive Measurement Material Characterization of Thermal Sprayed Nickel Aluminum Coatings by using Laser Ultrasound Technique

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng Hung; Wu, Tai Chieh; Yang, Che Hua

    This research focused on characterization of mechanical properties in Nickel-Aluminum coating with different thermal technique and processing parameters at high temperature environment up to 295°C. With the laser ultrasound technique (LUT), guided acoustic waves are generated to propagate on the Ni-Al sprayed coatings. By measuring dispersive phase velocity followed by SCE-UA inversion algorithm. The Young's modulus of coatings which fabricated by HVOF technique is higher than APS technique. This technique is potentially useful to probe the material characterization at high temperature environment in a remote and non-destructive way.

  8. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  9. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  10. Quality parameters of mango and potential of non-destructive techniques for their measurement - a review.

    PubMed

    Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R

    2010-01-01

    The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars. PMID:23572595

  11. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  12. Nondestructive characterization of radioactive waste drums by gamma spectrometry: a Monte Carlo technique for efficiency calibration.

    PubMed

    Tzika, Faidra; Savidou, Anastasia; Stamatelatos, Ion E

    2007-11-01

    A semi-empirical non-destructive technique to assay radioactive waste drums is presented. The technique is based on gamma spectrometry performed using a portable NaI detector and Monte Carlo simulations using the MCNP code in order to derive the gamma ray detector efficiency for the volume source. The derivation of detector efficiency was performed assuming homogeneous distribution of the source activity within the matrix material. Moreover, the MCNP model was used to examine the effect of inhomogeneities in activity distribution, variation of matrix material density, and drum filling height on the accuracy of the technique, and to estimate the measurement bias. The technique was verified by estimating radioactivity levels in 25 drums containing ion exchange resin waste, and comparing the results of the non-destructive method against the analytical results of samples obtained from each drum. Satisfactory agreement between the two assay techniques was observed. The discussed technique represents a cost effective technology that can be used to assay low-activity, low-density waste drums provided the contribution to the gamma ray spectrum can be resolved. PMID:18049246

  13. Evaluation of electroexplosive devices by nondestructive test techniques and impulsive waveform firings

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.

    1972-01-01

    Special requirements of the space industry for more detailed knowledge of the quality and reliability of each electroexplosive device (EED) selected for use aboard a spacecraft are described. Statistical methods do not practically demonstrate the high reliability needed. To close this gap, nondestructive test techniques and instrumentation for 1-W/1-A no-fire devices have been developed. Several lots of squibs have been evaluated using these techniques and instrumentation. They yield data as to the quality and normal behavior of each electroexplosive device without firing or degrading the unit. Performance data were obtained by initiating the EED's with an impulsive waveform and sensing the initiation characteristics, sensitivity, and output.

  14. Nondestructive evaluation

    SciTech Connect

    Martz, H.E.

    1997-02-01

    Research reported in the thrust area of nondestructive evaluation includes: advanced 3-D imaging technologies; new techniques in laser ultrasonic testing; infrared computed tomography for thermal NDE of materials, structures, sources, and processes; automated defect detection for large laser optics; multistatic micropower impulse radar imaging for nondestructive evaluation; and multi-modal NDE for AVLIS pod shielding components.

  15. Nondestructive techniques for characterizing mechanical properties of structural materials - An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1986-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flow detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  16. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  17. New International Program to Asses the Reliability of Emerging Nondestructive Techniques (PARENT)

    SciTech Connect

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.; Braatz, Brett G.; Doctor, Steven R.

    2013-01-25

    The Nuclear Regulatory Commission (NRC) established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components (PINC). The goal of the PARENT is to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks (PWSCC) and applying the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds (DMWs) and bottom-mounted instrumentation penetrations. Open round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.

  18. Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Ren, Jun; Yin, Tingyuan

    2016-04-01

    In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.

  19. New international Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT)

    NASA Astrophysics Data System (ADS)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.; Braatz, Brett G.; Doctor, Steven R.

    2013-01-01

    The Nuclear Regulatory Commission established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components. The goals of PARENT are to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks and apply the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds and bottom-mounted instrumentation penetrations. Open round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.

  20. Evaluation of nondestructive testing techniques for the space shuttle nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Tiede, D. A.

    1972-01-01

    A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.

  1. A systems approach of the nondestructive evaluation techniques applied to Scout solid rocket motors.

    NASA Technical Reports Server (NTRS)

    Oaks, A. E.

    1971-01-01

    Review and appraisal of the status of the nondestructive tests applied to Scout solid-propellant rocket motors, using analytical techniques to evaluate radiography for detecting internal discontinuities such as voids and unbonds. Information relating to selecting, performing, controlling, and evaluating the results of NDE tests was reduced to a common simplified format. With these data and the results of the analytical studies performed, it was possible to make the basic appraisals of the ability of a test to meet all pertinent acceptance criteria and, where necessary, provide suggestions to improve the situation.

  2. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    NASA Astrophysics Data System (ADS)

    Lavers, C.; Franklin, P.; Franklin, P.; Plowman, A.; Sayers, G.; Bol, J.; Shepard, D.; Fields, D.

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  3. Development of nondestructive non-contact acousto-thermal evaluation technique for damage detection in materials

    NASA Astrophysics Data System (ADS)

    Sathish, Shamachary; Welter, John T.; Jata, Kumar V.; Schehl, Norman; Boehnlein, Thomas

    2012-09-01

    This paper presents the development of a new non-contact acousto-thermal signature (NCATS) nondestructive evaluation technique. The physical basis of the method is the measurement of the efficiency of the material to convert acoustic energy into heat, and a theoretical model has been used to evaluate this. The increase in temperature due to conversion of acoustic energy injected into the material without direct contact was found to depend on the thermal and elastic properties of the material. In addition, it depends on the experimental parameters of the acoustic source power, the distance between sample and acoustic source, and the period of acoustic excitation. Systematic experimental approaches to optimize each of the experimental variables to maximize the observed temperature changes are described. The potential of the NCATS technique to detect microstructural-level changes in materials is demonstrated by evaluating accumulated damage due to plasticity in Ti-6Al-4V and low level thermal damage in polymer matrix composites. The ability of the technique for macroscopic applications in nondestructive evaluation is demonstrated by imaging a crack in an aluminum test sample.

  4. Nondestructive testing and evaluation of composites by non-invasive IR Imaging techniques

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Siddiqui, Juned A.; Arora, Vanita; Ghali, S. V.; Muniyappa, Amarnath; Takei, Masahiro

    2013-05-01

    InfraRed Thermography (IRT) is one of the promising technique for non-destructive testing method for characterization of materials. This technique relies on evaluation of the surface temperature variations to detect the presence of surface and subsurface anomalies within the material. Due to its whole field and remote testing capabilities, IRT has gained significant importance in testing of Glass Fiber Reinforced Plastic (GFRP) materials. A GFRP sample with defects of various sizes at a given depth was inspected using non-stationary thermographic techniques. In order to highlight the defect detection capabilities of the proposed non-stationary schemes, a comparison has been made using matched excitation energy in frequency domain by taking signal to noise ratio into consideration.

  5. Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1978-01-01

    This report describes the ultrasonic-acoustic technique used to measure a 'Stress Wave Factor'. In a prior study this factor was found effective in evaluating the interlaminar shear strength of fiber-reinforced composites. Details of the method used to measure the stress wave factor are described. In addition, frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor can be measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. Moreover, the technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels and results obtained are compared with through transmission immersion ultrasonic scans.

  6. Using the technique of computed tomography for nondestructive analysis of pharmaceutical dosage forms

    NASA Astrophysics Data System (ADS)

    de Oliveira, José Martins, Jr.; Mangini, F. Salvador; Carvalho Vila, Marta Maria Duarte; ViníciusChaud, Marco

    2013-05-01

    This work presents an alternative and non-conventional technique for evaluatingof physic-chemical properties of pharmaceutical dosage forms, i.e. we used computed tomography (CT) technique as a nondestructive technique to visualize internal structures of pharmaceuticals dosage forms and to conduct static and dynamical studies. The studies were conducted involving static and dynamic situations through the use of tomographic images, generated by the scanner at University of Sorocaba - Uniso. We have shown that through the use of tomographic images it is possible to conduct studies of porosity, densities, analysis of morphological parameters and performing studies of dissolution. Our results are in agreement with the literature, showing that CT is a powerful tool for use in the pharmaceutical sciences.

  7. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  8. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  9. Application of nondestructive optical techniques in the detection of surface and subsurface defects in sapphire

    NASA Astrophysics Data System (ADS)

    Akwani, Ikerionwu A.; Hibbard, Douglas L.; Jacoby, Keith T.

    2007-04-01

    Advancements in optical manufacturing and testing technologies for sapphire material are required to support the increasing use of large aperture sapphire panels as windscreens for various electro-optical system applications. It is well known that the grinding and polishing operations employed to create optical surfaces leads to the introduction of surface stress and sub-surface damage which can affect critical opto-mechanical performance characteristics such as strength and durability. Traditional methods for measuring these defects are destructive and, therefore, unsuitable as in-process, high volume inspection tools. A number of non-destructive optical techniques were investigated at Exotic Electro-Optics under funding by the Office of Naval Research and the Air Force Research Laboratory including Raman spectroscopy, laser polarimetry and the Twyman effect to characterize process-induced defects in sapphire panels. Preliminary experimental results using these techniques have shown that surface stress and sub-surface damage may be non-destructively measured. Raman spectroscopy has shown promise in quantifying surface stress, laser polarimetry is of questionable utility and the Twyman effect may be used qualitatively to monitor relative stress and sub-surface damage. This information will ultimately provide a better understanding of the overall manufacturing process leading to optimized process time and cost.

  10. Application of non-destructive techniques to assess the state of Hagia Sophia's mosaics

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Karoglou, Maria; Labropoulos, Kyriakos C.; Delegou, Ekaterini T.; Katsiotis, Nikolaos K.; Karagiannis-Bakolas, Asterios

    2012-04-01

    The church of Hagia Sophia in Istanbul is a world heritage monument that epitomizes the byzantine ecclesiastic architecture. The church is decorated with mosaics from various historic periods. The preservation state of the mosaics is of high importance. In this study, non-destructive techniques (ground penetrating radar, infra-red thermography, fibreoptics microscopy) were employed on south upper gallery mosaic areas. The main aim of this on-site investigation was the evaluation of the preservation state of the mosaics and the previous interventions (materials characterization and decay diagnosis) in order to assess the performance of previous conservation/restoration interventions, as well as to verify the presence of mosaics in layers below the external plaster surfaces. Results indicated that is indeed possible to locate the grid of rendered mosaics. Regarding the preservation state of the mosaics, it was indicated that the main environmental decay factors were the high relative humidity levels with co-action of salt damp as well as the air pollutants. Moreover, it was revealed that previous incompatible restoration/conservation interventions have often accelerated the mosaics' degradation processes. Using non-destructive techniques it was possible to identify areas where the mosaic materials (tesserae and mortars) presented decay problems and in addition identify sub-layers that pose risk of detachment or decay intensification. In this way, NDT can contribute to the development of a strategic planning for mosaics conservation, protection and revealing.

  11. Development of nondestructive-evaluation techniques for high-temperature ceramic heat-exchanger components

    NASA Astrophysics Data System (ADS)

    Kupperman, D. S.; Yuhas, D.; Michaels, T. E.; Michaels, J. E.

    1982-01-01

    An assessment was made of ultrasonic techniques developed to date for nondestructive evaluation of SiC heat exchanger tubes. The results suggest that ultrasonic inspection is a useful and valuable technique for inspecting these tubes, including ceramic butt joints. However, this method alone is currently not sufficiently effective to detect all critical flaws because of (1) the difficulties in following the surface of an out of round tube; (2) the high velocity and thus the large angle of refraction of sound in SiC, which for small diameter tubes leads to significant beam distortion; and (3) insuffient resolution, relative to the small critical flaw size in ceramics, at conventional ultrasonic testing frequencies. The experiments show that higher frequencies (up to 35 MHz) are required for effective wall thickness measurements and detection of laminar type flaws.

  12. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei

    2013-05-01

    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  13. Developing nondestructive techniques for managing conflicts between fisheries and double-crested cormorant colonies

    USGS Publications Warehouse

    Suzuki, Yasuko; Roby, Daniel D.; Lyons, Donald E.; Courtot, Karen; Collis, Ken

    2015-01-01

    Double-crested cormorants (Phalacrocorax auritus) have been identified as the source of significant mortality to juvenile salmonids (Oncorhynchus spp.) in the Columbia River Basin. Management plans for reducing the size of a large colony on East Sand Island (OR, USA) in the Columbia River estuary are currently being developed. We evaluated habitat enhancement and social attraction as nondestructive techniques for managing cormorant nesting colonies during 2004–2007. We tested these techniques on unoccupied plots adjacent to the East Sand Island cormorant colony. Cormorants quickly colonized these plots and successfully raised young. Cormorants also were attracted to nest and raised young on similar plots at 2 islands approximately 25 km from East Sand Island; 1 island had a history of successful cormorant nesting whereas the other was a site where cormorants had previously nested unsuccessfully. On a third island with no history of cormorant nesting or nesting attempts, these techniques were unsuccessful at attracting cormorants to nest. Our results suggest that some important factors influencing attraction of nesting cormorants using these techniques include history of cormorant nesting, disturbance, and presence of breeding cormorants nearby. These techniques may be effective in redistributing nesting cormorants away from areas where fish stocks of conservation concern are susceptible to predation, especially if sites with a recent history of cormorant nesting are available within their foraging or dispersal range. Published 2015. Wiley Periodicals, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.

  14. Nondestructive evaluation techniques for development and characterization of carbon nanotube based superstructures

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2015-03-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns [1]. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking [2]. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-to-weight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  15. The eddy-current technique for nondestructive evaluation of generator retaining rings: Feasibility study: Interim report

    SciTech Connect

    Elmo, P.M.; Nottingham, L.D.

    1988-05-01

    An evaluation of the feasibility of using eddy current nondestructive inspection techniques to detect intergranular stress corrosion in generator rotor retaining rings was conducted by the EPRI NDE Center. Experiments were conducted using a bend-bar containing representative stress corrosion damage, a calibration block containing electrical discharge machined (EDM) notches, and four retired retaining rings containing EDM notches and stress corrosion damage. An eddy current transducer transport was designed and fabricated to interface with an existing computer-controlled, two-axis positioner and digital eddy current data acquisition system. Test results of experiments performed with this equipment on the retaining ring test-bed provided experimental validation of the eddy current method's feasibility as a retaining ring inspection method. Details are given of the system and its performance under laboratory and simulated service-inspection conditions. 9 refs., 47 figs.

  16. Electrooptical remote sensing methods as nondestructive testing and measuring techniques in agriculture.

    PubMed

    Myers, V I; Allen, W A

    1968-09-01

    Characteristics of plants that influence reflectance and emission of electromagnetic energy are discussed. Four main spectral regions are influenced by plants. These wavelength bands include the visible region of chlorophyll absorption, very near ir wavelengths, where plant structure is of major importance, the near and middle ir wavelengths, where water and CO(2) absorption predominate, and the far ir region of thermal ir emission. Soil characteristics that influence reflectance and emission of energy are discussed. Nondestructive testing techniques described include laboratory spectrophotometry, field spectrometry, color photography, radiometry, and generation of line scan imagery. Spectrophotometer and spectrometer reflectance data obtained in the laboratory and field are related to interpretation of remote sensing imagery. Model studies that permit predictions of reflectance from plant canopies are described. The principle of multispectral sensing which permits utilization of multiple wavelength channels for establishing unique plant and soil signature is reviewed. PMID:20068888

  17. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  18. Multi-isotopic transuranic waste interrogation using delayed neutron nondestructive assay and iterative quadratic programming techniques

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Wei

    1997-11-01

    Nuclear safeguards for Special Nuclear Materials is to protect the nuclear materials against malevolent use and to insure their peaceful usage. The nondestructive assay technique (NDA) offers an efficient and proliferation resistance method for nuclear safeguards technology. NDA techniques were investigated for multi-isotopic transuranic waste interrogation. This work was originally intended for the Integral Fast Reactor (IFR) under development at Argonne National Laboratory. One major feature of the IFR is its integral fuel cycle based on a pyrometallurgical process. More than 99% of transuranics produced in the fuel are returned to the makeup fuel and burned in the reactor. With the long-lived actinides removed from the waste stream, the waste produced will decay sufficiently in 300 years dropping below the cancer risk level of natural uranium ore and easing the perceived waste management problem. The feasibility of using nondestructive assay techniques for the IFR fuel cycle waste interrogation were studied. A special DNNDA experimental device was designed and analysis techniques were developed. The DNNDA technique uses the delayed neutrons emitted after the activation of a 14 MeV neutron source as the characteristic signature for each fissionable isotope. A tantalum/polyethylene filter was employed to enhance the discrimination between the fissile and the fissionable isotopes. Spontaneous fissions from 240Pu were also measured to assist the mass assay. A nonlinear overdetermined system was established based on the DNNDA measurements. An Iterative Quadratic Programming (IQP) method was applied to perform the estimates. The IQP method has several advantages over the linear least squares and Kalman filter methods, it has the flexibility of adding additional constraints, it has superlinear global convergence and it can be utilized for nonlinear problems. The results show that using the IQP method with the DNNDA technique is quite promising for multi-isotopic assay

  19. The application of nondestructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.J.; Musial, W.

    1993-07-01

    NonDestructive Testing (NDT) is commonly used to monitor structures before, during and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The test used a three-point spanwise load distribution to load a 7.9-m blade to failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electronic shearography to measure the differences in surface displacements between two load states with an accuracy of a few microns. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Further, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  20. An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe

    2006-01-01

    Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.

  1. A Survey of Shape Parameterization Techniques

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper provides a survey of shape parameterization techniques for multidisciplinary optimization and highlights some emerging ideas. The survey focuses on the suitability of available techniques for complex configurations, with suitability criteria based on the efficiency, effectiveness, ease of implementation, and availability of analytical sensitivities for geometry and grids. The paper also contains a section on field grid regeneration, grid deformation, and sensitivity analysis techniques.

  2. Exploratory loading techniques. [in holographic nondestructive testing of flat metal plates

    NASA Technical Reports Server (NTRS)

    Martin, A. M., III

    1976-01-01

    Interferometric holographic nondestructive testing of aluminum, copper, and steel flat plates is reported. Structural weaknesses under positive pressure, negative pressure, heating, and cooling are discussed.

  3. Nondestructive measurement of reducing sugar of apples using Vis/NIR spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong; Li, Xiaoli; Bai, Xiujun; He, Yong

    2006-09-01

    In this research, the potential ofusing the Visible/Near Infrared Spectroscopy (VisINIRS) was investigated for measuring the reducing sugar of Fuji apple (from Shanxi of China), and the relationship was established between nondestructive Vis/NIR spectral measurement and the reducing sugar of apple. Intact apple fruit were measured by reflectance Vis/NIR in 325-1075 nm range. The data set as the logarithms of the reflectance reciprocal (absorbance (logl/R)) was analyzed in order to build the best calibration model for this characteristic, using some spectral pretreatments and multivariate calibration techniques such as partial least square regression (PLS). The models for the reducing sugar (r=0.915), standard error ofprediction (SEP) 0.562 with a bias of 0.054; shown the excellent prediction performance. The Vis/NIR spectroscopy technique had significantly greater accuracy for determining the reducing sugar. It was concluded that by using the Vis/NIRS measurement technique, in the spectral range (325-1075 nm), it is possible to assess the reducing sugar content of apple.

  4. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-2, Operation of Ultrasonic Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John

    This second in a series of six modules for a course titled Nondestructive Examination (NDE) II describes specific ultrasonic test techniques and calibration principles. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  5. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  6. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-7, Radiographic Specifications and Code Requirements.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This seventh in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes radiographic specifications and code requirements. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  7. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-6, Operation of Eddy Current Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  8. Development of non-destructive quality measurement technique for cabbage seed (Brassica campestris L) using hyperspectral reflectance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cabbage (Brassica campestris L) is an important crop for Asian countries especially in Korea, Japan and China. In order to achieve uniform and high-yield rate of cabbage product, the seed lot quality needs to be controlled. Non-destructive evaluation of seed viability is an important technique for i...

  9. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-5, Fundamentals of Eddy Current Testing.

    ERIC Educational Resources Information Center

    Espy, John

    This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to eddy current testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  10. Development and validation of nondestructive inspection techniques for composite doubler repairs on commercial aircraft

    SciTech Connect

    Roach, D.; Walkington, P.

    1998-05-01

    Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single boron-epoxy composite doubler to the damaged structure. In order for the use of composite doublers to achieve widespread use in the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the doubler is also a concern. No single nondestructive inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. A series of NDI tests were conducted on laboratory test structures and on full-scale aircraft fuselage sections. Specific challenges, unique to bonded composite doubler applications, were highlighted. An array of conventional and advanced NDI techniques were evaluated. Flaw detection sensitivity studies were conducted on applicable eddy current, ultrasonic, X-ray and thermography based devices. The application of these NDI techniques to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are presented in this report. It was found that a team of these techniques can identify flaws in composite doubler installations well before they reach critical size.

  11. Survey of Biochemical Separation Techniques

    ERIC Educational Resources Information Center

    Nilsson, Melanie R.

    2007-01-01

    A simple laboratory exercise is illustrated that exposes students to wide range of separation techniques in one laboratory program and provides a nice complement to a project-oriented program. Students have learned the basic principles of syringe filtration, centricon, dialysis, gel filtration and solid-phase extraction methodologies and have got…

  12. A knowledge-based shell for selecting a nondestructive evaluation technique

    SciTech Connect

    Roberge, P.R.

    1995-02-01

    The complexity of planning a nondestructive evaluation (NDE) program or an inspection schedule for specific problems and available NDE techniques can be drastically reduced by the creation of a knowledge based system that would balance the advantages and limitations of each technique for specific problems. Such a system could incorporate the fundamental knowledge derived from failure analysis and cover topics such as materials vs. defect size and type, probability of failure, and basic reliability information. In order to efficiently organize knowledge of materials degradation, the parameters that control various forms of failure must first be rationalized in a general framework. This framework and their factors would then constitute a quantitative and easily programmable description of the independent variables controlling the intensity of a failure. This article describes such a framework, which could guide the general selection of NDE for materials failure with a particular emphasis on corrosion related failures. The framework architecture itself was constructed using an object-oriented methodology for maximum flexibility because it was anticipated that the materials parameters could easily be described as multidimensional objects.

  13. Laser Doppler technique for nondestructive evaluation of mechanical heart valves kinematics

    NASA Astrophysics Data System (ADS)

    Grigioni, Mauro; Daniele, Carla; Morbiducci, U.; Del Gaudio, C.; D'Avenio, Giuseppe; Di Meo, D.; Barbaro, Vincenzo

    2004-06-01

    Laser techniques for vibration measurement, due to their non-contact nature, represents an interesting alternative investigational tool to be tested in biomedical and clinic fields. A particular application could be as evaluation method in design and quality control of artificial organs. Aim of this study is to investigate the application of laser vibrometry to the study of mechanical heart valves in-vitro, with an ad hoc set-up. A heterodyne laser Doppler vibrometry system, which allows the measurement of both vibrational velocity and displacement was used. Three different approaches have been carried out, in order to stress the limits of the laser vibrometry technique for testing heart valve prostheses. Critical points and difficulties to build up experimental studies in this field were clearly pointed out. In the present study only one laser head was used, the aim of the authors being to test the feasibility of a simplified approach on mechanical cardiac valves. Starting from that analysis a comparison could be made to assess the capability to discriminate between normal and malfunctioning devices. The advantage of the proposed test bench is that it could provide a non-contact, non-destructive analysis of the valve under the same working conditions as those upon implantation. The proposed method could furnish a typical "fingerprint" characterizing each valve behavior in repeatable experimental conditions.

  14. Application of laser ultrasonic non-destructive evaluation technique to additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manzo, Anthony J.; Kenderian, Shant; Helvajian, Henry

    2016-04-01

    The change in properties of a propagating ultrasonic wave has been a mainstay characterization tool of the nondestructive evaluation (NDE) industry for identifying subsurface defects (e.g. damage). A variant of this concept could be applicable to 3D additive manufacturing where the existence of defects (e.g. pores) within a sub-layer could mark a product as non-qualifying. We have been exploring the utility of pulsed laser ultrasonic excitation coupled with CW laser heterodyne detection as an all optical scheme for characterizing sub surface layer properties. The all-optical approach permits a straight forward integration into a laser additive processing tool. To test the concept, we have developed an experimental system that generates pulsed ultrasonic waves (the probe) with high bandwidth (<<10MHz) and a surface displacement sensor that can capture the ultrasonic "return" signal with bandwidth close to 300 MHz. The use of high frequencies enables the detection of smaller defect sites. The technique is time resolved with the sensor and probe as point (>>30-200 microns) beams. Current tests include characterizing properties of spot weld joints between two thin stainless steel plates. The long term objective is to transition the technique into a laser additive manufacturing tool.

  15. Feasibility study on nondestructively sensing meat's freshness using light scattering imaging technique.

    PubMed

    Li, Huanhuan; Sun, Xin; Pan, Wenxiu; Kutsanedzie, Felix; Zhao, Jiewen; Chen, Quansheng

    2016-09-01

    Rich nutrient matrix meat is the first-choice source of animal protein for many people all over the world, but it is also highly susceptible to spoilage due to chemical and microbiological activities. In this work, we attempted the feasibility study of rapidly and nondestructively sensing meat's freshness using a light scattering technique. First, we developed the light scattering system for image acquisition. Next, texture analysis was used for extracting characteristic variables from the region of interest (ROI) of a scattering image. Finally, a novel classification algorithm adaptive boosting orthogonal linear discriminant analysis (AdaBoost-OLDA) was proposed for modeling, and compared with two classical classification algorithms linear discriminant analysis (LDA) and support vector machine (SVM). Experimental results showed that classification results by AdaBoost-OLDA algorithm are superior to LDA and SVM algorithms, and eventually achieved 100% classification rate in the calibration and prediction sets. This work demonstrates that the developed light scattering technique has the potential in noninvasively sensing meat's freshness. PMID:27155320

  16. NONDESTRUCTIVE DETECTION OF DELAMINATION IN THERMAL BARRIER COATINGS USING ULTRASONIC TECHNIQUE

    SciTech Connect

    Chen, Roger H. L.; Zhang, Binwei; Alvin, Mary Anne

    2009-06-12

    Nondestructive testing using an acousto-ultrasonic technique has been utilized to detect the change of material properties and provide early warning of failure of thermal barrier coating (TBC) systems. Testing was performed on René N5 and Haynes 230 coupons with an applied NETL-bond coat, as well as on coupons containing both an applied MCrAlY bond coat and 7-YSZ top coat. The coupons were subjected to either cyclic or isothermal testing at 1100ºC. Ultrasonic testing was performed before and after thermal testing using piezoelectric sensors with dry contact on the surface of the coatings. Proof-of-concept test results indicated that changes in the properties of the 40m bond coat can be detected using the proposed technique. Waveforms generated via Pitch/Catch indicated minor changes within the bond coat applied to René N5 substrate after 400500 hours of cyclic oxidation at 1100°C. In contrast, marked differences in waveforms and travel time reflected significant crack formation and spallation of the bond coat from the Haynes 230 substrate. Finite element analysis (FEA) simulation of the wave propagation on a simplified TBC system with nonlinear effects was conducted. FEA results clearly show detection of a small embedded void incorporated to simulate delamination. Comparisons between experimental measurements and finite element simulations were used to estimate the material properties of the coatings and the substrate.

  17. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  18. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  19. Survey of Header Compression Techniques

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph

    2001-01-01

    This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves

  20. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.

    PubMed

    Hobbs, Brian; Tchoketch Kebir, Mohamed

    2007-04-11

    This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature. PMID:16904854

  1. Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen

    2015-09-01

    We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.

  2. Survey of data compression techniques

    SciTech Connect

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  3. Survey of data compression techniques

    SciTech Connect

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  4. Monitoring beach changes using GPS surveying techniques

    USGS Publications Warehouse

    Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.

    1993-01-01

    The adaptation of Global Positioning System (GPS) surveying techniques to beach monitoring activities is a promising response to this challenge. An experiment that employed both GPS and conventional beach surveying was conducted, and a new beach monitoring method employing kinematic GPS surveys was devised. This new method involves the collection of precise shore-parallel and shore-normal GPS positions from a moving vehicle so that an accurate two-dimensional beach surface can be generated. Results show that the GPS measurements agree with conventional shore-normal surveys at the 1 cm level, and repeated GPS measurements employing the moving vehicle demonstrate a precision of better than 1 cm. In addition, the nearly continuous sampling and increased resolution provided by the GPS surveying technique reveals alongshore changes in beach morphology that are undetected by conventional shore-normal profiles. The application of GPS surveying techniques combined with the refinement of appropriate methods for data collection and analysis provides a better understanding of beach changes, sediment transport, and storm impacts.

  5. Nondestructive Evaluation of Adhesively Bonded Joints by Acousto-Ultrasonic Technique and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    Reliable applications of adhesively bonded joints require an effective nondestructive evaluation technique for their bond strength prediction. To properly evaluate factors affecting bond strength, effects of defects such as voids and disbonds on stress distribution in the overlap region must be understood. At the same time, in order to use acousto-ultrasonic (AU) technique to evaluate bond quality, the effect of these defects on dynamic response of single lap joints must be clear. The stress distribution in a single lap joint with and without defects (void or disbond) is analyzed. A bar-Theta parameter which contains adherend and adhesive thickness and properties is introduced. It is shown for bonded joints with bar-Theta greater than 10, that a symmetric void or disbond in the middle of overlap up to the 70 percent of overlap length has negligible effect on bond strength. In contrast frequency response analyses by a finite element technique showed that the dynamic response is affected significantly by the presence of voids or disbonds. These results have direct implication in the interpretations of AU results. Through transmission attenuation and a number of AU parameters for various specimens with and without defects are evaluated. It is found that although void and disbond have similar effects on bond strength (stress distribution), they have completely different effects on wave propagation characteristics. For steel-adhesive-steel specimens with voids, the attenuation changes are related to the bond strength. However, the attenuation changes for specimens with disbond are fairly constant over a disbond range. In order to incorporate the location of defects in AU parameters, a weighting function is introduced. Using an immersion system with focused transducers, a number of AU parameters are evaluated. It is found that by incorporating weighting functions in these parameters better sensitivities (AU parameters vs. bond strength) are achieved. Acoustic emission

  6. The development of ultrasonic techniques for nondestructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Chapman, Gilbert B., II

    Demands for improvements in aerospace and automotive energy-efficiency, performance, corrosion resistance, body stiffness and style have increased the use of adhesive bonds to help meet those demands by providing joining technology that accommodates a wider variety of materials and design options. However, the history of adhesive bond performance clearly indicates the need for a robust method of assuring the existence of the required consistent level of adhesive bond integrity in every bonded region. This investigation seeks to meet that need by the development of new, complementary ultrasonic techniques for the evaluation of these bonds, and thus provide improvements over previous methods by extending the range of resolution, speed and applications. The development of a 20 MHz pulse-echo method for nondestructive evaluation of adhesive bonds will accomplish the assessment of bond joints with adhesive as thin as 0.1 mm. This new method advances the state of the art by providing a high-resolution, phase-sensitive procedure that identifies the bond state at each interface of the adhesive with the substrate(s), by the acquisition and analysis of acoustic echoes reflected from interfaces between layers with large acoustic impedance mismatch. Because interface echo amplitudes are marginal when the acoustic impedance of the substrate is close to that of the adhesive, a 25 kHz Lamb wave technique was developed to be employed in such cases, albeit with reduced resolution. Modeling the ultrasonic echoes and Lamb-wave signals was accomplished using mathematical expressions developed from the physics of acoustic transmission, attenuation and reflection in layered media. The models were validated by experimental results from a variety of bond joint materials, geometries and conditions, thereby confirming the validity of the methodology used for extracting interpretations from the phase-sensitive indications, as well as identifying the range and limits of applications. Results

  7. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  8. Multi-wave and hybrid imaging techniques: a new direction for nondestructive testing and structural health monitoring.

    PubMed

    Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun

    2013-01-01

    In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE) , structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions. PMID:24287536

  9. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    PubMed Central

    Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun

    2013-01-01

    In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE), structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions. PMID:24287536

  10. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    SciTech Connect

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-03-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  11. A Survey of Techniques for Approximate Computing

    DOE PAGESBeta

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  12. An overview of the nondestructive inspection techniques for coiled tubing and pipe

    SciTech Connect

    Stanley, R.K.

    1996-11-01

    Coiled steel tubing and pipe in the diameter range 20--90 mm (0.75--3.5 in.) are replacing conventional oilfield materials for a variety of purposes including workovers, drilling, production tubing, umbilicals, and flowlines. They offer all the advantages of long tubes with no threaded connections. Because coiled tubing is being produced to high quality standards, it is lasting longer than ever before, and the need has arisen for careful nondestructive inspection at frequent intervals to determine accumulated damage to the string and the need for repair. Currently, derating of used coiled tubing using nondestructive testing (NDT) is not performed. While NDT devices for oilfield tubulars have been well documented, little has been written regarding the NDT of coiled tubing. This paper outlines the current NDT methods used during the manufacture of new tubing and the inspection of used coiled tubing.

  13. Notched graphite polymimide composites at room and notched graphite polymide composites at room and elevated temperatures. [nondestructive test techniques

    NASA Technical Reports Server (NTRS)

    Awerbuch, J.; Perkinson, H. E.; Kamel, I. L.

    1980-01-01

    The fracture behavior in graphite/polyimide (Gr/PI) Celion 6000/PMR-15 composites was characterized. Emphasis was placed on the correlation between the observed failure modes and the deformation characteristics of center-notched Gr/Pl laminates. Crack tip damage growth, fracture strength and notch sensitivity, and the associated characterization methods were also examined. Special attention was given to nondestructive evaluation of internal damage and damage growth, techniques such as acoustic emission, X-ray radiography, and ultrasonic C-scan. Microstructural studies using scanning electron microscopy, photomicrography, and the pulsed nuclear magnetic resonance technique were employed as well. All experimental procedures and techniques are described and a summary of representative results for Gr/Pl laminates is given.

  14. Comparison of traditional nondestructive analysis of RERTR fuel plates with digital radiographic techniques

    SciTech Connect

    Davidsmeier, T.; Koehl, R.; Lanham, R.; O'Hare, E.; Wiencek, T

    2008-07-15

    The current design and fabrication process for RERTR fuel plates utilizes film radiography during the nondestructive testing and characterization. Digital radiographic methods offer a potential increases in efficiency and accuracy. The traditional and digital radiographic methods are described and demonstrated on a fuel plate constructed with and average of 51% by volume fuel using the dispersion method. Fuel loading data from each method is analyzed and compared to a third baseline method to assess accuracy. The new digital method is shown to be more accurate, save hours of work, and provide additional information not easily available in the traditional method. Additional possible improvements suggested by the new digital method are also raised. (author)

  15. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  16. Development of nondestructive testing techniques for plated-through holes in multilayer printed circuit boards

    NASA Technical Reports Server (NTRS)

    Anthony, P. L.; Mcmurtrey, J. E.

