Science.gov

Sample records for nonequilibrium quantum statistical

  1. Introduction to Nonequilibrium Statistical Mechanics with Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Kita, T.

    2010-04-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (i) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (ii) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (iii) to derive an expression of nonequilibrium entropy that evolves with time. In stage (i), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keld ysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Phi-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Phi-derivable approximation, i.e., an issue of how to handle the ``Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy''. Aim (ii) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems ca n be handled

  2. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran

    2014-07-01

    We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.

  3. Nonequilibrium quantum Landauer principle.

    PubMed

    Goold, John; Paternostro, Mauro; Modi, Kavan

    2015-02-13

    Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a nonphenomenological derivation of the Landauer principle which holds for generic nonequilibrium dynamics. Furthermore, the bound depends on the nonunitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature. PMID:25723198

  4. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  5. Random paths and current fluctuations in nonequilibrium statistical mechanics

    SciTech Connect

    Gaspard, Pierre

    2014-07-15

    An overview is given of recent advances in nonequilibrium statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for nonequilibrium systems. In this approach, relationships have been established between nonequilibrium properties such as the transport coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.

  6. Nonequilibrium functional bosonization of quantum wire networks

    SciTech Connect

    Ngo Dinh, Stephane; Bagrets, Dmitry A.; Mirlin, Alexander D.

    2012-11-15

    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.

  7. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745

  8. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  9. Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Schieve, William C.; Horwitz, Lawrence P.

    2009-04-01

    1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.

  10. Nonequilibrium quantum dynamics in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  11. Effective equilibrium theory of nonequilibrium quantum transport

    NASA Astrophysics Data System (ADS)

    Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn

    2011-12-01

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field.

  12. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  13. Local thermoelectric probes of nonequilibrium quantum systems

    NASA Astrophysics Data System (ADS)

    Stafford, Charles

    A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.

  14. Statistical physics of shear flow: a non-equilibrium problem

    NASA Astrophysics Data System (ADS)

    Evans, R. M. L.

    2010-09-01

    Complex fluids are easily and reproducibly driven into non-equilibrium steady states by the action of shear flow. The statistics of the microstructure of non-equilibrium fluids is important to the material properties of every complex fluid that flows, e.g. axle grease on a rotating bearing; blood circulating in capillaries; molten plastic flowing into a mould; the non-equilibrium onion phase of amphiphiles used for drug delivery; the list is endless. Such states are as diverse and interesting as equilibrium states, but are not governed by the same statistics as equilibrium materials. I review some recently discovered principles governing the probabilities of various types of molecular re-arrangements taking place within a sheared fluid. As well as providing new foundations for the study of non-equilibrium matter, the principles are applied to some simple models of particles interacting under flow, showing that the theory exhibits physically convincing behaviour.

  15. Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots

    SciTech Connect

    Sizov, D. S. Zavarin, E. E.; Ledentsov, N. N.; Lundin, V. V.; Musikhin, Yu. G.; Sizov, V. S.; Suris, R. A.; Tsatsul'nikov, A. F.

    2007-05-15

    Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.

  16. Universal nonequilibrium states at the fractional quantum Hall edge

    NASA Astrophysics Data System (ADS)

    Levkivskyi, Ivan P.

    2016-04-01

    Integrability of electron dynamics in one dimension is manifested by the nonequilibrium stationary states. They emerge near a point contact coupling two quantum Hall edges with different chemical potentials. I use the nonequilibrium bosonization technique to show that the effective temperature of such states at the fractional quantum Hall edges has a universal linear dependence on the current through the contact. In contrast, the temperature at eventual equilibrium scales as the square root of the power dissipating at the point contact. I propose to use this distinction to detect these intriguing nonequilibrium states.

  17. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics

    NASA Astrophysics Data System (ADS)

    Crooks, Gavin E.; Sivak, David A.

    2011-06-01

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Rényi divergence.

  18. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics

    SciTech Connect

    Crooks, Gavin; Sivak, David

    2011-06-03

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Renyi divergence.

  19. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2005-08-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  20. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    1997-02-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  1. Nonequilibrium transport at a dissipative quantum phase transition.

    PubMed

    Chung, Chung-Hou; Le Hur, Karyn; Vojta, Matthias; Wölfle, Peter

    2009-05-29

    We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage. PMID:19519125

  2. Nonequilibrium statistical mechanics of nanotube nucleation

    NASA Astrophysics Data System (ADS)

    Artyukhov, Vasilii I.; Yakobson, Boris I.

    A key problem that advanced carbon nanotube applications face is the difficulty of producing pure single-helicity samples. As the elementary processes of nanotube growth are difficult to observe in situ, theoretical understanding of the process is especially important. Direct molecular dynamics simulations offer limited insight due to computational intractability of space- and time-scales involved. We formulated a theory that explains a class of helicity-selective growth experiments, based on classical nucleation theory and crystal growth kinetics.1 However, a general theory of nanotube growth must also include fast irreversible growth beyond the classical near-equilibrium assumption. Here we construct a coarse-grained model allowing us to rigorously investigate the statistical mechanics of nanotube nucleation and trace how helicity emerges from the global nucleation trajectory ensemble. Importantly, our model can handle the whole range of conditions from perfect reversibility driven by energetics to perfect irreversibility driven by configurational entropy of nanotube caps and edges. Our theory generalizes earlier models in a large advance towards ultimate understanding of helicity-selective synthesis. 1 V.I. Artyukhov, E.S. Penev, and B.I. Yakobson, Nat. Commun. 5, 4892 (2014)

  3. Quantum U-statistics

    SciTech Connect

    Guta, Madalin; Butucea, Cristina

    2010-10-15

    The notion of a U-statistic for an n-tuple of identical quantum systems is introduced in analogy to the classical (commutative) case: given a self-adjoint 'kernel' K acting on (C{sup d}){sup '}x{sup r} with rstatistics converges in moments to a linear combination of Hermite polynomials in canonical variables of a canonical commutation relation algebra defined through the quantum central limit theorem. In the special cases of nondegenerate kernels and kernels of order of 2, it is shown that the convergence holds in the stronger distribution sense. Two types of applications in quantum statistics are described: testing beyond the two simple hypotheses scenario and quantum metrology with interacting Hamiltonians.

  4. Generalized Van Hove Formula for Scattering of Neutrons by the Nonequilibrium Statistical Medium

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2012-07-01

    The theory of scattering of particles (e.g., neutrons) by statistical medium was recast for the nonequilibrium statistical medium. The correlation scattering function of the relevant variables give rise to a very compact and entirely general expression for the scattering cross-section of interest. The formula obtained by Van Hove provides a convenient method of analyzing the properties of slow neutron and light scattering by systems of particles such as gas, liquid or solid in the equilibrium state. In this paper the theory of scattering of particles by many-body system was reformulated and generalized for the case of nonequilibrium statistical medium. A new method of quantum-statistical derivation for the space and time Fourier transforms of the Van Hove correlation function was formulated. Thus in place of the usual Van Hove scattering function, a generalized one was deduced and the result was shown to be of greater potential utility than those previously given in the literature. This expression gives a natural extension of the familiar Van Hove formula for scattering of slow neutrons for the case in which the system under consideration is in a nonequilibrium state. The feasibility of light- and neutron-scattering experiments to investigate the appropriate problems in real physical systems was discussed briefly.

  5. What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.

    PubMed

    Kobayashi, Kensuke

    2016-01-01

    Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456

  6. Nonequilibrium work and entropy production by quantum projective measurements.

    PubMed

    Yi, Juyeon; Kim, Yong Woon

    2013-09-01

    We study the thermodynamic notion of quantum projective measurements, using a framework for the fluctuation theorem of nonequilibrium work. The energy change induced by measurements satisfies the Jarzynski equality, leading us to the interpretation that the quantum projective measurements perform nonequilibrium work on the measured system. The work average exhibits intriguing limiting behaviors due to the heat-up effect caused by repeated measurements and the quantum Zeno effect caused by measurements of an infinite frequency. If the measured system relaxes back to its initial equilibrium state, the work is completely dissipated in the form of heat into a reservoir. The corresponding entropy increase in the reservoir is shown to be not less than the von Neumann entropy change generated during the course of the measurements, proving Landauer's principle. PMID:24125212

  7. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  8. Nonequilibrium critical scaling in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Apollaro, Tony J. G.; Paganelli, Simone; De Chiara, Gabriele; Johannesson, Henrik; Bose, Sougato; Sodano, Pasquale

    2016-05-01

    The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies an exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.

  9. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  10. Nonequilibrium Quantum Magnetism in a Dipolar Lattice Gas

    NASA Astrophysics Data System (ADS)

    de Paz, A.; Sharma, A.; Chotia, A.; Maréchal, E.; Huckans, J. H.; Pedri, P.; Santos, L.; Gorceix, O.; Vernac, L.; Laburthe-Tolra, B.

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites.

  11. Nonequilibrium quantum magnetism in a dipolar lattice gas.

    PubMed

    de Paz, A; Sharma, A; Chotia, A; Maréchal, E; Huckans, J H; Pedri, P; Santos, L; Gorceix, O; Vernac, L; Laburthe-Tolra, B

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites. PMID:24237534

  12. Nonequilibrium GREEN’S Functions for High-Field Quantum Transport Theory

    NASA Astrophysics Data System (ADS)

    Bertoncini, Rita

    A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum statistical mechanics is developed in order to describe nonperturbatively the effects of the electric field on electron-phonon scattering in nondegenerate semiconductors. We derive an analytic, gauge-invariant model for the spectral density of energy states that accounts for both intracollisional field effect and collisional broadening simultaneously. A kinetic equation for the quantum distribution function is derived and solved numerically. The nonlinear drift velocity versus applied field characteristics is also evaluated numerically. Many features of our nonlinear theory bear formal resemblance to linear-response theory.

  13. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of

  14. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  15. Non-equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Simonnet, E.

    2010-12-01

    We describe the dynamics of two-dimensional and quasi-geostrophic flows with stochastic forces. It exhibits extremely long correlations times, related to multi-scale dynamics, and collective behaviors such as bistability and multistability. We show that in regimes of weak forces and dissipation, dominated by the large scales inertial dynamics, equilibrium statistical mechanics provides extremely precise predictions for the self-organized large scale flows. This is true for amuch larger range of parameters than would have been expected, explaining a renewed interest for statistical mechanics approaches. Non-equilibrium theory, based on kinetic theories (or equivalently Mori-Zwanzig projections) gives explicit predictions for algebraic correlations of the velocity field, and for the large scale mean flow. We also describe briefly recent applications to ocean jets and vortices, explaining the detailed structure of inertial mid-basin jets and both the structure, and westward and poleward drifts of oceans rings and eddies. References: F. BOUCHET and E. SIMONNET, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. BOUCHET and J. SOMMERIA, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions in the dynamics of the 2D Navier-Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio d. The two main plots are the time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, illustrating random changes between dipoles (|z1| close to 0.55) and unidirectional flows (|z1| close to 0.). The small

  16. Quantum mechanics from classical statistics

    SciTech Connect

    Wetterich, C.

    2010-04-15

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  17. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  18. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state. PMID:26764644

  19. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  20. Nonequilibrium statistical field theory for classical particles: Basic kinetic theory

    NASA Astrophysics Data System (ADS)

    Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2015-06-01

    Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010), 10.1103/PhysRevE.81.061102; J. Stat. Phys. 149, 643 (2012), 10.1007/s10955-012-0610-y; J. Stat. Phys. 152, 159 (2013), 10.1007/s10955-013-0755-3; Phys. Rev. E 83, 041125 (2011), 10.1103/PhysRevE.83.041125] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  1. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  2. Non-equilibrium Aspects of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Andrei, Natan

    The study of non-equilibrium dynamics of interacting many body systems is currently one of the main challenges of modern condensed matter physics, driven by the spectacular progress in the ability to create experimental systems - trapped cold atomic gases are a prime example - that can be isolated from their environment and be highly controlled. Many old and new questions can be addressed: thermalization of isolated systems, nonequilibrium steady states, the interplay between non equilibrium currents and strong correlations, quantum phase transitions in time, universality among others. In this talk I will describe nonequilibrium quench dynamics in integrable quantum systems. I'll discuss the time evolution of the Lieb-Liniger system, a gas of interacting bosons moving on the continuous infinite line and interacting via a short range potential. Considering a finite number of bosons on the line we find that for any value of repulsive coupling the system asymptotes towards a strongly repulsive gas for any initial state, while for an attractive coupling, the system forms a maximal bound state that dominates at longer times. In the thermodynamic limit -with the number of bosons and the system size sent to infinity at a constant density and the long time limit taken subsequently- I'll show that the density and density-density correlation functions for strong but finite positive coupling are described by GGE for translationally invariant initial states with short range correlations. As examples I'll discuss quenches from a Mott insulator initial state or a Newton's Cradle. Then I will show that if the initial state is strongly non translational invariant, e.g. a domain wall configuration, the system does not equilibrate but evolves into a nonequilibrium steady state (NESS). A related NESS arises when the quench consists of coupling a quantum dot to two leads held at different chemical potential, leading in the long time limit to a steady state current. Time permitting I

  3. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's. PMID:27575115

  4. Computational complexity of nonequilibrium steady states of quantum spin chains

    NASA Astrophysics Data System (ADS)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  5. Nonequilibrium quantum dissipation in spin-fermion systems

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Reichman, David R.; Millis, Andrew J.

    2007-11-01

    Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.

