Science.gov

Sample records for nonequilibrium quantum statistical

  1. Introduction to Nonequilibrium Statistical Mechanics with Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Kita, T.

    2010-04-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (i) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (ii) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (iii) to derive an expression of nonequilibrium entropy that evolves with time. In stage (i), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keld ysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Phi-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Phi-derivable approximation, i.e., an issue of how to handle the ``Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy''. Aim (ii) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems ca n be handled

  2. Nonequilibrium quantum fluctuations of a dispersive medium: Spontaneous emission, photon statistics, entropy generation, and stochastic motion

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran

    2014-07-01

    We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.

  3. Nonequilibrium quantum Landauer principle.

    PubMed

    Goold, John; Paternostro, Mauro; Modi, Kavan

    2015-02-13

    Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a nonphenomenological derivation of the Landauer principle which holds for generic nonequilibrium dynamics. Furthermore, the bound depends on the nonunitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature. PMID:25723198

  4. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  5. Random paths and current fluctuations in nonequilibrium statistical mechanics

    SciTech Connect

    Gaspard, Pierre

    2014-07-15

    An overview is given of recent advances in nonequilibrium statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for nonequilibrium systems. In this approach, relationships have been established between nonequilibrium properties such as the transport coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.

  6. Nonequilibrium functional bosonization of quantum wire networks

    SciTech Connect

    Ngo Dinh, Stephane; Bagrets, Dmitry A.; Mirlin, Alexander D.

    2012-11-15

    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.

  7. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745

  8. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  9. Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Schieve, William C.; Horwitz, Lawrence P.

    2009-04-01

    1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.

  10. Nonequilibrium quantum dynamics in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  11. Effective equilibrium theory of nonequilibrium quantum transport

    NASA Astrophysics Data System (ADS)

    Dutt, Prasenjit; Koch, Jens; Han, Jong; Le Hur, Karyn

    2011-12-01

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field.

  12. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  13. Local thermoelectric probes of nonequilibrium quantum systems

    NASA Astrophysics Data System (ADS)

    Stafford, Charles

    A theory of local temperature and voltage measurement in an interacting quantum system far from equilibrium is developed. We prove that a steady-state measurement by a floating thermoelectric probe is unique if it exists. Furthermore, we show that a solution exists provided there is no net local population inversion. In the case of population inversion, the system may be assigned a (unique) negative temperature. An expression for the local entropy of a nonequilibrium quantum system is introduced that, together with the local temperature and voltage, allows for a complete analysis of the local thermodynamics of the thermoelectric processes in the system. The Clausius form of the second law and the third law are shown to hold exactly locally, while the zeroth and first laws are shown to be valid to leading order in the Sommerfeld expansion. The local quantum thermodynamics underlying the enhancement of thermoelectricity by quantum interference is discussed. Work supported by the U.S. Department of Energy, Office of Science, Award No. DE-SC0006699.

  14. Statistical physics of shear flow: a non-equilibrium problem

    NASA Astrophysics Data System (ADS)

    Evans, R. M. L.

    2010-09-01

    Complex fluids are easily and reproducibly driven into non-equilibrium steady states by the action of shear flow. The statistics of the microstructure of non-equilibrium fluids is important to the material properties of every complex fluid that flows, e.g. axle grease on a rotating bearing; blood circulating in capillaries; molten plastic flowing into a mould; the non-equilibrium onion phase of amphiphiles used for drug delivery; the list is endless. Such states are as diverse and interesting as equilibrium states, but are not governed by the same statistics as equilibrium materials. I review some recently discovered principles governing the probabilities of various types of molecular re-arrangements taking place within a sheared fluid. As well as providing new foundations for the study of non-equilibrium matter, the principles are applied to some simple models of particles interacting under flow, showing that the theory exhibits physically convincing behaviour.

  15. Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots

    SciTech Connect

    Sizov, D. S. Zavarin, E. E.; Ledentsov, N. N.; Lundin, V. V.; Musikhin, Yu. G.; Sizov, V. S.; Suris, R. A.; Tsatsul'nikov, A. F.

    2007-05-15

    Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.

  16. Universal nonequilibrium states at the fractional quantum Hall edge

    NASA Astrophysics Data System (ADS)

    Levkivskyi, Ivan P.

    2016-04-01

    Integrability of electron dynamics in one dimension is manifested by the nonequilibrium stationary states. They emerge near a point contact coupling two quantum Hall edges with different chemical potentials. I use the nonequilibrium bosonization technique to show that the effective temperature of such states at the fractional quantum Hall edges has a universal linear dependence on the current through the contact. In contrast, the temperature at eventual equilibrium scales as the square root of the power dissipating at the point contact. I propose to use this distinction to detect these intriguing nonequilibrium states.

  17. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics

    NASA Astrophysics Data System (ADS)

    Crooks, Gavin E.; Sivak, David A.

    2011-06-01

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Rényi divergence.

  18. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics

    SciTech Connect

    Crooks, Gavin; Sivak, David

    2011-06-03

    Many interesting divergence measures between conjugate ensembles of nonequilibrium trajectories can be experimentally determined from the work distribution of the process. Herein, we review the statistical and physical significance of several of these measures, in particular the relative entropy (dissipation), Jeffreys divergence (hysteresis), Jensen-Shannon divergence (time-asymmetry), Chernoff divergence (work cumulant generating function), and Renyi divergence.

  19. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2005-08-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  20. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    1997-02-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  1. Nonequilibrium transport at a dissipative quantum phase transition.

    PubMed

    Chung, Chung-Hou; Le Hur, Karyn; Vojta, Matthias; Wölfle, Peter

    2009-05-29

    We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage. PMID:19519125

  2. Nonequilibrium statistical mechanics of nanotube nucleation

    NASA Astrophysics Data System (ADS)

    Artyukhov, Vasilii I.; Yakobson, Boris I.

    A key problem that advanced carbon nanotube applications face is the difficulty of producing pure single-helicity samples. As the elementary processes of nanotube growth are difficult to observe in situ, theoretical understanding of the process is especially important. Direct molecular dynamics simulations offer limited insight due to computational intractability of space- and time-scales involved. We formulated a theory that explains a class of helicity-selective growth experiments, based on classical nucleation theory and crystal growth kinetics.1 However, a general theory of nanotube growth must also include fast irreversible growth beyond the classical near-equilibrium assumption. Here we construct a coarse-grained model allowing us to rigorously investigate the statistical mechanics of nanotube nucleation and trace how helicity emerges from the global nucleation trajectory ensemble. Importantly, our model can handle the whole range of conditions from perfect reversibility driven by energetics to perfect irreversibility driven by configurational entropy of nanotube caps and edges. Our theory generalizes earlier models in a large advance towards ultimate understanding of helicity-selective synthesis. 1 V.I. Artyukhov, E.S. Penev, and B.I. Yakobson, Nat. Commun. 5, 4892 (2014)

  3. Quantum U-statistics

    SciTech Connect

    Guta, Madalin; Butucea, Cristina

    2010-10-15

    The notion of a U-statistic for an n-tuple of identical quantum systems is introduced in analogy to the classical (commutative) case: given a self-adjoint 'kernel' K acting on (C{sup d}){sup '}x{sup r} with rstatistics converges in moments to a linear combination of Hermite polynomials in canonical variables of a canonical commutation relation algebra defined through the quantum central limit theorem. In the special cases of nondegenerate kernels and kernels of order of 2, it is shown that the convergence holds in the stronger distribution sense. Two types of applications in quantum statistics are described: testing beyond the two simple hypotheses scenario and quantum metrology with interacting Hamiltonians.

  4. Generalized Van Hove Formula for Scattering of Neutrons by the Nonequilibrium Statistical Medium

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2012-07-01

    The theory of scattering of particles (e.g., neutrons) by statistical medium was recast for the nonequilibrium statistical medium. The correlation scattering function of the relevant variables give rise to a very compact and entirely general expression for the scattering cross-section of interest. The formula obtained by Van Hove provides a convenient method of analyzing the properties of slow neutron and light scattering by systems of particles such as gas, liquid or solid in the equilibrium state. In this paper the theory of scattering of particles by many-body system was reformulated and generalized for the case of nonequilibrium statistical medium. A new method of quantum-statistical derivation for the space and time Fourier transforms of the Van Hove correlation function was formulated. Thus in place of the usual Van Hove scattering function, a generalized one was deduced and the result was shown to be of greater potential utility than those previously given in the literature. This expression gives a natural extension of the familiar Van Hove formula for scattering of slow neutrons for the case in which the system under consideration is in a nonequilibrium state. The feasibility of light- and neutron-scattering experiments to investigate the appropriate problems in real physical systems was discussed briefly.

  5. What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.

    PubMed

    Kobayashi, Kensuke

    2016-01-01

    Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456

  6. Nonequilibrium work and entropy production by quantum projective measurements.

    PubMed

    Yi, Juyeon; Kim, Yong Woon

    2013-09-01

    We study the thermodynamic notion of quantum projective measurements, using a framework for the fluctuation theorem of nonequilibrium work. The energy change induced by measurements satisfies the Jarzynski equality, leading us to the interpretation that the quantum projective measurements perform nonequilibrium work on the measured system. The work average exhibits intriguing limiting behaviors due to the heat-up effect caused by repeated measurements and the quantum Zeno effect caused by measurements of an infinite frequency. If the measured system relaxes back to its initial equilibrium state, the work is completely dissipated in the form of heat into a reservoir. The corresponding entropy increase in the reservoir is shown to be not less than the von Neumann entropy change generated during the course of the measurements, proving Landauer's principle. PMID:24125212

  7. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  8. Nonequilibrium critical scaling in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Apollaro, Tony J. G.; Paganelli, Simone; De Chiara, Gabriele; Johannesson, Henrik; Bose, Sougato; Sodano, Pasquale

    2016-05-01

    The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies an exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.

  9. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  10. Nonequilibrium quantum magnetism in a dipolar lattice gas.

    PubMed

    de Paz, A; Sharma, A; Chotia, A; Maréchal, E; Huckans, J H; Pedri, P; Santos, L; Gorceix, O; Vernac, L; Laburthe-Tolra, B

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites. PMID:24237534

  11. Nonequilibrium Quantum Magnetism in a Dipolar Lattice Gas

    NASA Astrophysics Data System (ADS)

    de Paz, A.; Sharma, A.; Chotia, A.; Maréchal, E.; Huckans, J. H.; Pedri, P.; Santos, L.; Gorceix, O.; Vernac, L.; Laburthe-Tolra, B.

    2013-11-01

    We report on the realization of quantum magnetism using a degenerate dipolar gas in an optical lattice. Our system implements a lattice model resembling the celebrated t-J model. It is characterized by a nonequilibrium spinor dynamics resulting from intersite Heisenberg-like spin-spin interactions provided by nonlocal dipole-dipole interactions. Moreover, due to its large spin, our chromium lattice gases constitute an excellent environment for the study of quantum magnetism of high-spin systems, as illustrated by the complex spin dynamics observed for doubly occupied sites.

  12. Nonequilibrium GREEN’S Functions for High-Field Quantum Transport Theory

    NASA Astrophysics Data System (ADS)

    Bertoncini, Rita

    A formulation of the Kadanoff-Baym-Keldysh theory of nonequilibrium quantum statistical mechanics is developed in order to describe nonperturbatively the effects of the electric field on electron-phonon scattering in nondegenerate semiconductors. We derive an analytic, gauge-invariant model for the spectral density of energy states that accounts for both intracollisional field effect and collisional broadening simultaneously. A kinetic equation for the quantum distribution function is derived and solved numerically. The nonlinear drift velocity versus applied field characteristics is also evaluated numerically. Many features of our nonlinear theory bear formal resemblance to linear-response theory.

  13. Generalized nonequilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    2016-07-01

    Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of

  14. Non-Markovian full counting statistics in quantum dot molecules

    PubMed Central

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245

  15. Non-equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Simonnet, E.

    2010-12-01

    We describe the dynamics of two-dimensional and quasi-geostrophic flows with stochastic forces. It exhibits extremely long correlations times, related to multi-scale dynamics, and collective behaviors such as bistability and multistability. We show that in regimes of weak forces and dissipation, dominated by the large scales inertial dynamics, equilibrium statistical mechanics provides extremely precise predictions for the self-organized large scale flows. This is true for amuch larger range of parameters than would have been expected, explaining a renewed interest for statistical mechanics approaches. Non-equilibrium theory, based on kinetic theories (or equivalently Mori-Zwanzig projections) gives explicit predictions for algebraic correlations of the velocity field, and for the large scale mean flow. We also describe briefly recent applications to ocean jets and vortices, explaining the detailed structure of inertial mid-basin jets and both the structure, and westward and poleward drifts of oceans rings and eddies. References: F. BOUCHET and E. SIMONNET, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. BOUCHET and J. SOMMERIA, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions in the dynamics of the 2D Navier-Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio d. The two main plots are the time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, illustrating random changes between dipoles (|z1| close to 0.55) and unidirectional flows (|z1| close to 0.). The small

  16. Quantum mechanics from classical statistics

    SciTech Connect

    Wetterich, C.

    2010-04-15

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  17. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  18. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state. PMID:26764644

  19. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  20. Nonequilibrium statistical field theory for classical particles: Basic kinetic theory

    NASA Astrophysics Data System (ADS)

    Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2015-06-01

    Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010), 10.1103/PhysRevE.81.061102; J. Stat. Phys. 149, 643 (2012), 10.1007/s10955-012-0610-y; J. Stat. Phys. 152, 159 (2013), 10.1007/s10955-013-0755-3; Phys. Rev. E 83, 041125 (2011), 10.1103/PhysRevE.83.041125] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  1. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  2. Non-equilibrium Aspects of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Andrei, Natan

    The study of non-equilibrium dynamics of interacting many body systems is currently one of the main challenges of modern condensed matter physics, driven by the spectacular progress in the ability to create experimental systems - trapped cold atomic gases are a prime example - that can be isolated from their environment and be highly controlled. Many old and new questions can be addressed: thermalization of isolated systems, nonequilibrium steady states, the interplay between non equilibrium currents and strong correlations, quantum phase transitions in time, universality among others. In this talk I will describe nonequilibrium quench dynamics in integrable quantum systems. I'll discuss the time evolution of the Lieb-Liniger system, a gas of interacting bosons moving on the continuous infinite line and interacting via a short range potential. Considering a finite number of bosons on the line we find that for any value of repulsive coupling the system asymptotes towards a strongly repulsive gas for any initial state, while for an attractive coupling, the system forms a maximal bound state that dominates at longer times. In the thermodynamic limit -with the number of bosons and the system size sent to infinity at a constant density and the long time limit taken subsequently- I'll show that the density and density-density correlation functions for strong but finite positive coupling are described by GGE for translationally invariant initial states with short range correlations. As examples I'll discuss quenches from a Mott insulator initial state or a Newton's Cradle. Then I will show that if the initial state is strongly non translational invariant, e.g. a domain wall configuration, the system does not equilibrate but evolves into a nonequilibrium steady state (NESS). A related NESS arises when the quench consists of coupling a quantum dot to two leads held at different chemical potential, leading in the long time limit to a steady state current. Time permitting I

  3. Computational complexity of nonequilibrium steady states of quantum spin chains

    NASA Astrophysics Data System (ADS)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  4. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's. PMID:27575115

  5. Nonequilibrium quantum dissipation in spin-fermion systems

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Reichman, David R.; Millis, Andrew J.

    2007-11-01

    Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.

  6. Quantum dew: Formation of quantum liquid in a nonequilibrium Bose gas

    SciTech Connect

    Khlebnikov, S.; Tkachev, I.; TH Division, CERN, CH-1211 Geneva 23, Switzerland,; Institute for Nuclear Research, Russian Academy of Sciences, Moscow 117312, Russia

    2000-04-15

    We consider phase separation in a nonequilibrium Bose gas with an attractive interaction between particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of a Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions. (c) 2000 The American Physical Society.

  7. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  8. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  9. Nonequilibrium entropy in classical and quantum field theory

    NASA Astrophysics Data System (ADS)

    Kandrup, Henry E.

    1987-06-01

    This paper proposes a definition of nonequilibrium entropy appropriate for a bosonic classical or quantum field, viewed as a collection of oscillators with equations of motion which satisfy a Liouville theorem (as is guaranteed for a Hamiltonian system). This entropy S is constructed explicitly to provide a measure of correlations and, as such, is conserved absolutely in the absence of couplings between degrees of freedom. This means, e.g., that there can be no entropy generation for a source-free linear field in flat space, but that S need no longer be conserved in the presence of couplings induced by nonlinearities, material sources, or a nontrivial dynamical background space-time. Moreover, through the introduction of a ``subdynamics,'' it is proved that, in the presence of such couplings, the entropy will satisfy an H-theorem inequality, at least in one particular limit. Specifically, if at some initial time t0 the field is free of any correlations, it then follows rigorously that, at time t0+Δt, the entropy will be increasing: dS/dt>0. Similar arguments demonstrate that this S is the only measure of ``entropy'' consistent mathematically with the subdynamics. It is argued that this entropy possesses an intrinsic physical meaning, this meaning being especially clear in the context of a quantum theory, where a direct connection exists between entropy generation and particle creation. Reasonable conjectures regarding the more general time dependence of the entropy, which parallel closely the conventional wisdom of particle mechanics, lead to an interpretation of S which corroborates one's naive intuition as to the behavior of an ``entropy.''

  10. Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2015-10-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...

  11. Eigenfunction statistics on quantum graphs

    SciTech Connect

    Gnutzmann, S.; Keating, J.P.; Piotet, F.

    2010-12-15

    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric {sigma} model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.

  12. Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems

    SciTech Connect

    Cramer, M.; Eisert, J.; Dawson, C. M.; Osborne, T. J.

    2008-01-25

    A reasonable physical intuition in the study of interacting quantum systems says that, independent of the initial state, the system will tend to equilibrate. In this work we introduce an experimentally accessible setting where relaxation to a steady state is exact, namely, for the Bose-Hubbard model quenched from a Mott quantum phase to the free strong superfluid regime. We rigorously prove that the evolving state locally relaxes to a steady state with maximum entropy constrained by second moments--thus maximizing the entanglement. Remarkably, for this to be true, no time average is necessary. Our argument includes a central limit theorem and exploits the finite speed of information transfer. We also show that for all periodic initial configurations (charge density waves) the system relaxes locally, and identify experimentally accessible signatures in optical lattices as well as implications for the foundations of statistical mechanics.

  13. Nonequilibrium statistical mechanical models for cytoskeletal assembly: Towards understanding tensegrity in cells

    NASA Astrophysics Data System (ADS)

    Shen, Tongye; Wolynes, Peter G.

    2005-10-01

    The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the many-body master equation for a set of motorized particles accounts for their thermally induced Brownian motion as well as for the motorized kicking of the structural elements. These approximations yield stability limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the effects of nonequilibrium behavior and adhesion (effective cross-linking) on the mechanical stability of localized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modulate the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.

  14. Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Citro, Roberta; Romeo, Francesco

    2016-03-01

    We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.

  15. Quantum Statistical Testing of a QRNG Algorithm

    SciTech Connect

    Humble, Travis S; Pooser, Raphael C; Britt, Keith A

    2013-01-01

    We present the algorithmic design of a quantum random number generator, the subsequent synthesis of a physical design and its verification using quantum statistical testing. We also describe how quantum statistical testing can be used to diagnose channel noise in QKD protocols.

  16. Exploring the nonequilibrium dynamics of ultracold quantum gases by using numerical tools

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian

    Numerical tools such as exact diagonalization or the density matrix renormalization group method have been vital for the study of the nonequilibrium dynamics of strongly correlated many-body systems. Moreover, they provided unique insight for the interpretation of quantum gas experiments, whenever a direct comparison with theory is possible. By considering the example of the experiment by Ronzheimer et al., in which both an interaction quench and the release of bosons from a trap into an empty optical lattice (sudden expansion) was realized, I discuss several nonequilibrium effects of strongly interacting quantum gases. These include the thermalization of a closed quantum system and its connection to the eigenstate thermalization hypothesis, nonequilibrium mass transport, dynamical fermionization, and transient phenomena such as quantum distillation or dynamical quasicondensation. I highlight the role of integrability in giving rise to ballistic transport in strongly interacting 1D systems and in determining the asymptotic state after a quantum quench. The talk concludes with a perspective on open questions concerning 2D systems and the numerical simulation of their nonequilibrium dynamics. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 801.

  17. A study of non-equilibrium phonons in GaAs/AlAs quantum wells

    SciTech Connect

    Su, Zhenpeng

    1996-11-01

    In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.

  18. Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics

    PubMed Central

    Esposito, Martina; Titimbo, Kelvin; Zimmermann, Klaus; Giusti, Francesca; Randi, Francesco; Boschetto, Davide; Parmigiani, Fulvio; Floreanini, Roberto; Benatti, Fabio; Fausti, Daniele

    2015-01-01

    Fluctuations of the atomic positions are at the core of a large class of unusual material properties ranging from quantum para-electricity to high temperature superconductivity. Their measurement in solids is the subject of an intense scientific debate focused on seeking a methodology capable of establishing a direct link between the variance of the atomic displacements and experimentally measurable observables. Here we address this issue by means of non-equilibrium optical experiments performed in shot-noise-limited regime. The variance of the time-dependent atomic positions and momenta is directly mapped into the quantum fluctuations of the photon number of the scattered probing light. A fully quantum description of the non-linear interaction between photonic and phononic fields is benchmarked by unveiling the squeezing of thermal phonons in α-quartz. PMID:26690958

  19. Emergence of quantum mechanics from a sub-quantum statistical mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2014-07-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.

  20. Universality of non-equilibrium fluctuations in strongly correlated quantum liquids

    NASA Astrophysics Data System (ADS)

    Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaëlle; Weil, Raphaël; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke

    2016-03-01

    Interacting quantum many-body systems constitute a fascinating research field because they form quantum liquids with remarkable properties and universal behaviour. In fermionic systems, such quantum liquids are realized in helium-3 liquid, heavy fermion systems, neutron stars and cold gases. Their properties in the linear-response regime have been successfully described by the theory of Fermi liquids. The idea is that they behave as an ensemble of non-interacting `quasi-particles’. However, non-equilibrium properties have still to be established and remain a key issue of many-body physics. Here, we show a precise experimental demonstration of Landau Fermi liquid theory extended to the non-equilibrium regime in a zero-dimensional system. Combining transport and ultra-sensitive current noise measurements, we have unambiguously identified the SU(2) (ref. ) and SU(4) (refs ,,,,) symmetries of a quantum liquid in a carbon nanotube tuned in the universal Kondo regime. Whereas the free quasi-particle picture is found valid around equilibrium, an enhancement of the current fluctuations is detected out of equilibrium and perfectly explained by an effective charge induced by the residual interaction between quasi-particles. Moreover, an as-yet-unknown scaling law for the effective charge is discovered, suggesting a new non-equilibrium universality. Our method paves a new way to explore the exotic nature of quantum liquids out of equilibrium through their fluctuations in a wide variety of physical systems.

  1. Real-time nonequilibrium dynamics of quantum glassy systems

    NASA Astrophysics Data System (ADS)

    Cugliandolo, Leticia F.; Lozano, Gustavo

    1999-01-01

    We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the Martin-Siggia-Rose generating functional associated to a colored noise. We apply this general formalism to a prototype model related to the p spin glass. We show that the model has a dynamic phase transition separating the paramagnetic from the spin-glass phase and that quantum fluctuations depress the transition temperature until a quantum critical point is reached. We show that the dynamics in the paramagnetic phase is stationary but presents an interesting crossover from a region controlled by the classical critical point to another one controlled by the quantum critical point. The most characteristic property of the dynamics in a glassy phase, namely, aging, survives the quantum fluctuations. In the subcritical region the quantum fluctuation-dissipation theorem is modified in a way that is consistent with the notion of effective temperatures introduced for the classical case. We discuss these results in connection with recent experiments in dipolar quantum spin glasses and the relevance of the effective temperatures with respect to the understanding of the low-temperature dynamics.

  2. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats

    NASA Astrophysics Data System (ADS)

    Grosberg, A. Y.; Joanny, J.-F.

    2015-09-01

    We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other words, particles of different types are in contact with thermostats at different temperatures. We present complete systematic statistical mechanics treatment starting from first principles. Although we consider only corrections to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly mixed system becomes unstable with respect to steady states consisting of phases enriched with different types of particles. In the second virial approximation, we define nonequilibrium "chemical potentials" whose gradients govern diffusion fluxes and a nonequilibrium "osmotic pressure," which governs the mechanical stability of the interface.

  3. Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats.

    PubMed

    Grosberg, A Y; Joanny, J-F

    2015-09-01

    We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other words, particles of different types are in contact with thermostats at different temperatures. We present complete systematic statistical mechanics treatment starting from first principles. Although we consider only corrections to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly mixed system becomes unstable with respect to steady states consisting of phases enriched with different types of particles. In the second virial approximation, we define nonequilibrium "chemical potentials" whose gradients govern diffusion fluxes and a nonequilibrium "osmotic pressure," which governs the mechanical stability of the interface. PMID:26465437

  4. Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators

    NASA Astrophysics Data System (ADS)

    Privitera, Lorenzo; Santoro, Giuseppe E.

    2016-06-01

    Inducing topological transitions by a time-periodic perturbation offers a route to controlling the properties of materials. Here, we show that the adiabatic preparation of a nontrivial state involves a selective population of edge states, due to exponentially small gaps preventing adiabaticity. We illustrate this by studying graphenelike ribbons with hopping's phases of slowly increasing amplitude, as, e.g., for a circularly polarized laser slowly turned on. The induced currents have large periodic oscillations, but flow solely at the edges upon time averaging, and can be controlled by focusing the laser on either edge. The bulk undergoes a nonequilibrium topological transition, as signaled by a local Hall conductivity, the Chern marker introduced by Bianco and Resta in equilibrium. The breakdown of this adiabatic picture in the presence of intraband resonances is discussed.

  5. Average diagonal entropy in nonequilibrium isolated quantum systems.

    PubMed

    Giraud, Olivier; García-Mata, Ignacio

    2016-07-01

    The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature. PMID:27575092

  6. Quantum Statistical Testing of a Quantum Random Number Generator

    SciTech Connect

    Humble, Travis S

    2014-01-01

    The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.

  7. Asymptotic theory of quantum statistical inference

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito

    Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure

  8. Validity of nonequilibrium work relations for the rapidly expanding quantum piston

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Jarzynski, Christopher

    2012-03-01

    Recent work by Teifel and Mahler [Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2010-00145-y 75, 275 (2010)] raises legitimate concerns regarding the validity of quantum nonequilibrium work relations in processes involving moving hard walls. We study this issue in the context of the rapidly expanding one-dimensional quantum piston. Utilizing exact solutions of the time-dependent Schrödinger equation, we find that the evolution of the wave function can be decomposed into static and dynamic components, which have simple semiclassical interpretations in terms of particle-piston collisions. We show that nonequilibrium work relations remain valid at any finite piston speed, provided both components are included, and we study explicitly the work distribution for this model system.

  9. Vibrational-coherence measurement of nonequilibrium quantum systems by four-wave mixing

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2015-11-01

    We show theoretically that a quantum system in a nonequilibrium state interacting with a set of laser pulses in a four-wave-mixing setup leads to signal emission in directions opposite to the ones usually considered. When combined with a pump mechanism which sets a time origin for the nonequilibrium state creation, this particular optical response can be utilized to directly follow decoherence processes in real time. By varying the time delays within the probe sequence, signals in these unconventional directions can also be used to detect two-dimensional spectra determined by the dynamics of up to three-quantum coherences, revealing energetical anharmonicities and environmental influences. As a numerical example, these findings are demonstrated by considering a model of vibrational decoherence of carbon monoxide after photolysis from a hemeprotein.

  10. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  11. Non-equilibrium statistical mechanics theory for the large scales of geophysical flows

    NASA Astrophysics Data System (ADS)

    Eric, S.; Bouchet, F.

    2010-12-01

    The aim of any theory of turbulence is to understand the statistical properties of the velocity field. As a huge number of degrees of freedom is involved, statistical mechanics is a natural approach. The self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. We discuss classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations, mean field approach) and thermodynamic concepts (ensemble inequivalence, negative heat capacity) are briefly explained and used to predict statistical equilibria for turbulent flows. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations will be discussed. We also present recent results for non-equilibrium situations, for which forces and dissipation are in a statistical balance. As an example, the concept of phase transition allows us to describe drastic changes of the whole system when a few external parameters are changed. F. Bouchet and E. Simonnet, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. Bouchet and J. Sommeria, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. Venaille and F. Bouchet, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. Bouchet and A. Venaille, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions for the 2D Navier-Stokes equations with

  12. Higher-order generalized hydrodynamics: Foundations within a nonequilibrium statistical ensemble formalism.

    PubMed

    Silva, Carlos A B; Rodrigues, Clóves G; Ramos, J Galvão; Luzzi, Roberto

    2015-06-01

    Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description. PMID:26172796

  13. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics.

    PubMed

    Kreula, J M; Clark, S R; Jaksch, D

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  14. Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics

    PubMed Central

    Kreula, J. M.; Clark, S. R.; Jaksch, D.

    2016-01-01

    We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673

  15. Observing the nonequilibrium dynamics of the quantum transverse-field Ising chain in circuit QED.

    PubMed

    Viehmann, Oliver; von Delft, Jan; Marquardt, Florian

    2013-01-18

    We show how a quantum Ising spin chain in a time-dependent transverse magnetic field can be simulated and experimentally probed in the framework of circuit QED with current technology. The proposed setup provides a new platform for observing the nonequilibrium dynamics of interacting many-body systems. We calculate its spectrum to offer a guideline for its initial experimental characterization. We demonstrate that quench dynamics and the propagation of localized excitations can be observed with the proposed setup and discuss further possible applications and modifications of this circuit QED quantum simulator. PMID:23373908

  16. Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Garcia-March, Miguel Angel; Vijande, Javier; Ferrando, Albert

    2015-05-01

    We explore the nonequilibrium quantum dynamics of partial symmetry-breaking in ring Bose-Einstein condensates described by the Bose-Hubbard Hamiltonian with an external potential. Using exact diagonalization and group theory for small systems, we establish three new concepts to predict and characterize the dynamics after a quantum quench: symmetry memory, critical symmetry-breaking strength, and the symmetry gap. Critical symmetry breaking can manifest in current reversals, but is most clearly observed in the symmetry memory operator, based on unitary rotations. Funded by NSF, AFOSR, AvH Foundation, and MINECO.

  17. A Nonequilibrium Statistical Thermodynamics Approach to Non-Gaussian Statistics in Space Plasmas.

    NASA Astrophysics Data System (ADS)

    Consolini, G.

    2005-12-01

    One of the most interesting aspect of magnetic field and plasma parameters fluctuations is the non-Gaussian shape of the Probability Distribution Functions (PDFs). This fact along with the occurrence of scaling features has been read as an evidence of intermittency. In the past, several models have been proposed for the non-gaussianity of the PDFs (Castaign et al., 1990; Frisch, 1996; Frisch & Sornette, 1997; Arimitsu & Arimitsu, 2000; Beck, 2000; Leubner & Vörös, 2005). Recently, by introducing the concept of randomized operational temperature Beck & Cohen proposed the concept of superstatistics (Beck & Cohen, 2003; Beck, 2004) as the origin of non-Gaussian PDFs in nonequilibrium, long-range correlated, systems. Here, the origin of non-Gaussian PDFs in space plasmas is discussed in the framework of composite thermodynamic systems starting from the idea of randomized operational temperature and using the concept of Lèvy transformation. This approach is motivated by recent theoretical and experimental evidences of multiscale magnetic and plasma structures in space plasmas (Chang, 1999; Chang et al, 2004). A novel shape of the small-scale PDFs is derived and compared with PDFs computed by magnetic field measurements in space plasmas.

  18. Application of the non-equilibrium statistical operator method (NESOM) to dissipation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Mo, M. Y.; Kantorovich, L.

