Science.gov

Sample records for nonfibrillar amyloid oligomers

  1. Conversion of non-fibrillar {beta}-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation

    SciTech Connect

    Benseny-Cases, Nuria; Cocera, Mercedes; Cladera, Josep

    2007-10-05

    A{beta}(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular {beta}-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the A{beta}(1-40) fibril formation process. A unique sample containing 90 {mu}M peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar {beta}-structures. The number of oligomers and the amount of non-fibrillar {beta}-structures grows throughout the lag phase and during the elongation phase these non-fibrillar {beta}-structures are transformed into fibrillar (amyloid) {beta}-structures, formed by association of high molecular weight intermediates.

  2. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    SciTech Connect

    Niidome, Tetsuhiro; Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin; Goh, Saori; Tanaka, Naoki; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  3. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches.

    PubMed

    Salahuddin, Parveen; Fatima, Munazza Tamkeen; Abdelhameed, Ali Saber; Nusrat, Saima; Khan, Rizwan Hasan

    2016-05-23

    Protein misfolding is one of the leading causes of amyloidoses. Protein misfolding occurs from changes in environmental conditions and host of other factors, including errors in post-translational modifications, increase in the rate of degradation, error in trafficking, loss of binding partners and oxidative damage. Misfolding gives rise to the formation of partially unfolded or misfolded intermediates, which have exposed hydrophobic residues and interact with complementary intermediates to form oligomers and consequently protofibrils and fibrils. The amyloid fibrils accumulate as amyloid deposits in the brain and central nervous system in Alzheimer's disease (AD), Prion disease and Parkinson's disease (PD). Initial studies have shown that amyloid fibrils were the main culprit behind toxicity that cause neurodegenerative diseases. However, attention shifted to the cytotoxicity of amyloid fibril precursors, notably amyloid oligomers, which are the major cause of toxicity. The mechanism of toxicity triggered by amyloid oligomers remains elusive. In this review, we have focused on the current knowledge of the structures of different aggregated states, including amyloid fibril, protofibrils, annular aggregates and oligomers. Based on the studies on the mechanism of toxicities, we hypothesize two major possible mechanisms of toxicities instigated by oligomers of Aβ (amyloid beta), PrP (prion protein) (106-126), and α-Syn (alpha-synuclein) including direct formation of ion channels and neuron membrane disruption by the increase in membrane conductance or leakage in the presence of small globulomers to large prefibrillar assemblies. Finally, we have discussed various novel innovative approaches that target amyloid oligomers in Alzheimer's diseases, Prion disease and Parkinson's disease. PMID:26974374

  4. Zinc-Amyloid Interactions on a Millisecond Time-Scale Stabilize Non-Fibrillar Alzheimer Related Species

    SciTech Connect

    Noy,D.; Solomonov, I.; Sinkevich, O.; Arad, A.; Kjaer, K.; Sagi, I.

    2008-01-01

    The role of zinc, an essential element for normal brain function, in the pathology of Alzheimer's disease (AD) is poorly understood. On one hand, physiological and genetic evidence from transgenic mouse models supports its pathogenic role in promoting the deposition of the amyloid {beta}-protein (A{beta}) in senile plaques. On the other hand, levels of extracellular ('free') zinc in the brain, as inferred by the levels of zinc in cerebrospinal fluid, were found to be too low for inducing A{beta} aggregation. Remarkably, the release of transient high local concentrations of zinc during rapid synaptic events was reported. The role of such free zinc pulses in promoting A{beta} aggregation has never been established. Using a range of time-resolved structural and spectroscopic techniques, we found that zinc, when introduced in millisecond pulses of micromolar concentrations, immediately interacts with A{beta} 1-40 and promotes its aggregation. These interactions specifically stabilize non-fibrillar pathogenic related aggregate forms and prevent the formation of A{beta} fibrils (more benign species) presumably by interfering with the self-assembly process of A{beta}. These in vitro results strongly suggest a significant role for zinc pulses in A{beta} pathology. We further propose that by interfering with A{beta} self-assembly, which leads to insoluble, non-pathological fibrillar forms, zinc stabilizes transient, harmful amyloid forms. This report argues that zinc represents a class of molecular pathogens that effectively perturb the self-assembly of benign A{beta} fibrils, and stabilize harmful non-fibrillar forms.

  5. Atomic View of a Toxic Amyloid Small Oligomer

    SciTech Connect

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  6. Atomic View of a Toxic Amyloid Small Oligomer

    PubMed Central

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2014-01-01

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here we identify a segment of the amyloid-forming protein, alphaB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: beta-sheet-rich structure, cytotoxicity, and recognition by an anti-oligomer antibody. The X-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six anti-parallel, protein strands, which we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the Abeta protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers. PMID:22403391

  7. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  8. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-01-01

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils. PMID:26138908

  9. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    PubMed Central

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-01-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5–15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils. PMID:26138908

  10. Toxic species in amyloid disorders: Oligomers or mature fibrils

    PubMed Central

    Verma, Meenakshi; Vats, Abhishek; Taneja, Vibha

    2015-01-01

    Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described. PMID:26019408

  11. Structural differences between amyloid beta oligomers.

    PubMed

    Breydo, Leonid; Kurouski, Dmitry; Rasool, Suhail; Milton, Saskia; Wu, Jessica W; Uversky, Vladimir N; Lednev, Igor K; Glabe, Charles G

    2016-09-01

    In Alzheimer's disease, soluble Aβ oligomers are believed to play important roles in the disease pathogenesis, and their levels correlate with cognitive impairment. We have previously shown that Aβ oligomers can be categorized into multiple structural classes based on their reactivity with conformation-dependent antibodies. In this study, we analyzed the structures of Aβ40 oligomers belonging to two of these classes: fibrillar and prefibrillar oligomers. We found that fibrillar oligomers were similar in structure to fibrils but were less stable towards denaturation while prefibrillar oligomers were found to be partially disordered. These results are consistent with previously proposed structures for both oligomer classes while providing additional structural information. PMID:27363332

  12. Amyloid β peptide oligomers directly activate NMDA receptors.

    PubMed

    Texidó, Laura; Martín-Satué, Mireia; Alberdi, Elena; Solsona, Carles; Matute, Carlos

    2011-03-01

    Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimeŕs disease. PMID:21349580

  13. Quaternary structure defines a large class of amyloidoligomers neutralized by sequestration

    PubMed Central

    Liu, Peng; Reed, Miranda N.; Kotilinek, Linda A.; Grant, Marianne K.O.; Forster, Colleen L.; Qiang, Wei; Shapiro, Samantha L.; Reichl, John H.; Chiang, Angie C.A.; Jankowsky, Joanna L.; Wilmot, Carrie M.; Cleary, James P.; Zahs, Kathleen R.; Ashe, Karen H.

    2015-01-01

    Summary The accumulation of amyloid-β (Aβ) as amyloid fibrils and toxic oligomers is an important step in the development of Alzheimer's disease (AD). However, there are numerous potentially toxic oligomers and little is known about their neurological effects when generated in the living brain. Here, we show that Aβ oligomers can be assigned to one of at least two classes (Type 1 and Type 2) based on their temporal, spatial and structural relationships to amyloid fibrils. The Type 2 oligomers are related to amyloid fibrils and represent the majority of oligomers generated in vivo, but remain confined to the vicinity of amyloid plaques and do not impair cognition at levels relevant to AD. Type 1 oligomers are unrelated to amyloid fibrils and may have greater potential to cause global neural dysfunction in AD because they are dispersed. These results refine our understanding of the pathogenicity of Aβ oligomers in vivo. PMID:26051935

  14. A covalent homodimer probing early oligomers along amyloid aggregation.

    PubMed

    Halabelian, Levon; Relini, Annalisa; Barbiroli, Alberto; Penco, Amanda; Bolognesi, Martino; Ricagno, Stefano

    2015-01-01

    Early oligomers are crucial in amyloid aggregation; however, due to their transient nature they are among the least structurally characterized species. We focused on the amyloidogenic protein beta2-microglobulin (β2m) whose early oligomers are still a matter of debate. An intermolecular interaction between D strands of facing β2m molecules was repeatedly observed, suggesting that such interface may be relevant for β2m dimerization. In this study, by mutating Ser33 to Cys, and assembling the disulphide-stabilized β2m homodimer (DimC33), such DD strand interface was locked. Although the isolated DimC33 display a stability similar to wt β2m under native conditions, it shows enhanced amyloid aggregation propensity. Three distinct crystal structures of DimC33 suggest that dimerization through the DD interface is instrumental for enhancing DimC33 aggregation propensity. Furthermore, the crystal structure of DimC33 in complex with the amyloid-specific dye Thioflavin-T pinpoints a second interface, which likely participates in the first steps of β2m aggregation. The present data provide new insight into β2m early steps of amyloid aggregation. PMID:26420657

  15. A covalent homodimer probing early oligomers along amyloid aggregation

    PubMed Central

    Halabelian, Levon; Relini, Annalisa; Barbiroli, Alberto; Penco, Amanda; Bolognesi, Martino; Ricagno, Stefano

    2015-01-01

    Early oligomers are crucial in amyloid aggregation; however, due to their transient nature they are among the least structurally characterized species. We focused on the amyloidogenic protein beta2-microglobulin (β2m) whose early oligomers are still a matter of debate. An intermolecular interaction between D strands of facing β2m molecules was repeatedly observed, suggesting that such interface may be relevant for β2m dimerization. In this study, by mutating Ser33 to Cys, and assembling the disulphide-stabilized β2m homodimer (DimC33), such DD strand interface was locked. Although the isolated DimC33 display a stability similar to wt β2m under native conditions, it shows enhanced amyloid aggregation propensity. Three distinct crystal structures of DimC33 suggest that dimerization through the DD interface is instrumental for enhancing DimC33 aggregation propensity. Furthermore, the crystal structure of DimC33 in complex with the amyloid-specific dye Thioflavin-T pinpoints a second interface, which likely participates in the first steps of β2m aggregation. The present data provide new insight into β2m early steps of amyloid aggregation. PMID:26420657

  16. Size-dependent neurotoxicity of β-amyloid oligomers

    PubMed Central

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  17. Characterization of a Novel Mouse Model of Alzheimer’s Disease—Amyloid Pathology and Unique β-Amyloid Oligomer Profile

    PubMed Central

    Liu, Peng; Paulson, Jennifer B.; Forster, Colleen L.; Shapiro, Samantha L.; Ashe, Karen H.; Zahs, Kathleen R.

    2015-01-01

    Amyloid plaques composed of β-amyloid (Aβ) protein are a pathological hallmark of Alzheimer’s disease. We here report the generation and characterization of a novel transgenic mouse model of Aβ toxicity. The rTg9191 mice harbor a transgene encoding the 695 amino-acid isoform of human amyloid precursor protein (APP) with the Swedish and London mutations (APPNLI) linked to familial Alzheimer’s disease, under the control of a tetracycline-response element, as well as a transgene encoding the tetracycline transactivator, under the control of the promoter for calcium-calmodulin kinase IIα. In these mice, APPNLI is expressed at a level four-fold that of endogenous mouse APP and its expression is restricted to forebrain regions. Transgene expression was suppressed by 87% after two months of doxycycline administration. Histologically, we showed that (1) Aβ plaques emerged in cerebral cortex and hippocampus as early as 8 and 10.5-12.5 months of age, respectively; (2) plaque deposition progressed in an age-dependent manner, occupying up to 19% of cortex at ~25 months of age; and (3) neuropathology—such as abnormal neuronal architecture, tau hyperphosphorylation and misfolding, and neuroinflammation—was observed in the vicinity of neuritic plaques. Biochemically, we determined total Aβ production at varied ages of mice, and we showed that mice produced primarily fibrillar Aβ assemblies recognized by conformation-selective OC antibodies, but few non-fibrillar oligomers (e.g., Aβ*56) detectable by A11 antibodies. Finally, we showed that expression of the tetracycline transactivator resulted in reduced brain weight and smaller dentate-gyrus size. Collectively, these data indicate that rTg9191 mice may serve as a model for studying the neurological effects of the fibrillar Aβ assemblies in situ. PMID:25946042

  18. Characteristics of Amyloid-Related Oligomers Revealed by Crystal Structures of Macrocyclic [beta]-Sheet Mimics

    SciTech Connect

    Liu, Cong; Sawaya, Michael R.; Cheng, Pin-Nan; Zheng, Jing; Nowick, James S.; Eisenberg, David

    2011-09-20

    Protein amyloid oligomers have been strongly linked to amyloid diseases and can be intermediates to amyloid fibers. {beta}-Sheets have been identified in amyloid oligomers. However, because of their transient and highly polymorphic properties, the details of their self-association remain elusive. Here we explore oligomer structure using a model system: macrocyclic peptides. Key amyloidogenic sequences from A{beta} and tau were incorporated into macrocycles, thereby restraining them to {beta}-strands, but limiting the growth of the oligomers so they may crystallize and cannot fibrillate. We determined the atomic structures for four such oligomers, and all four reveal tetrameric interfaces in which {beta}-sheet dimers pair together by highly complementary, dry interfaces, analogous to steric zippers found in fibers, suggesting a common structure for amyloid oligomers and fibers. In amyloid fibers, the axes of the paired sheets are either parallel or antiparallel, whereas the oligomeric interfaces display a variety of sheet-to-sheet pairing angles, offering a structural explanation for the heterogeneity of amyloid oligomers.

  19. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies

    PubMed Central

    Bram, Yaron; Frydman-Marom, Anat; Yanai, Inbal; Gilead, Sharon; Shaltiel-Karyo, Ronit; Amdursky, Nadav; Gazit, Ehud

    2014-01-01

    Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy. PMID:24589570

  20. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  1. Soluble state high resolution atomic force microscopy study of Alzheimer’s β-amyloid oligomers

    PubMed Central

    Shekhawat, Gajendra S.; Lambert, Mary P.; Sharma, Saurabh; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.; Dravid, Vinayak P.

    2009-01-01

    We report here the direct observation of high resolution structures of assemblies of Alzheimer β-amyloid oligomers and monomers using liquid atomic force microscopy (AFM). Visualization of nanoscale features of Aβ oligomers (also known as ADDLs) was carried out in tapping mode AFM in F12 solution. Our results indicate that ADDL preparations exist in solution primarily as a mixture of monomeric peptides and higher molecular mass oligomers. Our study clearly reveals that the size and shape of these oligomer aggregates exhibit a pronounced dependence on concentration. These studies show that wet AFM enables direct assessment of oligomers in physiological fluids and suggests that this method may be developed to visualize Aβ oligomers from human fluids. PMID:19997583

  2. Soluble state high resolution atomic force microscopy study of Alzheimer's β-amyloid oligomers

    NASA Astrophysics Data System (ADS)

    Shekhawat, Gajendra S.; Lambert, Mary P.; Sharma, Saurabh; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.; Dravid, Vinayak P.

    2009-11-01

    We report here the direct observation of high resolution structures of assemblies of Alzheimer β-amyloid oligomers and monomers using liquid atomic force microscopy (AFM). Visualization of nanoscale features of Aβ oligomers (also known as ADDLs) was carried out in tapping mode AFM in F12 solution. Our results indicate that ADDL preparations exist in solution primarily as a mixture of monomeric peptides and higher molecular mass oligomers. Our study clearly reveals that the size and shape of these oligomer aggregates exhibit a pronounced dependence on concentration. These studies show that wet AFM enables direct assessment of oligomers in physiological fluids and suggests that this method may be developed to visualize Aβ oligomers from human fluids.

  3. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    PubMed Central

    Yuan, Zuanning; Du, Minge; Chen, Yiwen; Dou, Fei

    2013-01-01

    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that specifically recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifically to human amyloid-beta 42 tetramer and nonamer, but not the monomer or high molecular weight oligomers. This study successfully constructed a human phage display library and screened a single-domain antibody that specifically recognized amyloid-beta 42 oligomers. PMID:25206631

  4. Oligomer Formation of Toxic and Functional Amyloid Peptides Studied with Atomistic Simulations.

    PubMed

    Carballo-Pacheco, Martín; Ismail, Ahmed E; Strodel, Birgit

    2015-07-30

    Amyloids are associated with diseases, including Alzheimer's, as well as functional roles such as storage of peptide hormones. It is still unclear what differences exist between aberrant and functional amyloids. However, it is known that soluble oligomers formed during amyloid aggregation are more toxic than the final fibrils. Here, we perform molecular dynamics simulations to study the aggregation of the amyloid-β peptide Aβ25-35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Although the three peptides have similar primary sequences, tachykinin peptides, in contrast to Aβ25-35, form nontoxic amyloids. Our simulations reveal that the charge of the C-terminus is essential to controlling the aggregation process. In particular, when the kassinin C-terminus is not amidated, the aggregation kinetics decreases considerably. In addition, we observe that the monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. PMID:26130191

  5. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods.

    PubMed

    Fernández, Cristina; González-Rubio, Guillermo; Langer, Judith; Tardajos, Gloria; Liz-Marzán, Luis M; Giraldo, Rafael; Guerrero-Martínez, Andrés

    2016-09-01

    Understanding protein amyloidogenesis is an important topic in protein science, fueled by the role of amyloid aggregates, especially oligomers, in the etiology of a number of devastating human degenerative diseases. However, the mechanisms that determine the formation of amyloid oligomers remain elusive due to the high complexity of the amyloidogenesis process. For instance, gold nanoparticles promote or inhibit amyloid fibrillation. We have functionalized gold nanorods with a metal-chelating group to selectively immobilize soluble RepA-WH1, a model synthetic bacterial prionoid, using a hexa-histidine tag (H6). H6-RepA-WH1 undergoes stable amyloid oligomerization in the presence of catalytic concentrations of anisotropic nanoparticles. Then, in a physically separated event, such oligomers promote the growth of amyloid fibers of untagged RepA-WH1. SERS spectral changes of H6-RepA-WH1 on spherical citrate-AuNP substrates provide evidence for structural modifications in the protein, which are compatible with a gradual increase in β-sheet structure, as expected in amyloid oligomerization. PMID:27489029

  6. The Role of AmyloidOligomers in Toxicity, Propagation, and Immunotherapy

    PubMed Central

    Sengupta, Urmi; Nilson, Ashley N.; Kayed, Rakez

    2016-01-01

    The incidence of Alzheimer's disease (AD) is growing every day and finding an effective treatment is becoming more vital. Amyloid-β (Aβ) has been the focus of research for several decades. The recent shift in the Aβ cascade hypothesis from all Aβ to small soluble oligomeric intermediates is directing the search for therapeutics towards the toxic mediators of the disease. Targeting the most toxic oligomers may prove to be an effective treatment by preventing their spread. Specific targeting of oligomers has been shown to protect cognition in rodent models. Additionally, the heterogeneity of research on Aβ oligomers may seem contradictory until size and conformation are taken into account. In this review, we will discuss Aβ oligomers and their toxicity in relation to size and conformation as well as their influence on inflammation and the potential of Aβ oligomer immunotherapy. PMID:27211547

  7. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Garcia, Gonzalo A.; Dear, Alexander J.; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C. T.; Dobson, Christopher M.; Frenkel, Daan; Knowles, Tuomas P. J.; Klenerman, David

    2016-06-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.

  8. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms

    PubMed Central

    Iljina, Marija; Garcia, Gonzalo A.; Dear, Alexander J.; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C. T.; Dobson, Christopher M.; Frenkel, Daan; Knowles, Tuomas P. J.; Klenerman, David

    2016-01-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease. PMID:27346247

  9. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms.

    PubMed

    Iljina, Marija; Garcia, Gonzalo A; Dear, Alexander J; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C T; Dobson, Christopher M; Frenkel, Daan; Knowles, Tuomas P J; Klenerman, David

    2016-01-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer's disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer's disease. PMID:27346247

  10. Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers.

    PubMed

    Dalal, Vijit; Arya, Shruti; Bhattacharya, Mily; Mukhopadhyay, Samrat

    2015-12-29

    Conformational switching of the prion protein (PrP) from an α-helical normal cellular form (PrP(C)) to an aggregation-prone and self-propagating β-rich scrapie form (PrP(Sc)) underlies the molecular basis of pathogenesis in prion diseases. Anionic lipids play a critical role in the misfolding and conformational conversion of the membrane-anchored PrP into the amyloidogenic pathological form. In this work, we have used a diverse array of techniques to interrogate the early intermediates during amyloid formation from recombinant human PrP in the presence of a membrane mimetic anionic detergent such as sodium dodecyl sulfate. We have been able to detect and characterize two distinct types of interconvertible oligomers. Our results demonstrate that highly ordered large β-oligomers represent benign off-pathway intermediates that lack the ability to mature into amyloid fibrils. On the contrary, structurally labile small oligomers are capable of switching to an ordered amyloid-state that exhibits profound toxicity to mammalian cells. Our fluorescence resonance energy transfer measurements revealed that the partially disordered PrP serves as precursors to small amyloid-competent oligomers. These on-pathway oligomers are eventually sequestered into higher order supramolecular assemblies that conformationally mature into polymorphic amyloids possessing varied nanoscale morphology as evident by the atomic force microscopy imaging. The nanoscale diversity of fibril architecture is attributed to the heterogeneous ensemble of early obligatory oligomers and offers a plausible explanation for the existence of multiple prion strains in vivo. PMID:26645611

  11. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    PubMed Central

    Jeong, Hye Rin; An, Seong Soo A

    2015-01-01

    Human islet amyloid polypeptide (h-IAPP) is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM). Since the causative factors of IAPP (or amylin) oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin) will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology. PMID:26604727

  12. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus.

    PubMed

    Jeong, Hye Rin; An, Seong Soo A

    2015-01-01

    Human islet amyloid polypeptide (h-IAPP) is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM). Since the causative factors of IAPP (or amylin) oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin) will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology. PMID:26604727

  13. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers.

    PubMed

    Umeda, Tomohiro; Ono, Kenjiro; Sakai, Ayumi; Yamashita, Minato; Mizuguchi, Mineyuki; Klein, William L; Yamada, Masahito; Mori, Hiroshi; Tomiyama, Takami

    2016-05-01

    Amyloid-β, tau, and α-synuclein, or more specifically their soluble oligomers, are the aetiologic molecules in Alzheimer's disease, tauopathies, and α-synucleinopathies, respectively. These proteins have been shown to interact to accelerate each other's pathology. Clinical studies of amyloid-β-targeting therapies in Alzheimer's disease have revealed that the treatments after disease onset have little benefit on patient cognition. These findings prompted us to explore a preventive medicine which is orally available, has few adverse effects, and is effective at reducing neurotoxic oligomers with a broad spectrum. We initially tested five candidate compounds: rifampicin, curcumin, epigallocatechin-3-gallate, myricetin, and scyllo-inositol, in cells expressing amyloid precursor protein (APP) with the Osaka (E693Δ) mutation, which promotes amyloid-β oligomerization. Among these compounds, rifampicin, a well-known antibiotic, showed the strongest activities against the accumulation and toxicity (i.e. cytochrome c release from mitochondria) of intracellular amyloidoligomers. Under cell-free conditions, rifampicin inhibited oligomer formation of amyloid-β, tau, and α-synuclein, indicating its broad spectrum. The inhibitory effects of rifampicin against amyloid-β and tau oligomers were evaluated in APPOSK mice (amyloidoligomer model), Tg2576 mice (Alzheimer's disease model), and tau609 mice (tauopathy model). When orally administered to 17-month-old APPOSK mice at 0.5 and 1 mg/day for 1 month, rifampicin reduced the accumulation of amyloidoligomers as well as tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent manner. In the Morris water maze, rifampicin at 1 mg/day improved memory of the mice to a level similar to that in non-transgenic littermates. Rifampicin also inhibited cytochrome c release from the mitochondria and caspase 3 activation in the hippocampus. In 13-month-old Tg2576 mice, oral rifampicin at 0.5 mg

  14. Rare Individual AmyloidOligomers Act on Astrocytes to Initiate Neuronal Damage

    PubMed Central

    2014-01-01

    Oligomers of the amyloid-β (Aβ) peptide have been implicated in the neurotoxicity associated with Alzheimer’s disease. We have used single-molecule techniques to examine quantitatively the cellular effects of adding well characterized Aβ oligomers to primary hippocampal cells and hence determine the initial pathway of damage. We found that even picomolar concentrations of Aβ (1–40) and Aβ (1–42) oligomers can, within minutes of addition, increase the levels of intracellular calcium in astrocytes but not in neurons, and this effect is saturated at a concentration of about 10 nM of oligomers. Both Aβ (1–40) and Aβ (1–42) oligomers have comparable effects. The rise in intracellular calcium is followed by an increase in the rate of ROS production by NADPH oxidase in both neurons and astrocytes. The increase in ROS production then triggers caspase-3 activation resulting in the inhibition of long-term potentiation. Our quantitative approach also reveals that only a small fraction of the oligomers are damaging and that an individual rare oligomer binding to an astrocyte can initiate the aforementioned cascade of responses, making it unlikely to be due to any specific interaction. Preincubating the Aβ oligomers with an extracellular chaperone, clusterin, sequesters the oligomers in long-lived complexes and inhibits all of the physiological damage, even at a ratio of 100:1, total Aβ to clusterin. To explain how Aβ oligomers are so damaging but that it takes decades to develop Alzheimer’s disease, we suggest a model for disease progression where small amounts of neuronal damage from individual unsequestered oligomers can accumulate over time leading to widespread tissue-level dysfunction. PMID:24717093

  15. Beta-Amyloid Oligomers Activate Apoptotic BAK Pore for Cytochrome c Release

    PubMed Central

    Kim, Jaewook; Yang, Yoosoo; Song, Seung Soo; Na, Jung-Hyun; Oh, Kyoung Joon; Jeong, Cherlhyun; Yu, Yeon Gyu; Shin, Yeon-Kyun

    2014-01-01

    In Alzheimer’s disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aβ) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aβ of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aβ oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aβ oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aβ oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death. PMID:25296312

  16. The Anti-Prion Antibody 15B3 Detects Toxic AmyloidOligomers.

    PubMed

    Stravalaci, Matteo; Tapella, Laura; Beeg, Marten; Rossi, Alessandro; Joshi, Pooja; Pizzi, Erika; Mazzanti, Michele; Balducci, Claudia; Forloni, Gianluigi; Biasini, Emiliano; Salmona, Mario; Diomede, Luisa; Chiesa, Roberto; Gobbi, Marco

    2016-07-01

    15B3 is a monoclonal IgM antibody that selectively detects pathological aggregates of the prion protein (PrP). We report the unexpected finding that 15B3 also recognizes oligomeric but not monomeric forms of amyloid-β (Aβ)42, an aggregating peptide implicated in the pathogenesis of Alzheimer's disease (AD). The 15B3 antibody: i) inhibits the binding of synthetic Aβ42 oligomers to recombinant PrP and neuronal membranes; ii) prevents oligomer-induced membrane depolarization; iii) antagonizes the inhibitory effects of oligomers on the physiological pharyngeal contractions of the nematode Caenorhabditis elegans; and iv) counteracts the memory deficits induced by intracerebroventricular injection of Aβ42 oligomers in mice. Thus this antibody binds to pathologically relevant forms of Aβ, and offers a potential research, diagnostic, and therapeutic tool for AD. PMID:27392850

  17. Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway

    PubMed Central

    Misra, Pinaki; Kodali, Ravindra; Chemuru, Saketh; Kar, Karunakar; Wetzel, Ronald

    2016-01-01

    Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results support an aggregation initiation mechanism for Aβ-polyQ hybrids, and by extension for full-length Aβ peptides, in which a modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers. The resulting high local concentration of tethered amyloidogenic segments within these α-oligomers facilitates transition to a β-oligomer population that, via further remodelling and/or elongation steps, ultimately generates mature amyloid. Consistent with this mechanism, an engineered Aβ C-terminal fragment delays aggregation onset by Aβ-polyglutamine peptides and redirects assembly of Aβ42 fibrils. PMID:27546208

  18. Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway.