  6. Quantum dew: Formation of quantum liquid in a nonequilibrium Bose gas

    SciTech Connect

    Khlebnikov, S.; Tkachev, I.; TH Division, CERN, CH-1211 Geneva 23, Switzerland,; Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia

    2000-04-15

    We consider phase separation in a nonequilibrium Bose gas with an attractive interaction between particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of a Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions. (c) 2000 The American Physical Society.

  7. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  8. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  9. Nonequilibrium entropy in classical and quantum field theory

    NASA Astrophysics Data System (ADS)

    Kandrup, Henry E.

    1987-06-01

    This paper proposes a definition of nonequilibrium entropy appropriate for a bosonic classical or quantum field, viewed as a collection of oscillators with equations of motion which satisfy a Liouville theorem (as is guaranteed for a Hamiltonian system). This entropy S is constructed explicitly to provide a measure of correlations and, as such, is conserved absolutely in the absence of couplings between degrees of freedom. This means, e.g., that there can be no entropy generation for a source-free linear field in flat space, but that S need no longer be conserved in the presence of couplings induced by nonlinearities, material sources, or a nontrivial dynamical background space-time. Moreover, through the introduction of a ``subdynamics,'' it is proved that, in the presence of such couplings, the entropy will satisfy an H-theorem inequality, at least in one particular limit. Specifically, if at some initial time t0 the field is free of any correlations, it then follows rigorously that, at time t0+Δt, the entropy will be increasing: dS/dt>0. Similar arguments demonstrate that this S is the only measure of ``entropy'' consistent mathematically with the subdynamics. It is argued that this entropy possesses an intrinsic physical meaning, this meaning being especially clear in the context of a quantum theory, where a direct connection exists between entropy generation and particle creation. Reasonable conjectures regarding the more general time dependence of the entropy, which parallel closely the conventional wisdom of particle mechanics, lead to an interpretation of S which corroborates one's naive intuition as to the behavior of an ``entropy.''

  10. Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2015-10-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...

  11. Eigenfunction statistics on quantum graphs

    SciTech Connect

    Gnutzmann, S.; Keating, J.P.; Piotet, F.

    2010-12-15

    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric {sigma} model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.

  12. Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems

    SciTech Connect

    Cramer, M.; Eisert, J.; Dawson, C. M.; Osborne, T. J.

    2008-01-25

    A reasonable physical intuition in the study of interacting quantum systems says that, independent of the initial state, the system will tend to equilibrate. In this work we introduce an experimentally accessible setting where relaxation to a steady state is exact, namely, for the Bose-Hubbard model quenched from a Mott quantum phase to the free strong superfluid regime. We rigorously prove that the evolving state locally relaxes to a steady state with maximum entropy constrained by second moments--thus maximizing the entanglement. Remarkably, for this to be true, no time average is necessary. Our argument includes a central limit theorem and exploits the finite speed of information transfer. We also show that for all periodic initial configurations (charge density waves) the system relaxes locally, and identify experimentally accessible signatures in optical lattices as well as implications for the foundations of statistical mechanics.

  13. Nonequilibrium statistical mechanical models for cytoskeletal assembly: Towards understanding tensegrity in cells

    NASA Astrophysics Data System (ADS)

    Shen, Tongye; Wolynes, Peter G.

    2005-10-01

    The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the many-body master equation for a set of motorized particles accounts for their thermally induced Brownian motion as well as for the motorized kicking of the structural elements. These approximations yield stability limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the effects of nonequilibrium behavior and adhesion (effective cross-linking) on the mechanical stability of localized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modulate the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.

  14. Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Citro, Roberta; Romeo, Francesco

    2016-03-01

    We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.

  15. Quantum Statistical Testing of a QRNG Algorithm

    SciTech Connect

    Humble, Travis S; Pooser, Raphael C; Britt, Keith A

    2013-01-01

    We present the algorithmic design of a quantum random number generator, the subsequent synthesis of a physical design and its verification using quantum statistical testing. We also describe how quantum statistical testing can be used to diagnose channel noise in QKD protocols.

  16. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  17. A study of non-equilibrium phonons in GaAs/AlAs quantum wells

    SciTech Connect

    Su, Zhenpeng

    1996-11-01

    In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.

  18. Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics

    PubMed Central

    Esposito, Martina; Titimbo, Kelvin; Zimmermann, Klaus; Giusti, Francesca; Randi, Francesco; Boschetto, Davide; Parmigiani, Fulvio; Floreanini, Roberto; Benatti, Fabio; Fausti, Daniele

    2015-01-01

    Fluctuations of the atomic positions are at the core of a large class of unusual material properties ranging from quantum para-electricity to high temperature superconductivity. Their measurement in solids is the subject of an intense scientific debate focused on seeking a methodology capable of establishing a direct link between the variance of the atomic displacements and experimentally measurable observables. Here we address this issue by means of non-equilibrium optical experiments performed in shot-noise-limited regime. The variance of the time-dependent atomic positions and momenta is directly mapped into the quantum fluctuations of the photon number of the scattered probing light. A fully quantum description of the non-linear interaction between photonic and phononic fields is benchmarked by unveiling the squeezing of thermal phonons in α-quartz. PMID:26690958

  19. Emergence of quantum mechanics from a sub-quantum statistical mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2014-07-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.

  20. Universality of non-equilibrium fluctuations in strongly correlated quantum liquids

    NASA Astrophysics Data System (ADS)

    Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaëlle; Weil, Raphaël; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke

    2016-03-01

    Interacting quantum many-body systems constitute a fascinating research field because they form quantum liquids with remarkable properties and universal behaviour. In fermionic systems, such quantum liquids are realized in helium-3 liquid, heavy fermion systems, neutron stars and cold gases. Their properties in the linear-response regime have been successfully described by the theory of Fermi liquids. The idea is that they behave as an ensemble of non-interacting `quasi-particles’. However, non-equilibrium properties have still to be established and remain a key issue of many-body physics. Here, we show a precise experimental demonstration of Landau Fermi liquid theory extended to the non-equilibrium regime in a zero-dimensional system. Combining transport and ultra-sensitive current noise measurements, we have unambiguously identified the SU(2) (ref. ) and SU(4) (refs ,,,,) symmetries of a quantum liquid in a carbon nanotube tuned in the universal Kondo regime. Whereas the free quasi-particle picture is found valid around equilibrium, an enhancement of the current fluctuations is detected out of equilibrium and perfectly explained by an effective charge induced by the residual interaction between quasi-particles. Moreover, an as-yet-unknown scaling law for the effective charge is discovered, suggesting a new non-equilibrium universality. Our method paves a new way to explore the exotic nature of quantum liquids out of equilibrium through their fluctuations in a wide variety of physical systems.

  1. Real-time nonequilibrium dynamics of quantum glassy systems

    NASA Astrophysics Data System (ADS)

    Cugliandolo, Leticia F.; Lozano, Gustavo

    1999-01-01

    We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the Martin-Siggia-Rose generating functional associated to a colored noise. We apply this general formalism to a prototype model related to the p spin glass. We show that the model has a dynamic phase transition separating the paramagnetic from the spin-glass phase and that quantum fluctuations depress the transition temperature until a quantum critical point is reached. We show that the dynamics in the paramagnetic phase is stationary but presents an interesting crossover from a region controlled by the classical critical point to another one controlled by the quantum critical point. The most characteristic property of the dynamics in a glassy phase, namely, aging, survives the quantum fluctuations. In the subcritical region the quantum fluctuation-dissipation theorem is modified in a way that is consistent with the notion of effective temperatures introduced for the classical case. We discuss these results in connection with recent experiments in dipolar quantum spin glasses and the relevance of the effective temperatures with respect to the understanding of the low-temperature dynamics.

  2. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats

    NASA Astrophysics Data System (ADS)

    Grosberg, A. Y.; Joanny, J.-F.

    2015-09-01

    We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other words, particles of different types are in contact with thermostats at different temperatures. We present complete systematic statistical mechanics treatment starting from first principles. Although we consider only corrections to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly mixed system becomes unstable with respect to steady states consisting of phases enriched with different types of particles. In the second virial approximation, we define nonequilibrium "chemical potentials" whose gradients govern diffusion fluxes and a nonequilibrium "osmotic pressure," which governs the mechanical stability of the interface.

  3. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats.

    PubMed

    Grosberg, A Y; Joanny, J-F

    2015-09-01

    We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other words, particles of different types are in contact with thermostats at different temperatures. We present complete systematic statistical mechanics treatment starting from first principles. Although we consider only corrections to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly mixed system becomes unstable with respect to steady states consisting of phases enriched with different types of particles. In the second virial approximation, we define nonequilibrium "chemical potentials" whose gradients govern diffusion fluxes and a nonequilibrium "osmotic pressure," which governs the mechanical stability of the interface. PMID:26465437

  4. Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators

    NASA Astrophysics Data System (ADS)

    Privitera, Lorenzo; Santoro, Giuseppe E.

    2016-06-01

    Inducing topological transitions by a time-periodic perturbation offers a route to controlling the properties of materials. Here, we show that the adiabatic preparation of a nontrivial state involves a selective population of edge states, due to exponentially small gaps preventing adiabaticity. We illustrate this by studying graphenelike ribbons with hopping's phases of slowly increasing amplitude, as, e.g., for a circularly polarized laser slowly turned on. The induced currents have large periodic oscillations, but flow solely at the edges upon time averaging, and can be controlled by focusing the laser on either edge. The bulk undergoes a nonequilibrium topological transition, as signaled by a local Hall conductivity, the Chern marker introduced by Bianco and Resta in equilibrium. The breakdown of this adiabatic picture in the presence of intraband resonances is discussed.

  5. Average diagonal entropy in nonequilibrium isolated quantum systems.

    PubMed

    Giraud, Olivier; García-Mata, Ignacio

    2016-07-01

    The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature. PMID:27575092

  6. Quantum Statistical Testing of a Quantum Random Number Generator

    SciTech Connect

    Humble, Travis S

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  7. Vibrational-coherence measurement of nonequilibrium quantum systems by four-wave mixing

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2015-11-01

    We show theoretically that a quantum system in a nonequilibrium state interacting with a set of laser pulses in a four-wave-mixing setup leads to signal emission in directions opposite to the ones usually considered. When combined with a pump mechanism which sets a time origin for the nonequilibrium state creation, this particular optical response can be utilized to directly follow decoherence processes in real time. By varying the time delays within the probe sequence, signals in these unconventional directions can also be used to detect two-dimensional spectra determined by the dynamics of up to three-quantum coherences, revealing energetical anharmonicities and environmental influences. As a numerical example, these findings are demonstrated by considering a model of vibrational decoherence of carbon monoxide after photolysis from a hemeprotein.

  8. Validity of nonequilibrium work relations for the rapidly expanding quantum piston

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Jarzynski, Christopher

    2012-03-01

    Recent work by Teifel and Mahler [Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2010-00145-y 75, 275 (2010)] raises legitimate concerns regarding the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study this issue in the context of the rapidly expanding one-dimensional quantum piston. Utilizing exact solutions of the time-dependent Schrödinger equation, we find that the evolution of the wave function can be decomposed into static and dynamic components, which have simple semiclassical interpretations in terms of particle-piston collisions. We show that nonequilibrium work relations remain valid at any finite piston speed, provided both components are included, and we study explicitly the work distribution for this model system.

  9. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  10. Asymptotic theory of quantum statistical inference

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito

    Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure

  11. Non-equilibrium statistical mechanics theory for the large scales of geophysical flows

    NASA Astrophysics Data System (ADS)

    Eric, S.; Bouchet, F.

    2010-12-01

    The aim of any theory of turbulence is to understand the statistical properties of the velocity field. As a huge number of degrees of freedom is involved, statistical mechanics is a natural approach. The self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. We discuss classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations, mean field approach) and thermodynamic concepts (ensemble inequivalence, negative heat capacity) are briefly explained and used to predict statistical equilibria for turbulent flows. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations will be discussed. We also present recent results for non-equilibrium situations, for which forces and dissipation are in a statistical balance. As an example, the concept of phase transition allows us to describe drastic changes of the whole system when a few external parameters are changed. F. Bouchet and E. Simonnet, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. Venaille and F. Bouchet, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. Bouchet and A. Venaille, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions for the 2D Navier-Stokes equations with

  12. Higher-order generalized hydrodynamics: Foundations within a nonequilibrium statistical ensemble formalism.

    PubMed

    Silva, Carlos A B; Rodrigues, Clóves G; Ramos, J Galvão; Luzzi, Roberto

    2015-06-01

    Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description. PMID:26172796

  13. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics.

    PubMed

    Kreula, J M; Clark, S R; Jaksch, D

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  14. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  15. Observing the nonequilibrium dynamics of the quantum transverse-field Ising chain in circuit QED.

    PubMed

    Viehmann, Oliver; von Delft, Jan; Marquardt, Florian

    2013-01-18

    We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be simulated and experimentally probed in the framework of circuit QED with current technology. The proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization. We demonstrate that quench dynamics and the propagation of localized excitations can be observed with the proposed setup and discuss further possible applications and modifications of this circuit QED quantum simulator. PMID:23373908

  16. Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Garcia-March, Miguel Angel; Vijande, Javier; Ferrando, Albert

    2015-05-01

    We explore the nonequilibrium quantum dynamics of partial symmetry-breaking in ring Bose-Einstein condensates described by the Bose-Hubbard Hamiltonian with an external potential. Using exact diagonalization and group theory for small systems, we establish three new concepts to predict and characterize the dynamics after a quantum quench: symmetry memory, critical symmetry-breaking strength, and the symmetry gap. Critical symmetry breaking can manifest in current reversals, but is most clearly observed in the symmetry memory operator, based on unitary rotations. Funded by NSF, AFOSR, AvH Foundation, and MINECO.