    2001-02-01

    We apply the non-equilibrium statistical operator method to non-contact atomic force microscopy, considering explicitly the statistical effects of (classical) vibrations of surface atoms and associated energy transfer from the tip to the surface. We derive several, physically and mathematically equivalent, forms of the equation of motion for the tip, each containing a friction term due to the so-called intrinsic mechanism of energy dissipation first suggested by Gauthier and Tsukada. Our exact treatment supports the results of some earlier work which were all approximate. We also demonstrate, using the same theory, that the distribution function of the tip in the coordinate-momentum phase subspace is governed by the Fokker-Planck equation and should be considered as strongly peaked around the exact values t and t of the momentum and the position of the tip, respectively.

  19. Nonequilibrium Response of Nanosystems Coupled to Driven Quantum Baths.

    PubMed

    Grabert, Hermann; Nalbach, Peter; Reichert, Joscha; Thorwart, Michael

    2016-06-01

    Commonly, nanosystems are characterized by their response to time-dependent external fields in the presence of inevitable environmental fluctuations. The direct impact of the external driving on the environment is generally neglected. While this approach is satisfactory for macroscopic systems, on the nanoscale, an interaction of external fields with the environment is often unavoidable on principle. We extend the standard linear response theory of quantum dissipative systems to strongly driven baths. Significant modifications are found for two paradigm examples. First, we evaluate the polarizability of a molecule immersed in a strongly polarizable medium that responds to terahertz radiation. We find an increase of the molecular polarizability by about 30%. Second, we determine the response of a semiconductor quantum dot in close proximity to a metallic nanoparticle. Both are placed in a polarizable medium and exposed to electromagnetic irradiation. We show that the response of the quantum dot is qualitatively modified by the driven nanoparticle, including the generation of an additional channel of stimulated emission. PMID:27176818

  20. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem.

    PubMed

    Nicolin, Lena; Segal, Dvira

    2011-10-28

    We focus on the non-equilibrium two-bath spin-boson model, a toy model for examining quantum thermal transport in many-body open systems. Describing the dynamics within the noninteracting-blip approximation equations, applicable, e.g., in the strong system-bath coupling limit and/or at high temperatures, we derive expressions for the cumulant generating function in both the Markovian and non-Markovian limits by energy-resolving the quantum master equation of the subsystem. For a Markovian bath, we readily demonstrate the validity of a steady-state heat exchange fluctuation theorem. In the non-Markovian limit a "weaker" symmetry relation generally holds, a general outcome of microreversibility. We discuss the reduction of this symmetry relation to the universal steady-state fluctuation theorem. Using the cumulant generating function, an analytic expression for the heat current is obtained. Our results establish the validity of the steady-state heat exchange fluctuation theorem in quantum systems with strong system-bath interactions. From the practical point of view, this study provides tools for exploring transport characteristics of the two-bath spin-boson model, a prototype for a nonlinear thermal conductor. PMID:22047227

  1. Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2016-04-01

    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.

  2. Hidden Statistics Approach to Quantum Simulations

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the

  3. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-01

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families. PMID:23031119

  4. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER

    SciTech Connect

    DeMille, David; LeHur, Karyn

    2013-11-27

    Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.

  5. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport

    NASA Astrophysics Data System (ADS)

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-06-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder.

  6. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport.

    PubMed

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-01-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder. PMID:27311717

  7. Non-equilibrium dynamics in AMO quantum simulators

    NASA Astrophysics Data System (ADS)

    Daley, Andrew

    2016-05-01

    Recently, the possibility to control and measure AMO systems time-dependently has generated a lot of progress in exploring out-of-equilibrium dynamics for strongly interacting many-particle systems. This connects directly to fundamental questions relating to the relaxation of such systems to equilibrium, as well as the spreading of correlations and build-up of entanglement. While ultracold atoms allow for exceptional microscopic control over quantum gases with short-range interactions, experiments with polar molecules and chains of trapped ions now also offer the possibility to investigate spin models with long-range interactions. I will give an introduction to the recent developments in this area, illustrated with two examples: (i) the possibility to measurement entanglement for many itinerant particles with ultracold atoms in optical lattices, and (ii) new opportunities to compare dynamics with short and long-range interactions, especially using systems of trapped ions, where it is possible to control the effective range of interactions.

  8. Dynamical signatures of molecular symmetries in nonequilibrium quantum transport

    PubMed Central

    Thingna, Juzar; Manzano, Daniel; Cao, Jianshu

    2016-01-01

    Symmetries play a crucial role in ubiquitous systems found in Nature. In this work, we propose an elegant approach to detect symmetries by measuring quantum currents. Our detection scheme relies on initiating the system in an anti-symmetric initial condition, with respect to the symmetric sites, and using a probe that acts like a local noise. Depending on the position of the probe the currents exhibit unique signatures such as a quasi-stationary plateau indicating the presence of metastability and multi-exponential decays in case of multiple symmetries. The signatures are sensitive to the characteristics of the probe and vanish completely when the timescale of the coherent system dynamics is much longer than the timescale of the probe. These results are demonstrated using a 4-site model and an archetypal example of the para-benzene ring and are shown to be robust under a weak disorder. PMID:27311717

  9. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  10. Non-equilibrium Dynamics in the Quantum Brownian Oscillator and the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kim, Ilki

    2012-01-01

    We initially prepare a quantum linear oscillator weakly coupled to a bath in equilibrium at an arbitrary temperature. We disturb this system by varying a Hamiltonian parameter of the coupled oscillator, namely, either its spring constant or mass according to an arbitrary but pre-determined protocol in order to perform external work on it. We then derive a closed expression for the reduced density operator of the coupled oscillator along this non-equilibrium process as well as the exact expression pertaining to the corresponding quasi-static process. This immediately allows us to analytically discuss the second law of thermodynamics for non-equilibrium processes. Then we derive a Clausius inequality and obtain its validity supporting the second law, as a consistent generalization of the Clausius equality valid for the quasi-static counterpart, introduced in (Kim and Mahler in Phys. Rev. E 81:011101, 2010, [1]).

  11. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  12. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics.

    PubMed

    Hazoglou, Michael J; Walther, Valentin; Dixit, Purushottam D; Dill, Ken A

    2015-08-01

    There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager's reciprocal relations of coupled flows, and Prigogine's principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of "local equilibrium," or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example. PMID:26254635

  13. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics

    NASA Astrophysics Data System (ADS)

    Hazoglou, Michael J.; Walther, Valentin; Dixit, Purushottam D.; Dill, Ken A.

    2015-08-01

    There has been interest in finding a general variational principle for non-equilibrium statistical mechanics. We give evidence that Maximum Caliber (Max Cal) is such a principle. Max Cal, a variant of maximum entropy, predicts dynamical distribution functions by maximizing a path entropy subject to dynamical constraints, such as average fluxes. We first show that Max Cal leads to standard near-equilibrium results—including the Green-Kubo relations, Onsager's reciprocal relations of coupled flows, and Prigogine's principle of minimum entropy production—in a way that is particularly simple. We develop some generalizations of the Onsager and Prigogine results that apply arbitrarily far from equilibrium. Because Max Cal does not require any notion of "local equilibrium," or any notion of entropy dissipation, or temperature, or even any restriction to material physics, it is more general than many traditional approaches. It also applicable to flows and traffic on networks, for example.

  14. Quantum superchemistry: Role of trapping profile and quantum statistics

    SciTech Connect

    Olsen, M.K.

    2004-01-01

    The process of Raman photoassociation of a trapped atomic condensate to form condensed molecules has been labeled superchemistry because it can occur at 0 K and experiences coherent bosonic stimulation. We show here that the differences from ordinary chemical processes go even deeper, with the conversion rates depending on the quantum state of the reactants, as expressed by the Wigner function. We consider different initial quantum states of the trapped atomic condensate and different forms of the confining potentials, demonstrating the importance of the quantum statistics and the extra degrees of freedom which massive particles and trapping potentials make available over the analogous optical process of second-harmonic generation. We show that both mean-field analyses and quantum calculations using an inappropriate initial condition can make inaccurate predictions for a given system. This is possible whether using a spatially dependent analysis or a zero-dimensional approach as commonly used in quantum optics.

  15. Non-equilibrium quantum theory for nanodevices based on the Feynman-Vernon influence functional

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Wei-Yuan Tu, Matisse; Zhang, Wei-Min; Yan, YiJing

    2010-08-01

    In this paper, we present a non-equilibrium quantum theory for transient electron dynamics in nanodevices based on the Feynman-Vernon influence functional. Applying the exact master equation for nanodevices we recently developed to the more general case in which all the constituents of a device vary in time in response to time-dependent external voltages, we obtained non-perturbatively the transient quantum transport theory in terms of the reduced density matrix. The theory enables us to study transient quantum transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipation and decoherence being fully taken into account. For a simple illustration, we apply the theory to a single-electron transistor subjected to ac bias voltages. The non-Markovian memory structure and the nonlinear response functions describing transient electron transport are obtained.

  16. Statistical properties of a quantum cellular automaton

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Inokuchi, Shuichi; Mizoguchi, Yoshihiro; Konno, Norio

    2005-09-01

    We study a quantum cellular automaton (QCA) whose time evolution is defined using the global transition function of a classical cellular automaton (CA). In order to investigate natural transformations from CAs to QCAs, the present QCA includes the CA with Wolfram’s rules 150 and 105 as special cases. We first compute the time evolution of the QCA and examine its statistical properties. As a basic statistical value, the probability of finding an active cell averaged over spatial-temporal space is introduced, and the difference between the CA and QCA is considered. In addition, it is shown that statistical properties in QCAs are related to the classical trajectory in configuration space.

  17. Long-lived non-equilibrium states in a quantum-Hall Tomonaga-Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Fujisawa, Toshimasa; Washio, Kazuhisa; Nakazawa, Ryo; Hashisaka, Masayuki; Muraki, Koji; Tokura, Yasuhiro

    The existence of long-lived non-equilibrium states without showing thermalization, which has previously been demonstrated in time evolution of ultracold atoms (quantum quench), suggests the possibility of their spatial analogue in transport behavior of interacting electrons in solid-state systems. Here we report long-lived non-equilibrium states in one-dimensional edge channels in the integer quantum Hall regime. For this purpose, non-trivial binary spectrum composed of hot and cold carriers is prepared by an indirect heating scheme using weakly coupled counterpropagating edge channels in an AlGaAs/GaAs heterostructure. Quantum dot spectroscopy clearly reveals that the carriers with the non-trivial binary spectrum propagate over a long distance (5 - 10 um), much longer than the length required for electronic relaxation (about 0.1 um), without thermalization into a trivial Fermi distribution. This observation is consistent with the integrable model of Tomonaga-Luttinger liquid. The long-lived spectrum implies that the system is well described by non-interacting plasmons, which are attractive for carrying information for a long distance. This work was supported by the JSPS 26247051 and 15H05854, and Nanotechnology Platform Program of MEXT.

  18. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  19. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  20. Quantum statistical ensemble for emissive correlated systems.

    PubMed

    Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N

    2016-06-01

    Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223

  1. Quantum statistical ensemble for emissive correlated systems

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Shchadilova, Yulia E.; Rubtsov, Alexey N.

    2016-06-01

    Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N -particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems.

  2. Measuring nonequilibrium retarded spin-spin Green's functions in an ion-trap-based quantum simulator

    NASA Astrophysics Data System (ADS)

    Yoshimura, Bryce T.; Freericks, J. K.

    2016-05-01

    Recently a variant on Ramsey interferometry for coupled spin-1 /2 systems was proposed to directly measure the retarded spin-spin Green's function. In conventional experimental situations, the spin system is initially in a nonequilibrium state before the Ramsey interferometry is performed, so we examine the nonequilibrium retarded spin-spin Green's functions within the transverse-field Ising model. We derive the lowest four spectral moments to understand the short-time behavior and we employ a Lehmann-like representation to determine the spectral behavior. We simulate a Ramsey protocol for a nonequilibrium quantum spin system that consists of a coherent superposition of the ground state and diabatically excited higher-energy states via a temporally ramped transverse magnetic field. We then apply the Ramsey spectroscopy protocol to the final Hamiltonian, which has a constant transverse field. The short time allows us to extract the initial transport of many-body correlations, while the long-time behavior relates to the excitation spectra of the Hamiltonian. Compressive sensing is employed in the data analysis to efficiently extract that spectra.

  3. Non-equilibrium Steady-State Behavior in a Scale-Free Quantum Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    We describe the nonequilibrium dynamics of a cold atomic gas held in a spatially random optical potential and gravity, subject to a controlled amount of dissipation in the form of an extremely slow dark-state laser cooling process. Reaching local kinetic temperatures below the 100nK scale, such systems provide a novel context for observing the non-equilibrium steady-state (NESS) behavior of a disordered quantum system. For sufficiently deep potentials and strong dissipation, this system can be modeled by a self-organized version of directed percolation, and exhibits power-law decay of phase-space density with time due to the presence of absorbing clusters with a wide distribution of entropy and coupling rates. In the absence of dissipation, such a model cannot apply, and we observe the crossover to exponential loss of phase-space density. We provide measurements of the power-law decay constant by observing the non-equilibrium motion of atoms over a ten-minute period, consistent with γ = 0 . 31 +/- 0 . 04 , and extract scaling of the absorbed number with dissipation rate, showing another power-law behavior, with exponent 0 . 5 +/- 0 . 2 over two decades of optical excitation probability.

  4. Quantum-coherence driven self-organized criticality and non-equilibrium light localization

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Tsakmakidis, Kosmas; Wang, Yuan; Zhang, Xiang

    In its 28 years since its introduction in 1987, self-organized criticality (SOC) has had a major impact across a broad range of seemingly dissimilar fields of science. However, until now, it has primarily been applied to classical systems, and it remains a fundamental open question whether the theory also finds a place in complex systems driven by quantum coherence (QC). Here, on the basis of a many-body quantum-field theory and corroborating Maxwell-Bloch-Langevin computations, we report on the first example of fractal SOC driven, in the nano-world, by quantum coherence. We show that a quantum-coherently controlled active nano-plasmonic heterostructure allows, in the regime where the light speed is very close to zero, for the phase-synchronization in space of a continuous ensemble of nano-optical oscillators, giving rise to a fundamentally new kind of non-equilibrium light localization. We observe all hallmarks of SOC in this quantum many-body photonic nano-system of interacting heavy bosons, and we identify two critical points, one signifying the onset of spontaneous spatial self-organization, followed in time by another one that signifies the onset of activity. Our analysis reveals a quantum-coherence driven self-organized double-critical property in photonics and a new type of robust light localization, far out of thermodynamic and optical equilibria, with a broad range of potential applications in nano-optics and condensed-matter photonics.

  5. Non-equilibrium Statistical Mechanics and the Sea Ice Thickness Distribution

    NASA Astrophysics Data System (ADS)

    Wettlaufer, John; Toppaladoddi, Srikanth

    We use concepts from non-equilibrium statistical physics to transform the original evolution equation for the sea ice thickness distribution g (h) due to Thorndike et al., (1975) into a Fokker-Planck like conservation law. The steady solution is g (h) = calN (q) hqe - h / H , where q and H are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for h << 1 , g (h) is controlled by both thermodynamics and mechanics, whereas for h >> 1 only mechanics controls g (h) . Finally, we derive the underlying Langevin equation governing the dynamics of the ice thickness h, from which we predict the observed g (h) . This allows us to demonstrate that the ice thickness field is ergodic. The genericity of our approach provides a framework for studying the geophysical scale structure of the ice pack using methods of broad relevance in statistical mechanics. Swedish Research Council Grant No. 638-2013-9243, NASA Grant NNH13ZDA001N-CRYO and the National Science Foundation and the Office of Naval Research under OCE-1332750 for support.

  6. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  7. Spectral statistics of nearly unidirectional quantum graphs

    NASA Astrophysics Data System (ADS)

    Akila, Maram; Gutkin, Boris

    2015-08-01

    The energy levels of a quantum graph with time reversal symmetry and unidirectional classical dynamics are doubly degenerate and obey the spectral statistics of the Gaussian unitary ensemble. These degeneracies, however, are lifted when the unidirectionality is broken in one of the graph’s vertices by a singular perturbation. Based on a random matrix model we derive an analytic expression for the nearest neighbour distribution between energy levels of such systems. As we demonstrate the result agrees excellently with the actual statistics for graphs with a uniform distribution of eigenfunctions. Yet, it exhibits quite substantial deviations for classes of graphs which show strong scarring.

  8. Nonequilibrium entropic temperature and its lower bound for quantum stochastic processes

    NASA Astrophysics Data System (ADS)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2014-03-01

    In this paper, we have studied the Shannon "entropic" nonequilibrium temperature (NET) of quantum Brownian systems. The Brownian particle is attached to either a bosonic or fermionic bath. Based on the Fokker-Planck description of the c-number quantum Langevin equation, we have calculated entropy production, NET, and their bounds. Entropy production (EP), the upper bound of entropy production (UBEP), and the deviation of the UBEP from EP monotonically decrease as functions of time to equilibrium value for both of the thermal baths. The deviation decreases with increase of temperature of the bosonic thermal bath, but it becomes larger as the temperature of the fermionic bath grows. We also observe that nonequilibrium temperature and its lower bound monotonically increase to equilibrium value with the progression of time. But their difference as a function of time shows an optimum behavior in most cases. Finally, we have observed that at long time, the entropic temperature (for a bosonic thermal bath) first increases nonlinearly as a function of thermodynamic temperature (TT) and, if the TT is appreciably large, then it grows linearly. But for the fermionic thermal bath, the entropic temperature decreases monotonically as a nonlinear function of thermodynamic temperature to zero value.

  9. Nonequilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.; Mazzitelli, Francisco D.; López, Adrián E. Rubio; Turiaci, Gustavo J.

    2016-07-01

    In this work we analyze the validity of Lifshitz's theory for the case of nonequilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths' contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions' contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a nonvanishing contribution at the steady state of a nonequilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces.

  10. Nonequilibrium and nonhomogeneous phenomena around a first-order quantum phase transition

    NASA Astrophysics Data System (ADS)

    Del Re, Lorenzo; Fabrizio, Michele; Tosatti, Erio

    2016-03-01

    We consider nonequilibrium phenomena in a very simple model that displays a zero-temperature first-order phase transition. The quantum Ising model with a four-spin exchange is adopted as a general representative of first-order quantum phase transitions that belong to the Ising universality class, such as for instance the order-disorder ferroelectric transitions, and possibly first-order T =0 Mott transitions. In particular, we address quantum quenches in the exactly solvable limit of infinite connectivity and show that, within the coexistence region around the transition, the system can remain trapped in a metastable phase, as long as it is spatially homogeneous so that nucleation can be ignored. Motivated by the physics of nucleation, we then study in the same model static but inhomogeneous phenomena that take place at surfaces and interfaces. The first-order nature implies that both phases remain locally stable across the transition, and with that the possibility of a metastable wetting layer showing up at the surface of the stable phase, even at T =0 . We use mean-field theory plus quantum fluctuations in the harmonic approximation to study quantum surface wetting.

  11. Nonequilibrium thermal effects on exciton time correlations in coupled semiconductor quantum dots

    SciTech Connect

    Castillo, J. C.; Rodríguez, F. J.; Quiroga, L.

    2013-12-04

    Theoretical guides to test 'macroscopic realism' in solid-state systems under quantum control are highly desirable. Here, we report on the evolution of a Leggett-Garg inequality (LGI), a combination of two-time correlations, in an out-of-equilibrium set up consisting of two interacting excitons confined in separate semiconductor quantum dots which are coupled to independent baths at different temperatures (T{sub 1} ≠ T{sub 2}). In a Markovian steady-state situation we found a rich variety of dynamical behaviors in different sectors of the average temperature (T{sub M} = (T{sub 1}+T{sub 2})/2) vs. coupling strength to the reservoirs (Γ) space parameter. For high T{sub M} and Γ values the LGI is not violated, as expected. However, by decreasing T{sub M} or Γ a sector of parameters appears where the LGI is violated at thermal equilibrium (T{sub 1} = T{sub 2}) and the violation starts decreasing when the system is moved out of the equilibrium. Surprisingly, at even lower T{sub M} values, for any Γ, there is an enhancement of the LGI violation by exposing the system to a temperature gradient, i.e. quantum correlations increase in a nonequilibrium thermal situation. Results on LGI violations in a steady-state regime are compared with other non-locality-dominated quantum correlation measurements, such as concurrence and quantum discord, between the two excitons under similar temperature gradients.

  12. The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model

    NASA Astrophysics Data System (ADS)

    Verkley, Wim; Severijns, Camiel

    2014-05-01

    Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy

  13. Statistically interacting quantum gases in D dimensions

    NASA Astrophysics Data System (ADS)

    Potter, Geoffrey G.

    Chapter 1. Exact and explicit results are derived for the thermodynamic properties (isochores, isotherms, isobars, response functions, speed of sound) of a quantum gas in dimensions D ≥ 1 and with fractional exclusion statistics 0 ≤ g ≤ 1 connecting bosons (g = 0) and fermions (g = 1). In D = 1 the results are equivalent to those of the Calogero-Sutherland model, a gas with long-range two-body interaction. Emphasis is given to the crossover between boson-like and fermion-like features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T-dependence of the speed of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential. Chapter 2. The exact thermodynamics (isochores, isotherms, isobars, response functions, speed of sound) is worked out for a statistically interacting quantum gas in D dimensions. The results in D = 1 are those of the thermodynamic Bethe ansatz for the Nonlinear Schrodinger model, a gas with repulsive two-body contact potential. In all dimensions the ideal boson and fermion gases are recovered in the weak-coupling and strong-coupling limits, respectively. For all nonzero couplings ideal fermion gas behavior emerges for D >> 1 and, in the limit D → infinity, a phase transition occurs at T > 0. Significant deviations from ideal quantum gas behavior are found for intermediate coupling and finite D . Chapter 3. Methodology previously developed in the framework of the coordinate Bethe ansatz applied to integrable quantum gas models is employed to calculate some ground-state properties and elementary excitations for quantum gas models in D = 1 dimensions with statistical interactions that are not equivalent to dynamical interactions. The focus in this comparative study is on modifications of the

  14. Quantum transport through a quantum dot: Combining the scattering-states numerical renormalization group with nonequilibrium Green functions

    NASA Astrophysics Data System (ADS)

    Anders, Frithjof B.; Schmitt, Sebastian

    2010-04-01

    Scattering states fulfill the correct boundary conditions of a current carrying open quantum system. Discretizing the energy continuum of these states allows for employing Wilson's numerical renormalization group approach without violating the boundary conditions by using a finite size system. We evolve the analytically known steady-state density operator for a non-interacting quantum-system at finite bias to the full interacting problem by the time-dependent numerical renormalization group after switching on the local charging energy. Using a newly developed algorithm for steady-state nonequilibrium Green functions, we can calculate the current I as function of bias voltage V for arbitrary temperature and magnetic field. A comparison with second-order and GW Kadanoff-Baym-Keldysh results shows excellent agreement for weak interaction strength U.

  15. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  16. A microscopic, non-equilibrium, statistical field theory for cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Bartelmann, Matthias; Fabis, Felix; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2016-04-01

    Building upon the recent pioneering work by Mazenko and by Das and Mazenko, we develop a microscopic, non-equilibrium, statistical field theory for initially correlated canonical ensembles of classical microscopic particles obeying Hamiltonian dynamics. Our primary target is cosmic structure formation, where initial Gaussian correlations in phase space are believed to be set by inflation. We give an exact expression for the generating functional of this theory and work out suitable approximations. We specify the initial correlations by a power spectrum and derive general expressions for the correlators of the density and the response field. We derive simple closed expressions for the lowest-order contributions to the nonlinear cosmological power spectrum, valid for arbitrary wave numbers. We further calculate the bispectrum expected in this theory within these approximations and the power spectrum of cosmic density fluctuations to first order in the gravitational interaction, using a recent improvement of the Zel’dovich approximation. We show that, with a modification motivated by the adhesion approximation, the nonlinear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers even within first-order perturbation theory. Our results present the first fully analytic calculation of the nonlinear power spectrum of cosmic structures.

  17. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath.

  18. Generalized quantum Fokker-Planck equation for photoinduced nonequilibrium processes with positive definiteness condition.

    PubMed

    Jang, Seogjoo

    2016-06-01

    This work provides a detailed derivation of a generalized quantum Fokker-Planck equation (GQFPE) appropriate for photo-induced quantum dynamical processes. The path integral method pioneered by Caldeira and Leggett (CL) [Physica A 121, 587 (1983)] is extended by utilizing a nonequilibrium influence functional applicable to different baths for the ground and the excited electronic states. Both nonequilibrium and non-Markovian effects are accounted for consistently by expanding the paths in the exponents of the influence functional up to the second order with respect to time. This procedure results in approximations involving only single time integrations for the exponents of the influence functional but with additional time dependent boundary terms that have been ignored in previous works. The boundary terms complicate the derivation of a time evolution equation but do not affect position dependent physical observables or the dynamics in the steady state limit. For an effective density operator with the boundary terms factored out, a time evolution equation is derived, through short time expansion of the effective action and Gaussian integration in analytically continued complex domain of space. This leads to a compact form of the GQFPE with time dependent kernels and additional terms, which renders the resulting equation to be in the Dekker form [Phys. Rep. 80, 1 (1981)]. Major terms of the equation are analyzed for the case of Ohmic spectral density with Drude cutoff, which shows that the new GQFPE satisfies the positive definiteness condition in medium to high temperature limit. Steady state limit of the GQFPE is shown to approach the well-known expression derived by CL in the high temperature and Markovian bath limit and also provides additional corrections due to quantum and non-Markovian effects of the bath. PMID:27276940

  19. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gerving, C. S.; Hoang, T. M.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2012-11-01

    A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we measure the non-equilibrium dynamics of a spin-1 Bose-Einstein condensate initialized as a minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space. Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.

  20. Nonequilibrium problems in quantum field theory and Schwinger`s closed time path formalism

    SciTech Connect

    Cooper, F.

    1995-05-01

    We review the closed time path formalism of Schwinger using a path integral approach. We apply this formalism to the study of pair production from strong external fields as well as the time evolution of a nonequilibrium chiral phase transition. In 1961 in his classic paper ``Brownian Motion of a Quantum Particle,`` Schwinger solved the formidable technical problem of how to use the action principle to study initial value problems. Previously, the action principle was formulated to study only transition matrix elements from an earlier time to a later time. The elegant solution of this problem was the invention of the closed time path (CTP) formalism. This formalism was first used to study field theory problems by Mahanthappa and Bakshi. With the advent of supercomputers, it has now become possible to use this formalism to numerically solve important field theory questions which are presented as initial value problems. Two of these problems we shall review here. They are (1) The time evolution of the quark- gluon plasma. (2) Dynamical evolution of a non-equilibrium chiral phase transition following a relativistic heavy ion collision.

  1. Emergence of currents as a transient quantum effect in nonequilibrium systems

    SciTech Connect

    Granot, Er'el; Marchewka, Avi

    2011-09-15

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  2. Shock waves, rarefaction waves, and nonequilibrium steady states in quantum critical systems

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Schalm, Koenraad; Doyon, Benjamin; Bhaseen, M. J.

    2016-07-01

    We reexamine the emergence of a universal nonequilibrium steady state following a local quench between quantum critical heat baths in spatial dimensions greater than one. We show that energy transport proceeds by the formation of an instantaneous shock wave and a broadening rarefaction wave on either side of the interface, and not by two shock waves as previously proposed. For small temperature differences the universal steady state energy currents of the two-shock and rarefaction-shock solutions coincide. Over a broad range of parameters, the difference in the energy flow across the interface between these two solutions is at the level of 2%. The properties of the energy flow remain fully universal and independent of the microscopic theory. We briefly discuss the width of the shock wave in a viscous fluid, the effects of momentum relaxation, and the generalization to charged fluids.

  3. The nonequilibrium quantum many-body problem as a paradigm for extreme data science

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Nikolić, B. K.; Frieder, O.

    2014-12-01

    Generating big data pervades much of physics. But some problems, which we call extreme data problems, are too large to be treated within big data science. The nonequilibrium quantum many-body problem on a lattice is just such a problem, where the Hilbert space grows exponentially with system size and rapidly becomes too large to fit on any computer (and can be effectively thought of as an infinite-sized data set). Nevertheless, much progress has been made with computational methods on this problem, which serve as a paradigm for how one can approach and attack extreme data problems. In addition, viewing these physics problems from a computer-science perspective leads to new approaches that can be tried to solve more accurately and for longer times. We review a number of these different ideas here.

  4. Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Valentini, Antony

    2016-04-01

    The de Broglie-Bohm pilot-wave formulation of quantum theory allows the existence of physical states that violate the Born probability rule. Recent work has shown that in pilot-wave field theory on expanding space relaxation to the Born rule is suppressed for long-wavelength field modes, resulting in a large-scale power deficit ξ(k) which for a radiation-dominated expansion is found to have an approximate inverse-tangent dependence on k (assuming that the width of the initial distribution is smaller than the width of the initial Born-rule distribution and that the initial quantum states are evenly-weighted superpositions of energy states). In this paper, we show that the functional form of ξ(k) is robust under changes in the initial nonequilibrium distribution — subject to the limitation of a subquantum width — as well as under the addition of an inflationary era at the end of the radiation-dominated phase. In both cases, the predicted deficit ξ(k) remains an inverse-tangent function of k. Furthermore, with the inflationary phase the dependence of the fitting parameters on the number of superposed pre-inflationary energy states is comparable to that found previously. Our results indicate that, for the assumed broad class of initial conditions, an inverse-tangent power deficit is likely to be a fairly general and robust signature of quantum relaxation in the early universe.

  5. Application of Non-Equilibrium Thermo Field Dynamics to quantum teleportation under the environment

    NASA Astrophysics Data System (ADS)

    Kitajima, S.; Arimitsu, T.; Obinata, M.; Yoshida, K.

    2014-06-01

    Quantum teleportation for continuous variables is treated by Non-Equilibrium Thermo Field Dynamics (NETFD), a canonical operator formalism for dissipative quantum systems, in order to study the effect of imperfect quantum entanglement on quantum communication. We used an entangled state constructed by two squeezed states. The entangled state is imperfect due to two reasons, i.e., one is the finiteness of the squeezing parameter r and the other comes from the process that the squeezed states are created under the dissipative interaction with the environment. We derive the expressions for one-shot fidelity (OSF), probability density function (PDF) associated with OSF and (averaged) fidelity by making full use of the algebraic manipulation of operator algebra within NETFD. We found that OSF and PDF are given by Gaussian forms with its peak at the original information α to be teleported, and that for r≫1 the variances of these quantities blow up to infinity for κ/χ≤1, while they approach to finite values for κ/χ>1. Here, χ represents the intensity of a degenerate parametric process, and κ the relaxation rate due to the interaction with the environment. The blow-up of the variances for OSF and PDF guarantees higher security against eavesdropping. With the blow-up of the variances, the height of PDF reduces to small because of the normalization of probability, while the height of OSF approaches to 1 indicating a higher performance of the quantum teleportation. We also found that in the limit κ/χ≫1 the variances of both OSF and PDF for any value of r (>0) reduce to 1 which is the same value as the case r=0, i.e., no entanglement.

  6. Quantum statistical entropy of Schwarzchild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2012-10-01

    Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.

  7. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition

    NASA Astrophysics Data System (ADS)

    Roura Bas, P.; Aligia, A. A.

    2010-01-01

    We study the singlet-triplet Anderson model (STAM) in which a configuration with a doublet is hybridized with another containing a singlet and a triplet, as a minimal model to describe two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The model has a quantum phase transition which separates regions of a doublet and a singlet ground state. The limits of integer valence of the STAM (which include a model similar to the underscreened spin-1 Kondo model) are derived and used to predict the behavior of the conductance through the system on both sides of the transition, where it jumps abruptly. At a special quantum critical line, the STAM can be mapped to an infinite- U ordinary Anderson model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the STAM as a function of those of the OAM at the transition. Using the non-crossing approximation (NCA), we calculate the spectral densities and conductance through the system as a function of temperature and bias voltage, and determine the changes that take place at the quantum phase transition. The separation of the spectral density into a singlet and a triplet part allows us to shed light on the underlying physics and to explain a shoulder observed recently in the zero bias conductance as a function of temperature in transport measurements through a single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks observed in nonequilibrium transport in these experiments is also explained.