    1971-01-01

    The development of a nondestructive test with the capability to interrogate plated-through holes as small as 0.51 millimeters inside diameter is discussed. The system can detect defects such as holes, voids, cracks, and thin spots that reduce the current carrying capability of plates-through interconnects by 20 percent or more. Efforts were directed toward the design and fabrication of magnetic circuitry mutual coupling probes and to evaluate the effectiveness of these devices for detecting in multilayer board plated-through holes.

  17. Nondestructive biomarkers in ecotoxicology.

    PubMed Central

    Fossi, M C

    1994-01-01

    The aim of this article is to attempt a concise review of the state of the art of the nondestructive biomarkers approach in vertebrates, establishing a consensus on the most useful and sensitive nondestructive biomarker techniques, and proposing research priorities for the development and validation of this promising methodology. The following topics are discussed: the advantages of the use of nondestructive strategies in biomonitoring programs and the research fields in which nondestructive biomarkers can be applied; the biological materials suitable for nondestructive biomarkers and residue analysis in vertebrates; which biomarkers lend themselves to noninvasive techniques; and the validation and implementation strategy of the nondestructive biomarker approach. Examples of applications of this methodology in the hazard assessment of endangered species are also presented. Images Figure 1. C PMID:7713034

  18. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.

    PubMed

    Safinia, Laleh; Mantalaris, Athanasios; Bismarck, Alexander

    2006-03-28

    Polymer scaffolds tailored for tissue engineering applications possessing the desired pore structure require reproducible fabrication techniques. Nondestructive, quantitative methods for pore characterization are required to determine the pore size and its distribution. In this study, a promising alternative to traditional pore size characterization techniques is presented. We introduce a quantitative, nondestructive and inexpensive method to determine the pore size distribution of large soft porous solids based on the on the displacement of a liquid, that spreads without limits though a porous medium, by nitrogen. The capillary pressure is measured and related to the pore sizes as well as the pore size distribution of the narrowest bottlenecks of the largest interconnected pores in a porous medium. The measured pore diameters correspond to the narrowest bottleneck of the largest pores connecting the bottom with the top surface of a given porous solid. The applicability and reproducibility of the breakthrough technique is demonstrated on two polyurethane foams, manufactured using the thermally induced phase separation (TIPS) process, with almost identical overall porosity (60-70%) but very different pore morphology. By selecting different quenching temperatures to induce polymer phase separation, the pore structure could be regulated while maintaining the overall porosity. Depending on the quenching temperature, the foams exhibited either longitudinally oriented tubular macropores interconnected with micropores or independent macropores connected to adjacent pores via openings in the pore walls. The pore size and its distribution obtained by the breakthrough test were in excellent agreement to conventional characterization techniques, such as scanning electron microscopy combined with image analysis, BET technique, and mercury intrusion porosimetry. This technique is suitable for the characterization of the micro- and macropore structure of soft porous solids

  19. Noncontact, nondestructive elasticity evaluation of sound and demineralized human dental enamel using a laser ultrasonic surface wave dispersion technique

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Law, Susan; Swain, Michael; Xue, Jing

    2009-09-01

    Laser ultrasonic nondestructive evaluation (NDE) methods have been proposed to replace conventional in vivo dental clinical diagnosis tools that are either destructive or incapable of quantifying the elasticity of human dental enamel. In this work, a laser NDE system that can perform remote measurements on samples of small dimensions is presented. A focused laser line source is used to generate broadband surface acoustic wave impulses that are detected with a simplified optical fiber interferometer. The measured surface wave velocity dispersion spectrum is in turn used to characterize the elasticity of the specimen. The NDE system and the analysis technique are validated with measurements of different metal structures and then applied to evaluate human dental enamel. Artificial lesions are prepared on the samples to simulate different states of enamel elasticity. Measurement results for both sound and lesioned regions, as well as lesions of different severity, are clearly distinguishable from each other and fit well with physical expectations and theoretical value. This is the first time, to the best of our knowledge, that a laser-based surface wave velocity dispersion technique is successfully applied on human dental enamel, demonstrating the potential for noncontact, nondestructive in vivo detection of the development of carious lesions.

  20. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage.

    PubMed

    Mansour, Joseph M; Lee, Zhenghong; Welter, Jean F

    2016-03-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  1. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.

  2. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  3. A portable nondestructive real-time detection system for inspection of pork quality attributes using Vis/NIR spectral technique

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Peng, Yankun

    2016-05-01

    There are many preferences expressing the quality of pork: color, pH, especially TVB-N content. Different quality pork has different spectral feature (in range of 400 to 1000nm). To detect quality attributes of pork easily, real-time, nondestructively, a portable device based on Vis/NIR spectral technique was developed. The device is mainly made up of four units: light source, spectrometer, controller and display screen. After hardware platform established, reflectance spectra of 44 samples were collected from this system. And their physicochemical characteristics such as color parameters, pH value and the content of total volatile basic-nitrogen (TVB-N) were measured in standard methods. Spectrum data acquired were processed by Savitzky-Golay filter(S-G) for noise removal, and then operated by standard normal variable transformation (SNV) for baseline drifts relieving. The partial least squares regression (PLSR) was used to build prediction models for L*, a*, b* pH* and TVB-N content, which could gain good prediction results with Rp of 0.92, 0.91, 0.92, 0.95 and 0.96 respectively. The results demonstrated that this device could be a promising tool applied to detecting pork quality attributes portably, real-time and nondestructively.

  4. Flat nose low velocity drop-weight impact response of carbon fibre composites using non-destructive damage detection techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    2015-03-01

    This work is mainly concerned with the nondestructive post-impact damage evaluation of carbon fibre reinforced laminated composite panels subject to low velocity drop-weight impact by flat and round nose impactors. Quasi-isotropic laminates consisting of eight-, sixteen-, and twenty-four plies were impacted by flat and round nose impactors at different velocity levels. Load-time history data were recorded and plotted to correlate loaddrop as damage level to the impactor nose profiles. Test produced data, non-destructive damage detection techniques: visual, ultrasonic, and eddy- current, and computer simulations were utilised to identify and quantify status of the impact induced damage. To evaluate damage in relatively thick laminates (consisting of 24-Ply), the damage ratios and deflection quantities were correlated to the corresponding impactor nose profiles. Damage induced by the flat nose impactor to thick laminates was compared against the data produced by the round nose impactor. Results show that relatively thin laminates were largely affected by the impactor nose. Reasonable difference was observed in damage caused by flat and round impactor nose profiles to thick laminates impacted at relatively higher velocity impacts. Resultswere compared and validated against simulation produced data.

  5. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  6. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  7. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  8. Non-destructive techniques used during the restoration of the relief "Madonna and Child" by Jacopo Sansovino

    NASA Astrophysics Data System (ADS)

    Buccolieri, Alessandro; Buccolieri, Giovanni; Castellano, Alfredo; Colosso, Pietro Quarta; Miotto, Lidiana

    2015-08-01

    The characterization of the main pigments present in the papier-mâché relief depicting a " Madonna and Child" by Jacopo Sansovino, preserved at the National Museum of Fine Arts in Budapest, has been carried out using non-destructive techniques. In particular, an XRF portable instrument and an XRD apparatus were used in order to determine the elements and compounds of the pigments, respectively. The experimental results indicate that zinc and barium are present on the relief, and this demonstrates that the artwork has undergone restoration since zinc has been in use since 1840 AD. Moreover, radiographic and stereoradiographic analyses were performed several times in order to assess the condition of the work and, above all, the state of the boards that support the work, the cavity inside the cardboard, the surface and the presence of nails.

  9. Nondestructive evaluation

    SciTech Connect

    Martz, H E

    1998-01-01

    The Nondestructive Evaluation (NDE) thrust area at Lawrence Livermore National Laboratory (LLNL) supports initiatives that advance inspection science and technology. The goal is to provide cutting-edge technologies, that show promise for quantitative inspection and characterization tools two to three years into the future. The NDE thrust area supports a multidisciplinary team, consisting of mechanical and electronics engineers, physicists, materials and computer scientists, chemists, technicians, and radiographers. These team members include personnel that cross departments within LLNL, and some are from academia and industry, within the US and abroad. This collaboration brings together the necessary and diver disciplines to provide the key scientific and technological advancements required to meet LLNL programmatic and industrial NDE challenges. The primary contributions of the NDE thrust area this year are described in these five reports: (1) Image Recovery Techniques for X-Ray Computed Tomography for Limited-Data Environments; (2) Techniques for Enhancing Laser Ultrasonic Nondestructive Evaluation; (3) Optical Inspection of Glass-Epoxy Bonds; (4) Miniature X-Ray Source Development; and (5) Improving Computed Tomography Design and Operation Using Simulation Tools.

  10. New nondestructive techniques for the detection and quantification of corrosion in aircraft structures

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Cramer, K. E.; Johnston, P. H.; Namkung, M.

    1995-01-01

    An overview is presented of several techniques under development at NASA Langley Research Center for detection and quantification of corrosion in aircraft structures. The techniques have been developed as part of the NASA Airframe Structural Integrity Program. The techniques focus on the detection of subsurface corrosion in thin laminated structures. Results are presented on specimens with both manufactured defects, for calibration of the techniques, and on specimens removed from aircraft.

  11. Integration of infrared and optical imaging techniques for the nondestructive inspection of aeronautic parts

    NASA Astrophysics Data System (ADS)

    López, F.; Sfarra, S.; Ibarra-Castanedo, C.; Paoletti, D.; Maldague, X.

    2015-05-01

    This work focuses in the implementation of infrared and optical imaging techniques for the inspection of aeronautics parts. To this aim, a helicopter blade with known defects is inspected with four different techniques: long pulse thermography, pulsed thermography, digital speckle photography (DSP) and holographic interferometry (HI). The first two techniques belongs to the group of infrared imaging techniques, which are based on the analysis of the infrared thermal patterns in order to detect internal anomalies in the material; whilst the last two (DSP and HI) corresponds to the optical imaging techniques which make use of visible light to measure the material response to an applied stress. Both techniques were applied using the active approach, i.e. an external stimulation is applied in order to produce a gradient in either, the thermal and/or displacement field of the material. The results are then compared in order to evaluate the advantages and limitations of each technique.

  12. Micro-compression: a novel technique for the nondestructive assessment of local bone failure.

    PubMed

    Müller, R; Gerber, S C; Hayes, W C

    1998-12-01

    Many bones within the axial and appendicular skeleton are subjected to repetitive, cyclic loading during the course of ordinary daily activities. If this repetitive loading is of sufficient magnitude or duration, fatigue failure of the bone tissue may result. In clinical orthopedics, trabecular fatigue fractures are observed as compressive stress fractures in the proximal femur, vertebrae, calcaneus and tibia, and are often preceded by buckling and bending of microstructural elements. However, the relative importance of bone density and architecture in the etiology of these fractures is poorly understood. The aim of the study was to investigate failure mechanisms of 3D trabecular bone using micro-computed tomography (microCT). Because of its nondestructive nature, microCT represents an ideal approach for performing not only static measurements of bone architecture but also dynamic measurements of failure initiation and propagation as well as damage accumulation. For the purpose of the study, a novel micro-compression device was devised to measure loaded trabecular bone specimens directly in a micro-tomographic system. The measurement window in the device was made of a radiolucent, highly stiff plastic to enable X-rays to penetrate the material. The micro-compressor has an outer diameter of 19 mm and a total length of 65 mm. The internal load chamber fits wet or dry bone specimens with maximal diameters of 9 mm and maximal lengths of 22 mm. For the actual measurement, first, the unloaded bone is measured in the microCT. Second, a load-displacement curve is recorded where the load is measured with an integrated mini-button load cell and the displacement is computed directly from the microCT scout-view. For each load case, a 3D snap-shot of the structure under load is taken providing 34 microm nominal resolution. Initial measurements included specimens from bovine tibiae and whale spine to investigate the influence of the structure type on the failure mechanism. In a

  13. Recommendations for abortion surveys using the ballot-box technique.

    PubMed

    Medeiros, Marcelo; Diniz, Debora

    2012-07-01

    The article lists recommendations for dealing with methodological aspects of an abortion survey and makes suggestions for testing and validating the survey questionnaire. The recommendations are based on the experience of the Brazilian Abortion Survey (PNA), a random sample household survey that used the ballot-box technique and covered adult women in all urban areas of the country. PMID:22872333

  14. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this

  15. Development and optimization of thermographic techniques for Non-Destructive Evaluation of multilayered structures

    NASA Astrophysics Data System (ADS)

    Gavrilov, Dmitry J.

    Quality control of modern materials is of the utmost importance in science and industry. Methods for nondestructive evaluation of material properties and the presence of defects are numerous. They differ in terms of their sensitivity and applicability in various conditions, and they provide different kinds of data such as the speed of sound in the material, its hardness, radiation absorption, etc. Based on measured characteristics an analyst makes a decision on the material studied. This work addresses a class of methods known as active thermographic analysis. Thermography analyzes the temperature of the surface of the sample under different external conditions. By keeping track of temperature changes at the surface caused by a deposition of heat on the sample one can determine its material properties such as theand processing the data captured it is possible to make decisions on parameters of this sample. Among the data which can be acquired are such important information as the location of internal defects (e.g., detachments, hollows, inclusions), thickness of the material layers, thermal parameters of the material and the location of internal defects (e.g., detachments, hollows, inclusions). The first part of this research investigates a method for analysis of layered composite materials using the approach based on interference of so called temperature waves. As demonstrated using the expressions derived, one can determine the thermal properties of the layers of the sample by applying a harmonically modulated heat flux to the surfaces and measuring the phase of the periodically changing surface temperature. This approach can be of use in the field of designing and analysis of composite thermal insulation coatings. In the second part of this work a method of analyzing objects of fine art was investigated, particularly - detection of subsurface defects. In the process of preserving art it is of primary importance to determine whether restoration is necessary

  16. Development of nondestructive evaluation techniques for high-temperature ceramic heat exchanger components

    NASA Astrophysics Data System (ADS)

    1980-10-01

    Detection of electric discharge machined notches in a silicon carbide tube by an ultrasonic bore side probe under microcomputer control was demonstrated. Use of the reflection mode was shown to enhance the sensitivity of flaw detection with an acoustic microscope. In this configuration, the transducer and laser scanned coverslip are both on the tube outer surface, eliminating the need to fill the tube with water. A conceptual design is presented for inspecting tubes up to seven feet long in both through transmission and reflection mode configurations. A comparison of NDE techniques for ceramic butt joints showed holographic interferometry to be generally better than dye-penetrant, radiographic, or ultrasonic techniques for characterizing a crack-like inner wall defect. Pitch catch and pulse echo ultrasonic techniques also indicated the presence of an anomaly in the region identified as flawed via holography, while radiographic and penetrant testing results were ambiguous.

  17. Pulsed remote eddy current field array technique for nondestructive inspection of ferromagnetic tube

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Li, Xuechao

    2010-03-01

    One pick-up coil with a large inner diameter is usually used in pulsed remote field eddy current technique, which decreases the identification ability to defect. With the purpose of overcoming this problem, array pulsed remote field eddy current technique is proposed to enhance the precision in quantification of defect. The finite element method is used to optimise the structure of probe and analyse of the influence effect of response signal with the variation of the defect depths. The results of experimental work confirm that the array pulsed remote field technique has the advantages of high precision and sensitivity, which can be used as an effective method for quantification of defect in tube.

  18. Gpr and Seismic Based Non-Destructive Geophysical Survey for Reinforcement of Historical Fire Tower of Sopron-Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Taller, G.; Nagy, P.; Tildy, P.; Pronay, Z.; Toros, E.

    2013-12-01

    The Fire-Tower which is located in the main square at the hearth of Sopron is the symbol of the city. The museum of Sopron exists in the Storno-house west from the tower. The new city hall stands next to the tower to the east. Funds are from the roman age while the tower was first mentioned in writing in 1409. In 1676, it was burned down to the ground, but re-constructed. In 1894, the old City Hall was deconstucted, but the tower became unstable. István Kiss and Frigyes Schulek saved it by the walling up of the gate. In the year 1928, the scuptures of the main gate which symbolizes the fidelity of the town was sculpted by Zsigmond Kisfaludy Strobl. The old building was deconstructed from its west side, a new concrate museum was built in 1970. After years, important renovation and reinforcement studies had to be needed. For this aim, during the renovation and reinforcement studies, GPR and Seismic based non-destructive geophysical surveys were carried out before and after cement injection to observe the changes of the wall conditions of the historical tower located in Sopron-Hungary for understanding the success of the reinforcements studies. In the GPR survey, 400 MHz and 900 MHz antennas were used. The space between each profiles were taken as 0.5 m for 400 MHz and 0.25m for 900 MHz respectively. After the injection process, reflections from the fractured and porous zones were weakened imaged clearly by GPR data and significant rise of the p-wave velocities were observed.

  19. Survey of Radiographic Requirements and Techniques.

    ERIC Educational Resources Information Center

    Farman, Allan G.; Shawkat, Abdul H.

    1981-01-01

    A survey of dental schools revealed little standardization of student requirements for dental radiography in the United States. There was a high degree of variability as to what constituted a full radiographic survey, which has implications concerning the maximum limits to patient exposure to radiation. (Author/MLW)

  20. Nondestructive Evaluation of Holed CFRP Laminates by a New Technique to Visualize Propagation of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Yashiro, Shigeki; Takatsubo, Junji; Toyama, Nobuyuki; Okabe, Tomonaga; Takeda, Nobuo

    This study investigated damage detection in holed CFRP laminates by using a newly developed technique for visualizing ultrasonic waves. This technique provided a moving diagram of propagating waves with non-contact scanning by a pulsed laser. Its measurement scheme overcame the difficulties of sensitivity in conventional methods and enabled us to observe ultrasonic waves on CFRP laminates. We observed two types of ultrasonic waves propagating on the CFRP laminate in the measured snapshots. These waves were identified as the S0 and the A0 Lamb modes by the dispersion curves, confirming the validity of the visualization technique for composite laminates. Furthermore, ply cracks and delamination, as well as the damage during manufacturing, were observed near the hole in the loaded specimens, and we successfully visualized the Lamb waves scattered by the delamination. The region of wave scattering agreed with the damage observed by soft X-ray radiography. These inspection results demonstrated the usefulness of the visualization technique in inspecting composite laminates.

  1. Eddy current technique applied to the nondestructive evaluation of turbine blade wall thickness

    NASA Astrophysics Data System (ADS)

    Le Bihan, Yann; Joubert, Pierre-Yves; Placko, Dominique

    2000-05-01

    The high pressure turbine blades of jet engines show internal channels designed for air cooling. These recesses define the internal walls (partitions) and external walls of the blade. The external wall thickness is a critical parameter which has to be systematically checked in order to ensure the blade strength. The thickness evaluation is usually lead by ultrasonic technique or by X-ray tomography. Nevertheless, both techniques present some drawbacks related to measurement speed and automation capability. These drawbacks are bypassed by the eddy current (EC) technique, well known for its robustness and reliability. However, the wall thickness evaluation is made difficult because of the complexity of the blade geometry. In particular, some disturbances appear in the thickness evaluation because of the partitions, which exclude the use of classical EC probes such as cup-core probe. In this paper, we show the main advantages of probes creating an uniformly oriented magnetic field in order to reduce the partition disturbances. Furthermore, we propose a measurement process allowing to separate the wall thickness parameter from the EC signals. Finally, we present some experimental results validating the proposed technique.

  2. Application of ultrasonic technique in nondestructive food quality analysis: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quality control and safe storage is important in food processing and storage. Composition of food has more effect on quality in terms of nutritional values, functional properties, commercial values and storage conditions of the food products. Traditional analytical techniques that are used for compo...

  3. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  4. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  5. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  6. Non-Destructive Techniques in the Tacis and Phare Nuclear Safety Programmes

    SciTech Connect

    Bieth, Michel

    2002-07-01

    Decisions regarding the verification of design plant lifetime and potential license renewal periods involve a determination of the component and circuit condition. In Service Inspection of key reactor components becomes a crucial consideration for continued safe plant operation. The determination of the equipment properties by Non Destructive Techniques during periodic intervals is an important aspect of the assessment of fitness-for-service and safe operation of nuclear power plants The Tacis and Phare were established since 1991 by the European Union as support mechanisms through which projects could be identified and addressed satisfactorily. In Nuclear Safety, the countries mainly concerned are Russia, Ukraine, Armenia, and Kazakhstan for the Tacis programme, and Bulgaria, Czech Republic, Hungary, Slovak Republic, Lithuania, Romania and Slovenia for the Phare programme. The Tacis and Phare programs concerning the Nuclear Power Plants consist of: - On Site Assistance and Operational Safety, - Design Safety, - Regulatory Authorities, - Waste management, and are focused on reactor safety issues, contributing to the improvement in the safety of East European reactors and providing technology and safety culture transfer. The main parts of these programmes are related to the On-Site Assistance and to the Design Safety of VVER and RBMK Nuclear power plants where Non Destructive Techniques for In Service Inspection of the primary circuit components are addressed. (authors)

  7. Inspection of the Space Shuttle External Tank SOFI Using Near-Field and Focused Millimeter Wave Nondestructive Testing Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.

  8. Effective combination of DIC, AE, and UPV nondestructive techniques on a scaled model of the Belgian nuclear waste container

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Sokratis N.; Areias, Lou; Pyl, Lincy; Vantomme, John; Van Marcke, Philippe; Coppens, Erik; Aggelis, Dimitrios G.

    2015-03-01

    Protecting the environment and future generations against the potential hazards arising from high-level and heat emitting radioactive waste is a worldwide concern. Following this direction, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the reference design which considers the geological disposal of the waste in purely indurated clay. In this design the wastes are first post-conditioned in massive concrete structures called Supercontainers before being transported to the underground repositories. The Supercontainers are cylindrical structures which consist of four engineering barriers that from the inner to the outer surface are namely: the overpack, the filler, the concrete buffer and possibly the envelope. The overpack, which is made of carbon steel, is the place where the vitrified wastes and spent fuel are stored. The buffer, which is made of concrete, creates a highly alkaline environment ensuring slow and uniform overpack corrosion as well as radiological shielding. In order to evaluate the feasibility to construct such Supercontainers two scaled models have so far been designed and tested. The first scaled model indicated crack formation on the surface of the concrete buffer but the absence of a crack detection and monitoring system precluded defining the exact time of crack initiation, as well as the origin, the penetration depth, the crack path and the propagation history. For this reason, the second scaled model test was performed to obtain further insight by answering to the aforementioned questions using the Digital Image Correlation, Acoustic Emission and Ultrasonic Pulse Velocity nondestructive testing techniques.

  9. A survey of techniques for corrosion monitoring

    SciTech Connect

    Mickalonis, J.I.

    1992-10-01

    Corrosion monitoring techniques have improved with advances in instrumentation technology and corrosion research. Older techniques, such as coupon immersion, generally provide historical information. The new electrochemical techniques, which have not been used widely at SRS, allow on-line monitoring and correlation with process changes. These techniques could improve the corrosion assessment of the waste tanks to be used for In-Tank Precipitation and Extended Sludge Processing. A task was initiated to place an electrochemical probe into tank 48 for testing the utility of this technique for waste tank applications.

  10. Evaluation of bonds in armor plate and other materials using infrared nondestructive testing techniques.

    PubMed

    Vogel, P E

    1968-09-01

    Reported here are the results of using an ir technique in evaluating the bond in hot-roll bonded armor plate, a coating bond, and the bonds in the three-layer construction of a small missile motor. When a specimen is exposed to heat, the heat flows into it at a rate that can be determined. If the flow is interrupted by a void, the inclusion of a material of different conductivity, or any similar thermal barrier, a difference in surface temperature will result that can be defined with an ir radiometer or thermograph. Lack of bond, while not presenting a gross void, is shown here to be a sufficient impediment to be distinguishable. PMID:20068876

  11. Nondestructive determination of plutonium mass in spent fuel: prelliminary modeling results using the passive neutron Albedo reactivity technique

    SciTech Connect

    Evans, Louise G; Tobin, Stephen J; Schear, Melissa A; Menlove, Howard O; Lee, Sang Y; Swinhoe, Martyn T

    2009-01-01

    There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum

  12. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect

    Tobin, Stephen J; Conlin, Jeremy L; Evans, Louise G; Hu, Jianwei; Blanc, Pauline C; Lafleur, Adrienne M; Menlove, Howard O; Schear, Melissa A; Swinhoe, Martyn T; Croft, Stephen; Fensin, Michael L; Freeman, Corey R; Koehler, William E; Mozin, V; Sandoval, N P; Lee, T H; Cambell, L W; Cheatham, J R; Gesh, C J; Hunt, A; Ludewigt, B A; Smith, L E; Sterbentz, J

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  13. Nondestructive, in-process inspection of inertia friction welding : an investigation into a new sensing technique.

    SciTech Connect

    Hartman, D. A.; Cola, M. J.; Dave, V. R.; Dozhier, N. G.; Carpenter, R. W.

    2002-01-01

    This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase transformations (if applicable) in friction welding processes. The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for validating the capabilities of this new sensing technique. A probabilistic neural network is employed in this work to analyze the acoustical emission's frequency spectrum in an attempt to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, in-process monitoring of friction welds.

  14. X-ray computed tomography imaging: A not-so-nondestructive technique

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.; Sears, Hazel; Ebel, Denton S.; Wallace, Sean; Friedrich, Jon M.

    2016-04-01

    X-ray computed tomography has become a popular means for examining the interiors of meteorites and has been advocated for routine curation and for the examination of samples returned by missions. Here, we report the results of a blind test that indicate that CT imaging deposits a considerable radiation dose in a meteorite and seriously compromises its natural radiation record. Ten vials of the Bruderheim L6 chondrite were placed in CT imager and exposed to radiation levels typical for meteorite studies. Half were retained as controls. Their thermoluminescence (TL) properties were then measured in a blind test. Five of the samples had TL data unaltered from their original (~10 cps) while five had very strong signals (~20,000 cps). It was therefore very clear which samples had been in the CT scanner. For comparison, the natural TL signal from Antarctic meteorites is ~5000-50,000 cps. Using the methods developed for Antarctic meteorites, the apparent dose absorbed by the five test samples was calculated to be 83 ± 5 krad, comparable with the highest doses observed in Antarctic meteorites and freshly fallen meteorites. While these results do not preclude the use of CT scanners when scientifically justified, it should be remembered that the record of radiation exposure to ionizing radiations for the sample will be destroyed and that TL, or the related optically stimulated luminescence, are the primary modern techniques for radiation dosimetry. This is particularly important with irreplaceable samples, such as meteorite main masses, returned samples, and samples destined for archive.

  15. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Cordes, Nikolaus L.; Havrilla, George J.; Usov, Igor O.; Obrey, Kimberly A.; Patterson, Brian M.

    2014-11-01

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.

  16. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    NASA Astrophysics Data System (ADS)

    Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.

    2015-02-01

    The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.

  17. Survey of immunoassay techniques for biological analysis

    SciTech Connect

    Burtis, C.A.

    1986-10-01

    Immunoassay is a very specific, sensitive, and widely applicable analytical technique. Recent advances in genetic engineering have led to the development of monoclonal antibodies which further improves the specificity of immunoassays. Originally, radioisotopes were used to label the antigens and antibodies used in immunoassays. However, in the last decade, numerous types of immunoassays have been developed which utilize enzymes and fluorescent dyes as labels. Given the technical, safety, health, and disposal problems associated with using radioisotopes, immunoassays that utilize the enzyme and fluorescent labels are rapidly replacing those using radioisotope labels. These newer techniques are as sensitive, are easily automated, have stable reagents, and do not have a disposal problem. 6 refs., 1 fig., 2 tabs.

  18. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  19. Survey of Software Assurance Techniques for Highly Reliable Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2004-01-01

    This document provides a survey of software assurance techniques for highly reliable systems including a discussion of relevant safety standards for various industries in the United States and Europe, as well as examples of methods used during software development projects. It contains one section for each industry surveyed: Aerospace, Defense, Nuclear Power, Medical Devices and Transportation. Each section provides an overview of applicable standards and examples of a mission or software development project, software assurance techniques used and reliability achieved.

  20. Superresolution imaging: a survey of current techniques

    NASA Astrophysics Data System (ADS)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  1. Survey Of High Speed Test Techniques

    NASA Astrophysics Data System (ADS)

    Gheewala, Tushar

    1988-02-01

    The emerging technologies for the characterization and production testing of high-speed devices and integrated circuits are reviewed. The continuing progress in the field of semiconductor technologies will, in the near future, demand test techniques to test 10ps to lOOps gate delays, 10 GHz to 100 GHz analog functions and 10,000 to 100,000 gates on a single chip. Clearly, no single test technique would provide a cost-effective answer to all the above demands. A divide-and-conquer approach based on a judicial selection of parametric, functional and high-speed tests will be required. In addition, design-for-test methods need to be pursued which will include on-chip test electronics as well as circuit techniques that minimize the circuit performance sensitivity to allowable process variations. The electron and laser beam based test technologies look very promising and may provide the much needed solutions to not only the high-speed test problem but also to the need for high levels of fault coverage during functional testing.

  2. Utilization of nondestructive electrochemical techniques in characterizing microbiologically influenced corrosion (MIC) of API-5L X65 carbon linepipe steel: Laboratory study

    NASA Astrophysics Data System (ADS)

    Al-Abbas, F.; Kakpovbia, A.; Mishra, B.; Olson, D.; Spear, J.

    2012-05-01

    Nondestructive electrochemical techniques were used to investigate the microbiologically influenced corrosion (MIC) by Sulfate Reducing Bacteria (SRB) corrosion of API 5L X65 linepipe steel. These techniques included Electrochemical Impedance Spectroscopy (EIS), open circuit potential (OCP) and linear polarization resistance (Rp). OCP trend showed anodic polarization of 67 mV between the biotic media with reference to abiotic media. These shifts were attributed to the cathodic side reactions produced by the metabolic activity of SRB. Through circuit modeling, EIS results were used to interpret the real time interactions between the electrode, biofilm and solution interfaces.

  3. A survey of data mining techniques

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Karimabadi, H.

    2005-12-01

    Data mining is the act of extracting useful knowledge from a data set. This knowledge can take many forms. It can be in the detection of features of interest. It can be in the form of statistical analysis of data sets. It can be in the form of predictive expressions describing the data or relationships between data. It can be in the form of anomaly detection, serendipitous events which require further investigation. The simplest form of data mining consists of manual inspection of the data sets. This has been the norm in space physics for decades. The most advanced forms of data mining make use of emerging computer science methods, including advances in artificial intelligence. In this presentation we will give a brief introduction to some of the resources that are available for performing advanced data mining. We will focus on giving an overview of some data mining techniques, and how they have been, or could be, applied to space physics problems.

  4. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  5. NDE: An effective approach to improved reliability and safety. A technology survey. [nondestructive testing of aircraft structures

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1976-01-01

    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted.

  6. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  7. A Survey of Architectural Techniques For Improving Cache Power Efficiency

    SciTech Connect

    Mittal, Sparsh

    2013-01-01

    Modern processors are using increasingly larger sized on-chip caches. Also, with each CMOS technology generation, there has been a significant increase in their leakage energy consumption. For this reason, cache power management has become a crucial research issue in modern processor design. To address this challenge and also meet the goals of sustainable computing, researchers have proposed several techniques for improving energy efficiency of cache architectures. This paper surveys recent architectural techniques for improving cache power efficiency and also presents a classification of these techniques based on their characteristics. For providing an application perspective, this paper also reviews several real-world processor chips that employ cache energy saving techniques. The aim of this survey is to enable engineers and researchers to get insights into the techniques for improving cache power efficiency and motivate them to invent novel solutions for enabling low-power operation of caches.

  8. Pattern recognition techniques in microarray data analysis: a survey.

    PubMed

    Valafar, Faramarz

    2002-12-01

    Recent development of technologies (e.g., microarray technology) that are capable of producing massive amounts of genetic data has highlighted the need for new pattern recognition techniques that can mine and discover biologically meaningful knowledge in large data sets. Many researchers have begun an endeavor in this direction to devise such data-mining techniques. As such, there is a need for survey articles that periodically review and summarize the work that has been done in the area. This article presents one such survey. The first portion of the paper is meant to provide the basic biology (mostly for non-biologists) that is required in such a project. This part is only meant to be a starting point for those experts in the technical fields who wish to embark on this new area of bioinformatics. The second portion of the paper is a survey of various data-mining techniques that have been used in mining microarray data for biological knowledge and information (such as sequence information). This survey is not meant to be treated as complete in any form, since the area is currently one of the most active, and the body of research is very large. Furthermore, the applications of the techniques mentioned here are not meant to be taken as the most significant applications of the techniques, but simply as examples among many. PMID:12594081

  9. Nondestructive and Rapid Concurrent Estimation of Paracetamol and Nimesulide in Their Combined Dosage Form Using Raman Spectroscopic Technique

    PubMed Central

    Lakhwani, Gargi R.; Sherikar, O. D.; Mehta, Priti J.

    2013-01-01

    A rapid, nondestructive Raman spectroscopic method was developed for quantitative estimation of paracetamol and nimesulide in their combined dosage form. A Raman univariate calibration model was developed by measuring the peak intensities of paracetamol and nimesulide at 853 cm−1 and 1336 cm−1, respectively. The developed method was successfully applied for in situ, concurrent estimation of paracetamol and nimesulide in their combined dosage and method was also validated according to International Conference on Harmonisation guidelines. Thus, the developed Raman spectroscopic method can be applied for simultaneous estimation of paracetamol and nimesulide in their combined dosage form as a process analytical technology tool by pharmaceutical industries for routine quality control. PMID:24019571

  10. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1992-01-01

    The development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of composite materials requires a better understanding of the physics underlying the interaction of ultrasound with the material. The purpose of this investigation is to identify and characterize the features of complex, three dimensional materials that limit the ability of ultrasound to detect flaws in this broad class of emerging materials. In order to explore the interaction of ultrasound with such complex media, we investigate the characteristics of ultrasonic fields which have propagated through samples with complex geometries and/or internal architecture. We focus on the physics that underlies the detection of flaws in such materials.

  11. [Rapid nondestructive detection of water content in fresh pork based on spectroscopy technique combined with support vector machine].