    PubMed

    Misra, Pinaki; Kodali, Ravindra; Chemuru, Saketh; Kar, Karunakar; Wetzel, Ronald

    2016-01-01

    Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results support an aggregation initiation mechanism for Aβ-polyQ hybrids, and by extension for full-length Aβ peptides, in which a modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers. The resulting high local concentration of tethered amyloidogenic segments within these α-oligomers facilitates transition to a β-oligomer population that, via further remodelling and/or elongation steps, ultimately generates mature amyloid. Consistent with this mechanism, an engineered Aβ C-terminal fragment delays aggregation onset by Aβ-polyglutamine peptides and redirects assembly of Aβ42 fibrils. PMID:27546208

  19. Methods for the Specific Detection and Quantitation of AmyloidOligomers in Cerebrospinal Fluid.

    PubMed

    Schuster, Judith; Funke, Susanne Aileen

    2016-05-01

    Protein misfolding and aggregation are fundamental features of the majority of neurodegenerative diseases, like Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia, and prion diseases. Proteinaceous deposits in the brain of the patient, e.g., amyloid plaques consisting of the amyloid-β (Aβ) peptide and tangles composed of tau protein, are the hallmarks of AD. Soluble oligomers of Aβ and tau play a fundamental role in disease progression, and specific detection and quantification of the respective oligomeric proteins in cerebrospinal fluid may provide presymptomatically detectable biomarkers, paving the way for early diagnosis or even prognosis. Several studies on the development of techniques for the specific detection of Aβ oligomers were published, but some of the existing tools do not yet seem to be satisfactory, and the study results are contradicting. The detection of oligomers is challenging due to their polymorphous and unstable nature, their low concentration, and the presence of competing proteins and Aβ monomers in body fluids. Here, we present an overview of the current state of the development of methods for Aβ oligomer specific detection and quantitation. The methods are divided in the three subgroups: (i) enzyme linked immunosorbent assays (ELISA), (ii) methods for single oligomer detection, and (iii) others, which are mainly biosensor based methods. PMID:27163804

  20. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    PubMed Central

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-01-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  1. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    NASA Astrophysics Data System (ADS)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  2. Amyloid Oligomer Neurotoxicity, Calcium Dysregulation, and Lipid Rafts

    PubMed Central

    Malchiodi-Albedi, Fiorella; Paradisi, Silvia; Matteucci, Andrea; Frank, Claudio; Diociaiuti, Marco

    2011-01-01

    Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin. PMID:21331330

  3. Alzheimer's amyloidoligomers rescue cellular prion protein induced tau reduction via the Fyn pathway.

    PubMed

    Chen, Rong-Jie; Chang, Wei-Wei; Lin, Yu-Chun; Cheng, Pei-Lin; Chen, Yun-Ru

    2013-09-18

    Amyloid-β (Aβ) and tau are the pathogenic hallmarks in Alzheimer's disease (AD). Aβ oligomers are considered the actual toxic entities, and the toxicity relies on the presence of tau. Recently, Aβ oligomers have been shown to specifically interact with cellular prion protein (PrP(C)) where the role of PrP(C) in AD is still not fully understood. To investigate the downstream mechanism of PrP(C) and Aβ oligomer interaction and their possible relationships to tau, we examined tau expression in human neuroblastoma BE(2)-C cells transfected with murine PrP(C) and studied the effect under Aβ oligomer treatment. By Western blotting, we found that PrP(C) overexpression down-regulated tau protein and Aβ oligomer binding alleviated the tau reduction induced by wild type but not M128V PrP(C), the high AD risk polymorphic allele in human prion gene. PrP(C) lacking the Aβ oligomer binding site was incapable of rescuing the level of tau reduction. Quantitative RT-PCR showed the PrP(C) effect was attributed to tau reduction at the transcription level. Treatment with Fyn pathway inhibitors, Fyn kinase inhibitor PP2 and MEK inhibitor U0126, reversed the PrP(C)-induced tau reduction and Aβ oligomer treatment modulated Fyn kinase activity. The results suggested Fyn pathway regulated Aβ-PrP(C)-tau signaling. Overall, our results demonstrated that PrP(C) down-regulated tau via the Fyn pathway and the effect can be regulated by Aβ oligomers. Our study facilitated the understanding of molecular mechanisms among PrP(C), tau, and Aβ oligomers. PMID:23805846

  4. Designed α-sheet peptides inhibit amyloid formation by targeting toxic oligomers

    PubMed Central

    Hopping, Gene; Kellock, Jackson; Barnwal, Ravi Pratap; Law, Peter; Bryers, James; Varani, Gabriele; Caughey, Byron; Daggett, Valerie

    2014-01-01

    Previous studies suggest that the toxic soluble-oligomeric form of different amyloid proteins share a common backbone conformation, but the amorphous nature of this oligomer prevents its structural characterization by experiment. Based on molecular dynamics simulations we proposed that toxic intermediates of different amyloid proteins adopt a common, nonstandard secondary structure, called α-sheet. Here we report the experimental characterization of peptides designed to be complementary to the α-sheet conformation observed in the simulations. We demonstrate inhibition of aggregation in two different amyloid systems, β-amyloid peptide (Aβ) and transthyretin, by these designed α-sheet peptides. When immobilized the α-sheet designs preferentially bind species from solutions enriched in the toxic conformer compared with non-aggregated, nontoxic species or mature fibrils. The designs display characteristic spectroscopic signatures distinguishing them from conventional secondary structures, supporting α-sheet as a structure involved in the toxic oligomer stage of amyloid formation and paving the way for novel therapeutics and diagnostics. DOI: http://dx.doi.org/10.7554/eLife.01681.001 PMID:25027691

  5. Application of an Amyloid Beta Oligomer Standard in the sFIDA Assay.

    PubMed

    Kühbach, Katja; Hülsemann, Maren; Herrmann, Yvonne; Kravchenko, Kateryna; Kulawik, Andreas; Linnartz, Christina; Peters, Luriano; Wang, Kun; Willbold, Johannes; Willbold, Dieter; Bannach, Oliver

    2016-01-01

    Still, there is need for significant improvements in reliable and accurate diagnosis for Alzheimer's disease (AD) at early stages. It is widely accepted that changes in the concentration and conformation of amyloid-β (Aβ) appear several years before the onset of first symptoms of cognitive impairment in AD patients. Because Aβ oligomers are possibly the major toxic species in AD, they are a promising biomarker candidate for the early diagnosis of the disease. To date, a variety of oligomer-specific assays have been developed, many of them ELISAs. Here, we demonstrate the sFIDA assay, a technology highly specific for Aβ oligomers developed toward single particle sensitivity. By spiking stabilized Aβ oligomers to buffer and to body fluids from control donors, we show that the sFIDA readout correlates with the applied concentration of stabilized oligomers diluted in buffer, cerebrospinal fluid (CSF), and blood plasma over several orders of magnitude. The lower limit of detection was calculated to be 22 fM of stabilized oligomers diluted in PBS, 18 fM in CSF, and 14 fM in blood plasma. PMID:26858588

  6. Deleterious effects of soluble amyloidoligomers on multiple steps of synaptic vesicle trafficking.

    PubMed

    Park, Joohyun; Jang, Mirye; Chang, Sunghoe

    2013-07-01

    Growing evidence supports a role for soluble amyloidoligomer intermediates in the synaptic dysfunction associated with Alzheimer's disease (AD), but the molecular mechanisms underlying this effect remain unclear. We found that acute treatment of cultured rat hippocampal neurons with nanomolar concentrations of Aβ oligomers reduced the recycling pool and increased the resting pool of synaptic vesicles. Endocytosis of synaptic vesicles and the regeneration of fusion-competent vesicles were also severely impaired. Furthermore, the release probability of the readily-releasable pool (RRP) was increased, and recovery of the RRP was delayed. All these effects were prevented by antibody against Aβ. Moreover reduction of the pool size was prevented by inhibiting calpain or CDK5, while the defects in endocytosis were averted by overexpressing phosphatidylinositol-4-phosphate-5-kinase type I-γ, indicating that these two downstream pathways are involved in Aβ oligomers-induced presynaptic dysfunction. PMID:23523634

  7. Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid β but Do Not Seed Fibril Formation*

    PubMed Central

    Wu, Jessica W.; Breydo, Leonid; Isas, J. Mario; Lee, Jerome; Kuznetsov, Yurii G.; Langen, Ralf; Glabe, Charles

    2010-01-01

    Soluble amyloid oligomers are potent neurotoxins that are involved in a wide range of human degenerative diseases, including Alzheimer disease. In Alzheimer disease, amyloid β (Aβ) oligomers bind to neuronal synapses, inhibit long term potentiation, and induce cell death. Recent evidence indicates that several immunologically distinct structural variants exist as follows: prefibrillar oligomers (PFOs), fibrillar oligomers (FOs), and annular protofibrils. Despite widespread interest, amyloid oligomers are poorly characterized in terms of structural differences and pathological significance. FOs are immunologically related to fibrils because they react with OC, a conformation-dependent, fibril-specific antibody and do not react with antibodies specific for other types of oligomers. However, fibrillar oligomers are much smaller than fibrils. FOs are soluble at 100,000 × g, rich in β-sheet structures, but yet bind weakly to thioflavin T. EPR spectroscopy indicates that FOs display significantly more spin-spin interaction at multiple labeled sites than PFOs and are more structurally similar to fibrils. Atomic force microscopy indicates that FOs are approximately one-half to one-third the height of mature fibrils. We found that Aβ FOs do not seed the formation of thioflavin T-positive fibrils from Aβ monomers but instead seed the formation of FOs from Aβ monomers that are positive for the OC anti-fibril antibody. These results indicate that the lattice of FOs is distinct from the fibril lattice even though the polypeptide chains are organized in an immunologically identical conformation. The FOs resulting from seeded reactions have the same dimensions and morphology as the initial seeds, suggesting that the seeds replicate by growing to a limiting size and then splitting, indicating that their lattice is less stable than fibrils. We suggest that FOs may represent small pieces of single fibril protofilament and that the addition of monomers to the ends of FOs is

  8. Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly

    NASA Astrophysics Data System (ADS)

    Persichilli, Christopher; Hill, Shannon E.; Mast, Jason; Muschol, Martin

    2011-03-01

    Recent results have shown that oligomeric intermediates of amyloid fibril assembly represent the main toxic species in disorders such as Alzheimer's disease and type II diabetes. Thioflavin-T (ThT) is among the most commonly used indicator dyes for mature amyloid fibrils in vitro. We used ThT to monitor amyloid fibril formation of lysozyme (HEWL), and correlated ThT fluorescence to concurrent dynamic light scattering and atomic force microscopy measurements. Specifically, we tested the ability of ThT to discern among oligomer-free vs. oligomeric fibril assembly pathways. We found that ThT fluorescence did not detect oligomer growth; however, fluorescence increases did coincide with the formation of monomeric filaments in the oligomer-free assembly pathway. This implies that ThT fluorescence is not generally suitable for the detection of oligomeric intermediates. The results further suggest different internal structures for oligomeric vs. monomeric filaments. This research was supported, in part, by funding through the Byrd Alzheimer's Institute (ARG-2007-22) and the BITT-Florida Center of Excellence for M.M., an NSF-REU grant (DMR-1004873) for C. P. and an NSF-IGERT fellowship for S.H.

  9. Amyloidoligomers are sequestered by both intracellular and extracellular chaperones

    PubMed Central

    Narayan, Priyanka; Meehan, Sarah; Carver, John A.; Wilson, Mark R.; Dobson, Christopher M.; Klenerman, David

    2016-01-01

    The aberrant aggregation of the amyloid-β peptide into β-sheet rich, fibrillar structures proceeds via a heterogeneous ensemble of oligomeric intermediates that have been associated with neurotoxicity in Alzheimer’s disease (AD). Of particular interest in this context are the mechanisms by which molecular chaperones, part of the primary biological defenses against protein misfolding, influence Aβ aggregation. We have used single-molecule fluorescence techniques to compare the interactions between distinct aggregation states (monomers, oligomers, amyloid fibrils) of the AD-associated amyloid-β(1-40) peptide, and two molecular chaperones, both of which are upregulated in the brains of patients with AD and have been found colocalized with Aβ in senile plaques. One of the chaperones, αB-crystallin, is primarily found inside cells while the other, clusterin, is predominantly located in the extracellular environment. We find that both chaperones bind to misfolded oligomeric species and form long-lived complexes thereby preventing both their further growth into fibrils and their dissociation. From these studies, we conclude that these chaperones have a common mechanism of action based on sequestering Aβ oligomers. This conclusion suggests that these chaperones, both of which are ATP-independent, are able to inhibit potentially pathogenic Aβ oligomer-associated processes whether they occur in the extracellular or intracellular environment. PMID:23106396

  10. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein.

    PubMed

    Balducci, Claudia; Beeg, Marten; Stravalaci, Matteo; Bastone, Antonio; Sclip, Alessandra; Biasini, Emiliano; Tapella, Laura; Colombo, Laura; Manzoni, Claudia; Borsello, Tiziana; Chiesa, Roberto; Gobbi, Marco; Salmona, Mario; Forloni, Gianluigi

    2010-02-01

    Inability to form new memories is an early clinical sign of Alzheimer's disease (AD). There is ample evidence that the amyloid-beta (Abeta) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Abeta are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Abeta-mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Abeta(1-42) oligomers impaired consolidation of the long-term recognition memory, whereas mature Abeta(1-42) fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Abeta antibody. It has been suggested that the cellular prion protein (PrP(C)) mediates the impairment of synaptic plasticity induced by Abeta. We confirmed that Abeta(1-42) oligomers interact with PrP(C), with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Abeta(1-42) oligomers are responsible for cognitive impairment in AD and that PrP(C) is not required. PMID:20133875

  11. Synthetic amyloidoligomers impair long-term memory independently of cellular prion protein

    PubMed Central

    Balducci, Claudia; Beeg, Marten; Stravalaci, Matteo; Bastone, Antonio; Sclip, Alessandra; Biasini, Emiliano; Tapella, Laura; Colombo, Laura; Manzoni, Claudia; Borsello, Tiziana; Chiesa, Roberto; Gobbi, Marco; Salmona, Mario; Forloni, Gianluigi

    2010-01-01

    Inability to form new memories is an early clinical sign of Alzheimer’s disease (AD). There is ample evidence that the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Aβ are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Aβ−mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Aβ1–42 oligomers impaired consolidation of the long-term recognition memory, whereas mature Aβ1–42 fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Aβ antibody. It has been suggested that the cellular prion protein (PrPC) mediates the impairment of synaptic plasticity induced by Aβ. We confirmed that Aβ1–42 oligomers interact with PrPC, with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Aβ1–42 oligomers are responsible for cognitive impairment in AD and that PrPC is not required. PMID:20133875

  12. Native metastable prefibrillar oligomers are the most neurotoxic species among amyloid aggregates.

    PubMed

    Diociaiuti, Marco; Macchia, Gianfranco; Paradisi, Silvia; Frank, Claudio; Camerini, Serena; Chistolini, Pietro; Gaudiano, Maria Cristina; Petrucci, Tamara Corinna; Malchiodi-Albedi, Fiorella

    2014-09-01

    Many proteins belonging to the amyloid family share the tendency to misfold and aggregate following common steps, and display similar neurotoxicity. In the aggregation pathway different kinds of species are formed, including several types of oligomers and eventually mature fibers. It is now suggested that the pathogenic aggregates are not the mature fibrils, but the intermediate, soluble oligomers. Many kinds of aggregates have been described to exist in a metastable state and in equilibrium with monomers. Up to now it is not clear whether a specific structure is at the basis of the neurotoxicity. Here we characterized, starting from the early aggregation stages, the oligomer populations formed by an amyloid protein, salmon calcitonin (sCT), chosen due to its very slow aggregation rate. To prepare different oligomer populations and characterize them by means of photoinduced cross-linking SDS-PAGE, Energy Filtered-Transmission Electron Microscopy (EF-TEM) and Circular Dichroism (CD) spectroscopy, we used Size Exclusion Chromatography (SEC), a technique that does not influence the aggregation process leaving the protein in the native state. Taking advantage of sCT low aggregation rate, we characterized the neurotoxic potential of the SEC-separated, non-crosslinked fractions in cultured primary hippocampal neurons, analyzing intracellular Ca(2+) influx and apoptotic trend. We provide evidence that native, globular, metastable, prefibrillar oligomers (dimers, trimers and tetramers) were the toxic species and that low concentrations of these aggregates in the population was sufficient to render the sample neurotoxic. Monomers and other kind of aggregates, such as annular or linear protofibers and mature fibers, were totally biologically inactive. PMID:24932517

  13. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations.

    PubMed

    Nagel-Steger, Luitgard; Owen, Michael C; Strodel, Birgit

    2016-04-15

    The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines. PMID:26910367

  14. Soluble amyloidoligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease

    PubMed Central

    Ferreira, Sergio T.; Lourenco, Mychael V.; Oliveira, Mauricio M.; De Felice, Fernanda G.

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia in the elderly, and affects millions of people worldwide. As the number of AD cases continues to increase in both developed and developing countries, finding therapies that effectively halt or reverse disease progression constitutes a major research and public health challenge. Since the identification of the amyloid-β peptide (Aβ) as the major component of the amyloid plaques that are characteristically found in AD brains, a major effort has aimed to determine whether and how Aβ leads to memory loss and cognitive impairment. A large body of evidence accumulated in the past 15 years supports a pivotal role of soluble Aβ oligomers (AβOs) in synapse failure and neuronal dysfunction in AD. Nonetheless, a number of basic questions, including the exact molecular composition of the synaptotoxic oligomers, the identity of the receptor(s) to which they bind, and the signaling pathways that ultimately lead to synapse failure, remain to be definitively answered. Here, we discuss recent advances that have illuminated our understanding of the chemical nature of the toxic species and the deleterious impact they have on synapses, and have culminated in the proposal of an Aβ oligomer hypothesis for Alzheimer’s pathogenesis. We also highlight outstanding questions and challenges in AD research that should be addressed to allow translation of research findings into effective AD therapies. PMID:26074767

  15. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death.

    PubMed

    Wang, Xiaonan; Hu, Xuejun; Yang, Yang; Takata, Toshihiro; Sakurai, Takashi

    2016-07-15

    Amyloid-β (Aβ) oligomers are recognized as the primary neurotoxic agents in Alzheimer's disease (AD). Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline in AD. Nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in redox activities in the mitochondrial electron transport chain, has been identified as a key regulator of the lifespan-extending effects, and the activation of NAD(+) expression has been linked with a decrease in Aβ toxicity in AD. One of the key precursors of NAD(+) is nicotinamide mononucleotide (NMN), a product of the nicotinamide phosphoribosyltransferase reaction. To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD(+) precursor NMN on Aβ oligomer-induced neuronal death and cognitive impairment were studied in organotypic hippocampal slice cultures (OHCs) and in a rat model of AD. Treatment of intracerebroventricular Aβ oligomer infusion AD model rats with NMN (500mg/kg, intraperitoneally) sustained improvement in cognitive function as assessed by the Morris water maze. In OHCs, Aβ oligomer-treated culture media with NMN attenuated neuronal cell death. NMN treatment also significantly prevented the Aβ oligomer-induced inhibition of LTP. Furthermore, NMN restored levels of NAD(+) and ATP, eliminated accumulation of reactive oxygen species (ROS) in the Aβ oligomer-treated hippocampal slices. All these protective effects were reversed by 3-acetylpyridine, which generates inactive NAD(+). The present study indicates that NMN could restore cognition in AD model rats. The beneficial effect of NMN is produced by ameliorating neuron survival, improving energy metabolism and reducing ROS accumulation. These results suggest that NMN may become a promising therapeutic drug for AD. PMID:27130898

  16. Development of new fusion proteins for visualizing amyloidoligomers in vivo.

    PubMed

    Ochiishi, Tomoyo; Doi, Motomichi; Yamasaki, Kazuhiko; Hirose, Keiko; Kitamura, Akira; Urabe, Takao; Hattori, Nobutaka; Kinjo, Masataka; Ebihara, Tatsuhiko; Shimura, Hideki

    2016-01-01

    The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer's disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with "a long-linker" and "a short-linker", and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity. PMID:26982553

  17. Development of new fusion proteins for visualizing amyloidoligomers in vivo

    PubMed Central

    Ochiishi, Tomoyo; Doi, Motomichi; Yamasaki, Kazuhiko; Hirose, Keiko; Kitamura, Akira; Urabe, Takao; Hattori, Nobutaka; Kinjo, Masataka; Ebihara, Tatsuhiko; Shimura, Hideki

    2016-01-01

    The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker”, and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity. PMID:26982553

  18. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.

    PubMed

    Nguyen, Phuong; Derreumaux, Philippe

    2014-02-18

    Evolution has fine-tuned proteins to accomplish a variety of tasks. Yet, with aging, some proteins assemble into harmful amyloid aggregates associated with neurodegenerative diseases, such as Alzheimer's disease (AD), which presents a complex and costly challenge to our society. Thus, far, drug after drug has failed to slow the progression of AD, characterized by the self-assembly of the 39-43 amino acid β-amyloid (Aβ) protein into extracellular senile plaques that form a cross-β structure. While there is experimental evidence that the Aβ small oligomers are the primary toxic species, standard tools of biology have failed to provide structures of these transient, inhomogeneous assemblies. Despite extensive experimental studies, researchers have not successfully characterized the nucleus ensemble, the starting point for rapid fibril formation. Similarly scientists do not have atomic data to show how the compounds that reduce both fibril formation and toxicity in cells bind to Aβ42 oligomers. In this context, computer simulations are important tools for gaining insights into the self-assembly of amyloid peptides and the molecular mechanism of inhibitors. This Account reviews what analytical models and simulations at different time and length scales tell us about the dynamics, kinetics, and thermodynamics of amyloid fibril formation and, notably, the nucleation process. Though coarse-grained and mesoscopic protein models approximate atomistic details by averaging out unimportant degrees of freedom, they provide generic features of amyloid formation and insights into mechanistic details of the self-assembly process. The thermodynamics and kinetics vary from linear peptides adopting straight β-strands in fibrils to longer peptides adopting in parallel U shaped conformations in fibrils. In addition, these properties change with the balance between electrostatic and hydrophobic interactions and the intrinsic disorder of the system. However, simulations suggest that

  19. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.