  8. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Narasimha, Roddam; Dass, N. D. Hari

    2014-01-01

    This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference ΔU across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L ×±∞. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a "vortex gas" comprising N point vortices of the same strength (γ =LΔU/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32000 vortices, with ensemble averages evaluated over up to 103 realizations and integration over 104L/ΔU. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L /ΔU. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via "violent" and "slow" relaxations [P.-H. Chavanis, Physica A 391, 3657 (2012), 10.1016/j.physa.2012.02.014], over flow time scales of order 102 and 104L/ΔU, respectively (for N =400). The final state involves a single structure that stochastically samples the domain, possibly constituting a "relative equilibrium." The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter λ close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of

  9. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    SciTech Connect

    Zhang, Z. D.; Wang, J.

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy

  10. Nonequilibrium spin transport through a diluted magnetic semiconductor quantum dot system with noncollinear magnetization

    SciTech Connect

    Ma, Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Gee

    2013-03-15

    The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads' magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green's function (NEGF) formalism, incorporating the electron-electron interaction in the QD. We provide the first analytical solution for the Green's function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree-Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio. - Highlights: Black-Right-Pointing-Pointer The spin polarized transport through a diluted magnetic quantum dot is studied. Black-Right-Pointing-Pointer The model is based on the Green's function and the equation of motion method. Black-Right-Pointing-Pointer The charge and spin currents and tunnel magnetoresistance (TMR) are investigated. Black-Right-Pointing-Pointer The system is suitable for current-induced spin-transfer torque application. Black-Right-Pointing-Pointer A large tunneling current and a high TMR are possible for sensor application.

  11. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Liang; Ka, Being J.; Geva, Eitan

    2006-07-01

    The Nakajima-Zwanzig generalized quantum master equation provides a general, and formally exact, prescription for simulating the reduced dynamics of a quantum system coupled to a quantum bath. In this equation, the memory kernel accounts for the influence of the bath on the system's dynamics, and the inhomogeneous term accounts for initial system-bath correlations. In this paper, we propose a new approach for calculating the memory kernel and inhomogeneous term for arbitrary initial state and system-bath coupling. The memory kernel and inhomogeneous term are obtained by numerically solving a single inhomogeneous Volterra equation of the second kind for each. The new approach can accommodate a very wide range of projection operators, and requires projection-free two-time correlation functions as input. An application to the case of a two-state system with diagonal coupling to an arbitrary bath is described in detail. Finally, the utility and self-consistency of the formalism are demonstrated by an explicit calculation on a spin-boson model.

  12. Numerical computation for teaching quantum statistics

    NASA Astrophysics Data System (ADS)

    Price, Tyson; Swendsen, Robert H.

    2013-11-01

    The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.

  13. Teaching at the edge of knowledge: Non-equilibrium statistical physics

    NASA Astrophysics Data System (ADS)

    Schmittmann, Beate

    2007-03-01

    As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.

  14. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  15. Stochastic optimal control as non-equilibrium statistical mechanics: calculus of variations over density and current

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.

    2014-01-01

    In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.

  16. The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2015-05-01

    Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.

  17. Nonequilibrium transport and statistics of Schwinger pair production in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Vajna, Szabolcs; Dóra, Balázs; Moessner, R.

    2015-08-01

    The nonequilibrium dynamics beyond the linear response of Weyl semimetals is studied after a sudden switching on of a dc electric field. The resulting current is a nonmonotonic function of time with an initial quick increase in polarization current followed by a power-law decay. Particle-hole creation à la Schwinger dominates for long times when the conduction current takes over the leading role with the total current increasing again. The conductivity estimated from a dynamical calculation within a generalized Drude picture agrees with the one obtained from Kubo's formula. The full distribution function of electron-hole pairs changes from Poissonian for short perturbations to a Gaussian in the long perturbation (Landau-Zener) regime. The vacuum persistence probability of high-energy physics manifests itself in a finite probability of no pair creation and no induced current at all times.

  18. Quantum speed limits of a qubit system interacting with a nonequilibrium environment

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chun-Mei; Li, Li; Wang, Qiong

    2016-08-01

    The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401 (2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit (QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubit-initial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states, where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case. Project supported by the National Natural Science Foundation of China (Grants Nos. 61505053 and 61475045), the Natural Science Foundation of Hunan Province, China(Grant No. 2015JJ3092), the School Foundation from the Hunan University of Arts and Science (Grant No. 14ZD01), the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province, China, and the Construction Program of the Key Discipline in Hunan University of Arts and Science (Optics).

  19. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    SciTech Connect

    Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.

  20. Quantum Statistical Entropy of Five-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Wu, Yue-Qin; Zhang, Sheng-Li

    2006-05-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  1. Quantum treatment of the Bose-Einstein condensation in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Flayac, H.; Savenko, I. G.; Möttönen, M.; Ala-Nissila, T.

    2015-09-01

    We develop a fully quantum-mechanical approach, based on stochastic trajectories, for an incoherently pumped system of interacting bosons in contact with a thermal reservoir. It enables a complete characterization of coherence in such a multimode system. We apply our model to microcavity exciton polaritons interacting with acoustic phonons and observe the formation of a macroscopic occupation in the lowest-energy mode accompanied by the simultaneous establishment of temporal and spatial coherence. We describe the transition from thermal to coherent statistics together with the expected emergence of an off-diagonal long-range order.

  2. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves.

    PubMed

    Yamaguchi, Yoshiyuki Y

    2011-07-01

    Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the theoretically constructed cluster states are in good agreement with N-body simulations. Robustness of the theory is also discussed for unsuccessful initial states. PMID:21867277

  3. Statistical distance and the geometry of quantum states

    SciTech Connect

    Braunstein, S.L.; Caves, C.M. )

    1994-05-30

    By finding measurements that optimally resolve neighboring quantum states, we use statistical distinguishability to define a natural Riemannian metric on the space of quantum-mechanical density operators and to formulate uncertainty principles that are more general and more stringent than standard uncertainty principles.

  4. Satyendranath Bose: Co-Founder of Quantum Statistics

    ERIC Educational Resources Information Center

    Blanpied, William A.

    1972-01-01

    Satyendranath Bose was first to prove Planck's Law by using ideal quantum gas. Einstein credited Bose for this first step in the development of quantum statistical mechanics. Bose did not realize the importance of his work, perhaps because of peculiar academic settings in India under British rule. (PS)

  5. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion "on the edge of quantum chaos".

  6. New Formulation of Statistical Mechanics Using Thermal Pure Quantum States

    NASA Astrophysics Data System (ADS)

    Sugiura, Sho; Shimizu, Akira

    2014-03-01

    We formulate statistical mechanics based on a pure quantum state, which we call a "thermal pure quantum (TPQ) state". A single TPQ state gives not only equilibrium values of mechanical variables, such as magnetization and correlation functions, but also those of genuine thermodynamic variables and thermodynamic functions, such as entropy and free energy. Among many possible TPQ states, we discuss the canonical TPQ state, the TPQ state whose temperature is specified. In the TPQ formulation of statistical mechanics, thermal fluctuations are completely included in quantum-mechanical fluctuations. As a consequence, TPQ states have much larger quantum entanglement than the equilibrium density operators of the ensemble formulation. We also show that the TPQ formulation is very useful in practical computations, by applying the formulation to a frustrated two-dimensional quantum spin system.

  7. Quantum disorder, duality, and fractional statistics in 2 + 1 dimensions

    NASA Technical Reports Server (NTRS)

    Wen, X. G.; Zee, A.

    1989-01-01

    A low-energy equivalence between two apparently unrelated Lagrangians with fractional statistics is reported. Exploiting this equivalence, it is possible to study the quantum disordered phase of the nonlinear sigma model with Hopf term. It is found that the quasi-particles in the disordered phase also have fractional statistics. There appears to be a dual relationship between the ordered and disordered phases.

  8. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  9. Quantum Correlations from the Conditional Statistics of Incomplete Data.

    PubMed

    Sperling, J; Bartley, T J; Donati, G; Barbieri, M; Jin, X-M; Datta, A; Vogel, W; Walmsley, I A

    2016-08-19

    We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down-conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of photodetectors. PMID:27588857

  10. Particle statistics affects quantum decay and Fano interference.

    PubMed

    Crespi, Andrea; Sansoni, Linda; Della Valle, Giuseppe; Ciamei, Alessio; Ramponi, Roberta; Sciarrino, Fabio; Mataloni, Paolo; Longhi, Stefano; Osellame, Roberto

    2015-03-01

    Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model. Remarkably, when the system sustains a bound state in the continuum, fractional decay is observed for bosonic particles, but not for fermionic ones. Complete decay in the fermionic case arises because of the Pauli exclusion principle, which forbids the bound state to be occupied by the two fermions. Our experiment indicates that particle statistics can tune many-body quantum decay from fractional to complete. PMID:25793783

  11. Quantum Nondeterministic Computation based on Statistics Superselection Rules

    NASA Astrophysics Data System (ADS)

    Castagnoli, G.

    Quantum states which obey certain symmetry superselection rules under identical particles permutation can be interpreted as computational states satisfying corresponding Boolean predicates. Given the NP-complete problem of testing the satisfiability of a generic Boolean predicate P, we investigate the possibility of achieving quantum nondeterministic computation by deriving, from P, a physical situation in which the computational states satisfy P iff they satisfy a special fermion statistics.

  12. Generalized quantum statistics and Lie (super)algebras

    NASA Astrophysics Data System (ADS)

    Stoilova, N. I.

    2016-03-01

    Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation of motion determine the quantum mechanical commutation relation?

  13. Full counting statistics of quantum dot resonance fluorescence.

    PubMed

    Matthiesen, Clemens; Stanley, Megan J; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  14. Full counting statistics of quantum dot resonance fluorescence

    PubMed Central

    Matthiesen, Clemens; Stanley, Megan J.; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete

    2014-01-01

    The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dot's nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding. PMID:24810097

  15. Dynamics and statistics of unstable quantum states

    NASA Astrophysics Data System (ADS)

    Sokolov, V. V.; Zelevinsky, V. G.

    1989-11-01

    The statistical theory of spectra formulated in terms of random matrices is extended to unstable states. The energies and widths of these states are treated as real and imaginary parts of complex eigenvalues for an effective non-hermitian hamiltonian. Eigenvalue statistics are investigated under simple assumptions. If the coupling through common decay channels is weak we obtain a Wigner distribution for the level spacings and a Porter-Thomas one for the widths, with the only exception for spacings less than widths where level repulsion fades out. Meanwhile in the complex energy plane the repulsion of eigenvalues is quadratic in accordance with the T-noninvariant character of decaying systems. In the opposite case of strong coupling with the continuum, k short-lived states are formed ( k is the number of open decay channels). These states accumulate almost the whole total width, the rest of the states becoming long-lived. Such a perestroika corresponds to separation of direct processes (a nuclear analogue of Dicke coherent superradiance). At small channel number, Ericson fluctuations of the cross sections are found to be suppressed. The one-channel case is considered in detail. The joint distribution of energies and widths is obtained. The average cross sections and density of unstable states are calculated.

  16. Quantum statistics and allometric scaling of organisms

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd

    2003-05-01

    This article proposes a mechanism to explain allometric relations between basal metabolic rate and the body size of organisms. The model postulates that energy transduction in biological organisms is constrained by two classes of dynamical processes: The first process has its origin in quantum mechanics and the constraints which the coupling of electron transport and proton translocation impose on metabolic activity. The second derives from evolutionary dynamics and the constraints which ecological and demographic forces impose on metabolic rate. These two processes are invoked to show that the scaling exponent between basal metabolic rate and body size follows a {3}/{4} rule, in the case of organisms subject to ecological constraints defined by scarce but dependable resources, and a {2}/{3} rule when constraints are defined by ample but only temporarily available resources. Our conclusions are based on general arguments incorporating the molecular mechanisms that determine metabolic activity at all levels of biological organization. Hence the model applies to uni-cellular organisms, plants and animals.

  17. Energy relaxation of nonequilibrium electrons in a nanotube formed by a rolled-up quantum well

    SciTech Connect

    Seyid-Rzayeva, S. M.

    2013-06-15

    The energy relaxation processes of excess electrons on the surface of a semiconductor nanotube are studied. A general analytical expression for the relaxation time of the energy of nonequilibrium electrons is derived taking into account possible intersubband transitions at an arbitrary ratio of nanotube and polaron radii r{sub 0}/r{sub p}. Numerical calculations for GaAs semiconductor nanotube are performed.

  18. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    SciTech Connect

    Gamba, Irene M. Tharkabhushanam, Sri Harsha

    2009-04-01

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S{sup d-1}. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ()]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst

  19. Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2016-05-01

    We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  20. The statistical mechanics basis of non-equilibrium stationary states in the solar wind and outer heliosphere

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2009-12-01

    In situ observations of solar wind at 1 AU have occasionally detected ion distributions in equilibrium, where the three-dimensional spectral slope or k-index approaches infinity (a Maxwellian distribution) [e.g., Hammond, C. M., et al. (1996), J. Geophys. Res., 100, 7881-7889]. More commonly, however, suprathermal particle distributions in the solar wind routinely show highly non-equilibrium stationary states, with a k~1.5 [Fisk, L. A., and G. Gloeckler (2006), Astrophys. J., 640, L79-L82], while other observations from Voyager 1 detected k~1.63 in the inner heliosheath, beyond the termination shock [Decker, R. B., et al. (2005), Science, 309, 2020-2024]. While this value is close to 1.5, the observations demonstrated a clear statistical difference between these two indices. Finally, recent observations show distributions for which k~2.45 is a special value, separating indices that appear to be near or far from equilibrium [e.g., Dayeh, M. A., et al. (2009), Astrophys. J., 693, 1588-1600; Dialynas, K., et al. (2009), J. Geophys. Res., 114, A01212]. In this study we show how all of these special values of k~1.5, 1.63, 2.45, and infinity can be predicted by a special relationship of the entropy, defined in the framework of non-extensive Statistical Mechanics as applied to space physics [Livadiotis, G., and D. McComas (2009), in Press in JGR-Space Physics], which characterizes plasmas in stationary states out of equilibrium. Amazingly, the four values observed in the solar wind plasma and mentioned above are uniquely identified with the four special points in the derived entropy function. This correlation suggests that the observations are detecting the primacy of these stationary states.

  1. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-01

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches. PMID:26539729

  2. Nonequilibrium transport via spin-induced subgap states in superconductor/quantum dot/normal metal cotunnel junctions

    NASA Astrophysics Data System (ADS)

    Koerting, V.; Andersen, B. M.; Flensberg, K.; Paaske, J.

    2010-12-01

    We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N) and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self-energy is calculated to leading order in the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T matrix, from which we obtain the nonlinear cotunneling conductance. For even-occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd-occupied dot, however, leads to the formation of subgap resonances inside the superconducting gap which give rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.

  3. Counting statistics of many-particle quantum walks

    SciTech Connect

    Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas

    2011-06-15

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  4. New Results in the Quantum Statistical Approach to Parton Distributions

    NASA Astrophysics Data System (ADS)

    Soffer, Jacques; Bourrely, Claude; Buccella, Franco

    2015-02-01

    We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.

  5. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  6. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  7. Statistical mechanical studies on the information processing with quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-03-01

    Quantum fluctuation induces the tunneling between states in a system and then can be used in combinatorial optimization problems. Such an algorithm is called quantum adiabatic computing. In this work, we investigate the quality of an information processing based on Bayes inference with the quantum fluctuation through the statistical mechanical approach. We then focus on the error correcting codes and CDMA multiuser demodulation which are described by conventional solvable spin glass models and can be analyzed by replica method in the thermodynamic limit. Introducing the quantum fluctuation into the decoding process of each problem, which is called quantum maximizer of the posteriori probability (QMPM) estimate, we analyze the decoding quality and then compare the results with those by the conventional MPM estimate which corresponds to finite temperature decoding From our limited results, the MPM based on the quantum fluctuation seems to achieve the same decoding quality as the thermal MPM does. We clarify the relationship between the optimal amplitude of transverse field and temperature for the mixture of quantum and classical MPMs. This work is supported by JSPS KAKENHI Grant Numbers 12J06501, 25330283, 25120009.

  8. Nonequilibrium thermal entanglement

    SciTech Connect

    Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto

    2007-03-15

    Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.

  9. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  10. On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hamdouni, Yamen

    2010-12-01

    The elements of the quantum mechanical Markovian diffusion matrix leading to a Gibbs equilibrium state for a set of N coupled quantum harmonic oscillators are derived within Lindblad's axiomatic approach. Consequences of the fundamental constraints on the quantum friction coefficients are discussed. We derive the equations of motion for the expectation values and variances, and we solve them analytically. We apply our results to the description of the charge and mass asymmetry coordinates in heavy-ion collisions, and we investigate the effect of dissipation on tunneling in sub-barrier processes.

  11. Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings

    NASA Astrophysics Data System (ADS)

    Popkov, Vladislav; Presilla, Carlo

    2016-02-01

    Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach, looking at both its theoretical and applicative aspects, in the example case of an open X X Z spin-1 /2 chain, driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths effectively needed to generate steady states which are almost indistinguishable from the target pure states.

  12. Quantum statistics and the performance of engine cycles

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanjian; Poletti, Dario

    2015-07-01

    We study the role of quantum statistics in the performance of Otto cycles. First, we show analytically that the work distributions for bosonic and fermionic working fluids are identical for cycles driven by harmonic trapping potentials. Subsequently, in the case of nonharmonic potentials, we find that the interplay between different energy level spacings and particle statistics strongly affects the performances of the engine cycle. To demonstrate this, we examine three trapping potentials which induce different (single-particle) energy level spacings: monotonically decreasing with the level number, monotonically increasing, and the case in which the level spacing does not vary monotonically.

  13. Lifetime statistics of quantum chaos studied by a multiscale analysis

    SciTech Connect

    Di Falco, A.; Krauss, T. F.; Fratalocchi, A.

    2012-04-30

    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.

  14. Statistics, holography, and black hole entropy in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Ghosh, Amit; Noui, Karim; Perez, Alejandro

    2014-04-01

    In loop quantum gravity the quantum states of a black hole horizon consist of pointlike discrete quantum geometry excitations (or punctures) labeled by spin j. The excitations possibly carry other internal degrees of freedom, and the associated quantum states are eigenstates of the area A operator. The appropriately scaled area operator A/(8πℓ) can also be interpreted as the physical Hamiltonian associated with the quasilocal stationary observers located at a small distance ℓ from the horizon. Thus, the local energy is entirely accounted for by the geometric operator A. Assuming that: Close to the horizon the quantum state has a regular energy momentum tensor and hence the local temperature measured by stationary observers is the Unruh temperature. Degeneracy of matter states is exponential with the area exp(λA/ℓp2), which is supported by the well-established results of QFT in curved spacetimes, which do not determine λ but assert an exponential behavior. The geometric excitations of the horizon (punctures) are indistinguishable. And finally that the semiclassical limit the area of the black hole horizon is large in Planck units. It follows that: Up to quantum corrections, matter degrees of freedom saturate the holographic bound, viz., λ must be equal to 1/4. Up to quantum corrections, the statistical black hole entropy coincides with Bekenstein-Hawking entropy S =A/(4ℓp2). The number of horizon punctures goes like N∝√A/ℓp2 ; i.e., the number of punctures N remains large in the semiclassical limit. Fluctuations of the horizon area are small ΔA/A ∝(ℓp2/A)1/4, while fluctuations of the area of an individual puncture are large (large spins dominate). A precise notion of local conformal invariance of the thermal state is recovered in the A→∞ limit where the near horizon geometry becomes Rindler. We also show how the present model (constructed from loop quantum gravity) provides a regularization of (and gives a concrete meaning to) the formal

  15. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics.

    PubMed

    Montoya-Castillo, Andrés; Reichman, David R

    2016-05-14

    We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics. PMID:27179468

  16. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Montoya-Castillo, Andrés; Reichman, David R.

    2016-05-01

    We present a formalism that explicitly unifies the commonly used Nakajima-Zwanzig approach for reduced density matrix dynamics with the more versatile Mori theory in the context of nonequilibrium dynamics. Employing a Dyson-type expansion to circumvent the difficulty of projected dynamics, we obtain a self-consistent equation for the memory kernel which requires only knowledge of normally evolved auxiliary kernels. To illustrate the properties of the current approach, we focus on the spin-boson model and limit our attention to the use of a simple and inexpensive quasi-classical dynamics, given by the Ehrenfest method, for the calculation of the auxiliary kernels. For the first time, we provide a detailed analysis of the dependence of the properties of the memory kernels obtained via different projection operators, namely, the thermal (Redfield-type) and population based (NIBA-type) projection operators. We further elucidate the conditions that lead to short-lived memory kernels and the regions of parameter space to which this program is best suited. Via a thorough analysis of the different closures available for the auxiliary kernels and the convergence properties of the self-consistently extracted memory kernel, we identify the mechanisms whereby the current approach leads to a significant improvement over the direct usage of standard semi- and quasi-classical dynamics.

  17. Statistics of leading digits leads to unification of quantum correlations

    NASA Astrophysics Data System (ADS)

    Chanda, T.; Das, T.; Sadhukhan, D.; Pal, A. K.; Sen(De, A.; Sen, U.

    2016-05-01

    We show that the frequency distribution of the first significant digits of the numbers in the data sets generated from a large class of measures of quantum correlations, which are either entanglement measures or belong to the information-theoretic paradigm, exhibit a universal behavior. In particular, for Haar uniformly simulated arbitrary two-qubit states, we find that the first-digit distributions corresponding to a collection of chosen computable quantum correlation quantifiers tend to follow the first-digit law, known as Benford's law, when the rank of the states increases. Considering a two-qubit state which is obtained from a system governed by paradigmatic spin Hamiltonians, namely, the XY model in a transverse field, and the XXZ model, we show that entanglement as well as information-theoretic measures violate Benford's law. We quantitatively discuss the violation of Benford's law by using a violation parameter, and demonstrate that the violation parameter can signal quantum phase transitions occurring in these models. We also comment on the universality of the statistics of the first significant digits corresponding to appropriate measures of quantum correlations in the case of multipartite systems as well as systems in higher dimensions.

  18. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport

    SciTech Connect

    Ness, H.; Dash, L. K.

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  19. Quantum statistics of Raman scattering model with Stokes mode generation

    NASA Technical Reports Server (NTRS)

    Tanatar, Bilal; Shumovsky, Alexander S.

    1994-01-01

    The model describing three coupled quantum oscillators with decay of Rayleigh mode into the Stokes and vibration (phonon) modes is examined. Due to the Manley-Rowe relations the problem of exact eigenvalues and eigenstates is reduced to the calculation of new orthogonal polynomials defined both by the difference and differential equations. The quantum statistical properties are examined in the case when initially: the Stokes mode is in the vacuum state; the Rayleigh mode is in the number state; and the vibration mode is in the number of or squeezed states. The collapses and revivals are obtained for different initial conditions as well as the change in time the sub-Poisson distribution by the super-Poisson distribution and vice versa.

  20. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    SciTech Connect

    Dziarmaga, J.

    1996-03-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov{endash}de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10{sup 6}{ital T}/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. {copyright} {ital 1996 The American Physical Society.}

  1. A note on the Landauer principle in quantum statistical mechanics

    SciTech Connect

    Jakšić, Vojkan; Pillet, Claude-Alain

    2014-07-01

    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kBT log 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work [Reeb, D. and Wolf M. M., “(Im-)proving Landauer's principle,” preprint http://arxiv.org/abs/arXiv:1306.4352v2 (2013)] on the subject is discussed and compared.

  2. Effects of dephasing on quantum adiabatic pumping with nonequilibrium initial states

    NASA Astrophysics Data System (ADS)

    Zhou, Longwen; Tan, Da Yang; Gong, Jiangbin

    2015-12-01

    Thouless's quantum adiabatic pumping is of fundamental interest to condensed-matter physics. It originally considered a zero-temperature equilibrium state uniformly occupying all the bands below a Fermi surface. In light of recent direct simulations of Thouless's concept in cold-atom systems, this paper investigates the dynamics of quantum adiabatic pumping subject to dephasing for rather general initial states with nonuniform populations and possibly interband coherence. Using a theory based on pure-dephasing Lindblad evolution, we find that the pumping is contributed by two parts of different nature: a dephasing-modified geometric part weighted by initial Bloch state populations and an interband-coherence-induced part compromised by dephasing, both of them being independent of the pumping time scale. The overall pumping reflects an interplay of the band topology, initial state populations, initial state coherence, and dephasing. Theoretical results are carefully checked in a Chern insulator model coupled to a pure-dephasing environment, providing a useful starting point to understand and coherently control quantum adiabatic pumping in general situations.

  3. Statistical theory of designed quantum transport across disordered networks.

    PubMed

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble. PMID:25974468

  4. Statistical theory of designed quantum transport across disordered networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble.

  5. Introduction: From Efficient Quantum Computation to Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaz

    These few pages will attempt to make a short comprehensive overview of several contributions to this volume which concern rather diverse topics. I shall review the following works, essentially reversing the sequence indicated in my title: • First, by C. Tsallis on the relation of nonextensive statistics to the stability of quantum motion on the edge of quantum chaos. • Second, the contribution by P. Jizba on information theoretic foundations of generalized (nonextensive) statistics. • Third, the contribution by J. Rafelski on a possible generalization of Boltzmann kinetics, again, formulated in terms of nonextensive statistics. • Fourth, the contribution by D.L. Stein on the state-of-the-art open problems in spin glasses and on the notion of complexity there. • Fifth, the contribution by F.T. Arecchi on the quantum-like uncertainty relations and decoherence appearing in the description of perceptual tasks of the brain. • Sixth, the contribution by G. Casati on the measurement and information extraction in the simulation of complex dynamics by a quantum computer. Immediately, the following question arises: What do the topics of these talks have in common? Apart from the variety of questions they address, it is quite obvious that the common denominator of these contributions is an approach to describe and control "the complexity" by simple means. One of the very useful tools to handle such problems, also often used or at least referred to in several of the works presented here, is the concept of Tsallis entropy and nonextensive statistics.

  6. Quantum Statistical Parton Distributions and the Spin Crisis

    NASA Astrophysics Data System (ADS)

    Buccella, F.; Miele, G.; Tancredi, N.

    1996-10-01

    Quantum statistical distributions for partons provide a fair description of deep inelastic scattering data at Q2 = 3 and 10 (GeV/c)2. Study of the polarized structure functions seems to suggest an alternative possible solution of the spin crisis based on the Pauli principle. In this scheme, in fact, it becomes apparent that the defects of the Gottfried sum rule and Ellis-Jaffe sum rule for the proton are strongly connected. This possibility finds particular evidence from the phenomenological observation that the relation Δu = 2$tilde{F} + u - d - 1 seems to be satisfied well by parton distributions.

  7. Agents with left and right dominant hemispheres and quantum statistics

    NASA Astrophysics Data System (ADS)

    Ezhov, Alexandr A.; Khrennikov, Andrei Yu.

    2005-01-01

    We present a multiagent model illustrating the emergence of two different quantum statistics, Bose-Einstein and Fermi-Dirac, in a friendly population of individuals with the right-brain dominance and in a competitive population of individuals with the left-brain hemisphere dominance, correspondingly. Doing so, we adduce the arguments that Lefebvre’s “algebra of conscience” can be used in a natural way to describe decision-making strategies of agents simulating people with different brain dominance. One can suggest that the emergence of the two principal statistical distributions is able to illustrate different types of society organization and also to be used in order to simulate market phenomena and psychic disorders, when a switching of hemisphere dominance is involved.

  8. CMB statistical anisotropies of classical and quantum origins

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Emami, Razieh; Firouzjahi, Hassan; Wang, Yi

    2015-04-01

    We examine the impact of different anisotropic relics on inflation, in particular the predictions on the density perturbations. These relics can be the source of the large scale anomalies in the cosmic microwave background. There are two different types of background relics, one from the matter sector and the other purely from the metric. Although the angular-dependence of the statistical anisotropy in both cases are degenerate, the scale-dependence are observationally distinctive. In addition, we demonstrate that non-Bunch-Davies vacuum states can extend the statistical anisotropy to much shorter scales, and leave a scale-dependence that is insensitive to the different backgrounds but sensitive to the initial quantum state.

  9. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  10. Statistical benchmarking for orthogonal electrostatic quantum dot qubit devices

    NASA Astrophysics Data System (ADS)

    Gamble, John; Frees, Adam; Friesen, Mark; Coppersmith, S. N.

    2014-03-01

    Quantum dots in semiconductor systems have emerged as attractive candidates for the implementation of quantum information processors because of the promise of scalability, manipulability, and integration with existing classical electronics. A limitation in current devices is that the electrostatic gates used for qubit manipulation exhibit strong cross-capacitance, presenting a barrier for practical scale-up. Here, we introduce a statistical framework for making precise the notion of orthogonality. We apply our method to analyze recently implemented designs at the University of Wisconsin-Madison that exhibit much increased orthogonal control than was previously possible. We then use our statistical modeling to future device designs, providing practical guidelines for devices to have robust control properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy Nuclear Security Administration under contract DE-AC04-94AL85000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, by ARO (W911NF-12-0607), and by the United States Department of Defense.

  11. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-01

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation. PMID:26551232

  12. Universality of Non-equilibrium Fluctuations in Strongly Correlated Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Ferrier, Meydi; Arakawa, Tomonori; Hata, Tokuro; Fujiwara, Ryo; Delagrange, Raphaelle; Deblock, Richard; Sakano, Rui; Oguri, Akira; Kobayashi, Kensuke

    In a quantum dot, Kondo effect occurs when the spin of the confined electron is entangled with the electrons of the leads forming locally a strongly correlated Fermi-liquid. Our experiments were performed in such a dot formed in a single carbon nanotube, where Kondo effect with different symmetry groups, namely SU(2) and SU(4), shows up. In the latter case, as spin and orbital degrees of freedom are degenerate, two channels contribute to transport and Kondo resonance emerges for odd and even number of electrons. With our sample it was possible to investigate both symmetries near the unitary limit. In the Kondo regime, strong interaction creates a peculiar two-particle scattering which appears as an effective charge e* for the quasi-particles. We have extracted the signature of this effective charge in the shot noise for both symmetry in good agreement with theory. This result demonstrates that theory of the Kondo effect can be safely extended out of equilibrium even in the unconventional SU(4) symmetry.

  13. Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models

    SciTech Connect

    Munafò, A. Magin, T. E.

    2014-09-15

    The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.

  14. Analysis of surface sputtering on a quantum statistical basis

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    Surface sputtering is explained theoretically by means of a 3-body sputtering mechanism involving the ion and two surface atoms of the solid. By means of quantum-statistical mechanics, a formula for the sputtering ratio S(E) is derived from first principles. The theoretical sputtering rate S(E) was found experimentally to be proportional to the square of the difference between incident ion energy and the threshold energy for sputtering of surface atoms at low ion energies. Extrapolation of the theoretical sputtering formula to larger ion energies indicates that S(E) reaches a saturation value and finally decreases at high ion energies. The theoretical sputtering ratios S(E) for wolfram, tantalum, and molybdenum are compared with the corresponding experimental sputtering curves in the low energy region from threshold sputtering energy to 120 eV above the respective threshold energy. Theory and experiment are shown to be in good agreement.

  15. Role of quantum statistics in multi-particle decay dynamics

    SciTech Connect

    Marchewka, Avi; Granot, Er’el

    2015-04-15

    The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.

  16. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    PubMed

    Pranzetti, Daniele

    2012-07-01

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable. PMID:23031096

  17. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    NASA Astrophysics Data System (ADS)

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature.

  18. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model.