  17. A Nonequilibrium Statistical Thermodynamics Approach to Non-Gaussian Statistics in Space Plasmas.

    NASA Astrophysics Data System (ADS)

    Consolini, G.

    2005-12-01

    One of the most interesting aspect of magnetic field and plasma parameters fluctuations is the non-Gaussian shape of the Probability Distribution Functions (PDFs). This fact along with the occurrence of scaling features has been read as an evidence of intermittency. In the past, several models have been proposed for the non-gaussianity of the PDFs (Castaign et al., 1990; Frisch, 1996; Frisch & Sornette, 1997; Arimitsu & Arimitsu, 2000; Beck, 2000; Leubner & Vörös, 2005). Recently, by introducing the concept of randomized operational temperature Beck & Cohen proposed the concept of superstatistics (Beck & Cohen, 2003; Beck, 2004) as the origin of non-Gaussian PDFs in nonequilibrium, long-range correlated, systems. Here, the origin of non-Gaussian PDFs in space plasmas is discussed in the framework of composite thermodynamic systems starting from the idea of randomized operational temperature and using the concept of Lèvy transformation. This approach is motivated by recent theoretical and experimental evidences of multiscale magnetic and plasma structures in space plasmas (Chang, 1999; Chang et al, 2004). A novel shape of the small-scale PDFs is derived and compared with PDFs computed by magnetic field measurements in space plasmas.

  18. Application of the non-equilibrium statistical operator method (NESOM) to dissipation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mo, M. Y.; Kantorovich, L.

    2001-02-01

    We apply the non-equilibrium statistical operator method to non-contact atomic force microscopy, considering explicitly the statistical effects of (classical) vibrations of surface atoms and associated energy transfer from the tip to the surface. We derive several, physically and mathematically equivalent, forms of the equation of motion for the tip, each containing a friction term due to the so-called intrinsic mechanism of energy dissipation first suggested by Gauthier and Tsukada. Our exact treatment supports the results of some earlier work which were all approximate. We also demonstrate, using the same theory, that the distribution function of the tip in the coordinate-momentum phase subspace is governed by the Fokker-Planck equation and should be considered as strongly peaked around the exact values t and t of the momentum and the position of the tip, respectively.

  19. Nonequilibrium Response of Nanosystems Coupled to Driven Quantum Baths.

    PubMed

    Grabert, Hermann; Nalbach, Peter; Reichert, Joscha; Thorwart, Michael

    2016-06-01

    Commonly, nanosystems are characterized by their response to time-dependent external fields in the presence of inevitable environmental fluctuations. The direct impact of the external driving on the environment is generally neglected. While this approach is satisfactory for macroscopic systems, on the nanoscale, an interaction of external fields with the environment is often unavoidable on principle. We extend the standard linear response theory of quantum dissipative systems to strongly driven baths. Significant modifications are found for two paradigm examples. First, we evaluate the polarizability of a molecule immersed in a strongly polarizable medium that responds to terahertz radiation. We find an increase of the molecular polarizability by about 30%. Second, we determine the response of a semiconductor quantum dot in close proximity to a metallic nanoparticle. Both are placed in a polarizable medium and exposed to electromagnetic irradiation. We show that the response of the quantum dot is qualitatively modified by the driven nanoparticle, including the generation of an additional channel of stimulated emission. PMID:27176818

  20. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem.

    PubMed

    Nicolin, Lena; Segal, Dvira

    2011-10-28

    We focus on the non-equilibrium two-bath spin-boson model, a toy model for examining quantum thermal transport in many-body open systems. Describing the dynamics within the noninteracting-blip approximation equations, applicable, e.g., in the strong system-bath coupling limit and/or at high temperatures, we derive expressions for the cumulant generating function in both the Markovian and non-Markovian limits by energy-resolving the quantum master equation of the subsystem. For a Markovian bath, we readily demonstrate the validity of a steady-state heat exchange fluctuation theorem. In the non-Markovian limit a "weaker" symmetry relation generally holds, a general outcome of microreversibility. We discuss the reduction of this symmetry relation to the universal steady-state fluctuation theorem. Using the cumulant generating function, an analytic expression for the heat current is obtained. Our results establish the validity of the steady-state heat exchange fluctuation theorem in quantum systems with strong system-bath interactions. From the practical point of view, this study provides tools for exploring transport characteristics of the two-bath spin-boson model, a prototype for a nonlinear thermal conductor. PMID:22047227

  1. Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2016-04-01

    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.

  2. Hidden Statistics Approach to Quantum Simulations

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the

  3. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER

    SciTech Connect

    DeMille, David; LeHur, Karyn

    2013-11-27

    Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.

  4. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-01

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families. PMID:23031119

  5. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport.

    PubMed

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-01-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder. PMID:27311717

  6. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport

    NASA Astrophysics Data System (ADS)

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-06-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder.

  7. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport

    PubMed Central

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-01-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder. PMID:27311717

  8. Non-equilibrium dynamics in AMO quantum simulators

    NASA Astrophysics Data System (ADS)

    Daley, Andrew

    2016-05-01

    Recently, the possibility to control and measure AMO systems time-dependently has generated a lot of progress in exploring out-of-equilibrium dynamics for strongly interacting many-particle systems. This connects directly to fundamental questions relating to the relaxation of such systems to equilibrium, as well as the spreading of correlations and build-up of entanglement. While ultracold atoms allow for exceptional microscopic control over quantum gases with short-range interactions, experiments with polar molecules and chains of trapped ions now also offer the possibility to investigate spin models with long-range interactions. I will give an introduction to the recent developments in this area, illustrated with two examples: (i) the possibility to measurement entanglement for many itinerant particles with ultracold atoms in optical lattices, and (ii) new opportunities to compare dynamics with short and long-range interactions, especially using systems of trapped ions, where it is possible to control the effective range of interactions.

  9. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  10. Non-equilibrium Dynamics in the Quantum Brownian Oscillator and the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kim, Ilki

    2012-01-01

    We initially prepare a quantum linear oscillator weakly coupled to a bath in equilibrium at an arbitrary temperature. We disturb this system by varying a Hamiltonian parameter of the coupled oscillator, namely, either its spring constant or mass according to an arbitrary but pre-determined protocol in order to perform external work on it. We then derive a closed expression for the reduced density operator of the coupled oscillator along this non-equilibrium process as well as the exact expression pertaining to the corresponding quasi-static process. This immediately allows us to analytically discuss the second law of thermodynamics for non-equilibrium processes. Then we derive a Clausius inequality and obtain its validity supporting the second law, as a consistent generalization of the Clausius equality valid for the quasi-static counterpart, introduced in (Kim and Mahler in Phys. Rev. E 81:011101, 2010, [1]).

  11. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  12. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics

    NASA Astrophysics Data System (ADS)

    Hazoglou, Michael J.; Walther, Valentin; Dixit, Purushottam D.; Dill, Ken A.

    2015-08-01

    There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager's reciprocal relations of coupled flows, and Prigogine's principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of "local equilibrium," or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example.

  13. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics.

    PubMed

    Hazoglou, Michael J; Walther, Valentin; Dixit, Purushottam D; Dill, Ken A

    2015-08-01

    There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager's reciprocal relations of coupled flows, and Prigogine's principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of "local equilibrium," or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example. PMID:26254635

  14. Quantum superchemistry: Role of trapping profile and quantum statistics

    SciTech Connect

    Olsen, M.K.

    2004-01-01

    The process of Raman photoassociation of a trapped atomic condensate to form condensed molecules has been labeled superchemistry because it can occur at 0 K and experiences coherent bosonic stimulation. We show here that the differences from ordinary chemical processes go even deeper, with the conversion rates depending on the quantum state of the reactants, as expressed by the Wigner function. We consider different initial quantum states of the trapped atomic condensate and different forms of the confining potentials, demonstrating the importance of the quantum statistics and the extra degrees of freedom which massive particles and trapping potentials make available over the analogous optical process of second-harmonic generation. We show that both mean-field analyses and quantum calculations using an inappropriate initial condition can make inaccurate predictions for a given system. This is possible whether using a spatially dependent analysis or a zero-dimensional approach as commonly used in quantum optics.

  15. Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Wei-Yuan Tu, Matisse; Zhang, Wei-Min; Yan, YiJing

    2010-08-01

    In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.

  16. Statistical properties of a quantum cellular automaton

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Inokuchi, Shuichi; Mizoguchi, Yoshihiro; Konno, Norio

    2005-09-01

    We study a quantum cellular automaton (QCA) whose time evolution is defined using the global transition function of a classical cellular automaton (CA). In order to investigate natural transformations from CAs to QCAs, the present QCA includes the CA with Wolfram’s rules 150 and 105 as special cases. We first compute the time evolution of the QCA and examine its statistical properties. As a basic statistical value, the probability of finding an active cell averaged over spatial-temporal space is introduced, and the difference between the CA and QCA is considered. In addition, it is shown that statistical properties in QCAs are related to the classical trajectory in configuration space.

  17. Long-lived non-equilibrium states in a quantum-Hall Tomonaga-Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Fujisawa, Toshimasa; Washio, Kazuhisa; Nakazawa, Ryo; Hashisaka, Masayuki; Muraki, Koji; Tokura, Yasuhiro

    The existence of long-lived non-equilibrium states without showing thermalization, which has previously been demonstrated in time evolution of ultracold atoms (quantum quench), suggests the possibility of their spatial analogue in transport behavior of interacting electrons in solid-state systems. Here we report long-lived non-equilibrium states in one-dimensional edge channels in the integer quantum Hall regime. For this purpose, non-trivial binary spectrum composed of hot and cold carriers is prepared by an indirect heating scheme using weakly coupled counterpropagating edge channels in an AlGaAs/GaAs heterostructure. Quantum dot spectroscopy clearly reveals that the carriers with the non-trivial binary spectrum propagate over a long distance (5 - 10 um), much longer than the length required for electronic relaxation (about 0.1 um), without thermalization into a trivial Fermi distribution. This observation is consistent with the integrable model of Tomonaga-Luttinger liquid. The long-lived spectrum implies that the system is well described by non-interacting plasmons, which are attractive for carrying information for a long distance. This work was supported by the JSPS 26247051 and 15H05854, and Nanotechnology Platform Program of MEXT.

  18. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  19. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  20. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  1. Non-equilibrium Steady-State Behavior in a Scale-Free Quantum Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    We describe the nonequilibrium dynamics of a cold atomic gas held in a spatially random optical potential and gravity, subject to a controlled amount of dissipation in the form of an extremely slow dark-state laser cooling process. Reaching local kinetic temperatures below the 100nK scale, such systems provide a novel context for observing the non-equilibrium steady-state (NESS) behavior of a disordered quantum system. For sufficiently deep potentials and strong dissipation, this system can be modeled by a self-organized version of directed percolation, and exhibits power-law decay of phase-space density with time due to the presence of absorbing clusters with a wide distribution of entropy and coupling rates. In the absence of dissipation, such a model cannot apply, and we observe the crossover to exponential loss of phase-space density. We provide measurements of the power-law decay constant by observing the non-equilibrium motion of atoms over a ten-minute period, consistent with γ = 0 . 31 +/- 0 . 04 , and extract scaling of the absorbed number with dissipation rate, showing another power-law behavior, with exponent 0 . 5 +/- 0 . 2 over two decades of optical excitation probability.

  2. Quantum statistical ensemble for emissive correlated systems

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.

    2016-06-01

    Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N -particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.

  3. Quantum statistical ensemble for emissive correlated systems.

    PubMed

    Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N

    2016-06-01

    Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223

  4. Quantum-coherence driven self-organized criticality and non-equilibrium light localization

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Tsakmakidis, Kosmas; Wang, Yuan; Zhang, Xiang

    In its 28 years since its introduction in 1987, self-organized criticality (SOC) has had a major impact across a broad range of seemingly dissimilar fields of science. However, until now, it has primarily been applied to classical systems, and it remains a fundamental open question whether the theory also finds a place in complex systems driven by quantum coherence (QC). Here, on the basis of a many-body quantum-field theory and corroborating Maxwell-Bloch-Langevin computations, we report on the first example of fractal SOC driven, in the nano-world, by quantum coherence. We show that a quantum-coherently controlled active nano-plasmonic heterostructure allows, in the regime where the light speed is very close to zero, for the phase-synchronization in space of a continuous ensemble of nano-optical oscillators, giving rise to a fundamentally new kind of non-equilibrium light localization. We observe all hallmarks of SOC in this quantum many-body photonic nano-system of interacting heavy bosons, and we identify two critical points, one signifying the onset of spontaneous spatial self-organization, followed in time by another one that signifies the onset of activity. Our analysis reveals a quantum-coherence driven self-organized double-critical property in photonics and a new type of robust light localization, far out of thermodynamic and optical equilibria, with a broad range of potential applications in nano-optics and condensed-matter photonics.

  5. Non-equilibrium Statistical Mechanics and the Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Wettlaufer, John; Toppaladoddi, Srikanth

    We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the ice thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the ice pack using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.

  6. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  7. Spectral statistics of nearly unidirectional quantum graphs

    NASA Astrophysics Data System (ADS)

    Akila, Maram; Gutkin, Boris

    2015-08-01

    The energy levels of a quantum graph with time reversal symmetry and unidirectional classical dynamics are doubly degenerate and obey the spectral statistics of the Gaussian unitary ensemble. These degeneracies, however, are lifted when the unidirectionality is broken in one of the graph’s vertices by a singular perturbation. Based on a random matrix model we derive an analytic expression for the nearest neighbour distribution between energy levels of such systems. As we demonstrate the result agrees excellently with the actual statistics for graphs with a uniform distribution of eigenfunctions. Yet, it exhibits quite substantial deviations for classes of graphs which show strong scarring.