    PubMed

    Zhang, Hai-Yun; Peng, Yan-Kun; Wang, Wei; Zhao, Song-Wei; Liu, Qiao-Qiao

    2012-10-01

    Visible near infrared reflectance spectra in the range of 350 nm to 1700 nm were collected from 98 pork samples to develop online, rapid and nondestructive detection system for water content in fresh pork Median smoothing filter (M-filter), multiplication scatter correlation (MSC) and first derivative (FD) were used as compound preprocessing method to reduce noise present in the original spectrum. Seventy four samples were randomly selected to develop training model and remaining 24 samples were used to test the model. The optimal punishment parameters for the support vector machine (SVM) were determined by using cross--validation and grid--search in the training set. SVM prediction model was developed with the radial basis function (RBF) and the developed model was compared with the model developed by partial least squares regression (PLSR) method. SVM prediction model based on RBF had the correlation coefficient and root mean standard error of 0.96 and 0.32 respectively in the training set. The model obtained correlation coefficient of 0.87 and root mean square error of 0.67 in the test set. The result thus obtained demonstrates the applicability of SVM model for rapid, nondestructive detection of water content in pork. PMID:23285889

  12. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Tomar, B. S.; Kaushik, T. C.; Andola, Sanjay; Ramniranjan; Rout, R. K.; Kumar, Ashwani; Paranjape, D. B.; Kumar, Pradeep; Ramakumar, K. L.; Gupta, S. C.; Sinha, R. K.

    2013-03-01

    Pulsed neutrons emitted from a plasma focus (PF) device have been used for the first time for the non-destructive assay of 235U content in different chemical forms (oxide and metal). The PF device generates (1.2±0.3)×109 D-D fusion neutrons per shot with a pulse width of 46±5 ns. The method involves the measurement of delayed neutrons from an irradiated sample 50 ms after exposure to the neutron pulse for a time of about 100 s in the multichannel scaling (MCS) mode. The calibration of the active interrogation delayed neutron counter (AIDNEC) system was carried out by irradiating U3O8 samples of varying amounts (0.1-40 g) containing enriched 235U (14.8%) in the device. The delayed neutrons were monitored using a bank of six 3He detectors. The sensitivity of the system was found to be about 100 counts/s/g over the accumulation time of 25 s per neutron pulse of ˜109. The detection limit of the system is estimated to be 18 mg of 235U. The system can be suitably modified for applications toward non-destructive assay of fissile content in waste packets.

  13. Preliminary technique assessment for nondestructive evaluation certification of the NNWSI [Nevada Nuclear Waste Storage Investigations] disposal container closure

    SciTech Connect

    Day, R.A.

    1988-12-31

    Under the direction of the Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program, the Nevada Nuclear Waste Storage Investigations (NNWSI) project is evaluating a candidate repository site at Yucca Mountain, Nevada, for permanent disposal of high-level nuclear waste. The Lawrence Livermore National Laboratory (LLNL), a participant in the NNWSI project, is developing waste package designs to meet the NRC requirements. One aspect of this waste package is the nondestructive testing of the final closure of the waste container. The container closure weld can best be nondestructively examined (NDE) by a combination of ultrasonics and liquid penetrants. This combination can be applied remotely and can meet stringent quality control requirements common to nuclear applications. Further development in remote systems and inspection will be required to meet anticipated requirements for flaw detection reliability and sensitivity. New research is not required but might reduce cost or inspection time. Ultrasonic and liquid penetrant methods can examine all closure methods currently being considered, which include fusion welding and inertial welding, among others. These NDE methods also have a history of application in high radiation environments and a well developed technology base for remote operation that can be used to reduce development and design costs. 43 refs., 23 figs., 3 tabs.

  14. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    SciTech Connect

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  15. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    NASA Astrophysics Data System (ADS)

    Kajiya, E. A. M.; Campos, P. H. O. V.; Rizzutto, M. A.; Appoloni, C. R.; Lopes, F.

    2014-02-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis ("pinacologia"), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled "Violeiro" (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti.

  16. A survey of visual preprocessing and shape representation techniques

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  17. Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies.

    PubMed

    Caldwell, Zachary R; Zgliczynski, Brian J; Williams, Gareth J; Sandin, Stuart A

    2016-01-01

    Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods-belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal) and region of study, but was related to the researcher's home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%), their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data. PMID:27111085

  18. Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies

    PubMed Central

    Caldwell, Zachary R.; Zgliczynski, Brian J.; Williams, Gareth J.; Sandin, Stuart A.

    2016-01-01

    Dramatic changes in populations of fishes living on coral reefs have been documented globally and, in response, the research community has initiated efforts to assess and monitor reef fish assemblages. A variety of visual census techniques are employed, however results are often incomparable due to differential methodological performance. Although comparability of data may promote improved assessment of fish populations, and thus management of often critically important nearshore fisheries, to date no standardized and agreed-upon survey method has emerged. This study describes the use of methods across the research community and identifies potential drivers of method selection. An online survey was distributed to researchers from academic, governmental, and non-governmental organizations internationally. Although many methods were identified, 89% of survey-based projects employed one of three methods–belt transect, stationary point count, and some variation of the timed swim method. The selection of survey method was independent of the research design (i.e., assessment goal) and region of study, but was related to the researcher’s home institution. While some researchers expressed willingness to modify their current survey protocols to more standardized protocols (76%), their willingness decreased when methodologies were tied to long-term datasets spanning five or more years. Willingness to modify current methodologies was also less common among academic researchers than resource managers. By understanding both the current application of methods and the reported motivations for method selection, we hope to focus discussions towards increasing the comparability of quantitative reef fish survey data. PMID:27111085

  19. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints.

    PubMed

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (microFTIR) and micro-Raman (microRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor. PMID:19081288

  20. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints

    NASA Astrophysics Data System (ADS)

    Striová, Jana; Coccolini, Gabriele; Micheli, Sara; Lofrumento, Cristiana; Galeotti, Monica; Cagnini, Andrea; Castellucci, Emilio Mario

    2009-08-01

    Five polychrome prints representing famous painters, such as Albrecht Dürer, were analyzed using a non-destructive and non-invasive methodology as required by the artwork typology. The diagnostic strategy includes X-ray fluorescence (XRF), reflectance micro-infrared (μFTIR) and micro-Raman (μRaman) spectroscopy. These prints were realized with a la poupée method that involves application of the polychrome inks on a single copper plate, before the printing process. A broad range of compounds (i.e., cinnabar, red lead, white lead, umber earth, hydrated calcium sulfate, calcium carbonate, amorphous carbon, and Prussian blue) was employed as chalcographic inks, using linseed oil as a binding medium. Gamboge was identified in the delicate finishing brush touches realized in watercolor.

  1. High-resolution X-ray imaging—a powerful nondestructive technique for applications in semiconductor industry

    NASA Astrophysics Data System (ADS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-08-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy).

  2. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  3. Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers

    NASA Astrophysics Data System (ADS)

    Sawczak, M.; Kamińska, A.; Rabczuk, G.; Ferretti, M.; Jendrzejewski, R.; Śliwiński, G.

    2009-03-01

    The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe 2O 3 and Pb 3O 4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.

  4. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.

    PubMed

    Park, Joung-Man; Kim, Dae-Sik; Kim, Sung-Ryong

    2003-08-15

    Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole (PBO, Zylon) and poly(p-phenylene terephthalamide) (PPTA, Kevlar) fibers/epoxy composites were investigated using a micromechanical technique and nondestructive acoustic emission (AE). The interfacial shear strength (IFSS) and work of adhesion, Wa, of PBO or Kevlar fiber/epoxy composites increased with oxygen-plasma treatment, due to induced hydrogen and covalent bondings at their interface. Plasma-treated Kevlar fiber showed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum values. The work of adhesion and the polar term were proportional to the IFSS directly for both PBO and Kevlar fibers. The microfibril fracture pattern of two plasma-treated fibers appeared obviously. Unlike in slow cooling, in rapid cooling, case kink band and kicking in PBO fiber appeared, whereas buckling in the Kevlar fiber was observed mainly due to compressive and residual stresses. Based on the propagation of microfibril failure toward the core region, the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly compared to the untreated case. The results of nondestructive AE were consistent with microfailure modes. PMID:16256662

  5. Nondestructive imaging of small size voids at Akrotiri archaeological site, Thera Island, Greece, by seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Louis, Filippos I.; Clark, Roger A.; Louis, Ioannis F.; Makropoulos, Costas C.

    2005-07-01

    High-resolution travel time tomography was used to explore the volcanic basement rock at the Akrotiri archaeological site, Thera (Santorini) Island. The survey was carried out in the context of a large scale project, in which the protective roof cover of old monuments is being replaced by a new environmentally friendly structure, which will be supported by 95 pillars drilled into the volcanic basement rock. Man-made or natural cavities (empty or half-filled with stones), ceramics, and other materials of archaeological interest were unveiled during the excavation of foundation shafts. The objective of this geophysical investigation was the detection of such voids in the vicinity of the excavated shafts, so that the overhead structure can be better supported and protected in the case of an earthquake event. The cross-hole seismic tomography technique was adopted for this purpose. A number of synthetic examples and a calibration experiment at a shaft with a known natural cavity clearly indicated that the tomographic inversion is capable of providing high-resolution 2-D velocity models. High S/N ratios ensured field seismic records of high quality. A set of stability tests was run to check the consistency of the method. Travel time residuals verified the validity of the final velocity depth sections, while model complexity trends showed a consistency between models after a certain number of iterations. The reconstructed velocity fields were quite consistent with the expected velocity structures based on the geologic descriptions of formations encountered during the drilling of the shafts. Impressive low-velocity structures attributed to natural or man-made cavities were reported to the constructing group of engineers, and a remedial action plan was being undertaken to support and improve the ground behavior.

  6. Integrated Surveying Techniques for Sensitive Areas: San Felice Sul Panaro

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Buttolo, V.; Guerra, F.; Vernier, P.

    2013-07-01

    The last few years have marked an exponential growth in the use of electronic and computing technologies that opened new possibilities and new scenarios in the Geomatic field. This evolution of tools and methods has led to new ways of approaching survey. For what concerns architecture, the new tools for survey acquisition and 3D modelling allow the representation of an object through a digital model, combining the visual potentials of images, normally used for documentation, with the precision of a metric survey. This research focuses on the application of these new technologies and methodologies on sensitive areas, such as portions of the cities affected by earthquakes. In this field the survey is intended to provide a useful support for other structural analysis, in conservation as well as for restoration studies. However, survey in architecture is still a very complex operation both from a methodological and a practical point of view: it requires a critical interpretation of the artefacts and a deep knowledge of the existing techniques and technologies, which often are very different but need to be integrated within a single general framework. This paper describes the first results of the survey conducted on the church of San Geminiano in San Felice sul Panaro (Modena). Here, different tools and methods were used, in order to create a new system that integrates the most recent and cutting-edge technologies in the Geomatic field. The methodologies used were laser scanning, UAV photogrammetry and topography for the definition of the reference system. The present work will focus on the data acquisition and processing whit these techniques and their integration.

  7. The Importance of Local Surveys for Tying Techniques Together

    NASA Technical Reports Server (NTRS)

    Long, James L.; Bosworth, John M.

    2000-01-01

    The synergistic benefits of combining observations from multiple space geodesy techniques located at a site are a main reason behind the proposal for the establishment of the International Space Geodetic and Gravimetric Network (ISGN). However, the full benefits of inter-comparison are only realized when the spatial relationships between the different space geodetic systems are accurately determined. These spatial relationships are best determined and documented by developing a local reference network of stable ground monuments and conducting periodic surveys to tie together the reference points (for example: the intersection of rotation axes of a VLBI antenna) of the space geodetic systems and the ground monument network. The data obtained from local surveys is vital to helping understand any systematic errors within an individual technique and to helping identify any local movement or deformation of the space geodetic systems over time.

  8. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  9. Surveying co-located space geodesy techniques for ITRF computation

    NASA Astrophysics Data System (ADS)

    Sarti, P.; Sillard, P.; Vittuari, L.

    2003-04-01

    We present a comprehensive operational methodology, based on classical geodesy triangulation and trilateration, that allows the determination of reference points of the five space geodesy techniques used in ITRF computation (i.e.: DORIS, GPS, LLR, SLR, VLBI). Most of the times, for a single technique, the reference point is not accessible and measurable directly. Likewise, no mechanically determined ex-center with respect to an external and measurable point is usually given. In these cases, it is not possible to directly measure the sought reference points and it is even less straightforward to obtain the statistical information relating these points for different techniques. We outline the most general practical surveying methodology that permits to recover the reference points of the different techniques regardless of their physical materialization. We also give a detailed analytical approach for less straightforward cases (e.g.: non geodetic VLBI antennae and SLR/LLR systems). We stress the importance of surveying instrumentation and procedure in achieving the best possible results and outline the impact of the information retrieved with our method in ITRF computation. In particular, we will give numerical examples of computation of the reference point of VLBI antennae (Ny Aalesund and Medicina) and the ex-centre vector computation linking co-located VLBI and GPS techniques in Medicina (Italy). A special attention was paid to the rigorous derivation of statistical elements. They will be presented in an other presentation.

  10. Time Delay Integration: A Wide-Field Survey Technique

    NASA Astrophysics Data System (ADS)

    Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.

    2009-05-01

    The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.

  11. Survey of intravitreal injection techniques among retina specialists in Israel

    PubMed Central

    Segal, Ori; Segal-Trivitz, Yael; Nemet, Arie Y; Geffen, Noa; Nesher, Ronit; Mimouni, Michael

    2016-01-01

    Purpose The purpose of this study was to describe antivascular endothelial growth factor intravitreal injection techniques of retinal specialists in order to establish a cornerstone for future practice guidelines. Methods All members of the Israeli Retina Society were contacted by email to complete an anonymous, 19-question, Internet-based survey regarding their intravitreal injection techniques. Results Overall, 66% (52/79) completed the survey. Most (98%) do not instruct patients to discontinue anticoagulant therapy and 92% prescribe treatment for patients in the waiting room. Three quarters wear sterile gloves and prepare the patient in the supine position. A majority (71%) use sterile surgical draping. All respondents apply topical analgesics and a majority (69%) measure the distance from the limbus to the injection site. A minority (21%) displace the conjunctiva prior to injection. A majority of the survey participants use a 30-gauge needle and the most common quadrant for injection is superotemporal (33%). Less than half routinely assess postinjection optic nerve perfusion (44%). A majority (92%) apply prophylactic antibiotics immediately after the injection. Conclusion The majority of retina specialists perform intravitreal injections similarly. However, a relatively large minority performs this procedure differently. Due to the extremely low percentage of complications, it seems as though such differences do not increase the risk. However, more evidence-based medicine, a cornerstone for practice guidelines, is required in order to identify the intravitreal injection techniques that combine safety and efficacy while causing as little discomfort to the patients as possible. PMID:27366050

  12. Digital Survey Techniques for the Documentation of Wooden Shipwrecks

    NASA Astrophysics Data System (ADS)

    Costa, E.; Balletti, C.; Beltrame, C.; Guerra, F.; Vernier, P.

    2016-06-01

    Nowadays, researchers widely employ the acquisition of point clouds as one of the principal type of documentation for cultural heritage. In this paper, different digital survey techniques are employed to document a wooden ancient shipwreck, a particular and difficult kind of archaeological finding due to its material characteristics. The instability of wood and the high costs of restoration do not always offer the opportunity of recovering and showing the hull to researchers and public and three-dimensional surveys are fundamental to document the original conditions of the wood. The precarious conditions of this material in contact with air could modify the structure and the size of the boat, requiring a fast and accurate recording technique. The collaboration between Ca' Foscari University and the Laboratory of Photogrammetry of Iuav University of Venice has given the possibility to demonstrate the utility of these technology. We have surveyed a sewn boat of Roman age through multi-image photogrammetry and laser scanner. Point clouds were compared and a residual analysis was done, to verify the characteristics and the opportunity of the two techniques, both of them have allowed obtaining a very precise documentation from a metrical point of view.

  13. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two

  14. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    PubMed

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. PMID:24128472

  15. Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.

    2006-08-01

    Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.

  16. Development of nondestructive evaluation techniques for high-temperature ceramic heat exchanger components. Ninth quarterly report, October-December 1979

    SciTech Connect

    Not Available

    1980-01-01

    Progress in developing and evaluating nondestructive methods for testing ceramic components for high-temperature heat exchangers is reported. The sensitivity of the ultrasonic bore-side probe was demonstrated for detection of 125-..mu..m-deep circumferential EDM notches on ID and OD surfaces of sintered and siliconized tubes. The signal to noise ratios for the ultrasonic echoes are better than 10 to 1, beyond the initial expectations for detection of small reflectors. This results from focussing of the beam in the tube wall. Preliminary data were presented on microprocessor-controlled operation of the ultrasonic probe. Some problems involving the computer interfacing have to be resolved, but detection and recording of an EDM notch located was demonstrated. The acoustic microscope was modified to handle 30-MHz sound waves. This was done to improve the penetration ability of the sound in SiC tube walls. The modification results in less acoustic noise. The ability to detect a notch only 75 ..mu..m in width was demonstrated.

  17. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Astrophysics Data System (ADS)

    Miller, James G.

    1995-03-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  18. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    In this Progress Report, the author describes the continuing research to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. Images obtained using an unmodified medical ultrasonic imaging system of a bonded aluminum plate sample with a simulated disbond region are presented. The disbond region was produced by adhering a piece of plain white paper to a piece of cellophane tape and applying the paper-tape combination to one of the aluminum plates. Because the area under the paper was not adhesively bonded to the aluminum plate, this arrangement more closely simulates a disbond. Images are also presented for an aluminum plate sample with an epoxy strip adhered to one side to help provide information for the interpretation of the images of the bonded aluminum plate sample containing the disbond region. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to provide information regarding the nature of the disbonded region. The results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology. In Section 2 of this Progress Report, the preparation of the aluminum plate specimens is described. Section 3 describes the method of linear array imaging. Sections 4 and 5 present the linear array images and results from contact transducer measurements, respectively. A discussion of the results are presented in Section 6.

  19. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  20. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy

    PubMed Central

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  1. Power Management Techniques for Data Centers: A Survey

    SciTech Connect

    Mittal, Sparsh

    2014-07-01

    With growing use of internet and exponential growth in amount of data to be stored and processed (known as ``big data''), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.

  2. A Survey of Architectural Techniques for Near-Threshold Computing

    DOE PAGESBeta

    Mittal, Sparsh

    2015-12-28

    Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlightmore » their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.« less

  3. A Survey of Architectural Techniques for Near-Threshold Computing

    SciTech Connect

    Mittal, Sparsh

    2015-12-28

    Energy efficiency has now become the primary obstacle in scaling the performance of all classes of computing systems. In low-voltage computing and specifically, near-threshold voltage computing (NTC), which involves operating the transistor very close to and yet above its threshold voltage, holds the promise of providing many-fold improvement in energy efficiency. However, use of NTC also presents several challenges such as increased parametric variation, failure rate and performance loss etc. Our paper surveys several re- cent techniques which aim to offset these challenges for fully leveraging the potential of NTC. By classifying these techniques along several dimensions, we also highlight their similarities and differences. Ultimately, we hope that this paper will provide insights into state-of-art NTC techniques to researchers and system-designers and inspire further research in this field.

  4. Survey of Product-line Verification and Validation Techniques

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn

    2007-01-01

    This report presents the results from the first task of the SARP Center Initiative, 'Product Line Verification of Safety-Critical Software.' Task 1 is a literature survey of available techniques for product line verification and validation. Section 1 of the report provides an introduction to product lines and motivates the survey of verification techniques. It describes what is reused in product-line engineering and explains the goal of verifiable conformance of the developed system to its product-line specifications. Section 2 of the report describes six lifecycle steps in product-line verification and validation. This description is based on, and refers to, the best practices extracted from the readings. It ends with a list of verification challenges for NASA product lines (2.7) and verification enablers for NASA product lines (2.8) derived from the survey. Section 3 provides resource lists of related conferences, workshops, industrial and defense industry experiences and case studies of product lines, and academic/industrial consortiums. Section 4 is a bibliography of papers and tutorials with annotated entries for relevant papers not previously discussed in sections 2 or 3.

  5. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  6. A Paradigm for the Nondestructive Assay of Spent Fuel Assemblies and Similar Large Objects, with Emphasis on the Role of Photon-Based Techniques

    NASA Astrophysics Data System (ADS)

    Bolind, Alan Michael

    2015-10-01

    The practice of nondestructive assay (NDA) of nuclear materials has, until now, been focused primarily (1) on smaller objects (2) with less fissile material and (3) with less self-generated radiation. The transition to the application of NDA to spent fuel assemblies and similar large objects violates these three conditions, thereby bringing the assumptions and paradigm of traditional NDA practice into question for the new applications. In this paper, a new paradigm for these new applications is presented which is based on the fundamental principles of nuclear engineering. It is shown that the NDA of spent fuel assemblies is mostly a three-dimensional problem that requires the integration of three independent NDA measurements in order to achieve a unique and accurate assay. The only NDA techniques that can avoid this requirement are those that analyze signals that are characteristic to specific isotopes (such as those caused by characteristic resonance interactions), and that are neither distorted nor overly attenuated by the other surrounding material. Some photon-based NDA techniques fall into this exceptional category. Such exceptional NDA techniques become essential to employ when assaying large objects that, unlike spent fuel assemblies, do not have a consistent geometry. With this new NDA paradigm, the advanced photon-based NDA techniques can be put into their proper context, and their development can thereby be properly motivated.

  7. Machine-assisted verification of latent fingerprints: first results for nondestructive contact-less optical acquisition techniques with a CWL sensor

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.

  8. Characterization and Source Term Assessments of Radioactive Particles from Marshall Islands Using Non-Destructive Analytical Techniques

    SciTech Connect

    Jernstrom, J; Eriksson, M; Simon, R; Tamborini, G; Bildstein, O; Carlos-Marquez, R; Kehl, S R; Betti, M; Hamilton, T

    2005-06-11

    A considerable fraction of radioactivity entering the environment from different nuclear events is associated with particles. The impact of these events can only be fully assessed where there is some knowledge about the mobility of particle bound radionuclides entering the environment. The behavior of particulate radionuclides is dependent on several factors, including the physical, chemical and redox state of the environment, the characteristics of the particles (e.g., the chemical composition, crystallinity and particle size) and on the oxidative state of radionuclides contained in the particles. Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized using non-destructive analytical and microanalytical methods. By determining the activity of {sup 239,240}Pu and {sup 241}Am isotopes from their gamma peaks structural information related to Pu matrix was obtained, and the source term was revealed. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence (SR-{mu}-XRF) spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector (SEMEDX) and secondary ion mass spectrometer (SIMS) were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups; particles with plain Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogeneously distributed. All of the particles were identified as fragments of initial weapons material. As containing plutonium with low {sup 240}Pu/{sup 239}Pu atomic ratio, {approx}2-6%, which corresponds to weapons grade plutonium, the source term was identified to be among the safety tests conducted in the history of Runit Island.

  9. Surveying converter lining erosion state based on laser measurement technique

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Shi, Tielin; Yang, Shuzi

    1998-08-01

    It is very important to survey the eroding state of the steelmaking converter lining real time so as to optimize technological process, extend converter durability and reduce steelmaking production costs. This paper gives one practical method based on the laser measure technique. It presents the basic principle of the measure technique. It presents the basic principle of the measure method, the composition of the measure system and the researches on key technological problems. The method is based on the technique of the laser range finding to net points on the surface of the surveyed converter lining, and the technology of angle finding to the laser beams. The angle signals would be used to help realizing the automatic scanning function also. The laser signals would be modulated and encoded. In the meantime, we would adopt the wavelet analysis and other filter algorithms, to denoise noisy data and extract useful information. And the main idea of some algorithms such as the net point measuring path planning and the measure device position optimal algorithm would also be given in order to improve the measure precision and real time property of the system.

  10. In situ Raman spectroscopy and confocal microscopy of 2.5-billion-year-old fossil microorganisms: viable nondestructive techniques for the study of returned Martian samples

    NASA Astrophysics Data System (ADS)

    Czaja, A. D.; Lorber, K.

    2014-12-01

    This study presents the discovery of two sets of Archean fossil microorganisms (microfossils) and describes how such a study can be an analogue for a potential Martian sample return mission like that proposed as a follow up to the Mars 2020 mission. Microfossils are not easily preserved and their simple morphologies (made less distinct by taphonomy and diagenesis) can be confused with nonbiological structures. Thus, several lines of evidence are required for a biological interpretation of such remains. Despite this limitation, microfossils represent the most direct and easily illustrated evidence of life, and this will also be true of any microfossils that might be found on Mars. Martian sample return will provide the first chance to apply a full suite of analytical techniques to the study of possible Martian microfossils. Because such precious samples would be of limited quantity, this suite must include nondestructive techniques that are performed in situ and at a micron-scale.The samples studied here were collected from two chert units within the Gamohaan Formation of the Kaapvaal Craton of South Africa. One set was collected from the Tsineng Member near the top of the formation and contains fossils of mat-forming filamentous microorganisms (~15-20 µm in diameter) that were buried in place. The other set comes from a chert bed stratigraphically lower within the Gamohaan Formation. This bed contains shriveled and somewhat compacted spherical microfossils (~100 µm in diameter) and are interpreted to be the remains of planktonic forms that settled from above. Cherts were collected based on a visual identification of their likelihood to contain microfossils. Optical microscopy was used to locate microstructures of interest within thin sections. The biological nature of these structures is supported by analyses of their three dimensional morphologies by confocal laser scanning microscopy (CLSM) as well as their carbonaceous compositions by Raman spectroscopy. Raman

  11. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    PubMed Central

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented. PMID:26664356

  12. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials.

    PubMed

    Mulware, Stephen Juma

    2015-01-01

    The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented. PMID:26664356

  13. Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Osán, János; Török, Szabina; Alföldy, Bálint; Alsecz, Anita; Falkenberg, Gerald; Baik, Soo Yeun; Van Grieken, René

    2007-02-01

    The rivers in the Hungarian Upper Tisza Region are frequently polluted mainly due to mining activities in the catchment area. At the beginning of 2000, two major mining accidents occurred in the Romanian part of the catchment area due to the failure of a tailings dam releasing huge amounts of cyanide and heavy metals to the rivers. Surface sediment as well as water samples were collected at six sites in the years 2000-2003, from the northeast-Hungarian section of the Tisza, Szamos and Túr rivers. The sediment pollution of the rivers was compared based on measurements of bulk material and selected single particles, in order to relate the observed compositions and chemical states of metals to the possible sources and weathering of pollution. Non-destructive X-ray analytical methods were applied in order to obtain different kinds of information from the same samples or particles. In order to identify the pollution sources, their magnitude and fate, complementary analyses were carried out. Heterogeneous particulate samples were analyzed from a large geographical territory and a 4-year time period. Individual particles were analyzed only from the "hot" samples that showed elevated concentrations of heavy metals. Particles that were classified as anthropogenic were finally analyzed to identify trace concentrations and chemical states of heavy metals. Although the Tisza river was affected by water pollution due to the two major mining accidents at the beginning of 2000, the concentration of heavy metals in sediments decreased to the mineral background level 1 year after the pollution event. In the tributaries Szamos and Túr, however, no significant decrease of the heavy metal concentrations was observed in the recent years, indicating a continuous pollution. Among the water suspended particles collected from river Túr, fibers of unknown origin were observed by electron microscopy; these particles were aluminosilicates enriched in Zn and Mn. Cd was also concentrated in

  14. Non-destructive Evaluation of Compound Semiconductor Thin-Film Solar Cells by Photothermal Beam Deflection Technique

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Sebastian, Tina; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-01-01

    In this paper, it is demonstrated that the photothermal beam deflection technique can be used for measuring the series resistance, optimum load resistance, and conversion efficiency of thin-film solar cells. This technique is also used for determining the carrier transport properties of an absorber and window layer of -based solar cells during different stages of cell fabrication. Transport properties such as the carrier mobility, lifetime, and surface recombination velocity of the individual absorber and window layer are shown to influence the open-circuit voltage and short-circuit current of the final photovoltaic device. The cell parameters measured using the photothermal technique agree well with the electrical measurements. The principle of the technique is explained on the basis of the "mirage effect" and maximum power transfer theorem.

  15. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  16. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  17. Integration of Geomatic Techniques for the Urban Cavity Survey

    NASA Astrophysics Data System (ADS)

    Deidda, M.; Sanna, G.

    2013-07-01

    Cagliari, county seat of Sardinia Region (Italy), situated in the southern part of the island, is characterized by a subsoil full of cavities. The excavations in fact, which lasted more than 4000 years, had a great development due also to the special geological characteristics of the city subsoil. The underground voids, which the city is rich in, belong to different classes such as hydraulic structures (aqueducts, cisterns, wells, etc.), settlement works (tunnels, bomb shelters, tombs etc.) and various works (quarries, natural caves, etc.). This paper describes the phases of the survey of a large cavity below a high-traffic square near the Faculty of Engineering in the city of Cagliari, where the research team works. The cave, which is part of a larger complex, is important because it was used in the thirteenth century (known as the Pisan age) as a stone quarry. There are traces of this activity that have to be protected. Moreover, during the last forty years the continuous crossover of vehicles cracked the roof of the cave compromising the stability of the entire area. Consequently a plan was developed to make the whole cavity safe and usable for visits. The study of the safety of the cave has involved different professionals among which geologists, engineers, constructors. The goal of the University of Cagliari geomatic team was to solve two problems: to obtain geometrical information about the void and correctly place the cave in the context of existing maps. The survey and the products, useful for the investigation of the technicians involved, had to comply with tolerances of 3 cm in the horizontal and 5 cm in the vertical component. The approach chosen for this purpose was to integrate different geomatic techniques. The cave was surveyed using a laser scanner (Faro Photon 80) in order to obtain a 3D model of the cave from which all the geometrical information was derived, while both classic topography and GPS techniques were used to include the cave in the

  18. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  19. Nondestructive evaluations

    SciTech Connect

    Kulkarni, S.

    1993-03-01

    This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc.; and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.

  20. Defects detection and non-destructive testing (NDT) techniques in paintings: a unified approach through measurements of deformation

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    The present study is focused on two topics. The first one is a mathematical model, useful to understand the deformation of paintings, which uses straining devices, adjustable and micrometrically controlled via a pin supported in a hollow cylinder. Strains were analyzed by holographic interferometry (HI) technique using an appropriate frame. The second one concerns the need to improve the conservator's knowledge about the defect's detection and defect's propagation in acrylic painting characterized of underdrawings and pentimenti. To fulfill this task, a sample was manufactured to clarify the several uncertainties inherent the influence of external factors on their conservation. Subsurface anomalies were also retrieved by near-infrared reflectography (NIRR) and transmittography (NIRT) techniques, using LED lamps and several narrow-band filters mounted on a CMOS camera, working at different wavelengths each other and in combination with UV imaging. In addition, a sponge glued on the rear side of the canvas was impregnated with a precise amount of water by means of a syringe to verify the "stretcher effect" by the digital speckle photography (DSP) technique (using MatPIV). The same effect also affects the sharp transition of the canvas at the stretcher's edge. In this case, a possible mechanism is a direct mechanical contact between stretcher and canvas that was investigated by HI technique. Finally, advanced algorithms applied to the square heating thermography (SHT) data were very useful to detect three Mylar® inserts simulating different type of defects. These fabricated defects were also identified by optical techniques, while the visual inspection was the only one capable of detecting a biological damage.

  1. Non-destructive evaluation techniques applied to the study of fatigue microcrack growth in steel alloys: Final report

    SciTech Connect

    London, B.; Yuce, H.; Nelson, D.

    1987-10-01

    In Part I of this study, an ultrasonic surface acoustic wave (SAW) technique was used to monitor the depth of surface fatigue microcracks in 300M steel as they grew. This technique also provided information on the stress which must be applied to cause the cracks to fully open. Values of crack opening stress obtained by scanning electron microscope (SEM) measurements of crack tip opening displacements were compared with values determined acoustically. Good agreement was obtained. 300M steel, heat treated to yield strength of 1737 MPa, was tested at two different zero-to-maximum tension stress levels. Effects of residual stresses produced by two different surface preparations on the growth of small cracks were studied. One preparation was electropolishings while the other was stress-relieving followed by diamond paste polishing. Fatigue microcrack growth rate agreed well with that of large cracks in electropolished specimens but, the presence of shallow compressive residual stresses in other specimens caused growth rates as much as an order of magnitude lower than in electropolished specimens. In Part II, four different microstructures of 4140 steel were investigated. Small fatigue crack behavior was monitored using a surface acoustic wave ultrasonic technique to accurately measure crack depth and crack closure stress. Cracks from 50 to 200 ..mu..m in depth in specially designed catilevered bending samples were investigated. 143 refs., 74 figs., 5 tabs.

  2. Nondestructive testing with thermography

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, Clemente; Tarpani, José Ricardo; Maldague, Xavier P. V.

    2013-11-01

    Thermography is a nondestructive testing (NDT) technique based on the principle that two dissimilar materials, i.e., possessing different thermo-physical properties, would produce two distinctive thermal signatures that can be revealed by an infrared sensor, such as a thermal camera. The fields of NDT applications are expanding from classical building or electronic components monitoring to more recent ones such as inspection of artworks or composite materials. Furthermore, thermography can be conveniently used as a didactic tool for physics education in universities given that it provides the possibility of visualizing fundamental principles, such as thermal physics and mechanics among others.

  3. A new, non-destructive, real-time measurement technique of the surface area of aerogel during synthesis

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Lee, Jeongseop A.; Halperin, W. P.

    We have developed a new method of measuring surface area of silica aerogel during the synthesis stage using a standard pulsed NMR setup. The applicability of this method can be extended to a much broader type of chemical reactions yielding a rigid porous condensate whose surface relaxation rate differs substantially from its surrounding liquids. The number of various chemical species involved in the reaction poses little to no limitation to its applicability owing to the physics in the fast exchange limit. This is the main distinguishing feature from a conventional NMR or infrared spectroscopy method in which individual chemical bondings from various reaction intermediaries are tracked in time which is often difficult if not impossible due to complex reactions. The result from this technique yields a surface area that is analogous to the result from a well-established BET (Brunauer-Emmett-Teller) technique, but without the need for extraction or supercritical extraction of the porous medium. This work was supported by the DOE BES under grants No. DE-FG02-05ER46248.

  4. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    SciTech Connect

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  5. A survey of CPU-GPU heterogeneous computing techniques

    DOE PAGESBeta

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-07-04

    As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and applicationmore » level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.« less

  6. A survey of CPU-GPU heterogeneous computing techniques

    SciTech Connect

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-07-04

    As both CPU and GPU become employed in a wide range of applications, it has been acknowledged that both of these processing units (PUs) have their unique features and strengths and hence, CPU-GPU collaboration is inevitable to achieve high-performance computing. This has motivated significant amount of research on heterogeneous computing techniques, along with the design of CPU-GPU fused chips and petascale heterogeneous supercomputers. In this paper, we survey heterogeneous computing techniques (HCTs) such as workload-partitioning which enable utilizing both CPU and GPU to improve performance and/or energy efficiency. We review heterogeneous computing approaches at runtime, algorithm, programming, compiler and application level. Further, we review both discrete and fused CPU-GPU systems; and discuss benchmark suites designed for evaluating heterogeneous computing systems (HCSs). Furthermore, we believe that this paper will provide insights into working and scope of applications of HCTs to researchers and motivate them to further harness the computational powers of CPUs and GPUs to achieve the goal of exascale performance.