    2015-06-01

    Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d

  20. Probing the Nucleus Model for Oligomer Formation during Insulin Amyloid Fibrillogenesis

    PubMed Central

    Pease, Leonard F.; Sorci, Mirco; Guha, Suvajyoti; Tsai, De-Hao; Zachariah, Michael R.; Tarlov, Michael J.; Belfort, Georges

    2010-01-01

    We find evidence for a direct transition of insulin monomers into amyloid fibrils without measurable concentrations of oligomers or protofibrils, suggesting that fibrillogenesis may occur directly from assembly of denaturing insulin monomers rather than by successive transitions through protofibril nuclei. To support our finding, we obtain size distributions using electrospray differential mobility analysis (ES-DMA), which provides excellent resolution to clearly distinguish among small oligomers and rapidly generates statistically significant size distributions. The distributions detect an absence of significant peaks between 6 nm and 17 nm as the monomer reacts into fibers—exactly the size range observed by others for small-angle-neutron-scattering-measured intermediates and for circular supramolecular structures. They report concentrations in the nanomolar range, whereas our limit of detection remains three-orders-of-magnitude lower (<5 pmol/L). This finding, along with the lack of significant increases in the β-sheet content of monomers using circular dichroism, suggests monomers do not first structurally rearrange and accumulate in a β-rich state but react and reorganize at the growing fiber's tip. These results quantitatively inform reaction-based theories of amyloid fiber formation and have implications for neurodegenerative, protein conformation ailments including Alzheimer's disease and bovine spongiform encephalopathy. PMID:21156140

  1. Energetic contributions of residues to the formation of early amyloidoligomers.

    PubMed

    Pouplana, R; Campanera, J M

    2015-01-28

    Low-weight amyloid-β (Aβ) oligomers formed at early stages of oligomerization rather than fibril assemblies seem to be the toxic components that drive neurodegeneration in Alzheimer's disease. Unfortunately, detailed knowledge of the structure of these early oligomers at the residue level is not yet available. In this study, we performed all-atom explicit solvent molecular dynamics simulations to examine the oligomerization process of Aβ10-35 monomers when forming dimers, trimers, tetramers and octamers, with four independent simulations of a total simulated time of 3 μs for each oligomer system. The decomposition of the stability free energy by MM-GBSA methodology allowed us to unravel the network of energetic interactions that stabilize such oligomers. The contribution of the intermonomeric van der Waals term is the most significant energy feature of the oligomerization process, consistent with the so-called hydrophobic effect. Furthermore, the decomposition of the stability free energy into residues and residue-pairwise terms revealed that it is mainly apolar interactions between the three specific hydrophobic fragments 31-35 (C-terminal region), 17-20 (central hydrophobic core) and 12-14 (N-terminal region) that are responsible for such a favourable effect. The conformation in which the hydrophobic cthr-chc interaction is oriented perpendicularly is particularly important. We propose three other model substructures that favour the oligomerization process and can thus be considered as molecular targets for future inhibitors. Understanding Aβ oligomerization at the residue level could lead to more efficient design of inhibitors of this process. PMID:25503571

  2. A Foldamer-Dendrimer Conjugate Neutralizes Synaptotoxic β-Amyloid Oligomers

    PubMed Central

    Fülöp, Lívia; Mándity, István M.; Juhász, Gábor; Szegedi, Viktor; Hetényi, Anasztázia; Wéber, Edit; Bozsó, Zsolt; Simon, Dóra; Benkő, Mária; Király, Zoltán; Martinek, Tamás A.

    2012-01-01

    Background and Aims Unnatural self-organizing biomimetic polymers (foldamers) emerged as promising materials for biomolecule recognition and inhibition. Our goal was to construct multivalent foldamer-dendrimer conjugates which wrap the synaptotoxic β-amyloid (Aβ) oligomers with high affinity through their helical foldamer tentacles. Oligomeric Aβ species play pivotal role in Alzheimer's disease, therefore recognition and direct inhibition of this undruggable target is a great current challenge. Methods and Results Short helical β-peptide foldamers with designed secondary structures and side chain chemistry patterns were applied as potential recognition segments and their binding to the target was tested with NMR methods (saturation transfer difference and transferred-nuclear Overhauser effect). Helices exhibiting binding in the µM region were coupled to a tetravalent G0-PAMAM dendrimer. In vitro biophysical (isothermal titration calorimetry, dynamic light scattering, transmission electron microscopy and size-exclusion chromatography) and biochemical tests (ELISA and dot blot) indicated the tight binding between the foldamer conjugates and the Aβ oligomers. Moreover, a selective low nM interaction with the low molecular weight fraction of the Aβ oligomers was found. Ex vivo electrophysiological experiments revealed that the new material rescues the long-term potentiation from the toxic Aβ oligomers in mouse hippocampal slices at submicromolar concentration. Conclusions The combination of the foldamer methodology, the fragment-based approach and the multivalent design offers a pathway to unnatural protein mimetics that are capable of specific molecular recognition, and has already resulted in an inhibitor for an extremely difficult target. PMID:22859942

  3. Oligomer stability of Amyloid- β (A β) 25-35: A Dissipative Particle Dynamics study

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peter, Emanuel

    Alzheimer's disease is strongly associated with an accumulation of Amyloid- β (A β) peptide plaques in the human brain. A β is a 43 residues long intrinsically disordered peptide and has a strong tendency to form aggregates. Evidence accumulates that A β acts toxic to the neurons in the brain through the formation of small soluble oligomers. A β 25-35 is the smallest fragment of A β which still retains its toxicity and its ability to form extended fibrils. In this talk we will present the results from simulations of aggregation of up to 100 A β 25-35 peptides using a novel polarizable coarse-grained protein model in combination with Dissipative Particle Dynamics.

  4. Transthyretin as both a sensor and a scavenger of β-amyloid oligomers.

    PubMed

    Yang, Dennis T; Joshi, Gururaj; Cho, Patricia Y; Johnson, Jeffrey A; Murphy, Regina M

    2013-04-30

    Transthyretin (TTR) is a homotetrameric transport protein, assembled from monomers that each contain two four-stranded β-sheets and a short α-helix and loop. In the tetramer, the "inner" β-sheet forms a hydrophobic pocket while the helix and loop are solvent-exposed. β-Amyloid (Aβ) aggregates bind to TTR, and the level of binding is significantly reduced in mutants L82A (on the loop) and L110A (on the inner β-sheet). Protection against Aβ toxicity was demonstrated for wild-type TTR but not L82A or L110A, providing a direct link between TTR-Aβ binding and TTR-mediated cytoprotection. Protection is afforded at substoichiometric (1:100) TTR:Aβ molar ratios, and the level of binding of Aβ to TTR is highest for partially aggregated materials and decreased for freshly prepared or heavily aggregated Aβ, suggesting that TTR binds selectively to soluble toxic Aβ aggregates. A novel technique, nanoparticle tracking, is used to show that TTR arrests Aβ aggregation by both preventing formation of new aggregates and inhibiting growth of existing aggregates. TTR tetramers are normally quite stable; tetrameric structure is necessary for the protein's transport functions, and mutations that decrease tetramer stability have been linked to TTR amyloid diseases. However, TTR monomers bind more Aβ than do tetramers, presumably because the hydrophobic inner sheet is solvent-exposed upon tetramer disassembly. Wild-type and L110A tetramers, but not L82A, were destabilized upon being co-incubated with Aβ, suggesting that binding of Aβ to L82 triggers tetramer dissociation. Taken together, these results suggest a novel mechanism of action for TTR: the EF helix/loop "senses" the presence of soluble toxic Aβ oligomers, triggering destabilization of TTR tetramers and exposure of the hydrophobic inner sheet, which then "scavenges" these toxic oligomers and prevents them from causing cell death. PMID:23570378

  5. Effect of Protonation State on the Stability of Amyloid Oligomers Assembled from TTR(105-115).

    PubMed

    Porrini, Massimiliano; Zachariae, Ulrich; Barran, Perdita E; MacPhee, Cait E

    2013-04-18

    Amyloid fibrils are self-assembled aggregates of polypeptides that are implicated in the development of several human diseases. A peptide derived from amino acids 105-115 of the human plasma protein transthyretin forms homogeneous and well-defined fibrils and, as a model system, has been the focus of a number of studies investigating the formation and structure of this class of aggregates. Self-assembly of TTR(105-115) occurs at low pH, and this work explores the effect of protonation on the growth and stability of small cross-β aggregates. Using molecular dynamics simulations of structures up to the decamer in both protonated and deprotonated states, we find that, whereas hexamers are more stable for protonated peptides, higher order oligomers are more stable when the peptides are deprotonated. Our findings imply a change in the acid pK of the protonated C-terminal group during the formation of fibrils, which leads to stabilization of higher-order oligomers through electrostatic interactions. PMID:26282135

  6. Environmental enrichment strengthens corticocortical interactions and reduces amyloidoligomers in aged mice.

    PubMed

    Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto

    2014-01-01

    Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes. PMID:24478697

  7. Amyloid β oligomers elicit mitochondrial transport defects and fragmentation in a time-dependent and pathway-specific manner.

    PubMed

    Rui, Yanfang; Zheng, James Q

    2016-01-01

    Small oligomeric forms of amyloid-β (Aβ) are believed to be the culprit for declined brain functions in AD in part through their impairment of neuronal trafficking and synaptic functions. However, the precise cellular actions of Aβ oligomers and underlying mechanisms in neurons remain to be fully defined. Previous studies have identified mitochondria as a major target of Aβ toxicity contributing to early cognitive decline and memory loss in neurodegenerative diseases including Alzheimer's disease (AD). In this study, we report that Aβ oligomers acutely elicit distinct effects on the transport and integrity of mitochondria. We found that acute exposure of hippocampal neurons to Aβ oligomers from either synthetic peptides or AD brain homogenates selectively impaired fast transport of mitochondria without affecting the movement of late endosomes and lysosomes. Extended exposure of hipoocampal neurons to Aβ oligomers was found to result in mitochondrial fragmentation. While both mitochondrial effects induced by Aβ oligomers can be abolished by the inhibition of GSK3β, they appear to be independent from each other. Aβ oligomers impaired mitochondrial transport through HDAC6 activation whereas the fragmentation involved the GTPase Drp-1. These results show that Aβ oligomers can acutely disrupt mitochondrial transport and integrity in a time-dependent and pathway-specific manner. These findings thus provide new insights into Aβ-induced mitochondrial defects that may contribute to neuronal dysfunction and AD pathogenesis. PMID:27535553

  8. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    SciTech Connect

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  9. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    DOE PAGESBeta

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disruptmore » existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.« less

  10. Dynamic assessment of Amyloid oligomers - cell membrane interaction by advanced impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; David, S.; Polonschii, C.; Bratu, D.; Gheorghiu, E.

    2013-04-01

    The amyloid β (Aβ) peptides are believed to be pivotal in Alzheimer's disease (AD) pathogenesis and onset of vascular dysfunction. Recent studies indicate that Aβ1-42 treatment influences the expression of tight junction protein complexes, stress fibre formation, disruption and aggregation of actin filaments and cellular gap formation. Aiming for functional characterization of model cells upon Aβ1-42 treatment, we deployed an advanced Electric Cell-substrate Impedance Sensing for monitoring cell evolution. A precision Impedance Analyzer with a multiplexing module developed in house was used for recording individual electrode sets in the 40 Hz - 100 KHz frequency range. In a step forward from the classical ECIS assays, we report on a novel data analysis algorithm that enables access to cellular and paracellular electrical parameters and cell surface interaction with fully developed cell monolayers. The evolution of the impedance at selected frequencies provides evidence for a dual effect of Aβ42 exposure, at both paracellular permeability and cell adherence level, with intricate dynamics that open up new perspectives on Aβ1-42 oligomers - cell membrane interaction. Validation of electrical impedance assays of the amyloid fibrils effect on cell membrane structure is achieved by both AFM analysis and Surface Plasmon Resonance studies. The capabilities of this noninvasive, real time platform for cell analysis in a wider applicative context are outlined.

  11. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis

    PubMed Central

    Viola, Kirsten L.; Klein, William L.

    2015-01-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson’s and Alzheimer’s. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer’s dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca2+ overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease

  12. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    PubMed Central

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard

    2015-01-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal. PMID:26510576

  13. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    NASA Astrophysics Data System (ADS)

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard

    2015-10-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.

  14. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function.

    PubMed

    Barucker, Christian; Bittner, Heiko J; Chang, Philip K-Y; Cameron, Scott; Hancock, Mark A; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W; McKinney, R Anne; Multhaup, Gerhard

    2015-01-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically "trapping" low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal. PMID:26510576

  15. Molecular Interactions of Alzheimer AmyloidOligomer with Neutral and Negatively Charged Lipid Bilayers

    PubMed Central

    Yu, Xiang; Wang, Qiuming; Pan, Qingfen; Zhou, Feimeng; Zheng, Jie

    2013-01-01

    Interaction of p3 (Aβ17-42) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Alzheimer’s disease (AD). Such p3-membrane interactions are considered to induce the disruption of membrane permeability and integrity, but the exact mechanisms of how p3 aggregates, particularly small p3 oligomers, induce receptor-independent membrane disruption are not yet completely understood. Here, we investigate the adsorption, orientation, and surface interaction of the p3 pentamer with lipid bilayers composed of both pure zwitterionic POPC (palmitoyl-oleyl-phosphatidylcholine) and mixed anionic POPC/POPG (palmitoyl-oleyl-phosphatidylglycerol) (3:1) lipids using explicit-solvent molecular dynamics (MD) simulations. MD simulation results show that the p3 pentamer has much stronger interactions with mixed POPC/POPG lipids than pure POPC lipids, consistent with experimental observation that Aβ adsorption and fibrililation are enhanced on anionic lipid bilayers. Although electrostatic interactions are main attractive forces to drive the p3 to adsorb on the bilayer surface, the adsorption of the p3 pentamer on the lipid bilayer with a preferential C-terminal β-strands facing toward the bilayer surface is a net outcome of different competitions between p3 peptides-lipid bilayer and ions-p3-bilayer interactions. More importantly, Ca2+ ions are found to form ionic bridges to associate negatively charged residues of p3 with anionic headgroups of the lipid bilayer, resulting in Aβ–Ca2+–PO4− complexes. Intensive Ca2+ bound to lipid bilayer and Ca2+ ionic bridges may lead to the alternation of Ca2+ hemostasis responsible for neuronal dysfunction and death. This work provides insights into the mutual structure, dynamics, and interactions of both Aβ peptides and lipid bilayer at the atomic level, which expand our understanding of the complex behavior of amyloid-induced membrane disruption. PMID:23493873

  16. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. PMID:26613510

  17. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    SciTech Connect

    Taneo, Jun; Adachi, Takumi; Yoshida, Aiko; Takayasu, Kunio; Takahara, Kazuhiko; Inaba, Kayo

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  18. Domains of STIP1 responsible for regulating PrPC-dependent amyloidoligomer toxicity.

    PubMed

    Maciejewski, Andrzej; Ostapchenko, Valeriy G; Beraldo, Flavio H; Prado, Vania F; Prado, Marco A M; Choy, Wing-Yiu

    2016-07-15

    Soluble oligomers of amyloid-beta peptide (AβO) transmit neurotoxic signals through the cellular prion protein (PrP(C)) in Alzheimer's disease (AD). Secreted stress-inducible phosphoprotein 1 (STIP1), an Hsp70 and Hsp90 cochaperone, inhibits AβO binding to PrP(C) and protects neurons from AβO-induced cell death. Here, we investigated the molecular interactions between AβO and STIP1 binding to PrP(C) and their effect on neuronal cell death. We showed that residues located in a short region of PrP (90-110) mediate AβO binding and we narrowed the major interaction in this site to amino acids 91-100. In contrast, multiple binding sites on STIP1 (DP1, TPR1 and TPR2A) contribute to PrP binding. DP1 bound the N-terminal of PrP (residues 23-95), whereas TPR1 and TPR2A showed binding to the C-terminal of PrP (residues 90-231). Importantly, only TPR1 and TPR2A directly inhibit both AβO binding to PrP and cell death. Furthermore, our structural studies reveal that TPR1 and TPR2A bind to PrP through distinct regions. The TPR2A interface was shown to be much more extensive and to partially overlap with the Hsp90 binding site. Our data show the possibility of a PrP, STIP1 and Hsp90 ternary complex, which may influence AβO-mediated cell death. PMID:27208175

  19. Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo.

    PubMed

    Kim, Hyo Geun; Moon, Minho; Choi, Jin Gyu; Park, Gunhyuk; Kim, Ae-Jung; Hur, Jinyoung; Lee, Kyung-Tae; Oh, Myung Sook

    2014-01-01

    Recent studies on Alzheimer's disease (AD) have focused on soluble oligomeric forms of amyloid-beta (Aβ oligomer, AβO) that are directly associated with AD-related pathologies, such as cognitive decline, neurodegeneration, and neuroinflammation. Donepezil is a well-known anti-dementia agent that increases acetylcholine levels through inhibition of acetylcholinesterase. However, a growing body of experimental and clinical studies indicates that donepezil may also provide neuroprotective and disease-modifying effects in AD. Additionally, donepezil has recently been demonstrated to have anti-inflammatory effects against lipopolysaccharides and tau pathology. However, it remains unknown whether donepezil has anti-inflammatory effects against AβO in cultured microglial cells and the brain in animals. Further, the effects of donepezil against AβO-mediated neuronal death, astrogliosis, and memory impairment have also not yet been investigated. Thus, in the present study, we examined the anti-inflammatory effect of donepezil against AβO and its neuroinflammatory mechanisms. Donepezil significantly attenuated the release of inflammatory mediators (prostaglandin E2, interleukin-1 beta, tumor necrosis factor-α, and nitric oxide) from microglia. Donepezil also decreased AβO-induced up-regulation of inducible nitric oxide synthase and cyclooxygenase-2 protein and phosphorylation of p38 mitogen-activated protein kinase as well as translocation of nuclear factor-kappa B. We next showed that donepezil suppresses activated microglia-mediated toxicity in primary hippocampal cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In intrahippocampal AβO-injected mice, donepezil significantly inhibited microgliosis and astrogliosis. Furthermore, behavioral tests revealed that donepezil (2 mg/kg/day, 5 days, p.o.) significantly ameliorated AβO-induced memory impairment. These results suggest that donepezil directly inhibits microglial activation

  20. Identification of approved drugs that inhibit the binding of amyloid β oligomers to ephrin type-B receptor 2.

    PubMed

    Suzuki, Koichiro; Aimi, Takahiro; Ishihara, Tomoaki; Mizushima, Tohru

    2016-05-01

    Ephrin type-B receptor 2 (EphB2) is a member of the receptor tyrosine kinase family and plays an important role in learning and memory functions. In patients with Alzheimer's disease (AD) and in mouse models of AD, a reduction in the hippocampal EphB2 level is observed. It was recently reported that normalization of the EphB2 level in the dentate gyrus rescues memory function in a mouse model of AD, suggesting that drugs that restore EphB2 levels may be beneficial in the treatment of AD. Amyloid β (Aβ) oligomers, which are believed to be key molecules involved in the pathogenesis of AD, induce EphB2 degradation through their direct binding to EphB2. Thus, compounds that inhibit the binding of Aβ oligomers to EphB2 may be beneficial. Here, we screened for such compounds from drugs already approved for clinical use in humans. Utilizing a cell-free screening assay, we determined that dihydroergotamine mesilate, bromocriptine mesilate, cepharanthine, and levonorgestrel inhibited the binding of Aβ oligomers to EphB2 but not to cellular prion protein, another endogenous receptor for Aβ oligomers. Additionally, these four compounds did not affect the binding between EphB2 and ephrinB2, an endogenous ligand for EphB2, suggesting that the compounds selectively inhibited the binding of Aβ oligomers to EphB2. This is the first identification of compounds that selectively inhibit the binding of Aβ oligomers to EphB2. These results suggest that these four compounds may be safe and effective drugs for treatment of AD. PMID:27419051

  1. Role of the Fast Kinetics of Pyroglutamate-Modified AmyloidOligomers in Membrane Binding and Membrane Permeability

    PubMed Central

    2015-01-01

    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer’s disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1–40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3–42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3–42 and Aβ1–42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3–42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3–42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3–42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability. PMID:24950761

  2. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases.

    PubMed

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  3. AmyloidOligomers May Impair SNARE-Mediated Exocytosis by Direct Binding to Syntaxin 1a.

    PubMed

    Yang, Yoosoo; Kim, Jaewook; Kim, Hye Yun; Ryoo, Nayeon; Lee, Sejin; Kim, YoungSoo; Rhim, Hyewhon; Shin, Yeon-Kyun

    2015-08-25

    Alzheimer's disease (AD) is closely associated with synaptic dysfunction, and thus current treatments often aim to stimulate neurotransmission to improve cognitive impairment. Whereas the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for synaptic transmission, the correlation between SNAREs and AD neuropathology is unknown. Here, we report that intracellular amyloid-β (Aβ) oligomers directly inhibit SNARE-mediated exocytosis by impairing SNARE complex formation. We observe abnormal reduction of SNARE complex levels in the brains of APP/PS1 transgenic (TG) mice compared to age-matched wild-types. We demonstrate that Aβ oligomers block SNARE complex assembly through the direct interaction with a target membrane (t)-SNARE syntaxin 1a in vitro. Furthermore, the results of the in vitro single-vesicle content-mixing assay reveal that Aβ oligomers inhibit SNARE-mediated fusion pores. Thus, our study identifies a potential molecular mechanism by which intracellular Aβ oligomers hamper SNARE-mediated exocytosis, likely leading to AD-associated synaptic dysfunctions. PMID:26279571

  4. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  5. Template-directed deposition of amyloid

    NASA Astrophysics Data System (ADS)

    Ha, Chanki

    The formation of amyloid plaques in tissue is a pathological feature of many neurodegenerative diseases. Amyloid deposition, the process of amyloid plaque growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e. plaque), is known to be critical for amyloid formation in vivo. In order to characterize amyloid deposition, we developed novel, synthetic amyloid templates like amyloid plaques in the human Alzheimer's brain by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface. Amyloid plaques with a characteristic beta-sheet structure formed through a conformational rearrangement of soluble insulin or Abeta monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. According to visualization of temporal evolution of Abeta plaque deposition on a template, it was found that mature amyloid plaques serve as a sink of soluble Abeta in a solution as well as a reservoir of small aggregates such as oligomers and protofibrils. Quantitative analysis of seeding efficiencies of three different Abeta species revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Furthermore, studies on the interaction between Abeta40 and 42 showed an important role of Abeta42 in amyloid deposition. A slightly acidic condition was found to be unfavorable for amyloid plaque formation. Effects of metal ions on amyloid deposition indicated that Fe3+, but not Cu3 and Zn2+, is important for the deposition of amyloid plaques. The binding of Fe3+ to Abeta42 peptide was confirmed by using SIMS analysis. Zn2+ induced nonfibrillar amorphous aggregates, but the release of Zn2+ from Abeta42 deposits by Fe3+ triggered the formation of amyloid fibers. Effects or metal ion chelators such as ethylenediamine tetraacetic acid, deferoxamine, and clioquinol on amyloid deposition were tested to

  6. Oligomer Formation of Amyloid-β(29-42) from Its Monomers Using the Hamiltonian Replica-Permutation Molecular Dynamics Simulation.

    PubMed

    Itoh, Satoru G; Okumura, Hisashi

    2016-07-14

    Oligomers of amyloid-β peptides (Aβ) are formed during the early stage of the amyloidogenesis process and exhibit neurotoxicity. The oligomer formation process of Aβ and even that of Aβ fragments are still poorly understood, though understanding of these processes is essential for remedying Alzheimer's disease. In order to better understand the oligomerization process of the C-terminal Aβ fragment Aβ(29-42) at the atomic level, we performed the Hamiltonian replica-permutation molecular dynamics simulation with Aβ(29-42) molecules using the explicit water solvent model. We observed that oligomers increased in size through the sequential addition of monomers to the oligomer, rather than through the assembly of small oligomers. Moreover, solvent effects played an important role in this oligomerization process. PMID:27281682

  7. Computational insights into the inhibition and destabilization of morin on the oligomer of full-length human islet amyloid polypeptide.