  8. Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; López, Adrián E. Rubio; Turiaci, Gustavo J.

    2016-07-01

    In this work we analyze the validity of Lifshitz's theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths' contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions' contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.

  9. Nonequilibrium entropic temperature and its lower bound for quantum stochastic processes

    NASA Astrophysics Data System (ADS)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2014-03-01

    In this paper, we have studied the Shannon "entropic" nonequilibrium temperature (NET) of quantum Brownian systems. The Brownian particle is attached to either a bosonic or fermionic bath. Based on the Fokker-Planck description of the c-number quantum Langevin equation, we have calculated entropy production, NET, and their bounds. Entropy production (EP), the upper bound of entropy production (UBEP), and the deviation of the UBEP from EP monotonically decrease as functions of time to equilibrium value for both of the thermal baths. The deviation decreases with increase of temperature of the bosonic thermal bath, but it becomes larger as the temperature of the fermionic bath grows. We also observe that nonequilibrium temperature and its lower bound monotonically increase to equilibrium value with the progression of time. But their difference as a function of time shows an optimum behavior in most cases. Finally, we have observed that at long time, the entropic temperature (for a bosonic thermal bath) first increases nonlinearly as a function of thermodynamic temperature (TT) and, if the TT is appreciably large, then it grows linearly. But for the fermionic thermal bath, the entropic temperature decreases monotonically as a nonlinear function of thermodynamic temperature to zero value.

  10. Nonequilibrium and nonhomogeneous phenomena around a first-order quantum phase transition

    NASA Astrophysics Data System (ADS)

    Del Re, Lorenzo; Fabrizio, Michele; Tosatti, Erio

    2016-03-01

    We consider nonequilibrium phenomena in a very simple model that displays a zero-temperature first-order phase transition. The quantum Ising model with a four-spin exchange is adopted as a general representative of first-order quantum phase transitions that belong to the Ising universality class, such as for instance the order-disorder ferroelectric transitions, and possibly first-order T =0 Mott transitions. In particular, we address quantum quenches in the exactly solvable limit of infinite connectivity and show that, within the coexistence region around the transition, the system can remain trapped in a metastable phase, as long as it is spatially homogeneous so that nucleation can be ignored. Motivated by the physics of nucleation, we then study in the same model static but inhomogeneous phenomena that take place at surfaces and interfaces. The first-order nature implies that both phases remain locally stable across the transition, and with that the possibility of a metastable wetting layer showing up at the surface of the stable phase, even at T =0 . We use mean-field theory plus quantum fluctuations in the harmonic approximation to study quantum surface wetting.

  11. Nonequilibrium thermal effects on exciton time correlations in coupled semiconductor quantum dots

    SciTech Connect

    Castillo, J. C.; Rodríguez, F. J.; Quiroga, L.

    2013-12-04

    Theoretical guides to test 'macroscopic realism' in solid-state systems under quantum control are highly desirable. Here, we report on the evolution of a Leggett-Garg inequality (LGI), a combination of two-time correlations, in an out-of-equilibrium set up consisting of two interacting excitons confined in separate semiconductor quantum dots which are coupled to independent baths at different temperatures (T{sub 1} ≠ T{sub 2}). In a Markovian steady-state situation we found a rich variety of dynamical behaviors in different sectors of the average temperature (T{sub M} = (T{sub 1}+T{sub 2})/2) vs. coupling strength to the reservoirs (Γ) space parameter. For high T{sub M} and Γ values the LGI is not violated, as expected. However, by decreasing T{sub M} or Γ a sector of parameters appears where the LGI is violated at thermal equilibrium (T{sub 1} = T{sub 2}) and the violation starts decreasing when the system is moved out of the equilibrium. Surprisingly, at even lower T{sub M} values, for any Γ, there is an enhancement of the LGI violation by exposing the system to a temperature gradient, i.e. quantum correlations increase in a nonequilibrium thermal situation. Results on LGI violations in a steady-state regime are compared with other non-locality-dominated quantum correlation measurements, such as concurrence and quantum discord, between the two excitons under similar temperature gradients.

  12. Quantum transport through a quantum dot: Combining the scattering-states numerical renormalization group with nonequilibrium Green functions

    NASA Astrophysics Data System (ADS)

    Anders, Frithjof B.; Schmitt, Sebastian

    2010-04-01

    Scattering states fulfill the correct boundary conditions of a current carrying open quantum system. Discretizing the energy continuum of these states allows for employing Wilson's numerical renormalization group approach without violating the boundary conditions by using a finite size system. We evolve the analytically known steady-state density operator for a non-interacting quantum-system at finite bias to the full interacting problem by the time-dependent numerical renormalization group after switching on the local charging energy. Using a newly developed algorithm for steady-state nonequilibrium Green functions, we can calculate the current I as function of bias voltage V for arbitrary temperature and magnetic field. A comparison with second-order and GW Kadanoff-Baym-Keldysh results shows excellent agreement for weak interaction strength U.

  13. The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model

    NASA Astrophysics Data System (ADS)

    Verkley, Wim; Severijns, Camiel

    2014-05-01

    Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy

  14. Statistically interacting quantum gases in D dimensions

    NASA Astrophysics Data System (ADS)

    Potter, Geoffrey G.

    Chapter 1. Exact and explicit results are derived for the thermodynamic properties (isochores, isotherms, isobars, response functions, speed of sound) of a quantum gas in dimensions D ≥ 1 and with fractional exclusion statistics 0 ≤ g ≤ 1 connecting bosons (g = 0) and fermions (g = 1). In D = 1 the results are equivalent to those of the Calogero-Sutherland model, a gas with long-range two-body interaction. Emphasis is given to the crossover between boson-like and fermion-like features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T-dependence of the speed of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential. Chapter 2. The exact thermodynamics (isochores, isotherms, isobars, response functions, speed of sound) is worked out for a statistically interacting quantum gas in D dimensions. The results in D = 1 are those of the thermodynamic Bethe ansatz for the Nonlinear Schrodinger model, a gas with repulsive two-body contact potential. In all dimensions the ideal boson and fermion gases are recovered in the weak-coupling and strong-coupling limits, respectively. For all nonzero couplings ideal fermion gas behavior emerges for D >> 1 and, in the limit D → infinity, a phase transition occurs at T > 0. Significant deviations from ideal quantum gas behavior are found for intermediate coupling and finite D . Chapter 3. Methodology previously developed in the framework of the coordinate Bethe ansatz applied to integrable quantum gas models is employed to calculate some ground-state properties and elementary excitations for quantum gas models in D = 1 dimensions with statistical interactions that are not equivalent to dynamical interactions. The focus in this comparative study is on modifications of the

  15. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  16. A microscopic, non-equilibrium, statistical field theory for cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias; Fabis, Felix; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2016-04-01

    Building upon the recent pioneering work by Mazenko and by Das and Mazenko, we develop a microscopic, non-equilibrium, statistical field theory for initially correlated canonical ensembles of classical microscopic particles obeying Hamiltonian dynamics. Our primary target is cosmic structure formation, where initial Gaussian correlations in phase space are believed to be set by inflation. We give an exact expression for the generating functional of this theory and work out suitable approximations. We specify the initial correlations by a power spectrum and derive general expressions for the correlators of the density and the response field. We derive simple closed expressions for the lowest-order contributions to the nonlinear cosmological power spectrum, valid for arbitrary wave numbers. We further calculate the bispectrum expected in this theory within these approximations and the power spectrum of cosmic density fluctuations to first order in the gravitational interaction, using a recent improvement of the Zel’dovich approximation. We show that, with a modification motivated by the adhesion approximation, the nonlinear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers even within first-order perturbation theory. Our results present the first fully analytic calculation of the nonlinear power spectrum of cosmic structures.

  17. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.

  18. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition.

    PubMed

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath. PMID:27276940

  19. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gerving, C. S.; Hoang, T. M.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2012-11-01

    A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we measure the non-equilibrium dynamics of a spin-1 Bose-Einstein condensate initialized as a minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space. Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.

  20. Nonequilibrium problems in quantum field theory and Schwinger`s closed time path formalism

    SciTech Connect

    Cooper, F.

    1995-05-01

    We review the closed time path formalism of Schwinger using a path integral approach. We apply this formalism to the study of pair production from strong external fields as well as the time evolution of a nonequilibrium chiral phase transition. In 1961 in his classic paper ``Brownian Motion of a Quantum Particle,`` Schwinger solved the formidable technical problem of how to use the action principle to study initial value problems. Previously, the action principle was formulated to study only transition matrix elements from an earlier time to a later time. The elegant solution of this problem was the invention of the closed time path (CTP) formalism. This formalism was first used to study field theory problems by Mahanthappa and Bakshi. With the advent of supercomputers, it has now become possible to use this formalism to numerically solve important field theory questions which are presented as initial value problems. Two of these problems we shall review here. They are (1) The time evolution of the quark- gluon plasma. (2) Dynamical evolution of a non-equilibrium chiral phase transition following a relativistic heavy ion collision.

  1. Emergence of currents as a transient quantum effect in nonequilibrium systems

    SciTech Connect

    Granot, Er'el; Marchewka, Avi

    2011-09-15

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  2. Shock waves, rarefaction waves, and nonequilibrium steady states in quantum critical systems

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Schalm, Koenraad; Doyon, Benjamin; Bhaseen, M. J.

    2016-07-01

    We reexamine the emergence of a universal nonequilibrium steady state following a local quench between quantum critical heat baths in spatial dimensions greater than one. We show that energy transport proceeds by the formation of an instantaneous shock wave and a broadening rarefaction wave on either side of the interface, and not by two shock waves as previously proposed. For small temperature differences the universal steady state energy currents of the two-shock and rarefaction-shock solutions coincide. Over a broad range of parameters, the difference in the energy flow across the interface between these two solutions is at the level of 2%. The properties of the energy flow remain fully universal and independent of the microscopic theory. We briefly discuss the width of the shock wave in a viscous fluid, the effects of momentum relaxation, and the generalization to charged fluids.

  3. The nonequilibrium quantum many-body problem as a paradigm for extreme data science

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Nikolić, B. K.; Frieder, O.

    2014-12-01

    Generating big data pervades much of physics. But some problems, which we call extreme data problems, are too large to be treated within big data science. The nonequilibrium quantum many-body problem on a lattice is just such a problem, where the Hilbert space grows exponentially with system size and rapidly becomes too large to fit on any computer (and can be effectively thought of as an infinite-sized data set). Nevertheless, much progress has been made with computational methods on this problem, which serve as a paradigm for how one can approach and attack extreme data problems. In addition, viewing these physics problems from a computer-science perspective leads to new approaches that can be tried to solve more accurately and for longer times. We review a number of these different ideas here.

  4. Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Valentini, Antony

    2016-04-01

    The de Broglie-Bohm pilot-wave formulation of quantum theory allows the existence of physical states that violate the Born probability rule. Recent work has shown that in pilot-wave field theory on expanding space relaxation to the Born rule is suppressed for long-wavelength field modes, resulting in a large-scale power deficit ξ(k) which for a radiation-dominated expansion is found to have an approximate inverse-tangent dependence on k (assuming that the width of the initial distribution is smaller than the width of the initial Born-rule distribution and that the initial quantum states are evenly-weighted superpositions of energy states). In this paper, we show that the functional form of ξ(k) is robust under changes in the initial nonequilibrium distribution — subject to the limitation of a subquantum width — as well as under the addition of an inflationary era at the end of the radiation-dominated phase. In both cases, the predicted deficit ξ(k) remains an inverse-tangent function of k. Furthermore, with the inflationary phase the dependence of the fitting parameters on the number of superposed pre-inflationary energy states is comparable to that found previously. Our results indicate that, for the assumed broad class of initial conditions, an inverse-tangent power deficit is likely to be a fairly general and robust signature of quantum relaxation in the early universe.

  5. Application of Non-Equilibrium Thermo Field Dynamics to quantum teleportation under the environment

    NASA Astrophysics Data System (ADS)

    Kitajima, S.; Arimitsu, T.; Obinata, M.; Yoshida, K.

    2014-06-01

    Quantum teleportation for continuous variables is treated by Non-Equilibrium Thermo Field Dynamics (NETFD), a canonical operator formalism for dissipative quantum systems, in order to study the effect of imperfect quantum entanglement on quantum communication. We used an entangled state constructed by two squeezed states. The entangled state is imperfect due to two reasons, i.e., one is the finiteness of the squeezing parameter r and the other comes from the process that the squeezed states are created under the dissipative interaction with the environment. We derive the expressions for one-shot fidelity (OSF), probability density function (PDF) associated with OSF and (averaged) fidelity by making full use of the algebraic manipulation of operator algebra within NETFD. We found that OSF and PDF are given by Gaussian forms with its peak at the original information α to be teleported, and that for r≫1 the variances of these quantities blow up to infinity for κ/χ≤1, while they approach to finite values for κ/χ>1. Here, χ represents the intensity of a degenerate parametric process, and κ the relaxation rate due to the interaction with the environment. The blow-up of the variances for OSF and PDF guarantees higher security against eavesdropping. With the blow-up of the variances, the height of PDF reduces to small because of the normalization of probability, while the height of OSF approaches to 1 indicating a higher performance of the quantum teleportation. We also found that in the limit κ/χ≫1 the variances of both OSF and PDF for any value of r (>0) reduce to 1 which is the same value as the case r=0, i.e., no entanglement.