  7. Study by non-destructive technique of gilding coat of arms of the Real Alcázar of Seville, Spain

    NASA Astrophysics Data System (ADS)

    Robador, M. D.; Pérez-Rodriguez, J. L.; Muñoz-García, A.; Garófano, I.; Garrote, M. A.; Odriozola, C.; Durán, A.

    2012-04-01

    The Real Alcazar of Seville is a building inscribed in the World Heritage List, being the most ancient Real Palace in Europe still in use. It was built over roman buildings, from the XI century to our days, exceptional buildings and gardens of the highest architectonical, cultural and historic value. High value wall paintings of different periods are located in different places all over the palace. In one of its chamber - the King's bedroom - golden medallions that represent the coat of arms of Leon and Castilla Kingdom appear decorating its walls. The objective of this work was the study of the materials employed in the manufacture of these coats by portable and non-destructive techniques: X-ray diffraction (XDR) and X-ray fluorescence (XRF) and Raman spectroscopy. The support used for gilding was also studied using conventional techniques such as: powder X-ray diffraction (powder XRD), thermal analysis (DTA-TG) and FT-IR spectroscopy. The results obtained by portable XRD, XRF and Raman spectroscopy showed that the polychrome was carried out with gold in all samples studied. Other elements such as silver and cooper were also found in minor proportion. XRF allowed the quantification of the different metal (average composition: Au 79.5 %, Ag 8.1 %, Cu 5 %). There were various ways of adhering the golden leaf to the surface, but for large areas a bole mix of fine earth was typical. For other ornamentations, technique based on an aqueous medium and brushed onto the part to be gilded was used an. For panel and wall paintings, however, oil mordant was commonly used. In our study the gold was adhered to the surface using oil mordant. The powder XRD of the support showed the presence of gypsum and small proportion of anhydrite. However, calcium carbonate was not detected due to low proportion and low diffraction intensity of the mineral. The DTA-TG study confirms the presence of calcite (less than 5%). This technique also revealed the presence of organic compounds (oil

  8. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  9. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  10. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  11. Instruction manuals for radiographic nondestructive testing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Six new handbooks on the fundamentals of nondestructive test techniques supply recent information for instructing inspectors and technicians, and can be used effectively in shops or laboratories, technical schools, or home study programs.

  12. Importance of integrated results of different non-destructive techniques in order to evaluate defects in panel paintings: the contribution of infrared, optical and ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N. P.; Paoletti, A.; Paoletti, D.; Hrissagis, K.; Bendada, A.; Koui, M.; Maldague, X.

    2011-06-01

    The increasing deterioration of panel paintings can be due to physical processes that take place during exhibition or transit, or as a result of temperature and humidity fluctuations within a building, church or museum. In response to environmental alterations, a panel painting can expand or contract and a new equilibrium state is eventually reached. These adjustments though, are usually accompanied by a change in shape in order to accommodate to the new conditions. In this work, a holographic method for detecting detached regions and micro-cracks is described. Some of these defects are confirmed by Thermographic Signal Reconstruction (TSR) technique. In addition, Pulsed Phase Thermography (PPT) and Principal Component Thermography (PCT) allow to identify with greater contrast two artificial defects in Mylar which are crucial to understand the topic of interest: the discrimination between defect materials. Finally, traditional contact ultrasounds applications, are widely applied for the evaluation of the wood quality in several characterization procedures. Inspecting the specimen from the front side, the natural and artificial defects of the specimen are confirmed. Experimental results derived by the application of the integrated methods on an Italian panel painting reproduction, called The Angel specimen, are presented. The main advantages that these techniques can offer to the conservation and restoration of artworks are emphasized.

  13. AIRBORNE INERTIAL SURVEYING USING LASER TRACKING AND PROFILING TECHNIQUES.

    USGS Publications Warehouse

    Cyran, Edward J.

    1986-01-01

    The U. S. Geological Survey through a contract with the Charles Stark Draper Laboratory has developed the Aerial Profiling of Terrain System. This is an airborne inertial surveying system designed to use a laser tracker to provide position and velocity updates, and a laser profiler to measure terrain elevations. The performance characteristics of the system are discussed with emphasis placed on the performance of the laser devices. The results of testing the system are summarized for both performance evaluation and applications.

  14. Combining Ground Penetrating Radar and Terrestrial Laser Scanning techniques to non-destructively image the 2006 cross-stratified overbank deposits of Tungurahua volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Dujardin, J.; Abolghasem, A.; Kueppers, U.; Bano, M.; Mothes, P. A.; Dingwell, D. B.

    2012-12-01

    Tungurahua volcano (Ecuador) generated Pyroclastic Density Currents (PDCs) in August 2006. The deposits are characterized by two lithofacies: a massive, unsorted, coarse-grained lithofacies confined to the valleys that directed the parent PDCs and interpreted as deposited from dense pyroclastic flows and a finer-grained and better-sorted cross-stratified lithofacies that outcrop on the overbanks of valleys downstream of cliffs and bends in the valleys deposited from dilute PDCs. The pristine surface exhibits a variety of dune-bedform (DBs) shapes. In order to better record the deposits characteristics and constrain the sedimentation processes, a field survey combining terrestrial laser scanner and ground penetrating radars (GPR) was yield. The terrestrial laser scanner records an accurate topography model of the surface of the deposits (<1 cm precision). The shape parameters of the DBs are then analyzed systematically and the size evolution calculated. Three GPR antennas were used (250, 500, 800 MHz). They permit to image the stratification within the deposits at different scales and in a non-destructive way. More than 450 profiles were collected, covering three key sectors of the volcano. A large-scale griding (profiles separated by 20 m and crossing perpendicularly) was executed with the 250 MHz antenna in three main overbank deposition zones (each zone c.a. 50.000 m^2). Of particular interest is a 200 m long ash body with a wedge shape. It has a sharp upstream onset with the shape of a quarter pipe and decreases in thickness downstream with DBs on its surface. Eight layers were identified on the GPR data and interpolated in between the profiles for a 3D image. At least three successive cross-stratified units are found on top of five units that more likely correspond to massive layers. While the cross-stratified units seem to aggrade as stoss-side backstep-strata, the massive layers are either gently thinning downstream or continuous. The data reveal the

  15. Pre-survey feasibility assessment of the persistent scatterer technique

    NASA Astrophysics Data System (ADS)

    Plank, Simon; Singer, John; Thuro, Kurosch

    2013-04-01

    The remote sensing technique persistent scatterer synthetic aperture radar interferometry (PS-InSAR) is a powerful method for detection and monitoring of landslides with accuracy up to a few millimeters. However, precondition for reliable PS-InSAR processing is a stack of at least 15 to 50 SAR images. This makes processing very time-consuming and expensive. Furthermore, successful PS-InSAR application requires a high number of measurement points within the area of interest - so-called persistent scatterers (PS) which are scatterers of high coherent values. But estimation of the number and the distribution of the PS within the site prior to the recording and processing of several SAR images is very complicated. Therefore, we developed three new methods for PS estimation prior to the acquisition of the SAR data. These methods are based on freely available or low-cost optical remote sensing data, land cover data (e.g. GlobCover and CORINE) as well as topographic maps and OpenStreetMap data. By means of empirical approaches these geodata were compared with results of real PS-InSAR processing of several sites. First, the well-known normalized difference vegetation index (NDVI) processed with optical remote sensing data was used in an entirely new approach to estimate PS prior to the SAR data acquisition of the area of interest. Result of this method is an estimation of the probability for each pixel of the NDVI image to get a PS at a certain NDVI value. When using freely available middle spatial resolution optical data (e.g. Landsat and ASTER) this PS estimation procedure works very well in areas of sparse vegetation. World-wide application of this method requires high spatial resolution optical sensors. Then, the NDVI-based PS estimation method can also be applied at areas covered by denser vegetation. The second PS estimation method is based on freely available land cover datasets. Result of this method is an estimation of the PS density (PS/km²) for each type of

  16. Survey of techniques used to preserve biological materials

    NASA Technical Reports Server (NTRS)

    Feinler, E. J.; Hubbard, R. W.

    1972-01-01

    The techniques used to preserve biological materials are documented and summarized. The report is presented in a handbook format that categorizes the most important preservation techniques available, and includes a representative sampling of the thousands of applications of these techniques to biological materials and organisms. Details of the information coverage and method of approach are outlined. Data are given in tabular form, and an index and extensive bibliography are included.

  17. A Survey of Librarian Perceptions of Information Literacy Techniques

    ERIC Educational Resources Information Center

    Yearwood, Simone L.; Foasberg, Nancy M.; Rosenberg, Kenneth D.

    2015-01-01

    Teaching research competencies and information literacy is an integral part of the academic librarian's role. There has long been debate among librarians over what are the most effective methods of instruction for college students. Library Faculty members at a large urban university system were surveyed to determine their perceptions of the…

  18. Getting Parents and Students Involved: Using Survey and Interview Techniques.

    ERIC Educational Resources Information Center

    Downs, Judy R.

    1993-01-01

    Describes a series of class activities involving student surveys and interviews with parents and other adults. Discusses possible interview topics ranging from important inventions to simulated interviews with historical figures. Reports that student interest improved and parents became more involved with school activities. (CFR)

  19. Sampling for Telephone Surveys: Do the Results Depend on Technique?

    ERIC Educational Resources Information Center

    Franz, Jennifer D.

    Two basic methods exist for drawing probability samples to be used in telephone surveys: directory sampling (from alphabetical or street directories) and random digit dialing (RDD). RDD includes unlisted numbers, whereas directory sampling includes only listed numbers. The goal of this paper is to estimate the effect of failure to include…

  20. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  1. Combined use of the non-destructive XRF and low energy micro-XRF techniques for the analysis of silvered nummi belonging to the Treasure of Misurata (Libya)

    NASA Astrophysics Data System (ADS)

    Romano, Francesco Paolo; Garraffo, Salvatore; Pappalardo, Lighea; Rizzo, Francesca

    2013-04-01

    Roman coinage underwent a severe debasement of silver during the time and the production of plated coins became a common practice for giving the impression of a high finesses of the alloy. In 294 AD, Diocletian introduced the nummus, manufactured with the same standard in all the mints by using an internal Cu-Sn-Pb-Ag core and presenting a thin silvered patina (about 2 micron) on its surface. The silver plating of the nummi have been investigated in the past and different methods have been suggested for its manufacturing (e.g. segregation during casting, chemical treatments, mercury-silvering). However, previous analyses were focused on few samples and, consequently, this technological issue remained unresolved. In the present work, the BSC-XRF (Beam Stability Controlled -XRF) and a LE-micro-XRF portable spectrometers developed at the LANDIS laboratory of IBAM-CNR and LNS-INFN in Catania (Italy), have been applied for the in-situ analysis of the silvered nummi belonging to the Misurata Treasure (Museum of Leptis Magna, El-Khomes, Libya). The treasure is composed of 108 thousand coins manufactured in 19 Imperial mints operating in the period 294-333 AD. In order to establish if, and at what extent, the mercury-silvering was used to produce the thin Ag-patina of the nummi, the non-destructive investigation was extended to 1050 well preserved coins. Measurements allowed to explore the presence of Hg and the Hg-Ag correlation at the coin surface. The portable BSC-XRF and the LE-micro XXRF techniques are suited to approach this study. A new version of the BSC-XRF spectrometer, consisting of a compact high-intensity x-ray tube (50 kV; 4 mA) coupled to a 80 mm2 SDD detector (138 eV @ 5.9 keV), was developed for the fast determination of mercury traces in a large number of coins (measurement time is 150 seconds; MDL for Hg is 100 ppm). The investigation allowed to identify the Imperial mints and the periods where the mercury-silvering were probably used. However the BSC

  2. A survey of GPU-based medical image computing techniques.

    PubMed

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming; Wang, Defeng

    2012-09-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  3. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  4. Survey of Temperature Measurement Techniques For Studying Underwater Shock Waves

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Alderfer, David W.

    2004-01-01

    Several optical methods for measuring temperature near underwater shock waves are reviewed and compared. The relative merits of the different techniques are compared, considering accuracy, precision, ease of use, applicable temperature range, maturity, spatial resolution, and whether or not special additives are required.

  5. USES OF MARKETING TECHNIQUES THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    McDermott, Michael P.

    1983-01-01

    The use of marketing techniques by government agencies to provide more efficient and effective dissemination of their information is a fairly recent development. A recessive economy, and increased scrutiny of operations have become a powerful incentive to maximize revenues and minimize expenses wherever possible as long as the primary mission of public service is satisfactorily met.

  6. NON-DESTRUCTIVE BEAM MEASUREMENTS.

    SciTech Connect

    BAI,M.

    2004-07-05

    In high energy accelerators, especially storage rings, non-destructive beam measurements are highly desirable to minimize the impact on the beam quality. In principle, the non-destructive tools can be either passive detectors like Schottky, or active devices which excite either longitudinal or transverse beam motions for the corresponding measurements. An example of such a device is an ac dipole, a magnet with oscillating field, which can be used to achieve large coherent betatron oscillations. It has been demonstrated in the Brookhaven AGS that by adiabatically exciting the beam, the beam emittance growth due to the filamentation in the phase space can be avoided. This paper overviews both techniques in general. In particular, this paper also presents the beam tune measurement with a Schottky detector, phase advance measurements as well as nonlinear resonance measurements with the ac dipoles in the Brookhaven RHIC.

  7. Overview of nondestructive evaluation technologies

    SciTech Connect

    Thomas, G.

    1995-04-01

    The infrastructure in the US and the world is aging. There is an increasing awareness of the need to assess the severity of the damage occurring to the infrastructure. Limited resources preclude the replacement of all structures that need repairs or have exceeded their life times. Methods to assess the amount and severity of damage are crucial to implementing a systematic, cost effective approach to repair and/or replace the damaged structures. The challenges of inspecting aging structures without impairing their usefulness rely on a variety of technologies and techniques for nondestructive evaluation (NDE). This paper will briefly describe several nondestructive evaluation technologies that are required for inspecting a variety of systems and structures.

  8. Watermarking techniques used in medical images: a survey.

    PubMed

    Mousavi, Seyed Mojtaba; Naghsh, Alireza; Abu-Bakar, S A R

    2014-12-01

    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods. PMID:24871349

  9. GPR as a Low Impact Paleontogical Survey Technique

    NASA Astrophysics Data System (ADS)

    Sturdevant, G. C.; Leverence, R.; Stewart, R.

    2013-12-01

    The Deweyville Formation, a Pleistocene fluvial sandstone, is a prolific source of megafaunal fossils from periods of low stand environmental conditions. GPR was employed in an environmentally sensitive area in close proximity to a salt dome in Northwest Harris County, Texas as a method of evaluating the probable paleo-depositional environment and to prospect for potential further site development of two distinct fossiliferous zones. The primary zone of interest is a lag gravel bounded sand responsible for producing a regionally unique fossil assemblage including South American megafauna (Lundelius et al, 2013). The secondary zone of interest contains undisturbed mammoth remains housed in coarse white sand emplaced on top of a clay drape which has been hypothesized to represent an oxbow lake formed by the meandering paleo-Brazos river. With an accurate map of the paleo-channel planning future activity can focus on maximizing fossil recovery and minimizing site impact. Pulse EKKO 250 MHz, 400MHz, and 1GHz system was employed in a prospect area proximal to the secondary site to calibrate and evaluate these systems for their resolution and penetration depth in the modern sediments. The data was processed using EKKO Mapper and EKKO View Deluxe software packages, 3d volumes were produced and sliced. Preliminary results from the 250 MHz demonstrate successful imaging of the sand-clay interface. After these surveys were run a small portion of the site was excavated to confirm the estimated velocities, the observed anomalies, and refine our modeling and interpretation, and improve grid design for further surveys. It was confirmed that the sand-clay interface was easily observable using GPR, however the grid spacing proved to be too wide, leading to artifacts in the 3d volume produced.

  10. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  11. A survey of reflectometry techniques with applications to TFTR

    SciTech Connect

    Collazo, I.; Stacey, W.M.; Wilgen, J.; Hanson, G.; Bigelow, T.; Thomas, C.E.; Bretz, N.

    1993-12-01

    This report presents a review of reflectometry with particular attention to eXtraordinary mode (X-mode) reflectometry using the novel technique of dual frequency differential phase. The advantage of using an X-mode wave is that it can probe the edge of the plasma with much higher resolution and using a much smaller frequency range than with the Ordinary mode (O-Mode). The general problem with previous full phase reflectometry techniques is that of keeping track of the phase (on the order of 1000 fringes) as the frequency is swept over the band. The dual frequency phase difference technique has the advantage that since it is keeping track of the phase difference of two frequencies with a constant frequency separation, the fringe counting is on the order of only 3 to 5 fringes. This fringe count, combined with the high resolution of the X-mode wave and the small plasma access requirements of reflectometry, make X-mode reflectometry a very attractive diagnostic for today`s experiments and future fusion devices.

  12. An analysis of oil and gas supply modeling techniques and a survey of offshore supply models

    SciTech Connect

    Walls, M.A.

    1990-01-01

    This report surveys the literature on empirical oil and gas supply modeling techniques. These techniques are categorized as either geologic/engineering, econometric, or hybrid - the last being a combination of geologic and econometric techniques. The geologic/ engineering models are further disaggregated into play analysis models and discovery process models. The strengths and weaknesses of each of the models are discussed. The report concludes with a discussion of how these techniques have been applied to offshore oil and gas supply.

  13. Data indexing techniques for the EUVE all-sky survey

    NASA Technical Reports Server (NTRS)

    Lewis, J.; Saba, V.; Dobson, C.

    1992-01-01

    This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.

  14. A survey of third-generation simulation techniques

    NASA Astrophysics Data System (ADS)

    Hachtel, G. D.; Sangiovanni-Vincentelli, A. L.

    1981-10-01

    A tutorial review is presented of 'third-generation' simulators and simulation techniques. It is attempted to provide a unified treatment of the various disparate simulator types based on the concept of decomposition of large-scale systems. The various 'third-generation' simulators are classified and described in terms of the role played by certain matrix forms in their formulation, taking into account the bordered block diagonal (bbd), the bordered block triangular (bbt), the bordered lower triangular (blt), the block diagonal (bd), the block triangular (bt), and the lower triangular (lt).

  15. Survey of Natural Language Processing Techniques in Bioinformatics.

    PubMed

    Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling

    2015-01-01

    Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers. PMID:26525745

  16. Some fuzzy techniques for staff selection process: A survey

    NASA Astrophysics Data System (ADS)

    Md Saad, R.; Ahmad, M. Z.; Abu, M. S.; Jusoh, M. S.

    2013-04-01

    With high level of business competition, it is vital to have flexible staff that are able to adapt themselves with work circumstances. However, staff selection process is not an easy task to be solved, even when it is tackled in a simplified version containing only a single criterion and a homogeneous skill. When multiple criteria and various skills are involved, the problem becomes much more complicated. In adddition, there are some information that could not be measured precisely. This is patently obvious when dealing with opinions, thoughts, feelings, believes, etc. One possible tool to handle this issue is by using fuzzy set theory. Therefore, the objective of this paper is to review the existing fuzzy techniques for solving staff selection process. It classifies several existing research methods and identifies areas where there is a gap and need further research. Finally, this paper concludes by suggesting new ideas for future research based on the gaps identified.

  17. Survey of Natural Language Processing Techniques in Bioinformatics

    PubMed Central

    Zeng, Zhiqiang; Shi, Hua; Wu, Yun; Hong, Zhiling

    2015-01-01

    Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-protein interactions and gene-disease relationship can be mined from PubMed. Then, we analyze the applications of text mining and natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by text mining and natural language processing researchers. PMID:26525745

  18. A survey of techniques for refrigeration, reliquefaction, and production of slush for hydrogen

    NASA Technical Reports Server (NTRS)

    Overcash, Dan R.

    1990-01-01

    Several techniques were surveyed for the refrigeration, reliquefaction and production of slush from hydrogen. The techniques included auger; bubbling helium gas; Simon desorption; the Petlier effect; Joule-Kelvin expansion using Stirling, Brayton, and Viulleumirer approaches; rotary reciprocating; a dilution refrigerator; adiabatic demagnetization of a paramagnetic salt; and adiabatic magnetization of a superconductor.

  19. Quantifying Stream Habitat: Relative Effort Versus Quality of Competing Remote Sensing & Ground-Based Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2010-12-01

    Numerous field and analytical methods exist to assist in the quantification of the quantity and quality of in-stream habitat for salmonids. These methods range from field sketches or ‘tape and stick’ ground-based surveys, through to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although some investigators have assessed the quality of specific individual survey methods, the inter-comparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to quantify relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from different ground-based and remotely sensed surveys of varying degrees of sophistication, as well as enumerate the effort and cost in completing the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Three different traditional (“stick and tape”) survey techniques were used, including a variant using map-grade GPS. Complete topographic/bathymetric surveys were attempted at each site using separate rtkGPS, total station, ground-based LiDaR, boat-based echo-sounding (w/ ADCP), traditional airborne LiDaR, and imagery-based spectral methods. Separate, georectified aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Preliminary results from the surveys highlight that no single technique works across the full range of conditions where stream habitat surveys are needed. The results are helpful for understanding the strengths and weaknesses of each approach in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete quantification of habitat conditions in rivers.

  20. Nondestructive method for reconnecting aluminum metallization on integrated circuits.

    PubMed

    Zubatkin, A D

    1979-07-01

    A failure analysis technique for reconnecting aluminum metallization on planar IC devices is described. The technique, utilizing a conductive paint deposited on the device surface, is nondestructive and easily removable. PMID:18699636

  1. Coating integrity survey using DC voltage gradient technique at Korea Gas Corporation

    SciTech Connect

    Cho, Y.B.; Park, K.W.; Jeon, K.S.; Song, H.S.; Won, D.S.; Lee, S.M.; Kho, Y.T.

    1996-12-31

    The reliability and applicability of various coating defect detecting techniques are investigated utilizing mock pipe. It is shown that both close interval potential survey and dc voltage gradient methods are impertinent as field techniques: They require considerable cathodic polarization in order to effectively locate the coating defects. DC voltage gradient with current interruption technique is recommended as a viable field method in that it is able to precisely locate the defects irrespective of CP condition. Utilizing the method field survey was undertaken for the KGC`s pipeline of 120 km and 106 assumed defects were located.

  2. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE PAGESBeta

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  3. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    SciTech Connect

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based on their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.

  4. A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laelapidae) detection.

    PubMed

    Pettis, Jeffery S; Rose, Robyn; Lichtenberg, Elinor M; Chantawannakul, Panuwan; Buawangpong, Ninat; Somana, Weeraya; Sukumalanand, Prachaval; Vanengelsdorp, Dennis

    2013-08-01

    Parasitic Tropilaelaps (Delfinado and Baker) mites are a damaging pest of European honey bees (Apis mellifera L.) in Asia. These mites represent a significant threat if introduced to other regions of the world, warranting implementation of Tropilaelaps mite surveillance in uninfested regions. Current Tropilaelaps mite-detection methods are unsuitable for efficient large scale screening. We developed and tested a new bump technique that consists of firmly rapping a honey bee brood frame over a collecting pan. Our method was easier to implement than current detection tests, reduced time spent in each apiary, and minimized brood destruction. This feasibility increase overcomes the test's decreased rate of detecting infested colonies (sensitivity; 36.3% for the bump test, 54.2% and 56.7% for the two most sensitive methods currently used in Asia). Considering this sensitivity, we suggest that screening programs sample seven colonies per apiary (independent of apiary size) and 312 randomly selected apiaries in a region to be 95% sure of detecting an incipient Tropilaelaps mite invasion. Further analyses counter the currently held view that Tropilaelaps mites prefer drone bee brood cells. Tropilaelaps mite infestation rate was 3.5 +/- 0.9% in drone brood and 5.7 +/- 0.6% in worker brood. We propose the bump test as a standard tool for monitoring of Tropilaelaps mite presence in regions thought to be free from infestation. However, regulators may favor the sensitivity of the Drop test (collecting mites that fall to the bottom of a hive on sticky boards) over the less time-intensive Bump test. PMID:24020263

  5. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  6. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  7. Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms.

    PubMed

    Khulal, Urmila; Zhao, Jiewen; Hu, Weiwei; Chen, Quansheng

    2016-04-15

    Hyperspectral imaging (HSI) system has been used to assess the chicken quality in this work. Principle component analysis (PCA) and Ant Colony Optimization (ACO) were comparatively used for data dimension reduction. First, we selected 5 dominant wavelength images from chicken hypercube using PCA and ACO. Then, 6 textural variables based on statistical moments were extracted from each dominant wavelength image, thus totaling to 30 variables. Next, we selected the classic back propagation artificial neural network (BPANN) algorithm for modeling. Experimental results showed the performance of ACO-BPANN model is superior to that of PCA-BPANN model, and the optimum ACO-BPANN model was achieved with RMSEP=6.3834 mg/100g and R=0.7542 in the prediction set. Our work implies that HSI integrating spectral and spatial information has a high potential in quantifying TVB-N content of chicken in rapid and non-destructive manner, and ACO has superiority in dimension reduction of hypercube. PMID:26675857

  8. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    A review is presented on research and development of techniques for nondestructive evaluation and characterization of advanced ceramics for heat engine applications. Highlighted in this review are Lewis Research Center efforts in microfocus radiography, scanning laser acoustic microscopy (SLAM), scanning acoustic microscopy (SAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by applying them to research samples of green and sintered silicon nitride and silicon carbide in the form of modulus-of-rupture bars containing seeded voids. Probabilities of detection of voids were determined for diameters as small as 20 microns for microfucus radiography, SLAM, and SAM. Strengths and limitations of the techniques for ceramic applications are identified. Application of ultrasonics for characterizing ceramic microstructures is also discussed.

  9. Use of structured personality survey techniques to indicate operator response to stressful situations

    SciTech Connect

    Waller, M.A.

    1990-01-01

    Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressful conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance.

  10. Nondestructive examination development and demonstration plan

    SciTech Connect

    Weber, J.R.

    1991-08-21

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques.

  11. NONDESTRUCTIVE EVALUATION (NDE) OF DAMAGED STRUCTURAL CERAMICS

    SciTech Connect

    Brennan, R. E.; Green, W. H.; Sands, J. M.; Yu, J. H.

    2009-03-03

    A combination of destructive and nondestructive testing methods was utilized to evaluate the impact velocity and energy conditions that caused fracture in alumina structural ceramics. Drop tower testing was used for low velocity impact with a high mass indenter and fragment simulating projectile testing was used for high velocity impact with a low mass projectile. The damaged samples were nondestructively evaluated using digital radiography and ultrasound C-scan imaging. The bulk damage detected by these techniques was compared to surface damage observed by visual inspection.

  12. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  13. A comparison between finite element modeling and various thermographic non-destructive testing techniques for the quantification of the thermal integrity of macro-brush plasma facing components used in a tokamak

    NASA Astrophysics Data System (ADS)

    Pandya, Santosh P.; Pandya, Shwetang N.; Patil, Yashashri V.; Krishnan, Deepu S.; Murugesan, Menaka; Sharath, D.; Singh, K. Premjit; Khan, Md. Shoaib; Arafat, M.; Biju, N.; Khirwadkar, Samir S.; Govidarajan, Jagannathan; Venkatraman, B.; Balasubramaniam, Krishnan

    2016-02-01

    The plasma facing components (PFCs) inside a tokamak are typically exposed to extremely high heat flux of the order of MW/m2. The brazing quality between the plasma facing materials (PFMs) and the heat sink will determine the structural integrity and hence the effective service life of these PFCs. Suitable non-destructive testing (NDT) techniques for the pre-qualification of these components are thus essential to evaluate their structural integrity at various stages of their service life. Macro-brush type mockups of prototype PFCs with graphite as PFM have been inspected for their brazing quality using different active Infrared (IR)-thermographic NDT techniques. The results obtained from these techniques are compared and discussed. The brazing quality was quantified by establishing a comparison between the experimental results and the results from Finite Element Analysis (FEA). The percentage of contact between the PFM and the substrate was varied in FEA. FEA results when compared with experiments shows that tiles have different amounts of contact with the substrate ranging between 10% and 80%.

  14. Overview of High-Resolution Nondestructive Inspection of the Space Shuttle External Tank (ET) Spray-on-Foam Insulation (SOFI) and Acreage Heat tiles using Focused, Synthetic and Holographical Millimeter Wave Techniques

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, Frank L.

    2006-01-01

    Space Shuttle Columbia's catastrophic failure has been attributed to a piece of spray-on-foam insulation (SOFI) that was dislodged from the external tank (ET) and struck the leading edge of the left wing. A piece of SOFI was also dislodged in the recent Space Shuttle Discovery's flight. From immediately after the Columbia accident, microwave and millimeter wave nondestructive testing methods were considered as potential effective inspection tools for evaluating the integrity of the SOFI. To this end and as a result of these efforts, both real-focused, synthetic focusing and holographical techniques, at a wide range of frequencies covering 24 GHz to 150 GHz, have been developed for this purpose. Images of various complex SOFI panels with a wide range of embedded anomalies (representing real potential defects) have been produced using these techniques, including relatively small anomalies located near complex structural features representative of the external tank. These real-focused and 3D holographical images have effectively demonstrated the utility of these methods for SOFI inspection as being viable, robust, repeatable, simple, portable and relatively inexpensive (tens of $K as opposed to hundreds of $K). In addition, the potential viability of these methods for inspecting acreage heat tiles have has been demonstrated. This paper presents an overview of these activities, representative images of these panels using all of the imaging techniques used and a discussion of the practical attributes of these inspection methods.

  15. A comparison between finite element modeling and various thermographic non-destructive testing techniques for the quantification of the thermal integrity of macro-brush plasma facing components used in a tokamak.

    PubMed

    Pandya, Santosh P; Pandya, Shwetang N; Patil, Yashashri V; Krishnan, Deepu S; Murugesan, Menaka; Sharath, D; Singh, K Premjit; Khan, Md Shoaib; Arafat, M; Biju, N; Khirwadkar, Samir S; Govidarajan, Jagannathan; Venkatraman, B; Balasubramaniam, Krishnan

    2016-02-01

    The plasma facing components (PFCs) inside a tokamak are typically exposed to extremely high heat flux of the order of MW/m(2). The brazing quality between the plasma facing materials (PFMs) and the heat sink will determine the structural integrity and hence the effective service life of these PFCs. Suitable non-destructive testing (NDT) techniques for the pre-qualification of these components are thus essential to evaluate their structural integrity at various stages of their service life. Macro-brush type mockups of prototype PFCs with graphite as PFM have been inspected for their brazing quality using different active Infrared (IR)-thermographic NDT techniques. The results obtained from these techniques are compared and discussed. The brazing quality was quantified by establishing a comparison between the experimental results and the results from Finite Element Analysis (FEA). The percentage of contact between the PFM and the substrate was varied in FEA. FEA results when compared with experiments shows that tiles have different amounts of contact with the substrate ranging between 10% and 80%. PMID:26931878

  16. [Nondestructive Evaluation (NDE) Capabilities

    NASA Technical Reports Server (NTRS)

    Born, Martin

    2010-01-01

    These poster boards display the United Space Alliance's (USA) systems and equipment used for Nondestructive Evaluation. These include: (1) the Robotic Inspection Facility, (2) CAT-Scan and Laminography, (3) Laser Surface Profilometry, (4) Remote Eddy Current, (5) Ultrasonic Phased Array, (7) Infrared Flash Thermography, and (8) Backscatter X-Ray (BSX)

  17. A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers

    NASA Astrophysics Data System (ADS)

    Bangen, Sara G.; Wheaton, Joseph M.; Bouwes, Nicolaas; Bouwes, Boyd; Jordan, Chris

    2014-02-01

    Fine-scale (submeter) resolution digital elevation models (DEMs) created from high precision (subcentimeter) instruments (e.g., total station, rtkGPS, and laser scanning) have become ubiquitous in the field of fluvial geomorphology. They permit a diverse range of spatially explicit analyses including hydraulic modeling, habitat modeling, and geomorphic change detection. While previous studies have assessed the quality of specific topographic survey methods at individual sites or across a limited number of sites, an intercomparison of survey technologies across a diverse range of wadeable streams could help clarify which techniques are feasible, as well as which work best under what circumstances and for what purposes. Although a wealth of existing studies and protocols explain how to undertake each individual technique, in this study we seek to provide guidance on what techniques to use in which circumstances. We quantified the relative quality and the amount of effort spent collecting data to derive bare earth topography from an array of ground-based and airborne survey techniques. We used topographic survey data collected over the summer of 2010 from six sample reaches of varying complexity in the Lemhi River basin, Idaho, USA. We attempted to conduct complete, replicate surveys at each site using total station (TS), real-time kinematic (rtk) GPS, discrete return terrestrial laser scanner (TLS), and airborne LiDaR surveys (ALS). We evaluated the precision and accuracy of derived bare earth DEMs relative to the higher precision total station point data. Discrepancies between pairwise techniques were calculated using propagated DEM errors thresholded at a 95% confidence interval. Mean discrepancies between total station and rtkGPS DEMs were relatively low (≤ 0.05 m), yet TS data collection time was up to 2.4 times longer than rtkGPS. The ALS DEMs had lower accuracy than TS or rtkGPS DEMs, but the aerial coverage and floodplain context of the ALS data set was

  18. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  19. Educational ultrasound nondestructive testing laboratory.

    PubMed

    Genis, Vladimir; Zagorski, Michael

    2008-09-01

    The ultrasound nondestructive evaluation (NDE) of materials course was developed for applied engineering technology students at Drexel University's Goodwin College of Professional Studies. This three-credit, hands-on laboratory course consists of two parts: the first part with an emphasis on the foundations of NDE, and the second part during which ultrasound NDE techniques are utilized in the evaluation of parts and materials. NDE applications are presented and applied through real-life problems, including calibration and use of the latest ultrasonic testing instrumentation. The students learn engineering and physical principles of measurements of sound velocity in different materials, attenuation coefficients, material thickness, and location and dimensions of discontinuities in various materials, such as holes, cracks, and flaws. The work in the laboratory enhances the fundamentals taught during classroom sessions. This course will ultimately result in improvements in the educational process ["The greater expectations," national panel report, http://www.greaterexpectations.org (last viewed February, 2008); R. M. Felder and R. Brent "The intellectual development of Science and Engineering Students. Part 2: Teaching to promote growth," J. Eng. Educ. 93, 279-291 (2004)] since industry is becoming increasingly reliant on the effective application of NDE technology and the demand on NDE specialists is increasing. NDE curriculum was designed to fulfill levels I and II NDE in theory and training requirements, according to American Society for Nondestructive Testing, OH, Recommended Practice No. SNT-TC-1A (2006). PMID:19045633

  20. A Methodological Intercomparison of Topographic and Aerial Photographic Habitat Survey Techniques

    NASA Astrophysics Data System (ADS)

    Bangen, S. G.; Wheaton, J. M.; Bouwes, N.