    PubMed

    Wang, Qianqian; Zhou, Shuangyan; Wei, Wei; Yao, Xiaojun; Liu, Huanxiang; Hu, Zhide

    2015-11-21

    The aggregation of human islet amyloid polypeptide (hIAPP) is closely related with the occurrence of type 2 diabetes (T2D). Natural flavonoid morin was confirmed to not only inhibit the amyloid formation of hIAPP, but disaggregate its preformed amyloid fibrils. In this study, with the goal of elucidating the molecular mechanism of inhibition and destabilization of morin on the full-length hIAPP(1-37) oligomer, molecular dynamics simulations were performed for hIAPP(1-37) pentamer in the presence and absence of morin. The obtained results show that during the protein-inhibitor interaction, morin can notably alter the structural properties of hIAPP(1-37) pentamer, such as morphology, solvent accessible surface area and secondary structure. Moreover, we identified three possible binding sites of morin on hIAPP, all of which located near the amyloidogenic region of this protein. From the binding free energy calculations, we found that Site II was the most possible one. Further conformational analysis together with energy decomposition showed that the residues His18, Phe23 and Ile26 play a key role in the binding with morin by hydrogen bond, π-π and hydrophobic interactions. The proposal of the theoretical mechanism of morin against hIAPP aggregation will provide valuable information for the development of new drugs to inhibit hIAPP aggregation. PMID:26460729

  8. An N-terminal Fragment of the Prion Protein Binds to AmyloidOligomers and Inhibits Their Neurotoxicity in Vivo*

    PubMed Central

    Fluharty, Brian R.; Biasini, Emiliano; Stravalaci, Matteo; Sclip, Alessandra; Diomede, Luisa; Balducci, Claudia; La Vitola, Pietro; Messa, Massimo; Colombo, Laura; Forloni, Gianluigi; Borsello, Tiziana; Gobbi, Marco; Harris, David A.

    2013-01-01

    A hallmark of Alzheimer disease (AD) is the accumulation of the amyloid-β (Aβ) peptide in the brain. Considerable evidence suggests that soluble Aβ oligomers are responsible for the synaptic dysfunction and cognitive deficit observed in AD. However, the mechanism by which these oligomers exert their neurotoxic effect remains unknown. Recently, it was reported that Aβ oligomers bind to the cellular prion protein with high affinity. Here, we show that N1, the main physiological cleavage fragment of the cellular prion protein, is necessary and sufficient for binding early oligomeric intermediates during Aβ polymerization into amyloid fibrils. The ability of N1 to bind Aβ oligomers is influenced by positively charged residues in two sites (positions 23–31 and 95–105) and is dependent on the length of the sequence between them. Importantly, we also show that N1 strongly suppresses Aβ oligomer toxicity in cultured murine hippocampal neurons, in a Caenorhabditis elegans-based assay, and in vivo in a mouse model of Aβ-induced memory dysfunction. These data suggest that N1, or small peptides derived from it, could be potent inhibitors of Aβ oligomer toxicity and represent an entirely new class of therapeutic agents for AD. PMID:23362282

  9. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  10. The Familial British Dementia Mutation Promotes Formation of Neurotoxic Cystine Cross-linked Amyloid Bri (ABri) Oligomers*

    PubMed Central

    Cantlon, Adam; Frigerio, Carlo Sala; Freir, Darragh B.; Boland, Barry; Jin, Ming; Walsh, Dominic M.

    2015-01-01

    Familial British dementia (FBD) is an inherited neurodegenerative disease believed to result from a mutation in the BRI2 gene. Post-translational processing of wild type BRI2 and FBD-BRI2 result in the production of a 23-residue long Bri peptide and a 34-amino acid long ABri peptide, respectively, and ABri is found deposited in the brains of individuals with FBD. Similarities in the neuropathology and clinical presentation shared by FBD and Alzheimer disease (AD) have led some to suggest that ABri and the AD-associated amyloid β-protein (Aβ) are molecular equivalents that trigger analogous pathogenic cascades. But the sequences and innate properties of ABri and Aβ are quite different, notably ABri contains two cysteine residues that can form disulfide bonds. Thus we sought to determine whether ABri was neurotoxic and if this activity was regulated by oxidation and/or aggregation. Crucially, the type of oxidative cross-linking dramatically influenced both ABri aggregation and toxicity. Cyclization of Bri and ABri resulted in production of biologically inert monomers that showed no propensity to assemble, whereas reduced ABri and reduced Bri aggregated forming thioflavin T-positive amyloid fibrils that lacked significant toxic activity. ABri was more prone to form inter-molecular disulfide bonds than Bri and the formation of covalently stabilized ABri oligomers was associated with toxicity. These results suggest that extension of the C-terminal of Bri causes a shift in the type of disulfide bonds formed and that structures built from covalently cross-linked oligomers can interact with neurons and compromise their function and viability. PMID:25957407

  11. Alzheimer AmyloidOligomer Bound to Post-Synaptic Prion Protein Activates Fyn to Impair Neurons

    PubMed Central

    Um, Ji Won; Nygaard, Haakon B.; Heiss, Jacqueline K.; Kostylev, Mikhail A.; Stagi, Massimiliano; Vortmeyer, Alexander; Wisniewski, Thomas; Gunther, Erik C.; Strittmatter, Stephen M.

    2012-01-01

    SUMMARY Amyloid-beta (Aβ) oligomers are thought to trigger Alzheimer’s disease (AD) pathophysiology. Cellular Prion Protein (PrPC) selectively binds oligomeric Aβ and can mediate AD-related phenotypes. Here, we examined the specificity, distribution and signaling from Aβ/PrP complexes, seeking to explain how they might alter the function of NMDA receptors in neurons. PrPC is enriched in post-synaptic densities, and Aβ/PrPC interaction leads to Fyn kinase activation. Soluble Aβ assemblies derived from human AD brain interact with PrPC to activate Fyn. Aβ engagement of PrPC/Fyn signaling yields phosphorylation of the NR2B subunit of NMDA-receptors, which is coupled to an initial increase and then loss of surface NMDA-receptors. Aβ-induced LDH release and dendritic spine loss require both PrPC and Fyn, and human familial AD transgene-induced convulsive seizures do not occur in mice lacking PrPC. These results delineate an Aβ oligomer signal transduction pathway requiring PrPC and Fyn to alter synaptic function with relevance to AD. PMID:22820466

  12. Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.

    PubMed

    Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M

    2016-08-01

    Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting. PMID:27389824

  13. The Mechanism of Membrane Disruption by Cytotoxic Amyloid Oligomers Formed by Prion Protein(106–126) Is Dependent on Bilayer Composition*

    PubMed Central

    Walsh, Patrick; Vanderlee, Gillian; Yau, Jason; Campeau, Jody; Sim, Valerie L.; Yip, Christopher M.; Sharpe, Simon

    2014-01-01

    The formation of fibrillar aggregates has long been associated with neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although fibrils are still considered important to the pathology of these disorders, it is now widely understood that smaller amyloid oligomers are the toxic entities along the misfolding pathway. One characteristic shared by the majority of amyloid oligomers is the ability to disrupt membranes, a commonality proposed to be responsible for their toxicity, although the mechanisms linking this to cell death are poorly understood. Here, we describe the physical basis for the cytotoxicity of oligomers formed by the prion protein (PrP)-derived amyloid peptide PrP(106–126). We show that oligomers of this peptide kill several mammalian cells lines, as well as mouse cerebellar organotypic cultures, and we also show that they exhibit antimicrobial activity. Physical perturbation of model membranes mimicking bacterial or mammalian cells was investigated using atomic force microscopy, polarized total internal reflection fluorescence microscopy, and NMR spectroscopy. Disruption of anionic membranes proceeds through a carpet or detergent model as proposed for other antimicrobial peptides. By contrast, when added to zwitterionic membranes containing cholesterol-rich ordered domains, PrP(106–126) oligomers induce a loss of domain separation and decreased membrane disorder. Loss of raft-like domains may lead to activation of apoptotic pathways, resulting in cell death. This work sheds new light on the physical mechanisms of amyloid cytotoxicity and is the first to clearly show membrane type-specific modes of action for a cytotoxic peptide. PMID:24554723

  14. Antiparallel β-Sheet Structure within the C-Terminal Region of 42-Residue Alzheimer's Amyloid-β Peptides When They Form 150-kDa Oligomers.

    PubMed

    Huang, Danting; Zimmerman, Maxwell I; Martin, Patricia K; Nix, A Jeremy; Rosenberry, Terrone L; Paravastu, Anant K

    2015-07-01

    Understanding the molecular structures of amyloid-β (Aβ) oligomers and underlying assembly pathways will advance our understanding of Alzheimer's disease (AD) at the molecular level. This understanding could contribute to disease prevention, diagnosis, and treatment strategies, as oligomers play a central role in AD pathology. We have recently presented a procedure for production of 150-kDa oligomeric samples of Aβ(1-42) (the 42-residue variant of the Aβ peptide) that are compatible with solid-state nuclear magnetic resonance (NMR) analysis, and we have shown that these oligomers and amyloid fibrils differ in intermolecular arrangement of β-strands. Here we report new solid-state NMR constraints that indicate antiparallel intermolecular alignment of β-strands within the oligomers. Specifically, 150-kDa Aβ(1-42) oligomers with uniform (13)C and (15)N isotopic labels at I32, M35, G37, and V40 exhibit β-strand secondary chemical shifts in 2-dimensional (2D) finite-pulse radiofrequency-driven recoupling NMR spectra, spatial proximities between I32 and V40 as well as between M35 and G37 in 2D dipolar-assisted rotational resonance spectra, and close proximity between M35 H(α) and G37 H(α) in 2D CHHC spectra. Furthermore, 2D dipolar-assisted rotational resonance analysis of an oligomer sample prepared with 30% labeled peptide indicates that the I32-V40 and M35-G37 contacts are between residues on different molecules. We employ molecular modeling to compare the newly derived experimental constraints with previously proposed geometries for arrangement of Aβ molecules into oligomers. PMID:25889972

  15. Systematic analysis of time-dependent neural effects of soluble amyloid β oligomers in culture and in vivo: Prevention by scyllo-inositol.

    PubMed

    Jin, Ming; Selkoe, Dennis J

    2015-10-01

    Alzheimer's disease (AD) is currently being addressed by intensive investment in pre-clinical and clinical research on the amyloid hypothesis, but concern remains about the validity of the concept that soluble Aβ oligomers are principally responsible for initiating AD phenotypes. Here, we apply well-defined Aβ oligomers isolated from AD brains or made synthetically to document a systematic accrual of first subtle and then more profound changes in certain synaptic proteins in both primary neuronal cultures and behaving adult mice. Among the first (within hours) synaptic changes are selective decreases in surface levels of certain (e.g., GluA1) but not other (e.g., GluN2B) glutamate receptors and subtle microglial activation. After 4 days, numerous additional synaptic proteins are altered. Moreover, Aβ oligomers induce hyperphosphorylation of tau and subsequent neuritic dystrophy. All changes are prevented by scyllo-inositol in a dose- and stereoisomer-specific manner. Mechanistically, scyllo-inositol interferes quantitatively with the binding of Aβ oligomers to plasma membranes. These comprehensive analyses in culture and in vivo provide direct evidence that diffusible oligomers of human Aβ (without plaques) induce multiple phenotypic changes in healthy neurons, indicating their role as principal endogenous cytotoxins in AD. Our data recommend a re-examination of scyllo-inositol as an anti-oligomer therapeutic in humans with early AD. PMID:26054438

  16. Erratum: Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons.

    PubMed

    Umeda, T; Ramser, E M; Yamashita, M; Nakajima, K; Mori, H; Silverman, M A; Tomiyama, T

    2016-01-01

    The original version of this article unfortunately contained a mistake in the presentation of Fig. 1 in both the PDF and HTML versions of this manuscript [1]. In the right panel of the corrected Fig. 1d, the images of Mock cells, which were visualized with GFP and stained with Abeta oligomer-specific antibody 11A1, were replaced with those of APPWT cells, and instead the images of APPWT cells were replaced with those of Mock cells. These images had been incorrectly placed in the original Fig. 1. The correct version of Fig. 1 is presented below. PMID:26822851

  17. A label-free electrical impedimetric biosensor for the specific detection of Alzheimer's amyloid-beta oligomers.

    PubMed

    Rushworth, Jo V; Ahmed, Asif; Griffiths, Heledd H; Pollock, Niall M; Hooper, Nigel M; Millner, Paul A

    2014-06-15

    Alzheimer's disease (AD) is the most common form of dementia, with over 37 million sufferers worldwide and a global cost of over $600 billion. There is currently no cure for AD and no reliable method of diagnosis other than post-mortem brain examination. The development of a point-of-care test for AD is an urgent requirement in order to provide earlier diagnosis and, thus, useful therapeutic intervention. Here, we present a novel, label-free impedimetric biosensor for the specific detection of amyloid-beta oligomers (AβO), which are the primary neurotoxic species in AD. AβO have been proposed as the best biomarker for AD and levels of AβO in the blood have been found to correlate with cerebrospinal fluid load. The biorecognition element of our biosensor is a fragment of the cellular prion protein (PrP(C), residues 95-110), a highly expressed synaptic protein which mediates the neuronal binding and toxicity of AβO. During the layer-by-layer sensor construction, biotinylated PrP(C) (95-110) was attached via a biotin/NeutrAvidin bridge to polymer-functionalised gold screen-printed electrodes. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry and scanning electron microscopy were used to validate biosensor assembly and functionality. EIS was employed for biosensor interrogation in the presence of Aβ oligomers or monomers. The biosensor was specific for the detection of synthetic AβO and gave a linear response, without significant detection of monomeric Aβ, down to an equivalent AβO concentration of ~0.5 pM. The biosensor was also able to detect natural, cell-derived AβO present in conditioned medium. The eventual commercialisation of this biosensor system could allow for the early diagnosis and disease monitoring of AD. PMID:24480125

  18. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  19. Electrochemical Detection of AmyloidOligomers Based on the Signal Amplification of a Network of Silver Nanoparticles.

    PubMed

    Xia, Ning; Wang, Xin; Zhou, Binbin; Wu, Yangyang; Mao, Wenhui; Liu, Lin

    2016-08-01

    Amyloidoligomers (AβOs) are the most important toxic species in the brain of Alzheimer's disease (AD) patient. AβOs, therefore, are considered reliable molecular biomarkers for the diagnosis of AD. Herein, we reported a simple and sensitive electrochemical method for the selective detection of AβOs using silver nanoparticles (AgNPs) as the redox reporters and PrP(95-110), an AβOs-specific binding peptide, as the receptor. Specifically, adamantine (Ad)-labeled PrP(95-110), denoted as Ad-PrP(95-110), induced the aggregation and color change of AgNPs and the follow-up formation of a network of Ad-PrP(95-110)-AgNPs. Then, Ad-PrP(95-110)-AgNPs were anchored onto a β-cyclodextrin (β-CD)-covered electrode surface through the host-guest interaction between Ad and β-CD, thus producing an amplified electrochemical signal through the solid-state Ag/AgCl reaction by the AgNPs. In the presence of AβOs, Ad-PrP(95-110) interacted specifically with the AβOs, thus losing the capability to bind AgNPs and to induce the formation of an AgNPs-based network on the electrode surface. Consequently, the electrochemical signal decreased with an increase in the concentration of AβOs in the range of 20 pM to 100 nM. The biosensor had a detection limit of 8 pM and showed no response to amyloid-β monomers (AβMs) and fibrils (AβFs). On the basis of the well-defined and amplified electrochemical signal of the AgNPs-based network architecture, these results should be valuable for the design of novel electrochemical biosensors by marrying specific receptors. PMID:27414520

  20. Heme stabilization of α-Synuclein oligomers during amyloid fibril formation

    PubMed Central

    Hayden, Eric Y.; Kaur, Prerna; Williams, Thomas L.; Matsui, Hiroshi; Yeh, Syun-Ru; Rousseau, Denis L.

    2015-01-01

    Alpha-Synuclein (αSyn), which forms amyloid fibrils, is linked to the neuronal pathology of Parkinson’s disease, as it is the major fibrillar component of Lewy bodies, the inclusions that are characteristic of the disease. Oligomeric structures, common to many neurodegenerative disease-related proteins, may in fact be the primary toxic species, while the amyloid fibrils exist as either a less toxic dead-end species, or even as a beneficial mechanism to clear damaged proteins. In order to alter the progression of the aggregation and gain insights into the pre-fibrillar structures, the effect of heme on αSyn oligomerization was determined by several different techniques including native (non-denaturing) polyacrylamide gel electrophoresis, thioflavin T fluorescence, transmission electron microscopy, atomic force microscopy, circular dichroism and membrane permeation using a calcein release assay. During aggregation, heme is able to bind the αSyn in a specific fashion, stabilizing distinct oligomeric conformations and promoting the formation of αSyn into annular structures, thereby delaying and/or inhibiting the fibrillation process. These results indicate that heme may play a regulatory role in the progression of Parkinson’s disease; in addition, they provide insights of how the aggregation process may be altered, which may be applicable to the understanding of many neurodegenerative diseases. PMID:26161848

  1. Specific recognition of biologically active amyloidoligomers by a new surface plasmon resonance-based immunoassay and an in vivo assay in Caenorhabditis elegans.

    PubMed

    Stravalaci, Matteo; Bastone, Antonio; Beeg, Marten; Cagnotto, Alfredo; Colombo, Laura; Di Fede, Giuseppe; Tagliavini, Fabrizio; Cantù, Laura; Del Favero, Elena; Mazzanti, Michele; Chiesa, Roberto; Salmona, Mario; Diomede, Luisa; Gobbi, Marco

    2012-08-10

    Soluble oligomers of the amyloid-β (Aβ) peptide play a key role in the pathogenesis of Alzheimer's disease, but their elusive nature makes their detection challenging. Here we describe a novel immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active Aβ oligomers. As a capturing agent, we immobilized on the sensor chip the monoclonal antibody 4G8, which targets a central hydrophobic region of Aβ. This SPR assay allows specific recognition of oligomeric intermediates that rapidly appear and disappear during the incubation of synthetic Aβ(1-42), discriminating them from monomers and higher order aggregates. The species recognized by SPR generate ionic currents in artificial lipid bilayers and inhibit the physiological pharyngeal contractions in Caenorhabditis elegans, a new method for testing the toxic potential of Aβ oligomers. With these assays we found that the formation of biologically relevant Aβ oligomers is inhibited by epigallocatechin gallate and increased by the A2V mutation, previously reported to induce early onset dementia. The SPR-based immunoassay provides new opportunities for detection of toxic Aβ oligomers in biological samples and could be adapted to study misfolding proteins in other neurodegenerative disorders. PMID:22736768

  2. Specific Recognition of Biologically Active AmyloidOligomers by a New Surface Plasmon Resonance-based Immunoassay and an in Vivo Assay in Caenorhabditis elegans*

    PubMed Central

    Stravalaci, Matteo; Bastone, Antonio; Beeg, Marten; Cagnotto, Alfredo; Colombo, Laura; Di Fede, Giuseppe; Tagliavini, Fabrizio; Cantù, Laura; Del Favero, Elena; Mazzanti, Michele; Chiesa, Roberto; Salmona, Mario; Diomede, Luisa; Gobbi, Marco

    2012-01-01

    Soluble oligomers of the amyloid-β (Aβ) peptide play a key role in the pathogenesis of Alzheimer's disease, but their elusive nature makes their detection challenging. Here we describe a novel immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active Aβ oligomers. As a capturing agent, we immobilized on the sensor chip the monoclonal antibody 4G8, which targets a central hydrophobic region of Aβ. This SPR assay allows specific recognition of oligomeric intermediates that rapidly appear and disappear during the incubation of synthetic Aβ1–42, discriminating them from monomers and higher order aggregates. The species recognized by SPR generate ionic currents in artificial lipid bilayers and inhibit the physiological pharyngeal contractions in Caenorhabditis elegans, a new method for testing the toxic potential of Aβ oligomers. With these assays we found that the formation of biologically relevant Aβ oligomers is inhibited by epigallocatechin gallate and increased by the A2V mutation, previously reported to induce early onset dementia. The SPR-based immunoassay provides new opportunities for detection of toxic Aβ oligomers in biological samples and could be adapted to study misfolding proteins in other neurodegenerative disorders. PMID:22736768

  3. Systems Pharmacology Analysis of the Amyloid Cascade after β-Secretase Inhibition Enables the Identification of an Aβ42 Oligomer Pool.

    PubMed

    van Maanen, Eline M T; van Steeg, Tamara J; Michener, Maria S; Savage, Mary J; Kennedy, Matthew E; Kleijn, Huub Jan; Stone, Julie A; Danhof, Meindert

    2016-04-01

    The deposition of amyloid-β (Aβ) oligomers in brain parenchyma has been implicated in the pathophysiology of Alzheimer's disease. Here we present a systems pharmacology model describing the changes in the amyloid precursor protein (APP) pathway after administration of three different doses (10, 30, and 125 mg/kg) of the β-secretase 1 (BACE1) inhibitor MBi-5 in cisterna magna ported rhesus monkeys. The time course of the MBi-5 concentration in plasma and cerebrospinal fluid (CSF) was analyzed in conjunction with the effect on the concentrations of the APP metabolites Aβ42, Aβ40, soluble β-amyloid precursor protein (sAPP) α, and sAPPβ in CSF. The systems pharmacology model contained expressions to describe the production, elimination, and brain-to-CSF transport for the APP metabolites. Upon administration of MBi-5, a dose-dependent increase of the metabolite sAPPα and dose-dependent decreases of sAPPβ and Aβ were observed. Maximal inhibition of BACE1 was close to 100% and the IC50 value was 0.0256 μM (95% confidence interval, 0.0137-0.0375). A differential effect of BACE1 inhibition on Aβ40 and Aβ42 was observed, with the Aβ40 response being larger than the Aβ42 response. This enabled the identification of an Aβ42 oligomer pool in the systems pharmacology model. These findings indicate that decreases in monomeric Aβ responses resulting from BACE1 inhibition are partially compensated by dissociation of Aβ oligomers and suggest that BACE1 inhibition may also reduce the putatively neurotoxic oligomer pool. PMID:26826190

  4. Progressive accumulation of amyloidoligomers in Alzheimer’s disease and APP transgenic mice is accompanied by selective alterations in synaptic scaffold proteins

    PubMed Central

    Pham, Emiley; Crews, Leslie; Ubhi, Kiren; Hansen, Lawrence; Adame, Anthony; Cartier, Anna; Salmon, David; Galasko, Douglas; Michael, Sarah; Savas, Jeffrey N.; Yates, John R.; Glabe, Charles; Masliah, Eliezer

    2010-01-01

    The cognitive impairment in patients with Alzheimer’s disease is closely associated with synaptic loss in the neocortex and limbic system. Although the neurotoxic effects of aggregated amyloid-β (Aβ) oligomers in Alzheimer’s disease have been widely studied in experimental models, less is known about the characteristics of these aggregates across the spectrum of Alzheimer’s disease. Here, postmortem frontal cortex samples from control and Alzheimer’s disease patients were fractioned and analyzed for levels of oligomers and synaptic proteins. We found that levels of oligomers correlated with the severity of cognitive impairment (Blessed score and Mini-Mental), and with the loss of synaptic markers. Reduced levels of the synaptic vesicle protein vesicle-associated membrane protein-2 and the postsynaptic protein post-synaptic density-95 (PSD95) correlated with levels of oligomers in the various fractions analyzed. The strongest associations were found with Aβ dimers and pentamers. Co-immunoprecipitation and double-labeling experiments support the possibility that Aβ and PSD95 interact at the synaptic sites. Similarly, in transgenic mice expressing high levels of neuronal amyloid precursor protein (APP), Aβ co-immunoprecipitated with PSD95. This was accompanied by a reduction in the levels of the post-synaptic proteins Shank1 and 3 in Alzheimer’s disease patients and in the brains of APP transgenic mice. In conclusion, this study suggests that the presence of a subpopulation of Aβ oligomers in the brains of patients with Alzheimer’s disease might be related to alterations in selected synaptic proteins and cognitive impairment. PMID:20573181

  5. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer.

    PubMed

    Berhanu, Workalemahu M; Masunov, Artëm E

    2015-01-01

    Amyloid fibrils are highly ordered protein aggregates associated with many diseases affecting millions of people worldwide. Polyphenols such as Curcumin, Exifone, and Myricetin exhibit modest inhibition toward fibril formation of tau peptide which is associated with Alzheimer's disease. However, the molecular mechanisms of this inhibition remain elusive. We investigated the binding of three polyphenol molecules to the protofibrils of an amyloidogenic fragment VQIVYK of tau peptide by molecular dynamics simulations in explicit solvent. We find that polyphenols induce conformational changes in the oligomer aggregate. These changes disrupt the amyloid H bonding, perturbing the aggregate. While the structural evolution of the control oligomer with no ligand is limited to the twisting of the β-sheets without their disassembly, the presence of polyphenol molecule pushes the β-sheets apart, and leads to a loosely packed structure where two of four β-sheets dissociate in each of the three cases considered here. The H-bonding capacity of polyphenols is responsible for the observed behavior. The calculated binding free energies and its individual components enabled better understanding of the binding. Results indicated that the contribution from Van der Waals interactions is more significant than electrostatic contribution to the binding. The findings from this study are expected to assist in the development of aggregation inhibitors. Significant binding between polyphenols and aggregate oligomer identified in our simulations confirms the previous experimental observations in which polyphenols refold the tau peptide without forming covalent bonds. PMID:25093402

  6. Molecular Structure of Aggregated Amyloid-β: Insights from Solid-State Nuclear Magnetic Resonance.

    PubMed

    Tycko, Robert

    2016-01-01

    Amyloid-β (Aβ) peptides aggregate to form polymorphic amyloid fibrils and a variety of intermediate assemblies, including oligomers and protofibrils, both in vitro and in human brain tissue. Since the beginning of the 21st century, considerable progress has been made to characterize the molecular structures of Aβ aggregates. Full molecular structural models based primarily on data from measurements using solid-state nuclear magnetic resonance (ssNMR) have been developed for several in vitro Aβ fibrils and one metastable protofibril. Partial structural characterization of other aggregation intermediates has been achieved. One full structural model for fibrils derived from brain tissue has also been reported. Future work is likely to focus on additional structures from brain tissue and on further clarification of nonfibrillar Aβ aggregates. PMID:27481836

  7. Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains

    PubMed Central

    Moyano, Javier; Sanchez-Mico, María; Torres, Manuel; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier

    2014-01-01

    The implication of soluble Abeta in the Alzheimer’s disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinico-pathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Tris-buffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III–IV and Braak V–VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/µg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD samples. PMID:25485545

  8. Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP(1-37)) oligomer by resveratrol from molecular dynamics simulation.