  6. Quantum statistical entropy of Schwarzchild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2012-10-01

    Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.

  7. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition

    NASA Astrophysics Data System (ADS)

    Roura Bas, P.; Aligia, A. A.

    2010-01-01

    We study the singlet-triplet Anderson model (STAM) in which a configuration with a doublet is hybridized with another containing a singlet and a triplet, as a minimal model to describe two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The model has a quantum phase transition which separates regions of a doublet and a singlet ground state. The limits of integer valence of the STAM (which include a model similar to the underscreened spin-1 Kondo model) are derived and used to predict the behavior of the conductance through the system on both sides of the transition, where it jumps abruptly. At a special quantum critical line, the STAM can be mapped to an infinite- U ordinary Anderson model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the STAM as a function of those of the OAM at the transition. Using the non-crossing approximation (NCA), we calculate the spectral densities and conductance through the system as a function of temperature and bias voltage, and determine the changes that take place at the quantum phase transition. The separation of the spectral density into a singlet and a triplet part allows us to shed light on the underlying physics and to explain a shoulder observed recently in the zero bias conductance as a function of temperature in transport measurements through a single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks observed in nonequilibrium transport in these experiments is also explained.

  8. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Narasimha, Roddam; Dass, N. D. Hari

    2014-01-01

    This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference ΔU across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L ×±∞. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a "vortex gas" comprising N point vortices of the same strength (γ =LΔU/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32000 vortices, with ensemble averages evaluated over up to 103 realizations and integration over 104L/ΔU. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L /ΔU. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via "violent" and "slow" relaxations [P.-H. Chavanis, Physica A 391, 3657 (2012), 10.1016/j.physa.2012.02.014], over flow time scales of order 102 and 104L/ΔU, respectively (for N =400). The final state involves a single structure that stochastically samples the domain, possibly constituting a "relative equilibrium." The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter λ close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of

  9. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    SciTech Connect

    Zhang, Z. D.; Wang, J.

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy

  10. Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization

    SciTech Connect

    Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee

    2013-03-15

    The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads' magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green's function (NEGF) formalism, incorporating the electron-electron interaction in the QD. We provide the first analytical solution for the Green's function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree-Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: Black-Right-Pointing-Pointer The spin polarized transport through a diluted magnetic quantum dot is studied. Black-Right-Pointing-Pointer The model is based on the Green's function and the equation of motion method. Black-Right-Pointing-Pointer The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. Black-Right-Pointing-Pointer The system is suitable for current-induced spin-transfer torque application. Black-Right-Pointing-Pointer A large tunneling current and a high TMR are possible for sensor application.

  11. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Liang; Ka, Being J.; Geva, Eitan

    2006-07-01

    The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics, and the inhomogeneous term accounts for initial system-bath correlations. In this paper, we propose a new approach for calculating the memory kernel and inhomogeneous term for arbitrary initial state and system-bath coupling. The memory kernel and inhomogeneous term are obtained by numerically solving a single inhomogeneous Volterra equation of the second kind for each. The new approach can accommodate a very wide range of projection operators, and requires projection-free two-time correlation functions as input. An application to the case of a two-state system with diagonal coupling to an arbitrary bath is described in detail. Finally, the utility and self-consistency of the formalism are demonstrated by an explicit calculation on a spin-boson model.

  12. Numerical computation for teaching quantum statistics

    NASA Astrophysics Data System (ADS)

    Price, Tyson; Swendsen, Robert H.

    2013-11-01

    The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.

  13. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    NASA Astrophysics Data System (ADS)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  14. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  15. Nonequilibrium transport and statistics of Schwinger pair production in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Dóra, Balázs; Moessner, R.

    2015-08-01

    The nonequilibrium dynamics beyond the linear response of Weyl semimetals is studied after a sudden switching on of a dc electric field. The resulting current is a nonmonotonic function of time with an initial quick increase in polarization current followed by a power-law decay. Particle-hole creation à la Schwinger dominates for long times when the conduction current takes over the leading role with the total current increasing again. The conductivity estimated from a dynamical calculation within a generalized Drude picture agrees with the one obtained from Kubo's formula. The full distribution function of electron-hole pairs changes from Poissonian for short perturbations to a Gaussian in the long perturbation (Landau-Zener) regime. The vacuum persistence probability of high-energy physics manifests itself in a finite probability of no pair creation and no induced current at all times.

  16. The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2015-05-01

    Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.

  17. Stochastic optimal control as non-equilibrium statistical mechanics: calculus of variations over density and current

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.

    2014-01-01

    In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.

  18. Quantum speed limits of a qubit system interacting with a nonequilibrium environment

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chun-Mei; Li, Li; Wang, Qiong

    2016-08-01

    The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401 (2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit (QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubit-initial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states, where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case. Project supported by the National Natural Science Foundation of China (Grants Nos. 61505053 and 61475045), the Natural Science Foundation of Hunan Province, China(Grant No. 2015JJ3092), the School Foundation from the Hunan University of Arts and Science (Grant No. 14ZD01), the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province, China, and the Construction Program of the Key Discipline in Hunan University of Arts and Science (Optics).

  19. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    SciTech Connect

    Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.

  20. Quantum Statistical Entropy of Five-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Wu, Yue-Qin; Zhang, Sheng-Li

    2006-05-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  1. Quantum treatment of the Bose-Einstein condensation in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Flayac, H.; Savenko, I. G.; Möttönen, M.; Ala-Nissila, T.

    2015-09-01

    We develop a fully quantum-mechanical approach, based on stochastic trajectories, for an incoherently pumped system of interacting bosons in contact with a thermal reservoir. It enables a complete characterization of coherence in such a multimode system. We apply our model to microcavity exciton polaritons interacting with acoustic phonons and observe the formation of a macroscopic occupation in the lowest-energy mode accompanied by the simultaneous establishment of temporal and spatial coherence. We describe the transition from thermal to coherent statistics together with the expected emergence of an off-diagonal long-range order.

  2. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves.

    PubMed

    Yamaguchi, Yoshiyuki Y

    2011-07-01

    Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the theoretically constructed cluster states are in good agreement with N-body simulations. Robustness of the theory is also discussed for unsuccessful initial states. PMID:21867277

  3. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion "on the edge of quantum chaos".

  4. Statistical distance and the geometry of quantum states

    SciTech Connect

    Braunstein, S.L.; Caves, C.M. )

    1994-05-30

    By finding measurements that optimally resolve neighboring quantum states, we use statistical distinguishability to define a natural Riemannian metric on the space of quantum-mechanical density operators and to formulate uncertainty principles that are more general and more stringent than standard uncertainty principles.

  5. Satyendranath Bose: Co-Founder of Quantum Statistics

    ERIC Educational Resources Information Center

    Blanpied, William A.

    1972-01-01

    Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)

  6. New Formulation of Statistical Mechanics Using Thermal Pure Quantum States

    NASA Astrophysics Data System (ADS)

    Sugiura, Sho; Shimizu, Akira

    2014-03-01

    We formulate statistical mechanics based on a pure quantum state, which we call a "thermal pure quantum (TPQ) state". A single TPQ state gives not only equilibrium values of mechanical variables, such as magnetization and correlation functions, but also those of genuine thermodynamic variables and thermodynamic functions, such as entropy and free energy. Among many possible TPQ states, we discuss the canonical TPQ state, the TPQ state whose temperature is specified. In the TPQ formulation of statistical mechanics, thermal fluctuations are completely included in quantum-mechanical fluctuations. As a consequence, TPQ states have much larger quantum entanglement than the equilibrium density operators of the ensemble formulation. We also show that the TPQ formulation is very useful in practical computations, by applying the formulation to a frustrated two-dimensional quantum spin system.

  7. Quantum disorder, duality, and fractional statistics in 2 + 1 dimensions

    NASA Technical Reports Server (NTRS)

    Wen, X. G.; Zee, A.

    1989-01-01

    A low-energy equivalence between two apparently unrelated Lagrangians with fractional statistics is reported. Exploiting this equivalence, it is possible to study the quantum disordered phase of the nonlinear sigma model with Hopf term. It is found that the quasi-particles in the disordered phase also have fractional statistics. There appears to be a dual relationship between the ordered and disordered phases.

  8. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  9. Quantum Correlations from the Conditional Statistics of Incomplete Data.

    PubMed

    Sperling, J; Bartley, T J; Donati, G; Barbieri, M; Jin, X-M; Datta, A; Vogel, W; Walmsley, I A

    2016-08-19

    We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down-conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of photodetectors. PMID:27588857

  10. Particle statistics affects quantum decay and Fano interference.

    PubMed

    Crespi, Andrea; Sansoni, Linda; Della Valle, Giuseppe; Ciamei, Alessio; Ramponi, Roberta; Sciarrino, Fabio; Mataloni, Paolo; Longhi, Stefano; Osellame, Roberto

    2015-03-01

    Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model. Remarkably, when the system sustains a bound state in the continuum, fractional decay is observed for bosonic particles, but not for fermionic ones. Complete decay in the fermionic case arises because of the Pauli exclusion principle, which forbids the bound state to be occupied by the two fermions. Our experiment indicates that particle statistics can tune many-body quantum decay from fractional to complete. PMID:25793783

  11. Quantum Nondeterministic Computation based on Statistics Superselection Rules

    NASA Astrophysics Data System (ADS)

    Castagnoli, G.

    Quantum states which obey certain symmetry superselection rules under identical particles permutation can be interpreted as computational states satisfying corresponding Boolean predicates. Given the NP-complete problem of testing the satisfiability of a generic Boolean predicate P, we investigate the possibility of achieving quantum nondeterministic computation by deriving, from P, a physical situation in which the computational states satisfy P iff they satisfy a special fermion statistics.

  12. Generalized quantum statistics and Lie (super)algebras

    NASA Astrophysics Data System (ADS)

    Stoilova, N. I.

    2016-03-01

    Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation of motion determine the quantum mechanical commutation relation?

  13. Full counting statistics of quantum dot resonance fluorescence.

    PubMed

    Matthiesen, Clemens; Stanley, Megan J; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  14. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  15. Dynamics and statistics of unstable quantum states

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Zelevinsky, V. G.

    1989-11-01

    The statistical theory of spectra formulated in terms of random matrices is extended to unstable states. The energies and widths of these states are treated as real and imaginary parts of complex eigenvalues for an effective non-hermitian hamiltonian. Eigenvalue statistics are investigated under simple assumptions. If the coupling through common decay channels is weak we obtain a Wigner distribution for the level spacings and a Porter-Thomas one for the widths, with the only exception for spacings less than widths where level repulsion fades out. Meanwhile in the complex energy plane the repulsion of eigenvalues is quadratic in accordance with the T-noninvariant character of decaying systems. In the opposite case of strong coupling with the continuum, k short-lived states are formed ( k is the number of open decay channels). These states accumulate almost the whole total width, the rest of the states becoming long-lived. Such a perestroika corresponds to separation of direct processes (a nuclear analogue of Dicke coherent superradiance). At small channel number, Ericson fluctuations of the cross sections are found to be suppressed. The one-channel case is considered in detail. The joint distribution of energies and widths is obtained. The average cross sections and density of unstable states are calculated.

  16. Quantum statistics and allometric scaling of organisms

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd

    2003-05-01

    This article proposes a mechanism to explain allometric relations between basal metabolic rate and the body size of organisms. The model postulates that energy transduction in biological organisms is constrained by two classes of dynamical processes: The first process has its origin in quantum mechanics and the constraints which the coupling of electron transport and proton translocation impose on metabolic activity. The second derives from evolutionary dynamics and the constraints which ecological and demographic forces impose on metabolic rate. These two processes are invoked to show that the scaling exponent between basal metabolic rate and body size follows a {3}/{4} rule, in the case of organisms subject to ecological constraints defined by scarce but dependable resources, and a {2}/{3} rule when constraints are defined by ample but only temporarily available resources. Our conclusions are based on general arguments incorporating the molecular mechanisms that determine metabolic activity at all levels of biological organization. Hence the model applies to uni-cellular organisms, plants and animals.

  17. Energy relaxation of nonequilibrium electrons in a nanotube formed by a rolled-up quantum well

    SciTech Connect

    Seyid-Rzayeva, S. M.

    2013-06-15

    The energy relaxation processes of excess electrons on the surface of a semiconductor nanotube are studied. A general analytical expression for the relaxation time of the energy of nonequilibrium electrons is derived taking into account possible intersubband transitions at an arbitrary ratio of nanotube and polaron radii r{sub 0}/r{sub p}. Numerical calculations for GaAs semiconductor nanotube are performed.

  18. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  19. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    SciTech Connect

    Gamba, Irene M. Tharkabhushanam, Sri Harsha

    2009-04-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S{sup d-1}. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ()]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst

  20. The statistical mechanics basis of non-equilibrium stationary states in the solar wind and outer heliosphere

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2009-12-01

    In situ observations of solar wind at 1 AU have occasionally detected ion distributions in equilibrium, where the three-dimensional spectral slope or k-index approaches infinity (a Maxwellian distribution) [e.g., Hammond, C. M., et al. (1996), J. Geophys. Res., 100, 7881-7889]. More commonly, however, suprathermal particle distributions in the solar wind routinely show highly non-equilibrium stationary states, with a k~1.5 [Fisk, L. A., and G. Gloeckler (2006), Astrophys. J., 640, L79-L82], while other observations from Voyager 1 detected k~1.63 in the inner heliosheath, beyond the termination shock [Decker, R. B., et al. (2005), Science, 309, 2020-2024]. While this value is close to 1.5, the observations demonstrated a clear statistical difference between these two indices. Finally, recent observations show distributions for which k~2.45 is a special value, separating indices that appear to be near or far from equilibrium [e.g., Dayeh, M. A., et al. (2009), Astrophys. J., 693, 1588-1600; Dialynas, K., et al. (2009), J. Geophys. Res., 114, A01212]. In this study we show how all of these special values of k~1.5, 1.63, 2.45, and infinity can be predicted by a special relationship of the entropy, defined in the framework of non-extensive Statistical Mechanics as applied to space physics [Livadiotis, G., and D. McComas (2009), in Press in JGR-Space Physics], which characterizes plasmas in stationary states out of equilibrium. Amazingly, the four values observed in the solar wind plasma and mentioned above are uniquely identified with the four special points in the derived entropy function. This correlation suggests that the observations are detecting the primacy of these stationary states.