    PubMed

    Raju, Ch Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  19. Quantum dissipative effects on non-equilibrium transport through a single-molecular transistor: The Anderson-Holstein-Caldeira-Leggett model

    PubMed Central

    Raju, Ch. Narasimha; Chatterjee, Ashok

    2016-01-01

    The Anderson-Holstein model with Caldeira-Leggett coupling with environment is considered to describe the damping effect in a single molecular transistor (SMT) which comprises a molecular quantum dot (with electron-phonon interaction) mounted on a substrate (environment) and coupled to metallic electrodes. The electron-phonon interaction is first eliminated using the Lang-Firsov transformation and the spectral density function, charge current and differential conductance are then calculated using the non-equilibrium Keldysh Green function technique. The effects of damping rate, and electron-electron and electron-phonon interactions on the transport properties of SMT are studied at zero temperature. PMID:26732725

  20. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-10-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.

  1. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  2. The curious quantum statistics in the interval between measurements

    NASA Astrophysics Data System (ADS)

    Sharp, W. David; Shanks, Niall

    1989-07-01

    The claim of Albert, Aharonov and D'Amato that certain quantum ensembles entail the contextuality of quantum mechanics is defended against criticisms of Bub and Brown. It is argued that a prima facie case exists that the quantum mechanical description of the past must be both contextual and non-local.

  3. Towards Non-Equilibrium Dynamics with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  4. Fluctuation-induced dissipation in non-equilibrium moving systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad; Golestanian, Ramin; Jaffe, Robert; Kardar, Mehran

    2013-03-01

    Quantum fluctuations in moving systems lead to nontrivial effects such as dissipation and radiation. We consider moving bodies--a single rotating object or multiple objects in relative motion--and derive the frictional force by using techniques from non-equilibrium statistical physics as well as quantum optics. The radiation to the environment is obtained as a general expression in terms of the scattering matrix which is a powerful analytical tool. We apply our general formulas to several examples of systems out of equilibrium due to their motion.

  5. Non-equilibrium Green's function calculation of AlGaAs-well-based and GaSb-based terahertz quantum cascade laser structures

    SciTech Connect

    Yasuda, H. Hosako, I.

    2015-03-16

    We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.

  6. Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism

    NASA Astrophysics Data System (ADS)

    Barraud, Sylvain

    2009-09-01

    Various theoretical formulations are proposed for investigating the carrier transport in nanoscale electronic devices. In this paper, a discrete formulation of the Wigner transport equation (WTE) for the self-consistent simulation of phase-coherent quantum transport in silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) devices is presented. The device is simulated using an effective-mass Hamiltonian within the mode-space approximation. The numerical scheme proposed in this work solves self-consistently three dimensional Poisson's equation, two dimensional Schrödinger's equation in each cross-sectional plane of the nanowire, and the steady-state one dimensional WTE for each conduction mode to handle the quantum transport along the channel. Details on numerical implementation of the Wigner function method are given, and the results are compared with those of the nonequilibrium Green's function (NEGF) method in the ballistic limit. The calculations of current-voltage electrical characteristics of surround-gated silicon nanowires are performed using both NEGF and WTE formulations. The good agreement observed between these approaches means that a direct solution of the WTE is an accurate simulation method for modeling the ballistic quantum transport in silicon nanowire MOSFETs.

  7. Quantum statistics of overlapping modes in open resonators

    SciTech Connect

    Hackenbroich, Gregor; Viviescas, Carlos; Haake, Fritz

    2003-12-01

    We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes. Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator dynamics may be used as a starting point for a quantum theory of random lasers.

  8. Quantum statistical theory of semiconductor junctions in thermal equilibrium

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1977-01-01

    Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.

  9. On estimating perturbative coefficients in quantum field theory and statistical physics

    SciTech Connect

    Samuel, M.A. |

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent.

  10. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach

    NASA Astrophysics Data System (ADS)

    Tasaki, Hal

    2016-04-01

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.

  11. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach.

    PubMed

    Tasaki, Hal

    2016-04-29

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems. PMID:27176507

  12. Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources

    NASA Astrophysics Data System (ADS)

    Yin, Zhen-Qiang; Fung, Chi-Hang Fred; Ma, Xiongfeng; Zhang, Chun-Mei; Li, Hong-Wei; Chen, Wei; Wang, Shuang; Guo, Guang-Can; Han, Zheng-Fu

    2014-11-01

    In the postprocessing of quantum key distribution, the raw key bits from the mismatched-basis measurements, where two parties use different bases, are normally discarded. Here, we propose a postprocessing method that exploits measurement statistics from mismatched-basis cases and prove that incorporating these statistics enables uncharacterized qubit sources to be used in the measurement-device-independent quantum key distribution protocol and the Bennett-Brassard 1984 protocol, which is otherwise impossible.

  13. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    SciTech Connect

    Sinitskiy, Anton V.; Voth, Gregory A.

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  14. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments. PMID:26342356

  15. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  16. To Quantum Mechanics Through Projection of Classical Statistical Mechanics on Prespace

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2005-10-01

    We show that in opposite to a common opinion quantum mechanics can be represented as projection of classical statistical model on prequantum space -- prespace. All distinguishing features of the quantum probabilistic model (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present in a latent form in the classical Kolmogorov probability model. However, classical model should be considered as a contextual model (in the sense that all probabilities are determined by contexts - complexes of physical conditions). Moreover, the prequantum→quantum map is well defined only for two fundamental physical variables (in quantum mechanics these are position and momentum). Quantum mechanics is a projection of classical statistical model through these two "reference observables". Similarly, ordinary classical statistical mechanics on physical phase space is a projection of classical statistical mechanics on prespace, We also introduce a mental prespace and consider its quantum-like representation. Mental prespace describes subconsciousness and its quantum-like representation gives a model of consciousness.

  17. Role of quantum statistics in the photoassociation of Bose-Einstein condensates

    SciTech Connect

    Olsen, M. K.; Plimak, L. I.

    2003-09-01

    We show that the photoassociation of an atomic Bose-Einstein condensate to form condensed molecules is a chemical process which not only does not obey the Arrhenius rules for chemical reactions, but that it can also depend on the quantum statistics of the reactants. Comparing the predictions of a truncated Wigner representation for different initial quantum states, we find that, even when the quantum prediction for an initial coherent state is close to the Gross-Pitaevskii prediction, other quantum states may result in very different dynamics.

  18. Topological quantum liquids with quaternion non-Abelian statistics.

    PubMed

    Xu, Cenke; Ludwig, Andreas W W

    2012-01-27

    Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8). PMID:22400884

  19. Exact integrability in quantum field theory and statistical systems

    SciTech Connect

    Thacker, H.B.

    1981-04-01

    The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The nature of exact integrability as a physical phenomenon and various aspects of the mathematical formalism are explored by discussing several examples, including detailed treatments of the nonlinear Schroedinger (delta-function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schroedinger model, and the integral equation method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the classical inverse scattering method, the quantum inverse method for the nonlinear Schroedinger model is introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method, an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long (free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions) correspond to the quantized scattering data and have a special significance. One of them creates the Bethe eigenstates, while the other is the generating function for an infinite number of conservation laws. The analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links (arrows). The relationship between the quantum inverse method and the transfer matrix formalism is exhibited.

  20. Converged Nuclear Quantum Statistics from Semi-Classical Path Integrals

    NASA Astrophysics Data System (ADS)

    Poltavskyi, Igor; Tkatchenko, Alexandre

    2015-03-01

    The quantum nature of nuclear motions plays a vital role in the structure, stability, and thermodynamics of molecular systems. The standard approach to take nuclear quantum effects (NQE) into account is the Feynman-Kac imaginary-time path-integral molecular dynamics (PIMD). Conventional PIMD simulations require exceedingly large number of classical subsystems (beads) to accurately capture NQE, resulting in considerable computational cost even at room temperature due to the rather high internal vibrational frequencies of many molecules of interest. We propose a novel parameter-free form for the PI partition function and estimators to calculate converged thermodynamic averages. Our approach requires the same ingredients as the conventional PIMD simulations, but decreases the number of required beads by roughly an order of magnitude. This greatly extends the applicability of ab initio PIMD for realistic molecular systems. The developed method has been applied to study the thermodynamics of N2, H2O, CO2, and C6H6 molecules. For all of the considered systems at room temperature, 4 to 8 beads are enough to recover the NQE contribution to the total energy within 2% of the fully converged quantum result.

  1. Non-Abelian statistics of Luttinger holes in quantum wells

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    2015-03-01

    Non-Abelian quasiparticle excitations represent a key element of topologically protected quantum computing. Such exotic states appear in fractional quantum Hall (FQH) effect as eigenstates of N-body interaction potential. These potentials can be obtained by renormalization of electron-electron interactions in the presence of Landau level (LL) mixing. The properties of valence band holes makes them fundamentally different from electrons. In the presence of magnetic field, low-lying states do not exhibit fan-like diagram and several of the levels cross. Variation of magnetic field in the vicinity of level crossings serves as a knob that tunes LL mixing and enhances the 3-body interaction. 1 / 2 filling factor FQH is a state that was not observed in electron liquid, but has been observed for holes. The properties of the two dimensional charged quantum hole liquid in the presence of magnetic field are studied using the spherical geometry. The properties of the novel 1 / 2 state are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  2. Non-equilibrium Transport of Light

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Hsuan; Taylor, Jacob

    Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.

  3. Measuring dynamical randomness of quantum chaos by statistics of Schmidt eigenvalues.

    PubMed

    Kubotani, Hiroto; Adachi, Satoshi; Toda, Mikito

    2013-06-01

    We study statistics of entanglement generated by quantum chaotic dynamics. Using an ensemble of the very large number (>/~10(7)) of quantum states obtained from the temporally evolving coupled kicked tops, we verify that the estimated one-body distribution of the squared Schmidt eigenvalues for the quantum chaotic dynamics can agree surprisingly well with the analytical one for the universality class of the random matrices described by the fixed trace ensemble (FTE). In order to quantify this agreement, we introduce the L(1) norm of the difference between the one-body distributions for the quantum chaos and FTE and use it as an indicator of the dynamical randomness. As we increase the scaled coupling constant, the L(1) difference decreases. When the effective Planck constant is not small enough, the decrease saturates, which implies quantum suppression of dynamical randomness. On the other hand, when the effective Planck constant is small enough, the decrease of the L(1) difference continues until it is masked by statistical fluctuation due to finiteness of the ensemble. Furthermore, we carry out two statistical analyses, the χ(2) goodness of fit test and an autocorrelation analysis, on the difference between the distributions to seek for dynamical remnants buried under the statistical fluctuation. We observe that almost all fluctuating deviations are statistical. However, even for well-developed quantum chaos, unexpectedly, we find a slight nonstatistical deviation near the largest Schmidt eigenvalue. In this way, the statistics of Schmidt eigenvalues enables us to measure dynamical randomness of quantum chaos with reference to the random matrix theory of FTE. PMID:23848762

  4. Quantum Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano Effect on Photon Statistics

    NASA Astrophysics Data System (ADS)

    Ridolfo, A.; di Stefano, O.; Fina, N.; Saija, R.; Savasta, S.

    2010-12-01

    We study theoretically the quantum optical properties of hybrid molecules composed of an individual quantum dot and a metallic nanoparticle. We calculate the resonance fluorescence of this composite system. Its incoherent part, arising from nonlinear quantum processes, is enhanced by more than 2 orders of magnitude as compared to that of the dot alone. The coupling between the two systems gives rise to a Fano interference effect which strongly influences the quantum statistical properties of the scattered photons: a small frequency shift of the incident light field may cause changes in the intensity correlation function of the scattered field of orders of magnitude. The system opens a good perspective for applications in active metamaterials and ultracompact single-photon devices.

  5. Influence of measurements on the statistics of work performed on a quantum system.

    PubMed

    Campisi, Michele; Talkner, Peter; Hänggi, Peter

    2011-04-01

    The recently demonstrated robustness of fluctuation theorems against measurements [M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010).] does not imply that the probability distributions of nonequilibrium quantities, such as heat and work, remain unaffected. We determine the impact of measurements that are performed during a running force protocol on the characteristic function of work. The results are illustrated by means of the Landau-Zener(-Stückelberg-Majorana) model. In the limit of continuous measurements the quantum Zeno effect suppresses any unitary dynamics. It is demonstrated that the characteristic function of work is the same as for an adiabatic protocol when the continuously measured quantity coincides with the Hamiltonian governing the unitary dynamics of the system in the absence of measurements. PMID:21599122

  6. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.

    PubMed

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language. PMID:27088565

  7. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems

    NASA Astrophysics Data System (ADS)

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  8. N-soliton statistics and condensate formation in dense quantum gases

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2014-09-01

    Statistics of N quantum density soliton waves [B. M. Mirza, Mod. Phys. Lett. B28 (2014) 1450148] is extended here to the case of systems with symmetric wave function. Since many such systems exhibit condensation phenomena, application is made of the soliton wave statistics to investigate condensation and phase transition in quantum gases such as 4He and also dense systems such as the alkali atoms. Specific heat discontinuities are used to determine the condensation temperature for dense quantum gases and liquids. For the model case of helium the statistical theory is shown to predict not only the observed superfluid condensation temperature (2.17 ± 0.01 K) correctly but also the normal condensation temperature (4.21 ± 0.02 K), as well as the exact specific heat λ-profile.

  9. Detector-induced backaction on the counting statistics of a double quantum dot.

    PubMed

    Li, Zeng-Zhao; Lam, Chi-Hang; Yu, Ting; You, J Q

    2013-01-01

    Full counting statistics of electron transport is of fundamental importance for a deeper understanding of the underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the counting statistics of a biased double quantum dot (DQD). We show that this inevitable QPC-induced backaction can have profound effects on the counting statistics under certain conditions, e.g., changing the shot noise from being sub-Poissonian to super-Poissonian, and changing the skewness from being positive to negative. Also, we show that both Fano factor and skewness can be either enhanced or suppressed by increasing the energy difference between two single-dot levels of the DQD under the detector-induced backaction. PMID:24149587

  10. W± bosons production in the quantum statistical parton distributions approach

    NASA Astrophysics Data System (ADS)

    Bourrely, Claude; Buccella, Franco; Soffer, Jacques

    2013-10-01

    We consider W± gauge bosons production in connection with recent results from BNL-RHIC and FNAL-Tevatron and interesting predictions from the statistical parton distributions. They concern relevant aspects of the structure of the nucleon sea and the high-x region of the valence quark distributions. We also give predictions in view of future proton-neutron collisions experiments at BNL-RHIC.

  11. A Gaussian wave packet phase-space representation of quantum canonical statistics

    SciTech Connect

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  12. Repeated interactions in open quantum systems

    SciTech Connect

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  13. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect

    Xue, Hai-Bin

    2013-12-15

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  14. Can Photo Sensors Help Us Understand the Intrinsic Differences Between Quantum and Classical Statistical Behaviors?

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2009-03-01

    We use the following epistemology—understanding and visualizing the invisible processes behind all natural phenomena through iterative reconstruction and/or refinement of current working theories towards their limits, constitute our best approach towards discovering actual realities of nature followed by new break-through theories. We use this epistemology to explore the roots of statistical nature of the real world—classical physics, quantum physics and even our mental constructs. Diversity is a natural and healthy outcome of this statistical nature. First, we use a two-beam superposition experiment as an illustrative example of the quantum world to visualize the root of fluctuations (or randomness) in the photo electron counting statistics. We recognize that the fluctuating weak background fields make the quantum world inherently random but the fluctuations are still statistically bounded, indicating that the fundamental laws of nature are still causal. Theoreticians will be challenged for ever to construct a causal and closed form theory free of statistical randomness out of incomplete information. We show by analyzing the essential steps behind any experiment that gaps in the information gathered about any phenomenon is inevitable. This lack of information also influences our personal epistemologies to have "statistical spread" due to its molecular origin, albeit bounded and constrained by the causally driven atomic and molecular interactions across the board. While there are clear differences in the root and manifestation of classical and quantum statistical behavior, on a fundamental level they originate in our theories due to lack of complete information about everything that is involved in every interaction in our experiments. Statistical nature of our theories is a product of incomplete information and we should take it as an inevitable paradigm.

  15. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    PubMed Central

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  16. Statistical moments of quantum-walk dynamics reveal topological quantum transitions.

    PubMed

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems. PMID:27102945

  17. Statistical moments of quantum-walk dynamics reveal topological quantum transitions

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Maffei, Maria; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; de Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2016-04-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walk (QW) are proving to be effective simulators of such phenomena. Here we report the realization of a photonic QW showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional (1D) periodic systems. We find that the probability distribution moments of the walker position after many steps can be used as direct indicators of the topological quantum transition: while varying a control parameter that defines the system phase, these moments exhibit a slope discontinuity at the transition point. Numerical simulations strongly support the conjecture that these features are general of 1D topological systems. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer general instruments for investigating and experimentally detecting quantum transitions in such complex systems.

  18. The Quantum Nature of Identity in Human Thought: Bose-Einstein Statistics for Conceptual Indistinguishability

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-12-01

    Increasing experimental evidence shows that humans combine concepts in a way that violates the rules of classical logic and probability theory. On the other hand, mathematical models inspired by the formalism of quantum theory are in accordance with data on concepts and their combinations. In this paper, we investigate a new connection between concepts and quantum entities, namely the way both behave with respect to `identity' and `indistinguishability'. We do this by considering conceptual entities of the type Eleven Animals, were a number is combined with a noun. In the combination Eleven Animals, indeed the `animals' are identical and indistinguishable, and our investigation aims at identifying the nature of this conceptual identity and indistinguishability. We perform experiments on human subjects and find significant evidence of deviation from the predictions of classical statistical theories, more specifically deviations with respect to Maxwell-Boltzmann statistics. This deviation is of the `same type' of the deviation of quantum mechanical from classical mechanical statistics, due to indistinguishability of microscopic quantum particles, i.e we find convincing evidence of the presence of Bose-Einstein statistics. We also present preliminary promising evidence of this phenomenon in a web-based study.

  19. Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains.

    PubMed

    Ivanov, Dmitri A; Abanov, Alexander G

    2013-02-01

    We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function. PMID:23496467

  20. Simulation of anyonic statistics and its topological path independence using a seven-qubit quantum simulator

    NASA Astrophysics Data System (ADS)

    Jihyun Park, Annie; McKay, Emma; Lu, Dawei; Laflamme, Raymond

    2016-04-01

    Anyons, quasiparticles living in two-dimensional spaces with exotic exchange statistics, can serve as the fundamental units for fault-tolerant quantum computation. However, experimentally demonstrating anyonic statistics is a challenge due to the technical limitations of current experimental platforms. Here, we take a state perpetration approach to mimic anyons in the toric code using a seven-qubit nuclear magnetic resonance quantum simulator. Anyons are created by dynamically preparing the ground and excited states of a seven-qubit planar version of the toric code, and are subsequently braided along two distinct, but topologically equivalent paths. We observe that the phase acquired by the anyons is independent of the path, and coincides with the ideal theoretical predictions when decoherence and implementation errors are taken into account. As the first demonstration of the topological path independence of anyons, our experiment helps to study and exploit the anyonic properties towards the goal of building a topological quantum computer.

  1. Full counting statistics for a quantum nanoelectromechanical system

    NASA Astrophysics Data System (ADS)

    Bennett, Steven; Clerk, Aashish

    2007-03-01

    Experiments on nanoelectromechanical systems often involve the effects of a mechanical oscillator on the current noise of a mesoscopic conductor. Coupling to the oscillator induces correlations between tunneling electrons in the conductor, leading to signatures in the shot noise. To better characterize such correlations it is useful to consider full counting statistics (FCS), which describe the complete probability distribution of tunneled charge. We study theoretically the FCS in a tunnel junction coupled to a nanomechanical oscillator. This system has been realized in experiment using an atomic point contact where one electrode is free to vibrate and it has been predicted that the oscillator dynamics leads to large signatures in the shot noise that cannot be explained classically. Thus motivated, we investigate the FCS using a reduced density matrix tracking the oscillator and the number of tunneled electrons, for which we obtain an equation of Caldeira-Leggett form with additional terms due to tunneling. N. E. Flowers-Jacobs, D. R. Schmidt, and K. W. Lehnert (submitted). A. A. Clerk and S. M. Girvin, Phys. Rev. B 70, 121303(R) (2004).

  2. Structural characterization and condition for measurement statistics preservation of a unital quantum operation

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Yan; Fung, Chi-Hang Fred; Chau, H. F.

    2013-05-01

    We investigate the necessary and sufficient condition for a convex cone of positive semidefinite operators to be fixed by a unital quantum operation ϕ acting on finite-dimensional quantum states. By reducing this problem to the problem of simultaneous diagonalization of the Kraus operators associated with ϕ, we can completely characterize the kinds of quantum states that are fixed by ϕ. Our work has several applications. It gives a simple proof of the structural characterization of a unital quantum operation that acts on finite-dimensional quantum states—a result not explicitly mentioned in earlier studies. It also provides a necessary and sufficient condition for determining what kind of measurement statistics is preserved by a unital quantum operation. Finally, our result clarifies and extends the work of Størmer by giving a proof of a reduction theorem on the unassisted and entanglement-assisted classical capacities, coherent information, and minimal output Renyi entropy of a unital channel acting on a finite-dimensional quantum state.

  3. Statistical mechanical and quantum mechanical modeling of condensed phase systems

    NASA Astrophysics Data System (ADS)

    Labrosse, Matthew R.

    Understanding adsorption in nanoporous media is vital to improving their use in industrial applications such as fluid storage and separations processes. One major objective of this research is to shed light on an on-going controversy in literature over where gases adsorb on single walled carbon nanotube bundles. Grand-canonical Monte Carlo simulations have been performed using models of carbon nanotube bundles composed of tubes of all the same diameter (homogeneous) and tubes of different diameters (heterogeneous). We used three metrics with which we compared our simulation results to those found in experiments on carbon nanotubes: the specific surface area, the isosteric heat of adsorption, and the adsorption capacity. Simulations of classically behaved fluids Ar, CH4, and Xe indicate that nanotubes prepared by the HiPco process are best described by a heterogeneous bundle model with ˜11% of the nanotubes opened. Ne gas requires additional considerations to describe the quantum effects at the temperatures of interest, which have been implemented by the Feynman-Hibbs approximation. Overall, calculated results from Ne simulations are consistent with those from classical fluids. However, Ne simulations strongly indicate that the small interstitial channels formed by exactly three nanotubes are closed. Combined with previous studies on classically behaved fluids Ar, CH4, and Xe, experimental data including Ne are best matched by hetergeneous bundles with ˜11% open-ended nanotubes. The development of a heterogeneous Co/C/O reactive force field (ReaxFF) potential has also been a major objective of this research. ReaxFF provides a method to describe bond-breaking and bond-forming events that can be applied to large-scale molecular dynamics (MD) simulations. This many-bodied semi-empirical potential has been trained from ab initio density functional theory (DFT) calculations. The training set originally included descriptions of bulk and surface condensed phase cobalt

  4. Photon-Statistics Excitation Spectroscopy of a Quantum-Dot Micropillar Laser.

    PubMed

    Kazimierczuk, T; Schmutzler, J; Assmann, M; Schneider, C; Kamp, M; Höfling, S; Bayer, M

    2015-07-10

    We introduce photon-statistics excitation spectroscopy and exemplarily apply it to a quantum-dot micropillar laser. Both the intensity and the photon number statistics of the emission from the micropillar show a strong dependence on the photon statistics of the light used for excitation of the sample. The results under coherent and pseudothermal excitation reveal that a description of the laser properties in terms of mean input photon numbers is not sufficient. It is demonstrated that the micropillar acts as a superthermal light source when operated close to its threshold. Possible applications for important spectroscopic techniques are discussed. PMID:26207501

  5. Full counting statistics of energy fluctuations in a driven quantum resonator

    SciTech Connect

    Clerk, A. A.

    2011-10-15

    We consider the statistics of time-integrated energy fluctuations of a driven bosonic single-mode resonator, as measured by a quantum nondemolition (QND) detector, using the standard Keldysh prescription to define higher moments. We find that, due to an effective cascading of fluctuations, these statistics are surprisingly nonclassical: the low-temperature, quantum probability distribution is not equivalent to the high-temperature classical distribution evaluated at some effective temperature. Moreover, for a sufficiently large drive detuning and low temperatures, the Keldysh-ordered quasiprobability distribution characterizing these fluctuations fails to be positive-definite; this is similar to the full counting statistics of charge in superconducting systems. We argue that this indicates a kind of nonclassical behavior akin to that tested by Leggett-Garg inequalities.

  6. Nonequilibrium Casimir-Polder plasmonic interactions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco

    2016-04-01

    We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  7. Sequential nonideal measurements of quantum oscillators: Statistical characterization with and without environmental coupling

    NASA Astrophysics Data System (ADS)

    Matta, Vincenzo; Pierro, Vincenzo

    2015-11-01

    A one-dimensional quantum oscillator is monitored by taking repeated position measurements. As a first contribution, it is shown that, under a quantum nondemolition measurement scheme applied to a system initially at the ground state, (i) the observed sequence of measurements (quantum tracks) corresponding to a single experiment converges to a limit point, and that (ii) the limit point is random over the ensemble of the experiments, being distributed as a zero-mean Gaussian random variable with a variance at most equal to the ground-state variance. As a second contribution, the richer scenario where the oscillator is coupled with a frozen (i.e., at the ground state) ensemble of independent quantum oscillators is considered. A sharply different behavior emerges: under the same measurement scheme, here we observe that the measurement sequences are essentially divergent. Such a rigorous statistical analysis of the sequential measurement process might be useful for characterizing the main quantities that are currently used for inference, manipulation, and monitoring of many quantum systems. Several interesting properties of the quantum tracks evolution, as well as of the associated (quantum) threshold crossing times, are discussed and the dependence upon the main system parameters (e.g., the choice of the measurement sampling time, the degree of interaction with the environment, the measurement device accuracy) is elucidated. At a more fundamental level, it is seen that, as an application of basic quantum mechanics principles, a sharp difference exists between the intrinsic randomness unavoidably present in any quantum system, and the extrinsic randomness arising from the environmental coupling, i.e., the randomness induced by an external source of disturbance.

  8. Quantum friction and fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Dalvit, D. A. R.

    2014-05-01

    We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a nonequilibrium fluctuation-dissipation relation, and we show that in the large-time, steady-state regime, quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero-temperature frictional force, mainly due to the low-frequency nature of quantum friction.

  9. How to construct the optimal Bayesian measurement in quantum statistical decision theory

    NASA Astrophysics Data System (ADS)

    Tanaka, Fuyuhiko

    Recently, much more attention has been paid to the study aiming at the application of fundamental properties in quantum theory to information processing and technology. In particular, modern statistical methods have been recognized in quantum state tomography (QST), where we have to estimate a density matrix (positive semidefinite matrix of trace one) representing a quantum system from finite data collected in a certain experiment. When the dimension of the density matrix gets large (from a few hundred to millions), it gets a nontrivial problem. While a specific measurement is often given and fixed in QST, we are also able to choose a measurement itself according to the purpose of QST by using qunatum statistical decision theory. Here we propose a practical method to find the best projective measurement in the Bayesian sense. We assume that a prior distribution (e.g., the uniform distribution) and a convex loss function (e.g., the squared error) are given. In many quantum experiments, these assumptions are not so restrictive. We show that the best projective measurement and the best statistical inference based on the measurement outcome exist and that they are obtained explicitly by using the Monte Carlo optimization. The Grant-in-Aid for Scientific Research (B) (No. 26280005).

  10. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  11. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.

    PubMed

    Beretta, Gian Paolo

    2014-10-01

    states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics. PMID:25375444

  12. Phase locking and quantum statistics in a parametrically driven nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.

    2016-04-01

    We discuss phase-locking phenomenon at low-level of quanta and quantum statistics for parametrically driven nonlinear Kerr resonator (PDNR). Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the distribution of photon-number states, the second-order correlation function of photons, the Wigner functions of cavity mode showing two-fold symmetry in phase space, and we analyze formation of phase-locked states in the regular as well as the quantum chaotic regime of the PDNR.

  13. Light scattering from ultracold atoms in optical lattices as an optical probe of quantum statistics

    SciTech Connect

    Mekhov, Igor B.; Maschler, Christoph; Ritsch, Helmut

    2007-11-15

    We study off-resonant collective light scattering from ultracold atoms trapped in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the spatial intensity distribution, quadrature variances, photon statistics, or spectral measurements. In particular, angle-resolved intensity measurements reflect global statistics of atoms (total number of radiating atoms) as well as local statistical quantities (single-site statistics even without optical access to a single site) and pair correlations between different sites. As a striking example we consider scattering from transversally illuminated atoms into an optical cavity mode. For the Mott-insulator state, similar to classical diffraction, the number of photons scattered into a cavity is zero due to destructive interference, while for the superfluid state it is nonzero and proportional to the number of atoms. Moreover, we demonstrate that light scattering into a standing-wave cavity has a nontrivial angle dependence, including the appearance of narrow features at angles, where classical diffraction predicts zero. The measurement procedure corresponds to the quantum nondemolition measurement of various atomic variables by observing light.

  14. Signatures of Fractional Exclusion Statistics in the Spectroscopy of Quantum Hall Droplets

    NASA Astrophysics Data System (ADS)

    Cooper, Nigel

    2015-05-01

    One of the most dramatic features of strongly correlated phases is the emergence of quasiparticle excitations with unconventional quantum statistics. The archetypal example is the fractional, ``anyonic,'' quantum statistics predicted for quasiparticles of the fractional quantum Hall phases. While experiments on semiconductor devices have shown that these quasiparticles have fractional charges, a direct observation of the fractional statistics has remained lacking. In this talk I shall show how precision spectroscopy measurements of rotating droplets of ultracold atoms might be used to demonstrate the Haldane fractional exclusion statistics of quasiholes in the Laughlin state of bosons. The characteristic signatures appear in the single-particle excitation spectrum. I shall show that the transitions are governed by a ``many-body selection rule'' which allows one to relate the number of allowed transitions to the number of quasihole states. I shall illustrate the theory with numerically exact simulations of small numbers of particles. Work in collaboration with Steven H. Simon, and supported by the EPSRC and the Royal Society.

  15. Highly doped p-ZnTe films and quantum well structures grown by nonequilibrium pulsed laser ablation

    SciTech Connect

    Lowndes, D.H.; Rouleau, C.M.; Budai, J.D.; Geohegan, D.B.; McCamy, J.W.

    1995-06-01

    Highly p-doped ZnTe films have been grown on semi-insulating GaAs (001) and unintentionally doped (p-type) GaSb (001) substrates by pulsed KrF (248 nm) excimer laser ablation of a ZnTe target through an N{sub 2} ambient, without the use of any assisting (DC or AC) plasma source. Free hole concentrations in the mid-10{sup 19} cm{sup {minus}3} to > 10{sup 20} cm{sup {minus}3} range have been obtained. This appears to be the first time that any wide band gap (E{sub g} {ge} 2 eV) II-VI compound (or other) semiconductor has been impurity-doped from the gas phase by pulsed-laser ablation (PLA). The maximum carrier concentrations also may be the highest obtained for ZnTe by any method thus far. Because pulsed laser deposition is inherently digital, attractive deposition rates can be combined with precise control of layer thickness in epitaxial multilayered structures. Typical deposition conditions are < 0.5 {angstrom} per laser pulse, with crystalline quality governed by tradeoffs between substrate temperature, pulse repetition rate, and the focused pulsed laser energy density. PLA`s capability for growth of very thin epitaxial layers is being exploited and studied through growth of doped heteroepitaxial quantum well structures in the nearly lattice-matched ZnTe/CdSe//GaSb(substrate) system. Results obtained from growth and characterization of heterostructures in this system will be presented.

  16. Nonequilibrium diagrammatic technique for nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zebrev, G. I.

    2006-05-01

    A general approach based on gauge invariance requirements has been developed for automatic construction of quantum kinetic equation in electron systems, far for equilibrium. Proposed theoretical scheme has high generality and automatism and capable to treat nonequilibrium effects of electron transport, quantum interference and energy dissipation. Dissipative and quantum-interference effects can be consequentially incorporated in the computational scheme through solution of dynamic Dyson equation for self-energies in the framework of conventional diagrammatic technique.