    PubMed

    Wang, Qianqian; Ning, Lulu; Niu, Yuzhen; Liu, Huanxiang; Yao, Xiaojun

    2015-01-01

    Natural polyphenols are one of the most actively investigated categories of amyloid inhibitors, and resveratrol has recently been reported to inhibit and remodel the human islet amyloid polypeptide (hIAPP) oligomers and fibrils. However, the exact mechanism of its action is still unknown, especially for the full-length hIAPP1-37. To this end, we performed all-atom molecular dynamics simulations for hIAPP1-37 pentamer with and without resveratrol. The obtained results show that the binding of resveratrol is able to cause remarkable conformational changes of hIAPP1-37 pentamer, in terms of secondary structures, order degree, and morphology. By clustering analysis, two possible binding sites of resveratrol on the hIAPP1-37 pentamer were found, located at the grooves of the top and bottom surfaces of β-sheet layer, respectively. After the binding free energy calculation and residue energy decomposition, it can be concluded that the bottom site is the more possible one, and that the nonpolar interactions act as the driving force for the binding of hIAPP1-37 to resveratrol. In addition, Arg11 is the most important residue for the binding of resveratrol. The full understanding of inhibitory mechanism of resveratrol on the hIAPP1-37 oligomer, and the identification of its binding sites on this protein are helpful for the future design and discovery of new amyloid inhibitors. PMID:25494644

  9. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4' benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations.

    PubMed

    Kumar, Akhil; Srivastava, Swati; Tripathi, Shubhandra; Singh, Sandeep Kumar; Srikrishna, Saripella; Sharma, Ashok

    2016-06-01

    Aggregation of amyloid peptide (Aβ) has been shown to be directly related to progression of Alzheimer's disease (AD). Aβ is neurotoxic and its deposition and aggregation ultimately lead to cell death. In our previous work, we reported flavonoid derivative (compound 1) showing promising result in transgenic AD model of Drosophila. Compound 1 showed prevention of Aβ-induced neurotoxicity and neuroprotective efficacy in Drosophila system. However, mechanism of action of compound 1 and its effect on the amyloid is not known. We therefore performed molecular docking and atomistic, explicit-solvent molecular dynamics simulations to investigate the process of Aβ interaction, inhibition, and destabilizing mechanism. Results showed different preferred binding sites of compound 1 and good affinity toward the target. Through the course of 35 ns molecular dynamics simulation, conformations_5 of compound 1 intercalates into the hydrophobic core near the salt bridge and showed major structural changes as compared to other conformations. Compound 1 showed interference with the salt bridge and thus reducing the inter strand hydrogen bound network. This minimizes the side chain interaction between the chains A-B leading to disorder in oligomer. Contact map analysis of amino acid residues between chains A and B also showed lesser interaction with adjacent amino acids in the presence of compound 1 (conformations_5). The study provides an insight into how compound 1 interferes and disorders the Aβ peptide. These findings will further help to design better inhibitors for aggregation of the amyloid oligomer. PMID:26208790

  10. Structure of ring-shaped Aβ42 oligomers determined by conformational selection

    PubMed Central

    Tran, Linh; Basdevant, Nathalie; Prévost, Chantal; Ha-Duong, Tâp

    2016-01-01

    The oligomerization of amyloid beta (Aβ) peptides into soluble non-fibrillar species plays a critical role in the pathogenesis of Alzheimer’s disease. However, it has been challenging to characterize the tertiary and quaternary structures of Aβ peptides due to their disordered nature and high aggregation propensity. In this work, replica exchange molecular dynamics simulations were used to explore the conformational space of Aβ42 monomer. Among the most populated transient states, we identified a particular conformation which was able to generate ring-shaped pentamers and hexamers, when docked onto itself. The structures of these aggregates were stable during microsecond all-atom MD simulations in explicit solvent. In addition to high resolution models of these oligomers, this study provides support for the conformational selection mechanism of Aβ peptide self-assembly. PMID:26868929

  11. Structure of ring-shaped Aβ42 oligomers determined by conformational selection

    NASA Astrophysics Data System (ADS)

    Tran, Linh; Basdevant, Nathalie; Prévost, Chantal; Ha-Duong, Tâp

    2016-02-01

    The oligomerization of amyloid beta (Aβ) peptides into soluble non-fibrillar species plays a critical role in the pathogenesis of Alzheimer’s disease. However, it has been challenging to characterize the tertiary and quaternary structures of Aβ peptides due to their disordered nature and high aggregation propensity. In this work, replica exchange molecular dynamics simulations were used to explore the conformational space of Aβ42 monomer. Among the most populated transient states, we identified a particular conformation which was able to generate ring-shaped pentamers and hexamers, when docked onto itself. The structures of these aggregates were stable during microsecond all-atom MD simulations in explicit solvent. In addition to high resolution models of these oligomers, this study provides support for the conformational selection mechanism of Aβ peptide self-assembly.

  12. A new procedure for amyloid β oligomers preparation enables the unambiguous testing of their effects on cytosolic and mitochondrial Ca(2+) entry and cell death in primary neurons.

    PubMed

    Caballero, Erica; Calvo-Rodríguez, María; Gonzalo-Ruiz, Alicia; Villalobos, Carlos; Núñez, Lucía

    2016-01-26

    Oligomers of the amyloid β peptide (Aβo) are becoming the most likely neurotoxin in Alzheimer's disease. Controversy remains on the mechanisms involved in neurotoxicity induced by Aβo and the targets involved. We have reported that Aβo promote Ca(2+) entry, mitochondrial Ca(2+) overload and apoptosis in cultured cerebellar neurons. However, recent evidence suggests that some of these effects could be induced by glutamate receptor agonists solved in F12, the media in which Aβo are prepared. Here we have tested the effects of different media on Aβo formation and on cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in rat cerebellar and hippocampal cell cultures. We found that Aβo prepared according to previous protocols but solved in alternative media including saline, MEM and DMEM do not allow oligomer formation and fail to increase [Ca(2+)]cyt. Changes in the oligomerization protocol and supplementation of media with selected salts reported to favor oligomer formation enable Aβo formation. Aβo prepared by the new procedure and containing small molecular weight oligomers increased [Ca(2+)]cyt, promoted mitochondrial Ca(2+) overload and cell death in cerebellar granule cells and hippocampal neurons. These results foster a role for Ca(2+) entry in neurotoxicity induced by Aβo and provide a reliable procedure for investigating the Ca(2+) entry pathway promoted by Aβo. PMID:26655463

  13. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloidoligomers and plaques.

    PubMed

    Kim, Hye Yun; Kim, Hyunjin Vincent; Jo, Seonmi; Lee, C Justin; Choi, Seon Young; Kim, Dong Jin; Kim, YoungSoo

    2015-01-01

    Alzheimer's disease (AD) is characterized by the transition of amyloid-β (Aβ) monomers into toxic oligomers and plaques. Given that Aβ abnormality typically precedes the development of clinical symptoms, an agent capable of disaggregating existing Aβ aggregates may be advantageous. Here we report that a small molecule, 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS), binds to Aβ aggregates and converts them into monomers. The oral administration of EPPS substantially reduces hippocampus-dependent behavioural deficits, brain Aβ oligomer and plaque deposits, glial γ-aminobutyric acid (GABA) release and brain inflammation in an Aβ-overexpressing, APP/PS1 transgenic mouse model when initiated after the development of severe AD-like phenotypes. The ability of EPPS to rescue Aβ aggregation and behavioural deficits provides strong support for the view that the accumulation of Aβ is an important mechanism underlying AD. PMID:26646366

  14. EPPS rescues hippocampus-dependent cognitive deficits in APP/PS1 mice by disaggregation of amyloidoligomers and plaques

    PubMed Central

    Kim, Hye Yun; Kim, Hyunjin Vincent; Jo, Seonmi; Lee, C. Justin; Choi, Seon Young; Kim, Dong Jin; Kim, YoungSoo

    2015-01-01

    Alzheimer's disease (AD) is characterized by the transition of amyloid-β (Aβ) monomers into toxic oligomers and plaques. Given that Aβ abnormality typically precedes the development of clinical symptoms, an agent capable of disaggregating existing Aβ aggregates may be advantageous. Here we report that a small molecule, 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS), binds to Aβ aggregates and converts them into monomers. The oral administration of EPPS substantially reduces hippocampus-dependent behavioural deficits, brain Aβ oligomer and plaque deposits, glial γ-aminobutyric acid (GABA) release and brain inflammation in an Aβ-overexpressing, APP/PS1 transgenic mouse model when initiated after the development of severe AD-like phenotypes. The ability of EPPS to rescue Aβ aggregation and behavioural deficits provides strong support for the view that the accumulation of Aβ is an important mechanism underlying AD. PMID:26646366

  15. Ac-LPFFD-Th: A Trehalose-Conjugated Peptidomimetic as a Strong Suppressor of AmyloidOligomer Formation and Cytotoxicity.

    PubMed

    Sinopoli, Alessandro; Giuffrida, Alessandro; Tomasello, Marianna Flora; Giuffrida, Maria Laura; Leone, Marilisa; Attanasio, Francesco; Caraci, Filippo; De Bona, Paolo; Naletova, Irina; Saviano, Michele; Copani, Agata; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2016-08-17

    The inhibition of amyloid formation is a promising therapeutic approach for the treatment of neurodegenerative diseases. Peptide-based inhibitors, which have been widely investigated, are generally derived from original amyloid sequences. Most interestingly, trehalose, a nonreducing disaccharide of α-glucose, is effective in preventing the aggregation of numerous proteins. We have determined that the development of hybrid compounds could provide new molecules with improved properties that might synergically increase the potency of their single moieties. In this work, the ability of Ac-LPFFD-Th, a C-terminally trehalose-conjugated derivative, to slow down the Aβ aggregation process was investigated by means of different biophysical techniques, including thioflavin T fluorescence, dynamic light scattering, ESI-MS, and NMR spectroscopy. Moreover, we demonstrate that Ac-LPFFD-Th modifies the aggregation features of Aβ and protects neurons from Aβ oligomers' toxic insult. PMID:27252026

  16. Absence of amyloid β oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology

    PubMed Central

    2012-01-01

    Background Early cognitive impairment in Alzheimer Disease (AD) is thought to result from the dysfunctional effect of amyloid beta (Aβ) oligomers targeting the synapses. Some individuals, however, escape cognitive decline despite the presence of the neuropathologic features of AD (Aβ plaques and neurofibrillary tangles). We term this group Non-Demented with AD Neuropathology or NDAN. The present study illustrates one putative resistance mechanism involved in NDAN cases which may suggest targets for the effective treatment of AD. Results Here we describe the localization of Aβ oligomers at the postsynapse in hippocampi from AD cases. Notably, however, we also found that while present in soluble fractions, Aβ oligomers are absent from hippocampal postsynapses in NDAN cases. In addition, levels of phosphorylated (active) CREB, a transcription factor important for synaptic plasticity, are normal in NDAN individuals, suggesting that their synapses are functionally intact. Analysis of Zn2+ showed that levels were increased in both soluble fractions and synaptic vesicles in AD hippocampi, paralleled by a decrease of expression of the synaptic vesicle Zn2+ transporter, ZnT3. Conversely, in NDAN individuals, levels of Zn2+ in soluble fractions were significantly lower than in AD, whereas in synaptic vesicles the levels of Zn2+ were similar to AD, but accompanied by preserved expression of the ZnT3. Conclusions Taken together, these data illustrate that despite substantial AD neuropathology, Aβ oligomers, and increased synaptic vesicle Zn2+, susceptible brain tissue in these aged NDAN individuals features, as compared to symptomatic AD subjects, significantly lower total Zn2+ levels and no association of Aβ oligomers with the postsynapse, which collectively may promote the maintenance of intact cognitive function. PMID:22640423

  17. Two Distinct Amyloid β-Protein (Aβ) Assembly Pathways Leading to Oligomers and Fibrils Identified by Combined Fluorescence Correlation Spectroscopy, Morphology, and Toxicity Analyses*

    PubMed Central

    Matsumura, Satoko; Shinoda, Keiko; Yamada, Mayumi; Yokojima, Satoshi; Inoue, Masafumi; Ohnishi, Takayuki; Shimada, Tetsuya; Kikuchi, Kazuya; Masui, Dai; Hashimoto, Shigeki; Sato, Michio; Ito, Akane; Akioka, Manami; Takagi, Shinsuke; Nakamura, Yoshihiro; Nemoto, Kiyokazu; Hasegawa, Yutaka; Takamoto, Hisayoshi; Inoue, Haruo; Nakamura, Shinichiro; Nabeshima, Yo-ichi; Teplow, David B.; Kinjo, Masataka; Hoshi, Minako

    2011-01-01

    Nonfibrillar assemblies of amyloid β-protein (Aβ) are considered to play primary roles in Alzheimer disease (AD). Elucidating the assembly pathways of these specific aggregates is essential for understanding disease pathogenesis and developing knowledge-based therapies. However, these assemblies cannot be monitored in vivo, and there has been no reliable in vitro monitoring method at low protein concentration. We have developed a highly sensitive in vitro monitoring method using fluorescence correlation spectroscopy (FCS) combined with transmission electron microscopy (TEM) and toxicity assays. Using Aβ labeled at the N terminus or Lys16, we uncovered two distinct assembly pathways. One leads to highly toxic 10–15-nm spherical Aβ assemblies, termed amylospheroids (ASPDs). The other leads to fibrils. The first step in ASPD formation is trimerization. ASPDs of ∼330 kDa in mass form from these trimers after 5 h of slow rotation. Up to at least 24 h, ASPDs remain the dominant structures in assembly reactions. Neurotoxicity studies reveal that the most toxic ASPDs are ∼128 kDa (∼32-mers). In contrast, fibrillogenesis begins with dimer formation and then proceeds to formation of 15–40-nm spherical intermediates, from which fibrils originate after 15 h. Unlike ASPD formation, the Lys16-labeled peptide disturbed fibril formation because the Aβ16–20 region is critical for this final step. These differences in the assembly pathways clearly indicated that ASPDs are not fibril precursors. The method we have developed should facilitate identifying Aβ assembly steps at which inhibition may be beneficial. PMID:21292768

  18. A spiropyran-based fluorescent probe for the specific detection of β-amyloid peptide oligomers in Alzheimer's disease.

    PubMed

    Lv, Guanglei; Sun, Anyang; Wei, Peng; Zhang, Ning; Lan, Haichuang; Yi, Tao

    2016-07-01

    We report a new spiropyran-based fluorescent probe that exhibits high affinity and specificity towards Aβ oligomers both in vitro and in vivo. This probe can penetrate the blood brain barrier and specifically target Aβ oligomers in the brains of transgenic mice in models for Alzheimer's disease. PMID:27346489

  19. Effects of Low Amyloid-β (Aβ) Concentration on Aβ1–42 Oligomers Binding and GluN2B Membrane Expression

    PubMed Central

    Gilson, Virginie; Mbebi-Liegeois, Corinne; Sellal, François; de Barry, Jean

    2015-01-01

    Abstract Numerous studies have shown that amyloid-β (Aβ) modulate intracellular metabolic cascades and an intracellular Ca2+ homeostasis and a cell surface NMDA receptor expression alteration in Alzheimer’s disease (AD). However most of these findings have been obtained by using non-physiological Aβ concentrations. The present study deals with the effect of low Aβ concentrations on cellular homeostasis. We used nerve growth factor-differentiated PC12 cells and murine cortical neurons sequentially treated with low chronic monomeric or small oligomeric Aβ concentrations and high acute oligomeric Aβ concentrations to bring out a priming effect of chronic treatment on subsequently high Aβ concentrations-elicited cellular response. Both cell types indeed displayed an enhanced capacity to bind oligomeric Aβ after monomeric or small oligomeric Aβ application. Furthermore, the results show that monomeric Aβ1–42 application to the cells induces an increase of the Ca2+-response and of the membrane expression of the extrasynaptic subunit of the NMDA receptor GluN2B in PC12 cells, while the opposite effects were observed in cultured neurons. This suggests a sequential interaction of Aβ with the cellular plasma membrane involving monomers or small Aβ oligomers which would facilitate the binding of the deleterious high molecular Aβ oligomers. This mechanism would explain the slow progression of AD in the human nervous system and the deep gradient of neuronal death observed around the amyloid plaques in the nervous tissue. PMID:26401567

  20. Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer's disease.

    PubMed

    Wang, Shao-Wei; Yang, Shi-Gao; Liu, Wen; Zhang, Yang-Xin; Xu, Peng-Xin; Wang, Teng; Ling, Tie-Jun; Liu, Rui-Tian

    2016-01-01

    The pathologies of Alzheimer's disease (AD) is associated with soluble beta-amyloid (Aβ) oligomers, neuroinflammation and oxidative stress. Decreasing the levels of Aβ oligomer, glial activation and oxidative stress are potential therapeutic approaches for AD treatment. We previously found alpha-tocopherol quinine (α-TQ) inhibited Aβ aggregation and cytotoxicity, decreased the release of inflammatory cytokines and reactive oxygen species (ROS) in vitro. However, whether α-TQ ameliorates memory deficits and other neuropathologies in mice or patients with AD remains unknown. In this study, we reported that orally administered α-TQ ameliorated memory impairment in APPswe/PS1dE9 transgenic mice, decreased oxidative stress and the levels of Aβ oligomer in the brains of mice, prevented the production of inducible nitric oxide synthase and inflammatory mediators, such as interleukin-6 and interleukin-1β, and inhibited microglial activation by inhibiting NF-κB signaling pathway. These findings suggest that α-TQ has potential therapeutic value for AD treatment. PMID:26358659

  1. Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-β1-42 oligomers are revealed in vivo by using a novel animal model.

    PubMed

    Brouillette, Jonathan; Caillierez, Raphaëlle; Zommer, Nadège; Alves-Pires, Claire; Benilova, Iryna; Blum, David; De Strooper, Bart; Buée, Luc

    2012-06-01

    Neuronal and synaptic degeneration are the best pathological correlates for memory decline in Alzheimer's disease (AD). Although the accumulation of soluble low-molecular-weight amyloid-β (Aβ) oligomers has been suggested to trigger neurodegeneration in AD, animal models overexpressing or infused with Aβ lack neuronal loss at the onset of memory deficits. Using a novel in vivo approach, we found that repeated hippocampal injections of small soluble Aβ(1-42) oligomers in awake, freely moving mice were able to induce marked neuronal loss, tau hyperphosphorylation, and deficits in hippocampus-dependent memory. The neurotoxicity of small Aβ(1-42) species was observed in vivo as well as in vitro in association with increased caspase-3 activity and reduced levels of the NMDA receptor subunit NR2B. We found that the sequestering agent transthyretin is able to bind the toxic Aβ(1-42) species and attenuated the loss of neurons and memory deficits. Our novel mouse model provides evidence that small, soluble Aβ(1-42) oligomers are able to induce extensive neuronal loss in vivo and initiate a cascade of events that mimic the key neuropathological hallmarks of AD. PMID:22674261

  2. Validation and Characterization of a Novel Peptide That Binds Monomeric and Aggregated β-Amyloid and Inhibits the Formation of Neurotoxic Oligomers.

    PubMed

    Barr, Renae K; Verdile, Giuseppe; Wijaya, Linda K; Morici, Michael; Taddei, Kevin; Gupta, Veer B; Pedrini, Steve; Jin, Liang; Nicolazzo, Joseph A; Knock, Erin; Fraser, Paul E; Martins, Ralph N

    2016-01-01

    Although the formation of β-amyloid (Aβ) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aβ toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aβ oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aβ and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D'Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203-214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aβ42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25-30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aβ42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aβ42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aβ42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies. PMID:26538562

  3. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes.

    PubMed

    Kim, Jinyoung; Cheon, Hwanju; Jeong, Yeon Taek; Quan, Wenying; Kim, Kook Hwan; Cho, Jae Min; Lim, Yu-Mi; Oh, Seung Hoon; Jin, Sang-Man; Kim, Jae Hyeon; Lee, Moon-Kyu; Kim, Sunshin; Komatsu, Masaaki; Kang, Sang-Wook; Lee, Myung-Shik

    2014-08-01

    Islet amyloid accumulation is a hallmark of human type 2 diabetes (T2D). In contrast to human islet amyloid polypeptide (hIAPP), murine islet amyloid polypeptide (mIAPP) does not exhibit amyloidogenic propensity. Because autophagy is important in the clearance of amyloid-like proteins, we studied transgenic mice with β cell-specific expression of hIAPP to evaluate the contribution of autophagy in T2D-associated accumulation of hIAPP. In mice with β cell-specific expression of hIAPP, a deficiency in autophagy resulted in development of overt diabetes, which was not observed in mice expressing hIAPP alone or lacking autophagy alone. Furthermore, lack of autophagy in hIAPP-expressing animals resulted in hIAPP oligomer and amyloid accumulation in pancreatic islets, leading to increased death and decreased mass of β cells. Expression of hIAPP in purified monkey islet cells or a murine β cell line resulted in pro-hIAPP dimer formation, while dimer formation was absent or reduced dramatically in cells expressing either nonamyloidogenic mIAPP or nonfibrillar mutant hIAPP. In autophagy-deficient cells, accumulation of pro-hIAPP dimers increased markedly, and pro-hIAPP trimers were detected in the detergent-insoluble fraction. Enhancement of autophagy improved the metabolic profile of hIAPP-expressing mice fed a high-fat diet. These results suggest that autophagy promotes clearance of amyloidogenic hIAPP, autophagy deficiency exacerbates pathogenesis of human T2D, and autophagy enhancers have therapeutic potential for islet amyloid accumulation-associated human T2D. PMID:25036705

  4. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    PubMed

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity. PMID:27185215

  5. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory.

    PubMed

    Fá, M; Puzzo, D; Piacentini, R; Staniszewski, A; Zhang, H; Baltrons, M A; Li Puma, D D; Chatterjee, I; Li, J; Saeed, F; Berman, H L; Ripoli, C; Gulisano, W; Gonzalez, J; Tian, H; Costa, J A; Lopez, P; Davidowitz, E; Yu, W H; Haroutunian, V; Brown, L M; Palmeri, A; Sigurdsson, E M; Duff, K E; Teich, A F; Honig, L S; Sierks, M; Moe, J G; D'Adamio, L; Grassi, C; Kanaan, N M; Fraser, P E; Arancio, O

    2016-01-01

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology. PMID:26786552

  6. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory

    PubMed Central

    Fá, M.; Puzzo, D.; Piacentini, R.; Staniszewski, A.; Zhang, H.; Baltrons, M. A.; Li Puma, D. D.; Chatterjee, I.; Li, J.; Saeed, F.; Berman, H. L.; Ripoli, C.; Gulisano, W.; Gonzalez, J.; Tian, H.; Costa, J. A.; Lopez, P.; Davidowitz, E.; Yu, W. H.; Haroutunian, V.; Brown, L. M.; Palmeri, A.; Sigurdsson, E. M.; Duff, K. E.; Teich, A. F.; Honig, L. S.; Sierks, M.; Moe, J. G.; D’Adamio, L.; Grassi, C.; Kanaan, N. M.; Fraser, P. E.; Arancio, O.