  1. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-01

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches. PMID:26539729

  2. Nonequilibrium transport via spin-induced subgap states in superconductor/quantum dot/normal metal cotunnel junctions

    NASA Astrophysics Data System (ADS)

    Koerting, V.; Andersen, B. M.; Flensberg, K.; Paaske, J.

    2010-12-01

    We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N) and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self-energy is calculated to leading order in the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T matrix, from which we obtain the nonlinear cotunneling conductance. For even-occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd-occupied dot, however, leads to the formation of subgap resonances inside the superconducting gap which give rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.

  3. Counting statistics of many-particle quantum walks

    SciTech Connect

    Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas

    2011-06-15

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  4. New Results in the Quantum Statistical Approach to Parton Distributions

    NASA Astrophysics Data System (ADS)

    Soffer, Jacques; Bourrely, Claude; Buccella, Franco

    2015-02-01

    We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.

  5. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  6. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  7. Statistical mechanical studies on the information processing with quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-03-01

    Quantum fluctuation induces the tunneling between states in a system and then can be used in combinatorial optimization problems. Such an algorithm is called quantum adiabatic computing. In this work, we investigate the quality of an information processing based on Bayes inference with the quantum fluctuation through the statistical mechanical approach. We then focus on the error correcting codes and CDMA multiuser demodulation which are described by conventional solvable spin glass models and can be analyzed by replica method in the thermodynamic limit. Introducing the quantum fluctuation into the decoding process of each problem, which is called quantum maximizer of the posteriori probability (QMPM) estimate, we analyze the decoding quality and then compare the results with those by the conventional MPM estimate which corresponds to finite temperature decoding From our limited results, the MPM based on the quantum fluctuation seems to achieve the same decoding quality as the thermal MPM does. We clarify the relationship between the optimal amplitude of transverse field and temperature for the mixture of quantum and classical MPMs. This work is supported by JSPS KAKENHI Grant Numbers 12J06501, 25330283, 25120009.

  8. Nonequilibrium thermal entanglement

    SciTech Connect

    Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto

    2007-03-15

    Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.

  9. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  10. On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hamdouni, Yamen

    2010-12-01

    The elements of the quantum mechanical Markovian diffusion matrix leading to a Gibbs equilibrium state for a set of N coupled quantum harmonic oscillators are derived within Lindblad's axiomatic approach. Consequences of the fundamental constraints on the quantum friction coefficients are discussed. We derive the equations of motion for the expectation values and variances, and we solve them analytically. We apply our results to the description of the charge and mass asymmetry coordinates in heavy-ion collisions, and we investigate the effect of dissipation on tunneling in sub-barrier processes.

  11. Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Presilla, Carlo

    2016-02-01

    Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach, looking at both its theoretical and applicative aspects, in the example case of an open X X Z spin-1 /2 chain, driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths effectively needed to generate steady states which are almost indistinguishable from the target pure states.

  12. Quantum statistics and the performance of engine cycles

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanjian; Poletti, Dario

    2015-07-01

    We study the role of quantum statistics in the performance of Otto cycles. First, we show analytically that the work distributions for bosonic and fermionic working fluids are identical for cycles driven by harmonic trapping potentials. Subsequently, in the case of nonharmonic potentials, we find that the interplay between different energy level spacings and particle statistics strongly affects the performances of the engine cycle. To demonstrate this, we examine three trapping potentials which induce different (single-particle) energy level spacings: monotonically decreasing with the level number, monotonically increasing, and the case in which the level spacing does not vary monotonically.

  13. Lifetime statistics of quantum chaos studied by a multiscale analysis

    SciTech Connect

    Di Falco, A.; Krauss, T. F.; Fratalocchi, A.

    2012-04-30

    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.

  14. Statistics, holography, and black hole entropy in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Amit; Noui, Karim; Perez, Alejandro

    2014-04-01

    In loop quantum gravity the quantum states of a black hole horizon consist of pointlike discrete quantum geometry excitations (or punctures) labeled by spin j. The excitations possibly carry other internal degrees of freedom, and the associated quantum states are eigenstates of the area A operator. The appropriately scaled area operator A/(8πℓ) can also be interpreted as the physical Hamiltonian associated with the quasilocal stationary observers located at a small distance ℓ from the horizon. Thus, the local energy is entirely accounted for by the geometric operator A. Assuming that: Close to the horizon the quantum state has a regular energy momentum tensor and hence the local temperature measured by stationary observers is the Unruh temperature. Degeneracy of matter states is exponential with the area exp(λA/ℓp2), which is supported by the well-established results of QFT in curved spacetimes, which do not determine λ but assert an exponential behavior. The geometric excitations of the horizon (punctures) are indistinguishable. And finally that the semiclassical limit the area of the black hole horizon is large in Planck units. It follows that: Up to quantum corrections, matter degrees of freedom saturate the holographic bound, viz., λ must be equal to 1/4. Up to quantum corrections, the statistical black hole entropy coincides with Bekenstein-Hawking entropy S =A/(4ℓp2). The number of horizon punctures goes like N∝√A/ℓp2 ; i.e., the number of punctures N remains large in the semiclassical limit. Fluctuations of the horizon area are small ΔA/A ∝(ℓp2/A)1/4, while fluctuations of the area of an individual puncture are large (large spins dominate). A precise notion of local conformal invariance of the thermal state is recovered in the A→∞ limit where the near horizon geometry becomes Rindler. We also show how the present model (constructed from loop quantum gravity) provides a regularization of (and gives a concrete meaning to) the formal

  15. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Montoya-Castillo, Andrés; Reichman, David R.

    2016-05-01

    We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics.

  16. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2016-05-14

    We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics. PMID:27179468

  17. Statistics of leading digits leads to unification of quantum correlations

    NASA Astrophysics Data System (ADS)

    Chanda, T.; Das, T.; Sadhukhan, D.; Pal, A. K.; Sen(De, A.; Sen, U.

    2016-05-01

    We show that the frequency distribution of the first significant digits of the numbers in the data sets generated from a large class of measures of quantum correlations, which are either entanglement measures or belong to the information-theoretic paradigm, exhibit a universal behavior. In particular, for Haar uniformly simulated arbitrary two-qubit states, we find that the first-digit distributions corresponding to a collection of chosen computable quantum correlation quantifiers tend to follow the first-digit law, known as Benford's law, when the rank of the states increases. Considering a two-qubit state which is obtained from a system governed by paradigmatic spin Hamiltonians, namely, the XY model in a transverse field, and the XXZ model, we show that entanglement as well as information-theoretic measures violate Benford's law. We quantitatively discuss the violation of Benford's law by using a violation parameter, and demonstrate that the violation parameter can signal quantum phase transitions occurring in these models. We also comment on the universality of the statistics of the first significant digits corresponding to appropriate measures of quantum correlations in the case of multipartite systems as well as systems in higher dimensions.

  18. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    SciTech Connect

    Ness, H.; Dash, L. K.

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  19. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    SciTech Connect

    Dziarmaga, J.

    1996-03-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov{endash}de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10{sup 6}{ital T}/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. {copyright} {ital 1996 The American Physical Society.}

  20. Quantum statistics of Raman scattering model with Stokes mode generation

    NASA Technical Reports Server (NTRS)

    Tanatar, Bilal; Shumovsky, Alexander S.

    1994-01-01

    The model describing three coupled quantum oscillators with decay of Rayleigh mode into the Stokes and vibration (phonon) modes is examined. Due to the Manley-Rowe relations the problem of exact eigenvalues and eigenstates is reduced to the calculation of new orthogonal polynomials defined both by the difference and differential equations. The quantum statistical properties are examined in the case when initially: the Stokes mode is in the vacuum state; the Rayleigh mode is in the number state; and the vibration mode is in the number of or squeezed states. The collapses and revivals are obtained for different initial conditions as well as the change in time the sub-Poisson distribution by the super-Poisson distribution and vice versa.

  1. A note on the Landauer principle in quantum statistical mechanics

    SciTech Connect

    Jakšić, Vojkan; Pillet, Claude-Alain

    2014-07-01

    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kBT log 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work [Reeb, D. and Wolf M. M., “(Im-)proving Landauer's principle,” preprint http://arxiv.org/abs/arXiv:1306.4352v2 (2013)] on the subject is discussed and compared.

  2. Effects of dephasing on quantum adiabatic pumping with nonequilibrium initial states

    NASA Astrophysics Data System (ADS)

    Zhou, Longwen; Tan, Da Yang; Gong, Jiangbin

    2015-12-01

    Thouless's quantum adiabatic pumping is of fundamental interest to condensed-matter physics. It originally considered a zero-temperature equilibrium state uniformly occupying all the bands below a Fermi surface. In light of recent direct simulations of Thouless's concept in cold-atom systems, this paper investigates the dynamics of quantum adiabatic pumping subject to dephasing for rather general initial states with nonuniform populations and possibly interband coherence. Using a theory based on pure-dephasing Lindblad evolution, we find that the pumping is contributed by two parts of different nature: a dephasing-modified geometric part weighted by initial Bloch state populations and an interband-coherence-induced part compromised by dephasing, both of them being independent of the pumping time scale. The overall pumping reflects an interplay of the band topology, initial state populations, initial state coherence, and dephasing. Theoretical results are carefully checked in a Chern insulator model coupled to a pure-dephasing environment, providing a useful starting point to understand and coherently control quantum adiabatic pumping in general situations.

  3. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: • First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion on the edge of quantum chaos. • Second, the contribution by P. Jizba on information theoretic foundations of generalized (nonextensive) statistics. • Third, the contribution by J. Rafelski on a possible generalization of Boltzmann kinetics, again, formulated in terms of nonextensive statistics. • Fourth, the contribution by D.L. Stein on the state-of-the-art open problems in spin glasses and on the notion of complexity there. • Fifth, the contribution by F.T. Arecchi on the quantum-like uncertainty relations and decoherence appearing in the description of perceptual tasks of the brain. • Sixth, the contribution by G. Casati on the measurement and information extraction in the simulation of complex dynamics by a quantum computer. Immediately, the following question arises: What do the topics of these talks have in common? Apart from the variety of questions they address, it is quite obvious that the common denominator of these contributions is an approach to describe and control "the complexity" by simple means. One of the very useful tools to handle such problems, also often used or at least referred to in several of the works presented here, is the concept of Tsallis entropy and nonextensive statistics.

  4. Statistical theory of designed quantum transport across disordered networks.

    PubMed

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble. PMID:25974468

  5. Statistical theory of designed quantum transport across disordered networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble.

  6. Quantum Statistical Parton Distributions and the Spin Crisis

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Miele, G.; Tancredi, N.

    1996-10-01

    Quantum statistical distributions for partons provide a fair description of deep inelastic scattering data at Q2 = 3 and 10 (GeV/c)2. Study of the polarized structure functions seems to suggest an alternative possible solution of the spin crisis based on the Pauli principle. In this scheme, in fact, it becomes apparent that the defects of the Gottfried sum rule and Ellis-Jaffe sum rule for the proton are strongly connected. This possibility finds particular evidence from the phenomenological observation that the relation Δu = 2$tilde{F} + u - d - 1 seems to be satisfied well by parton distributions.

  7. Agents with left and right dominant hemispheres and quantum statistics

    NASA Astrophysics Data System (ADS)

    Ezhov, Alexandr A.; Khrennikov, Andrei Yu.

    2005-01-01

    We present a multiagent model illustrating the emergence of two different quantum statistics, Bose-Einstein and Fermi-Dirac, in a friendly population of individuals with the right-brain dominance and in a competitive population of individuals with the left-brain hemisphere dominance, correspondingly. Doing so, we adduce the arguments that Lefebvre’s “algebra of conscience” can be used in a natural way to describe decision-making strategies of agents simulating people with different brain dominance. One can suggest that the emergence of the two principal statistical distributions is able to illustrate different types of society organization and also to be used in order to simulate market phenomena and psychic disorders, when a switching of hemisphere dominance is involved.

  8. CMB statistical anisotropies of classical and quantum origins

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Emami, Razieh; Firouzjahi, Hassan; Wang, Yi

    2015-04-01

    We examine the impact of different anisotropic relics on inflation, in particular the predictions on the density perturbations. These relics can be the source of the large scale anomalies in the cosmic microwave background. There are two different types of background relics, one from the matter sector and the other purely from the metric. Although the angular-dependence of the statistical anisotropy in both cases are degenerate, the scale-dependence are observationally distinctive. In addition, we demonstrate that non-Bunch-Davies vacuum states can extend the statistical anisotropy to much shorter scales, and leave a scale-dependence that is insensitive to the different backgrounds but sensitive to the initial quantum state.

  9. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  10. Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices

    NASA Astrophysics Data System (ADS)

    Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.

    2014-03-01

    Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.