    2011-12-01

    A severe decline in Columbia River salmonid populations and subsequent Federal listing of subpopulations has mandated both the monitoring of populations and evaluation of the status of available habitat. Numerous field and analytical methods exist to assist in the quantification of the abundance and quality of in-stream habitat for salmonids. These methods range from field 'stick and tape' surveys to spatially explicit topographic and aerial photographic surveys from a mix of ground-based and remotely sensed airborne platforms. Although several previous studies have assessed the quality of specific individual survey methods, the intercomparison of competing techniques across a diverse range of habitat conditions (wadeable headwater channels to non-wadeable mainstem channels) has not yet been elucidated. In this study, we seek to enumerate relative quality (i.e. accuracy, precision, extent) of habitat metrics and inventories derived from an array of ground-based and remotely sensed surveys of varying degrees of sophistication, as well as quantify the effort and cost in conducting the surveys. Over the summer of 2010, seven sample reaches of varying habitat complexity were surveyed in the Lemhi River Basin, Idaho, USA. Complete topographic surveys were attempted at each site using rtkGPS, total station, ground-based LiDaR and traditional airborne LiDaR. Separate high spatial resolution aerial imagery surveys were acquired using a tethered blimp, a drone UAV, and a traditional fixed-wing aircraft. Here we also developed a relatively simplistic methodology for deriving bathymetry from aerial imagery that could be readily employed by instream habitat monitoring programs. The quality of bathymetric maps derived from aerial imagery was compared with rtkGPS topographic data. The results are helpful for understanding the strengths and weaknesses of different approaches in specific conditions, and how a hybrid of data acquisition methods can be used to build a more complete

  1. Nondestructive testing methods for 55-gallon, waste storage drums

    SciTech Connect

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection.

  2. Advances in the use of tomographic inspection techniques for non-destructive analysis of geometric conductor position and correlation with magnetic cross-section modeling

    SciTech Connect

    Bein, D.; Snitchler, G.; Rabaey, G.F.; Bolger, J.; Crane, R. Morgan, I.L.; Vinson, M.

    1993-05-01

    Industrial Computerized Tomography has been applied to magnet components in various stages of the manufacturing process. These Computerized Tomographic images can be analyzed to infer detailed dimensional information about magnet component positions (conductor, wedges, collars, etc.) throughout the magnet manufacturing process (cable winding, collaring, yoked/skinned). An analysis technique will be presented and measurement accuracies will be discussed.

  3. Knik Glacier, Alaska; summary of 1979, 1980, and 1981 data and introduction of new surveying techniques

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.

    1982-01-01

    Knik Glacier in south-central Alaska has the potential to reform Lake George, Alaska 's largest glacier-dammed lake. Measurements of surface altitude, snow depth, terminus position, glacier speed, and ice depth are being made in an attempt to determine the mechanisms that could cause a significant re-advance of the glacier. New surveying and data reduction techniques were developed by the authors and employed successfully at Knik Glacier. These include precise geodetic surveying by the ' trisection ' technique, calculation of surface altitude at a specially-fixed ' index point ' from three point measurements on a rough, moving glacier surface, and calculation of ice thickness from low frequency radar measurements. In addition, this report summarizes the data collected from 1979 to 1981 in support of this goal. (USGS)

  4. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  5. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  6. A Survey Of Techniques for Managing and Leveraging Caches in GPUs

    SciTech Connect

    Mittal, Sparsh

    2014-09-01

    Initially introduced as special-purpose accelerators for graphics applications, graphics processing units (GPUs) have now emerged as general purpose computing platforms for a wide range of applications. To address the requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as unique architecture of GPU, rise of CPU–GPU heterogeneous computing, etc., demand effective management of caches to achieve high performance and energy efficiency. Recently, several techniques have been proposed for this purpose. In this paper, we survey several architectural and system-level techniques proposed for managing and leveraging GPU caches. We also discuss the importance and challenges of cache management in GPUs. The aim of this paper is to provide the readers insights into cache management techniques for GPUs and motivate them to propose even better techniques for leveraging the full potential of caches in the GPUs of tomorrow.

  7. A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deirmendjian, D.

    1980-01-01

    A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.

  8. Knowledge based systems: A critical survey of major concepts, issues and techniques. Visuals

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1984-01-01

    This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled, Knowledge Based Systems: A Critical Survey of Major Concepts, Issues, and Techniques, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-9. The objectives of the report are to: examine various techniques used to build the KBS; to examine at least one KBS in detail, i.e., a case study; to list and identify limitations and problems with the KBS; to suggest future areas of research; and to provide extensive reference materials.

  9. A Survey of Partition-Based Techniques for Copy-Move Forgery Detection

    PubMed Central

    Nathalie Diane, Wandji Nanda; Xingming, Sun; Moise, Fah Kue

    2014-01-01

    A copy-move forged image results from a specific type of image tampering procedure carried out by copying a part of an image and pasting it on one or more parts of the same image generally to maliciously hide unwanted objects/regions or clone an object. Therefore, detecting such forgeries mainly consists in devising ways of exposing identical or relatively similar areas in images. This survey attempts to cover existing partition-based copy-move forgery detection techniques. PMID:25152931

  10. Non-destructive optical clearing technique enhances optical coherence tomography (OCT) for real-time, 3D histomorphometry of brain tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.

    2016-03-01

    Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.

  11. A feasibility study to determine cooling time and burnup of ATR fuel using a nondestructive technique and three types of gamma-ray detectors

    SciTech Connect

    Navarro, J.; Aryaeinejad, R.; Nigg, D.W.

    2011-07-01

    The goal of this work was to perform a feasibility study and establish measurement techniques to determine the burnup of the Advanced Test Reactor (ATR) fuels at the Idaho National Laboratory (INL). Three different detectors of high purity germanium (HPGe), lanthanum bromide (LaBr{sub 3}), and high pressure xenon (HPXe) in two detection system configurations of below and above the water pool were used in this study. The last two detectors were used for the first time in fuel burnup measurements. The results showed that a better quality spectra can be achieved with the above the water pool configuration. Both short and long cooling time fuels were investigated in order to determine which measurement technique, absolute or fission product ratio, is better suited in each scenario and also to establish what type of detector should be used in each case for the best burnup measurement. The burnup and cooling time calibrations were established using experimental absolute activities or isotopic ratios and ORIGEN burnup calculations. A method was developed to do burnup and cooling time calibrations using fission isotopes activities without the need to know the exact geometry. (authors)

  12. A survey of simulation and diagnostic techniques for hypersonic nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Park, Chul

    1987-01-01

    The possible means of simulating nonequilibrium reacting flows in hypersonic environments, and the required diagnostic techniques, are surveyed in two categories: bulk flow behavior and determination of chemical rate parameters. Flow visualization of shock shapes for validation of computational-fluid dynamic calculations is proposed. The facilities and the operating conditions necessary to produce the required nonequilibrium conditions, the suitable optical techniques, and their sensitivity requirements, are surveyed. Shock-tubes, shock-tunnels, and ballistic ranges in a wide range of sizes and strengths are found to be useful for this purpose, but severe sensitivity requirements are indicated for the optical instruments, which can be met only by using highly-collimated laser sources. Likewise, for the determination of chemical parameters, this paper summarizes the quantities that need to be determined, required facilities and their operating conditions, and the suitable diagnostic techniques and their performance requirements. Shock tubes of various strengths are found to be useful for this purpose. Vacuum ultraviolet absorption and fluorescence spectroscopy and coherent anti-Stokes Raman spectroscopy are found to be the techniques best suited for the measurements of the chemical data.

  13. Gastronet survey on the use of one- or two-person technique for colonoscopy insertion

    PubMed Central

    2011-01-01

    Background Usually, colonoscopy insertion is performed by the colonoscopist (one-person technique). Quite common in the early days of endoscopy, the assisting nurse is now only rarely doing the insertion (two-person technique). Using the Norwegian national endoscopy quality assurance (QA) programme, Gastronet, we wanted to explore the extent of two-person technique practice and look into possible differences in performance and QA output measures. Methods 100 colonoscopists in 18 colonoscopy centres having reported their colonoscopies to Gastronet between January and December 2009 were asked if they practiced one- or two-person technique during insertion of the colonoscope. They were categorized accordingly for comparative analyses of QA indicators. Results 75 endoscopists responded to the survey (representing 9368 colonoscopies) - 62 of them (83%) applied one-person technique and 13 (17%) two-person technique. Patients age and sex distributions and indications for colonoscopy were also similar in the two groups. Caecal intubation was 96% in the two-person group compared to 92% in the one-person group (p < 0.001). Pain reports were similar in the groups, but time to the caecum was shorter and the use of sedation less in the two-person group. Conclusion Two-person technique for colonoscope insertion was practiced by a considerable minority of endoscopists (17%). QA indicators were either similar to or better than one-person technique. This suggests that there may be some beneficial elements to this technique worth exploring and try to import into the much preferred one-person insertion technique. PMID:21672243

  14. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    SciTech Connect

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  15. Tracking Color Shift in Ballpoint Pen Ink Using Photoshop Assisted Spectroscopy: A Nondestructive Technique Developed to Rehouse a Nobel Laureate's Manuscript

    PubMed Central

    Wright, Kristi; Herro, Holly

    2016-01-01

    Many historically and culturally significant documents from the mid-to-late twentieth century were written in ballpoint pen inks, which contain light-sensitive dyes that present problems for collection custodians and paper conservators. The conservation staff at the National Library of Medicine (NLM), National Institutes of Health, conducted a multiphase project on the chemistry and aging of ballpoint pen ink that culminated in the development of a new method to detect aging of ballpoint pen ink while examining a variety of storage environments. NLM staff determined that ballpoint pen ink color shift can be detected noninvasively using image editing software. Instructions are provided on how to detect color shift in digitized materials using a technique developed specifically for this project—Photoshop Assisted Spectroscopy.1 The study results offer collection custodians storage options for historic documents containing ballpoint pen ink. PMID:27587904

  16. Further development of ultrasonic techniques for non-destructive evaluation based on Fourier analysis of signals from irregular and inhomogeneous structures

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1979-01-01

    To investigate the use of Fourier analysis techniques model systems had to be designed to test some of the general properties of the interaction of sound with an inhomogeneity. The first models investigated were suspensions of solid spheres in water. These systems allowed comparison between theoretical computation of the frequency dependence of the attenuation coefficient and measurement of the attenuation coefficient over a range of frequencies. Ultrasonic scattering processes in both suspensions of hard spheres in water, and suspensions of hard spheres in polyester resin were investigated. The second model system was constructed to test the applicability of partial wave analysis to the description of an inhomogeneity in a solid, and to test the range of material properties over which the measurement systems were valid.

  17. Nondestructive evaluation (NDE) of composite-to-metal bond interface of a wind turbine blade using an acousto-ultrasonic technique

    SciTech Connect

    Gieske, J.H.; Rumsey, M.A.

    1996-12-31

    An acousto-ultrasonic inspection technique was developed to evaluate the structural integrity of the epoxy bond interface between a metal insert and the fiber glass epoxy composite of a wind turbine blade. Data was generated manually as well as with a PC based data acquisition and display system. C-scan imaging using a portable ultrasonic scanning system provided an area mapping of the delamination or disbond due to fatigue testing and normal field operation conditions of the turbine blade. Comparison of the inspection data with a destructive visual examination of the bond interface to determine the extent of the disbond showed good agreement between the acousto-ultrasonic inspection data and the visual data.

  18. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  19. Nondestructive imaging of an ultracold lattice gas

    NASA Astrophysics Data System (ADS)

    Patil, Y. S.; Chakram, S.; Aycock, L. M.; Vengalattore, M.

    2014-09-01

    We demonstrate the nondestructive imaging of a lattice gas of ultracold bosons. Atomic fluorescence is induced in the simultaneous presence of degenerate Raman sideband cooling. The combined influence of these processes controllably cycles an atom between a dark state and a fluorescing state while eliminating heating and loss. Through spatially resolved sideband spectroscopy following the imaging sequence, we demonstrate the efficacy of this imaging technique in various regimes of lattice depth and fluorescence acquisition rate. Our work provides an important extension of quantum gas imaging to the nondestructive detection, control, and manipulation of atoms in optical lattices. In addition, our technique can also be extended to atomic species that are less amenable to molasses-based lattice imaging.

  20. Magnetic nondestructive testing of rotor blade tips

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R.

    2015-05-01

    This paper deals with a particular magnetic nondestructive technique applied to the control of the position of the steel blades in rotating parts of turbines and engines. The working principle is based on a bridge of four identical magneto-resistive sensors. One sensor is placed near the blades, and the change in magnetic field produced by a permanent magnet and deviated by the change in position of the blade is detected by the sensor bridge. The position of the sensor is indicated, via dedicated FEM simulations, in order to have high sensitivity to the position change and high output signal. The accuracy and effectiveness of the proposed method are shown by experimental tests carried out in our laboratories. In particular, the tests indicate that the proposed magnetic nondestructive technique can be used in an almost large velocity range, and for quite different values of blade tip. The method seems also promising for the detection of blade vibrations.

  1. In situ Raman spectroscopy and confocal microscopy of 2.5-billion-year-old fossil microorganisms: viable nondestructive techniques for the study of returned Martian samples

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Fraeman, A.; Ehlmann, B. L.; Lautze, N. C.

    2014-12-01

    The Humu'ula Groundwater Research Project (HGRP) drilled their first continuously-cored hole in the saddle region of the big island of Hawaii in March of 2013. Temperatures at the bottom of the hole were unexpectedly high and reached over 100C. The core traverses various lava flows, representing the shield-building phase of the island and the lithology is dominantly basalt with varying amounts of plagioclase and olivine phenocrysts. Logging of the core noted that discontinuous alteration became prevalent starting at ~ 1 km depth. In May of 2015 we collected 780 infrared spectra of the core from depths of 0.97 to 1.76 km using our portable field spectrometer with a contact probe and field of view of 10 mm. Many of the spectra are unaltered, showing mafic mineralogy (augite or augite with olivine). Minerals from aqueous alteration include clinochlore, micaceous minerals likely mixed with other common phyllic alteration products, and three groups of spectral types associated with zeolites. This suite of minerals suggests alteration was initiated from higher temperature and moderate pH fluids. Based on the field reconnaissance spectroscopy, 25 sections were cut that represent the alteration diversity for thin section and subsequent detailed petrologic analyses. Eight of these sections were examined using the Ultra-Compact Imaging Spectrometer (UCIS) prototype instrument at the Jet Propulsion Laboratory. UCIS collects spectra at 80 μm / pixel and identifies the same alteration mineralogy as the bulk samples, but clearly shows that the alteration occurs in veins and vugs. Unaltered olivine and pyroxene phenocrysts occur in the groundmass adjacent to highly altered vugs, and are preserved throughout the section surveyed. Given the limited alteration and abundant preservation of olivine to depths of 1.5 km, the core may be representative of alteration in moderate pH environments on Mars, where unaltered basaltic materials occur in close proximity to alteration products

  2. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  3. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  4. Nondestructive material characterization

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  5. [Abortion in Brazil: a household survey using the ballot box technique].

    PubMed

    Diniz, Debora; Medeiros, Marcelo

    2010-06-01

    This study presents the first results of the National Abortion Survey (PNA, Pesquisa Nacional de Aborto), a household random sample survey fielded in 2010 covering urban women in Brazil aged 18 to 39 years. The PNA combined two techniques, interviewer-administered questionnaires and self-administered ballot box questionnaires. The results of PNA show that at the end of their reproductive health one in five women has performed an abortion, with abortions being more frequent in the main reproductive ages, that is, from 18 to 29 years old. No relevant differentiation was observed in the practice of abortion among religious groups, but abortion was found to be more common among people with lower education. The use of medical drugs to induce abortion occurred in half of the abortions, and post-abortion hospitalization was observed among approximately half of the women who aborted. Such results lead to conclude that abortion is a priority in the Brazilian public health agenda. PMID:20640252

  6. A Survey and Analysis of Techniques Used in Attracting the Black Middle-Class Patient

    PubMed Central

    Barnwell, Sydney; LaMendola, Walter F.

    1985-01-01

    This study presents a survey which is based upon the black physician's perception of the expectations of the black middle-class patient. This perception is that the middle-class expectations are low; hence, satisfaction is low, and the result is that prospective patients tend to utilize the services of white physicians. The survey was designed to sample opinions of physicians attending the 1983 annual meeting of the National Medical Association in Chicago, and it determined the most useful techniques in attracting black middle-class patients. These investigators believe that there is an immediate need of a market-concept approach utilizing the results of this study to help the black doctor market his services more effectively. Such a market concept approach is presented. PMID:3999152

  7. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques.

    PubMed

    Svarcová, Silvie; Cermáková, Zdeňka; Hradilová, Janka; Bezdička, Petr; Hradil, David

    2014-11-11

    An unambiguous identification of pigments in paint layers of works of art forms a substantial part of the description of a painting technique, which is essential for the evaluation of the work of art including determination of the period and/or region of its creation as well as its attribution to a workshop or an author. Copper pigments represent a significant group of materials used in historic paintings. Because of their substantial diversity and, on the other hand, similarity, their identification and differentiation is a challenging task. An analytical procedure for unambiguous determination of both mineral-type (azurite, malachite, posnjakite, atacamite, etc.) and verdigris-type (copper acetates) copper pigments in the paint layers is presented, including light microscopy under VIS and UV light, electron microscopy with elemental microanalysis, Fourier transformed infrared micro-spectroscopy (micro-FTIR), and X-ray powder micro-diffraction (micro-XRD). Micro-Raman measurements were largely hindered by fluorescence. The choice of the analytical methods meets the contemporary requirement of a detailed description of various components in heterogeneous and minute samples of paint layers without their destruction. It is beneficial to use the combination of phase sensitive methods such as micro-FTIR and micro-XRD, because it allows the identification of both mineral-type and verdigris-type copper pigments in one paint layer. In addition, preliminary results concerning the study of the loss of crystallinity of verdigris-type pigments in proteinaceous binding media and the effect of lead white and lead tin yellow as highly absorbing matrix on verdigris identification in paint layers are reported. PMID:24892529

  8. Non-destructive micro-analytical differentiation of copper pigments in paint layers of works of art using laboratory-based techniques

    NASA Astrophysics Data System (ADS)

    Švarcová, Silvie; Čermáková, Zdeňka; Hradilová, Janka; Bezdička, Petr; Hradil, David

    2014-11-01

    An unambiguous identification of pigments in paint layers of works of art forms a substantial part of the description of a painting technique, which is essential for the evaluation of the work of art including determination of the period and/or region of its creation as well as its attribution to a workshop or an author. Copper pigments represent a significant group of materials used in historic paintings. Because of their substantial diversity and, on the other hand, similarity, their identification and differentiation is a challenging task. An analytical procedure for unambiguous determination of both mineral-type (azurite, malachite, posnjakite, atacamite, etc.) and verdigris-type (copper acetates) copper pigments in the paint layers is presented, including light microscopy under VIS and UV light, electron microscopy with elemental microanalysis, Fourier transformed infrared micro-spectroscopy (micro-FTIR), and X-ray powder micro-diffraction (micro-XRD). Micro-Raman measurements were largely hindered by fluorescence. The choice of the analytical methods meets the contemporary requirement of a detailed description of various components in heterogeneous and minute samples of paint layers without their destruction. It is beneficial to use the combination of phase sensitive methods such as micro-FTIR and micro-XRD, because it allows the identification of both mineral-type and verdigris-type copper pigments in one paint layer. In addition, preliminary results concerning the study of the loss of crystallinity of verdigris-type pigments in proteinaceous binding media and the effect of lead white and lead tin yellow as highly absorbing matrix on verdigris identification in paint layers are reported.

  9. A nondestructive method for continuously monitoring plant growth

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1985-01-01

    In the past, plant growth generally has been measured using destructive methods. This paper describes a nondestructive technique for continuously monitoring plant growth. The technique provides a means of directly and accurately measuring plant growth over both short and long time intervals. Application of this technique to the direct measurement of plant growth rates is illustrated using corn (Zea mays L.) as an example.

  10. Current ablation techniques for persistent atrial fibrillation: results of the European Heart Rhythm Association Survey.

    PubMed

    Dagres, Nikolaos; Bongiorni, Maria Grazia; Larsen, Torben Bjerregaard; Hernandez-Madrid, Antonio; Pison, Laurent; Blomström-Lundqvist, Carina

    2015-10-01

    The aim of this survey was to provide insight into current practice regarding ablation of persistent atrial fibrillation (AF) among members of the European Heart Rhythm Association electrophysiology research network. Thirty centres responded to the survey. The main ablation technique for first-time ablation was stand-alone pulmonary vein isolation (PVI): in 67% of the centres for persistent but not long-standing AF and in 37% of the centres for long-standing persistent AF as well. Other applied techniques were ablation of fractionated electrograms, placement of linear lesions, stepwise approach until AF termination, and substrate mapping and isolation of low-voltage areas. However, the percentage of centres applying these techniques during first ablation did not exceed 25% for any technique. When stand-alone PVI was performed in patients with persistent but not long-standing AF, the majority (80%) of the centres used an irrigated radiofrequency ablation catheter whereas 20% of the respondents used the cryoballoon. Similar results were reported for ablation of long-standing persistent AF (radiofrequency 90%, cryoballoon 10%). Neither rotor mapping nor one-shot ablation tools were used as the main first-time ablation methods. Systematic search for non-pulmonary vein triggers was performed only in 10% of the centres. Most common 1-year success rate off antiarrhythmic drugs was 50-60%. Only 27% of the centres knew their 5-year results. In conclusion, patients with persistent AF represent a significant proportion of AF patients undergoing ablation. There is a shift towards stand-alone PVI being the primary choice in many centres for first-time ablation in these patients. The wide variation in the use of additional techniques and in the choice of endpoints reflects the uncertainties and lack of guidance regarding the most optimal approach. Procedural success rates are modest and long-term outcomes are unknown in most centres. PMID:26498718

  11. Chest physiotherapy techniques in neurological intensive care units of India: A survey

    PubMed Central

    Bhat, Anup; Chakravarthy, Kalyana; Rao, Bhamini K.

    2014-01-01

    Context: Neurological intensive care units (ICUs) are a rapidly developing sub-specialty of neurosciences. Chest physiotherapy techniques are of great value in neurological ICUs in preventing, halting, or reversing the impairments caused due to neurological disorder and ICU stay. However, chest physiotherapy techniques should be modified to a greater extent in the neurological ICU as compared with general ICUs. Aim: The aim of this study is to obtain data on current chest physiotherapy practices in neurological ICUs of India. Settings and Design: A tertiary care hospital in Karnataka, India, and cross-sectional survey. Subjects and Methods: A questionnaire was formulated and content validated to assess the current chest physiotherapy practices in neurological ICUs of India. The questionnaire was constructed online and a link was distributed via E-mail to 185 physiotherapists working in neurological ICUs across India. Statistical Analysis Used: Descriptive statistics. Results: The response rate was 44.3% (n = 82); 31% of the physiotherapists were specialized in cardiorespiratory physiotherapy and 30% were specialized in neurological physiotherapy. Clapping, vibration, postural drainage, aerosol therapy, humidification, and suctioning were used commonly used airway clearance (AC) techniques by the majority of physiotherapists. However, devices for AC techniques such as Flutter, Acapella, and standard positive expiratory pressure devices were used less frequently for AC. Techniques such as autogenic drainage and active cycle of breathing technique are also frequently used when appropriate for the patients. Lung expansion therapy techniques such as breathing exercises, incentive spirometry exercises, and positioning, proprioceptive neuromuscular facilitation of breathing are used by majority of physiotherapists. Conclusions: Physiotherapists in this study were using conventional chest physiotherapy techniques more frequently in comparison to the devices available for

  12. Nurse Practitioners' Use of Communication Techniques: Results of a Maryland Oral Health Literacy Survey

    PubMed Central

    Koo, Laura W.; Horowitz, Alice M.; Radice, Sarah D.; Wang, Min Q.; Kleinman, Dushanka V.

    2016-01-01

    Objectives We examined nurse practitioners’ use and opinions of recommended communication techniques for the promotion of oral health as part of a Maryland state-wide oral health literacy assessment. Use of recommended health-literate and patient-centered communication techniques have demonstrated improved health outcomes. Methods A 27-item self-report survey, containing 17 communication technique items, across 5 domains, was mailed to 1,410 licensed nurse practitioners (NPs) in Maryland in 2010. Use of communication techniques and opinions about their effectiveness were analyzed using descriptive statistics. General linear models explored provider and practice characteristics to predict differences in the total number and the mean number of communication techniques routinely used in a week. Results More than 80% of NPs (N = 194) routinely used 3 of the 7 basic communication techniques: simple language, limiting teaching to 2–3 concepts, and speaking slowly. More than 75% of respondents believed that 6 of the 7 basic communication techniques are effective. Sociodemographic provider characteristics and practice characteristics were not significant predictors of the mean number or the total number of communication techniques routinely used by NPs in a week. Potential predictors for using more of the 7 basic communication techniques, demonstrating significance in one general linear model each, were: assessing the office for user-friendliness and ever taking a communication course in addition to nursing school. Conclusions NPs in Maryland self-reported routinely using some recommended health-literate communication techniques, with belief in their effectiveness. Our findings suggest that NPs who had assessed the office for patient-friendliness or who had taken a communication course beyond their initial education may be predictors for using more of the 7 basic communication techniques. These self-reported findings should be validated with observational studies

  13. Survey of radiographic requirements and techniques in United States dental assisting programs, 1982

    SciTech Connect

    Farman, A.G.; Grammer, S.; Hunter, N.; Baker, C.

    1983-10-01

    A survey of dental assisting programs revealed little standardization of student requirements for dental radiography in the United States. Areas for concern were: the high proportion of programs in which classmates exposed one another to ionizing radiation for training purposes; and the continued use of closed cones in some cases. Preclinical laboratories in radiography were, on average, of considerably longer duration than those previously reported for dental students. Conversely, clinical requirements in intraoral techniques were less for dental assisting students than is the case for dental students. Available methods of reducing patient exposure to ionizing radiation are not being fully implemented.

  14. Vector Quantization of Harmonic Magnitudes in Speech Coding Applications—A Survey and New Technique

    NASA Astrophysics Data System (ADS)

    Chu, Wai C.

    2004-12-01

    A harmonic coder extracts the harmonic components of a signal and represents them efficiently using a few parameters. The principles of harmonic coding have become quite successful and several standardized speech and audio coders are based on it. One of the key issues in harmonic coder design is in the quantization of harmonic magnitudes, where many propositions have appeared in the literature. The objective of this paper is to provide a survey of the various techniques that have appeared in the literature for vector quantization of harmonic magnitudes, with emphasis on those adopted by the major speech coding standards; these include constant magnitude approximation, partial quantization, dimension conversion, and variable-dimension vector quantization (VDVQ). In addition, a refined VDVQ technique is proposed where experimental data are provided to demonstrate its effectiveness.

  15. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  16. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey

    PubMed Central

    Deshpande, Sudesh; Dhote, D. S.; Kumar, Rajesh; Naidu, Suresh; Sutar, A.; Kannan, V.

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  17. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey.

    PubMed

    Deshpande, Sudesh; Dhote, D S; Kumar, Rajesh; Naidu, Suresh; Sutar, A; Kannan, V

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  18. Survey of agents and techniques applicable to the solidification of low-level radioactive wastes

    SciTech Connect

    Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

    1981-12-01

    A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

  19. First nondestructive measurements of power MOSFET single event burnout cross sections

    SciTech Connect

    Oberg, D.L.; Wert, J.L.

    1987-12-01

    A new technique to nondestructively measure single event burnout cross sections for N-channel power MOSFETs is presented. Previous measurements of power MOSFET burnout susceptibility have been destructive and thus not conducive to providing statistically meaningful burnout probabilities. The nondestructive technique and data for various device types taken at several accelerators, including the LBL Bevalac, are documented. Several new phenomena are observed.

  20. Trends in nondestructive imaging of IC packages

    NASA Astrophysics Data System (ADS)

    Moore, T. M.; Hartfield, C. D.

    1998-11-01

    Since the industry-wide conversion to surface mount packages in the mid-1980's, nondestructive imaging of moisture induced delaminations and cracks in plastic packaged ICs by scanning acoustic microscopy has been a critically important capability. Subsurface imaging and phase analysis of echoes has allowed scanning acoustic microscopy to become the primary nondestructive technique for component level inspection of packaged ICs and is sensitive to defects that are undetectable by real time x-ray inspection. It has become the preferred method for evaluating moisture sensitivity, and for many package processes, provides more reliable detection of wire bond degradation than physical cross sectioning or conventional electrical testing. However, the introduction of new technologies such as ball grid array (BGA) and flip chip packages demands improvements in acoustic inspection techniques. Echoes from the laminated substrates in BGA packages produce interference problems. Phase inversion detection is an important advantage of pulse-echo imaging of molded surface mount packages. However, phase inversion is not always helpful for delamination detection in these new packages, due to the properties of the materials involved. The requirement to nondestructively inspect flip chip interconnect bumps has arisen. Alternative approaches such as through-transmission screening of BGAs and high frequency (>200 MHz) pulse-echo inspection of flip chip bumps are addressing these new issues. As the acoustic frequency approaches the limits dictated by attenuation, new methods of frequency-domain signal analysis will become important for routine inspection and may give acoustic microscopy a predictive capability.

  1. Nondestructive evaluation of pyroshock propagation using hydrocodes

    NASA Astrophysics Data System (ADS)

    Lee, Juho; Hwang, Dae-Hyeon; Jang, Jae-Kyeong; Lee, Jung-Ryul; Han, Jae-Hung

    2016-04-01

    Pyroshock or pyrotechnic shock generated by explosive events of pyrotechnic devices can induce fatal failures in electronic payloads. Therefore, understanding and estimation of pyroshock propagation through complex structures are necessary. However, an experimental approach using real pyrotechnic devices is quite burdensome because pyrotechnic devices can damage test structures and newly manufactured test structures are necessary for each experiment. Besides, pyrotechnic experiments are quite expensive, time-consuming, and dangerous. Consequently, nondestructive evaluation (NDE) of pyroshock propagation without using real pyrotechnic devices is necessary. In this study, nondestructive evaluation technique for pyroshock propagation estimation using hydrocodes is proposed. First, pyroshock propagation is numerically analyzed using AUTODYN, a commercial hydrocodes. Hydrocodes can handle stress wave propagation including elastic, plastic, and shock wave in the time domain. Test structures are modeled and pyroshock time history is applied to where the pyroshock propagation originates. Numerical NDE results of pyroshock propagation on test structures are analyzed in terms of acceleration time histories and acceleration shock response spectra (SRS) results. To verify the proposed numerical methodology, impact tests using airsoft gun are performed. The numerical analysis results for the impact tests are compared with experimental results and they show good agreements. The proposed numerical techniques enable us to nondestructively characterize pyroshock propagation.

  2. Telephone survey to investigate relationships between onychectomy or onychectomy technique and house soiling in cats.

    PubMed

    Gerard, Amanda F; Larson, Mandy; Baldwin, Claudia J; Petersen, Christine

    2016-09-15

    OBJECTIVE To determine whether associations existed between onychectomy or onychectomy technique and house soiling in cats. DESIGN Cross-sectional study. SAMPLE 281 owners of 455 cats in Polk County, Iowa, identified via a list of randomly selected residential phone numbers of cat owners in that region. PROCEDURES A telephone survey was conducted to collect information from cat owners on factors hypothesized a priori to be associated with house soiling, including cat sex, reproductive status, medical history, and onychectomy history. When cats that had undergone onychectomy were identified, data were collected regarding the cat's age at the time of the procedure and whether a carbon dioxide laser (CDL) had been used. Information on history of house soiling behavior (urinating or defecating outside the litter box) was also collected. RESULTS Onychectomy technique was identified as a risk factor for house soiling. Cats for which a non-CDL technique was used had a higher risk of house soiling than cats for which the CDL technique was used. Cats that had undergone onychectomy and that lived in a multicat (3 to 5 cats) household were more than 3 times as likely to have house soiled as were single-housed cats with intact claws. CONCLUSIONS AND CLINICAL RELEVANCE Results of this cross-sectional study suggested that use of the CDL technique for onychectomy could decrease the risk of house soiling by cats relative to the risk associated with other techniques. This and other findings can be used to inform the decisions of owners and veterinarians when considering elective onychectomy for cats. PMID:27585101

  3. Nondestructive evaluation by acousto-ultrasonics

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1988-01-01

    Acousto-ultrasonics is an ultrasonic technique that was originally devised to cope with the particular problems associated with nondestructive evaluation (NDE) of fiber/polymer composite structures. The fiber/polymer composites are more attenuating to ultrasound than any other material presently of interest. This limits the applicability of high-frequency ultrasonics. A common use of ultrasound is the imaging of flaws internal to a structure by scattering from the interface with the flaw. However, structural features of composites can scatter ultrasound internally, thus obscuring the flaws. A need relative to composites is to be able to nondestructively measure the strength of laminar boundaries in order to assess the integrity of a structure. Acousto-ultrasonics has exhibited the ability to use the internal scattering to provide information for determining the strength of laminar boundaries. Analysis of acousto-ultrasonic signals by the wave ray paths that compose it leads to waveform partitioning that enhances the sensitivity to mechanical strength parameters.