    2016-01-01

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer’s disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology. PMID:26786552

  7. Amyloidoligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin

    PubMed Central

    Zempel, Hans; Luedtke, Julia; Kumar, Yatender; Biernat, Jacek; Dawson, Hana; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2013-01-01

    Mislocalization and aggregation of Aβ and Tau combined with loss of synapses and microtubules (MTs) are hallmarks of Alzheimer disease. We exposed mature primary neurons to Aβ oligomers and analysed changes in the Tau/MT system. MT breakdown occurs in dendrites invaded by Tau (Tau missorting) and is mediated by spastin, an MT-severing enzyme. Spastin is recruited by MT polyglutamylation, induced by Tau missorting triggered translocalization of TTLL6 (Tubulin-Tyrosine-Ligase-Like-6) into dendrites. Consequences are spine loss and mitochondria and neurofilament mislocalization. Missorted Tau is not axonally derived, as shown by axonal retention of photoconvertible Dendra2-Tau, but newly synthesized. Recovery from Aβ insult occurs after Aβ oligomers lose their toxicity and requires the kinase MARK (Microtubule-Affinity-Regulating-Kinase). In neurons derived from Tau-knockout mice, MTs and synapses are resistant to Aβ toxicity because TTLL6 mislocalization and MT polyglutamylation are prevented; hence no spastin recruitment and no MT breakdown occur, enabling faster recovery. Reintroduction of Tau re-establishes Aβ-induced toxicity in TauKO neurons, which requires phosphorylation of Tau's KXGS motifs. Transgenic mice overexpressing Tau show TTLL6 translocalization into dendrites and decreased MT stability. The results provide a rationale for MT stabilization as a therapeutic approach. PMID:24065130

  8. Sub-lethal levels of amyloid β-peptide oligomers decrease non-transferrin-bound iron uptake and do not potentiate iron toxicity in primary hippocampal neurons.

    PubMed

    SanMartín, C D; Paula-Lima, A C; Hidalgo, C; Núñez, M T

    2012-08-01

    Two major lesions are pathological hallmarks in Alzheimer's disease (AD): the presence of neurofibrillary tangles formed by intracellular aggregates of the hyperphosphorylated form of the cytoskeletal tau protein, and of senile plaques composed of extracellular aggregates of amyloid beta (Aβ) peptide. Current hypotheses regard soluble amyloid beta oligomers (AβOs) as pathological causative agents in AD. These aggregates cause significant calcium deregulation and mediate neurotoxicity by disrupting synaptic activity. Additionally, the presence of high concentrations of metal ions such as copper, zinc, aluminum and iron in neurofibrillary tangles and senile plaques, plus the fact that they accelerate the rate of formation of Aβ fibrils and AβOs in vitro, suggests that accumulation of these metals in the brain is relevant to AD pathology. A common cellular response to AβOs and transition metals such as copper and iron is the generation of oxidative stress, with the ensuing damage to cellular components. Using hippocampal neurons in primary culture, we report here the effects of treatment with AβOs on the (+)IRE and (-)IRE mRNA levels of the divalent metal transporter DMT1. We found that non-lethal AβOs concentrations decreased DMT1 (-)IRE without affecting DMT1 (+)IRE mRNA levels, and inhibited non-transferrin bound iron uptake. In addition, since both iron and AβOs induce oxidative damage, we studied whether their neurotoxic effects are synergistic. In the range of concentrations and times used in this study, AβOs did not potentiate iron-induced cell death while iron chelation did not decrease AβOs-induced cell death. The lack of synergism between iron and AβOs suggests that these two neurotoxic agents converge in a common target, which initiates signaling processes that promote neurodegeneration. PMID:22526560

  9. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons.

    PubMed

    Ungureanu, Andreea-Alexandra; Benilova, Iryna; Krylychkina, Olga; Braeken, Dries; De Strooper, Bart; Van Haesendonck, Chris; Dotti, Carlos G; Bartic, Carmen

    2016-01-01

    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer's disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration. PMID:27173984

  10. Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons

    PubMed Central

    Ungureanu, Andreea-Alexandra; Benilova, Iryna; Krylychkina, Olga; Braeken, Dries; De Strooper, Bart; Van Haesendonck, Chris; Dotti, Carlos G.; Bartic, Carmen

    2016-01-01

    Small soluble species of amyloid-beta (Aβ) formed during early peptide aggregation stages are responsible for several neurotoxic mechanisms relevant to the pathology of Alzheimer’s disease (AD), although their interaction with the neuronal membrane is not completely understood. This study quantifies the changes in the neuronal membrane elasticity induced by treatment with the two most common Aβ isoforms found in AD brains: Aβ40 and Aβ42. Using quantitative atomic force microscopy (AFM), we measured for the first time the static elastic modulus of living primary hippocampal neurons treated with pre-aggregated Aβ40 and Aβ42 soluble species. Our AFM results demonstrate changes in the elasticity of young, mature and aged neurons treated for a short time with the two Aβ species pre-aggregated for 2 hours. Neurons aging under stress conditions, showing aging hallmarks, are the most susceptible to amyloid binding and show the largest decrease in membrane stiffness upon Aβ treatment. Membrane stiffness defines the way in which cells respond to mechanical forces in their environment and has been shown to be important for processes such as gene expression, ion-channel gating and neurotransmitter vesicle transport. Thus, one can expect that changes in neuronal membrane elasticity might directly induce functional changes related to neurodegeneration. PMID:27173984

  11. Brain Transit and Ameliorative Effects of Intranasally Delivered Anti-AmyloidOligomer Antibody in 5XFAD Mice

    PubMed Central

    Xiao, Chun; Davis, Francesca J.; Chauhan, Balwantsinh C.; Viola, Kirsten L.; Lacor, Pascale N.; Velasco, Pauline T.; Klein, William L.; Chauhan, Neelima B.

    2013-01-01

    Alzheimer’s disease (AD) is a global health crisis with limited treatment options. Despite major advances in neurotherapeutics, poor brain penetration due to the blood-brain barrier continues to pose a big challenge in overcoming the access of therapeutics to the central nervous system. In that regard, the non-invasive intranasal route of brain targeting is gaining considerable attention. The nasal mucosa offers a large surface area, rapid absorption, and avoidance of first-pass metabolism increasing drug bioavailability with less systemic side effects. Intranasal delivery is known to utilize olfactory, rostral migratory stream, and trigeminal routes to reach the brain. This investigation confirmed that intranasal delivery of oligomeric amyloid-β antibody (NU4) utilized all three routes to enter the brain with a resident time of 96 hours post single bolus intranasal administration, and showed evidence of perikaryal and parenchymal uptake of NU4 in 5XFAD mouse brain, confirming the intranasal route as a non-invasive and efficient way of delivering therapeutics to the brain. In addition, this study demonstrated that intranasal delivery of NU4 antibody lowered cerebral amyloid-β and improved spatial learning in 5XFAD mice. PMID:23542865

  12. Prion-Protein-interacting AmyloidOligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models*

    PubMed Central

    Kostylev, Mikhail A.; Kaufman, Adam C.; Nygaard, Haakon B.; Patel, Pujan; Haas, Laura T.; Gunther, Erik C.; Vortmeyer, Alexander; Strittmatter, Stephen M.

    2015-01-01

    Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain. Aβo exists in several populations, where prion protein (PrPC)-interacting Aβo is a high molecular weight Aβ assembly present in multiple mice and humans with AD. Levels of PrPC-interacting Aβo match closely with mouse memory and are equal or superior to other Aβ measures in predicting behavioral impairment. However, Aβo metrics vary considerably between mouse strains. Deleting PrPC expression in mice with relatively low PrPC-interacting Aβo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrPC-interacting Aβo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aβo forms in AD. PMID:26018073

  13. Soluble amyloid beta oligomers block the learning-induced increase in hippocampal sharp wave-ripple rate and impair spatial memory formation

    PubMed Central

    Nicole, Olivier; Hadzibegovic, Senka; Gajda, Judyta; Bontempi, Bruno; Bem, Tiaza; Meyrand, Pierre

    2016-01-01

    Post-learning hippocampal sharp wave-ripples (SWRs) generated during slow wave sleep are thought to play a crucial role in memory formation. While in Alzheimer’s disease, abnormal hippocampal oscillations have been reported, the functional contribution of SWRs to the typically observed spatial memory impairments remains unclear. These impairments have been related to degenerative synaptic changes produced by soluble amyloid beta oligomers (Aβos) which, surprisingly, seem to spare the SWR dynamics during routine behavior. To unravel a potential effect of Aβos on SWRs in cognitively-challenged animals, we submitted vehicle- and Aβo-injected mice to spatial recognition memory testing. While capable of forming short-term recognition memory, Aβ mice exhibited faster forgetting, suggesting successful encoding but an inability to adequately stabilize and/or retrieve previously acquired information. Without prior cognitive requirements, similar properties of SWRs were observed in both groups. In contrast, when cognitively challenged, the post-encoding and -recognition peaks in SWR occurrence observed in controls were abolished in Aβ mice, indicating impaired hippocampal processing of spatial information. These results point to a crucial involvement of SWRs in spatial memory formation and identify the Aβ-induced impairment in SWRs dynamics as a disruptive mechanism responsible for the spatial memory deficits associated with Alzheimer’s disease. PMID:26947247

  14. The antineoplastic drug flavopiridol reverses memory impairment induced by Amyloid-ß1-42 oligomers in mice.

    PubMed

    Leggio, Gian Marco; Catania, Maria Vincenza; Puzzo, Daniela; Spatuzza, Michela; Pellitteri, Rosalia; Gulisano, Walter; Torrisi, Sebastiano Alfio; Giurdanella, Giovanni; Piazza, Cateno; Impellizzeri, Agata Rita; Gozzo, Lucia; Navarria, Andrea; Bucolo, Claudio; Nicoletti, Ferdinando; Palmeri, Agostino; Salomone, Salvatore; Copani, Agata; Caraci, Filippo; Drago, Filippo

    2016-04-01

    The ectopic re-activation of cell cycle in neurons is an early event in the pathogenesis of Alzheimer's disease (AD), which could lead to synaptic failure and ensuing cognitive deficits before frank neuronal death. Cytostatic drugs that act as cyclin-dependent kinase (CDK) inhibitors have been poorly investigated in animal models of AD. In the present study, we examined the effects of flavopiridol, an inhibitor of CDKs currently used as antineoplastic drug, against cell cycle reactivation and memory loss induced by intracerebroventricular injection of Aß1-42 oligomers in CD1 mice. Cycling neurons, scored as NeuN-positive cells expressing cyclin A, were found both in the frontal cortex and in the hippocampus of Aβ-injected mice, paralleling memory deficits. Starting from three days after Aβ injection, flavopiridol (0.5, 1 and 3mg/kg) was intraperitoneally injected daily, for eleven days. Here we show that a treatment with flavopiridol (0.5 and 1mg/kg) was able to rescue the loss of memory induced by Aβ1-42, and to prevent the occurrence of ectopic cell-cycle events in the mouse frontal cortex and hippocampus. This is the first evidence that a cytostatic drug can prevent cognitive deficits in a non-transgenic animal model of AD. PMID:26875816

  15. Magnetic bead droplet immunoassay of oligomer amyloid β for the diagnosis of Alzheimer's disease using micro-pillars to enhance the stability of the oil-water interface.

    PubMed

    Kim, Jeong Ah; Kim, Moojong; Kang, Sung Min; Lim, Kun Taek; Kim, Tae Song; Kang, Ji Yoon

    2015-05-15

    Despite scientific progress in the study of Alzheimer's disease (AD), it is still challenging to develop a robust and sensitive methodology for the early diagnosis of AD due to the lack of a decisive biomarker in blood. Recent reports on the oligomer amyloid β (Aβ) as a biomarker demonstrated its possibility for identifying early onset of AD in patients, but its low concentration in blood requires highly reliable detection techniques. To overcome the low reliability and labor-intensive procedures of conventional enzyme-linked immunosorbent assay (ELISA), we present a magnetic bead-droplet immunoassay platform for simple and highly sensitive detection of oligomer Aβ for the diagnosis of AD. This microchip consists of chambers that contain water-based reagents or oil for consecutive assay procedures, and there are arrays of micro-pillars fabricated between the two adjacent chambers to form robust water-oil interfaces. With the aid of these micro-pillars, magnetic beads can stably pass through each chamber by linearly actuating a magnet along the microchip. The robust water-oil interface and simple procedures of the assay make it possible to obtain reliable results from this microchip. The intensity of the fluorescence at the read-out chamber increased quantitatively and linearly, depending on the amount of serially-diluted standard Aβ solution. The results of the assay indicated that the limit of detection was about 10 pg/mL even though it was done with manual manipulation of the magnet. This platform simplified the complicated ELISA procedure and achieved high sensitivity that was no lower than that of the conventional magnetic bead immunoassay. The magnetic bead-droplet platform reduced the assay time to 45 min, and it also reduced the amount of antibody usage in a single diagnosis significantly (10-30 ng of antibody per single assay). Consequently, this microfluidic chip has strong potential as a feasible system for use in the diagnosis of AD with a fast and

  16. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling. PMID:27325698

  17. EphA4 activation of c-Abl mediates synaptic loss and LTP blockade caused by amyloidoligomers.

    PubMed

    Vargas, Lina M; Leal, Nancy; Estrada, Lisbell D; González, Adrian; Serrano, Felipe; Araya, Katherine; Gysling, Katia; Inestrosa, Nibaldo C; Pasquale, Elena B; Alvarez, Alejandra R

    2014-01-01

    The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloidoligomers (AβOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AβOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AβOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AβOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AβOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AβOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AβOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AβOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AβOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients. PMID:24658113

  18. EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by AmyloidOligomers

    PubMed Central

    M. Vargas, Lina; Leal, Nancy; Estrada, Lisbell D.; González, Adrian; Serrano, Felipe; Araya, Katherine; Gysling, Katia; Inestrosa, Nibaldo C.; Pasquale, Elena B.; Alvarez, Alejandra R.

    2014-01-01

    The early stages of Alzheimer's disease are characterised by impaired synaptic plasticity and synapse loss. Here, we show that amyloidoligomers (AβOs) activate the c-Abl kinase in dendritic spines of cultured hippocampal neurons and that c-Abl kinase activity is required for AβOs-induced synaptic loss. We also show that the EphA4 receptor tyrosine kinase is upstream of c-Abl activation by AβOs. EphA4 tyrosine phosphorylation (activation) is increased in cultured neurons and synaptoneurosomes exposed to AβOs, and in Alzheimer-transgenic mice brain. We do not detect c-Abl activation in EphA4-knockout neurons exposed to AβOs. More interestingly, we demonstrate EphA4/c-Abl activation is a key-signalling event that mediates the synaptic damage induced by AβOs. According to this results, the EphA4 antagonistic peptide KYL and c-Abl inhibitor STI prevented i) dendritic spine reduction, ii) the blocking of LTP induction and iii) neuronal apoptosis caused by AβOs. Moreover, EphA4-/- neurons or sh-EphA4-transfected neurons showed reduced synaptotoxicity by AβOs. Our results are consistent with EphA4 being a novel receptor that mediates synaptic damage induced by AβOs. EphA4/c-Abl signalling could be a relevant pathway involved in the early cognitive decline observed in Alzheimer's disease patients. PMID:24658113

  19. Neurodegeneration in an Animal Model of Chronic Amyloid-beta Oligomer Infusion Is Counteracted by Antibody Treatment Infused with Osmotic Pumps.

    PubMed

    Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan

    2016-01-01

    Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients. PMID:27585306

  20. Detection of Soluble AmyloidOligomers and Insoluble High-Molecular-Weight Particles in CSF: Development of Methods with Potential for Diagnosis and Therapy Monitoring of Alzheimer's Disease

    PubMed Central

    Funke, Susanne Aileen

    2011-01-01

    The diagnosis of probable Alzheimer's disease (AD) can be established premortem based on clinical criteria like neuropsychological tests. Post mortem, specific neuropathological changes like amyloid plaques define AD. However, the standard criteria based on medical history and mental status examinations do not take into account the long preclinical features of the disease, and a biomarker for improved diagnosis of AD is urgently needed. In a large number of studies, amyloid-β (Aβ) monomer concentrations in CSF of AD patients are consistently and significantly reduced when compared to healthy controls. Therefore, monomeric Aβ in CSF was suggested to be a helpful biomarker for the diagnosis of preclinical AD. However, not the monomeric form, but Aβ oligomers have been shown to be the toxic species in AD pathology, and their quantification and characterization could facilitate AD diagnosis and therapy monitoring. Here, we review the current status of assay development to reliably and routinely detect Aβ oligomers and high-molecular-weight particles in CSF. PMID:22114742

  1. β-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin

    PubMed Central

    Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.

    2009-01-01

    Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645

  2. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxicity in an animal model of Alzheimer's disease in rats.

    PubMed

    Kalra, Jaspreet; Kumar, Puneet; Majeed, Abu Bakar Abdul; Prakash, Atish

    2016-01-01

    Several lines of evidence indicate that beta amyloid (β-A) production, neurofibrillary tangles and neuroinflammation are interrelated in the pathogenesis of Alzheimer's disease (AD). AD is associated with enhanced β-A production and accumulation resulting in neuroinflammation probably via activation of lipoxygenase (LOX) and cyclooxygenase (COX) pathways. Therefore, the present study was designed to investigate the role of LOX and COX inhibitors (zafirlukast and valdecoxib) in amyloidogenesis in β-A1-42 oligomer induced experimental AD in rats. The behavioral activities were assessed using actophotometer, novel object recognition test (ORT), Morris water maze (MWM) followed by biochemical assessments, determination of proinflammatory cytokines and mediators (TNF-α, IL-1β and PGE2), β-A1-42 levels and histopathological analysis. ICV administration of β-A1-42 oligomer produced significant impairment in memory consolidation. In addition to this significant increase in mito-oxidative stress, neuroinflammatory markers, acetylcholinesterase (AChE) toxicity, β-A1-42 level, neuronal cell death and neuroinflammation are more profound in β-A1-42 oligomer treated AD rats. Administration of zafirlukast (15 and 30mg/kg), and valdecoxib (5 and 10mg/kg) significantly improved the behavioral performances and showed significant reversal of mito-oxidative damage declining the neuroinflammation in β-A1-42 oligomer treated rats. Furthermore, more profound effects were observed at the sub-therapeutic dose combination of zafirlukast (15mg/kg) and valdecoxib (5mg/kg). The results of the present study indicate that protective effects of zafirlukast and valdecoxib are achieved through the blockade of release of LOX and COX metabolites therefore, representing a new therapeutic target for treating AD and other neurodegenerative disorders. PMID:27106205

  3. Amyloid goes global

    PubMed Central

    Bezprozvanny, Ilya

    2016-01-01

    The brains of Alzheimer’s disease (AD) patients contain abundant amyloid plaques composed of Aβ peptides. It is generally assumed that amyloid plaques and soluble Aβ oligomers induce neuronal pathology in AD. The mechanism of amyloid-mediated pathological effects is not clearly understood. Recent in vivo calcium (Ca2+) imaging studies with AD mouse models provide novel insights into changes in brain function resulting from accumulation of amyloid plaques. The unexpected lesson from these studies is that amyloid plaques result in both localized and global changes in brain function. The amyloid-induced effects include “short-range” changes in neuronal Ca2+ levels, “medium-range” changes in neuronal activity and ‘long-range” changes in astrocytic Ca2+ signaling and induction of intracellular Ca2+ waves spreading via astrocytic network. These results have potential implications for understanding synaptic and neuronal network dysfunction in AD brains. PMID:19318622

  4. Experience-dependent reduction of soluble β-amyloid oligomers and rescue of cognitive abilities in middle-age Ts65Dn mice, a model of Down syndrome.

    PubMed

    Sansevero, Gabriele; Begenisic, Tatjana; Mainardi, Marco; Sale, Alessandro

    2016-09-01

    Down syndrome (DS) is the most diffused genetic cause of intellectual disability and, after the age of forty, is invariantly associated with Alzheimer's disease (AD). In the last years, the prolongation of life expectancy in people with DS renders the need for intervention paradigms aimed at improving mental disability and counteracting AD pathology particularly urgent. At present, however, there are no effective therapeutic strategies for DS and concomitant AD in mid-life people. The most intensively studied mouse model of DS is the Ts65Dn line, which summarizes the main hallmarks of the DS phenotype, included severe learning and memory deficits and age-dependent AD-like pathology. Here we report for the first time that middle-age Ts65Dn mice display a marked increase in soluble Aβ oligomer levels in their hippocampus. Moreover, we found that long-term exposure to environmental enrichment (EE), a widely used paradigm that increases sensory-motor stimulation, reduces Aβ oligomers and rescues spatial memory abilities in trisomic mice. Our findings underscore the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes in DS subjects. PMID:27288239

  5. Polyglutamine Amyloid Core Boundaries and Flanking Domain Dynamics in Huntingtin Fragment Fibrils Determined by Solid-State Nuclear Magnetic Resonance

    PubMed Central

    2015-01-01

    In Huntington’s disease, expansion of a polyglutamine (polyQ) domain in the huntingtin (htt) protein leads to misfolding and aggregation. There is much interest in the molecular features that distinguish monomeric, oligomeric, and fibrillar species that populate the aggregation pathway and likely differ in cytotoxicity. The mechanism and rate of aggregation are greatly affected by the domains flanking the polyQ segment within exon 1 of htt. A “protective” C-terminal proline-rich flanking domain inhibits aggregation by inducing polyproline II structure (PPII) within an extended portion of polyQ. The N-terminal flanking segment (httNT) adopts an α-helical structure as it drives aggregation, helps stabilize oligomers and fibrils, and is seemingly integral to their supramolecular assembly. Via solid-state nuclear magnetic resonance (ssNMR), we probe how, in the mature fibrils, the htt flanking domains impact the polyQ domain and in particular the localization of the β-structured amyloid core. Using residue-specific and uniformly labeled samples, we find that the amyloid core occupies most of the polyQ domain but ends just prior to the prolines. We probe the structural and dynamical features of the remarkably abrupt β-sheet to PPII transition and discuss the potential connections to certain htt-binding proteins. We also examine the httNT α-helix outside the polyQ amyloid core. Despite its presumed structural and demonstrated stabilizing roles in the fibrils, quantitative ssNMR measurements of residue-specific dynamics show that it undergoes distinct solvent-coupled motion. This dynamical feature seems reminiscent of molten-globule-like α-helix-rich features attributed to the nonfibrillar oligomeric species of various amyloidogenic proteins. PMID:25280367

  6. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    PubMed

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery. PMID:27240009

  7. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF.

    PubMed

    Paula-Lima, Andrea C; Adasme, Tatiana; SanMartín, Carol; Sebollela, Adriano; Hetz, Claudio; Carrasco, M Angélica; Ferreira, Sergio T; Hidalgo, Cecilia

    2011-04-01

    Soluble amyloid β-peptide oligomers (AβOs), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that AβOs at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-l-cysteine abolished these signals. AβOs decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by AβOs. Incubation with AβOs (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with AβOs for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal AβOs concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD. PMID:20712397

  8. In vivo demonstration that α-synuclein oligomers are toxic

    PubMed Central

    Winner, Beate; Jappelli, Roberto; Maji, Samir K.; Desplats, Paula A.; Boyer, Leah; Aigner, Stefan; Hetzer, Claudia; Loher, Thomas; Vilar, Marçal; Campioni, Silvia; Tzitzilonis, Christos; Soragni, Alice; Jessberger, Sebastian; Mira, Helena; Consiglio, Antonella; Pham, Emiley; Masliah, Eliezer; Gage, Fred H.; Riek, Roland

    2011-01-01

    The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants that promote oligomer or fibril formation and tested the toxicity of these mutants by using a rat lentivirus system to investigate loss of dopaminergic neurons in the substantia nigra. The most severe dopaminergic loss in the substantia nigra is observed in animals with the α-syn variants that form oligomers (i.e., E57K and E35K), whereas the α-syn variants that form fibrils very quickly are less toxic. We show that α-syn oligomers are toxic in vivo and that α-syn oligomers might interact with and potentially disrupt membranes. PMID:21325059

  9. Phenylethynyl terminated imide oligomers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1995-01-01

    Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  10. The case for soluble Aβ oligomers as a drug target in Alzheimer's disease.