  17. Nonequilibrium spin injection in monolayer black phosphorus.

    PubMed

    Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong

    2016-01-21

    Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium. PMID:26675820

  18. Nonequilibrium spin injection in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong

    Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium.

  19. Initial and apparent temperatures of finite nuclear systems - a quantum statistical thermodynamics study.

    NASA Astrophysics Data System (ADS)

    Majka; Staszel, P.; Natowitz, J. B.; Cibor, J.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1996-10-01

    Quantum statistical thermodynamics has been used to calculate the number of available states and their occupation for fermions and bosons at temperature, T_in, of finite nuclear sytems. An apparent temperature of these systems, T_app, has been calculated from double yield ratios of two isotope pairs. The importance of employing the quantum statistics when high densities and/or low temperatures are involved is shown. However, at high temperatures and low densities, the system behaves as a Maxwell-Boltzmann gas. Sequental decays of fragments from excited states influence the double yield ratio observable, causing problems with the temperature extraction. The model has been applied to study the high temperature branch of the "caloric curve".

  20. Locally covariant quantum field theory and the spin-statistics connection

    NASA Astrophysics Data System (ADS)

    Fewster, Christopher J.

    2016-03-01

    The framework of locally covariant quantum field theory (QFT), an axiomatic approach to QFT in curved spacetime (CST), is reviewed. As a specific focus, the connection between spin and statistics is examined in this context. A new approach is given, which allows for a more operational description of theories with spin and for the derivation of a more general version of the spin-statistics connection in CSTs than previously available. This part of the text is based on [C. J. Fewster, arXiv:1503.05797.] and a forthcoming publication; the emphasis here is on the fundamental ideas and motivation.

  1. Semi-inclusive DIS cross sections and spin asymmetries in the quantum statistical parton distributions approach

    NASA Astrophysics Data System (ADS)

    Bourrely, Claude; Buccella, Franco; Soffer, Jacques

    2011-04-01

    We consider the extension of the statistical parton distributions to include their transverse momentum dependence, by using two different methods, one is based on our quantum statistical approach, the other on a relativistic covariant method. We take into account the effects of the Melosh-Wigner rotation for the polarized distributions. The results obtained can be compared with recent semi-inclusive deep inelastic scattering (DIS) data on the cross section and double longitudinal-spin asymmetries from JLab. We also give some predictions for future experiments on electron-neutron scattering.

  2. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  3. Quantum statistical thermodynamics of hot finite nuclear systems: Temperatures and isotopic yield ratios

    SciTech Connect

    Majka, Z.; Staszel, P.; Cibor, J.; Natowitz, J.B.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1997-06-01

    We investigate the importance of the quantum statistics and deexcitation of primary fragments on the isotope yield ratio temperature determination. A phenomenological formula is presented which allows derivation of the temperature of the decaying nuclear system at the freeze-out time from the measured double yield ratios of two isotope pairs. This prescription is applied to the recent ALADIN and EOS Collaboration data. {copyright} {ital 1997} {ital The American Physical Society}

  4. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations.

    PubMed

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-17

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states. PMID:27367395

  5. Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations

    NASA Astrophysics Data System (ADS)

    Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor

    2016-06-01

    Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.

  6. Statistical-fluctuation analysis for quantum key distribution with consideration of after-pulse contributions

    NASA Astrophysics Data System (ADS)

    Li, Hongxin; Jiang, Haodong; Gao, Ming; Ma, Zhi; Ma, Chuangui; Wang, Wei

    2015-12-01

    The statistical fluctuation problem is a critical factor in all quantum key distribution (QKD) protocols under finite-key conditions. The current statistical fluctuation analysis is mainly based on independent random samples, however, the precondition cannot always be satisfied because of different choices of samples and actual parameters. As a result, proper statistical fluctuation methods are required to solve this problem. Taking the after-pulse contributions into consideration, this paper gives the expression for the secure key rate and the mathematical model for statistical fluctuations, focusing on a decoy-state QKD protocol [Z.-C. Wei et al., Sci. Rep. 3, 2453 (2013), 10.1038/srep02453] with a biased basis choice. On this basis, a classified analysis of statistical fluctuation is represented according to the mutual relationship between random samples. First, for independent identical relations, a deviation comparison is made between the law of large numbers and standard error analysis. Second, a sufficient condition is given that the Chernoff bound achieves a better result than Hoeffding's inequality based on only independent relations. Third, by constructing the proper martingale, a stringent way is proposed to deal issues based on dependent random samples through making use of Azuma's inequality. In numerical optimization, the impact on the secure key rate, the comparison of secure key rates, and the respective deviations under various kinds of statistical fluctuation analyses are depicted.

  7. Computer simulation of nonequilibrium processes

    SciTech Connect

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed.

  8. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    voltage only single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. A pilot version of a hydrodynamic 'atomistic' simulator has been developed in order to study the effect of the nonequilibrium, non local transport in decanano MOSFETs on the random dopant induced current fluctuations. For the first time we have also applied the density gradient approach in 3D to investigate the effect of the quantum confinement on the threshold voltage fluctuations. The developed 'atomistic' simulation techniques have been applied to study various fluctuation resistant MOSFET architectures including epitaxial and delta doped devices.

  9. Statistics of transmission eigenvalues in two-dimensional quantum cavities: Ballistic versus stochastic scattering

    NASA Astrophysics Data System (ADS)

    Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim

    2007-03-01

    We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.

  10. Sanov and central limit theorems for output statistics of quantum Markov chains

    SciTech Connect

    Horssen, Merlijn van; Guţă, Mădălin

    2015-02-15

    In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.

  11. Detection of beamsplitting attack in a quantum cryptographic channel based on photon number statistics monitoring

    NASA Astrophysics Data System (ADS)

    Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.

    2014-10-01

    Quantum cryptography in theory allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source. In order to overcome this possibility, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. We present an alternative method based on monitoring photon number statistics after detection. This method can therefore be used with any existing protocol.

  12. Overcoming statistical error and bias in quantum Monte Carlo: Application to metal-doped helium clusters

    NASA Astrophysics Data System (ADS)

    Warren, Gary Lee, Jr.

    2005-11-01

    Quantum Monte Carlo (QMC) methods are a class of powerful computer simulation techniques for solving the many-body Schrodinger equation. These techniques deliver essentially exact results and boast favorable computational scaling with system size. Calculations provide a full quantum mechanical treatment and may be carried to arbitrary precision. These characteristics make QMC a promising choice for the investigation of doped helium clusters, where quantum effects are substantial. Stochastic in nature, QMC methods are susceptible to statistical bias and error, which must be carefully controlled. Moreover, the relationship between the finite sampling error and the statistical uncertainty in observables has never been systematically investigated. Estimates of arbitrary observables are often substandard and can be plagued by statistical uncertainties an order of magnitude or greater than those for corresponding estimates of the energy. In this work, we present an analysis of how finite populations, importance sampling, and dimensionality affect the statistical uncertainties in QMC estimates of arbitrary observables. We find that the uncertainty depends exponentially on the dimensionality of the system, independent of the observable or nature of the system. This provides insight into the minimal population sizes and importance sampling requirements necessary to obtain useful QMC estimates of properties in high-dimensional systems. With this understanding, we develop new, more robust energy optimization procedures for cluster wavefunctions. We also implement a high quality eight parameter ansatz for the investigation of both pure and doped helium cluster systems. Compared to exact DMC results, the optimized wavefunctions recover over 90% of the total energy for clusters of size n ≤ 20. Finally, we apply this knowledge directly to the study of the solvation behavior of neutral calcium and magnesium impurities in helium nanodroplets. Diffusion Monte Carlo calculations

  13. Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.

    PubMed

    Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael

    2007-06-01

    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential. PMID:17677233

  14. Statistical theory of relaxation of high-energy electrons in quantum Hall edge states

    NASA Astrophysics Data System (ADS)

    Lunde, Anders Mathias; Nigg, Simon E.

    2016-07-01

    We investigate theoretically the energy exchange between the electrons of two copropagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy-resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states, even analytically under certain conditions. In the absence of translational invariance along the edge, e.g., due to the presence of disorder, energy can be exchanged by non-momentum-conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge-state heating as a result of the relaxation of the injected electrons.

  15. Deterministic quantum evolution through modification of the hypotheses of statistical mechanics

    SciTech Connect

    Schulman, L.S.

    1986-02-01

    It is claimed that for all apparatus capable of performing macroscopic measurements of microscopic systems there exist special internal states for which deterministic quantum evolution alone yields a particular macroscopic outcome rather than a superposition of macroscopically distinct outcomes. Schulman maintains that these special states are distributed uniformly (in a certain sense) among the set of all states. He postulates that in the absence of precise information on apparatus initial conditions one should give equal weight to those microstates that are consistent with the macroscopic state and are special in the sense used above. Evidence is presented for this postulate's recovering the usual quantum probabilities. This theory is fully deterministic, has no collapsing wave functions, and offers a resolution of the quantum measurement problem through a revision of the usual statistical mechanical handling of initial conditions. It requires a single wave function for the entire universe and an all-encompassing conspiracy to arrange the right sort of special wave function for each experiment. As an example Schulman considers a Stern-Gerlach apparatus that measures the z component of the spin of silver atoms that pass through it. Although Schulman does not provide physical or philosophical justification for his central hypothesis, some perspective is given by examining the notions implicit in the usual principles of thermodynamics.

  16. A Quantitative Model for the Thermocouple Effect Using Statistical and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bramley, Paul; Clark, Stewart

    2003-09-01

    This paper employs statistical and quantum mechanics to develop a model for the mechanism underlying the Seebeck effect. The conventional view of the equilibrium criterion for valence electrons in a material is that the Fermi Energy should be constant throughout the system. However, this criterion is an approximation and it is shown to be inadequate for thermocouple systems. An improved equilibrium criterion is developed by applying statistical and quantum mechanics to determine the total flow of electrons across an arbitrary boundary within a system. Dynamic equilibrium is then considered to be the situation where the Fermi Energy either side of the boundary is such that the flow of electrons in each direction is the same. This equilibrium criterion is then applied to the conditions along the thermocouple wires and at the junctions in order to generate a model for the Seebeck effect. The equations involved for calculating the electronic structure of a material cannot be solved analytically, so a solution is achieved using numeric models employing CASTEP code running on a Sun Beowulf cluster and iterative algorithms written in the Excel™ VBA language on a PC. The model is used to calculate the EMF versus temperature function for the gold versus platinum thermocouple, which is then compared with established experimental data.

  17. Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states

    SciTech Connect

    Bonderson, Parsa; Gurarie, Victor; Nayak, Chetan

    2011-02-15

    We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level, most notably the one at filling fraction {nu}=5/2. We complete the program started in V. Gurarie and C. Nayak, [Nucl. Phys. B 506, 685 (1997)]. and show that the degenerate four-quasihole and six-quasihole wave functions of the Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal blocks in a c=1+(1/2) conformal field theory. As a consequence, this proves that the non-Abelian statistics of the excitations in this state are given by the explicit analytic continuation of these wave functions. Our proof is based on a plasma analogy derived from the Coulomb gas construction of Ising model correlation functions involving both order and (at most two) disorder operators. We show how this computation also determines the non-Abelian statistics of collections of more than six quasiholes and give an explicit expression for the corresponding conformal block-derived wave functions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian wave function and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and anti-Pfaffian states.

  18. Symmetry and the thermodynamics of currents in open quantum systems

    NASA Astrophysics Data System (ADS)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  19. Statistics

    Cancer.gov

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  20. Quantum-like microeconomics: Statistical model of distribution of investments and production

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2008-10-01

    In this paper we demonstrate that the probabilistic quantum-like (QL) behavior-the Born’s rule, interference of probabilities, violation of Bell’s inequality, representation of variables by in general noncommutative self-adjoint operators, Schrödinger’s dynamics-can be exhibited not only by processes in the micro world, but also in economics. In our approach the QL-behavior is induced not by properties of systems. Here systems (commodities) are macroscopic. They could not be superpositions of two different states. In our approach the QL-behavior of economical statistics is a consequence of the organization of the process of production as well as investments. In particular, Hamiltonian (“financial energy”) is determined by rate of return.

  1. Quantum-statistical T-matrix approach to line broadening of hydrogen in dense plasmas

    SciTech Connect

    Lorenzen, Sonja; Wierling, August; Roepke, Gerd; Reinholz, Heidi; Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2010-10-29

    The electronic self-energy {Sigma}{sup e} is an important input in a quantum-statistical theory for spectral line profile calculations. It describes the influence of plasma electrons on bound state properties. In dense plasmas, the effect of strong, i.e. close, electron-emitter collisions can be considered by three-particle T-matrix diagrams. These digrams are approximated with the help of an effective two-particle T-matrix, which is obtained from convergent close-coupling calculations with Debye screening. A comparison with other theories is carried out for the 2p level of hydrogen at k{sub B}T = 1 eV and n{sub e} = 2{center_dot}10{sup 23} m{sup -3}, and results are given for n{sub e} = 1{center_dot}10{sup 25} m{sup -3}.

  2. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  3. Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Gulden, Tobias; Janas, Michael; Kamenev, Alex

    2014-03-01

    Statistical mechanics of 1D Coulomb gases may be mapped onto (in general) non-Hermitian quantum mechanics. We use this example to develop non-Hermitian instanton calculus. Treating momentum and coordinate as independent complex variables, constant energy manifolds are given by Riemann surfaces of genus g >= 1 . The actions along principal cycles on these surfaces obey an ODE in the moduli space of the Riemann surface known as the Picard-Fuchs equation. Solving the Picard-Fuchs equation yields semiclassical spectra as well as instanton effects such as width of Bloch bands (the latter determines energy barrier for charge transport). Both are shown to be in perfect agreement with numerical simulations. Applications include transport through biological ion channels as well as nanofluidics, e.g water filled nanotubes. The work was supported by NSF grant DMR1306734.

  4. Statistical mechanics of Coulomb gases as quantum theory on Riemann surfaces

    SciTech Connect

    Gulden, T.; Janas, M.; Koroteev, P.; Kamenev, A.

    2013-09-15

    Statistical mechanics of a 1D multivalent Coulomb gas can be mapped onto non-Hermitian quantum mechanics. We use this example to develop the instanton calculus on Riemann surfaces. Borrowing from the formalism developed in the context of the Seiberg-Witten duality, we treat momentum and coordinate as complex variables. Constant-energy manifolds are given by Riemann surfaces of genus g {>=} 1. The actions along principal cycles on these surfaces obey the ordinary differential equation in the moduli space of the Riemann surface known as the Picard-Fuchs equation. We derive and solve the Picard-Fuchs equations for Coulomb gases of various charge content. Analysis of monodromies of these solutions around their singular points yields semiclassical spectra as well as instanton effects such as the Bloch bandwidth. Both are shown to be in perfect agreement with numerical simulations.

  5. Number-resolved master equation approach to quantum measurement and quantum transport

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qi

    2016-08-01

    In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.

  6. The statistical fluctuation analysis for the measurement-device-independent quantum key distribution with heralded single-photon sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xing-Yu; Zhang, Chun-Hui; Guo, Guang-Can; Wang, Qin

    2016-06-01

    In this paper, we carry out statistical fluctuation analysis for the new proposed measurement-device-independent quantum key distribution with heralded single-photon sources and further compare its performance with the mostly often used light sources, i.e., the weak coherent source. Due to a significantly lower probability for events with two photons present on the same side of the beam splitter in former than in latter, it gives drastically reduced quantum bit error rate in the X basis and can thus show splendid behavior in real-life implementations even when taking statistical fluctuations into account.

  7. Correlations and Statistics of the Discrete Spectra of Multielectron Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marcus, Charles M.

    1998-03-01

    This talk concerns the effects of electron-electron interactions on the ground state and excited state spectra of multielectron quantum dots. Recent experiments are described in which linear and nonlinear magnetoconductance measurements of Coulomb blockade peaks in low-temperature regime, kT<Δ << Ec (Δ is the mean level spacing, Ec is the charging energy), are used to ``fingerprint'' individual quantum levels, as ground states as well as excited states. Quantum levels maintain their magnetofingerprint for up to 4 consecutive peaks, moving sequentially from higher excited states to the ground state as electrons are added to the dot.(D.R. Stewart, D.S. Sprinzak, C.M. Marcus, C. I. Duruoz, J.S. Harris, Jr., Science 278), 17 84 (1997). This observation is (perhaps surprisingly) in accordance with a simple single-particle constant-interaction picture of quantum Coulomb blockade transport, except for a notable absence of spin degeneracy in the spectrum. In a related measurement (S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruoz, J. S. Harris, K. Campman, A. C. Gossard, "Statistics of Peak Spacing Fluctuations" (preprint) condmat/9708090), the distribution of spacings between Coulomb blockade peaks measured over ~ 10^4 peaks also fails to show spin degeneracy, which would show up as a bimodal spacing distribution. Both experiments suggest that multielectron chaotic or disordered dots show a breaking of spin pairing similar to Hund's rule effects in atoms and few-electron parabolic dots. Related papers can be found at http:// www.stanford.edu/group/MarcusLab/grouppubs.html. Support for the Marcus Group from ARO (DAAH04-95-1-0331), ONR (N00014-94-1-0622) and NSF-NYI and PECASE programs, for the Harris Group (Stanford) from JSEP (DAAH04-94-G-0058), and for the Gossard Group (UCSB) from the AFOSR (F49620-94-1-0158) and QUEST is greatfully acknowledged.

  8. A statistical approach for analyzing the development of 1H multiple-quantum coherence in solids.

    PubMed

    Mogami, Yuuki; Noda, Yasuto; Ishikawa, Hiroto; Takegoshi, K

    2013-05-21

    A novel statistical approach for analyzing (1)H multiple-quantum (MQ) spin dynamics in so-called spin-counting solid-state NMR experiments is presented. The statistical approach is based on the percolation theory with Monte Carlo methods and is examined by applying it to the experimental results of three solid samples having unique hydrogen arrangement for 1-3 dimensions: the n-alkane/d-urea inclusion complex as a one-dimensional (1D) system, whose (1)H nuclei align approximately in 1D, and magnesium hydroxide and adamantane as a two-dimensional (2D) and a three-dimensional (3D) system, respectively. Four lattice models, linear, honeycomb, square and cubic, are used to represent the (1)H arrangement of the three samples. It is shown that the MQ dynamics in adamantane is consistent with that calculated using the cubic lattice and that in Mg(OH)2 with that calculated using the honeycomb and the square lattices. For n-C20H42/d-urea, these 4 lattice models fail to express its result. It is shown that a more realistic model representing the (1)H arrangement of n-C20H42/d-urea can describe the result. The present approach can thus be used to determine (1)H arrangement in solids. PMID:23580152

  9. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    PubMed Central

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  10. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  11. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  12. Van der Waals quantum friction and fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Dalvit, Diego; Intravaia, Francesco; Behunin, Ryan

    2014-03-01

    We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a non-equilibrium fluctuation-dissipation relation, and show that in the large-time, steady-state regime quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero temperature frictional force, mainly due to the low frequency nature of quantum friction.

  13. Testing statistics of the CMB B -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Hikage, Chiaki; Namba, Ryo; Namikawa, Toshiya; Hazumi, Masashi

    2016-08-01

    The B -mode polarization in the cosmic microwave background (CMB) anisotropies at large angular scales provides compelling evidence for the primordial gravitational waves (GWs). It is often stated that a discovery of the GWs establishes the quantum fluctuation of vacuum during the cosmic inflation. Since the GWs could also be generated by source fields, however, we need to check if a sizable signal exists due to such source fields before reaching a firm conclusion when the B mode is discovered. Source fields of particular types can generate non-Gaussianity (NG) in the GWs. Testing statistics of the B mode is a powerful way of detecting such NG. As a concrete example, we show a model in which gauge field sources chiral GWs via a pseudoscalar coupling and forecast the detection significance at the future CMB satellite LiteBIRD. Effects of residual foregrounds and lensing B mode are both taken into account. We find the B -mode bispectrum "BBB" is in particular sensitive to the source-field NG, which is detectable at LiteBIRD with a >3 σ significance. Therefore the search for the BBB will be indispensable toward unambiguously establishing quantum fluctuation of vacuum when the B mode is discovered. We also introduced the Minkowski functional to detect the NGs. While we find that the Minkowski functional is less efficient than the harmonic-space bispectrum estimator, it still serves as a useful cross-check. Finally, we also discuss the possibility of extracting clean information on parity violation of GWs and new types of parity-violating observables induced by lensing.

  14. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  15. Quantum work statistics of charged Dirac particles in time-dependent fields

    SciTech Connect

    Deffner, Sebastian; Saxena, Avadh

    2015-09-28

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

  16. Quantum work statistics of charged Dirac particles in time-dependent fields.

    PubMed

    Deffner, Sebastian; Saxena, Avadh

    2015-09-01

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics. PMID:26465456

  17. Full counting statistics of transport electrons through a two-level quantum dot with spin–orbit coupling

    SciTech Connect

    Wang, Z.M.; Xue, H.B.; Xue, N.T.; Liang, J.-Q.

    2015-02-15

    We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.

  18. Statistical physics ""Beyond equilibrium

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  19. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  20. Topological quantum-phase coherence in full counting statistics of transport electrons with two-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Fang; Xue, Hai-Bin; Liang, Jiu-Qing

    2014-08-01

    The full counting statistics of electron transport through two parallel quantum dots with antiparallel magnetic fluxes is investigated as a probe to detect the topological quantum-phase coherence (TQPC), which results in the characteristic oscillation of the zero-frequency cumulants including the shot noise and skewness. We show explicitly the phase transition of cumulant spectrum-patterns induced by the topology change of electron path-loops while the pattern period, which depends only on the topology (or Chern number), is robust against the variation of Coulomb interaction and interdot coupling strengths. Most importantly we report for the first time on a new type of TQPC, which is generated by the two-particle interaction and does not exist in the single-particle wave function interference. Moreover, the accurately quantized peaks of Fano-factor spectrum, which characterize the super- and sub-Poissonian shot noises, are of fundamental importance in technical applications similar to the superconducting quantum interference device.

  1. Uncertainty Relation for a Quantum Open System

    NASA Astrophysics Data System (ADS)

    Hu, B. L.; Zhang, Yuhong

    We derive the uncertainty relation for a quantum open system consisting of a Brownian particle interacting with a bath of quantum oscillators at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the system. We show that upon contact with the bath (assumed to be ohmic in this paper) the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is the same as the decoherence time in similar models in the discussion of quantum to classical transition. This offers some insight into the physical mechanisms involved in the environment-induced decoherence process. We obtain closed analytic expressions for this generalized uncertainty relation under the conditions of high temperature and weak damping, separately. We also consider under these conditions an arbitrarily squeezed initial state and show how the squeeze parameter enters in the generalized uncertainty relation. Using these results we examine the transition of the system from a quantum pure state to a nonequilibrium quantum statistical state and to an equilibrium quantum statistical state. The three stages are marked by the decoherence time and the relaxation time, respectively. With these observations we explicate the physical conditions under which the two basic postulates of quantum statistical mechanics become valid. We also comment on the inappropriate usage of the word “classicality” in many decoherence studies of quantum to classical transition.

  2. Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations

    SciTech Connect

    Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.

    2010-12-22

    In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to

  3. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    SciTech Connect

    James W. Dufty

    2007-04-28

    This is the Final Technical Report for DE-FG02-2ER54677 award “Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas”. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  4. Quantum work statistics of charged Dirac particles in time-dependent fields

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Saxena, Avadh

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics. SD acknowledges financial support by the U.S. Department of Energy through a LANL Director's Funded Fellowship.

  5. First principles nonequilibrium plasma mixing

    NASA Astrophysics Data System (ADS)

    Ticknor, C.; Herring, S. D.; Lambert, F.; Collins, L. A.; Kress, J. D.

    2014-01-01

    We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.

  6. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2015-04-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations.

  7. Spin fluctuations of nonequilibrium electrons and excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.

    2016-03-01

    Effects that are related to deviations from thermodynamic equilibrium have a special place in modern physics. Among these, nonequilibrium phenomena in quantum systems attract the highest interest. The experimental technique of spin-noise spectroscopy has became quite widespread, which makes it possible to observe spin fluctuations of charge carriers in semiconductors under both equilibrium and nonequilibrium conditions. This calls for the development of a theory of spin fluctuations of electrons and electron-hole complexes for nonequilibrium conditions. In this paper, we consider a range of physical situations where a deviation from equilibrium becomes pronounced in the spin noise. A general method for the calculation of electron and exciton spin fluctuations in a nonequilibrium state is proposed. A short review of the theoretical and experimental results in this area is given.

  8. Residence time statistics for N renewal processes.

    PubMed

    Burov, S; Barkai, E

    2011-10-21

    We present a study of residence time statistics for N renewal processes with a long tailed distribution of the waiting time. Such processes describe many nonequilibrium systems ranging from the intensity of N blinking quantum dots to the residence time of N Brownian particles. With numerical simulations and exact calculations, we show sharp transitions for a critical number of degrees of freedom N. In contrast to the expectation, the fluctuations in the limit of N→∞ are nontrivial. We briefly discuss how our approach can be used to detect nonergodic kinetics from the measurements of many blinking chromophores, without the need to reach the single molecule limit. PMID:22107497

  9. Cooling and Non-equilibrium Motion of an Ultracold Atomic Gas using Synthetic Thermal Bodies

    NASA Astrophysics Data System (ADS)

    Price, Craig; Liu, Qi; Zhao, Jianshi; Gemelke, Nathan

    2016-05-01

    We describe the non-equilibrium behavior of atomic gases immersed in synthetic thermal environments created by engineered statistical reservoirs of spatio-temporally disordered light. By dynamically modulating the modal distribution of an optical fiber carrying far off-resonant light, optical dipole potentials are created for 87 Rb atoms with specified spatial and temporal spectra. Additional coupling to thermal reserviors defined by time-dependent radio-frequency-induced hyperfine spin-couplings offers a wide range of control over thermal excitations. By controlling the statistical properties of the baths, diffusive motion can be tailored in real-time, and transport can be controlled even at ultra-cold temperatures below the photon recoil. The use of an effectively statistical classical body opens new avenues for quantum simulation, and offers opportunities for study of systems governed by effective hamiltonians which are themselves poised near critical points, and the simulation of effectively many-body systems through the non-equilibrium motion of single atoms.

  10. Quantum Information and Computing

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Ohya, Masanori; Watanabe, N.

    2006-03-01

    Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An

  11. Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Erven, C.; Heim, B.; Meyer-Scott, E.; Bourgoin, J. P.; Laflamme, R.; Weihs, G.; Jennewein, T.

    2012-12-01

    The statistical fluctuations in free-space links in the turbulent atmosphere are important for the distribution of quantum signals. To that end, we first study statistics generated by the turbulent atmosphere in an entanglement-based free-space quantum key distribution (QKD) system. Using the insights gained from this analysis, we study the effect of link fluctuations on the security and key generation rate of decoy state QKD concluding that it has minimal effect in the typical operating regimes. We then investigate the novel idea of using these turbulent fluctuations to our advantage in QKD experiments. We implement a signal-to-noise ratio filter (SNRF) in our QKD system which rejects measurements during periods of low transmission efficiency, where the measured quantum bit error rate is temporarily elevated. Using this, we increase the total secret key generated by the system from 78 009 bits to 97 678 bits, representing an increase of 25.2% in the final secure key rate, generated from the same raw signals. Lastly, we present simulations of a QKD exchange with an orbiting low earth orbit satellite and show that an SNRF will be extremely useful in such a situation, allowing many more passes to extract a secret key than would otherwise be possible.

  12. Quantum paradoxes originating from the nonclassical statistics of physical properties related to each other by half-periodic transformations

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2015-06-01

    Quantum paradoxes show that quantum statistics can exceed the limits of positive joint probabilities for physical properties that cannot be measured jointly. It is therefore impossible to describe the relations between the different physical properties of a quantum system by assigning joint realities to their observable values. Instead, recent experimental results obtained by weak measurements suggest that nonclassical correlations could be expressed by complex valued quasiprobabilities, where the phases of the complex probabilities express the action of transformations between the noncommuting properties [H. F. Hofmann, New J. Phys. 13, 103009 (2011), 10.1088/1367-2630/13/10/103009]. In these relations, negative probabilities necessarily emerge whenever the physical properties involved are related to each other by half-periodic transformations, since such transformations are characterized by action phases of π in their complex probabilities. It is therefore possible to trace the failure of realist assumptions back to a fundamental and universally valid relation between statistics and dynamics that associates half-periodic transformations with negative probabilities.

  13. Nonequilibrium surface tension

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2015-12-01

    A weakly nonlocal phase-field model is used to define surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. In nonequilibrium conditions, surface tension changes with time: during mixing, it decreases as the inverse square root of time, while during phase separation, when nuclei coagulate, it increases exponentially to its equilibrium value. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis.

  14. Spontaneous generation of phase waves and solitons in stimulated Raman scattering. II. Quantum statistics of Raman-soliton generation

    NASA Astrophysics Data System (ADS)

    Englund, John C.; Bowden, Charles M.

    1992-07-01

    The formalism of Englund and Bowden [Phys. Rev. A 42, 2870 (1990)] is used to conduct a detailed investigation into the statistics of spontaneously generated Raman solitons and their origin in phase waves. Two approaches are adopted. In one, a Monte Carlo simulation of the stochastic differential equations describing stimulated Raman scattering is carried out, with quantum noise entering through the Stokes vacuum. The other involves determining analytically the field statistics in the quantum-initiation regime, finding the corresponding phase-wave statistics, and determining numerically the class of phase waves that appear in the nonlinear regime as solitons. Computations involving quasi-Gaussian and rectangular pump-pulse profiles consistently indicate soliton yields of roughly 10% and 4%, respectively; differences in the distributions of soliton delay times and peak intensities are also indicated. The Monte Carlo method is adapted to the experimental parameter values of MacPherson et al. [Phys. Rev. A 40, 6745 (1989)], and gives yields and distribution in good accord with the experiment.

  15. Uncertainty limits for quantum metrology obtained from the statistics of weak measurements

    SciTech Connect

    Hofmann, Holger F.

    2011-02-15

    Quantum metrology uses small changes in the output probabilities of a quantum measurement to estimate the magnitude of a weak interaction with the system. The sensitivity of this procedure depends on the relation between the input state, the measurement results, and the generator observable describing the effect of the weak interaction on the system. This is similar to the situation in weak measurements, where the weak value of an observable exhibits a symmetric dependence on initial and final conditions. In this paper, it is shown that the phase sensitivity of a quantum measurement is in fact given by the variance of the imaginary parts of the weak values of the generator over the different measurement outcomes. It is then possible to include the limitations of a specific quantum measurement in the uncertainty bound for phase estimates by subtracting the variance of the real parts of the weak values from the initial generator uncertainty. This uncertainty relation can be interpreted as the time-symmetric formulation of the uncertainty limit of quantum metrology, where the real parts of the weak values represent the information about the generator observable in the final measurement result.

  16. EQUILIBRIUM AND NONEQUILIBRIUM FOUNDATIONS OF FREE ENERGY COMPUTATIONAL METHODS

    SciTech Connect

    C. JARZYNSKI

    2001-03-01

    Statistical mechanics provides a rigorous framework for the numerical estimation of free energy differences in complex systems such as biomolecules. This paper presents a brief review of the statistical mechanical identities underlying a number of techniques for computing free energy differences. Both equilibrium and nonequilibrium methods are covered.

  17. Cavity-Enhanced Light Scattering in Optical Lattices to Probe Atomic Quantum Statistics

    SciTech Connect

    Mekhov, Igor B.; Maschler, Christoph; Ritsch, Helmut

    2007-03-09

    Different quantum states of atoms in optical lattices can be nondestructively monitored by off-resonant collective light scattering into a cavity. Angle resolved measurements of photon number and variance give information about atom-number fluctuations and pair correlations without single-site access. Observation at angles of diffraction minima provides information on quantum fluctuations insensitive to classical noise. For transverse probing, no photon is scattered into a cavity from a Mott insulator phase, while the photon number is proportional to the atom number for a superfluid.