  4. Epidemiological survey of different clinical techniques of orthodontic bracket debonding and enamel polishing

    PubMed Central

    Sfondrini, Maria Francesca; Scribante, Andrea; Fraticelli, Danilo; Roncallo, Silvia; Gandini, Paola

    2015-01-01

    Objectives: To conduct an epidemiological survey of the orthodontic debonding techniques in Italy, and describe the most commonly used methods to remove the brackets and adhesive from the tooth surfaces. Materials and Methods: A survey consisting of 6 questions about bracket debonding methods and instruments used was emailed to 1000 orthodontists, who were members of the Italian Orthodontics Society (SIDO. Clinicians were characterized by different sex, age, origin, and professional experience. Results: Overall, 267 surveys were returned, representing a response rate of 26.7% of the participants interviewed. The 0.2% of the orthodontists responded, via email, confirming that they were not interested, while 3% of the questionnaires were sent back not completed. The 70.1% of the clinicians interviewed did not return any response. Overall, 64% of SIDO members (orthodontists) did not detect any enamel damage after debonding. The brackets used most frequently (89.14%) in clinical practice were the metal ones. The most commonly used pliers for bracket removal were cutters (37.08%) and bracket removal pliers (34.83%). For adhesive removal, low speed tungsten carbide burs under irrigation were the most widely utilized method for adhesive removal (40.08%), followed by high speed carbide burs (14.19%), and diamond burs (14.19%). The most frequently used instruments for polishing after debonding were rubber cups (36.70%) and abrasive discs (21.35%). The 31.21% of the orthodontists found esthetic enamel changes before bonding versus after debonding. Conclusions: This survey showed the high variability of different methods for bracket debonding, adhesive removal, and tooth polishing. The collected answers indicate that most orthodontists have developed their own armamentarium of debonding and polishing, basing their method on trials and errors. PMID:26952141

  5. Nondestructive Test Probe

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center invented a device to detect fatigue cracks in aluminum alloy plates. Krautkramer Branson obtained an exclusive license and commercialized a hand-held device, the "CrackFinder," an electromagnetic probe for nondestructive evaluation, used to scan aircraft skins for surface breaks. The technology involves an eddy current, which is an electrical current induced by an alternating magnetic field. The CrackFinder also employs an innovative self-nulling feature, where the device automatically recalibrates to zero so that each flaw detected produces a reading. Compared to conventional testing systems, the CrackFinder is affordable, small, simple to use, and needs no calibration.

  6. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  7. Nondestructive measurement of environmental radioactive strontium

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Okamiya, Tomohiro; Tanaka, Saki; Tanuma, Ryosuke; Totsuka, Yumi; Murata, Jiro

    2014-03-01

    The Fukushima Daiichi nuclear power plant accident was triggered by the 2011 Great East Japan Earthquake. The main radioactivity concerns after the accident are I-131 (half-life: 8.0 days), Cs-134 (2.1 years), Cs-137 (30 years), Sr-89 (51 days), and Sr-90 (29 years). We are aiming to establish a new nondestructive measurement and detection technique that will enable us to realize a quantitative evaluation of strontium radioactivity without chemical separation processing. This technique is needed to detect radiation contained in foods, environmental water, and soil, to prevent us from undesired internal exposure to radiation.

  8. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  9. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  10. An Instructional Program for Training Nondestructive Testing and Inspection Technicians.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This document, the second portion of a two-part study, is designed to provide a guide for the formal training of technicians for nondestructive testing and inspection. Information in the guide is based on results of the industrial survey discussed in Part I. The subject matter is intended to be both flexible and comprehensive, and instructional…

  11. Nondestructive diagnostics of charged particle beams in accelerators

    NASA Astrophysics Data System (ADS)

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  12. HRMS Sky Survey Techniques for Separating the Rare Interesting Signal from the Multitude of Background Signals

    NASA Technical Reports Server (NTRS)

    Olsen, E.; Backus, C.; Gulkis, S.; Levin, S.

    1993-01-01

    The NASA High Resolution Microwave Survey (HRMS) Sky Survey component will survey the entire celestial sphere over the microwave frequency band to search for signals of intelligent origin which originate from beyond our solar system.

  13. Knowledge based systems: A preliminary survey of selected issues and techniques

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu

    1984-01-01

    It is only recently that research in Artificial Intelligence (AI) is accomplishing practical results. Most of these results can be attributed to the design and use of expert systems (or Knowledge-Based Systems, KBS) - problem-solving computer programs that can reach a level of performance comparable to that of a human expert in some specialized problem domain. But many computer systems designed to see images, hear sounds, and recognize speech are still in a fairly early stage of development. In this report, a preliminary survey of recent work in the KBS is reported, explaining KBS concepts and issues and techniques used to construct them. Application considerations to construct the KBS and potential KBS research areas are identified. A case study (MYCIN) of a KBS is also provided.

  14. A Survey on Terrain Assessment Techniques for Autonomous Operation of Planetary Robots

    NASA Astrophysics Data System (ADS)

    Sancho-Pradel, D. L.; Gao, Y.

    A key challenge in autonomous planetary surface exploration is the extraction of meaningful information from sensor data, which would allow a good interpretation of the nearby terrain, and a reasonable assessment of more distant areas. In the last decade, the desire to increase the autonomy of unmanned ground vehicles (UGVs), particularly in terms of off-road navigation, has significantly increased the interest in the field of automated terrain classification. Although the field is relatively new, its advances and goals are scattered across different robotic platforms and applications. The objective of this paper is to present a survey of the field from a planetary exploration perspective, bringing together the underlying techniques, existing approaches and relevant applications under a common framework. The aim is to provide a comprehensive overview to the newcomer in the field, and a structured reference for the practitioners.

  15. Surveying co-located space geodesy techniques for ITRF computation: statistical aspects

    NASA Astrophysics Data System (ADS)

    Sillard, P.; Sarti, P.; Vittuari, L.

    2003-04-01

    For two years, CNR (ITALY) has been involved in a complete renovation of the way Space Geodesy coloocated instruments are surveyed. Local ties are one of the most problematic part of International Terrestrial Reference Frame (ITRF) computation since the accuracy of Space Geodesy techniques has decreased to a few millimeters level. Therefore everybody now agrees on the fact that local ties are one of the most problematic aspects of the ITRF computation. The CNR has then decided to start a comprehensive reflection on the way local ties should be surveyed between Space Geodesy instruments. This reflection concerns the practical ground operations, the physical definition of a Space Geodesy instrument reference point (especially for VLBI), and the consequent adjustment of the results, as well as their publication. The two first aspects will be presented in an other presentation as the present one will focus on the two last points (statistics and publication). As Space Geodesy has now reached the mm level, local ties must be used in ITRF computation with a full variance covariance matrix available for one site. The talk will present the way this variance can be derived, even when the reference point is implicitly defined, like for VLBI. Some numerical examples will be given of the quality which can be reached through a rigorous statistical treatment of the new approach developed by CNR. The evidence of the significant improvement that can be seen of the ITRF-type computation will also be given.

  16. Worldwide Enucleation Techniques and Materials for Treatment of Retinoblastoma: An International Survey

    PubMed Central

    Mourits, Daphne L.; Hartong, Dyonne T.; Bosscha, Machteld I.; Kloos, Roel J. H. M.; Moll, Annette C.

    2015-01-01

    Purpose To investigate the current practice of enucleation with or without orbital implant for retinoblastoma in countries across the world. Methods A digital survey identifying operation techniques and material used for orbital implants after enucleation in patients with retinoblastoma. Results We received a response of 58 surgeons in 32 different countries. A primary artificial implant is routinely inserted by 42 (72.4%) surgeons. Ten (17.2%) surgeons leave the socket empty, three (5.2%) decide per case. Other surgeons insert a dermis fat graft as a standard primary implant (n=1), or fill the socket in a standard secondary procedure (n=2; one uses dermis fat grafts and one artificial implants). The choice for porous implants was more frequent than for non-porous implants: 27 (58.7%) and 15 (32.6%), respectively. Both porous and non-porous implant types are used by 4 (8.7%) surgeons. Twenty-five surgeons (54.3%) insert bare implants, 11 (23.9%) use separate wrappings, eight (17.4%) use implants with prefab wrapping and two insert implants with and without wrapping depending on type of implant. Attachment of the muscles to the wrapping or implant (at various locations) is done by 31 (53.4%) surgeons. Eleven (19.0%) use a myoconjunctival technique, nine (15.5%) suture the muscles to each other and seven (12.1%) do not reattach the muscles. Measures to improve volume are implant exchange at an older age (n=4), the use of Restylane SQ (n=1) and osmotic expanders (n=1). Pegging is done by two surgeons. Conclusion No (worldwide) consensus exists about the use of material and techniques for enucleation for the treatment of retinoblastoma. Considerations for the use of different techniques are discussed. PMID:25767872

  17. Development of instrumentation for magnetic nondestructive evaluation

    SciTech Connect

    Hariharan, S.

    1991-09-23

    The use of failure-prone components in critical applications has been traditionally governed by removing such components from service prior to the expiration of their predicted life expectancy. Such early retirement of materials does not guarantee that a particular sample will not fail in actual usage. The increasing cost of such life expectancy based operation and increased demand for improved reliability in industrial settings has necessitated an alternate form of quality control. Modern applications employ nondestructive evaluation (NDE), also known as nondestructive testing (NDT), as a means of monitoring the levels and growth of defects in a material throughout its operational life. This thesis describes the modifications made to existing instrumentation used for magnetic measurements at the Center for Nondestructive Evaluation at Iowa State University. Development of a new portable instrument is also given. An overview of the structure and operation of this instrumentation is presented. This thesis discusses the application of the magnetic hysteresis and Barkhausen measurement techniques, described in Sections 1.3.1 and 1.3.2 respectively, to a number of ferromagnetic specimens. Specifically, measurements were made on a number of railroad steel specimens for fatigue characterization, and on specimens of Damascus steel and Terfenol-D for materials evaluation. 60 refs., 51 figs., 5 tabs.

  18. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  19. Nondestructive Determination of Bond Strength

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Although many nondestructive techniques have been applied to detect disbonds in adhesive joints, no absolutely reliable nondestructive method has been developed to detect poor adhesion and evaluate the strength of bonded joints prior to the present work which used nonlinear ultrasonic methods to investigate adhesive bond cure conditions. Previously, a variety of linear and nonlinear ultrasonic methods with water coupling had been used to study aluminum-adhesive-aluminum laminates, prepared under different adhesive curing conditions, for possible bond strength determination. Therefore, in the course of this research effort, a variety of finite-amplitude experimental methods which could possibly differentiate various cure conditions were investigated, including normal and oblique incidence approaches based on nonlinear harmonic generation as well as several non-collinear two-wave interaction approaches. Test samples were mechanically scanned in various ways with respect to the focus of a transmitting transducer operated at several variable excitation frequencies and excitation levels. Even when powerful sample-related resonances were exploited by means of a frequency scanning approach, it was very difficult to isolate the nonlinear characteristics of adhesive bonds. However, a multi-frequency multi-power approach was quite successful and reliable. Ultrasonic tone burst signals at increasing power levels, over a wide frequency range, were transmitted through each bond specimen to determine its excitation dependent nonlinear harmonic resonance behavior. Relative amplitude changes were observed particularly in the higher harmonic spectral data and analyzed using a local displacement and strain analysis in the linear approximation. Two analysis approaches of the excitation-dependent data at specific resonances were found to be quite promising. One of these approaches may represent a very robust algorithm for classifying an adhesive bond as being properly cured or not

  20. Preliminary nondestructive evaluation manual for the space shuttle. [preliminary nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Pless, W. M.

    1974-01-01

    Nondestructive evaluation (NDE) requirements are presented for some 134 potential fracture-critical structural areas identified, for the entire space shuttle vehicle system, as those possibly needing inspection during refurbishment/turnaround and prelaunch operations. The requirements include critical area and defect descriptions, access factors, recommended NDE techniques, and descriptive artwork. Requirements discussed include: Orbiter structure, external tank, solid rocket booster, and thermal protection system (development area).

  1. Search Techniques for the Web of Things: A Taxonomy and Survey.

    PubMed

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus

    2016-01-01

    The Web of Things aims to make physical world objects and their data accessible through standard Web technologies to enable intelligent applications and sophisticated data analytics. Due to the amount and heterogeneity of the data, it is challenging to perform data analysis directly; especially when the data is captured from a large number of distributed sources. However, the size and scope of the data can be reduced and narrowed down with search techniques, so that only the most relevant and useful data items are selected according to the application requirements. Search is fundamental to the Web of Things while challenging by nature in this context, e.g., mobility of the objects, opportunistic presence and sensing, continuous data streams with changing spatial and temporal properties, efficient indexing for historical and real time data. The research community has developed numerous techniques and methods to tackle these problems as reported by a large body of literature in the last few years. A comprehensive investigation of the current and past studies is necessary to gain a clear view of the research landscape and to identify promising future directions. This survey reviews the state-of-the-art search methods for the Web of Things, which are classified according to three different viewpoints: basic principles, data/knowledge representation, and contents being searched. Experiences and lessons learned from the existing work and some EU research projects related to Web of Things are discussed, and an outlook to the future research is presented. PMID:27128918

  2. Search Techniques for the Web of Things: A Taxonomy and Survey

    PubMed Central

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus

    2016-01-01

    The Web of Things aims to make physical world objects and their data accessible through standard Web technologies to enable intelligent applications and sophisticated data analytics. Due to the amount and heterogeneity of the data, it is challenging to perform data analysis directly; especially when the data is captured from a large number of distributed sources. However, the size and scope of the data can be reduced and narrowed down with search techniques, so that only the most relevant and useful data items are selected according to the application requirements. Search is fundamental to the Web of Things while challenging by nature in this context, e.g., mobility of the objects, opportunistic presence and sensing, continuous data streams with changing spatial and temporal properties, efficient indexing for historical and real time data. The research community has developed numerous techniques and methods to tackle these problems as reported by a large body of literature in the last few years. A comprehensive investigation of the current and past studies is necessary to gain a clear view of the research landscape and to identify promising future directions. This survey reviews the state-of-the-art search methods for the Web of Things, which are classified according to three different viewpoints: basic principles, data/knowledge representation, and contents being searched. Experiences and lessons learned from the existing work and some EU research projects related to Web of Things are discussed, and an outlook to the future research is presented. PMID:27128918

  3. Nondestructive Evaluation of Nuclear-Grade Graphite

    SciTech Connect

    Dennis C. Kunerth; Timothy R. McJunkin

    2011-07-01

    Nondestructive Evaluation of Nuclear Grade Graphite Dennis C. Kunerth and Timothy R. McJunkin Idaho National Laboratory Idaho Falls, ID, 83415 This paper discusses the nondestructive evaluation of nuclear grade graphite performed at the Idaho National Laboratory. Graphite is a composite material highly dependent on the base material and manufacturing methods. As a result, material variations are expected within individual billets as well billet to billet and lot to lot. Several methods of evaluating the material have been explored. Particular technologies each provide a subset of information about the material. This paper focuses on techniques that are applicable to in-service inspection of nuclear energy plant components. Eddy current examination of the available surfaces provides information on potential near surface structural defects and although limited, ultrasonics can be utilized in conventional volumetric inspection. Material condition (e.g. micro-cracking and porosity induced by radiation and stress) can be derived from backscatter or acousto-ultrasound (AU) methods. Novel approaches utilizing phased array ultrasonics have been attempted to expand the abilities of AU techniques. By combining variable placement of apertures, angle and depth of focus, the techniques provide the potential to obtain parameters at various depths in the material. Initial results of the study and possible procedures for application of the techniques are discussed.

  4. Nondestructive Assay Options for Spent Fuel Encapsulation

    SciTech Connect

    Tobin, Stephen J.; Jansson, Peter

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  5. Finding Hidden Geothermal Resources in the Basin and Range Using Electrical Survey Techniques: A Computational Feasibility Study

    SciTech Connect

    J. W. Pritchett; not used on publication

    2004-12-01

    For many years, there has been speculation about "hidden" or "blind" geothermal systems—reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose primary purpose is to locate high-probability targets for subsequent deep confirmation drilling. The purpose of this study was to appraise the feasibility of finding "hidden" geothermal reservoirs in the Basin and Range using electrical survey techniques, and of adequately locating promising targets for deep exploratory drilling based on the survey results. The approach was purely theoretical. A geothermal reservoir simulator was used to carry out a lengthy calculation of the evolution of a synthetic but generic Great Basin-type geothermal reservoir to a quasi-steady "natural state". Postprocessors were used to try to estimate what a suite of geophysical surveys of the prospect would see. Based on these results, the different survey techniques were compared and evaluated in terms of their ability to identify suitable drilling targets. This process was completed for eight different "reservoir models". Of the eight cases considered, four were "hidden" systems, so that the survey techniques could be appraised in terms of their ability to detect and characterize such resources and to distinguish them from more conventionally situated geothermal reservoirs. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then to combine the results of both surveys with other pertinent information using mathematical "inversion" techniques to characterize the subsurface quantitatively. Many such surveys and accompanying analyses can be carried out

  6. Nondestructive assay confirmatory assessment experiments: mixed oxide

    SciTech Connect

    Lemming, J.F.

    1980-04-30

    The confirmatory assessment experiments demonstrate traceable nondestructive assay (NDA) measurements of plutonium in mixed oxide powder using commercially available spontaneous-fission assay systems. The experiments illustrate two major concepts: the production of calibration materials using calorimetric assay, and the use of paired measurements for measurement assurance. Two batches of well-characterized mixed oxide powder were used to establish the random and systematic error components. The major components of an NDA measurement assurance technique to establish and maintain traceability are identified and their functions are demonstrated. 20 refs., 10 figs., 10 tabs.

  7. Nondestructive assay measurements of GNEP related materials

    SciTech Connect

    Santi, Peter A; Crooks, William J.; Geist, William H.; Gonzales, Robert; Helland, Carolyn A.; Jackson, Jay M.; Frame, Katherine C.; Martinez, Michael M.; Scherer, Caroylnn P.; Vo, Duc T.

    2008-06-12

    Because the reprocessing technologies that are currently being considered for the Global Nuclear Energy Partnership (GNEP) will keep various actinides commingled with plutonium at all times throughout the process, the resulting nuclear fuel that is intended for the Advanced Burner Reactor will present unique measurement challenges for the various Nondestructive Assay (NDA) techniques. In order to begin clarifying which types of materials and measurement scenarios that may exist within GNEP require the development of new measurement technologies, an initial series of measurements have been performed on materials with radiation properties that are similar to those being considered within GNEP.

  8. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  9. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: a review.

    PubMed

    Selvaraj, Jonathan Nimal; Wang, Yan; Zhou, Lu; Zhao, Yueju; Xing, Fuguo; Dai, Xiaofeng; Liu, Yang

    2015-01-01

    Mycotoxin contamination in agro-food systems has been a serious concern over the last few decades in China, where the Ministry of Health has set maximum limits for mycotoxins in different agro-products. Overall survey data show that aflatoxin contamination in infant cereals, edible oils, raw milk, ginger and its related products are far below Chinese regulatory limits. The absence of aflatoxin M1 contamination in infant milk powders indicates a high standard of control. Aflatoxins in liquorice roots and lotus seeds have been reported for the first time. For deoxynivalenol, high levels were found in wheat grown in the Yangtze Delta region, which is more prone to rainfall, supporting Fusarium infection. The emerging mycotoxins beauvericins and enniatins have been reported in the medicinal herbs in China. Ochratoxin A in wine was below the European Union regulatory limits, but fumonisins in maize need to be monitored and future regulatory control considered. Overall from all the survey data analysed in this review, it can be concluded that 92% of the samples analysed had mycotoxin levels below the Chinese regulatory limits. In terms of detection techniques in recent years, immuno-based assays have been developed largely due to their excellent sensitivity and ease of use. Assays targeting multiple mycotoxins like aflatoxins, ochratoxin A, zearalenone and deoxynivalenol have been reported using microarrays and suspension arrays targeting in particular maize, rice and peanuts. Aptamer-based assays against ochratoxin A and aflatoxins B1 and B2 have been developed involving fluorescence detection; and surface plasmon resonance immunosensors have been developed targeting wine, maize, wheat, wild rye, hay and peanut oil with high sensitivity (> 0.025 ng l(-1)). Commercialisation of these technologies is much needed for wider usage in the coming years. PMID:25604871

  10. Aplication of Phase Shift Projection Moire Technique in Solid Surfaces Topographic Survey

    NASA Astrophysics Data System (ADS)

    Lino, A. C. L.; Dal Fabbro, I. M.; Enes, A. M.

    2008-04-01

    The application of projection moiré with phase shift techniques in vegetable organs surface topography survey had to step up basic procedures before reaching significant conclusions. As recommended by [1], the proposed method should be tested on virtual surfaces [1] before being carried on solid symmetric surfaces [2], followed by tests on asymmetric surfaces as fruits [3] and finally a generation of a 3D digital models of solid figures as well as of fruits [4]. In this research, identified as the step [2], tested objects included cylinders, cubes and spheres. In this sense a Ronchi grid named G1 was generated in a PC, from which other grids referred as G2, G3, and G4 were set out of phase by 1/4, 1/2 and 3/4 of period from G1. Grid G1 was then projected onto the samples surface instead of being virtually distorted, receiving the name of Gd. The difference between Gd and G1, G2, G3, and G4 followed by filtration generated the moiré fringes M1, M2, M3 and M4 respectively. Fringes are out of phase one from each other by 1/4 of period, which were processed by the Rising Sun Moiré software to produce packed phase and further on, the unpacked fringes. Final representations in gray levels as well as in contour lines showed the topography of the deformed grid Gd. Parallel line segments were projected onto moiré generated surface images to evaluate the approximation to the real surface. Line segments images were then captured by means of the ImageJ software and the corresponding curve fitting obtained. The work conclusions included the reliability of the proposed method in surveying solid figures shape.

  11. Human-computer dialogue: Interaction tasks and techniques. Survey and categorization

    NASA Technical Reports Server (NTRS)

    Foley, J. D.

    1983-01-01

    Interaction techniques are described. Six basic interaction tasks, requirements for each task, requirements related to interaction techniques, and a technique's hardware prerequisites affective device selection are discussed.

  12. Exploring Halo Substructure with Giant Stars. I. Survey Description and Calibration of the Photometric Search Technique

    NASA Astrophysics Data System (ADS)

    Majewski, Steven R.; Ostheimer, James C.; Kunkel, William E.; Patterson, Richard J.

    2000-11-01

    We have begun a survey of the structure of the Milky Way halo, as well as the halos of other Local Group galaxies, as traced by their constituent giant stars. These giant stars are identified via large-area, CCD photometric campaigns. Here we present the basis for our photometric search method, which relies on the gravity sensitivity of the Mg I triplet+MgH features near 5150 Å in F-K stars, and which is sensed by the flux in the intermediate-band DDO51 filter. Our technique is a simplified variant of the combined Washington/DDO51 four-filter technique described by Geisler, which we modify for the specific purpose of efficiently identifying distant giant stars for follow-up spectroscopic study: We show here that for most stars the Washington T1-T2 color is correlated monotonically with the Washington M-T2 color with relatively low scatter; for the purposes of our survey, this correlation obviates the need to image in the T1 filter, as originally proposed by Geisler. To calibrate our (M-T2, M-DDO51) diagram as a means to discriminate field giant stars from nearby dwarfs, we utilize new photometry of the main sequences of the open clusters NGC 3680 and NGC 2477 and the red giant branches of the clusters NGC 3680, Melotte 66, and ω Centauri, supplemented with data on field stars, globular clusters and open clusters by Doug Geisler and collaborators. By combining the data on stars from different clusters, and by taking advantage of the wide abundance spread within ω Centauri, we verify the primary dependence of the M-DDO51 color on luminosity and demonstrate the secondary sensitivity to metallicity among giant stars. Our empirical results are found to be generally consistent with those from analysis of synthetic spectra by Paltoglou & Bell. Finally, we provide conversion formulae from the (M, M-T2) system to the (V, V-I) system, corresponding reddening laws, as well as empirical red giant branch curves from ω Centauri stars for use in deriving photometric

  13. NOS/NGS activities to support development of radio interferometric surveying techniques

    NASA Technical Reports Server (NTRS)

    Carter, W. E.; Dracup, J. F.; Hothem, L. D.; Robertson, D. S.; Strange, W. E.

    1980-01-01

    National Geodetic Survey activities towards the development of operational geodetic survey systems based on radio interferometry are reviewed. Information about the field procedures, data reduction and analysis, and the results obtained to date is presented.

  14. Non-destructive testing of an original XVI century painting on wood by ESPI system

    NASA Astrophysics Data System (ADS)

    Arena, G.; Paturzo, M.; Fatigati, G.; Grilli, M.; Pezzati, L.; Ferraro, P.

    2015-03-01

    Electronic Speckle Pattern Interferometry (ESPI), a non-contact and non-destructive optical techniques, was employed for assessing the conservation state of a XVI Century painting on wood (72x88x1,9 cm). By a long term analysis, the whole structure alterations, induced by the room temperature and relative humidity variations, were evaluated. Measurement of the whole painting structural bends was achieved. Local flaws and hidden detachments of pictorial layers from the support, which cannot be recognized by traditional art-restorer methods, were also revealed. This work was prevalently aimed at achieving a simple approach, in the laboratory practice, to get an intuitively user-friendly method for art conservators, not accustomed to high-tech or math based methods. The results demonstrate that ESPI can largely improve the traditional art conservation survey techniques.

  15. The Effects of Stress Mitigation on Nondestructive Examination

    SciTech Connect

    Dennis C. Kunerth; Eric D. Larsen; Timothy R. Mcjunkin; Arthur D. Watkins

    2004-08-01

    Ultrasonic volumetric and eddy current and visual profile surface inspections of the completed weld securing the outer lid of the Yucca Mountain waste package are required after stress mitigation. However, the technique implemented may affect the ability of the different evaluation techniques to properly characterize the completed weld. An evaluation was performed to determine the extent the nondestructive evaluation techniques are affected by two candidate mitigation processes: controlled plasticity burnishing and laser peening. This report describes the work performed and summarizes the results.

  16. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  17. Evaluation of methods for nondestructive testing of brazed joints

    NASA Technical Reports Server (NTRS)

    Kanno, A.

    1968-01-01

    Evaluation of nondestructive methods of testing brazed joints reveals that ultrasonic testing is effective in the detection of nonbonds in diffusion bonded samples. Radiography provides excellent resolutions of void or inclusion defects, and the neutron radiographic technique shows particular advantage for brazing materials containing cadmium.

  18. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials.

    PubMed

    Dalecki, Diane; Mercado, Karla P; Hocking, Denise C

    2016-03-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  19. Preferred tools and techniques for implantation of cardiac electronic devices in Europe: results of the European Heart Rhythm Association survey.

    PubMed

    Bongiorni, Maria Grazia; Proclemer, Alessandro; Dobreanu, Dan; Marinskis, Germanas; Pison, Laurent; Blomstrom-Lundqvist, Carina

    2013-11-01

    The aim of this European Heart Rhythm Association (EHRA) survey was to assess clinical practice in relation to the tools and techniques used for cardiac implantable electronic devices procedures in the European countries. Responses to the questionnaire were received from 62 members of the EHRA research network. The survey involved high-, medium-, and low-volume implanting centres, performing, respectively, more than 200, 100-199 and under 100 implants per year. The following topics were explored: the side approach for implantation, surgical techniques for pocket incision, first venous access for lead implantation, preference of lead fixation, preferred coil number for implantable cardioverter-defibrillator (ICD) leads, right ventricular pacing site, generator placement site, subcutaneous ICD implantation, specific tools and techniques for cardiac resynchronization therapy (CRT), lead implantation sequence in CRT, coronary sinus cannulation technique, target site for left ventricular lead placement, strategy in left ventricular lead implant failure, mean CRT implantation time, optimization of the atrioventricular (AV) and ventriculo-ventricular intervals, CRT implants in patients with permanent atrial fibrillation, AV node ablation in patients with permanent AF. This panoramic view allows us to find out the operator preferences regarding the techniques and tools for device implantation in Europe. The results showed different practices in all the fields we investigated, nevertheless the survey also outlines a good adherence to the common standards and recommendations. PMID:24170423

  20. The San Pedro Mártir Open Cluster Survey: Progress, Techniques, Preliminary Results

    NASA Astrophysics Data System (ADS)

    Schuster, W.; Michel, R.; Dias, W.; Tapia-Peralta, T.; Vázquez, R.; Macfarland, J.; Chavarría, C.; Santos, C.; Moitinho, A.

    2007-05-01

    A CCD UBVRI survey of northern open clusters is being undertaken at San Pedro Mártir, Mexico, and performed using always the same instrumental setup (telescope, CCD, filters), reduction methods, and system of standards (Landolt). To date more than 300 clusters (mostly unstudied previously) have been observed, and about half the data reduced using aperture-photometry and PSF techniques. Our analysis procedures are being refined by studying in detail a small subset of these clusters. For example, the heavily reddened clusters Be80 and Be95 are being examined in the color-color diagrams: (B-V,U-B) and (B-V,R-I) to better understand the problems of curvature and variable reddening. For clusters for which our U data reaches the F-type stars, such as NGC2192 and NGC7296, techniques are being examined for estimating both the reddening E(B-V) and metallicity [Fe/H] via the use of the (U-B) excess. If the clusters also have "red clump" stars, such as NGC1798 and Do02, these procedures can be iterated between the clump and main sequence stars to establish even better the values of E(B-V) and [Fe/H]. Finally, color-magnitude diagrams, such as (B-V,V) and (V-I,V), are being employed together with the Schmidt-Kaler colors and Padova isochrones to obtain distances and ages for these clusters. A java-based computer program is being developed to help in the visualization and analysis of these photometric data. This system is capable of displaying each cluster simultaneously in different color-color and color-magnitude diagrams and has an interactive way to identify a star, or group of stars, in one diagram and to see were it falls in the other diagrams, facilitating the elimination of field stars and the apperception of cluster features. This program is capable of displaying up to 16 different diagrams for one cluster and processing up to 20 clusters at the same time. Our aims are the following: (1) a common UBVRI photometric scale for open clusters, (2) an atlas of color

  1. On-Line Nondestructive Methods for Examining Fuel Particles

    SciTech Connect

    Pardini, Allan F.; Bond, Leonard J.; Good, Morris S.; Bunch, Kyle J.; Sandness, Gerald A.; Hockey, Ronald L.; Saurwein, John J.; Gray, Joseph N.

    2007-09-15

    Tri-isotropic (TRISO) particle fuels, being considered for use in various advanced nuclear power reactors, consist of sub-millimeter diameter uranium oxide spheres uniformly coated to prevent the release of fission products into the reactor. About 15 billion of these spheres are needed to fuel a single reactor. Current quality control (QC) methods are manual, can destroy test specimens, and are not economically feasible. Replacing these methods with nondestructive evaluation (NDE) techniques, automated for higher speed, will make fuel production and reactor operation economically feasible, considering the requirement for extremely large fuel particle throughput rates. This paper reports a project to develop and demonstrate nondestructive examination methods to detect and reject defective particles, and in particular progress made in the final year of a Nuclear Energy Research Initiative (NERI) project . The work explored adapting, developing, and demonstrating innovative nondestructive test methods to cost-effectively assure the quality of large percentages of the fuel particles.

  2. RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Norris, Mark A.; Snyder, Elaine M.; Hoversten, Erik A.

    2015-09-01

    We present custom-processed ultraviolet, optical, and near-infrared photometry for the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and RESOLVE-B). RESOLVE is complete down to baryonic mass ˜ {10}9.1-9.3 {M}⊙ , probing the upper end of the dwarf galaxy regime. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and employs multiple flux extrapolation routines to estimate systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar mass estimates based on our optimized photometry with the nearly complete H i mass census for RESOLVE-A, we create new z = 0 volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals versus potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a “modified color” from planar fits to G/S as a function of both color and axial ratio. In the complete galaxy population, upper limits on G/S bias linear and planar fits. We therefore model the entire PGF probability density field, enabling iterative statistical modeling of upper limits and prediction of full G/S probability distributions for individual galaxies. These distributions have two-component structure in the red color regime. Finally, we use the RESOLVE-B 21 cm census to test several PGF calibrations, finding that most systematically under- or overestimate gas masses, but the full probability density method performs well.

  3. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    SciTech Connect

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.; Eichel, P.H.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why such correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.

  4. NONDESTRUCTIVE EVALUATION OF CERAMIC CANDLE FILTERS

    SciTech Connect

    Roger H.L. Chen, Ph.D.; Alejandro Kiriakidis

    1999-09-01

    Nondestructive evaluation (NDE) techniques have been used to reduce the potential mechanical failures and to improve the reliability of a structure. Failure of a structure is usually initiated at some type of flaw in the material. NDE techniques have been developed to determine the presence of flaws larger than an acceptable size and to estimate the remaining stiffness of a damaged structure (Chen, et. al, 1995). Ceramic candle filters have been tested for use in coal-fueled gas turbine systems. They protect gas turbine components from damage due to erosion. A total of one hundred and one candle filters were nondestructively evaluated in this study. Ninety-eight ceramic candle filters and three ceramic composite filters have been nondestructively inspected using dynamic characterization technique. These ceramic filters include twelve unused Coors alumina/mullite, twenty-four unused and fifteen used Schumacher-Dia-Schumalith TF-20, twenty-five unused and nine used Refractron 326, eight unused and three used Refractron 442T, one new Schumacher-T 10-20, and one used Schumacher-Dia-Schumalith F-40. All filters were subjected to a small excitation and the dynamic response was picked up by a piezoelectric accelerometer. The evaluation of experimental results was processed using digital signal analysis technique including various forms of data transformation. The modal parameters for damage assessment for the unexposed (unused) vs. exposed (used) specimen were based on two vibration parameters: natural frequencies and mode shapes. Finite Element models were built for each specimen type to understand its dynamic response. Linear elastic modal analysis was performed using eight nodes, three-dimensional isotropic solid elements. Conclusions based on our study indicate that dynamic characterization is a feasible NDE technique in studying structural properties of ceramic candle filters. It has been shown that the degradation of the filters due to long working hours (or

  5. Research Methodology in the Information Age: A Comparison of Two Survey Techniques.

    ERIC Educational Resources Information Center

    Ouimet, Judith A.; Hanson, Gary R.

    Historically, data have been collected from survey participants through a paper-and-pencil questionnaire or through interviews in person or on the telephone. This study compares the use of a new approach, interactive telephone data collection (ITDCT) to traditional paper-and-pencil collection. ITDCT administers survey items through a digitized…

  6. Communication methods and production techniques in fixed prosthesis fabrication: a UK based survey. Part 2: Production techniques

    PubMed Central

    Berry, J.; Nesbit, M.; Saberi, S.; Petridis, H.

    2014-01-01

    Aim The aim of this study was to identify the communication methods and production techniques used by dentists and dental technicians for the fabrication of fixed prostheses within the UK from the dental technicians' perspective. This second paper reports on the production techniques utilised. Materials and methods Seven hundred and eighty-two online questionnaires were distributed to the Dental Laboratories Association membership and included a broad range of topics, such as demographics, impression disinfection and suitability, and various production techniques. Settings were managed in order to ensure anonymity of respondents. Statistical analysis was undertaken to test the influence of various demographic variables such as the source of information, the location, and the size of the dental laboratory. Results The number of completed responses totalled 248 (32% response rate). Ninety percent of the respondents were based in England and the majority of dental laboratories were categorised as small sized (working with up to 25 dentists). Concerns were raised regarding inadequate disinfection protocols between dentists and dental laboratories and the poor quality of master impressions. Full arch plastic trays were the most popular impression tray used by dentists in the fabrication of crowns (61%) and bridgework (68%). The majority (89%) of jaw registration records were considered inaccurate. Forty-four percent of dental laboratories preferred using semi-adjustable articulators. Axial and occlusal under-preparation of abutment teeth was reported as an issue in about 25% of cases. Base metal alloy was the most (52%) commonly used alloy material. Metal-ceramic crowns were the most popular choice for anterior (69%) and posterior (70%) cases. The various factors considered did not have any statistically significant effect on the answers provided. The only notable exception was the fact that more methods of communicating the size and shape of crowns were utilised for

  7. Practical applications of nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Green, Robert E., Jr.

    1992-10-01

    Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.