    PubMed

    Hefti, Franz; Goure, William F; Jerecic, Jasna; Iverson, Kent S; Walicke, Patricia A; Krafft, Grant A

    2013-05-01

    Soluble Aβ oligomers are now widely recognized as key pathogenic structures in Alzheimer's disease. They inhibit synaptic function, leading to early memory deficits and synaptic degeneration, and they trigger the downstream neuronal signaling responsible for phospho-tau Alzheimer's pathology. The marginal effects observed in recent clinical studies of solanezumab, targeting monomeric Aβ, and bapineuzumab, targeting amyloid plaques, prompted expert comments that drug discovery efforts in Alzheimer's disease should focus on soluble forms of Aβ rather than fibrillar Aβ deposits found in amyloid plaques. Accumulating scientific data suggest that soluble Aβ oligomers represent the optimal intervention target within the amyloid manifold. Active drug discovery approaches include antibodies that selectively capture soluble Aβ oligomers, selective modifiers of oligomer assembly, and receptor antagonists. The onset of symptomatic clinical benefit is expected to be rapid for such agents, because neuronal memory signaling should normalize on blockage of soluble Aβ oligomers. This key feature is not shared by amyloid-lowering therapeutics, and it should translate into streamlined clinical development for oligomer-targeting drugs. Oligomer-targeting drugs should also confer long-term disease modification and slowing of disease progression, because they prevent the downstream signaling responsible for phospho-tau mediated cytoskeletal degeneration. PMID:23582316

  11. Towards a Pharmacophore for Amyloid

    SciTech Connect

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds

  12. Chemical Fluorescent Probe for Detection of Aβ Oligomers.

    PubMed

    Teoh, Chai Lean; Su, Dongdong; Sahu, Srikanta; Yun, Seong-Wook; Drummond, Eleanor; Prelli, Frances; Lim, Sulgi; Cho, Sunhee; Ham, Sihyun; Wisniewski, Thomas; Chang, Young-Tae

    2015-10-28

    Aggregation of amyloid β-peptide (Aβ) is implicated in the pathology of Alzheimer's disease (AD), with the soluble, Aβ oligomeric species thought to be the critical pathological species. Identification and characterization of intermediate species formed during the aggregation process is crucial to the understanding of the mechanisms by which oligomeric species mediate neuronal toxicity and following disease progression. Probing these species proved to be extremely challenging, as evident by the lack of reliable sensors, due to their heterogeneous and transient nature. We describe here an oligomer-specific fluorescent chemical probe, BoDipy-Oligomer (BD-Oligo), developed through the use of the diversity-oriented fluorescent library approach (DOFLA) and high-content, imaging-based screening. This probe enables dynamic oligomer monitoring during fibrillogenesis in vitro and shows in vivo Aβ oligomers staining possibility in the AD mice model. PMID:26218347

  13. A brief overview of amyloids and Alzheimer’s disease

    PubMed Central

    Ow, Sian-Yang; Dunstan, Dave E

    2014-01-01

    Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors. PMID:25042050

  14. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  15. Elucidating molecular mass and shape of a neurotoxic Aβ oligomer.

    PubMed

    Sebollela, Adriano; Mustata, Gina-Mirela; Luo, Kevin; Velasco, Pauline T; Viola, Kirsten L; Cline, Erika N; Shekhawat, Gajendra S; Wilcox, Kyle C; Dravid, Vinayak P; Klein, William L

    2014-12-17

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity. PMID:25343357

  16. Elucidating Molecular Mass and Shape of a Neurotoxic Aβ Oligomer

    PubMed Central

    2015-01-01

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity. PMID:25343357

  17. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells.

    PubMed

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  18. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    PubMed Central

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  19. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions

    PubMed Central

    Crisostomo, Amanda C.; Dang, Loan; Digambaranath, Jyothi L.; Klaver, Andrea C.; Loeffler, David A.; Payne, Jeremiah J.; Smith, Lynnae M.; Yokom, Adam L.; Finke, John M.

    2015-01-01

    The data here consists of time-dependent experimental parameters from chemical and biophysical methods used to characterize Aβ monomeric reactants as well as soluble oligomer and amyloid fibril products from a slow (3–4 week) assembly reaction under biologically-relevant solvent conditions. The data of this reaction are both of a qualitative and quantitative nature, including gel images from chemical cross-linking and Western blots, fractional solubility, thioflavin T binding, size exclusion chromatograms, transmission electron microscopy images, circular dichroism spectra, and fluorescence resonance energy transfer efficiencies of donor–acceptor pair labels in the Aβ chain. This data enables future efforts to produce the initial monomer and eventual soluble oligomer and amyloid fibril states by providing reference benchmarks of these states pertaining to physical properties (solubility), ligand-binding (thioflavin T binding), mesoscopic structure (electron microscopy, size exclusion chromatography, cross-linking products, SDS and native gels) and molecular structure (circular dichroism, FRET donor-acceptor distance). Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding

  20. Difference in aggregation between functional and toxic amyloids studied by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Carballo Pacheco, Martin; Ismail, Ahmed E.; Strodel, Birgit

    Amyloids are highly structured protein aggregates, normally associated with neurodegenerative diseases such as Alzheimer's disease. In recent years, a number of nontoxic amyloids with physiologically normal functions, called functional amyloids, have been found. It is known that soluble small oligomers are more toxic than large fibrils. Thus, we study with atomistic explicit-solvent molecular dynamics simulations the oligomer formation of the amyloid- β peptide Aβ25 - 35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Our simulations show that monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. In addition, we observe faster aggregation by functional amyloids than toxic amyloids, which could explain their lack of toxicity.

  1. Transmissible amyloid.

    PubMed

    Tjernberg, L O; Rising, A; Johansson, J; Jaudzems, K; Westermark, P

    2016-08-01

    There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials. PMID:27002185

  2. The new β amyloid-derived peptide Aβ1-6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity.

    PubMed

    Diomede, Luisa; Romeo, Margherita; Cagnotto, Alfredo; Rossi, Alessandro; Beeg, Marten; Stravalaci, Matteo; Tagliavini, Fabrizio; Di Fede, Giuseppe; Gobbi, Marco; Salmona, Mario

    2016-04-01

    One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-β (Aβ) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aβ variant (AβA2V) in the heterozygous state do not develop AD, we developed AβA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aβ and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aβ1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aβ1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aβ aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aβ. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AβA2V-based peptidomimetic molecules for therapeutic purposes. PMID:26792398

  3. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.

    PubMed

    Wang, Jie; Cao, Yunpeng; Li, Qiang; Liu, Lei; Dong, Mingdong

    2015-06-26

    Protein misfolding and abnormal assembly could lead to aggregates such as oligomer, proto-fibril, mature fibril, and senior amyloid plaques, which are associated with the pathogenesis of many amyloid diseases. These irreversible amyloid aggregates typically form in vivo and researchers have been endeavoring to find new modulators to invert the aggregation propensity in vitro, which could increase understanding in the mechanism of the aggregation of amyloid protein and pave the way to potential clinical treatment. Graphene oxide (GO) was shown to be a good modulator, which could strongly control the amyloidosis of Aβ (33-42). In particular, quartz crystal microbalance (QCM), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) measurements revealed the size-dependent manner of GO on modulating the assembly of amyloid peptides, which could be a possible way to regulate the self-assembled nanostructure of amyloid peptide in a predictable manner. PMID:26031933

  4. Detection of TDP-43 Oligomers in Frontotemporal Lobar Degeneration–TDP

    PubMed Central

    Kao, Patricia F.; Chen, Yun-Ru; Liu, Xiao-Bo; DeCarli, Charles; Seeley, William W.; Jin, Lee-Way

    2016-01-01

    Objective The proteinaceous inclusions in TDP-43 proteinopathies such as frontotemporal lobar degeneration (FTLD)-TDP are made of high–molecular-weight aggregates of TDP-43. These aggregates have not been classified as amyloids, as prior amyloid staining results were not conclusive. Here we used a specific TDP-43 amyloid oligomer antibody called TDP-O to determine the presence and abundance of TDP-43 oligomers among different subtypes of FTLD-TDP as well as in hippocampal sclerosis (HS), which represents a non-FTLD pathology with TDP-43 inclusions. Methods Postmortem tissue from the hippocampus and anterior orbital gyrus from 54 prospectively assessed and diagnosed subjects was used for immunostaining with TDP-O. Electron microscopy was used to assess the subcellular locations of TDP-O–decorated structures. Results TDP-43 inclusions staining with TDP-O were present in FTLD-TDP and were most conspicuous for FTLD-TDP type C, the subtype seen in most patients with semantic variant primary progressive aphasia. TDP-O immunoreactivity was absent in the hippocampus of HS patients despite abundant TDP-43 inclusions. Ultrastructurally, TDP-43 oligomers resided in granular or tubular structures, frequently in close proximity to, but not within, neuronal lysosomes. Interpretation TDP-43 forms amyloid oligomers in the human brain, which may cause neurotoxicity in a manner similar to other amyloid oligomers. Oligomer formation may contribute to the conformational heterogeneity of TDP-43 aggregates and mark the different properties of TDP-43 inclusions between FTLD-TDP and HS. PMID:25921485

  5. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  6. Amyloid fibrils

    PubMed Central

    Rambaran, Roma N

    2008-01-01

    Amyloid refers to the abnormal fibrous, extracellular, proteinaceous deposits found in organs and tissues. Amyloid is insoluble and is structurally dominated by β-sheet structure. Unlike other fibrous proteins it does not commonly have a structural, supportive or motility role but is associated with the pathology seen in a range of diseases known as the amyloidoses. These diseases include Alzheimer's, the spongiform encephalopathies and type II diabetes, all of which are progressive disorders with associated high morbidity and mortality. Not surprisingly, research into the physicochemical properties of amyloid and its formation is currently intensely pursued. In this chapter we will highlight the key scientific findings and discuss how the stability of amyloid fibrils impacts on bionanotechnology. PMID:19158505

  7. Cerebral amyloid angiopathy

    MedlinePlus

    Cerebral amyloid angiopathy is a neurological condition in which proteins called amyloid build up on the walls of the arteries ... The cause of cerebral amyloid angiopathy is unknown. Sometimes, it ... Persons with this condition have deposits of amyloid protein ...

  8. Crucial role of nonspecific interactions in amyloid nucleation.

    PubMed

    Šarić, Anđela; Chebaro, Yassmine C; Knowles, Tuomas P J; Frenkel, Daan

    2014-12-16

    Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the β-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory. PMID:25453085

  9. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  10. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  11. How Epigallocatechin Gallate Can Inhibit α-Synuclein Oligomer Toxicity in Vitro♦

    PubMed Central

    Lorenzen, Nikolai; Nielsen, Søren B.; Yoshimura, Yuichi; Vad, Brian S.; Andersen, Camilla Bertel; Betzer, Cristine; Kaspersen, Jørn D.; Christiansen, Gunna; Pedersen, Jan S.; Jensen, Poul Henning; Mulder, Frans A. A.; Otzen, Daniel E.

    2014-01-01

    Oligomeric species of various proteins are linked to the pathogenesis of different neurodegenerative disorders. Consequently, there is intense focus on the discovery of novel inhibitors, e.g. small molecules and antibodies, to inhibit the formation and block the toxicity of oligomers. In Parkinson disease, the protein α-synuclein (αSN) forms cytotoxic oligomers. The flavonoid epigallocatechin gallate (EGCG) has previously been shown to redirect the aggregation of αSN monomers and remodel αSN amyloid fibrils into disordered oligomers. Here, we dissect EGCG's mechanism of action. EGCG inhibits the ability of preformed oligomers to permeabilize vesicles and induce cytotoxicity in a rat brain cell line. However, EGCG does not affect oligomer size distribution or secondary structure. Rather, EGCG immobilizes the C-terminal region and moderately reduces the degree of binding of oligomers to membranes. We interpret our data to mean that the oligomer acts by destabilizing the membrane rather than by direct pore formation. This suggests that reduction (but not complete abolition) of the membrane affinity of the oligomer is sufficient to prevent cytotoxicity. PMID:24907278

  12. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult.

    PubMed

    Rosenblum, William I

    2014-05-01

    Before amyloid formation, peptides cleaved from the amyloid precursor protein (APP) exist as soluble oligomers. These are extremely neurotoxic. Their concentration is strongly correlated with synaptic impairment in animals and parallel cognitive decline in animals and humans. Clinical trials have largely been aimed at removing insoluble beta amyloid in senile plaques and have not reduced soluble load. Even treatment that should remove soluble oligomers has not consistently reduced the load. Failure to significantly improve cognition has frequently been attributed to failure of the amyloid hypothesis or to irreversible alteration in the brain. Instead, trial failures may be because of failure to significantly reduce load of toxic Aβ oligomers. Moreover, targeting only synthesis of Aβ peptides, only the oligomers themselves, or only the final insoluble amyloid may fail to significantly reduce soluble load because of the interrelationship between these 3 points in the amyloid cascade. Thus, treatments may fail unless trials target simultaneously all 3 points in the equation-"triple therapy". Cerebrospinal fluid analysis and other monitoring tools may in the future provide reliable measurement of soluble load. But currently, only analysis of autopsied brains can provide this data and thus enable proper evaluation and explanation of the outcome of clinical trials. These data are essential before attributing trial failures to the advanced nature of the disease or asserting that failures prove that the theory linking Alzheimer's disease to products of amyloid precursor protein is incorrect. PMID:24210593

  13. [Cytotoxicity of amyloid fibrils of X-protein].

    PubMed

    Marsagishvili, L G; Shpagina, M D; Shatalin, Iu V; Shubina, V S; Naumov, A A; Potselueva, M M; Podlubnaia, Z A

    2006-01-01

    It is known that amyloid oligomers, protofibrils, and fibrils induce cell death, and antibiotic tetracycline inhibits the fibrillization of beta amyloid peptides and other amyloidogenic proteins and disassembles their pre-formed fibrils. Earlier we have demonstrated that sarcomeric cytoskeletal proteins of the titin family (X-, C-, and H-proteins) are capable to form in vitro amyloid fibrils, and tetracycline effectively destroys these fibrils. Here we show that the viability of polymorphonuclear leukocytes in the presence of X-protein amyloids depends on the concentration of amyloid fibrils of X-protein and the time of incubation. In addition to the disaggregation of X-protein fibrils, tetracycline eliminated the cytotoxic effect of the protein. The antibiotic itself did not show a toxic effect, and the cell viability in its presence even increased. Our results evidence the potential of this approach for evaluating the effectiveness of drugs preventing or treating amyloidoses. PMID:17131815

  14. Inhibition of Toxic IAPP Amyloid by Extracts of Common Fruits

    PubMed Central

    Kao, Pei-Yu; Green, Evangeline; Pereira, Catalina; Ekimura, Shauna; Juarez, Dennis; Whyte, Travis; Arhar, Taylor; Malaspina, Bianca; Nogaj, Luiza A; Moffet, David A

    2016-01-01

    The aggregation of the 37-amino acid polypeptide islet amyloid polypeptide (IAPP, amylin), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of pancreatic β-islet cells in type 2 diabetes. It is believed that inhibiting the aggregation of IAPP may slow down, if not prevent entirely, the progression of this disease. Extracts of thirteen different common fruits were analyzed for their ability to prevent the aggregation of amyloidogenic IAPP. Thioflavin T binding, immuno-detection and circular dichroism assays were performed to test the in vitro inhibitory potential of each extract. Atomic force microscopy was used to visualize the formation of amyloid fibrils with and without each fruit extract. Finally, extracts were tested for their ability to protect living mammalian cells from the toxic effects of amyloid IAPP. Several fruits showed substantial ability to inhibit IAPP aggregation and protect living cells from toxic IAPP amyloid. PMID:26893614

  15. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  16. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation

    PubMed Central

    Chen, Serene W.; Drakulic, Srdja; Deas, Emma; Ouberai, Myriam; Aprile, Francesco A.; Arranz, Rocío; Ness, Samuel; Roodveldt, Cintia; Guilliams, Tim; De-Genst, Erwin J.; Klenerman, David; Wood, Nicholas W.; Knowles, Tuomas P.J.; Alfonso, Carlos; Rivas, Germán; Abramov, Andrey Y.; Valpuesta, José María; Dobson, Christopher M.; Cremades, Nunilo

    2015-01-01

    We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species. PMID:25855634

  17. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture

    SciTech Connect

    Soergjerd, Karin; Klingstedt, Therese; Lindgren, Mikael; Kagedal, Katarina; Hammarstroem, Per

    2008-12-26

    Recent studies suggest that soluble, oligomeric species, which are intermediates in the fibril formation process in amyloid disease, might be the key species in amyloid pathogenesis. Soluble oligomers of human wild type transthyretin (TTR) were produced to elucidate oligomer properties. Employing ThT fluorescence, time-resolved fluorescence anisotropy of pyrene-labeled TTR, chemical cross-linking, and electron microscopy we demonstrated that early formed soluble oligomers (within minutes) from A-state TTR comprised on the average 20-30 TTR monomers. When administered to neuroblastoma cells these early oligomers proved highly cytotoxic and induced apoptosis after 48 h of incubation. More mature fibrils (>24 h of fibrillation) were non-toxic. Surprisingly, we also found that native tetrameric TTR, when purified and stored under cold conditions (4 deg. C) was highly cytotoxic. The effect could be partially restored by increasing the temperature of the protein. The cytotoxic effects of native tetrameric TTR likely stems from a hitherto unexplored low temperature induced rearrangement of the tetramer conformation that possibly is related to the conformation of misfolded TTR in amyloigogenic oligomers.

  18. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    PubMed Central

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  19. Common molecular mechanism of amyloid pore formation by Alzheimer's β-amyloid peptide and α-synuclein.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer's and Parkinson's diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca(2+)-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined "membrane therapy") targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  20. Tg-SwDI Transgenic Mice Exhibit Novel Alterations in AβPP Processing, Aβ Degradation, and Resilient Amyloid Angiopathy

    PubMed Central

    Van Vickle, Gregory D.; Esh, Chera L.; Daugs, Ian D.; Kokjohn, Tyler A.; Kalback, Walter M.; Patton, R. Lyle; Luehrs, Dean C.; Walker, Douglas G.; Lue, Lih-Fen; Beach, Thomas G.; Davis, Judianne; Van Nostrand, William E.; Castaño, Eduardo M.; Roher, Alex E.

    2008-01-01

    Alzheimer’s disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-β (Aβ) peptides. We characterized the chemical composition of the Aβ peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Aβ accumulation. The processing of the N- and C-terminal regions of mutant AβPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AβPP transgene expression levels, suggests that inefficient Aβ proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AβPP processing and fundamental insights into the faulty degradation and clearance of Aβ in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents. PMID:18599612

  1. Tetracycline prevents Aβ oligomer toxicity through an atypical supramolecular interaction.

    PubMed

    Airoldi, Cristina; Colombo, Laura; Manzoni, Claudia; Sironi, Erika; Natalello, Antonino; Doglia, Silvia Maria; Forloni, Gianluigi; Tagliavini, Fabrizio; Del Favero, Elena; Cantù, Laura; Nicotra, Francesco; Salmona, Mario

    2011-01-21

    The antibiotic tetracycline was reported to possess an anti-amyloidogenic activity on a variety of amyloidogenic proteins both in in vitro and in vivo models. To unveil the mechanism of action of tetracycline on Aβ1-40 and Aβ1-42 at both molecular and supramolecular levels, we carried out a series of experiments using NMR spectroscopy, FTIR spectroscopy, dynamic laser light-scattering (DLS) and atomic force microscopy (AFM). Firstly we showed that the co-incubation of Aβ1-42 oligomers with tetracycline hinders the toxicity towards N2a cell lines in a dose-dependent manner. Therefore, the nature of the interaction between the drug and Aβ oligomers was investigated. To carry out NMR and FTIR studies we have prepared Aβ peptide solutions containing assemblies ranging from monomers to large oligomers. Saturation transfer difference (STD) NMR experiments have shown that tetracycline did not interact with monomers at variance with oligomers. Noteworthy, in this latter case we observed that this interaction was very peculiar since the transfer of magnetization from Aβ oligomers to tetracycline involved all drug protons. In addition, intermolecular cross-peaks between tetracycline and Aβ were not observed in NOESY spectra, indicating the absence of a specific binding site and suggesting the occurrence of a supramolecular interaction. DLS and AFM studies supported this hypothesis since the co-dissolution of Aβ peptides and tetracycline triggered the immediate formation of new aggregates that improved the solubility of Aβ peptides, preventing in this way the progression of the amyloid cascade. Moreover, competitive NMR binding experiments showed for the first time that tetracycline competes with thioflavin T (ThT) in the binding to Aβ peptides. Our data shed light on a novel mechanism of anti-amyloidogenic activity displayed by tetracycline, governed by hydrophobic and charge multiparticle interactions. PMID:21063627

  2. Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry.

    PubMed

    Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N

    2016-05-01

    Alzheimer's disease is of major concern all over the world due to a number of factors including (i) an aging population (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multitargeting small molecules as therapeutic options. The pathophysiology of Alzheimer's disease is attributed to a number of factors such as the cholinergic dysfunction, amyloid/tau toxicity and oxidative stress/mitochondrial dysfunction. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of beta-amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia. The two commonly used approaches to prevent beta-amyloid accumulation in the brain include (i) development of beta-secretase inhibitors and (ii) designing direct inhibitors of beta-amyloid (self-induced) aggregation. This review highlights the amyloid cascade hypothesis and the key chemical features required to design small molecules that inhibit lower and higher order beta-amyloid aggregates. Several recent examples of small synthetic molecules with disease-modifying properties were considered and their molecular docking studies were conducted using either a dimer or steric-zipper assembly of beta-amyloid. These investigations provide a mechanistic understanding on the structural requirements needed to design novel small molecules with anti-amyloid aggregation properties. Significantly, this work also demonstrates that the structural requirements to prevent aggregation of various amyloid species differs considerably, which explains the fact that many small molecules do not exhibit similar inhibition profile toward diverse amyloid species such as dimers, trimers, tetramers, oligomers, protofibrils and fibrils. PMID:26945113

  3. Estimation from moments measurements for amyloid depolymerisation.

    PubMed

    Armiento, Aurora; Doumic, Marie; Moireau, Philippe; Rezaei, H

    2016-05-21

    Estimating reaction rates and size distributions of protein polymers is an important step for understanding the mechanisms of protein misfolding and aggregation, a key feature for amyloid diseases. This study aims at setting this framework problem when the experimental measurements consist in the time-dynamics of a moment of the population (i.e. for instance the total polymerised mass, as in Thioflavin T measurements, or the second moment measured by Static Light Scattering). We propose a general methodology, and we solve the problem theoretically and numerically in the case of a depolymerising system. We then apply our method to experimental data of depolymerising oligomers, and conclude that smaller aggregates of ovPrP protein should be more stable than larger ones. This has an important biological implication, since it is commonly admitted that small oligomers constitute the most cytotoxic species during prion misfolding process. PMID:26953651

  4. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  5. Effect of Zn(2+) ions on the assembly of amylin oligomers: insight into the molecular mechanisms.

    PubMed

    Wineman-Fisher, Vered; Miller, Yifat

    2016-08-01

    Amylin is an endocrine hormone and is a member of the family of amyloid peptides and proteins that emerge as potential scaffolds by self-assembly processes. Zn(2+) ions can bind to amylin peptides to form self-assembled Zn(2+)-amylin oligomers. In the current work the binding sites of Zn(2+) ions in the self-assembled amylin oligomers at various concentrations of zinc have been investigated. Our results yield two conclusions. First, in the absence of Zn(2+) ions polymorphic states (i.e. various classes of amylin oligomers) are obtained, but when Zn(2+) ions bind to amylin peptides to form Zn(2+)-amylin oligomers, the polymorphism is decreased, i.e. Zn(2+) ions bind only to specific classes of amylin. At low concentrations of Zn(2+) ions the polymorphism is smaller than at high concentrations. Second, the structural features of the self-assembled amylin oligomers are not affected by the presence of Zn(2+) ions. This study proposes new molecular mechanisms of the self-assembly of Zn(2+)-amylin oligomers. PMID:27425207

  6. Aβ42 oligomers selectively disrupt neuronal calcium release.

    PubMed

    Lazzari, Cristian; Kipanyula, Maulilio J; Agostini, Mario; Pozzan, Tullio; Fasolato, Cristina

    2015-02-01

    Accumulation of amyloid-β (Aβ) peptides correlates with aging and progression of Alzheimer's disease (AD). Aβ peptides, which cause early synaptic dysfunctions, spine loss, and memory deficits, also disturb intracellular Ca(2+) homeostasis. By cytosolic and endoplasmic reticulum Ca(2+) measurements, we here define the short-term effects of synthetic Aβ42 on neuronal Ca(2+) dynamics. When applied acutely at submicromolar concentration, as either oligomers or monomers, Aβ42 did not cause Ca(2+) release or Ca(2+) influx. Similarly, 1-hour treatment with Aβ42 modified neither the resting cytosolic Ca(2+) level nor the long-lasting Ca(2+) influx caused by KCl-induced depolarization. In contrast, Aβ42 oligomers, but not monomers, significantly altered Ca(2+) release from stores with opposite effects on inositol 1,4,5-trisphosphate (IP3)- and caffeine-induced Ca(2+) mobilization without alteration of the total store Ca(2+) content. Ca(2+) dysregulation by Aβ42 oligomers involves metabotropic glutamate receptor 5 and requires network activity and the intact exo-endocytotic machinery, being prevented by tetrodotoxin and tetanus toxin. These findings support the idea that Ca(2+) store dysfunction is directly involved in Aβ42 neurotoxicity and represents a potential therapeutic target in AD-like dementia. PMID:25453559

  7. Protein Folding and Aggregation into Amyloid: The Interference by Natural Phenolic Compounds

    PubMed Central

    Stefani, Massimo; Rigacci, Stefania

    2013-01-01

    Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols. PMID:23765219

  8. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease.