  11. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-01

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation. PMID:26551232

  12. Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models

    SciTech Connect

    Munafò, A. Magin, T. E.

    2014-09-15

    The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.

  13. Universality of Non-equilibrium Fluctuations in Strongly Correlated Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaelle; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke

    In a quantum dot, Kondo effect occurs when the spin of the confined electron is entangled with the electrons of the leads forming locally a strongly correlated Fermi-liquid. Our experiments were performed in such a dot formed in a single carbon nanotube, where Kondo effect with different symmetry groups, namely SU(2) and SU(4), shows up. In the latter case, as spin and orbital degrees of freedom are degenerate, two channels contribute to transport and Kondo resonance emerges for odd and even number of electrons. With our sample it was possible to investigate both symmetries near the unitary limit. In the Kondo regime, strong interaction creates a peculiar two-particle scattering which appears as an effective charge e* for the quasi-particles. We have extracted the signature of this effective charge in the shot noise for both symmetry in good agreement with theory. This result demonstrates that theory of the Kondo effect can be safely extended out of equilibrium even in the unconventional SU(4) symmetry.

  14. Analysis of surface sputtering on a quantum statistical basis

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.

  15. Role of quantum statistics in multi-particle decay dynamics

    SciTech Connect

    Marchewka, Avi; Granot, Er’el

    2015-04-15

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

  16. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    PubMed

    Pranzetti, Daniele

    2012-07-01

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable. PMID:23031096

  17. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    NASA Astrophysics Data System (ADS)

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature.

  18. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model.

    PubMed

    Raju, Ch Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  19. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    PubMed Central

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  20. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-10-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.

  1. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  2. The curious quantum statistics in the interval between measurements

    NASA Astrophysics Data System (ADS)

    Sharp, W. David; Shanks, Niall

    1989-07-01

    The claim of Albert, Aharonov and D'Amato that certain quantum ensembles entail the contextuality of quantum mechanics is defended against criticisms of Bub and Brown. It is argued that a prima facie case exists that the quantum mechanical description of the past must be both contextual and non-local.

  3. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  4. Fluctuation-induced dissipation in non-equilibrium moving systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad; Golestanian, Ramin; Jaffe, Robert; Kardar, Mehran

    2013-03-01

    Quantum fluctuations in moving systems lead to nontrivial effects such as dissipation and radiation. We consider moving bodies--a single rotating object or multiple objects in relative motion--and derive the frictional force by using techniques from non-equilibrium statistical physics as well as quantum optics. The radiation to the environment is obtained as a general expression in terms of the scattering matrix which is a powerful analytical tool. We apply our general formulas to several examples of systems out of equilibrium due to their motion.

  5. Non-equilibrium Green's function calculation of AlGaAs-well-based and GaSb-based terahertz quantum cascade laser structures

    SciTech Connect

    Yasuda, H. Hosako, I.

    2015-03-16

    We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.

  6. Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism

    NASA Astrophysics Data System (ADS)

    Barraud, Sylvain

    2009-09-01

    Various theoretical formulations are proposed for investigating the carrier transport in nanoscale electronic devices. In this paper, a discrete formulation of the Wigner transport equation (WTE) for the self-consistent simulation of phase-coherent quantum transport in silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) devices is presented. The device is simulated using an effective-mass Hamiltonian within the mode-space approximation. The numerical scheme proposed in this work solves self-consistently three dimensional Poisson's equation, two dimensional Schrödinger's equation in each cross-sectional plane of the nanowire, and the steady-state one dimensional WTE for each conduction mode to handle the quantum transport along the channel. Details on numerical implementation of the Wigner function method are given, and the results are compared with those of the nonequilibrium Green's function (NEGF) method in the ballistic limit. The calculations of current-voltage electrical characteristics of surround-gated silicon nanowires are performed using both NEGF and WTE formulations. The good agreement observed between these approaches means that a direct solution of the WTE is an accurate simulation method for modeling the ballistic quantum transport in silicon nanowire MOSFETs.

  7. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  8. Quantum statistics of overlapping modes in open resonators

    SciTech Connect

    Hackenbroich, Gregor; Viviescas, Carlos; Haake, Fritz

    2003-12-01

    We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes. Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator dynamics may be used as a starting point for a quantum theory of random lasers.

  9. On estimating perturbative coefficients in quantum field theory and statistical physics

    SciTech Connect

    Samuel, M.A. |

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent.

  10. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach.

    PubMed

    Tasaki, Hal

    2016-04-29

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems. PMID:27176507

  11. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach

    NASA Astrophysics Data System (ADS)

    Tasaki, Hal

    2016-04-01

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.

  12. Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Fung, Chi-Hang Fred; Ma, Xiongfeng; Zhang, Chun-Mei; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-11-01

    In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, which is otherwise impossible.

  13. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    SciTech Connect

    Sinitskiy, Anton V.; Voth, Gregory A.

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  14. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments. PMID:26342356

  15. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  16. To Quantum Mechanics Through Projection of Classical Statistical Mechanics on Prespace

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2005-10-01

    We show that in opposite to a common opinion quantum mechanics can be represented as projection of classical statistical model on prequantum space -- prespace. All distinguishing features of the quantum probabilistic model (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present in a latent form in the classical Kolmogorov probability model. However, classical model should be considered as a contextual model (in the sense that all probabilities are determined by contexts - complexes of physical conditions). Moreover, the prequantum→quantum map is well defined only for two fundamental physical variables (in quantum mechanics these are position and momentum). Quantum mechanics is a projection of classical statistical model through these two "reference observables". Similarly, ordinary classical statistical mechanics on physical phase space is a projection of classical statistical mechanics on prespace, We also introduce a mental prespace and consider its quantum-like representation. Mental prespace describes subconsciousness and its quantum-like representation gives a model of consciousness.

  17. Role of quantum statistics in the photoassociation of Bose-Einstein condensates

    SciTech Connect

    Olsen, M. K.; Plimak, L. I.

    2003-09-01

    We show that the photoassociation of an atomic Bose-Einstein condensate to form condensed molecules is a chemical process which not only does not obey the Arrhenius rules for chemical reactions, but that it can also depend on the quantum statistics of the reactants. Comparing the predictions of a truncated Wigner representation for different initial quantum states, we find that, even when the quantum prediction for an initial coherent state is close to the Gross-Pitaevskii prediction, other quantum states may result in very different dynamics.

  18. Topological quantum liquids with quaternion non-Abelian statistics.

    PubMed

    Xu, Cenke; Ludwig, Andreas W W

    2012-01-27

    Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8). PMID:22400884

  19. Exact integrability in quantum field theory and statistical systems

    SciTech Connect

    Thacker, H.B.

    1981-04-01

    The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The nature of exact integrability as a physical phenomenon and various aspects of the mathematical formalism are explored by discussing several examples, including detailed treatments of the nonlinear Schroedinger (delta-function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schroedinger model, and the integral equation method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the classical inverse scattering method, the quantum inverse method for the nonlinear Schroedinger model is introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method, an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long (free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions) correspond to the quantized scattering data and have a special significance. One of them creates the Bethe eigenstates, while the other is the generating function for an infinite number of conservation laws. The analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links (arrows). The relationship between the quantum inverse method and the transfer matrix formalism is exhibited.

  20. Converged Nuclear Quantum Statistics from Semi-Classical Path Integrals

    NASA Astrophysics Data System (ADS)

    Poltavskyi, Igor; Tkatchenko, Alexandre

    2015-03-01

    The quantum nature of nuclear motions plays a vital role in the structure, stability, and thermodynamics of molecular systems. The standard approach to take nuclear quantum effects (NQE) into account is the Feynman-Kac imaginary-time path-integral molecular dynamics (PIMD). Conventional PIMD simulations require exceedingly large number of classical subsystems (beads) to accurately capture NQE, resulting in considerable computational cost even at room temperature due to the rather high internal vibrational frequencies of many molecules of interest. We propose a novel parameter-free form for the PI partition function and estimators to calculate converged thermodynamic averages. Our approach requires the same ingredients as the conventional PIMD simulations, but decreases the number of required beads by roughly an order of magnitude. This greatly extends the applicability of ab initio PIMD for realistic molecular systems. The developed method has been applied to study the thermodynamics of N2, H2O, CO2, and C6H6 molecules. For all of the considered systems at room temperature, 4 to 8 beads are enough to recover the NQE contribution to the total energy within 2% of the fully converged quantum result.

  1. Non-Abelian statistics of Luttinger holes in quantum wells

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    2015-03-01

    Non-Abelian quasiparticle excitations represent a key element of topologically protected quantum computing. Such exotic states appear in fractional quantum Hall (FQH) effect as eigenstates of N-body interaction potential. These potentials can be obtained by renormalization of electron-electron interactions in the presence of Landau level (LL) mixing. The properties of valence band holes makes them fundamentally different from electrons. In the presence of magnetic field, low-lying states do not exhibit fan-like diagram and several of the levels cross. Variation of magnetic field in the vicinity of level crossings serves as a knob that tunes LL mixing and enhances the 3-body interaction. 1 / 2 filling factor FQH is a state that was not observed in electron liquid, but has been observed for holes. The properties of the two dimensional charged quantum hole liquid in the presence of magnetic field are studied using the spherical geometry. The properties of the novel 1 / 2 state are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  2. Non-equilibrium Transport of Light

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Hsuan; Taylor, Jacob

    Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.

  3. Measuring dynamical randomness of quantum chaos by statistics of Schmidt eigenvalues.

    PubMed

    Kubotani, Hiroto; Adachi, Satoshi; Toda, Mikito

    2013-06-01

    We study statistics of entanglement generated by quantum chaotic dynamics. Using an ensemble of the very large number (>/~10(7)) of quantum states obtained from the temporally evolving coupled kicked tops, we verify that the estimated one-body distribution of the squared Schmidt eigenvalues for the quantum chaotic dynamics can agree surprisingly well with the analytical one for the universality class of the random matrices described by the fixed trace ensemble (FTE). In order to quantify this agreement, we introduce the L(1) norm of the difference between the one-body distributions for the quantum chaos and FTE and use it as an indicator of the dynamical randomness. As we increase the scaled coupling constant, the L(1) difference decreases. When the effective Planck constant is not small enough, the decrease saturates, which implies quantum suppression of dynamical randomness. On the other hand, when the effective Planck constant is small enough, the decrease of the L(1) difference continues until it is masked by statistical fluctuation due to finiteness of the ensemble. Furthermore, we carry out two statistical analyses, the χ(2) goodness of fit test and an autocorrelation analysis, on the difference between the distributions to seek for dynamical remnants buried under the statistical fluctuation. We observe that almost all fluctuating deviations are statistical. However, even for well-developed quantum chaos, unexpectedly, we find a slight nonstatistical deviation near the largest Schmidt eigenvalue. In this way, the statistics of Schmidt eigenvalues enables us to measure dynamical randomness of quantum chaos with reference to the random matrix theory of FTE. PMID:23848762

  4. Quantum Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano Effect on Photon Statistics

    NASA Astrophysics Data System (ADS)

    Ridolfo, A.; di Stefano, O.; Fina, N.; Saija, R.; Savasta, S.

    2010-12-01

    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this composite system. Its incoherent part, arising from nonlinear quantum processes, is enhanced by more than 2 orders of magnitude as compared to that of the dot alone. The coupling between the two systems gives rise to a Fano interference effect which strongly influences the quantum statistical properties of the scattered photons: a small frequency shift of the incident light field may cause changes in the intensity correlation function of the scattered field of orders of magnitude. The system opens a good perspective for applications in active metamaterials and ultracompact single-photon devices.

  5. Influence of measurements on the statistics of work performed on a quantum system.

    PubMed

    Campisi, Michele; Talkner, Peter; Hänggi, Peter

    2011-04-01

    The recently demonstrated robustness of fluctuation theorems against measurements [M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010).] does not imply that the probability distributions of nonequilibrium quantities, such as heat and work, remain unaffected. We determine the impact of measurements that are performed during a running force protocol on the characteristic function of work. The results are illustrated by means of the Landau-Zener(-Stückelberg-Majorana) model. In the limit of continuous measurements the quantum Zeno effect suppresses any unitary dynamics. It is demonstrated that the characteristic function of work is the same as for an adiabatic protocol when the continuously measured quantity coincides with the Hamiltonian governing the unitary dynamics of the system in the absence of measurements. PMID:21599122

  6. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.

    PubMed

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language. PMID:27088565

  7. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems

    NASA Astrophysics Data System (ADS)

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  8. N-soliton statistics and condensate formation in dense quantum gases

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2014-09-01

    Statistics of N quantum density soliton waves [B. M. Mirza, Mod. Phys. Lett. B28 (2014) 1450148] is extended here to the case of systems with symmetric wave function. Since many such systems exhibit condensation phenomena, application is made of the soliton wave statistics to investigate condensation and phase transition in quantum gases such as 4He and also dense systems such as the alkali atoms. Specific heat discontinuities are used to determine the condensation temperature for dense quantum gases and liquids. For the model case of helium the statistical theory is shown to predict not only the observed superfluid condensation temperature (2.17 ± 0.01 K) correctly but also the normal condensation temperature (4.21 ± 0.02 K), as well as the exact specific heat λ-profile.