  8. 29 CFR 1919.78 - Nondestructive examinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Nondestructive examinations. 1919.78 Section 1919.78 Labor... Nondestructive examinations. (a) Wherever it is considered necessary by the accredited person or his authorized...., examination of structure or parts by electronic, ultrasonic, or other nondestructive methods may be...

  9. Speckle reference beam holographic and speckle photographic interferometry in non-destructive test systems

    NASA Technical Reports Server (NTRS)

    Liu, H. K.

    1976-01-01

    The techniques of speckle beam holographic interferometry and speckle photographic interferometry are described. In particular, their practical limitations and their applications to the existing holographic nondestructive test system are discussed.

  10. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  11. Nonlinear acoustic nondestructive testing for concrete durability

    NASA Astrophysics Data System (ADS)

    Wu, Hwai-Chung; Warnemuende, Kraig

    2000-06-01

    Several nondestructive testing methods can be used to determine the damage in a concrete structure. Linear ultrasonic techniques, e.g. pulse-velocity and amplitude attenuation, are very common in nondestructive evaluation. Velocity of propagation is not very sensitive to the degrees of damage unless a great deal of micro-damage having evolving into localized macro-damage. This transition typically takes place around 80% of the ultimate compressive strength. Amplitude attenuation is potentially more sensitive than pulse-velocity. However, this method depends strongly on the coupling conditions between transducers and concrete, hence unreliable. A baseline test of the linear acoustics of several mortar samples was conducted. These mortar samples have been previously damaged to different levels. Several other testing methods were also performed on the same samples to form a comparison. The focus is in comparing the sensitivity of a new testing method (Non-linear Acoustic NDE) with several more traditional testing methods. Non-linearity of the material stiffness is expressed in non-linear acoustics as the effect that damage and flaws have on the modulation of a signal as it propagates through the material. Spectral (non-linear) analysis is much more sensitive to lower damage states and less dependent on the repeatability of the coupling of the transducers.

  12. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  13. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  14. NASA CR-2120 - Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.

    1974-01-01

    This is a familiarization report of nondestructive testing (ndt) prepared by staff of the Battelle Columbus Laboratories on a NASA contract. There is a short introduction, a chapter on applicability of ndt which is illustrated with examples of typical defects and includes tables comparing the characteristics, interrelationships, and costs of the different techniques. There are chapters dealing with penetrants, magnetic particle radiography, ultrasonics, and eddy currents. New techniques are described.

  15. DECONTAMINATION TECHNIQUES FOR MOBILE RESPONSE EQUIPMENT USED AT WASTE SITES (STATE-OF-THE-ART SURVEY)

    EPA Science Inventory

    A state-of-the-art review of facility and equipment decontamination, contamination assessment, and contamination avoidance has been conducted. The review, based on an intensive literature search and a survey of various equipment manufacturers, provides preliminary background mate...

  16. Land-based lidar mapping: a new surveying technique to shed light on rapid topographic change

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    The rate of natural change in such dynamic environments as rivers and coastlines can sometimes overwhelm the monitoring capacity of conventional surveying methods. In response to this limitation, U.S. Geological Survey (USGS) scientists are pioneering new applications of light detection and ranging (lidar), a laser-based scanning technology that promises to greatly increase our ability to track rapid topographic changes and manage their impact on affected communities.

  17. Indigo snake capture methods: effectiveness of two survey techniques for Drymarchon couperi in Georgia

    USGS Publications Warehouse

    Hyslop, N.L.; Meyers, J.M.; Cooper, R.J.; Stevenson, J.

    2009-01-01

    Drymarchon couperi (Eastern Indigo Snake), a federally threatened species of the southeastern Coastal Plain, has presented challenges for surveyors, with few reliable methods developed for its detection or monitoring. Surveys for D. couperi at potential underground shelters conducted in late fall through early spring have been relatively successful when conducted by experienced surveyors, especially in the northern portions of the range. However, trapping efforts for D. couperi conducted throughout the range have met with limited success. To further evaluate detection methods, we conducted trapping and surveying from December 2002 to April 2004 in areas known to support D. couperi in southeastern Georgia. We captured 18 D. couperi through surveys of potential underground shelters from December 2002 to March 2003 (14 person-hours per capture) and six individuals through trapping (141 trap days or 27 in-field person-hours per capture). Trapping was most successful during early fall, a period when surveys are often less effective compared to those conducted in late fall through early spring. We recommend a combination of surveys from mid-fall through March in conjunction with trapping, especially from late-summer through fall in the northern portions of the snake?s range. We also recommend further experimentation with alternative trap designs and survey methods for D. couperi.

  18. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    PubMed Central

    Hernandez, Wilmar

    2007-01-01

    In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.

  19. Electronic speckle pattern shearing interferometry for nondestructive testing of thermal sprayed alloy coatings

    NASA Astrophysics Data System (ADS)

    Xue, Yueqiang; Kennedy, David; Mihaylova, Emilia

    2005-06-01

    Thermal sprayed coatings have wide engineering applications. There now exists a wide range of destructive and nondestructive testing (NDT) methods for surface coating inspections. This paper describes an application of Electronic Speckle Pattern Shearing Interferometry (ESPSI) for NDT of thermal sprayed surface coatings. In contrast to other conventional methods such as eddy current, ultrasonic or X-ray, ESPSI allows fast and large survey area inspection. Experimental results of shearographic measurements are presented. Thermal sprayed coatings were tested using ESPSI. Delaminations of the coatings were detected and the fringe patterns were captured using this method. It is shown that the shearography technique can be applied successfully to surface coating quality inspection and it is very effective for delamination detection.

  20. A survey of nested grid techniques and their potential for use within the MASS weather prediction model

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Mcqueen, Jeffery T.

    1987-01-01

    A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.

  1. The use of infrared thermography for nondestructive evaluation of joints

    NASA Astrophysics Data System (ADS)

    Meola, Carosena; Carlomagno, Giovanni M.; Squillace, Antonino; Giorleo, Giuseppe

    2004-12-01

    A junction between two similar, or dissimilar, materials represents generally a weak structural point and so it requires accurate choice of the most adequate joining technique and nondestructive evaluation of joined parts whatever the joining technique. The attention of the present paper is focused on the aid provided by infrared thermography for nondestructive evaluation of three types of joints: aluminum adhesively bonded joints, stainless steel laser welded joints and Glare ® mechanical fastened joints. Both techniques, pulse and modulated thermography with optical stimulation, are used. The attention is particularly focused on the second method because phase images are practically not affected by local nonuniform heating and/or local variation of the emissivity coefficient as thermal images.

  2. Holographic system for nondestructive testing

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1975-01-01

    A description is given of a holographic system for nondestructive testing. The system is comprised of a mirror which illuminates the test object surface; the mirror is positionable to direct illumination on an object at varying angles with respect to a line normal to the surface of the object. In this manner holograms may be produced with varying degrees of sensitivity enabling optimum observation of dimensions of deformation of an object occurring between test exposures.

  3. [Surgical treatment of hemorrhoids using Milligan-Morgan technique. Survey of 366 cases].

    PubMed

    Latteri, M; Grassi, N; Salanitro, L; Pantuso, G; Bottino, A; Gitto, C; Farro, G

    1991-10-31

    After a careful review of the Author's own case list and of the literature on this subject, Milligan-Morgans' technique is assessed and compared with different surgical techniques as far as early and late complications are concerned. The Authors conclude that the Milligan-Morgan technique is to be preferred because of its simplicity, safety and flexibility, particularly if associated with sphincterectomy, with or without rhagade, in order to prevent the cicatricial scars. PMID:1766559

  4. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  5. Anaesthesia Techniques for Maxillary Molars – A Questionnaire-Based Retrospective Field Survey of Dentist in Western India

    PubMed Central

    Mittal, Priya

    2016-01-01

    Introduction Clinicians use various anaesthesia techniques like Posterior Superior Alveolar (PSA) nerve block, buccal infiltration with or without supplemental anaesthesia like palatal and intraligamentary infiltrations for root canal treatment in maxillary molars. However there is no general consensus regarding which technique is enough for performing endodontic treatment in maxillary molars. Aim The aim of this questionnaire-based survey is to compare and evaluate the various techniques used to anaesthetize the maxillary molars and its effect on postoperative pain. Materials and Methods The data were obtained from 290 dental practitioners using a specially prepared questionnaire survey conducted anonymously. The questionnaire contained questions covering data such as years in dentistry, acquired specialty, techniques used for anaesthetizing maxillary molars, success of anaesthesia, and postoperative pain, etc. Results Buccal infilteration with supplemental anaesthesia in the form of palatal (82%) and intra-ligamentary infilteration (88%) show higher success rate compared to only buccal infilteration (69%). However, intra-ligamentary infilteration group showed highest rate (75%) of postoperative pain. General practitioners (62% of clinicians) prefer to give both buccal and palatal infilterations and specialists opt for only buccal infilteration (66-74% of specialists). Conclusion Only buccal infilteration is sufficient during root canal treatment of maxillary molars. Routine use of supplemental anaesthesia in the form of palatal and intra-ligamentary infilteration is not necessary unless patient experiences discomfort during endodontic treatment. However, intra-ligamentary infilteration may lead to postoperative discomfort in the form of pain. PMID:27134993

  6. Raising Money Through Gift Clubs: A Survey of Techniques at 42 Institutions.

    ERIC Educational Resources Information Center

    Sweeney, Robert D., Comp.

    The way that 42 private schools, colleges, and universities use gift clubs to motivate donors is examined. Based on a nationwide survey, information is presented on the clubs' origins, requirements for membership, methods of enlisting new members, and ways of encouraging current members to increase gifts. Attention is also directed to the clubs'…

  7. Main principles and technique of electronystagmography (a brief survey of the literature)

    NASA Technical Reports Server (NTRS)

    Tanchev, K. S.

    1980-01-01

    Electronystagmography (ENG) is one of the modern methods for objective recording of nystagmus, its quantitative and qualitative assessment. It is used more and more often in clinical practice. A brief review of the history of recording of nystagmus and a survey of the relevant literature is presented.

  8. MALT-45: a 7 mm survey of the southern Galaxy - I. Techniques and spectral line data

    NASA Astrophysics Data System (ADS)

    Jordan, Christopher H.; Walsh, Andrew J.; Lowe, Vicki; Voronkov, Maxim A.; Ellingsen, Simon P.; Breen, Shari L.; Purcell, Cormac R.; Barnes, Peter J.; Burton, Michael G.; Cunningham, Maria R.; Hill, Tracey; Jackson, James M.; Longmore, Steven N.; Peretto, Nicolas; Urquhart, James S.

    2015-04-01

    We present the first results from the MALT-45 (Millimetre Astronomer's Legacy Team-45 GHz) Galactic Plane survey. We have observed 5 square degrees (l = 330°-335°, b = ±0.5°) for spectral lines in the 7 mm band (42-44 and 48-49 GHz), including CS (1-0), class I CH3OH masers in the 7(0,7)-6(1,6) A+ transition and SiO (1-0) v = 0, 1, 2, 3. MALT-45 is the first unbiased, large-scale, sensitive spectral line survey in this frequency range. In this paper, we present data from the survey as well as a few intriguing results; rigorous analyses of these science cases are reserved for future publications. Across the survey region, we detected 77 class I CH3OH masers, of which 58 are new detections, along with many sites of thermal and maser SiO emission and thermal CS. We found that 35 class I CH3OH masers were associated with the published locations of class II CH3OH, H2O and OH masers but 42 have no known masers within 60 arcsec. We compared the MALT-45 CS with NH3 (1,1) to reveal regions of CS depletion and high opacity, as well as evolved star-forming regions with a high ratio of CS to NH3. All SiO masers are new detections, and appear to be associated with evolved stars from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Generally, within SiO regions of multiple vibrational modes, the intensity decreases as v = 1, 2, 3, but there are a few exceptions where v = 2 is stronger than v = 1.

  9. A survey of imagery techniques for semantic labeling of human-vehicle interactions in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Shirkhodaie, Amir

    2011-06-01

    Understanding and semantic annotation of Human-Vehicle Interactions (HVI) facilitate fusion of Hard sensor (HS) and Human Intelligence (HUMINT) in a cohesive way. By characterization, classification, and discrimination of HVI patterns pertinent threats may be realized. Various Persistent Surveillance System (PSS) imagery techniques have been proposed in the past decade for identifying human interactions with various objects in the environment. Understanding of such interactions facilitates to discover human intentions and motives. However, without consideration of incidental context, reasoning and analysis of such behavioral activities is a very challenging and difficult task. This paper presents a current survey of related publications in the area of context-based Imagery techniques applied for HVI recognition, in particular, it discusses taxonomy and ontology of HVI and presents a summary of reported robust image processing techniques for spatiotemporal characterization and tracking of human targets in urban environments. The discussed techniques include model-based, shape-based and appearance-based techniques employed for identification and classification of objects. A detailed overview of major past research activities related to HVI in PSS with exploitation of spatiotemporal reasoning techniques applied to semantic labeling of the HVI is also presented.

  10. The restoration of the Sangallo bastion in Fano: researches, surveyings, and conservation techniques.

    PubMed

    Galli, Claudio; Rosanò, Pietro

    2003-11-01

    The restoration plan, still in progress, of the Sangallo bastion in Fano, by Antonio da Sangallo the Younger, is the result of a deep research to sketch the chronographic complexity of the monument. By direct surveys--such as endoscopic tests, georadar profiles, chemical analysis in order to monitor the nature and the deterioration of the materials--it was possible to develop an "in itinere" conservation plan, explaining the obtained results with the historical research. PMID:14703862

  11. Pigments with or without organic binder? A survey of wall painting techniques during Antiquity

    SciTech Connect

    Walter, P.

    1996-01-01

    The identification of ancient artistic techniques is based on laboratory studies and, for historical cases, also on literary sources. An analytical approach using the techniques of physical chemistry reveals the technical expertise of the artists, right at the dawn of art. In the case of prehistoric parietal art, we show that the artists prepared their pigments with different ground and mixed minerals. They applied their material onto the wall and the particles remained embedded in the superficial calcite layer. Later, the prehistoric people prepared a real paint with the proper pigment, an extender and an organic binder to fix the paint on the wall. During Antiquity, new techniques appear. The paint is applied to the natural or artificial wall and is executed, either directly or on a previously applied plaster. The aim of this paper is to describe the evolution of the techniques. The underlying chemistry provides some interesting clues on the technical choices. {copyright} {ital 1996 American Institute of Physics.}

  12. Terrestrial Laser Scanning for Quantifying Habitat and Hydraulic Complexity Measures: A Comparison with Traditional Surveying Techniques

    NASA Astrophysics Data System (ADS)

    Resop, J. P.; Kozarek, J. L.; Hession, W. C.

    2010-12-01

    Accurate stream topography measurement is important for many ecological applications such as hydraulic modeling and habitat characterization. Measures of habitat complexity are often difficult to quantify or are performed qualitatively. Traditional surveying with a total station can be time intensive and limited by poor spatial resolution. These problems lead to measurement and interpolation errors, which propagate to model uncertainty. Terrestrial laser scanning (TLS) has the potential to measure topography at a high resolution and accuracy. Two methods, total station surveying and TLS, were used to measure a 100-m forested reach on the Staunton River in Shenandoah National Park, VA, USA. The TLS dataset was post-processed to remove vegetation and create a 2-cm digital elevation model (DEM). The position and size of ten rocks were compared for each method. An algorithm was developed for delineating rocks within the stream channel from the TLS DEM. Ecological metrics based on the structural complexity of the stream, such as percent in-stream rock cover and cross-sectional heterogeneity, were derived from the TLS dataset for six habitat areas and compared with the estimates from traditional methods. Compared to TLS, total station surveying underestimated rock volume and cross-sectional heterogeneity by 55% and 41%, respectively. TLS has the potential to quantify habitat complexity measures in an automated, unbiased manner.

  13. Monitoring Fine-Sediment Volume in the Colorado River Ecosystem, Arizona; Bathymetric Survey Techniques

    USGS Publications Warehouse

    Kaplinski, Matt; Hazel, Joseph E., Jr.; Parnell, Rod; Breedlove, Mike; Kohl, Keith; Gonzales, Mark

    2009-01-01

    In 2002, a fine-grained sediment (sand, silt, and clay) monitoring effort was initiated in the Colorado River ecosystem, the river corridor downstream from Glen Canyon Dam, to directly survey channel topography at scales previously unobtainable in this canyon setting. This report presents an overview of the equipment and the methods used to collect and process the high-resolution bathymetric data required for this monitoring effort. The survey methods were employed in up to 11 discrete reaches during various time intervals. The reaches varied in length from 1.3 to 6.4 km. An assessment of depth-measurement uncertainty is presented that shows the surveys meet or exceed the requirement needed to detect changes at the 0.25-m level with 95 percent confidence. These data, in the form of high-resolution digital elevation models, will be integrated in a geographic information system and used to compare maps of topography, grain size, and other information to study the spatial distribution of fine sediment in this system.

  14. Comparison of microbial and sorbed soil gas surgace geochemical techniques with seismic surveys from the Southern Altiplano, Bolivia

    SciTech Connect

    Aranibar, O.R.; Tucker, J.D.; Hiltzman, D.C.

    1995-12-31

    Yacimientos Petroliferos Fiscales Bolivianos (YPFB) undertook a large seismic evaluation in the southern Altiplano, Bolivia in 1994. As an additional layer of information, sorbed soil gas and Microbial Oil Survey Technique (MOST) geochemical surveys were conducted to evaluate the hydrocarbon microseepage potential. The Wara Sara Prospect had 387 sorbed soil gas samples, collected from one meter depth, and 539 shallow soil microbial samples, collected from 15 to 20 centimeter depth. The sorbed soil gas samples were collected every 500 meters and microbial samples every 250 meters along geochemical traverses spaced 1 km apart. The presence of anmalous hydrocarbon microseepage is indicated by (1) a single hydrocarbon source identified by gas crossplots, (2) the high gas values with a broad range, (3) the high overall gas average, (4) the clusters of elevated samples, and (5) the right hand skewed data distributions.

  15. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    SciTech Connect

    Chen, Roger H. L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-07-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures.

  16. Non-destructive evaluation of composite materials using ultrasound

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described.

  17. Development of Nondestructive Inspection Methods for Composite Repair

    NASA Astrophysics Data System (ADS)

    Hsu, D. K.; Barnard, D. J.; Peters, J. J.; Dayal, V.

    2003-03-01

    This paper describes the development and implementation of two complementary nondestructive inspection methods for repairs made on aircraft composite honeycomb structures: computer aided tap testing (CATT) and air-coupled ultrasonic testing (AC-UT). The CATT, being a semi-automated and quantitative technique, is exploited to map out the interior conditions of a repaired part. The same repair is also imaged with air-coupled ultrasound and both compared with the results from destructive sectioning.

  18. Non-destructive metallurgical analysis of astrolabes utilizing synchrotron radiation.

    SciTech Connect

    Newbury, B.; Stephenson, B.; Almer, J. D.; Notis, M.; Haeffner, D. R.; Slade Cargill, G., III

    2002-05-22

    From the experiments performed it is possible to determine a wide range of information about the metallurgy of the astrolabes studied. It was found that different brass alloys were used for components that were cast and those that were mechanically deformed. Chemical composition, forming history, and thickness measurements are all determined non-destructively, illustrating that this technique could be useful for many applications with metal artifact analysis where non-intrusive methods are required.

  19. Precise near-earth navigation with GPS: A survey of techniques

    NASA Technical Reports Server (NTRS)

    Yunck, T. P.; Wu, S. C.; Wu, J.

    1987-01-01

    The tracking accuracy of the low earth orbiters (below about 3000 km altitude) can be brought below 10 cm with a variety of differential techniques that exploit the Global Positioning System (GPS). All of these techniques require a precisely known global network of GPS ground receivers and a receiver aboard the user satellite, and all simultaneously estimate the user and GPS satellite orbits. Three basic approaches are the geometric, dynamic, and nondynamic strategies. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the nondynamic strategy show considerable promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a novel gravity-adjustment method to exploit data from repeat ground tracks. These techniques will offer sub-decimeter accuracy for dynamically unpredictable satellites down to the lowesst possible altitudes.

  20. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  1. A deep survey for Galactic Wolf-Rayet stars. I - Motivation, search technique, and first results

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Smith, Lindsey F.; Potter, Michael; Moffat, Anthony F. J.

    1991-01-01

    Results are presented from a survey of large areas of the southern Milky Way for Wolf-Rayet (WR) stars to 17-18th magnitude, carried out using direct narrowband and broadband Schmidt plates. Thirteen new WR stars were detected in an about 40-deg-sq region in Carina, where 24 WR stars were already known; the new stars were found to be significantly redder, fainter, and farther away than the known stars. Of the new WR stars, 11 are of subtype WN, and two are WC, compared to the 17 WN and seven WC stars among the previously known WR stars in the same area.

  2. Multispectral techniques for general geological surveys evaluation of a four-band photographic system

    NASA Technical Reports Server (NTRS)

    Crowder, D., F.

    1969-01-01

    A general geological survey at 1:62,500 scale of the well exposed rocks of the White Mountains and the adjacent volcanic desert plateau is reported. The tuffs, granites, sedimentary rocks and metavolcanic rocks in this arid region are varicolored and conventional black and white aerial photographs have been a useful mapping aid. A large number of true color and false color aerial photographs and multispectral viewer screen images of the study area are evaluated in order to consider what imagery is the most useful for distinguishing rock types. Photographs of true color film are judged the most useful for recognizing geographic locations.

  3. New Data Reduction Techniques for Circumstellar Disk Imaging with the Hubble DICE Survey

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin; Griggs, Zachary; Gardner, Clay; Carson, Joseph; Schneider, Glenn; Stark, Christopher C.; HST/GO 12228 Team

    2015-01-01

    We present a status report on our efforts to develop an image processing pipeline that combines multiple tools in order to improve the effective sensitivity of Hubble Space Telescope (HST) STIS imaging observations of circumstellar disks around young, nearby stars. The pipeline incorporates a combination of MRRR, LOCI, RSS, RAM, Shizzle, and smoothing algorithms to strip away the overwhelming light from the parent star, remove outlying pixel values, and output high-resolution, sub-pixelated, final images. The developed pipeline has been applied to data collected as part of the Hubble DICE Survey (GO 12228) in an effort to reveal disk substructures which may be signposts of planet formation.

  4. Minimum detectable concentration as a function of gamma walkover survey technique.

    PubMed

    King, David A; Altic, Nickolas; Greer, Colt

    2012-02-01

    Gamma walkover surveys are often performed by swinging the radiation detector (e.g., a 2-inch by 2-inch sodium iodide) in a serpentine pattern at a near constant height above the ground surface. The objective is to survey an approximate 1-m swath with 100% coverage producing an equal probability of detecting contamination at any point along the swing. In reality, however, the detector height will vary slightly along the swing path, and in some cases the detector may follow a pendulum-like motion significantly reducing the detector response and increasing the minimum detectable concentration. This paper quantifies relative detector responses for fixed and variable height swing patterns and demonstrates negative impacts on the minimum detectable concentration. Minimum detectable concentrations are calculated for multiple contaminated surface areas (0.1, 1.0, 3, 10, and 30 m2), multiple contaminants (60Co, 137Cs, 241Am, and 226Ra), and two minimum heights (5 and 10 cm). Exposure rate estimates used in minimum detectable concentration calculations are produced using MicroShield™ v.7.02 (Grove Software, Inc., 4925 Boonsboro Road #257, Lynchberg, VA 24503) and MDCs are calculated as outlined in NUREG-1575. Results confirm a pendulum-like detector motion can significantly increase MDCs relative to a low flat trajectory, especially for small areas of elevated activity--up to a 47% difference is observed under worst-modeled conditions. PMID:22249469

  5. A survey of provably correct fault-tolerant clock synchronization techniques

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    1988-01-01

    Six provably correct fault-tolerant clock synchronization algorithms are examined. These algorithms are all presented in the same notation to permit easier comprehension and comparison. The advantages and disadvantages of the different techniques are examined and issues related to the implementation of these algorithms are discussed. The paper argues for the use of such algorithms in life-critical applications.

  6. Water vapor as an error source in microwave geodetic systems: Background and survey of calibration techniques. [very long base interferometry

    NASA Technical Reports Server (NTRS)

    Claflin, E. S.; Resch, G. M.

    1980-01-01

    Water vapor as an error source in radio interferometry systems is briefly examined. At microwave frequencies, the delay imposed by tropospheric water vapor becomes a limiting error source for high accuracy geodetic systems. The mapping of tropospheric induced errors into 'solved-for' parameters depends upon baseline length and observing strategy. Simulation analysis (and experience) indicates that in some cases, errors in estimating tropospheric delay can be magnified in their effect on baseline components. The various techniques by which tropospheric water can be estimated or measured are surveyed with particular consideration to their possible use as a calibration technique in support to very long baseline interferometry experiments. The method of remote sensing using a microwave radiometer seems to be the most effective way to provide an accurate estimate of water vapor delay.

  7. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  8. A Survey on Large High-Resolution Display Technologies, Techniques, and Applications

    SciTech Connect

    Ni, Tao; Schmidt, Greg S.; Staadt, Oliver G.; Livingston, Mark A.; Ball, Robert; May, Richard A.

    2006-03-27

    Continued advances in display hardware, computing power, networking, and rendering algorithms have all converged to dramatically improve large high-resolution display capabilities. We present a survey on prior research with large high-resolution displays. In the hardware configurations section we examine systems including multi-monitor workstations, recon*gurable projector arrays, and others. Rendering and the data pipeline are addressed with an overview of current technologies. We discuss many applications for large high-resolution displays such as automotive design, scientific visualization, control centers, and others. Quantifying the effect of large high-resolution displays on human performance and other aspects is important as we look toward future advances in display technology and how it is applied in different situations. Interacting with these displays brings a different set of challenges for HCI professionals, so an overview of some of this work is provided. Finally, we present our view of the top ten greatest challenges in large high-resolution displays.

  9. Dietary survey methods. 1. A semi-weighted technique for measuring dietary intake within families.

    PubMed

    Nelson, M; Nettleton, P A

    1980-10-01

    Family diet studies which measure total family consumption can determine only the average nutrient intake. A method has been devised to measure all family members' individual diets concurrently in order to learn how food and nutrient intake is distributed within the family. In this semi-weighed method, the total quantity of food available for consumption by the family is weighted at time of preparation or serving, and the distribution between family members is recorded in household measures. The method is described in detail. It provides data on individual consumption with an accuracy approaching that of a weighed survey. A co-operation rate of 73 per cent in a random sample of 74 households with two adults and two or three children indicates that this semi-weighed method can be used to assess family diets in a broad cross-section of socio-economic backgounds. PMID:7419908

  10. Development of predictive mapping techniques for soil survey and salinity mapping

    NASA Astrophysics Data System (ADS)

    Elnaggar, Abdelhamid A.

    Conventional soil maps represent a valuable source of information about soil characteristics, however they are subjective, very expensive, and time-consuming to prepare. Also, they do not include explicit information about the conceptual mental model used in developing them nor information about their accuracy, in addition to the error associated with them. Decision tree analysis (DTA) was successfully used in retrieving the expert knowledge embedded in old soil survey data. This knowledge was efficiently used in developing predictive soil maps for the study areas in Benton and Malheur Counties, Oregon and accessing their consistency. A retrieved soil-landscape model from a reference area in Harney County was extrapolated to develop a preliminary soil map for the neighboring unmapped part of Malheur County. The developed map had a low prediction accuracy and only a few soil map units (SMUs) were predicted with significant accuracy, mostly those shallow SMUs that have either a lithic contact with the bedrock or developed on a duripan. On the other hand, the developed soil map based on field data was predicted with very high accuracy (overall was about 97%). Salt-affected areas of the Malheur County study area are indicated by their high spectral reflectance and they are easily discriminated from the remote sensing data. However, remote sensing data fails to distinguish between the different classes of soil salinity. Using the DTA method, five classes of soil salinity were successfully predicted with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected soil was overestimated when mapped using remote sensing data compared to that predicted by using DTA. Hence, DTA could be a very helpful approach in developing soil survey and soil salinity maps in more objective, effective, less-expensive and quicker ways based on field data.

  11. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review

    PubMed Central

    Gouveia, Maria João; Brindley, Paul J.; Santos, Lúcio Lara; da Costa, José Manuel Correia; Gomes, Paula; Vale, Nuno

    2013-01-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatrography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. PMID:23664145

  12. Different types of maximum power point tracking techniques for renewable energy systems: A survey

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini

    2016-03-01

    Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.

  13. I Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader.

    PubMed

    Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A

    2015-10-01

    Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales. PMID:26591459

  14. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches.

    PubMed

    Carboni, Davide; Gluhak, Alex; McCann, Julie A; Beach, Thomas H

    2016-01-01

    Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included. PMID:27213397

  15. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches

    PubMed Central

    Carboni, Davide; Gluhak, Alex; McCann, Julie A.; Beach, Thomas H.

    2016-01-01

    Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included. PMID:27213397

  16. Nonmedical influences on medical decision making: an experimental technique using videotapes, factorial design, and survey sampling.

    PubMed Central

    Feldman, H A; McKinlay, J B; Potter, D A; Freund, K M; Burns, R B; Moskowitz, M A; Kasten, L E

    1997-01-01

    OBJECTIVE: To study nonmedical influences on the doctor-patient interaction. A technique using simulated patients and "real" doctors is described. DATA SOURCES: A random sample of physicians, stratified on such characteristics as demographics, specialty, or experience, and selected from commercial and professional listings. STUDY DESIGN: A medical appointment is depicted on videotape by professional actors. The patient's presenting complaint (e.g., chest pain) allows a range of valid interpretation. Several alternative versions are taped, featuring the same script with patient-actors of different age, sex, race, or other characteristics. Fractional factorial design is used to select a balanced subset of patient characteristics, reducing costs without biasing the outcome. DATA COLLECTION: Each physician is shown one version of the videotape appointment and is asked to describe how he or she would diagnose or treat such a patient. PRINCIPAL FINDINGS: Two studies using this technique have been completed to date, one involving chest pain and dyspnea and the other involving breast cancer. The factorial design provided sufficient power, despite limited sample size, to demonstrate with statistical significance various influences of the experimental and stratification variables, including the patient's gender and age and the physician's experience. Persistent recruitment produced a high response rate, minimizing selection bias and enhancing validity. CONCLUSION: These techniques permit us to determine, with a degree of control unattainable in observational studies, whether medical decisions as described by actual physicians and drawn from a demographic or professional group of interest, are influenced by a prescribed set of nonmedical factors. PMID:9240285

  17. Survey of adult liver transplantation techniques (SALT): an international study of current practices in deceased donor liver transplantation

    PubMed Central

    Kluger, Michael D; Memeo, Riccardo; Laurent, Alexis; Tayar, Claude; Cherqui, Daniel

    2011-01-01

    Background There has been little focus lately on operative techniques for full graft liver transplantation, and the standard technique is unclear. Methods An internet survey addressing the key technical issues was e-mailed to programme directors. Results Responses were obtained from 93 out of 128 (73%) directors contacted. Programmes performed a median of 60 (8–240) transplants per year. Maximum mean cold time of 13 ± 3 h and maximum median steatosis of 40% (15–90%) were tolerated. The inferior vena cava was preserved by 48% of centres all the time and 43% selectively. European centres used temporary portacaval shunting (42%) four times more often than USA programmes. Venous bypass was always used when not preserving the inferior vena cava by less than 25%, and used selectively by approximately 40% of centres. Portal vein anastomosis with room for expansion (88%), graft hepatic artery to native gastroduodenal/common hepatic artery bifurcation (57%) and bile duct-to-duct (47%) were the favoured techniques. Discussion A standard international operative technique for deceased donor liver transplantation does not exist, although there is a trend towards inferior vena cava preservation. Donor selection criteria were more homogenous across programmes. As suggested by the high response rate, there likely exists interest to investigate technical variations on an international scale. PMID:21929669

  18. A survey of probabilistic methods used in reliability, risk and uncertainty analysis: Analytical techniques 1

    SciTech Connect

    Robinson, D.G.

    1998-06-01

    This report provides an introduction to the various probabilistic methods developed roughly between 1956--1985 for performing reliability or probabilistic uncertainty analysis on complex systems. This exposition does not include the traditional reliability methods (e.g. parallel-series systems, etc.) that might be found in the many reliability texts and reference materials (e.g. and 1977). Rather, the report centers on the relatively new, and certainly less well known across the engineering community, analytical techniques. Discussion of the analytical methods has been broken into two reports. This particular report is limited to those methods developed between 1956--1985. While a bit dated, methods described in the later portions of this report still dominate the literature and provide a necessary technical foundation for more current research. A second report (Analytical Techniques 2) addresses methods developed since 1985. The flow of this report roughly follows the historical development of the various methods so each new technique builds on the discussion of strengths and weaknesses of previous techniques. To facilitate the understanding of the various methods discussed, a simple 2-dimensional problem is used throughout the report. The problem is used for discussion purposes only; conclusions regarding the applicability and efficiency of particular methods are based on secondary analyses and a number of years of experience by the author. This document should be considered a living document in the sense that as new methods or variations of existing methods are developed, the document and references will be updated to reflect the current state of the literature as much as possible. For those scientists and engineers already familiar with these methods, the discussion will at times become rather obvious. However, the goal of this effort is to provide a common basis for future discussions and, as such, will hopefully be useful to those more intimate with

  19. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  20. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal...

  1. Monitoring Fine-Grained Sediment in the Colorado River Ecosystem, Arizona - Control Network and Conventional Survey Techniques

    USGS Publications Warehouse

    Hazel, Joseph E., Jr.; Kaplinski, Matt; Parnell, Roderic A.; Kohl, Keith; Schmidt, John C.

    2008-01-01

    In 2002, fine-grained sediment (sand, silt, and clay) monitoring in the Colorado River downstream from Glen Canyon Dam was initiated to survey channel topography at scales previously unobtainable in this canyon setting. This report presents the methods used to establish the high-resolution global positioning system (GPS) control network required for this effort as well as the conventional surveying techniques used in the study. Using simultaneous, dual-frequency GPS vector-based methods, the network points were determined to have positioning accuracies of less than 0.03 meters (m) and ellipsoidal height accuracies of between 0.01 and 0.10 m at a 95-percent degree of confidence. We also assessed network point quality with repeated, electronic (optical) total-station observations at 39 points for a total of 362 measurements; the mean range was 0.022 m in horizontal and 0.13 in vertical at a 95-percent confidence interval. These results indicate that the control network is of sufficient spatial and vertical accuracy for collection of airborne and subaerial remote-sensing technologies and integration of these data in a geographic information system on a repeatable basis without anomalies. The monitoring methods were employed in up to 11 discrete reaches over various time intervals. The reaches varied from 1.3 to 6.4 kilometers in length. Field results from surveys in 2000, 2002, and 2004 are described, during which conventional surveying was used to collect more than 3000 points per day. Ground points were used as checkpoints and to supplement areas just below or above the water surface, where remote-sensing data are not collected or are subject to greater error. An accuracy of +or- 0.05 m was identified as the minimum precision of individual ground points. These results are important for assessing digital elevation model (DEM) quality and identifying detection limits of significant change among surfaces generated from remote-sensing technologies.