  18. Finite-time full counting statistics and factorial cumulants for transport through a quantum dot with normal and superconducting leads

    NASA Astrophysics Data System (ADS)

    Droste, Stephanie; Governale, Michele

    2016-04-01

    We study the finite-time full counting statistics for subgap transport through a single-level quantum dot tunnel-coupled to one normal and one superconducting lead. In particular, we determine the factorial and the ordinary cumulants both for finite times and in the long-time limit. We find that the factorial cumulants violate the sign criterion, indicating a non-binomial distribution, even in absence of Coulomb repulsion due to the presence of superconducting correlations. At short times the cumulants exhibit oscillations which are a signature of the coherent transfer of Cooper pairs between the dot and the superconductor.

  19. Finite-time full counting statistics and factorial cumulants for transport through a quantum dot with normal and superconducting leads.

    PubMed

    Droste, Stephanie; Governale, Michele

    2016-04-13

    We study the finite-time full counting statistics for subgap transport through a single-level quantum dot tunnel-coupled to one normal and one superconducting lead. In particular, we determine the factorial and the ordinary cumulants both for finite times and in the long-time limit. We find that the factorial cumulants violate the sign criterion, indicating a non-binomial distribution, even in absence of Coulomb repulsion due to the presence of superconducting correlations. At short times the cumulants exhibit oscillations which are a signature of the coherent transfer of Cooper pairs between the dot and the superconductor. PMID:26963047

  20. Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon

    NASA Astrophysics Data System (ADS)

    Shech, Elay

    2015-09-01

    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov-Bohm effect, it is suggested that the standard approach to the effects—(what we may call) the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and endorsed. Roles for idealizations in science, as well as consequences for the debate revolving around so-called essential idealizations, are discussed.

  1. Theory of nonequilibrium superconductivity in cuprates

    NASA Astrophysics Data System (ADS)

    Oka, Takashi; Pietilä, Ville

    2013-03-01

    Recently, nonequilibrium properties of Hi Tc superconductors are attracting much interest. This is because new experimental methods such as time resolved ARPES has been applied to cuprates and succeeded in observing the dynamics of photo-excited quasiparticles as well as the temporal evolution of the d-wave superconducting order parameter (e.g.,). One can also realize nonequilibrium states in interfaces between cuprates and metal electrodes and control the superconducting order by changing the applied bias. In order to study the dynamics of superconductivity in strongly correlated systems, we developed a novel numerical method by combining the quantum kinetic equation with the fluctuation exchange approximation (FLEX, self-consistent T-matrix approximation). This method enables us to study the interplay between pair mediating fluctuations, e.g., antiferromagnetic and charge fluctuations, and the dynamics of quasiparticles and superconducting order parameter. In the presentation, we explain the physical insights we obtain by applying this method to nonequilibrium dynamics in d-wave superconductors.

  2. Probing the effective nuclear-spin magnetic field in a single quantum dot via full counting statistics

    SciTech Connect

    Xue, Hai-Bin; Nie, Yi-Hang; Chen, Jingzhe; Ren, Wei

    2015-03-15

    We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD.

  3. Photon-photon correlation statistics in the collective emission from ensembles of self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Miftasani, Fitria; Machnikowski, Paweł

    2016-02-01

    We present a theoretical analysis of the intensity correlation functions for the spontaneous emission from a planar ensemble of self-assembled quantum dots. Using the quantum jump approach, we numerically simulate the evolution of the system and construct photon-photon delay time statistics that approximates the second-order correlation functions of the field. The form of this correlation function in the case of collective emission from a highly homogeneous ensemble qualitatively differs from that characterizing an ensemble of independent emitters (inhomogeneous ensemble of uncoupled dots). The signatures of collective emission are observed also in the case of an inhomogeneous but sufficiently strongly coupled ensemble. Different forms of the correlation functions are observed in the intensity autocorrelations and in cross correlations between various spectral ranges, revealing the quantum state projection associated with the detection event and the subsequent interaction-induced redistribution of occupations. The predicted effect of collective dynamics on the correlation functions appears under various excitation conditions. Thus, we show that the second-order correlation function of the emitted field provides a sensitive test of cooperative effects.

  4. Efficiency bounds for nonequilibrium heat engines

    SciTech Connect

    Mehta, Pankaj; Polkovnikov, Anatoli

    2013-05-15

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.

  5. Nonequilibrium effects in Isoscaling

    SciTech Connect

    Dorso, C. O.; Lopez, J. A.

    2007-02-12

    In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects.

  6. Exact work statistics of quantum quenches in the anisotropic XY model.

    PubMed

    Bayocboc, Francis A; Paraan, Francis N C

    2015-09-01

    We derive exact analytic expressions for the average work done and work fluctuations in instantaneous quenches of the ground and thermal states of a one-dimensional anisotropic XY model. The average work and a quantum fluctuation relation is used to determine the amount of irreversible entropy produced during the quench, eventually revealing how the closing of the excitation gap leads to increased dissipated work. The work fluctuation is calculated and shown to exhibit nonanalytic behavior as the prequench anisotropy parameter and transverse field are tuned across quantum critical points. Exact compact formulas for the average work and work fluctuation in ground state quenches of the transverse field Ising model allow us to calculate the first singular field derivative at the critical field values. PMID:26465461

  7. Skewness of steady-state current fluctuations in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Belousov, Roman; Cohen, E. G. D.; Wong, Chun-Shang; Goree, John A.; Feng, Yan

    2016-04-01

    A skewness of the probability for instantaneous current fluctuations, in a nonequilibrium steady state, is observed experimentally in a dusty plasma. This skewness is attributed to the spatial asymmetry, which is imminent to the nonequilibrium systems due to the external hydrodynamic gradient. Using the modern framework of the large deviation theory, we extend the Onsager-Machlup ansatz for equilibrium fluctuations to systems with a preferred spatial direction, and provide a modulated Gaussian probability distribution, which is tested by simulations. This probability distribution is also of potential interest for other statistical disciplines. Connections with the principles of statistical mechanics, due to Boltzmann and Gibbs, are discussed as well.

  8. Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.

    PubMed

    Nieuwenhuizen, Th M; Allahverdyan, A E

    2002-09-01

    The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of bath modes around the particle starts to play a nontrivial role, namely, when the bath temperature T is smaller than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not imply standard equilibrium thermodynamics for the particle itself at low T. Various formulations of the second law are found to be invalid at low T. First, the Clausius inequality can be violated, because heat can be extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it follows that the equivalence between different formulations of the second law (e.g., those by Clausius and Thomson) can be violated at low temperatures. These effects are the consequence of quantum entanglement in the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the characteristic quantum time scale variant Planck's over 2pi /k

  9. Geometry of Irreversibility: The Film of Nonequilibrium States

    NASA Astrophysics Data System (ADS)

    Gorban, Alexander N.; Karlin, Ilya V.

    A geometrical framework of nonequilibrium thermodynamics is developed in this chapter. The notion of macroscopically definable ensembles is introduced. A thesis about macroscopically definable ensembles is suggested. This thesis should play the same role in the nonequilibrium thermodynamics, as the well-known Church-Turing thesis in the theory of computability. The primitive macroscopically definable ensembles are described. These are ensembles with macroscopically prepared initial states. A method for computing trajectories of primitive macroscopically definable nonequilibrium ensembles is elaborated. These trajectories are represented as sequences of deformed quasiequilibrium ensembles and simple quadratic models between them. The primitive macroscopically definable ensembles form a manifold in the space of ensembles. We call this manifold the film of nonequilibrium states. The equation for the film and the equation for the ensemble motion on the film are written down. The notion of the invariant film of non-equilibrium states, and the method of its approximate construction transform the problem of nonequilibrium kinetics into a series of problems of equilibrium statistical physics. The developed methods allow us to solve the problem of macro-kinetics even when there are no autonomous equations of macro-kinetics.

  10. Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism

    SciTech Connect

    Trovato, M.; Reggiani, L.

    2011-12-15

    By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ({h_bar}/2{pi}){sup 2}. In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when ({h_bar}/2{pi}){yields}0.

  11. (Quantum) spacetime as a statistical geometry of lumps in random networks

    NASA Astrophysics Data System (ADS)

    Requardt, Manfred

    2000-05-01

    In the following we undertake to describe how macroscopic spacetime (or rather, a microscopic protoform of it) is supposed to emerge as a superstructure of a web of lumps in a stochastic discrete network structure. As in preceding work (mentioned below), our analysis is based on the working philosophy that both physics and the corresponding mathematics have to be genuinely discrete on the primordial (Planck scale) level. This strategy is concretely implemented in the form of cellular networks and random graphs. One of our main themes is the development of the concept of physical (proto)points or lumps as densely entangled subcomplexes of the network and their respective web, establishing something like (proto)causality. It may perhaps be said that certain parts of our programme are realizations of some early ideas of Menger and more recent ones sketched by Smolin a couple of years ago. We briefly indicate how this two-storey concept of quantum spacetime can be used to encode the (at least in our view) existing non-local aspects of quantum theory without violating macroscopic spacetime causality!

  12. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  13. Nonequilibrium localization and the interplay between disorder and interactions.

    PubMed

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R; Aguiar, M C O; França Santos, M

    2016-05-18

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics. PMID:27094321

  14. Nonequilibrium localization and the interplay between disorder and interactions

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R.; Aguiar, M. C. O.; França Santos, M.

    2016-05-01

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.

  15. PREFACE: Progress in Nonequilibrium Green's Functions IV

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael; Balzer, Karsten

    2010-04-01

    This is the fourth volume1 of articles on the theory of Nonequilibrium Green's functions (NEGF) and their modern application in various fields such as plasma physics, semiconductor physics, molecular electronics and high energy physics. It contains 23 articles written by experts in many-body theory and quantum transport who summarize recent progress in their respective area of research. The articles are based on talks given at the interdisciplinary conference Progress in Nonequilibrium Green's functions IV which was held 17-21 August 2009 at the University of Glasgow, Scotland. This conference continues the tradition of the previous meetings which started in 1999 and which aimed at an informal exchange across field boundaries. The previous meetings and the earlier proceedings proved to be very stimulating not only for young researchers but also for experienced scientists, and we are convinced that this fourth volume will be as successful as the previous ones. As before, this volume includes only extended review-type papers which are written in a way that they are understandable to a broad interdisciplinary audience. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administrated by the Editors assuring highest scientific standards. In the review process some papers were substantially revised and improved and some were rejected. This conference would not have been possible without the remarkable work of the local organizing team around John Barker and Scott Roy and the generous financial support from the University of Glasgow and the Deutsche Forschungsgemeinschaft via SFB-Transregio 24. Michael Bonitz and Karsten Balzer Kiel, February 2010 1 The first two volumes are Progress in Nonequilibrium Green's functions, M Bonitz (ed) and Progress in Nonequilibrium Green's functions II, M Bonitz and D Semkat (eds), which were published by World Scientific (Singapore), in 2000 and 2003, respectively (ISBN

  16. Quantum, Statistical, and Quasiclassical Trajectory Studies For the Ne + HeH(+) → NeH(+) + He Reaction on the Ground Electronic State.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2015-12-17

    Real wave packet, statistical quantum, and quasiclassical trajectory methods were employed to study the dynamics of Ne + HeH(+)(v0,j0) → He + NeH(+) reaction on an ab initio potential energy surface [J. Phys. Chem. A 2013, 117, 13070-13078]. Quantum and statistical quantum calculations were performed within the centrifugal sudden (CS) approximation as well as including the Coriolis coupling (CC). Dense oscillatory structures of the quantum reaction probabilities and fair agreement between quantum and statistical cross sections suggest a complex forming mechanism for the reaction. No significant differences between cross sections obtained within the CS and CC approaches are observed. Quasiclassical trajectory results give an excellent average description of the quantum CC results. At low collision energies, there is a substantial decrease in reactivity for the reaction upon rovibrational excitation. Initial state selected rate constants for the title reaction are calculated between 20 and 1000 K, and the calculated value at 300 K agrees quite well with the available experimental result. Reaction cross sections and rate constants are also compared with those calculated via the Langevin capture model for exothermic reactions. PMID:26172109

  17. Statistics of energy dissipation in a quantum dot operating in the cotunneling regime

    NASA Astrophysics Data System (ADS)

    Dinaii, Yehuda; Shnirman, Alexander; Gefen, Yuval

    2014-11-01

    At Coulomb blockade valleys inelastic cotunneling processes generate particle-hole excitations in quantum dots (QDs), and lead to energy dissipation. We have analyzed the probability distribution function (PDF) of energy dissipated in a QD due to such processes during a given time interval. We obtained analytically the cumulant generating function, and extracted the average, variance, and Fano factor. The latter diverges as T3/(eV ) 2 at bias e V smaller than the temperature T , and reaches the value 3 e V /5 in the opposite limit. The PDF is further studied numerically. As expected, the Crooks fluctuation relation is not fulfilled by the PDF. Our results can be verified experimentally utilizing transport measurements of charge.

  18. Quantum statistical entropy and minimal length of 5D Ricci-flat black string with generalized uncertainty principle

    SciTech Connect

    Liu Molin; Gui Yuanxing; Liu Hongya

    2008-12-15

    In this paper, we study the quantum statistical entropy in a 5D Ricci-flat black string solution, which contains a 4D Schwarzschild-de Sitter black hole on the brane, by using the improved thin-layer method with the generalized uncertainty principle. The entropy is the linear sum of the areas of the event horizon and the cosmological horizon without any cutoff and any constraint on the bulk's configuration rather than the usual uncertainty principle. The system's density of state and free energy are convergent in the neighborhood of horizon. The small-mass approximation is determined by the asymptotic behavior of metric function near horizons. Meanwhile, we obtain the minimal length of the position {delta}x, which is restrained by the surface gravities and the thickness of layer near horizons.

  19. Estimation of the thermodynamic properties of functional groups and biomolecules using quantum chemical/statistical thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Chai, Weisin

    The scarcity and sustainability of energy sources have always been a concern while seeking for alternative fuels. Biofuels have drawn the attention of various researchers due to their abundancy and renewability. Understanding the physical and chemical properties of these molecules is essential to determining their potential as alternative fuels or fuel additives. In this work, the properties of these molecules are predicted through methods developed from quantum mechanics and statistical mechanics theories. The heats of formations are calculated with the Gaussian program and combined with the Benson group contribution method to predict the Benson parameters of unknown functional groups in a molecule. The methods developed are used to expand the Benson database and improve the practicability of the group contribution method. The heats of formations are also used to predict and correlate heat capacities across a range of temperatures and energy densities in this study.

  20. Non-equilibrium 8π Josephson effect in atomic Kitaev wires.

    PubMed

    Laflamme, C; Budich, J C; Zoller, P; Dalmonte, M

    2016-01-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540

  1. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    PubMed Central

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-01-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540

  2. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-08-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses.

  3. Non-equilibrium DMFT - Polaritonics

    NASA Astrophysics Data System (ADS)

    Lubatsch, Andreas; Frank, Regine

    Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.

  4. Radiative interactions in nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chandrasekhar, R.

    1992-01-01

    The influence of vibrational and chemical nonequilibrium upon infrared radiative energy transfer in nonisothermal gases is investigated. Essential information is provided on rate equations, relaxation times, transfer equations, band absorption, and radiative flux equations. The methodology developed is applied to three specific cases. These are, absorbing-emitting species between isothermal parallel plates, radiating gases in the earth's atmosphere, and supersonic flow of premixed hydrogen and air in an expanding nozzle. The results obtained for different cases reveal that the extent of radiative interactions is reduced significantly under nonequilibrium conditions. The method developed can be easily extended to investigate radiative interactions in complex nonequilibrium flows.

  5. Emergence of canonical ensembles from pure quantum states.

    PubMed

    Cho, Jaeyoon; Kim, M S

    2010-04-30

    We consider a system weakly interacting with a bath as a thermodynamic setting to establish a quantum foundation of statistical physics. It is shown that even if the composite system is initially in an arbitrary nonequilibrium pure quantum state, the unitary dynamics of a generic weak interaction almost always drives the subsystem into the canonical ensemble, in the usual sense of typicality. A crucial step is taken by assuming that the matrix elements of the interaction Hamiltonian have random phases, while their amplitudes are left unrestricted. PMID:20482093

  6. Fluctuations of the heat exchanged between two quantum spin chains

    NASA Astrophysics Data System (ADS)

    Landi, Gabriel T.; Karevski, Dragi

    2016-03-01

    The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic function, from which the probability distribution may be computed numerically. These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic limit in this nonequilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the quantum phase transition of the XX chain.

  7. Nonlinear and Nonequilibrium Spin Injection in Magnetic Tunneling Junctions

    NASA Astrophysics Data System (ADS)

    Guo, Hong

    2007-03-01

    Quantitative analysis of charge and spin quantum transport in spintronic devices requires an atomistic first principles approach that can handle nonlinear and nonequilibrium transport conditions. We have developed an approach for this purpose based on real space density functional theory (DFT) carried out within the Keldysh nonequilibrium Green's function formalism (NEGF). We report theoretical analysis of nonlinear and nonequilibrium spin injection and quantum transport in Fe/MgO/Fe trilayer structures as a function of external bias voltage. Devices with well relaxed atomic structures and with FeO oxidization layers are investigated as a function of external bias voltage. We also report calculations of nonequilibrium spin injection into molecular layers and graphene. Comparisons to experimental data will be presented. Work in collaborations with: Derek Waldron, Vladimir Timochevski (McGill University); Ke Xia (Institute of Physics, Chinese Academy of Science, Beijing, China); Eric Zhu, Jian Wang (University of Hong Kong); Paul Haney, and Allan MacDonald (University of Texas at Austin).

  8. Full-counting statistics and phase transition in an open quantum system of non-interacting electrons

    NASA Astrophysics Data System (ADS)

    Medvedyeva, Mariya; Kehrein, Stefan

    2014-03-01

    We develop a method for calculating the full-counting statistics for a non-interacting fermionic system coupled to memory-less reservoirs. The evolution of the system is described by the Lindblad equation. We introduce the counting field in the Lindblad equation which yields the generating function and allows us to obtain all cumulants of the charge transport. In a uniform system the cumulants of order k are independent of the system size for systems longer than k+1 sites. The counting statistics from the Lindblad approach does not take into account the interference in the reservoirs which gives a decreased value of noise in comparison to the Green function approach which describes phase coherent leads. The two methods yield the same value for the current, which is due to current conservation. The Fano factors are different (and linearly related) and allow us to distinguish between memory-less and phase coherent reservoirs. We also consider the influence of dissipation along the chain allowing for both tunneling into and out of the chain along its length. Infinitesimally small dissipation along the chain induces a quantum phase transition which manifests itself as a discontinuity in transport properties and entropy.

  9. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria.

    PubMed

    Hamdi, Omer Abdalla Ahmed; Anouar, El Hassane; Shilpi, Jamil A; Trabolsy, Zuhra Bashir Khalifa Al; Zain, Sharifuddin Bin Md; Zakaria, Nur Shahidatul Shida; Zulkefeli, Mohd; Weber, Jean-Frédéric F; Malek, Sri Nurestri A; Rahman, Syarifah Nur Syed Abdul; Awang, Khalijah

    2015-01-01

    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay. PMID:25923077

  10. Wave packet and statistical quantum calculations for the He + NeH{sup +} → HeH{sup +} + Ne reaction on the ground electronic state

    SciTech Connect

    Koner, Debasish; Panda, Aditya N.; Barrios, Lizandra; González-Lezana, Tomás

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  11. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile. PMID:25240353

  12. NONEQUILIBRIUM FLUCTUATIONS IN SHOCK COMPRESSION OF POLYCRYSTALLINE ALPHA-IRON

    SciTech Connect

    Y. HORIE; K. YANO

    2001-06-01

    We report a numerical study of heterogeneous and nonequilibrium fluctuations in shock compression of {alpha}-iron at the grain level. A quasi-molecular code called DM2 is used to model the interactions of a plane shock wave with grain boundaries and crystal anisotropy over the pressure range of 5-45 GPa. Highly transient eddies that were reported earlier are again observed. We show new features through an elementary statistical analysis. They are (1) a characteristic decay constant for the non-equilibrium fluctuation on the order of 20ns, (2) a resonance phenomenon at an intermediate shock pressure, and (3) a more uniform shock structure for very high pressures.

  13. Ergodicity, mixing, and time reversibility for atomistic nonequilibrium steady states

    SciTech Connect

    Hoover, W.G.; Kum, O.

    1997-11-01

    Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equilibrium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is hard to visualize many-dimensional phase-space distributions, recent developments provide several practical numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful nonequilibrium test problem, an oscillator in a temperature gradient. {copyright} {ital 1997} {ital The American Physical Society}

  14. From superoperator formalism to nonequilibrium Thermo Field Dynamics

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Yamanaka, Y.

    2013-04-01

    Emphasizing that the specification of the representation space or the quasiparticle picture is essential in nonequilibrium quantum field system, we have constructed the unique unperturbed representation of the interaction picture in the superoperator formalism. To achieve it, we put the three basic requirements (the existence of the quasiparticle picture at each instant of time, the macroscopic causality and the relaxation to equilibrium). From the resultant representation follows the formulation of nonequilibrium Thermo Field Dynamics (TFD). The two parameters, the number distribution and excitation energy, characterizing the representation, are to be determined by the renormalization condition. While we point out that the diagonalization condition by Chu and Umezawa is inconsistent with the equilibrium theory, we propose a new renormalization condition as a generalization of the on-shell renormalization on the self-energy which derives the quantum transport equation and determines the renormalized excitation energy.

  15. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects. PMID:25494727

  16. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  17. Mathematical problems of irreversible statistical mechanics for quantum systems. I: Analytic continuation of the collision and destruction operators by spectral deformation method

    NASA Astrophysics Data System (ADS)

    Courbage, M.

    1982-04-01

    We study some mathematical problems posed in nonequilibrium statistical mechanics and subdynamics theory developed by Prigogine and coworkers. We study in the superspace of the Hilbert-Schmidt operators the solution of the Liouville-von Neumann equation. The application in this frame of the spectral deformation methods yields expression of analytic continuations of a class of matrix elements of the resolvent of the Liouville-von Neumann operator, and this allows the analytic continuation of the collision and destruction operators. However, it is impossible to obtain simultaneously analytic continuation of the creation operator in this frame. The above results will be used in the second part of the article in order to study the pseudo-Markovian equation.

  18. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  19. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  20. Landau superfluids as nonequilibrium stationary states

    SciTech Connect

    Wreszinski, Walter F.

    2015-01-15

    We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system.

  1. Nonequilibrium spin crossover in copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2016-03-01

    We demonstrate the nonequilibrium tip induced control of the spin state of copper phthalocyanine on an insulator coated substrate. We find that, under the condition of energetic proximity of many-body neutral excited states to the anionic ground state, the system can undergo a population inversion towards these excited states. The resulting state of the system is accompanied by a change in the total spin quantum number. Experimental signatures of the crossover are the appearance of additional nodal planes in the topographical scanning tunneling microscopy images as well as a strong suppression of the current near the center of the molecule. The robustness of the effect against moderate charge conserving relaxation processes has also been tested.

  2. Fundamental limitations for quantum and nanoscale thermodynamics.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. PMID:23800725

  3. Fundamental limitations for quantum and nanoscale thermodynamics

    NASA Astrophysics Data System (ADS)

    Horodecki, Michał; Oppenheim, Jonathan

    2013-06-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit—when the number of particles becomes very large. Here we study thermodynamics in the opposite regime—at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.

  4. Step-wise pulling protocols for non-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far

  5. Driven Markovian Quantum Criticality.

    PubMed

    Marino, Jamir; Diehl, Sebastian

    2016-02-19

    We identify a new universality class in one-dimensional driven open quantum systems with a dark state. Salient features are the persistence of both the microscopic nonequilibrium conditions as well as the quantum coherence of dynamics close to criticality. This provides a nonequilibrium analogue of quantum criticality, and is sharply distinct from more generic driven systems, where both effective thermalization as well as asymptotic decoherence ensue, paralleling classical dynamical criticality. We quantify universality by computing the full set of independent critical exponents within a functional renormalization group approach. PMID:26943517

  6. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  7. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  8. Nonequilibrium thermodynamics of an interface.

    PubMed

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics. PMID:27300960

  9. Nonequilibrium detonation of composite explosives

    SciTech Connect

    Nichols III, A.L.

    1997-07-01

    The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.

  10. Viscosity of confined inhomogeneous nonequilibrium fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Junfang; Todd, B. D.; Travis, Karl P.

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  11. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-06-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because "almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, "almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  12. Viscosity of confined inhomogeneous nonequilibrium fluids.

    PubMed

    Zhang, Junfang; Todd, B D; Travis, Karl P

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width. PMID:15549963

  13. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  14. Non-Equilibrium Transitions of Heliospheric plasma

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  15. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    SciTech Connect

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  16. Computer simulation of nonequilibrium processes

    SciTech Connect

    Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.

    1987-01-01

    Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion.

  17. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  18. Improved master equation approach to quantum transport: From Born to self-consistent Born approximation

    SciTech Connect

    Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing

    2014-06-28

    Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.

  19. The thermal vacuum for non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Imai, Ryosuke; Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya

    Our purpose is to construct a theoretical description of non-equilibrium steady state (NESS), employing thermo field dynamics (TFD). TFD is the operator-based formalism of thermal quautum field theory, where every degree of freedom is doubled and thermal averages are given by expectation values of the thermal vacuum. To specify the thermal vacuum for NESS is a non-trivial issue, and we attempt it on the analogy between the superoperator formalism and TFD. Using the thermal vacuum thus obtained, we analyze the NESS which is realized in the two-reservoir model. It will be shown that the NESS vacuum of the model coincides with the fixed point solutions of the quantum transport equation derived by the self-consistent renormalization of the self-energy in non-equilibrium TFD.

  20. A hydrodynamic approach to non-equilibrium conformal field theories

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2016-03-01

    We develop a hydrodynamic approach to non-equilibrium conformal field theory. We study non-equilibrium steady states in the context of one-dimensional conformal field theory perturbed by the T\\bar{T} irrelevant operator. By direct quantum computation, we show, to first order in the coupling, that a relativistic hydrodynamic emerges, which is a simple modification of one-dimensional conformal fluids. We show that it describes the steady state and its approach, and we provide the main characteristics of the steady state, which lies between two shock waves. The velocities of these shocks are modified by the perturbation and equal the sound velocities of the asymptotic baths. Pushing this approach further, we are led to conjecture that the approach to the steady state is generically controlled by the power law t -1/2, and that the widths of the shocks increase with time according to t 1/3.

  1. Maximum caliber inference of nonequilibrium processes.

    PubMed

    Otten, Moritz; Stock, Gerhard

    2010-07-21

    Thirty years ago, Jaynes suggested a general theoretical approach to nonequilibrium statistical mechanics, called maximum caliber (MaxCal) [Annu. Rev. Phys. Chem. 31, 579 (1980)]. MaxCal is a variational principle for dynamics in the same spirit that maximum entropy is a variational principle for equilibrium statistical mechanics. Motivated by the success of maximum entropy inference methods for equilibrium problems, in this work the MaxCal formulation is applied to the inference of nonequilibrium processes. That is, given some time-dependent observables of a dynamical process, one constructs a model that reproduces these input data and moreover, predicts the underlying dynamics of the system. For example, the observables could be some time-resolved measurements of the folding of a protein, which are described by a few-state model of the free energy landscape of the system. MaxCal then calculates the probabilities of an ensemble of trajectories such that on average the data are reproduced. From this probability distribution, any dynamical quantity of the system can be calculated, including population probabilities, fluxes, or waiting time distributions. After briefly reviewing the formalism, the practical numerical implementation of MaxCal in the case of an inference problem is discussed. Adopting various few-state models of increasing complexity, it is demonstrated that the MaxCal principle indeed works as a practical method of inference: The scheme is fairly robust and yields correct results as long as the input data are sufficient. As the method is unbiased and general, it can deal with any kind of time dependency such as oscillatory transients and multitime decays. PMID:20649320

  2. Boltzmann Fluctuations in Numerical Simulations of Nonequilibrium Lattice Threshold Systems

    SciTech Connect

    Rundle, J.B.; Klein, W.; Gross, S.; Turcotte, D.L.

    1995-08-21

    Nonequilibrium threshold systems such as slider blocks are now used to model a variety of dynamical systems, including earthquake faults, driven neural networks, and sliding charge density waves. We show that for general mean field models driven at low rates fluctuations in the internal energy field are characterized by Boltzmann statistics. Numerical simulations confirm this prediction. Our results indicate that mean field models can be effectively treated as equilibrium systems.

  3. Nonequilibrium properties of trapped ions under sudden application of a laser

    NASA Astrophysics Data System (ADS)

    Cifuentes, A. A.; Nicacio, F.; Paternostro, M.; Semião, F. L.

    2016-07-01

    Coherent quantum-state manipulation of trapped ions using classical laser fields is a trademark of modern quantum technologies. In this work, we study aspects of work statistics and irreversibility in a single trapped ion due to sudden interaction with the impinging laser. This is clearly an out-of-equilibrium process where work is performed through illumination of an ion by the laser. Starting with the explicit evaluation of the first moments of the work distribution, we proceed to a careful analysis of irreversibility as quantified by the nonequilibrium lag. The treatment employed here is not restricted to the Lamb-Dicke limit, which allows us to investigate the interplay between nonlinearities and irreversibility. We show that in these multiquantum or sideband regimes, variation of the Lamb-Dicke parameter causes a nonmonotonic behavior of the irreversibility indicator. Counterintuitively, we find a working point where nonlinearity helps reversibility, making the sudden quench of the Hamiltonian closer to what would have been obtained quasistatically and isothermally.

  4. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  5. Statistical Physics

    NASA Astrophysics Data System (ADS)

    Hermann, Claudine

    Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies - such as semiconductors or lasers - are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.

  6. Non-equilibrium electrodynamics in the large N expansion

    SciTech Connect

    Mottola, E.

    1994-02-01

    An effective action technique for the time evolution of a closed system consisting of a mean field interacting with charged fluctuations is presented, and applied specifically to Quantum Electrodynamics. The effective action of QED is first developed in a systematic expansion in 1/N where N is the number of distinct fermion species. Then by making use of the Schwinger-Keldysh closed time path (CTP) formulation of field theory, causality of the resulting equations of motion is ensured. In QED this technique may be used to study the quantum non-equilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e{sup +}e{sup {minus}} plasma. Numerical results for these processes in lowest order are presented. The renormalization procedure, connection to quantum transport theory and extension to QCD and other applications of the method are also discussed.

  7. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Schweizer, Marco; Öttinger, Hans Christian

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the ``dividing surface,'' as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a ``thermometer,'' and can be significantly different from the temperatures of the adjacent phases.

  8. Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Cazalilla, M. A.; Rigol, M.

    2010-05-01

    The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and

  9. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models. PMID:25019721

  10. Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective.

    PubMed

    Gao, Yi; Galperin, Michael

    2016-05-01

    We consider optical spectroscopy of molecular junctions from the quantum transport perspective when radiation field is quantized and optical response of the system is simulated as photon flux. Using exact expressions for photon and electronic fluxes derived within the nonequilibrium Green function (NEGF) methodology and utilizing fourth order diagrammatic perturbation theory (PT) in molecular coupling to radiation field, we perform simulations employing realistic parameters. Results of the simulations are compared to the bare PT which is usually employed in studies on nonlinear optical spectroscopy to classify optical processes. We show that the bare PT violates conservation laws, while flux conserving NEGF formulation mixes optical processes. PMID:27155631

  11. Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Galperin, Michael

    2016-05-01

    We consider optical spectroscopy of molecular junctions from the quantum transport perspective when radiation field is quantized and optical response of the system is simulated as photon flux. Using exact expressions for photon and electronic fluxes derived within the nonequilibrium Green function (NEGF) methodology and utilizing fourth order diagrammatic perturbation theory (PT) in molecular coupling to radiation field, we perform simulations employing realistic parameters. Results of the simulations are compared to the bare PT which is usually employed in studies on nonlinear optical spectroscopy to classify optical processes. We show that the bare PT violates conservation laws, while flux conserving NEGF formulation mixes optical processes.