  9. Detector-induced backaction on the counting statistics of a double quantum dot.

    PubMed

    Li, Zeng-Zhao; Lam, Chi-Hang; Yu, Ting; You, J Q

    2013-01-01

    Full counting statistics of electron transport is of fundamental importance for a deeper understanding of the underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the counting statistics of a biased double quantum dot (DQD). We show that this inevitable QPC-induced backaction can have profound effects on the counting statistics under certain conditions, e.g., changing the shot noise from being sub-Poissonian to super-Poissonian, and changing the skewness from being positive to negative. Also, we show that both Fano factor and skewness can be either enhanced or suppressed by increasing the energy difference between two single-dot levels of the DQD under the detector-induced backaction. PMID:24149587

  10. W± bosons production in the quantum statistical parton distributions approach

    NASA Astrophysics Data System (ADS)

    Bourrely, Claude; Buccella, Franco; Soffer, Jacques

    2013-10-01

    We consider W± gauge bosons production in connection with recent results from BNL-RHIC and FNAL-Tevatron and interesting predictions from the statistical parton distributions. They concern relevant aspects of the structure of the nucleon sea and the high-x region of the valence quark distributions. We also give predictions in view of future proton-neutron collisions experiments at BNL-RHIC.

  11. A Gaussian wave packet phase-space representation of quantum canonical statistics

    SciTech Connect

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  12. Repeated interactions in open quantum systems

    SciTech Connect

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  13. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect

    Xue, Hai-Bin

    2013-12-15

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  14. Can Photo Sensors Help Us Understand the Intrinsic Differences Between Quantum and Classical Statistical Behaviors?

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2009-03-01

    We use the following epistemology—understanding and visualizing the invisible processes behind all natural phenomena through iterative reconstruction and/or refinement of current working theories towards their limits, constitute our best approach towards discovering actual realities of nature followed by new break-through theories. We use this epistemology to explore the roots of statistical nature of the real world—classical physics, quantum physics and even our mental constructs. Diversity is a natural and healthy outcome of this statistical nature. First, we use a two-beam superposition experiment as an illustrative example of the quantum world to visualize the root of fluctuations (or randomness) in the photo electron counting statistics. We recognize that the fluctuating weak background fields make the quantum world inherently random but the fluctuations are still statistically bounded, indicating that the fundamental laws of nature are still causal. Theoreticians will be challenged for ever to construct a causal and closed form theory free of statistical randomness out of incomplete information. We show by analyzing the essential steps behind any experiment that gaps in the information gathered about any phenomenon is inevitable. This lack of information also influences our personal epistemologies to have "statistical spread" due to its molecular origin, albeit bounded and constrained by the causally driven atomic and molecular interactions across the board. While there are clear differences in the root and manifestation of classical and quantum statistical behavior, on a fundamental level they originate in our theories due to lack of complete information about everything that is involved in every interaction in our experiments. Statistical nature of our theories is a product of incomplete information and we should take it as an inevitable paradigm.

  15. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    PubMed Central

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  16. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; de Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-04-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.

  17. Statistical moments of quantum-walk dynamics reveal topological quantum transitions.

    PubMed

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  18. The Quantum Nature of Identity in Human Thought: Bose-Einstein Statistics for Conceptual Indistinguishability

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-12-01

    Increasing experimental evidence shows that humans combine concepts in a way that violates the rules of classical logic and probability theory. On the other hand, mathematical models inspired by the formalism of quantum theory are in accordance with data on concepts and their combinations. In this paper, we investigate a new connection between concepts and quantum entities, namely the way both behave with respect to `identity' and `indistinguishability'. We do this by considering conceptual entities of the type Eleven Animals, were a number is combined with a noun. In the combination Eleven Animals, indeed the `animals' are identical and indistinguishable, and our investigation aims at identifying the nature of this conceptual identity and indistinguishability. We perform experiments on human subjects and find significant evidence of deviation from the predictions of classical statistical theories, more specifically deviations with respect to Maxwell-Boltzmann statistics. This deviation is of the `same type' of the deviation of quantum mechanical from classical mechanical statistics, due to indistinguishability of microscopic quantum particles, i.e we find convincing evidence of the presence of Bose-Einstein statistics. We also present preliminary promising evidence of this phenomenon in a web-based study.

  19. Simulation of anyonic statistics and its topological path independence using a seven-qubit quantum simulator

    NASA Astrophysics Data System (ADS)

    Jihyun Park, Annie; McKay, Emma; Lu, Dawei; Laflamme, Raymond

    2016-04-01

    Anyons, quasiparticles living in two-dimensional spaces with exotic exchange statistics, can serve as the fundamental units for fault-tolerant quantum computation. However, experimentally demonstrating anyonic statistics is a challenge due to the technical limitations of current experimental platforms. Here, we take a state perpetration approach to mimic anyons in the toric code using a seven-qubit nuclear magnetic resonance quantum simulator. Anyons are created by dynamically preparing the ground and excited states of a seven-qubit planar version of the toric code, and are subsequently braided along two distinct, but topologically equivalent paths. We observe that the phase acquired by the anyons is independent of the path, and coincides with the ideal theoretical predictions when decoherence and implementation errors are taken into account. As the first demonstration of the topological path independence of anyons, our experiment helps to study and exploit the anyonic properties towards the goal of building a topological quantum computer.

  20. Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains.

    PubMed

    Ivanov, Dmitri A; Abanov, Alexander G

    2013-02-01

    We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function. PMID:23496467

  1. Full counting statistics for a quantum nanoelectromechanical system

    NASA Astrophysics Data System (ADS)

    Bennett, Steven; Clerk, Aashish

    2007-03-01

    Experiments on nanoelectromechanical systems often involve the effects of a mechanical oscillator on the current noise of a mesoscopic conductor. Coupling to the oscillator induces correlations between tunneling electrons in the conductor, leading to signatures in the shot noise. To better characterize such correlations it is useful to consider full counting statistics (FCS), which describe the complete probability distribution of tunneled charge. We study theoretically the FCS in a tunnel junction coupled to a nanomechanical oscillator. This system has been realized in experiment using an atomic point contact where one electrode is free to vibrate and it has been predicted that the oscillator dynamics leads to large signatures in the shot noise that cannot be explained classically. Thus motivated, we investigate the FCS using a reduced density matrix tracking the oscillator and the number of tunneled electrons, for which we obtain an equation of Caldeira-Leggett form with additional terms due to tunneling. N. E. Flowers-Jacobs, D. R. Schmidt, and K. W. Lehnert (submitted). A. A. Clerk and S. M. Girvin, Phys. Rev. B 70, 121303(R) (2004).

  2. Structural characterization and condition for measurement statistics preservation of a unital quantum operation

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Yan; Fung, Chi-Hang Fred; Chau, H. F.

    2013-05-01

    We investigate the necessary and sufficient condition for a convex cone of positive semidefinite operators to be fixed by a unital quantum operation ϕ acting on finite-dimensional quantum states. By reducing this problem to the problem of simultaneous diagonalization of the Kraus operators associated with ϕ, we can completely characterize the kinds of quantum states that are fixed by ϕ. Our work has several applications. It gives a simple proof of the structural characterization of a unital quantum operation that acts on finite-dimensional quantum states—a result not explicitly mentioned in earlier studies. It also provides a necessary and sufficient condition for determining what kind of measurement statistics is preserved by a unital quantum operation. Finally, our result clarifies and extends the work of Størmer by giving a proof of a reduction theorem on the unassisted and entanglement-assisted classical capacities, coherent information, and minimal output Renyi entropy of a unital channel acting on a finite-dimensional quantum state.

  3. Statistical mechanical and quantum mechanical modeling of condensed phase systems

    NASA Astrophysics Data System (ADS)

    Labrosse, Matthew R.

    Understanding adsorption in nanoporous media is vital to improving their use in industrial applications such as fluid storage and separations processes. One major objective of this research is to shed light on an on-going controversy in literature over where gases adsorb on single walled carbon nanotube bundles. Grand-canonical Monte Carlo simulations have been performed using models of carbon nanotube bundles composed of tubes of all the same diameter (homogeneous) and tubes of different diameters (heterogeneous). We used three metrics with which we compared our simulation results to those found in experiments on carbon nanotubes: the specific surface area, the isosteric heat of adsorption, and the adsorption capacity. Simulations of classically behaved fluids Ar, CH4, and Xe indicate that nanotubes prepared by the HiPco process are best described by a heterogeneous bundle model with ˜11% of the nanotubes opened. Ne gas requires additional considerations to describe the quantum effects at the temperatures of interest, which have been implemented by the Feynman-Hibbs approximation. Overall, calculated results from Ne simulations are consistent with those from classical fluids. However, Ne simulations strongly indicate that the small interstitial channels formed by exactly three nanotubes are closed. Combined with previous studies on classically behaved fluids Ar, CH4, and Xe, experimental data including Ne are best matched by hetergeneous bundles with ˜11% open-ended nanotubes. The development of a heterogeneous Co/C/O reactive force field (ReaxFF) potential has also been a major objective of this research. ReaxFF provides a method to describe bond-breaking and bond-forming events that can be applied to large-scale molecular dynamics (MD) simulations. This many-bodied semi-empirical potential has been trained from ab initio density functional theory (DFT) calculations. The training set originally included descriptions of bulk and surface condensed phase cobalt

  4. Photon-Statistics Excitation Spectroscopy of a Quantum-Dot Micropillar Laser.

    PubMed

    Kazimierczuk, T; Schmutzler, J; Assmann, M; Schneider, C; Kamp, M; Höfling, S; Bayer, M

    2015-07-10

    We introduce photon-statistics excitation spectroscopy and exemplarily apply it to a quantum-dot micropillar laser. Both the intensity and the photon number statistics of the emission from the micropillar show a strong dependence on the photon statistics of the light used for excitation of the sample. The results under coherent and pseudothermal excitation reveal that a description of the laser properties in terms of mean input photon numbers is not sufficient. It is demonstrated that the micropillar acts as a superthermal light source when operated close to its threshold. Possible applications for important spectroscopic techniques are discussed. PMID:26207501

  5. Full counting statistics of energy fluctuations in a driven quantum resonator

    SciTech Connect

    Clerk, A. A.

    2011-10-15

    We consider the statistics of time-integrated energy fluctuations of a driven bosonic single-mode resonator, as measured by a quantum nondemolition (QND) detector, using the standard Keldysh prescription to define higher moments. We find that, due to an effective cascading of fluctuations, these statistics are surprisingly nonclassical: the low-temperature, quantum probability distribution is not equivalent to the high-temperature classical distribution evaluated at some effective temperature. Moreover, for a sufficiently large drive detuning and low temperatures, the Keldysh-ordered quasiprobability distribution characterizing these fluctuations fails to be positive-definite; this is similar to the full counting statistics of charge in superconducting systems. We argue that this indicates a kind of nonclassical behavior akin to that tested by Leggett-Garg inequalities.

  6. Nonequilibrium Casimir-Polder plasmonic interactions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco

    2016-04-01

    We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  7. Sequential nonideal measurements of quantum oscillators: Statistical characterization with and without environmental coupling

    NASA Astrophysics Data System (ADS)

    Matta, Vincenzo; Pierro, Vincenzo

    2015-11-01

    A one-dimensional quantum oscillator is monitored by taking repeated position measurements. As a first contribution, it is shown that, under a quantum nondemolition measurement scheme applied to a system initially at the ground state, (i) the observed sequence of measurements (quantum tracks) corresponding to a single experiment converges to a limit point, and that (ii) the limit point is random over the ensemble of the experiments, being distributed as a zero-mean Gaussian random variable with a variance at most equal to the ground-state variance. As a second contribution, the richer scenario where the oscillator is coupled with a frozen (i.e., at the ground state) ensemble of independent quantum oscillators is considered. A sharply different behavior emerges: under the same measurement scheme, here we observe that the measurement sequences are essentially divergent. Such a rigorous statistical analysis of the sequential measurement process might be useful for characterizing the main quantities that are currently used for inference, manipulation, and monitoring of many quantum systems. Several interesting properties of the quantum tracks evolution, as well as of the associated (quantum) threshold crossing times, are discussed and the dependence upon the main system parameters (e.g., the choice of the measurement sampling time, the degree of interaction with the environment, the measurement device accuracy) is elucidated. At a more fundamental level, it is seen that, as an application of basic quantum mechanics principles, a sharp difference exists between the intrinsic randomness unavoidably present in any quantum system, and the extrinsic randomness arising from the environmental coupling, i.e., the randomness induced by an external source of disturbance.

  8. Quantum friction and fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Dalvit, D. A. R.

    2014-05-01

    We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a nonequilibrium fluctuation-dissipation relation, and we show that in the large-time, steady-state regime, quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero-temperature frictional force, mainly due to the low-frequency nature of quantum friction.

  9. How to construct the optimal Bayesian measurement in quantum statistical decision theory

    NASA Astrophysics Data System (ADS)

    Tanaka, Fuyuhiko

    Recently, much more attention has been paid to the study aiming at the application of fundamental properties in quantum theory to information processing and technology. In particular, modern statistical methods have been recognized in quantum state tomography (QST), where we have to estimate a density matrix (positive semidefinite matrix of trace one) representing a quantum system from finite data collected in a certain experiment. When the dimension of the density matrix gets large (from a few hundred to millions), it gets a nontrivial problem. While a specific measurement is often given and fixed in QST, we are also able to choose a measurement itself according to the purpose of QST by using qunatum statistical decision theory. Here we propose a practical method to find the best projective measurement in the Bayesian sense. We assume that a prior distribution (e.g., the uniform distribution) and a convex loss function (e.g., the squared error) are given. In many quantum experiments, these assumptions are not so restrictive. We show that the best projective measurement and the best statistical inference based on the measurement outcome exist and that they are obtained explicitly by using the Monte Carlo optimization. The Grant-in-Aid for Scientific Research (B) (No. 26280005).

  10. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.