  2. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  3. Novel Techniques for Survey and Classification Studies to Improve Patient Centered Websites

    PubMed Central

    Chused, Amy; Payne, Philip R.O.; Starren, Justin B.

    2006-01-01

    There is great interest in ascertaining patient perceptions in order to create more patient-friendly web resources. The recent proliferation of inexpensive web based data collection systems can facilitate this. Many quite sophisticated tools are commercially available. Unfortunately, researchers often recreate these capabilities in order to avoid privacy issues. This poster describes a simple architecture that allows use of a commercial system while maintaining privacy. In this example, the commercial tool supports the collection of complex categorical sorting data relating to chemotherapy systems. Hypothesis discovery techniques are used to convert the sort data into intuitive web menus. PMID:17238510

  4. Pilot workload and fatigue: A critical survey of concepts and assessment techniques

    NASA Technical Reports Server (NTRS)

    Gartner, W. B.; Murphy, M. R.

    1976-01-01

    The principal unresolved issues in conceptualizing and measuring pilot workload and fatigue are discussed. These issues are seen as limiting the development of more useful working concepts and techniques and their application to systems engineering and management activities. A conceptual analysis of pilot workload and fatigue, an overview and critique of approaches to the assessment of these phenomena, and a discussion of current trends in the management of unwanted workload and fatigue effects are presented. Refinements and innovations in assessment methods are recommended for enhancing the practical significance of workload and fatigue studies.

  5. Nondestructive inspection of a composite missile launcher

    NASA Astrophysics Data System (ADS)

    Ley, O.; Chung, S.; Butera, M.; Valatka, T.; Triplett, M. H.; Godinez, V.

    2012-05-01

    Lighter weight alternatives are being sought to replace metallic components currently used in high performance aviation and missile systems. Benefits of lightweight, high strength carbon fiber reinforced composites in missile launchers and rocket motor cases include improved fuel economy, increased flight times, enhanced lethality and/or increased velocity. In this work, various nondestructive inspection techniques are investigated for the damage assessment of a composite missile launcher system for use in U.S. Army attack helicopters. The launcher system, which includes rails and a hardback, can be subject to impact damage from accidental tool drops, routine operation, and/or ballistic threats. The composite hardback and the launch rails both have complex geometries that can challenge the inspection process. Scanning techniques such as line scanning thermography, ultrasonic, and acousto-ultrasonics will be used and compared to determine damage detection accuracy, reliability, and efficiency. Results will also be compared with visual observations to determine if there is a correlation. The goal is to establish an inspection method that quickly and accurately assesses damage extent in order to minimize service time and return the missile system back into the field [1].

  6. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  7. New sensor and non-contact geometrical survey for the vibrating wire technique

    NASA Astrophysics Data System (ADS)

    Geraldes, Renan; Junqueira Leão, Rodrigo; Cernicchiaro, Geraldo; Terenzi Neuenschwander, Regis; Citadini, James Francisco; Droher Rodrigues, Antônio Ricardo

    2016-03-01

    The tolerances for the alignment of the magnets in the girders of the next machine of the Brazilian Synchrotron Light Laboratory (LNLS), Sirius, are as small as 40 μm for translations and 0.2 mrad for rotations. Therefore, a novel approach to the well-known vibrating wire technique has been developed and tested for the precise fiducialization of magnets. The alignment bench consists of four commercial linear stages, a stretched wire, a commercial lock-in amplifier working with phase-locked loop (PLL), a coordinate measuring machine (CMM) and a vibration sensor for the wire. This novel sensor has been designed for a larger linear region of operation. For the mechanical metrology step of the fiducialization of quadrupoles an innovative technique, using the vision system of the CMM, is presented. While the work with pitch and yaw orientations is still ongoing with promising partial results, the system already presents an uncertainty level below 10 μm for translational alignment.

  8. Testing river surveying techniques in tidal environments: example from an actively meandering channel surveyed with TLS (Mont Saint-Michel bay, France)

    NASA Astrophysics Data System (ADS)

    Leroux, J.; Lague, D.

    2013-12-01

    factor 2 during summer/autumn spring tides at the peak of pioneer vegetation development. Bank erosion and channel dynamics show a marked difference for tides reaching the salt marsh elevation. For tides below marsh elevation, bank erosion is negligible and the channel is systematically aggrading at a rate proportional to HWL. For tides flooding the marsh, mean bank erosion increases linearly with HWL and the channel shifts to erosion for over-marsh tides. Using flow velocity and SSC data we show that sedimentation on the inner bar results from the penetration of the turbid flood onto the inner bar. Spatial variability in sedimentation results from local interactions between flow and vegetation. On the contrary, bank erosion is dominated by the very large ebb peak velocity developing during spring tides. The very non-linear sensitivity to HWL of bank erosion and channel erosion means that the rate of evolution is largely controlled by the largest tides of the year. This in turn yields very large annual fluctuations in the rates of meander evolution. These results demonstrate that mega-tidal environment can offer an alternative setting to test new survey techniques aimed at river monitoring and can shed light in the elementary processes governing biogeomorphological interactions.

  9. Aging management of major LWR components with nondestructive evaluation

    SciTech Connect

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-12-31

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments.

  10. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    PubMed Central

    Dassios, Konstantinos G.; Kordatos, Evangelos Z.; Aggelis, Dimitrios G.; Matikas, Theodore E.

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately. PMID:23935428

  11. Forty years with nondestructive methods

    NASA Astrophysics Data System (ADS)

    Teodoru, George

    1999-12-01

    The author takes the opportunity to strike the balance of his activity. He was the first establishing the qualitative and quantitative influence of curing conditions of concrete on the relations between nondestructively measured values, ultrasonic pulse velocity or attenuation and rebound indices (V,A,R) and its compressive strength. Since 1969 he had been behind a new approach for simultaneous use of concrete. The advantage of this multiple correlation concept (an off-spring of an original method for statistical quality analysis for the control of concrete quality) have been already well documented. The author established also a new criterium for the frost resistance of concrete, based on the variation of the logarithmic decrement of the vibrations (both free or forced). His activity as an expert led to the foundation of the "Engineering Society Cologne." He was entrusted with its presidency. Further examples shall inform about different field investigations carried out.

  12. Advances in nondestructive evaluation technology

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1982-01-01

    Research at NASA Langley's Materials Characterization Instrumentation Section has followed the philosophy of improving the science base of nondestructive evaluation and advancing the state of the art of quantitative interpretability of physical measurements of materials. Details of several R&D programs choosen to highlight the last several years are given. Applications of these technologies are presented in the area of stress measurement, characterization of metal heat treatment, and evaluation of material internal structure. A second focus of the program is on quantitative transducers/measurements that have resulted in better data in irregular inhomogeneous materials such as composites. Examples are presented of new capabilities resulting from these advances that include fatigue and impact damage evaluation.

  13. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  14. A survey of routing techniques in store-and-forward and wormhole interconnects.

    SciTech Connect

    Holman, David Michael; Lee, David S.

    2008-01-01

    This paper presents an overview of algorithms for directing messages through networks of varying topology. These are commonly referred to as routing algorithms in the literature that is presented. In addition to providing background on networking terminology and router basics, the paper explains the issues of deadlock and livelock as they apply to routing. After this, there is a discussion of routing algorithms for both store-and-forward and wormhole-switched networks. The paper covers both algorithms that do and do not adapt to conditions in the network. Techniques targeting structured as well as irregular topologies are discussed. Following this, strategies for routing in the presence of faulty nodes and links in the network are described.

  15. A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Fernholz, H. H.; Finley, P. J.; Dussauge, J. P.; Smits, A. J.; Reshotko, E. (Editor)

    1989-01-01

    A wide range of recent work on compressible turbulent boundary layers is described. Special attention was paid to flows with rapid changes in pressure including flows with shock waves, curved walls, and expansions. The application of rapid distortion theory to flows transversing expansion and shock waves is reviewed. This is followed by an account of experiments aimed at elucidating the large scale structures present in supersonic boundary layers. The current status of laser-Doppler and hot-wire anemometry in supersonic flow is discussed, and a new interferometric technique for the determination of wall-stress is described. The use of small pressure transducers to deduce information about the structure of zero pressure-gradient and severely perturbed boundary layers is investigated. Finally, there is an extension of the data presentation of AGARDographs 223, 253 and 263 to cover rapidly distorted boundary layers.

  16. Electrospinning as a powerful technique for biomedical applications: a critically selected survey.

    PubMed

    Villarreal-Gómez, Luis Jesús; Cornejo-Bravo, José Manuel; Vera-Graziano, Ricardo; Grande, Daniel

    2016-01-01

    Nowadays, electrospinning has become one of the most versatile, easy, and cost-effective techniques to engineer advanced materials used for many applications, especially in the biomedical and environmental areas. Like the numerous patents around the world, the increasing number of papers witnesses the huge potential of this simple process, and many companies have been emerged during the last years to exploit its innumerable applications. This article presents a critically selected overview of polymers that can be used to produce nanofibers, along with the biomedical applications of the resulting electrospun scaffolds. We have focused on about seven natural and synthetic polymers, but many more can be found in the literature, either as their pristine state or as composites with ceramics, metals, and other polymers. The description of some strategies for nanofiber production, and the characterization used to evaluate their optimization, has been discussed. Finally, several polymers have been recognized as highlights for future work. PMID:26540235

  17. A Nondestructive Method of Grain Microstructure Determination

    SciTech Connect

    Lai, J.

    2004-09-03

    Customarily, a material has been sectioned to study its internal grain microstructure and thus in the process is destroyed. Using x-rays, however, there are two nondestructive methods of determining the sources of diffraction spots and hence the internal grain microstructure of a sample. One technique consists of placing a wire in the path of a diffracted ray so that its image is prevented from appearing on the detector screen. Ray-tracing is then done to locate the source within the sample from whence the rays emanate. In this experiment, we investigate the other technique of determining source location by recording diffraction patterns at ten equally-spaced detector distances and then graphing the data with reasonable-fit lines using the least-squares fitting routine. We then perform a ray-tracing triangulation technique to pinpoint the location of the source from which the rays are coming. Cluster analyses are employed and plots of ray number versus pixel position of certain points at some particular detector distances are created. An error propagation analysis is then carried out as a check to the cluster analyses and graphs of error deviation along the detector path versus ray number are constructed. With statistical error analyses and construction of error boxes using chosen pixel error deviations and delta z error values, the best error measurement using the detector method was found to be plus/minus 100 microns. In this study, it was found that the detector method provided a much poorer resolution than the traditional wire technique of which there is a source size precision of within 1-5 microns. The detector method, though, is sufficient for large-grain material studies.

  18. Low-Cost Quality Control and Nondestructive Evaluation Technologies for General Aviation Structures

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Gavinsky, Bob; Semanskee, Grant

    1998-01-01

    NASA's Advanced General Aviation Transport Experiments (AGATE) Program has as a goal to reduce the overall cost of producing private aviation aircraft while maintaining the safety of these aircraft. In order to successfully meet this goal, it is necessary to develop nondestructive inspection techniques which will facilitate the production of the materials used in these aircraft and assure the quality necessary to maintain airworthiness. This paper will discuss a particular class of general aviation materials and several nondestructive inspection techniques that have proven effective for making these inspections. Additionally, this paper will discuss the investigation and application of other commercially available quality control techniques applicable to these structures.

  19. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  20. Left atrial appendage closure-indications, techniques, and outcomes: results of the European Heart Rhythm Association Survey.

    PubMed

    Pison, Laurent; Potpara, Tatjana S; Chen, Jian; Larsen, Torben B; Bongiorni, Maria Grazia; Blomström-Lundqvist, Carina

    2015-04-01

    The purpose of this EP Wire was to assess the indications, techniques, and outcomes of left atrial appendage occlusion (LAAO) in Europe. Thirty-three European centres, all members of the European Heart Rhythm Association electrophysiology (EP) research network, responded to this survey by completing the questionnaire. The major indication for LAAO (94%) was the prevention of stroke in patients at high thrombo-embolic risk (CHA2DS2-VASc ≥ 2) and contraindications to oral anticoagulants (OACs). Twenty-one (64%) of the responding centres perform LAAO in their own institution and 80% implanted 30 or less LAAO devices in 2014. Two-dimensional transoesophageal echocardiography was the preferred imaging technique to visualize LAA before, during, and after LAAO in 79, 58, and 62% of the participating centres, respectively. Following LAAO, 49% of the centres prescribe vitamin K antagonists or novel OACs. Twenty-five per cent of the centres combine LAAO with pulmonary vein isolation. The periprocedural complications included death (range, 0-3%), ischaemic or haemorrhagic stroke (0-25%), tamponade (0-25%), and device embolization (0-20%). In conclusion, this EP Wire has demonstrated that LAAO is most commonly employed in patients at high thrombo-embolic risk in whom OAC is contraindicated. The technique is not yet very widespread and the complication rates remain significant. PMID:25833883

  1. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  2. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications. PMID:27192290

  3. Mild-Vectolysis: A nondestructive DNA extraction method for vouchering sand flies and mosquitoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nondestructive techniques allow the isolation of genomic DNA, without damaging the morphological features of the specimens. Though such techniques are available for numerous insect groups, they have not been applied to any member of the medically important families of mosquitoes (Diptera: Culicidae)...

  4. A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1979-01-01

    Techniques for quantitative assessment of the mechanical strength and integrity of fiber composites during manufacture and service and following repair operations are presented. Problems and approaches are discussed relative to acceptance criteria, calibrating standards, and methods for nondestructive evaluation of composites in strength-critical applications. Acousto-ultrasonic techniques provide the methods of choice in this area.

  5. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  6. NONDESTRUCTIVE MULTIELEMENT INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS

    EPA Science Inventory

    A nondestructive instrumental neutron activation analysis procedure permitted accurate and sensitive measurement of most elements with atomic numbers between 11 and 92. The sensitivity of the procedure was dependent on each element's intrinsic characteristics and the sample matri...

  7. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  8. SQUIDs: microscopes and nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Mück, Michael

    2005-03-01

    SQUIDs (Superconducting Quantum Interference Devices) are magnetic field sensores with unsurpassed sensitivity. They are amazingly versatile, being able to measure all physical quantities which can be converted to magnetic flux. They are routinely fabricated in thin film technology from two classes of superconducting materials: high-temperature superconductors (HTS) which are usually cooled to 77 K, and low-temperature superconductors (LTS), which have to be cooled to 4.2 K. SQUIDs have many applications, two of which shall be discussed in this paper. In SQUID microscopy, a SQUID scans a sample, which preferrably is at room temperature, and measures the two-dimensional magnetic field distribution at the surface of the sample. In order to achieve a relatively high spatial resolution, the stand-off distance between the sample and the SQUID is made as small as possible. SQUIDs show also promising results in the field of nondestructive testing of various materials. For example, ferromagnetic impurities in stainless steel formed by aging processes in the material can be detected with high probability, and cracks in conducting materials, for example aircraft parts, can be located using eddy current methods. Especially for the case of thick, highly conductive, or ferromagnetic materials, as well as sintered materials, it can be shown that a SQUID-based NDE system exhibits a much higher sensitivity compared to conventional eddy current NDE and ultrasonic testing.

  9. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    SciTech Connect

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  10. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  11. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  12. Infrared thermal wave nondestructive testing for rotor blades in wind turbine generators non-destructive evaluation and damage monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Shi bin; Zhang, Cun-lin; Wu, Nai-ming; Duan, Yu-xia; Li, Hao

    2009-07-01

    The rotor blades are key components in wind turbine generators. A visual inspection of the laminated shells for delaminations, air pockets, missing/disoriented fabric etc. is in most cases also not possible due to the manufacturing process, so Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of rotor blades structure are essential to both reduce manufacturing costs and out of service time of wind turbine generators due to maintenance. Nowadays, Infrared Thermal Wave Nondestructive Testing (Pulsed thermography) is commonly used for assessing composites. This research work utilizes Infrared Thermal Wave Nondestructive Testing system (EchoTherm, Thermal Wave Imaging, Inc.) to inspect a specimen with embedded defects (i.e. foreign matter and air inclusions) in different depth which is a part of rotor blades in wind turbine generators, we have successfully identified defects including foreign matter and air inclusions, and discovered a defective workmanship. The system software allows us to simultaneously view and analyze the results for an entire transition.

  13. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. A survey of techniques for visualization of noise fields

    NASA Technical Reports Server (NTRS)

    Marshall, S. E.; Bernhard, R.

    1984-01-01

    A survey of the most widely used methods for visualizing acoustic phenomena is presented. Emphasis is placed on acoustic processes in the audible frequencies. Many visual problems are analyzed on computer graphic systems. A brief description of the current technology in computer graphics is included. The visualization technique survey will serve as basis for recommending an optimum scheme for displaying acoustic fields on computer graphic systems.

  14. Application of nondestructive testing in underwater evaluation of bridges and related structures

    NASA Astrophysics Data System (ADS)

    Garlich, Michael J.

    1995-05-01

    Determining a bridge structure's existing conditions and load carrying capacity often requires more complete data than can be gathered by visual observation and simple measurements. This is true below water as well as above. Various nondestructive testing techniques may be utilized underwater to gather such detailed data. Techniques to be addressed in this paper include ultrasonic nondestructive testing of timber and correlation to destructive and partially destructive testing, pulse velocity of concrete, ultrasonics in steel inspection, and an example of the underwater usage of diver-carried ground penetrating radar.

  15. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  16. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  17. Investigations and Non-destructive Testing in New Building Design

    NASA Astrophysics Data System (ADS)

    Klimenov, V.; Ovchinnikov, A.; Osipov, S.; Shtein, A.; Ustinov, A.; Danilson, A.

    2016-01-01

    Mechanical rebar couplers are preferable in the advanced building construction and structural design of antiseismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to- column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated antiseismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.

  18. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    NASA Technical Reports Server (NTRS)

    Sun, Jiangang G.; Verrilli, Michael J.; Stephan, Robert R.; Barnett, Terry R.; Ojard, Greg C.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite (silicon carbide fibers in a silicon carbide matrix) were nondestructively interrogated before and after combustion rig testing by x-ray, ultrasonic, and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications correlated with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations.

  19. Nondestructive Evaluation of Ceramic Matrix Composite Combustor Components

    NASA Technical Reports Server (NTRS)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.; Barnett, T. R.; Ojard, G.

    2003-01-01

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. The thermography indications in the SiC/SiC liners were delaminations and damaged fiber tows, as determined through microstructural examinations. [copyright] 2003 American Institute of Physics

  20. Non-destructive characterization using pulsed fast-thermal neutrons

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Schultz, F. J.; Vourvopoulos, G.

    1995-05-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis.

  1. Development of shearography for nondestructive testing of highway structure

    NASA Astrophysics Data System (ADS)

    Hung, Y. Y.; Hovanesian, J. D.

    1984-06-01

    Testing methodologies which may lead to early detection of impending structural failures are developed. The research is aimed at a laboratory feasibility study of an optical technique known as SHEAROGRAPHY for nondestructive testing of highway structural members. Laboratory samples representing typical highway structural members with programmed defects are tested with shearography. These samples include tubular member with an internal crack, butt weld joint with an imperfection in the weld, riveted joint with a loosened rivet, steel reinforced concrete slab with a broken internal reinforcement rod, and cord reinforced composite plate with the delaminations. All the programmed defects are detectable by shearography.

  2. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  3. Experimental implementation of reverse time migration for nondestructive evaluation applications.

    PubMed

    Anderson, Brian E; Griffa, Michele; Bas, Pierre-Yves Le; Ulrich, Timothy J; Johnson, Paul A

    2011-01-01

    Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation (NDE). This paper applies RTM imaging to NDE applications in bounded samples, where reverberation is always present. This paper presents a fully experimental implementation of RTM, whereas in seismic applications, only part of the procedure is done experimentally. A modified RTM imaging condition is able to localize scatterers and locations of disbonding. Experiments are conducted on aluminum samples with controlled scatterers. PMID:21302980

  4. On the role of interface imperfections in thermoelectric nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Nagy, Peter B.

    1998-07-01

    This letter draws attention to a previously unnoticed artifact associated with the most common type of thermoelectric nondestructive materials characterization technique. It is shown that contact heating between the specimen to be tested and the reference electrode gives rise to a considerable offset in the measured thermoelectric voltage. The resulting bias significantly reduces the feasibility of thermoelectric measurements in nondestructive testing applications that require sensitive materials discrimination, for example, to sort metals of similar alloying content, to distinguish similar grades of heat treatment, and to detect slight variations in the thermoelectric power of metals due to hardening, texture, fatigue, etc. It is also suggested that the demonstrated intrinsic sensitivity of the thermoelectric contact technique to imperfect interfaces could be exploited for nondestructive detection of tightly compressed but metallurgically not bonded interfaces in spot welds, diffusion bonds, and other types of solid-state bonds.

  5. Recent advances in nondestructive evaluation made possible by novel uses of video systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1990-01-01

    Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.

  6. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  7. Holographic Nondestructive Testing: Review Of A Laser Inspection Tool

    NASA Astrophysics Data System (ADS)

    Erf, Robert K.

    1982-10-01

    A great deal has been written about holography, especially in the years since Gabor won the Nobel Prize (1971) for his "invention and development" of the method. While it is fairly safe to state that the movie and T.V. industries are not on the verge of a revolution as a result of the highly touted three-dimensional characteristics of the process, it can be said that holography may offer considerable scientific potential in such diverse areas as computer storage, display systems, correlation techniques, medical diagnostics (acoustical holography) and radar (microwave holography), to mention just a few. Another promising application of holography, and one that has been given considerable attention at United Technologies Corporation and other industrial laboratories, is nondestructive testing. Consideration shall be given to this subject in the present paper by starting with a very brief review of holography (The Basic Tool), followed by a description of interferometric hologra-phy (Preparing the Tool for Use), and how it can be employed to nondestructively identify defects (Applying the Tool). This sets the stage for two final topics which establish the holographic process as a viable NDT technique: pulsed holography (Adapting the Tool to the Industrial Environment) and special HNDT techniques (Simplifying and Diversifying Tool Application).

  8. Miscellaneous Techniques

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    Nondestructive way of determining the food quality is the need of the hour. Till now major methods such as colour measurements and their modeling; machine vision systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and ultrasonic technology have been discussed in detail. These techniques, in general, are considered to be sophisticated and costly, and therefore probably are not being adopted as fast as it should be. I am however of the reverse opinion. While going through these techniques, it has been seen that majority of quality parameters have been measured and correlated with the signals obtained using different equipment.

  9. Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy.

    PubMed

    McGoverin, Cushla M; Hanifi, Arash; Palukuru, Uday P; Yousefi, Farzad; Glenn, Padraig B M; Shockley, Michael; Spencer, Richard G; Pleshko, Nancy

    2016-03-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  10. Development of Gamma-Ray Nondestructive Detection and Assay Systems for Nuclear Safeguards and Security at JAEA

    NASA Astrophysics Data System (ADS)

    Hajima, Ryoichi

    2015-10-01

    Nondestructive detection and assay of nuclide is one of the promising applications of energy-tunable gamma-rays from laser Compton scattering. In JAEA, we are developing technologies relevant to the gamma-ray non-destructive assay, which include a high-brightness gamma-ray source based on advanced laser and accelerator technologies and gamma-ray measurement techniques optimized for highly radioactive samples. In this paper, the status of the above R&D's is reviewed.

  11. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  12. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  13. Neutrons and Photons in Nondestructive Detection

    NASA Astrophysics Data System (ADS)

    Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2011-02-01

    Active, nondestructive interrogation with neutrons and photons has seen a renaissance in recent years, owing to a broad spectrum of important applications in security, nuclear nonproliferation, contraband detection and materials analysis. Active methods are of high interest for such applications because they provide at least an order of magnitude greater sensitivity than passive methods. Accelerator-based neutron and photon active methods exploit two important factors to attain greater sensitivity: these are (i) the control of interrogating beam properties such as directionality, energy, intensity, polarization and the temporal distribution of radiation; (ii) well-founded, low energy nuclear physics that yields distinct "signatures" for elemental and isotopic content. This review addresses accelerator-based neutron and photon nondestructive testing methods and issues when applied to modern and emerging wide-ranging challenges in nondestructive detection.

  14. Recent calving dynamics of Glaciar Jorge Montt (Southern Patagonia Icefield) based on feature tracking techniques and oceanographic surveys

    NASA Astrophysics Data System (ADS)

    Bown, F.; Moffat, C. F.; Rivera, A.; Cisternas, S.; Kohoutek, T.

    2013-12-01

    Glaciers in the Southern Patagonia Icefield (SPI) have been retreating, thinning and accelerating in recent decades. Most of the SPI is comprised of temperate ice, therefore melting is the dominant wasting factor, however, calving is also playing a very important role, especially because calving is enhancing ice dynamic responses, mainly when glaciers calve into deep waters. Some of the most exacerbated responses are connected to the well documented and long-term tidewater calving cycle (TCC) overlapped by recent climate-related glacier responses. Glaciar Jorge Montt (48S/73W), is a tidewater glacier (~500 km2) which has experienced the maximum frontal retreat of the whole SPI (near 20 km in 112 years) while retreating up to 400 m water depth. Dead trees found in areas recently open by the glacier's retreat prove a date for the previous advancing cycle which took place during the Little Ice Age (250-400 years BP). This result indicates that the glacier is experiencing the retreating phase of the TCC in centennial time-scales. However, very little is known if this phase will stop or will continue, or how do climate change dynamcis will affect it. In order to understand the present behaviour of the glacier, several surveys have recently been conducted in the area, including airborne lidar and radar surveys, water depth measurements and ice dynamic studies. In order to survey the ice dynamic of the glacier front in connection with tides at the inner fjord, a camera pointing to the glacier terminus and collecting up to 8 photographs per day was installed in April 2012. The camera was continuously working for 60 days, allowing to study in detail the ice velocities, calving fluxes and tides near the ice. Thanks to the geo-location of the oblique photographs, feature tracking techniques were applied to the series in order to determine ice velocities and frontal retreat during the operational period. The resulting average velocities are lower than 10 m d-1, which are

  15. Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nondestructive sensing is critical to assuring postharvest quality of apple fruit and increasing consumer acceptance and satisfaction. The objective of this research was to use a hyperspectral scattering technique to acquire spectral scattering images from apple fruit and to develop a data analysis ...

  16. Nondestructive Evaluation (NDE) Research Progress in 1988, Proceedings From the Ninth Annual EPRI NDE Information Meeting

    SciTech Connect

    1989-05-01

    Nondestructive evaluation (NDE) research has led to improved technologies and new procedures for inspecting electric generating plant components. This review of 1988 EPRI research discusses NDE procedures for pressure vessel and containment weld examinations, assessments of the eddy-current technology for steam generators, and integrated ultrasonic techniques for examining cast austenitic stainless components.

  17. Instrumentation: Nondestructive Examination for Verification of Canister and Cladding Integrity. FY2014 Status Update

    SciTech Connect

    Meyer, Ryan M.; Suter, Jonathan D.; Jones, Anthony M.

    2014-09-12

    This report documents FY14 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) verify the integrity of dry storage cask internals.

  18. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  19. Interdisciplinary program for quantitative nondestructive evaluation. Semi-annual report, October 1, 1982-February 28, 1983

    SciTech Connect

    Not Available

    1983-01-01

    Separate abstracts were prepared for the papers published in the following areas: (1) Application of Ultrasonic Quantitative Nondestructive Evaluation to Radio Frequency System Window Problems, (a) Improvements in Probability of Detection and (b) Sizing of Internal Flaws in Bore and Web Geometries; (2) Electromagnetic Detection and Sizing; (3) New Technical Opportunities; and (4) New Flaw Detection Techniques.

  20. Instrumentation. Nondestructive Examination for Verification of Canister and Cladding Integrity - FY2013 Status Update

    SciTech Connect

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.; Denslow, Kayte M.; Crawford, Susan L.; Larche, Michael R.

    2013-09-30

    This report documents FY13 efforts for two instrumentation subtasks under storage and transportation. These instrumentation tasks relate to developing effective nondestructive evaluation (NDE) methods and techniques to (1) verify the integrity of metal canisters for the storage of used nuclear fuel (UNF) and to (2) characterize hydrogen effects in UNF cladding to facilitate safe storage and retrieval.

  1. Nondestructive sampling of insect DNA from defensive secretion.

    PubMed

    Donald, H M; Wood, C W; Benowitz, K M; Johnson, R A; Brodie, E D; Formica, V A

    2012-09-01

    Nondestructive techniques to obtain DNA from organisms can further genetic analyses such as estimating genetic diversity, dispersal and lifetime fitness, without permanently removing individuals from the population or removing body parts. Possible DNA sources for insects include frass, exuviae, and wing and leg clippings. However, these are not feasible approaches for organisms that cannot be removed from their natural environment for long periods or when adverse effects of tissue removal must be avoided. This study evaluated the impacts and efficacy of extracting haemolymph from a defensive secretion to obtain DNA for amplification of microsatellites using a nondestructive technique. A secretion containing haemolymph was obtained from Bolitotherus cornutus (the forked fungus beetle) by perturbation of the defensive gland with a capillary tube. A laboratory experiment demonstrated that the sampling methodology had no impact on mortality, reproductive success or gland expression. To evaluate the quality of DNA obtained in natural samples, haemolymph was collected from 187 individuals in the field and successfully genotyped at nine microsatellite loci for 95.7% of samples. These results indicate that haemolymph-rich defensive secretions contain DNA and can be sampled without negative impacts on the health or fitness of individual insects. PMID:22591239

  2. Use of ground-penetrating radar techniques in archaeological investigations

    NASA Technical Reports Server (NTRS)

    Doolittle, James A.; Miller, W. Frank

    1991-01-01

    Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.

  3. A System for High-Resolution, Nondestructive, Ultrasonic Imaging of Weld Grains

    SciTech Connect

    Schuster, George J. ); Doctor, Steven R. ); Bond, Leonard J. )

    2003-06-01

    The purpose of nondestructive evaluation is to detect degradation in time so that corrective action can be taken before the degradation challenges the structural integrity of an industrial system or one of its components. Accurate characterization is required to distinguish progressive degradation from benign conditions. In nondestructive evaluation, characterization includes quantification and description of location, dimensions, shape, orientation, and composition of a flaw or degradation. An imaging system that uses the synthetic aperture focusing technique for ultrasonic testing is one choice for characterization of degradation in metals, especially welded assemblies. In this paper, we emphasize the ultrasonic imaging of intended weld microstructure. New technology that was invented for this purpose is described.

  4. Nondestructive evaluation of sintered ceramics

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Sanders, William A.

    1988-01-01

    Radiography and several acoustic and thermoacoustic microscopy techniques are investigated for application to structural ceramics for advanced heat engines. A comparison is made of the results obtained from the use of scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), and thermoacoustic microscopy (TAM). These techniques are evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture (MOR) bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described, with the emphasis being on statistics of detectability of flaws that constitute potential fracture origins. Further, it is shown that radiographic evaluation and guidance helped develop uniform high-density Si3N4 MOR bars with improved four-point flexural strength (875, 544, and 462 MPa at room temperature, 1200 C, 1370 C, respectively) and reduced scatter in bend strength.

  5. Non-Destructive Testing A Developing Tool in Science and Engineering

    SciTech Connect

    Lin, Lianshan

    2013-01-01

    Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

  6. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  7. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  8. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  9. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  10. Nondestructive cell evaluation techniques in SOFC stack manufacturing

    NASA Astrophysics Data System (ADS)

    Wunderlich, C.

    2016-04-01

    Independent from the specifics of the application, a cost efficient manufacturing of solid oxide fuel cells (SOFC), its electrolyte membranes and other stack components, leading to reliable long-life stacks is the key for the commercial viability of this fuel cell technology. Tensile and shear stresses are most critical for ceramic components and especially for thin electrolyte membranes as used in SOFC cells. Although stack developers try to reduce tensile stresses acting on the electrolyte by either matching CTE of interconnects and electrolytes or by putting SOFC cells under some pressure - at least during transient operation of SOFC stacks ceramic cells will experience some tensile stresses. Electrolytes are required to have a high Weibull characteristic fracture strength. Practical experiences in stack manufacturing have shown that statistical fracture strength data generated by tests of electrolyte samples give limited information on electrolyte or cell quality. In addition, the cutting process of SOFC electrolytes has a major influence on crack initiation. Typically, any single crack in one the 30 to 80 cells in series connection will lead to a premature stack failure drastically reducing stack service life. Thus, for statistical reasons only 100% defect free SOFC cells must be assembled in stacks. This underlines the need for an automated inspection. So far, only manual processes of visual or mechanical electrolyte inspection are established. Fraunhofer IKTS has qualified the method of optical coherence tomography for an automated high throughput inspection. Alternatives like laser speckle photometry and acoustical methods are still under investigation.

  11. Handbooks for nondestructive testing using ultrasonics

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Four handbooks have been prepared for use in teaching metal parts inspectors and quality assurance technicians the fundamentals of nondestructive testing using ultrasonic detection methods. The handbooks may be used in the shop or laboratory, or as study texts in technical schools and in the home.

  12. Nondestructive assay of boxed radioactive waste

    SciTech Connect

    Gilles, W.P.; Roberts, R.J.; Jasen, W.G.

    1992-12-01

    This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

  13. Nondestructive testing of brazed rocket engine components

    NASA Technical Reports Server (NTRS)

    Adams, C. J.; Hagemaier, D. J.; Meyer, J. A.

    1968-01-01

    Report details study made of nondestructive radiographic, ultrasonic, thermographic, and leak test methods used to inspect and evaluate the quality of the various brazed joints in liquid-propellant rocket engine components and assemblies. Descriptions of some of the unique equipment and methods developed are included.

  14. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W.

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  15. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive... welder whose work is isolated from the principal welding activity, a sample of each welder's work...

  16. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive... welder whose work is isolated from the principal welding activity, a sample of each welder's work...

  17. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive... welder whose work is isolated from the principal welding activity, a sample of each welder's work...

  18. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY...

  19. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY...

  20. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal shells... with internal design pressures at 15 psig or less, ultrasonic examinations of welds on metal containers... ultrasonic equipment is found to be out of calibration, all previous weld inspections that are suspect...