  12. Thermometry of ultracold atoms via nonequilibrium work distributions

    NASA Astrophysics Data System (ADS)

    Johnson, T. H.; Cosco, F.; Mitchison, M. T.; Jaksch, D.; Clark, S. R.

    2016-05-01

    Estimating the temperature of a cold quantum system is difficult. Usually one measures a well-understood thermal state and uses that prior knowledge to infer its temperature. In contrast, we introduce a method of thermometry that assumes minimal knowledge of the state of a system and is potentially nondestructive. Our method uses a universal temperature dependence of the quench dynamics of an initially thermal system coupled to a qubit probe that follows from the Tasaki-Crooks theorem for nonequilibrium work distributions. We provide examples for a cold-atom system, in which our thermometry protocol may retain accuracy and precision at subnano-Kelvin temperatures.

  13. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  14. Simulating biochemical physics with computers: 1. Enzyme catalysis by phosphotriesterase and phosphodiesterase; 2. Integration-free path-integral method for quantum-statistical calculations

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Yiu

    We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.

  15. Thermodynamic aspects of nonequilibrium current fluctuations

    NASA Astrophysics Data System (ADS)

    Jou, D.; Llebot, J. E.; Casas-Vázquez, J.

    1982-06-01

    Starting from a macroscopic nonequilibrium entropy, we obtain an expression for the nonequilibrium fluctuations of the electric current in a metallic resistor. Our method goes further than previous theories of irreversible thermodynamics and, as well as microscopic entropies, it leads to results of the same order of magnitude but not completely coincident with the full nonequilibrium corrections obtained from kinetic methods by Tremblay et al.

  16. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  17. The Free Action of Nonequilibrium Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Qianxiao; E, Weinan

    2015-10-01

    In general nonequilibrium steady states, directly replacing the canonical ensemble by the nonequilibrium invariant distribution yields a free energy function that is insufficient in characterizing the dynamical landscape. We address the problem by defining the free action, which is like a free energy on path space. Through a representative example, we demonstrate the conceptual and practical usefulness of the free action for quantifying the dynamics of nonequilibrium steady states, including those exhibiting phase transitions.

  18. Lehmann representation of the nonequilibrium self-energy

    NASA Astrophysics Data System (ADS)

    Gramsch, Christian; Potthoff, Michael

    2015-12-01

    It is shown that the nonequilibrium self-energy of an interacting lattice-fermion model has a unique Lehmann representation. Based on the construction of a suitable noninteracting effective medium, we provide an explicit and numerically practicable scheme to construct the Lehmann representation for the self-energy, given the Lehmann representation of the single-particle nonequilibrium Green's function. This is of particular importance for an efficient numerical solution of Dyson's equation in the context of approximations where the self-energy is obtained from a reference system with a small Hilbert space. As compared to conventional techniques to solve Dyson's equation on the Keldysh contour, the effective-medium approach allows us to reach a maximum propagation time, which can be several orders of magnitude longer. This is demonstrated explicitly by choosing the nonequilibrium cluster-perturbation theory as a simple approach to study the long-time dynamics of an inhomogeneous initial state after a quantum quench in the Hubbard model on a 10 ×10 square lattice. We demonstrate that the violation of conservation laws is moderate for weak Hubbard interaction and that the cluster approach is able to describe prethermalization physics.

  19. Statistical Fluctuation in a Saturation Laser Model with Cross-Correlations Between the Real and Imaginary Parts of Quantum Noise

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Ma, C. S.; Mei, D. C.

    We study the effects of cross-correlations between the real and imaginary parts of quantum noise on the intensity fluctuation of a saturation laser model. By virtue of the locked phase method,we derived an approximate Fokker-Planck equation and analytic expressions of the stationary probability distribution function (SPD) of the laser system. Based on the SPD, the mean, the normalized variance, and the normalized skewness of the steady-state laser intensity are calculated numerically. The results indicate that the correlation strength of the cross-correlations between the real and imaginary parts of quantum noise increases the intensity fluctuations.

  20. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  1. Persistent Probability Currents in Non-equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Zia, Royce; Mellor, Andrew; Mobilia, Mauro; Fox-Kemper, Baylor; Weiss, Jeffrey

    For many interesting phenomena in nature, from all life forms to the global climate, the fundamental hypothesis of equilibrium statistical mechanics does not apply. Instead, they are perhaps better characterized by non-equilibrium steady states, evolving with dynamical rules which violate detailed balance. In particular, such dynamics leads to the existence of non-trivial, persistent probability currents - a principal characteristic of non-equilibrium steady states. In turn, they give rise to the notion of 'probability angular momentum'. Observable manifestations of such abstract concepts will be illustrated in two distinct contexts: a heterogeneous nonlinear voter model and our ocean heat content. Supported in part by grants from the Bloom Agency (Leeds, UK) and the US National Science Foundation: OCE-1245944. AM acknowledges the support of EPSRC Industrial CASE Studentship, Grant No. EP/L50550X/1.

  2. Detailed and simplified nonequilibrium helium ionization in the solar atmosphere

    SciTech Connect

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2014-03-20

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  3. Foundations and Application of Non-equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Robinson, Gregory

    2011-11-01

    Non-equilibrium thermodynamics provides a powerful but still unfamiliar way to peer into the properties of systems yet unexplored and holds promise for ready application to important engineered systems. This talk will consider some of the challenges, promises, and progress made toward an intuitive statistical theory of non-equilibrium behavior as well as recent work applying it. We will briefly discuss large deviations and the formalism of Freidlin and Wentzell for perturbed dynamical systems, which recasts certain questions about stochastic processes in the form of Hamiltonian mechanics. The methods and their applicability are illustrated by analyzing transitions between different stable states of a chemical reaction network, supplemented by a fast numerical solution of escape trajectories. We conclude with the prospects for using the ideas and methods in the design of more efficient and reliable grid computing platforms, which are crucial both to modern science and the operation of entire industries.

  4. Detailed and Simplified Nonequilibrium Helium Ionization in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2014-03-01

    Helium ionization plays an important role in the energy balance of the upper chromosphere and transition region. Helium spectral lines are also often used as diagnostics of these regions. We carry out one-dimensional radiation-hydrodynamics simulations of the solar atmosphere and find that the helium ionization is set mostly by photoionization and direct collisional ionization, counteracted by radiative recombination cascades. By introducing an additional recombination rate mimicking the recombination cascades, we construct a simplified three-level helium model atom consisting of only the ground states. This model atom is suitable for modeling nonequilibrium helium ionization in three-dimensional numerical models. We perform a brief investigation of the formation of the He I 10830 and He II 304 spectral lines. Both lines show nonequilibrium features that are not recovered with statistical equilibrium models, and caution should therefore be exercised when such models are used as a basis for interpretating observations.

  5. Localization protected quantum order

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul

    2015-03-01

    Many body localization occurs in isolated quantum systems, usually with strong disorder, and is marked by absence of dissipation, absence of thermal equilibration, and a memory of the initial conditions that survives in local observables for arbitrarily long times. The many body localized regime is a non-equilibrium, strongly disordered, non-self averaging regime that presents a new frontier for quantum statistical mechanics. In this talk, I point out that there exists a vast zoo of correlated many body localized states of matter, which may be classified using familiar notions of spontaneous symmetry breaking and topological order. I will point out that in the many body localized regime, spontaneous symmetry breaking can occur even at high energy densities in one dimensional systems, and topological order can occur even without a bulk gap. I will also discuss the phenomenology of imperfectly isolated many body localized systems, which are weakly coupled to a heat bath. I will conclude with a brief discussion of how these phenomena may best be detected in experiments. Collaborators: David Huse, S.L. Sondhi, Arijeet Pal, Vadim Oganesyan, A.C. Potter, Sarang Gopalakrishnan, S. Johri, R.N. Bhatt.

  6. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  7. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model

  8. Strong quantum memory at resonant Fermi edges revealed by shot noise.

    PubMed

    Ubbelohde, N; Roszak, K; Hohls, F; Maire, N; Haug, R J; Novotný, T

    2012-01-01

    Studies of non-equilibrium current fluctuations enable assessing correlations involved in quantum transport through nanoscale conductors. They provide additional information to the mean current on charge statistics and the presence of coherence, dissipation, disorder, or entanglement. Shot noise, being a temporal integral of the current autocorrelation function, reveals dynamical information. In particular, it detects presence of non-Markovian dynamics, i.e., memory, within open systems, which has been subject of many current theoretical studies. We report on low-temperature shot noise measurements of electronic transport through InAs quantum dots in the Fermi-edge singularity regime and show that it exhibits strong memory effects caused by quantum correlations between the dot and fermionic reservoirs. Our work, apart from addressing noise in archetypical strongly correlated system of prime interest, discloses generic quantum dynamical mechanism occurring at interacting resonant Fermi edges. PMID:22530093

  9. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  10. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  11. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early

  12. Thermodynamics of Stability of Nonequilibrium Steady States.

    ERIC Educational Resources Information Center

    Rastogi, R. P.; Shabd, Ram

    1983-01-01

    Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)

  13. Dynamics of the phase transitions in the system of nonequilibrium charge carriers in quantum-dimensional Si{sub 1−x}Ge{sub x}/Si structures

    SciTech Connect

    Bagaev, V. S.; Krivobok, V. S. Nikolaev, S. N.; Onishchenko, E. E.; Pruchkina, A. A.; Aminev, D. F.; Skorikov, M. L.; Lobanov, D. N.; Novikov, A. V.

    2013-11-15

    The dynamics of the phase transition from an electron-hole plasma to an exciton gas is studied during pulsed excitation of heterostructures with Si{sub 1−x}Ge{sub x}/Si quantum wells. The scenario of the phase transition is shown to depend radically on the germanium content in the Si{sub 1−x}Ge{sub x} layer. The electron-hole system decomposes into a rarefied exciton and a dense plasma phases for quantum wells with a germanium content x = 3.5% in the time range 100–500 ns after an excitation pulse. In this case, the electron-hole plasma existing in quantum wells has all signs of an electron-hole liquid. A qualitatively different picture of the phase transition is observed for quantum wells with x = 9.5%, where no separation into phases with different electronic spectra is detected. The carrier recombination in the electron-hole plasma leads a gradual weakening of screening and the appearance of exciton states. For a germanium content of 5–7%, the scenario of the phase transition is complex: 20–250 ns after an excitation pulse, the properties of the electron-hole system are described in terms of a homogeneous electron-hole plasma, whereas its separation into an electron-hole liquid and an exciton gas is detected after 350 ns. It is shown that, for the electron-hole liquid to exist in quantum wells with x = 5–7% Ge, the exciton gas should have a substantially higher density than in quantum wells with x = 3.5% Ge. This finding agrees with a decrease in the depth of the local minimum of the electron-hole plasma energy with increasing germanium concentration in the SiGe layer. An increase in the density of the exciton gas coexisting with the electron-hole liquid is shown to enhance the role of multiparticle states, which are likely to be represented by trions T{sup +} and biexcitons, in the exciton gas.

  14. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  15. A probable probability distribution of a series nonequilibrium states in a simple system out of equilibrium

    NASA Astrophysics Data System (ADS)

    Gao, Haixia; Li, Ting; Xiao, Changming

    2016-05-01

    When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.

  16. Structure of Non-Equilibrium Adsorbed Polymer Layers

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2004-03-01

    Equilibrium polymer adsorption has been widely studied theoretically. Many experiments however implicate strong non-equilibrium effects for monomer sticking energies somewhat larger than kT, the most common case. The structure and slow dynamics in these layers is not understood. We analyze theoretically non-equilibrium layers from dilute solutions in the limit of irreversible monomer adsorption. We find the density profile ˜ z-4/3 and loop distribution ˜ s-11/5 of the resulting layer are no different to equilibrium. However, single chain statistics are radically different: the layer consists of a flat inner portion of fully collapsed chains plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ˜ f-4/5, consistent with experiment [H. M. Schneider et al, Langmuir 12, 994 (1996)], and the lateral size R of adsorbed chains is of order the bulk coil size, R ˜ N^3/5. For equilibrium layers, by contrast, P has a unique peak at a value of f of order unity, while R ˜ N^1/2 is significantly less. The relaxation of a non-equilibrium layer towards equilibrium thus entails chain shrinkage and tighter binding. We speculate that the observed decrease of bulk-layer chain exchange rates with increasing aging reflects these internal layer dynamics.

  17. Novel mapping in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Heseltine, James; Kim, Eun-jin

    2016-04-01

    We investigate the time-evolution of a non-equilibrium system in view of the change in information and provide a novel mapping relation which quantifies the change in information far from equilibrium and the proximity of a non-equilibrium state to the attractor. Specifically, we utilize a nonlinear stochastic model where the stochastic noise plays the role of incoherent regulation of the dynamical variable x and analytically compute the rate of change in information (information velocity) from the time-dependent probability distribution function. From this, we quantify the total change in information in terms of information length { L } and the associated action { J }, where { L } represents the distance that the system travels in the fluctuation-based, statistical metric space parameterized by time. As the initial probability density function’s mean position (μ) is decreased from the final equilibrium value {μ }* (the carrying capacity), { L } and { J } increase monotonically with interesting power-law mapping relations. In comparison, as μ is increased from {μ }*,{ L } and { J } increase slowly until they level off to a constant value. This manifests the proximity of the state to the attractor caused by a strong correlation for large μ through large fluctuations. Our proposed mapping relation provides a new way of understanding the progression of the complexity in non-equilibrium system in view of information change and the structure of underlying attractor.

  18. Non-Equilibrium Statistical Dynamics of River Network Evolution

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Ming; Zhang, Ping; Huo, Jie; Hao, Rui

    2011-03-01

    According to the erosion rule in a natural process, a Langevin Equation describing the prolongation of river channel is defined. The determinate prolongation is given by consideration of the characteristics of the early stage in the development of a river channel. The random growth (diffusion) is expressed by the fluctuations of the related stochastic variables or factors. A Fokker-Planck equation that describes the evolution of the distribution of the channel length is derived from this Langevin Equation. The solution presents the transition probability and exceedence probability with a Power-Exponent function which indicates that the channel length distributes in a complicated way. The details show that there exists a critical time, before which river network is developing and marked by exponent distribution., and beyond which river network is developed and marked by power distribution. On the basis of Hack's law, the transition probability of river's area and the corresponding exceedence probability are obtained. They are in excellent agreement with them obtained by field observations. NNSF Nos:10965004 and 10565002, NCET-06-0914, NXNSF:NZ0944.

  19. Nonequilibrium Statistical Mechanics of Weakly Stochastically Perturbed System of Oscillators

    NASA Astrophysics Data System (ADS)

    Dymov, Andrey

    2016-07-01

    We consider a finite region of a $d$-dimensional lattice, $d\\in\\mathbb{N}$, of weakly coupled harmonic oscillators. The coupling is provided by a nearest-neighbour potential (harmonic or not) of size $\\varepsilon$. Each oscillator weakly interacts by force of order $\\varepsilon$ with its own stochastic Langevin thermostat of arbitrary positive temperature. We investigate limiting as $\\varepsilon\\rightarrow 0$ behaviour of solutions of the system and of the local energy of oscillators on long-time intervals of order $\\varepsilon^{-1}$ and in a stationary regime. We show that it is governed by an effective equation which is a dissipative SDE with nondegenerate diffusion. Next we assume that the interaction potential is of size $\\varepsilon\\lambda$, where $\\lambda$ is another small parameter, independent from $\\varepsilon$. Solutions corresponding to this scaling describe small low temperature oscillations. We prove that in a stationary regime, under the limit $\\varepsilon\\rightarrow 0$, the main order in $\\lambda$ of the averaged Hamiltonian energy flow is proportional to the gradient of temperature. We show that the coefficient of proportionality, which we call the conductivity, admits a representation through stationary space-time correlations of the energy flow. Most of the results and convergences we obtain are uniform with respect to the number of oscillators in the system.

  20. Nonequilibrium statistical mechanics in one-dimensional bose gases

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann–Vlasov equation with contact interaction, we derive an effective 1D Landau–Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  1. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early

  2. Statistical properties of the localization measure in a finite-dimensional model of the quantum kicked rotator

    NASA Astrophysics Data System (ADS)

    Manos, Thanos; Robnik, Marko

    2015-04-01

    We study the quantum kicked rotator in the classically fully chaotic regime K =10 and for various values of the quantum parameter k using Izrailev's N -dimensional model for various N ≤3000 , which in the limit N →∞ tends to the exact quantized kicked rotator. By numerically calculating the eigenfunctions in the basis of the angular momentum we find that the localization length L for fixed parameter values has a certain distribution; in fact, its inverse is Gaussian distributed, in analogy and in connection with the distribution of finite time Lyapunov exponents of Hamilton systems. However, unlike the case of the finite time Lyapunov exponents, this distribution is found to be independent of N and thus survives the limit N =∞ . This is different from the tight-binding model of Anderson localization. The reason is that the finite bandwidth approximation of the underlying Hamilton dynamical system in the Shepelyansky picture [Phys. Rev. Lett. 56, 677 (1986), 10.1103/PhysRevLett.56.677] does not apply rigorously. This observation explains the strong fluctuations in the scaling laws of the kicked rotator, such as the entropy localization measure as a function of the scaling parameter Λ =L /N , where L is the theoretical value of the localization length in the semiclassical approximation. These results call for a more refined theory of the localization length in the quantum kicked rotator and in similar Floquet systems, where we must predict not only the mean value of the inverse of the localization length L but also its (Gaussian) distribution, in particular the variance. In order to complete our studies we numerically analyze the related behavior of finite time Lyapunov exponents in the standard map and of the 2 ×2 transfer matrix formalism. This paper extends our recent work [Phys. Rev. E 87, 062905 (2013), 10.1103/PhysRevE.87.062905].

  3. Nonequilibrium fluctuations for linear diffusion dynamics.

    PubMed

    Kwon, Chulan; Noh, Jae Dong; Park, Hyunggyu

    2011-06-01

    We present the theoretical study on nonequilibrium (NEQ) fluctuations for diffusion dynamics in high dimensions driven by a linear drift force. We consider a general situation in which NEQ is caused by two conditions: (i) drift force not derivable from a potential function, and (ii) diffusion matrix not proportional to the unit matrix, implying nonidentical and correlated multidimensional noise. The former is a well-known NEQ source and the latter can be realized in the presence of multiple heat reservoirs or multiple noise sources. We develop a statistical mechanical theory based on generalized thermodynamic quantities such as energy, work, and heat. The NEQ fluctuation theorems are reproduced successfully. We also find the time-dependent probability distribution function exactly as well as the NEQ work production distribution P(W) in terms of solutions of nonlinear differential equations. In addition, we compute low-order cumulants of the NEQ work production explicitly. In two dimensions, we carry out numerical simulations to check out our analytic results and also to get P(W). We find an interesting dynamic phase transition in the exponential tail shape of P(W), associated with a singularity found in solutions of the nonlinear differential equation. Finally, we discuss possible realizations in experiments. PMID:21797340

  4. Applications of finite-size scaling for atomic and non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    Antillon, Edwin A.

    We apply the theory of Finite-size scaling (FSS) to an atomic and a non-equilibrium system in order to extract critical parameters. In atomic systems, we look at the energy dependence on the binding charge near threshold between bound and free states, where we seek the critical nuclear charge for stability. We use different ab initio methods, such as Hartree-Fock, Density Functional Theory, and exact formulations implemented numerically with the finite-element method (FEM). Using Finite-size scaling formalism, where in this case the size of the system is related to the number of elements used in the basis expansion of the wavefunction, we predict critical parameters in the large basis limit. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that this combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems. In the second part we look at non-equilibrium one-dimensional model known as the raise and peel model describing a growing surface which grows locally and has non-local desorption. For a specific values of adsorption ( ua) and desorption (ud) the model shows interesting features. At ua = ud, the model is described by a conformal field theory (with conformal charge c = 0) and its stationary probability can be mapped to the ground state of a quantum chain and can also be related a two dimensional statistical model. For ua ≥ ud, the model shows a scale invariant phase in the avalanche distribution. In this work we study the surface dynamics by looking at avalanche distributions using FSS formalism and explore the effect of changing the boundary conditions of the model. The model shows the same universality for the cases with and with our the wall for an odd number of tiles removed, but we find a new exponent in the presence of a wall for an even number of avalanches released. We provide new conjecture for the probability distribution of

  5. Nonequilibrium structure in sequential assembly

    NASA Astrophysics Data System (ADS)

    Popov, Alexander V.; Craven, Galen T.; Hernandez, Rigoberto

    2015-11-01

    The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network. The resulting theory accounts for the evolution and final-state configurations through a system of equations governing structural generation. We find that particle geometries differ significantly from those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the corresponding equilibrium case.

  6. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  7. Nonequilibrium fluctuations in a resistor

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Ciliberto, S.

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.

  8. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  9. Nonequilibrium migration in human history.

    PubMed Central

    Wakeley, J

    1999-01-01

    A nonequilibrium migration model is proposed and applied to genetic data from humans. The model assumes symmetric migration among all possible pairs of demes and that the number of demes is large. With these assumptions it is straightforward to allow for changes in demography, and here a single abrupt change is considered. Under the model this change is identical to a change in the ancestral effective population size and might be caused by changes in deme size, in the number of demes, or in the migration rate. Expressions for the expected numbers of sites segregating at particular frequencies in a multideme sample are derived. A maximum-likelihood analysis of independent polymorphic restriction sites in humans reveals a decrease in effective size. This is consistent with a change in the rates of migration among human subpopulations from ancient low levels to present high ones. PMID:10581291

  10. Quantum of area {Delta}A=8{pi}l{sub P}{sup 2} and a statistical interpretation of black hole entropy

    SciTech Connect

    Ropotenko, Kostiantyn

    2010-08-15

    In contrast to alternative values, the quantum of area {Delta}A=8{pi}l{sub P}{sup 2} does not follow from the usual statistical interpretation of black hole entropy; on the contrary, a statistical interpretation follows from it. This interpretation is based on the two concepts: nonadditivity of black hole entropy and Landau quantization. Using nonadditivity a microcanonical distribution for a black hole is found and it is shown that the statistical weight of a black hole should be proportional to its area. By analogy with conventional Landau quantization, it is shown that quantization of a black hole is nothing but the Landau quantization. The Landau levels of a black hole and their degeneracy are found. The degree of degeneracy is equal to the number of ways to distribute a patch of area 8{pi}l{sub P}{sup 2} over the horizon. Taking into account these results, it is argued that the black hole entropy should be of the form S{sub bh}=2{pi}{center_dot}{Delta}{Gamma}, where the number of microstates is {Delta}{Gamma}=A/8{pi}l{sub P}{sup 2}. The nature of the degrees of freedom responsible for black hole entropy is elucidated. The applications of the new interpretation are presented. The effect of noncommuting coordinates is discussed.

  11. The non-equilibrium nature of culinary evolution

    NASA Astrophysics Data System (ADS)

    Kinouchi, Osame; Diez-Garcia, Rosa W.; Holanda, Adriano J.; Zambianchi, Pedro; Roque, Antonio C.

    2008-07-01

    Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.

  12. Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes.

    PubMed

    Ramaswamy, S; Toner, J; Prost, J

    2000-04-10

    The stability of a flexible fluid membrane containing a distribution of mobile, active proteins (e.g., proton pumps) is shown to depend on the structure and functional asymmetry of the proteins. A stable active membrane is in a nonequilibrium steady state with height fluctuations whose statistical properties are governed by the protein activity. Disturbances are predicted to travel as waves at sufficiently long wavelength, with speed set by the normal velocity of the pumps. The unstable case involves a spontaneous, pump-driven undulation of the membrane, with clumping of the proteins in regions of high activity. PMID:11019123

  13. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  14. On Nonequilibrium Radiation in Hydrogen Shock Layers

    NASA Technical Reports Server (NTRS)

    Park, Chul

    2005-01-01

    The influence of thermochemical nonequilibrium in the shock layer over a vehicle entering the atmosphere of an outer planet is examined qualitatively. The state of understanding of the heating environment for the Galileo Probe vehicle is first reviewed. Next, the possible reasons for the high recession in the frustum region and the low recession in the stagnation region are examined. The state of understanding of the nonequilibrium in the hydrogen flow is then examined. For the entry flight in Neptune, the possible influence of nonequilibrium is predicted.

  15. Level-resolved quantum statistical theory of electron capture into many-electron compound resonances in highly charged ions

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Harabati, C.; Dzuba, V. A.; Flambaum, V. V.; Gribakin, G. F.

    2015-12-01

    The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these "compound resonances" leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by "spreading" of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into "doorway" states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20 +, considering 2 ×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.

  16. E(K, L) level statistics of classically integrable quantum systems based on the Berry-Robnik approach

    NASA Astrophysics Data System (ADS)

    Makino, Hironori; Minami, Nariyuki

    2014-07-01

    The theory of the quantal level statistics of a classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV) [H. Makino and S. Tasaki, Phys. Rev. E 67, 066205 (2003); H. Makino and S. Tasaki, Prog. Theor. Phys. Suppl. 150, 376 (2003); H. Makino, N. Minami, and S. Tasaki, Phys. Rev. E 79, 036201 (2009); H. Makino and S. Tasaki, Prog. Theor. Phys. 114, 929 (2005)], is successfully extended to the study of the E(K,L) function, which constitutes a fundamental measure to determine most statistical observables of quantal levels in addition to LSD and LNV. In the theory of Makino et al., the eigenenergy level is regarded as a superposition of infinitely many components whose formation is supported by the Berry-Robnik approach in the far semiclassical limit [M. Robnik, Nonlinear Phenom. Complex Syst. 1, 1 (1998)]. We derive the limiting E(K,L) function in the limit of infinitely many components and elucidate its properties when energy levels show deviations from the Poisson statistics.

  17. Dannie Heineman Prize for Mathematical Physics Lecture: Understanding Nonequilibrium via Rare Fluctuations

    NASA Astrophysics Data System (ADS)

    Jona-Lasinio, Giovanni

    2012-02-01

    Irreversible processes are a hot subject in statistical mechanics. During the last decade through the effort of several people, including the recipient of the prize and his collaborators, a progress in understanding stationary nonequilibrium states has been achieved. The key has been the study of rare fluctuations. The talk will review some basic ideas, results and perspectives.

  18. Two-component model in quantum statistical framework compared with multiplicity distributions in proton-proton collisions at energies up to √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Ghosh, Premomoy

    2011-11-01

    Proton-proton collisions at new high energies (√{ s} = 2.36 and 7 TeV) at LHC resulted into greater mean multiplicities (< n >) of charged particles in the mid-rapidity region than estimated ones by different models and event generators. Another significant observation in multiplicity data is the change in slope in the distribution of primary charged hadrons in symmetric pseudorapidity interval | η | < 2.4. The change is most prominent with data at √{ s} = 7 TeV. These new observations merit further studies. We consider a two-component model of particle production to analyze multiplicity distributions of charged hadrons from proton-proton collisions at centre-of-mass energies √{ s} = 0.9, 2.36 and 7 TeV in symmetric pseudorapidity intervals | η | of increasing width around the centre-of-mass pseudorapidity ηcm = 0. The model, based on Quantum Statistical (QS) formalism, describes multiplicity distribution by convolution of a Negative Binomial Distribution (NBD), representing a chaotic component, and a Poisson Distribution (PD), representing a coherent component of particle productions. The behaviour of characteristic parameters of the model is followed by the LHC data, while a scaling law, involving information entropy in quantum statistical viewpoint and derived as a function of chaotic multiplicity obtained from the two-component model, is not obeyed by the data, satisfactorily. An attempt to match the measured multiplicity distributions and suggested convolutions with values of characteristic parameters extracted from the data confirms disagreement between the data and the model.

  19. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  20. Photonic quantum transport in a nonlinear optical fiber

    NASA Astrophysics Data System (ADS)

    Hafezi, M.; Chang, D. E.; Gritsev, V.; Demler, E. A.; Lukin, M. D.

    2011-06-01

    We theoretically study the transmission of few-photon quantum fields through a strongly nonlinear optical medium. We develop a general approach to investigate nonequilibrium quantum transport of bosonic fields through a finite-size nonlinear medium and apply it to a recently demonstrated experimental system where cold atoms are loaded in a hollow-core optical fiber. We show that when the interaction between photons is effectively repulsive, the system acts as a single-photon switch. In the case of attractive interaction, the system can exhibit either antibunching or bunching, associated with the resonant excitation of bound states of photons by the input field. These effects can be observed by probing statistics of photons transmitted through the nonlinear fiber.

  1. Mathematical modeling of non-equilibrium sorption

    NASA Astrophysics Data System (ADS)

    Kaliev, Ibragim A.; Mukhambetzhanov, Saltanbek T.; Sabitova, Gulnara S.; Sakhit, Anghyz E.

    2016-08-01

    We consider the system of equations modeling the process of non-equilibrium sorption. Difference approximation of differential problem by the implicit scheme is formulated. The solution of the difference problem is constructed using the sweep method. Based on the numerical results we can conclude the following: when the relaxation time decreases to 0, then the solution of non-equilibrium problem tends with increasing time to solution of the equilibrium problem.

  2. Correlation effects and collective excitations in bosonic bilayers: Role of quantum statistics, superfluidity, and the dimerization transition

    NASA Astrophysics Data System (ADS)

    Filinov, A.

    2016-07-01

    A two-component, two-dimensional (2D) dipolar bosonic system in the bilayer geometry is considered. By performing quantum Monte Carlo simulations in a wide range of layer spacings we analyze in detail the pair correlation functions, the static response function, and the kinetic and interaction energies. By reducing the layer spacing we observe a transition from weakly to strongly bound dimer states. The transition is accompanied by the onset of short-range correlations, suppression of the superfluid response, and rotonization of the excitation spectrum. A dispersion law and a dynamic structure factor for the in-phase (symmetric) and out-of-phase (antisymmetric) collective modes during the dimerization is studied in detail with the stochastic reconstruction method and the method of moments. The antisymmetric mode spectrum is most strongly influenced by suppression of the inlayer superfluidity (specified by the superfluid fraction γs=ρs/ρ ). In a pure superfluid (normal fluid) phase, only an acoustic [optical (gapped)] mode is recovered. In a partially superfluid phase, both are present simultaneously, and the dispersion splits into two branches corresponding to a normal and a superfluid component. The spectral weight of the acoustic mode scales linearly with γs. This weight transfers to the optical branch when γs is reduced due to formation of dimer states. In summary, we demonstrate how the interlayer dimerization in dipolar bilayers can be uniquely identified by static and dynamic properties.

  3. Quantum transparency of Anderson insulator junctions: Statistics of transmission eigenvalues, shot noise, and proximity conductance

    NASA Astrophysics Data System (ADS)

    Nikolić, Branislav K.; Dragomirova, Ralitsa L.

    2005-01-01

    We investigate quantum transport through strongly disordered barriers, made of a material with exceptionally high resistivity that behaves as an Anderson insulator or a “bad metal” in the bulk, by analyzing the distribution of Landauer transmission eigenvalues for a junction where such barrier is attached to two clean metallic leads. We find that scaling of the transmission eigenvalue distribution with the junction thickness (starting from the single interface limit) always predicts a nonzero probability to find high transmission channels even in relatively thick barriers. Using this distribution, we compute the zero frequency shot noise power (as well as its sample-to-sample fluctuations) and demonstrate how it provides a single number characterization of nontrivial transmission properties of different types of disordered barriers. The appearance of open conducting channels, whose transmission eigenvalue is close to one, and corresponding violent mesoscopic fluctuations of transport quantities explain at least some of the peculiar zero-bias anomalies in the Anderson-insulator/superconductor junctions observed in recent experiments [A. Vaknin, A. Frydman, and Z. Ovadyahu, Phys. Rev. B 61, 13037 (2000)]. Our findings are also relevant for the understanding of the role of defects that can undermine quality of thin tunnel barriers made of conventional band insulators.

  4. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  5. Molecular weight distributions of irradiated siloxane-based elastomers: A complementary study by statistical modeling and multiple quantum nuclear magnetic resonance

    SciTech Connect

    Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S.

    2011-05-01

    The statistical methodology of population balance (PB) has been applied in order to predict the effects of cross-linking and chain-scissioning induced by ionizing radiation on the distribution of molecular weight between cross-links (MWBC) of a siloxane-based elastomer. Effective molecular weight distributions were extracted from the quantification of residual dipolar couplings via multiple quantum nuclear magnetic resonance (MQ-NMR) measurements and are taken to reflect actual MWBC distributions. The PB methodology is then applied to the unirradiated MWBC distribution and considers both chain-scissioning and the possibility of the formation of three types of cross-links: random recombination of scissioned-chain ends (end-linking), random covalent bonds of free radicals on scissioned-chain ends (Y-cross-linking), and the formation of random cross-links from free radicals on side groups (H-cross-linking). The qualitative agreement between the statistical modeling approach and the NMR data confirms that it is possible to predict trends for the evolution of the distribution of MWBC of polymers under irradiation. The approach described herein can also discern heterogeneities in radiation effects in different structural motifs in the polymer network.

  6. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. PMID:25619737

  7. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  8. Typical pure states and the analysis of nonequilibrium processes of mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Monnai, Takaaki; Sugita, Ayumu

    2016-05-01

    For isolated quantum many-body systems, we extend the availability of the intrinsic thermal nature of typical pure states to a class of nonequilibrium processes which start from an initial equilibrium. For concreteness, we calculate the spectral distribution of the work done on the system on the basis of a single pure state. It means that we can accurately calculate the entire fluctuation of the energy only from a single pure state instead of the thermodynamic ensembles.

  9. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    NASA Astrophysics Data System (ADS)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  10. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    NASA Astrophysics Data System (ADS)

    Yukawa, S.; Ogushi, F.; Shimada, T.; Ito, N.

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This for ce is interpreted as the microscopic origin of thermophoresis.

  11. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  12. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  13. Time-dependent many-variable variational Monte Carlo method for nonequilibrium strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2015-12-01

    We develop a time-dependent variational Monte Carlo (t-VMC) method for quantum dynamics of strongly correlated electrons. The t-VMC method has been recently applied to bosonic systems and quantum spin systems. Here we propose a time-dependent trial wave function with many variational parameters, which is suitable for nonequilibrium strongly correlated electron systems. As the trial state, we adopt the generalized pair-product wave function with correlation factors and quantum-number projections. This trial wave function has been proven to accurately describe ground states of strongly correlated electron systems. To show the accuracy and efficiency of our trial wave function in nonequilibrium states as well, we present our benchmark results for relaxation dynamics during and after interaction quench protocols of fermionic Hubbard models. We find that our trial wave function well reproduces the exact results for the time evolution of physical quantities such as energy, momentum distribution, spin structure factor, and superconducting correlations. These results show that the t-VMC with our trial wave function offers an efficient and accurate way to study challenging problems of nonequilibrium dynamics in strongly correlated electron systems.

  14. Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships

    SciTech Connect

    Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.

    2004-09-01

    We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either be treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.

  15. Transient Features in Charge Fractionalization and Non-equilibrium Bosonization

    NASA Astrophysics Data System (ADS)

    Rosenow, Bernd; Schneider, Alexander; Milletari, Mirco

    2015-03-01

    In quantum Hall edge states and in other one-dimensional interacting systems, charge fractionalization can occur due to the fact that an injected charge pulse decomposes into eigenmodes propagating at different velocities. If the original charge pulse has some spatial width due to injection with a given source-drain voltage, a finite time is needed until the separation between the fractionalized pulses is larger than their width. In the formalism of non-equilibrium bosonization, the above physics is reflected in the separation of initially overlapping square pulses in the effective scattering phase. When expressing the single particle Green function as a functional determinant of counting operators containing the scattering phase, the time evolution of charge fractionalization is mathematically described by functional determinants with overlapping pulses. We develop a framework for the evaluation of such determinants, and compare our theoretical results with recent experimental findings. Supported by DFG Grant RO 2247/8-1.

  16. Non-equilibrium dynamics in driven Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Ha, Li-Chung; Chin, Cheng

    2016-05-01

    We report recent progress on the study of non-equilibrium dynamics in Bose-Einstein condensates using the shaken optical lattice or optically controlled Feshbach resonances. In the shaken lattice at sufficient shaking amplitude we observe a quantum phase transition from ordinary condensates to pseudo-spinor 1/2 condensates containing discrete domains with effective ferromagnetic interactions. We study the temporal and spatial Kibble-Zurek scaling laws for the dependence of this domain structure on the quench rate across the transition. Furthermore, we observe long-range density correlations within the ferromagnetic condensate. With optically controlled Feshbach resonances we demonstrate control of the interaction strength between atoms at timescales as short as ten nanoseconds and length scales smaller than the condensate. We find that making interactions attractive within only one region of the gas induces localized collapse of the condensate.

  17. Nonequilibrium fluctuations as a distinctive feature of weak localization

    PubMed Central

    Barone, C.; Romeo, F.; Pagano, S.; Attanasio, C.; Carapella, G.; Cirillo, C.; Galdi, A.; Grimaldi, G.; Guarino, A.; Leo, A.; Nigro, A.; Sabatino, P.

    2015-01-01

    Two-dimensional materials, such as graphene, topological insulators, and two-dimensional electron gases, represent a technological playground to develop coherent electronics. In these systems, quantum interference effects, and in particular weak localization, are likely to occur. These coherence effects are usually characterized by well-defined features in dc electrical transport, such as a resistivity increase and negative magnetoresistance below a crossover temperature. Recently, it has been shown that in magnetic and superconducting compounds, undergoing a weak-localization transition, a specific low-frequency 1/f noise occurs. An interpretation in terms of nonequilibrium universal conductance fluctuations has been given. The universality of this unusual electric noise mechanism has been here verified by detailed voltage-spectral density investigations on ultrathin copper films. The reported experimental results validate the proposed theoretical framework, and also provide an alternative methodology to detect weak-localization effects by using electric noise spectroscopy. PMID:26024506

  18. Thermal Fluctuations in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Garcia, Alex Luis

    A general Monte Carlo algorithm was developed for thermal systems whose transport and chemistry can be described by a Master Equation. Nicolis and Malek Mansour examined a model in which the transition rate could be derived exactly, namely a system coupled to two reservoirs by Knudsen flow. Their Fokker-Planck equation formulation of the thermal fluctuations is confirmed by the numerical simulation. In general it is very difficult to formulate the transition rate for thermal processes. Nicolis and Malek Mansour devised a parameterized transition rate using equilibrium and deterministic properties. They predicted the existence of long-range nonequilibrium temperature fluctuation correlations for a system subjected to a linear temperature gradient. Their construction, however, is not amenable to Monte Carlo simulation due to the nonkinetic nature of the resulting stochastic process. It is shown that a direct comparison can be made between their generic thermal system and the multicell Knudsen system. Quantitative confirmation of linear temperature correlations is obtained. A vectorized version of the Monte Carlo simulation which runs on an array processor is presented. The appearance of anomalous correlations when a system is not initialized at the steady state is discussed. It is found that even a deterministic system will display a fictitious long range correlation of fluctuations due to the slow decay of the lowest order mode even when the system is initially relatively close to steady state. Some guidelines for guarding against this type of data contamination are discussed. The analytic methods and numerical codes obtained in the above studies are used in the study of the stochastic temporal evolution of a complex thermal ignition system. A simple qualitative argument used for one-variable systems is found to yield important quantitative information concerning the variance of the explosion time. The results are confirmed by Monte Carlo numerical simulations.

  19. Quantum coherence and correlations of optical radiation by atomic ensembles interacting with a two-level atom in a microwave cavity

    SciTech Connect

    Muestecaplioglu, Oe.E.

    2011-02-15

    We examine quantum statistics of optical photons emitted from atomic ensembles which are classically driven and simultaneously coupled to a two-level atom via microwave photon exchange. Quantum statistics and correlations are analyzed by calculating second-order coherence degree, von Neumann entropy, spin squeezing for multiparticle entanglement, as well as genuine two- and three-mode entanglement parameters for steady-state and nonequilibrium situations. Coherent transfer of population between the radiation modes and quantum-state mapping between the two-level atom and the optical modes are discussed. A potential experimental realization of the theoretical results in a superconducting coplanar waveguide resonator containing diamond crystals with nitrogen-vacancy color centers and a superconducting artificial two-level atom is discussed.

  20. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.

    PubMed

    Carl, Shaun A; Nguyen, Hue Minh Thi; Elsamra, Rehab M I; Nguyen, Minh Tho; Peeters, Jozef

    2005-03-15

    The rate coefficient of the gas-phase reaction C(2)H + H(2)O-->products has been experimentally determined over the temperature range 500-825 K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C(2)H) were generated by pulsed 193 nm photolysis of C(2)H(2) in the presence of H(2)O vapor and buffer gas N(2) at 15 Torr. The relative concentration of C(2)H radicals was monitored as a function of time using a CH* chemiluminescence method. The rate constant determinations for C(2)H + H(2)O were k(1)(550 K) = (2.3 +/- 1.3) x 10(-13) cm(3) s(-1), k(1)(770 K) =(7.2 +/- 1.4) x 10(-13) cm(3) s(-1), and k(1)(825 K) = (7.7 +/- 1.5) x 10(-13) cm(3) s(-1). The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C(2)H(3)O in its doublet electronic ground state has been investigated using density functional theory B3LYP6-311 + + G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311 + + G(3df,2p) basis set [(U)CCSD(T)6-311 + + G(3df,2p)] and using UCCSD(T)6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C(2)H(2)+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)6-311 + + G(3df,2p)(U)CCSD(T)6-311 + + G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlof and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero

  1. Exploring quantum phases by driven dissipation

    NASA Astrophysics Data System (ADS)

    Lang, Nicolai; Büchler, Hans Peter

    2015-07-01

    Dephasing and decay are the intrinsic dissipative processes prevalent in any open quantum system and the dominant mechanisms for the loss of coherence and entanglement. This inadvertent effect not only can be overcome but can even be capitalized on in a dissipative quantum simulation by means of tailored couplings between the quantum system and the environment. In this context it has been demonstrated that universal quantum computation can be performed using purely dissipative elements, and furthermore, the efficient preparation of highly entangled states is possible. In this article, we are interested in nonequilibrium phase transitions appearing in purely dissipative systems and the exploration of quantum phases in terms of a dissipative quantum simulation. To elucidate these concepts, we scrutinize exemplarily two paradigmatic models: the transverse-field Ising model and the considerably more complex Z2 lattice gauge theory. We show that the nonequilibrium phase diagrams parallel the quantum phase diagrams of the Hamiltonian "blueprint" theories.

  2. Does "cooling by heating" protect quantum correlations?

    NASA Astrophysics Data System (ADS)

    Villas-Boas, C. J.; Cardoso, W. B.; Avelar, A. T.; Xuereb, A.; de Almeida, N. G.

    2016-05-01

    The connection between nonequilibrium quantum correlations, such as entanglement and quantum discord, and cooling by heating is investigated for a system composed by two atoms interacting with a single electromagnetic mode of a lossy cavity. This Hamiltonian model is experimentally feasible in the quantum optics domain and presents the occurrence of both nonequilibrium quantum correlations and cooling by heating for a range of parameters. Since in the cooling by heating phenomenon the effective temperature of the system decreases even increasing the environments temperature, it could be expected that quantum correlations could be enhanced. Interestingly, for some parameters we show that, contrary to this expectation, in the case studied here the lowering of the system effective temperature leads to no enhancement in the quantum correlations. In addition, we found that at both zero and finite temperature, depending on the parameters used, quantum correlations can be enhanced even when increasing the damping rates, a somewhat counterintuitive result.

  3. Entropy, Order Parameters, and Complexity: Incorporating the last 50 years into the statistical mechanics curriculum

    NASA Astrophysics Data System (ADS)

    Sethna, James

    2007-03-01

    The purview of statistical mechanics has grown rapidly in the past decades, with nonequilibrium extensions and applications to dynamical systems, molecular biology and bioinformatics, complex systems and networks, digital communication and information theory, and econophysics and other social sciences. It is our responsibility to join these new insights to the old wisdom in the field, and to distill the key ideas for the next generation. We should include (a) Shannon entropy, data compression, and reversible computation, (b) chaotic motion, ergodicity and the KAM theorem, and renormalization-group treatments of the onset of chaos, (c) molecular motors and hidden Markov models for analyzing genomic data. We should make statistical mechanics useful and comprehensible to those outside of physics, eschewing applications (Clausius-Clapeyron equations, cp vs. cv) and methods (quantum mechanics) accessible and interesting only to condensed-matter physicists and physical chemists. See Entropy, Order Parameters, and Complexity (http://www.physics.cornell.edu/sethna/StatMech/), OUP, 2006.

  4. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  5. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems. PMID:27078486

  6. Correlations and scaling properties of nonequilibrium fluctuations in liquid mixtures.

    PubMed

    Brogioli, Doriano; Croccolo, Fabrizio; Vailati, Alberto

    2016-08-01

    Diffusion in liquids is accompanied by nonequilibrium concentration fluctuations spanning all the length scales comprised between the microscopic scale a and the macroscopic size of the system, L. Up to now, theoretical and experimental investigations of nonequilibrium fluctuations have focused mostly on determining their mean-square amplitude as a function of the wave vector. In this work, we investigate the local properties of nonequilibrium fluctuations arising during a stationary diffusion process occurring in a binary liquid mixture in the presence of a uniform concentration gradient, ∇c_{0}. We characterize the fluctuations by evaluating statistical features of the system, including the mean-square amplitude of fluctuations and the corrugation of the isoconcentration surfaces; we show that they depend on a single mesoscopic length scale l=sqrt[aL] representing the geometric average between the microscopic and macroscopic length scales. We find that the amplitude of the fluctuations is very small in practical cases and vanishes when the macroscopic length scale increases. The isoconcentration surfaces, or fronts of diffusion, have a self-affine structure with corrugation exponent H=1/2. Ideally, the local fractal dimension of the fronts of diffusion would be D_{l}=d-H, where d is the dimensionality of the space, while the global fractal dimension would be D_{g}=d-1. The transition between the local and global regimes occurs at a crossover length scale of the order of the microscopic length scale a. Therefore, notwithstanding the fact that the fronts of diffusion are corrugated, they appear flat at all the length scales probed by experiments, and they do not exhibit a fractal structure. PMID:27627281

  7. Quantum entangled supercorrelated states in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Rajagopal, A. K.; Jensen, K. L.; Cummings, F. W.

    1999-08-01

    The regions of independent quantum states, maximally classically correlated states, and purely quantum entangled (supercorrelated) states described in a recent formulation of quantum information theory by Cerf and Adami are explored here numerically in the parameter space of the well-known exactly soluble Jaynes-Cummings model for equilibrium and nonequilibrium time-dependent ensembles.

  8. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  9. Study of non-equilibrium transport phenomena

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  10. Thermal response of nonequilibrium RC circuits.

    PubMed

    Baiesi, Marco; Ciliberto, Sergio; Falasco, Gianmaria; Yolcu, Cem

    2016-08-01

    We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady-state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady-state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also nondissipative aspects are relevant in the nonequilibrium fluctuation-response relations. PMID:27627283

  11. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  12. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  13. Nonequilibrium air radiation (Nequair) program: User's manual

    NASA Technical Reports Server (NTRS)

    Park, C.

    1985-01-01

    A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.

  14. Nonequilibrium noise in electrophoresis: The microion wind

    NASA Astrophysics Data System (ADS)

    Saha, Suropriya; Ramaswamy, Sriram

    2014-03-01

    A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as if it is at equilibrium in a confining potential [T. M. Squires, J. Fluid Mech. 443, 403 (2001), 10.1017/S0022112001005432]. We show, however, that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-dependent "effective temperature" obtained from the fluctuation-dissipation ratio.

  15. Nonequilibrium temperature response for stochastic overdamped systems

    NASA Astrophysics Data System (ADS)

    Falasco, G.; Baiesi, M.

    2016-04-01

    The thermal response of nonequilibrium systems requires the knowledge of concepts that go beyond entropy production. This is showed for systems obeying overdamped Langevin dynamics, either in steady states or going through a relaxation process. Namely, we derive the linear response to perturbations of the noise intensity, mapping it onto the quadratic response to a constant small force. The latter, displaying divergent terms, is explicitly regularised with a novel path-integral method. The nonequilibrium equivalents of heat capacity and thermal expansion coefficient are two applications of this approach, as we show with numerical examples.

  16. Thermodynamic model of nonequilibrium phase transitions.

    PubMed

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119

  17. Fluctuation theorem for partially masked nonequilibrium dynamics.

    PubMed

    Shiraishi, Naoto; Sagawa, Takahiro

    2015-01-01

    We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations. PMID:25679593

  18. Fluctuation theorem for partially masked nonequilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Shiraishi, Naoto; Sagawa, Takahiro

    2015-01-01

    We establish a generalization of the fluctuation theorem for partially masked nonequilibrium dynamics. We introduce a partial entropy production with a subset of all possible transitions, and show that the partial entropy production satisfies the integral fluctuation theorem. Our result reveals the fundamental properties of a broad class of autonomous as well as nonautonomous nanomachines. In particular, our result gives a unified fluctuation theorem for both autonomous and nonautonomous Maxwell's demons, where mutual information plays a crucial role. Furthermore, we derive a fluctuation-dissipation theorem that relates nonequilibrium stationary current to two kinds of equilibrium fluctuations.

  19. The non-equilibrium and energetic cost of sensory adaptation

    SciTech Connect

    Lan, G.; Sartori, Pablo; Tu, Y.

    2011-03-24

    Biological sensory systems respond to external signals in short time and adapt to permanent environmental changes over a longer timescale to maintain high sensitivity in widely varying environments. In this work we have shown how all adaptation dynamics are intrinsically non-equilibrium and free energy is dissipated. We show that the dissipated energy is utilized to maintain adaptation accuracy. A universal relation between the energy dissipation and the optimum adaptation accuracy is established by both a general continuum model and a discrete model i n the specific case of the well-known E. coli chemo-sensory adaptation. Our study suggests that cellular level adaptations are fueled by hydrolysis of high energy biomolecules, such as ATP. The relevance of this work lies on linking the functionality of a biological system (sensory adaptation) with a concept rooted in statistical physics (energy dissipation), by a mathematical law. This has been made possible by identifying a general sensory system with a non-equilibrium steady state (a stationary state in which the probability current is not zero, but its divergence is, see figure), and then numerically and analytically solving the Fokker-Planck and Master Equations which describe the sensory adaptive system. The application of our general results to the case of E. Coli has shed light on why this system uses the high energy SAM molecule to perform adaptation, since using the more common ATP would not suffice to obtain the required adaptation accuracy.

  20. Non-equilibrium fission processes in intermediate energy nuclear collisions

    SciTech Connect

    Loveland, W.; Casey, C.; Xu, Z.; Seaborg, G.T.; Aleklett, K.; Sihver, L.

    1989-04-01

    We have measured the target fragment yields, angular and energy distributions for the interaction of 12-16 MeV/A/sup 32/S with /sup 165/Ho and /sup 197/Au and for the interaction of 32 and 44 MeV/A /sup 40/Ar with /sup 197/Au. The Au fission fragments associated with the peripheral collision peak in the folding angle distribution originate in a normal, ''slow'' fission process in which statistical equilibrium has been established. At the two lowest projectile energies, the Au fission fragments associated with the central collision peak in the folding angle distribution originate in part from ''fast'' (/tau//approximately//sup /minus/23/s), non-equilibrium processes. Most of the Ho fission fragments originate in non- equilibrium processes. The fast, non-equilibrium process giving rise to these fragments has many of the characteristics of ''fast fission'', but the cross sections associated with these fragments are larger than one would expect from current theories of ''fast fission. '' 14 refs., 8 figs.

  1. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.

    PubMed

    Kabuss, Julia; Carmele, Alexander; Brandes, Tobias; Knorr, Andreas

    2012-08-01

    We present a microscopically based scheme for the generation of coherent cavity phonons (phonon laser) by an optically driven semiconductor quantum dot coupled to a THz acoustic nanocavity. External laser pump light on an anti-Stokes resonance creates an effective Lambda system within a two-level dot that leads to coherent phonon statistics. We use an inductive equation of motion method to estimate a realistic parameter range for an experimental realization of such phonon lasers. This scheme for the creation of nonequilibrium phonons is robust with respect to radiative and phononic damping and only requires optical Rabi frequencies of the order of the electron-phonon coupling strength. PMID:23006175

  2. Introduction to Statistical Physics

    NASA Astrophysics Data System (ADS)

    Casquilho, João Paulo; Ivo Cortez Teixeira, Paulo

    2014-12-01

    Preface; 1. Random walks; 2. Review of thermodynamics; 3. The postulates of statistical physics. Thermodynamic equilibrium; 4. Statistical thermodynamics – developments and applications; 5. The classical ideal gas; 6. The quantum ideal gas; 7. Magnetism; 8. The Ising model; 9. Liquid crystals; 10. Phase transitions and critical phenomena; 11. Irreversible processes; Appendixes; Index.

  3. Non-equilibrium pressure control of the height of a large-scale, ground-coupled, rotating fluid column

    NASA Astrophysics Data System (ADS)

    Ash, R. L.; Zardadkhan, I. R.

    2013-05-01

    When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from the outer potential vortex region. Thus, the non-equilibrium region acts to confine and shield the central, rigid-body-like, rotating fluid core, justifying this examination of how such a rotating fluid column can interact with the ground. The resulting non-equilibrium ground-coupled, rotating fluid column solution was employed to estimate the central column heights of three well-documented dust devils, and the central column height predictions were consistent with published dust devil height statistics.

  4. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: New Approach for Solving Master Equations in Quantum Optics and Quantum Statistics by Virtue of Thermo-Entangled State Representation

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Hu, Li-Yun

    2009-04-01

    By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation langleη|, which can arrange master equations of density operators ρ(t) in quantum statistics as state-vector evolution equations due to the elegant properties of langleη|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant κ we find that the matrix element of ρ(t) at time t in langleη| representation is proportional to that of the initial ρ0 in the decayed entangled state langleηe-κt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = ∫(d2η/π)langleη|ρrangleD(η), which is different from all the previous known representations.

  5. Hidden Statistics of Schroedinger Equation

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  6. Virial Theorem and Non-Equilibrium Canonical-Dissipative Distributions Characterizing Parkinson Tremor

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The virial theorem and the concept of canonical-statistical distributions represent two fundamental elements of statistical physics. We apply these concepts to hand tremor oscillations recorded from six Parkinson patients. We find that the virial theorem holds for Parkinson tremor oscillations. In contrast, we find that the concept of canonical distributions fails to a certain extent and needs to be replaced by the notion of non-canonical (i.e., canonical-dissipative) distributions. In doing so, our analysis reveals both general statistical aspects and non-equilibrium aspects of Parkinson hand tremor.

  7. Complementary relations in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Nicholson, S. B.

    2015-08-01

    We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton-Jacobi relation for forced-dissipative systems.

  8. Nonequilibrium work by charge control in a Josephson junction.

    PubMed

    Yi, Su Do; Kim, Beom Jun; Yi, Juyeon

    2013-08-01

    We consider a single Josephson junction in the presence of time varying gate charge, and examine the nonequilibrium work done by the charge control in the framework of fluctuation theorems. Assuming first a high quality junction with negligible Ohmic current, we obtain the probability distribution functions of the work and confirm the Crooks relation to give the estimation of the free energy changes ΔF=0. The reliability of ΔF estimated from the Jarzynksi equality is crucially dependent on protocol parameters, while the Bennett's acceptance ratio method yields consistently ΔF=0. We examine the behaviors of the work average and point out its relation to heat and entropy production associated with the circuit control. Finally considering finite tunnel resistance we discuss dissipation effects on the work statistics. PMID:24032811

  9. Two- and three-pion quantum statistics correlations in Pb-Pb collisions at √sNN =2.76 TeV at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Prado, C. Alves Garcia; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Pedrosa, F. Baltasar Dos Santos; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Díaz, A. Casanova; Castellanos, J. Castillo; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Sanchez, C. Ceballos; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Balbastre, G. Conesa; Conesa Del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortese, P.; Maldonado, I. Cortés; Cosentino, M. R.; Costa, F.; Crochet, P.; Albino, R. Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Corchero, M. A. Diaz; Dietel, T.; Divià, R.; Bari, D. Di; Liberto, S. Di; Mauro, A. Di; Nezza, P. Di; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Dorheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Majumdar, A. K. Dutta; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.

    2014-02-01

    Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at √sNN =2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23%±8%.

  10. Thermodynamics of cellular statistical inference

    NASA Astrophysics Data System (ADS)

    Lang, Alex; Fisher, Charles; Mehta, Pankaj

    2014-03-01

    Successful organisms must be capable of accurately sensing the surrounding environment in order to locate nutrients and evade toxins or predators. However, single cell organisms face a multitude of limitations on their accuracy of sensing. Berg and Purcell first examined the canonical example of statistical limitations to cellular learning of a diffusing chemical and established a fundamental limit to statistical accuracy. Recent work has shown that the Berg and Purcell learning limit can be exceeded using Maximum Likelihood Estimation. Here, we recast the cellular sensing problem as a statistical inference problem and discuss the relationship between the efficiency of an estimator and its thermodynamic properties. We explicitly model a single non-equilibrium receptor and examine the constraints on statistical inference imposed by noisy biochemical networks. Our work shows that cells must balance sample number, specificity, and energy consumption when performing statistical inference. These tradeoffs place significant constraints on the practical implementation of statistical estimators in a cell.

  11. Fisher informations and local asymptotic normality for continuous-time quantum Markov processes

    NASA Astrophysics Data System (ADS)

    Catana, Catalin; Bouten, Luc; Guţă, Mădălin

    2015-09-01

    We consider the problem of estimating an arbitrary dynamical parameter of an open quantum system in the input-output formalism. For irreducible Markov processes, we show that in the limit of large times the system-output state can be approximated by a quantum Gaussian state whose mean is proportional to the unknown parameter. This approximation holds locally in a neighbourhood of size {t}-1/2 in the parameter space, and provides an explicit expression of the asymptotic quantum Fisher information in terms of the Markov generator. Furthermore we show that additive statistics of the counting and homodyne measurements also satisfy local asymptotic normality and we compute the corresponding classical Fisher informations. The general theory is illustrated with the examples of a two-level system and the atom maser. Our results contribute towards a better understanding of the statistical and probabilistic properties of the output process, with relevance for quantum control engineering, and the theory of non-equilibrium quantum open systems.

  12. Keldysh field theory for nonequilibrium condensation in a parametrically pumped polariton system

    NASA Astrophysics Data System (ADS)

    Dunnett, K.; Szymańska, M. H.

    2016-05-01

    We develop a quantum field theory for parametrically pumped polaritons using Keldysh Green's function techniques with which the occupations of the excitation spectra can be calculated. By considering the mean field and Gaussian fluctuations, we find that the highly nonequilibrium phase transition to the optical parametric oscillator regime is in some ways similar to equilibrium condensation. In particular, we show that this phase transition can be associated with an effective chemical potential, at which the system's bosonic distribution function diverges, and an effective temperature for low energy modes. As in equilibrium systems, the transition is achieved by tuning this effective chemical potential to the energy of the lowest normal mode. Since the nonequilibrium occupations of the modes are available, we determine experimentally observable properties such as the luminescence and absorption spectra.

  13. Unlikely Fluctuations and Non-Equilibrium Work Theorems-A Simple Example.

    PubMed

    Muzikar, Paul

    2016-06-30

    An exciting development in statistical mechanics has been the elucidation of a series of surprising equalities involving the work done during a nonequilibrium process. Astumian has presented an elegant example of such an equality, involving a colloidal particle undergoing Brownian motion in the presence of gravity. We analyze this example; its simplicity, and its link to geometric Brownian motion, allows us to clarify the inner workings of the equality. Our analysis explicitly shows the important role played by large, unlikely fluctuations. PMID:27275931

  14. Non-equilibrium thermodynamics and stochasticity: a phenomenological look on Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Muschik, W.

    2016-07-01

    The theory of phenomenological non-equilibrium thermodynamics is extended by including stochastic processes in order to account for recently derived thermodynamical relations such as the Jarzynski's equality. Four phenomenological axioms are postulated resulting in a phenomenological interpretation of Jarzynski's equality. In particular, considering the class of Jarzynski processes Jarzynski's equality follows from the axiom that the statistical average of the exponential work is protocol independent.

  15. Shannon-entropy-based nonequilibrium "entropic" temperature of a general distribution.

    PubMed

    Narayanan, K R; Srinivasa, A R

    2012-03-01

    The concept of temperature is one of the key ideas in describing the thermodynamical properties of systems. In classical statistical mechanics of ideal gases, the notion of temperature can be described in at least two different ways: the kinetic temperature (related to the average kinetic energy of the particles) and the thermodynamic temperature (related to the ratio between infinitesimal changes in entropy and energy). For the Boltzmann distribution, the two notions lead to the same result. However, for nonequilibrium phenomena, while the kinetic temperature has been commonly used both for theoretical and simulation purposes, there appears to be no corresponding general definition of thermodynamic or entropic temperature. In this paper, we consider the statistical or Shannon entropy of a system and use the "de Bruijn identity" from information theory (see Appendix A 2 for a derivation of this identity) to show that it is possible to define a "Shannon temperature" or "entropic temperature" T for a nonequilibrium system as the ratio between the average curvature of the Hamiltonian function associated with the system and the trace of the Fisher information matrix of the nonequilibrium probability distribution (see Appendix A 1 for a definition of the Fisher information). We show that this definition subsumes many other attempts at defining entropic temperatures for nonequilibrium systems and is not restricted to equilibrium or near equilibrium systems. Intuitively, the gist of our approach is to use the Shannon or Gibbs entropy of a system and make use of the relation dS=dQ(rev)/T as a definition of temperature. We achieve this by positing a statistical notion of infinitesimal heating as the addition of uncorrelated random variables (in a special way). As an example of the utility of such a definition, we obtain the nonequilibrium entropic temperature for a system satisfying the Langevin equations. For such a system, we show that while the kinetic temperature is

  16. Statistical Physics of Fields

    NASA Astrophysics Data System (ADS)

    Kardar, Mehran

    2006-06-01

    While many scientists are familiar with fractals, fewer are familiar with the concepts of scale-invariance and universality which underly the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873413. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 65 exercises, with solutions to selected problems Features a thorough introduction to the methods of Statistical Field theory Ideal for graduate courses in Statistical Physics

  17. Relaxation dynamics in correlated quantum dots

    SciTech Connect

    Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.

    2014-12-04

    We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.

  18. Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Cazalilla, M. A.; Rigol, M.

    2010-05-01

    The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and

  19. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing. PMID:26465432

  20. Nonequilibrium hadronization and constituent quark number scaling

    SciTech Connect

    Zschocke, Sven; Horvat, Szabolcs; Mishustin, Igor N.; Csernai, Laszlo P.

    2011-04-15

    The constituent quark number scaling of elliptic flow is studied in a nonequilibrium hadronization and freeze-out model with rapid dynamical transition from ideal, deconfined, and chirally symmetric quark-gluon plasma, to final noninteracting hadrons. In this transition a bag model of constituent quarks is considered, where the quarks gain constituent quark mass while the background bag field breaks up and vanishes. The constituent quarks then recombine into simplified hadron states, while chemical, thermal, and flow equilibrium break down one after the other. In this scenario the resulting temperatures and flow velocities of baryons and mesons are different. Using a simplified few source model of the elliptic flow, we are able to reproduce the constituent quark number scaling, with assumptions on the details of the nonequilibrium processes.