    PubMed

    Ferreira, Sergio T; Klein, William L

    2011-11-01

    Alzheimer's disease (AD) is the 3rd most costly disease and the leading cause of dementia. It can linger for many years, but ultimately is fatal, the 6th leading cause of death. Alzheimer's disease (AD) is fatal and affected individuals can sometimes linger many years. Current treatments are palliative and transient, not disease modifying. This article reviews progress in the search to identify the primary AD-causing toxins. We summarize the shift from an initial focus on amyloid plaques to the contemporary concept that AD memory failure is caused by small soluble oligomers of the Aβ peptide, toxins that target and disrupt particular synapses. Evidence is presented that links Aβ oligomers to pathogenesis in animal models and humans, with reference to seminal discoveries from cell biology and new ideas concerning pathogenic mechanisms, including relationships to diabetes and Fragile X. These findings have established the oligomer hypothesis as a new molecular basis for the cause, diagnosis, and treatment of AD. PMID:21914486

  9. The metazoan protein disaggregase and amyloid depolymerase system

    PubMed Central

    Torrente, Mariana P; Shorter, James

    2013-01-01

    A baffling aspect of metazoan proteostasis is the lack of an Hsp104 ortholog that rapidly disaggregates and reactivates misfolded polypeptides trapped in stress induced disordered aggregates, preamyloid oligomers, or amyloid fibrils. By contrast, in bacteria, protozoa, chromista, fungi, and plants, Hsp104 orthologs are highly conserved and confer huge selective advantages in stress tolerance. Moreover, in fungi, the amyloid remodeling activity of Hsp104 has enabled deployment of prions for various beneficial modalities. Thus, a longstanding conundrum has remained unanswered: how do metazoan cells renature aggregated proteins or resolve amyloid fibrils without Hsp104? Here, we highlight recent advances that unveil the metazoan protein-disaggregase machinery, comprising Hsp110, Hsp70, and Hsp40, which synergize to dissolve disordered aggregates, but are unable to rapidly solubilize stable amyloid fibrils. However, Hsp110, Hsp70, and Hsp40 exploit the slow monomer exchange dynamics of amyloid, and can slowly depolymerize amyloid fibrils from their ends in a manner that is stimulated by small heat shock proteins. Upregulation of this system could have key therapeutic applications in various protein-misfolding disorders. Intriguingly, yeast Hsp104 can interface with metazoan Hsp110, Hsp70, and Hsp40 to rapidly eliminate disease associated amyloid. Thus, metazoan proteostasis is receptive to augmentation with exogenous disaggregases, which opens a number of therapeutic opportunities. PMID:24401655

  10. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition.

    PubMed

    Nedumpully-Govindan, Praveen; Kakinen, Aleksandr; Pilkington, Emily H; Davis, Thomas P; Chun Ke, Pu; Ding, Feng

    2016-01-01

    Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics. PMID:26763863

  11. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition

    PubMed Central

    Nedumpully-Govindan, Praveen; Kakinen, Aleksandr; Pilkington, Emily H.; Davis, Thomas P.; Chun Ke, Pu; Ding, Feng

    2016-01-01

    Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics. PMID:26763863

  12. Regional brain hypometabolism is unrelated to regional amyloid plaque burden.

    PubMed

    Altmann, Andre; Ng, Bernard; Landau, Susan M; Jagust, William J; Greicius, Michael D

    2015-12-01

    In its original form, the amyloid cascade hypothesis of Alzheimer's disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer's disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer's disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir ((18)F) positron emission tomography, (18)F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake while correcting in addition for cortex-wide florbetapir uptake. P-values for each setting

  13. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin

    PubMed Central

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Pui-Yan Ma, Victor; Chung-lit Choi, Tony; Dik-lung Ma, Edmond; Tao, Liang; Pang, Yuanping; Rowan, Michael J.; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  14. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin.

    PubMed

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Ma, Victor Pui-Yan; Choi, Tony Chung-lit; Ma, Edmond Dik-lung; Tao, Liang; Pang, Yuanping; Rowan, Michael J; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer's disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  15. A Chemical Screening Approach Reveals that Indole Flourescence is Quenched by Pre-Fibrillar But Not Fibrillar Amyloid

    PubMed Central

    Reinke, Ashley A.; Seh, Han Yiau; Gestwicki, Jason E.

    2009-01-01

    Aggregated amyloid-β (Aβ) peptide is implicated in the pathology of Alzheimer’s disease. In vitro and in vivo, these aggregates are found in a variety of morphologies, including globular oligomers and linear fibrils, which possess distinct biological activities. However, known chemical probes, including the dyes thioflavin T and Congo Red, appear to lack selectivity for specific amyloid structures. To identify molecules that might differentiate between these architectures, we employed a fluorescence-based interaction assay to screen a collection of 68 known Aβ ligands against pre-formed oligomers and fibrils. In these studies, we found that the fluorescence of five indole-based compounds was selectively quenched (~15%) in the presence of oligomers, but remained unchanged after addition of fibrils. These results suggest that indoles might be complementary to existing chemical probes for studying amyloid formation in vitro. PMID:19640715

  16. Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants

    PubMed Central

    2015-01-01

    Five different mutants of [Leu-5] Enkephalin YGGFL peptide have been investigated for fibril formation propensities. The early oligomer structures have been probed with a combination of ion-mobility mass spectrometry and computational modeling. The two peptides YVIFL and YVVFL form oligomers and amyloid-like fibrils. YVVFV shows an early stage oligomer distribution similar to those of the previous two, but amyloid-like aggregates are less abundant. Atomic resolution X-ray structures of YVVFV show two different modes of interactions at the dry interface between steric zippers and pairs of antiparallel β-sheets, but both are less favorable than the packing motif found in YVVFL. Both YVVFV and YVVFL can form a Class 6 steric zipper. However, in YVVFV, the strands between mating sheets are parallel to each other and in YVVFL they are antiparallel. The overall data highlight the importance of structurally characterizing high order oligomers within oligomerization pathways in studies of nanostructure assembly. PMID:24915112

  17. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    PubMed

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for <1% of all patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloidoligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows

  18. Mitochondrial Ca2+ Overload Underlies Aβ Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs

    PubMed Central

    Sanz-Blasco, Sara; Valero, Ruth A.; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-01-01

    Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD. PMID:18648507

  19. Single-Molecule Imaging of Individual Amyloid Protein Aggregates in Human Biofluids

    PubMed Central

    2016-01-01

    The misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β. In addition, we show that aggregates can also be identified in human cerebrospinal fluid (CSF). Significantly, we see a twofold increase in the average aggregate concentration in CSF from Parkinson’s disease patients compared to age-matched controls. Taken together, we conclude that this method provides an opportunity to characterize the structural nature of amyloid aggregates in a key biofluid, and therefore has the potential to study disease progression in both animal models and humans to enhance our understanding of neurodegenerative disorders. PMID:26800462

  20. Inhibition of amyloid-β aggregation in Alzheimer's disease.

    PubMed

    Wang, Qiuming; Yu, Xiang; Li, Lingyan; Zheng, Jie

    2014-01-01

    The assembly of naturally occurring amyloid peptides into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in over 25 human diseases. Blocking of or interfering with the aggregation of amyloid peptides such as amyloid-β (Aβ) using small organic molecules, peptides and peptidomimetics, and nanoparticles that selectively bind or inhibit Aβ aggregates is a promising strategy for the development of novel pharmaceutical approaches and agents to treat Alzheimer's disease (AD). In a broad sense, considering many common features in structure, kinetics, and biological activity of amyloid peptides, potent inhibitors and associated inhibition strategies that are developed for targeting Aβ aggregation could also be generally applied to other amyloid-forming peptides in "protein-aggregation diseases". Due to the complex nature of Aβ self-assembly process, increasing knowledge in high-resolution structures of Aβ oligomers, atomic-level Aβ-inhibitor binding information, and cost-effective high-throughput screening method will improve our fundamental understanding of amyloid formation and inhibition mechanisms, as well as practical design of pharmaceutical strategies and drugs to treat AD. This review summarizes major findings, recent advances, and future challenges for the development of new Aβ-aggregation inhibitors, mainly focusing on three major classes of Aβ inhibitors with associated inhibition mechanisms and practical. examples. PMID:23713775

  1. Current and future treatment of amyloid diseases.

    PubMed

    Ankarcrona, M; Winblad, B; Monteiro, C; Fearns, C; Powers, E T; Johansson, J; Westermark, G T; Presto, J; Ericzon, B-G; Kelly, J W

    2016-08-01

    There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment. PMID:27165517

  2. Aβ(1–40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated

    PubMed Central

    Kodali, Ravindra; Williams, Angela D.; Chemuru, Saketh; Wetzel, Ronald

    2010-01-01

    The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and may also contribute to variations in Alzheimer’s disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimer’s plaque peptide Aβ(1–40), as well as a non-fibrillar aggregate induced by Zn+2. Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms “breed true” in elongation reactions at a common set of growth conditions. Consistent with their defining cross-β structure, we find that in this series the amyloid fibrils containing more extensive β-sheet exhibit greater stability. At the same time, side chain packing outside of the β-sheet regions also contributes to stability, and to stability differences between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of ΔG° of elongation values for each polymorphic fibril obtained at a single set of conditions. PMID:20600131

  3. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer's disease

    PubMed Central

    Zhou, Xin; Yang, Chun; Liu, Yufeng; Li, Peng; Yang, Huiying; Dai, Jingxing; Qu, Rongmei; Yuan, Lin

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzheimer's disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer's disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant degradative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer's disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer's disease treatment. PMID:25206748

  4. A Monte Carlo approach for assessing the specificity of protein oligomers observed in nano-electrospray mass spectra

    NASA Astrophysics Data System (ADS)

    Lane, Laura A.; Ruotolo, Brandon T.; Robinson, Carol V.; Favrin, Giorgio; Benesch, Justin L. P.

    2009-06-01

    Nano-electrospray mass spectrometry is an emerging approach for studying the architecture and dynamics of complex oligomeric proteins. The analysis of such species can, however, be hindered by [`]non-specific' protein-protein associations which arise as a result of the electrospray method. To understand the formation of specific versus non-specific protein oligomers detected by mass spectrometry we have developed a simple and rapid computational approach. This Monte Carlo algorithm characterizes the occupancy of protein species in the last offspring droplets created by the nano-electrospray process. As such it enables us to assess whether oligomers detected in mass spectra reflect solution populations, or instead are the result of associations during droplet fission and evaporation. We have trained and validated this method on three model protein complexes which are not known to form higher order oligomers, and one which has a tendency to self-associate in solution in a concentration dependent manner. We have then compared predictions of droplet occupancy to abundances obtained from mass spectra for the tetrameric amyloid-related protein transthyretin, which can cause cardiomyopathy and polyneuropathy in humans. Interestingly, when such comparisons were made for wild-type transthyretin we were able to observe a propensity for the protein to form specific oligomers larger than the tetramer. In contrast, the tendency for the leucine-55-proline variant to form such oligomers was considerably reduced. We contemplate the significance of these specific higher order wild-type oligomers, and absence of such species in the variant, on the pathway of amyloid formation in transthyretin. More generally this easy-to-implement computational approach promises to improve our ability to identify oligomers of biological significance within the mass spectra of heterogenous protein complexes.

  5. Transthyretin as both Sensor and Scavenger of Aβ Oligomers

    PubMed Central

    Yang, Dennis T.; Joshi, Gururaj; Cho, Patricia Y.; Johnson, Jeffrey A.; Murphy, Regina M.

    2013-01-01

    Transthyretin (TTR) is a homotetrameric transport protein, assembled from monomers that each contains two four-stranded β-sheets and a short α-helix and loop. In the tetramer, the ‘inner’ β-sheet forms a hydrophobic pocket while the helix and loop are solvent-exposed. Beta-amyloid (Aβ) aggregates bind to TTR, and the binding is significantly reduced in mutants L82A (on the loop) and L110A (on the inner β-sheet). Protection against Aβ toxicity was demonstrated for wild-type TTR but not L82A or L110A, providing a direct link between TTR-Aβ binding, and TTR-mediated cytoprotection. Protection is afforded at substoichiometric (1:100) TTR:Aβ molar ratios, and binding of Aβ to TTR is highest for partially aggregated materials and decreased for freshly-prepared or heavily aggregated Aβ, suggesting that TTR binds selectively to soluble toxic Aβ aggregates. A novel technique, nanoparticle tracking, is used to show that TTR arrests Aβ aggregation by both preventing formation of new aggregates and inhibiting growth of existing aggregates. TTR tetramers are normally quite stable; tetrameric structure is necessary for the protein’s transport functions, and mutations that decrease tetramer stability have been linked to TTR amyloid diseases. However, TTR monomers bind more Aβ than do tetramers, presumably because the hydrophobic ‘inner’ sheet is solvent-exposed upon tetramer disassembly. Wild-type and L110A tetramers, but not L82A, were destabilized when co-incubated with Aβ, suggesting that Aβ binding to L82 triggers tetramer dissociation. Taken together, these results suggest a novel mechanism of action for TTR: the EF helix/loop ‘senses’ the presence of soluble toxic Aβ oligomers, triggering destabilization of TTR tetramers and exposure of the hydrophobic inner sheet, which then ‘scavenges’ these toxic oligomers and prevents them from causing cell death PMID:23570378

  6. Role of water in Protein Aggregation and Amyloid Polymorphism

    PubMed Central

    Thirumalai, D.; Reddy, Govardhan; Straub, John E.

    2011-01-01

    Conspectus The link between oligomers and amyloid fibrils and a variety of neurodegenerative diseases raises the need to decipher the principles governing protein aggregation. Mechanisms of in vivo amyloid formation involve a number of coconspirators and complex interactions with membranes. Nevertheless, it is believed that understanding the biophysical basis of in vitro amyloid formation in well-defined systems is important in discovering ligands that preferentially bind to regions that harbor amyloidogenic tendencies. Determination of structures of fibrils of a variety of peptides has set the stage for probing the dynamics of oligomer formation and amyloid growth using computer simulations. Most experimental and simulation studies have been interpreted largely from the perspective of proteins without much consideration of the role of solvent in enabling or inhibiting oligomer formation and assembly to protofilaments and amyloid fibrils. Here, we provide a perspective on how interactions with water affect folding landscapes of Aβ monomers, oligomer formation in Aβ16–22 fragment, protofilament formation in a peptide from yeast prion Sup35. Explicit molecular dynamics simulations of these systems illustrate how water controls the self-assembly of higher order structures and provide a structural basis for understanding the kinetics of oligomer and fibril growth. Simulations show that monomers of Aβ-peptides sample a number of compact conformations. Population of aggregation-prone structures (N*) with salt-bridge, which bear a striking similarity to the peptide structure in the fibril, requires overcoming a high desolvation barrier. In general, sequences for which N* structures are not significantly populated are unlikely to aggregate. Generically oligomers and fibrils form in two steps. In the first stage water is expelled from the region between peptides rich in hydrophobic residues (for example Aβ16–22) resulting in the disordered oligomers. In the second

  7. Isolating Toxic Insulin Amyloid Reactive Species that Lack β-Sheets and Have Wide pH Stability

    PubMed Central

    Heldt, Caryn L.; Kurouski, Dmitry; Sorci, Mirco; Grafeld, Elizabeth; Lednev, Igor K.; Belfort, Georges

    2011-01-01

    Amyloid diseases, including Alzheimer's disease, are characterized by aggregation of normally functioning proteins or peptides into ordered, β-sheet rich fibrils. Most of the theories on amyloid toxicity focus on the nuclei or oligomers in the fibril formation process. The nuclei and oligomers are transient species, making their full characterization difficult. We have isolated toxic protein species that act like an oligomer and may provide the first evidence of a stable reactive species created by disaggregation of amyloid fibrils. This reactive species was isolated by dissolving amyloid fibrils at high pH and it has a mass >100 kDa and a diameter of 48 ± 15 nm. It seeds the formation of fibrils in a dose dependent manner, but using circular dichroism and deep ultraviolet resonance Raman spectroscopy, the reactive species was found to not have a β-sheet rich structure. We hypothesize that the reactive species does not decompose at high pH and maintains its structure in solution. The remaining disaggregated insulin, excluding the toxic reactive species that elongated the fibrils, returned to native structured insulin. This is the first time, to our knowledge, that a stable reactive species of an amyloid reaction has been separated and characterized by disaggregation of amyloid fibrils. PMID:21641325

  8. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Jinghui; Wärmländer, Sebastian K. T. S.; Yu, Chien-Hung; Muhammad, Kamran; Gräslund, Astrid; Pieter Abrahams, Jan

    2014-05-01

    Carbon nanotubes have specific properties that make them potentially useful in biomedicine and biotechnology. However, carbon nanotubes may themselves be toxic, making it imperative to understand how carbon nanotubes interact with biomolecules such as proteins. Here, we used NMR, CD, and ThT/fluorescence spectroscopy together with AFM imaging to study pH-dependent molecular interactions between single walled carbon nanotubes (SWNTs) and the amyloid-beta (Aβ) peptide. The aggregation of the Aβ peptide, first into oligomers and later into amyloid fibrils, is considered to be the toxic mechanism behind Alzheimer's disease. We found that SWNTs direct the Aβ peptides to form a new class of β-sheet-rich yet non-amyloid fibrils.Carbon nanotubes have specific properties that make them potentially useful in biomedicine and biotechnology. However, carbon nanotubes may themselves be toxic, making it imperative to understand how carbon nanotubes interact with biomolecules such as proteins. Here, we used NMR, CD, and ThT/fluorescence spectroscopy together with AFM imaging to study pH-dependent molecular interactions between single walled carbon nanotubes (SWNTs) and the amyloid-beta (Aβ) peptide. The aggregation of the Aβ peptide, first into oligomers and later into amyloid fibrils, is considered to be the toxic mechanism behind Alzheimer's disease. We found that SWNTs direct the Aβ peptides to form a new class of β-sheet-rich yet non-amyloid fibrils. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00291a

  9. The effects of soluble Aβ oligomers on neurodegeneration in Alzheimer's disease.

    PubMed

    Brouillette, Jonathan

    2014-01-01

    The neurodegenerative process that defines Alzheimer''s disease (AD) is initially characterized by synaptic alterations followed by synapse loss and ultimately cell death. Decreased synaptic density that precedes neuronal death is the strongest pathological correlate of cognitive deficits observed in AD. Substantial synapse and neuron loss occur early in disease progression in the entorhinal cortex (EC) and the CA1 region of the hippocampus, when memory deficits become clinically detectable. Mounting evidence suggests that soluble amyloid-β (Aβ) oligomers trigger synapse dysfunction both in vitro and in vivo. However, the neurodegenerative effect of Aβ species observed on neuronal culture or organotypic brain slice culture has been more challenging to mimic in animal models. While most of the transgenic mice that overexpress Aβ show abundant amyloid plaque pathology and early synaptic alterations, these models have been less successful in recapitulating the spatiotemporal pattern of cell loss observed in AD. Recently we developed a novel animal model that revealed the neurodegenerative effect of soluble low-molecular-weight Aβ oligomers in vivo. This new approach may now serve to determine the molecular and cellular mechanisms linking soluble Aβ species to neurodegeneration in animals. In light of the low efficiency of AD therapies based on the amyloid cascade hypothesis, a novel framework, the aging factor cascade hypothesis, is proposed in an attempt to integrate the new data and concepts that emerged from recent research to develop disease modifying therapies. PMID:23859546

  10. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion

    PubMed Central

    Espargaró, Alba; Busquets, Maria Antònia; Estelrich, Joan; Sabate, Raimon

    2016-01-01

    Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer’s and Parkinson’s diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a “prion-like” manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity. PMID:27147962

  11. Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion.

    PubMed

    Espargaró, Alba; Busquets, Maria Antònia; Estelrich, Joan; Sabate, Raimon

    2016-01-01

    Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer's and Parkinson's diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, also propagate in a "prion-like" manner. Meanwhile, no link between propagation of pathological proteins and neurotoxicity has been demonstrated. The extremely low infectivity under natural conditions of most non-prion amyloids is far below the capacity to spread exhibited by prions. Nonetheless, it is important to elucidate the key factors that cause non-prion amyloids to become infectious agents. In recent years, important advances in our understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions) have yielded essential information that can shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidence suggests that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could all be key factors affecting their spread. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would effectively prevent infectivity. PMID:27147962

  12. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  13. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  14. Interactions between Amyloid-β and Tau Fragments Promote Aberrant Aggregates: Implications for Amyloid Toxicity

    PubMed Central

    2015-01-01

    We have investigated at the oligomeric level interactions between Aβ(25–35) and Tau(273–284), two important fragments of the amyloid-β and Tau proteins, implicated in Alzheimer’s disease. We are able to directly observe the coaggregation of these two peptides by probing the conformations of early heteroligomers and the macroscopic morphologies of the aggregates. Ion-mobility experiment and theoretical modeling indicate that the interactions of the two fragments affect the self-assembly processes of both peptides. Tau(273–284) shows a high affinity to form heteroligomers with existing Aβ(25–35) monomer and oligomers in solution. The configurations and characteristics of the heteroligomers are determined by whether the population of Aβ(25–35) or Tau(273–284) is dominant. As a result, two types of aggregates are observed in the mixture with distinct morphologies and dimensions from those of pure Aβ(25–35) fibrils. The incorporation of some Tau into β-rich Aβ(25–35) oligomers reduces the aggregation propensity of Aβ(25–35) but does not fully abolish fibril formation. On the other hand, by forming complexes with Aβ(25–35), Tau monomers and dimers can advance to larger oligomers and form granular aggregates. These heteroligomers may contribute to toxicity through loss of normal function of Tau or inherent toxicity of the aggregates themselves. PMID:25153942

  15. Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels.

    PubMed

    Do, Thanh D; LaPointe, Nichole E; Nelson, Rebecca; Krotee, Pascal; Hayden, Eric Y; Ulrich, Brittany; Quan, Sarah; Feinstein, Stuart C; Teplow, David B; Eisenberg, David; Shea, Joan-Emma; Bowers, Michael T

    2016-01-20

    In order to evaluate potential therapeutic targets for treatment of amyloidoses such as Alzheimer's disease (AD), it is essential to determine the structures of toxic amyloid oligomers. However, for the amyloid β-protein peptide (Aβ), thought to be the seminal neuropathogenetic agent in AD, its fast aggregation kinetics and the rapid equilibrium dynamics among oligomers of different size pose significant experimental challenges. Here we use ion-mobility mass spectrometry, in combination with electron microscopy, atomic force microscopy, and computational modeling, to test the hypothesis that Aβ peptides can form oligomeric structures resembling cylindrins and β-barrels. These structures are hypothesized to cause neuronal injury and death through perturbation of plasma membrane integrity. We show that hexamers of C-terminal Aβ fragments, including Aβ(24-34), Aβ(25-35) and Aβ(26-36), have collision cross sections similar to those of cylindrins. We also show that linking two identical fragments head-to-tail using diglycine increases the proportion of cylindrin-sized oligomers. In addition, we find that larger oligomers of these fragments may adopt β-barrel structures and that β-barrels can be formed by folding an out-of-register β-sheet, a common type of structure found in amyloid proteins. PMID:26700445

  16. Surface Mediated Self-Assembly of Amyloid Peptides

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  17. Cognitive effects of cell-derived and synthetically-derived Aβ oligomers

    PubMed Central

    Reed, Miranda N.; Hofmeister, Jacki J.; Jungbauer, Lisa; Welzel, Alfred T.; Yu, Chunjiang; Sherman, Mathew A.; Lesné, Sylvain; LaDu, Mary Jo; Walsh, Dominic M.; Ashe, Karen H.; Cleary, James P.

    2010-01-01

    Soluble forms of amyloid-β peptide (Aβ) are a molecular focus in Alzheimer's disease research. Soluble Aβ dimers (≈ 8 kDa), timers (≈ 12 kDa), tetramers (≈ 16 kDa) and Aβ*56 (≈ 56 kDa) have shown biological activity. These Aβ molecules have been derived from diverse sources, including chemical synthesis, transfected cells, and mouse and human brain, leading to uncertainty about toxicity and potency. Herein, synthetic Aβ peptide-derived oligomers, cell- and brain-derived low-n oligomers, and Aβ*56, were injected intracerebroventricularly (icv) into rats assayed under the Alternating Lever Cyclic Ratio (ALCR) cognitive assay. Cognitive deficits were detected at 1.3μM of synthetic Aβ oligomers and at low nanomolar concentrations of cell-secreted Aβ oligomers. Trimers, from transgenic mouse brain (Tg2576), did not cause cognitive impairment at any dose tested, whereas Aβ*56 induced concentration-dependent cognitive impairment at 0.9μM and 1.3μM. Thus, while multiple forms of Aβ have cognition impairing activity, there are significant differences in effective concentration and potency. PMID:20031278

  18. Cytotoxic Helix-Rich Oligomer Formation by Melittin and Pancreatic Polypeptide

    PubMed Central

    Singh, Pradeep K.; Ghosh, Dhiman; Tewari, Debanjan; Mohite, Ganesh M.; Carvalho, Edmund; Jha, Narendra Nath; Jacob, Reeba S.; Sahay, Shruti; Banerjee, Rinti; Bera, Amal K.; Maji, Samir K.

    2015-01-01

    Conversion of amyloid fibrils by many peptides/proteins involves cytotoxic helix-rich oligomers. However, their toxicity and biophysical studies remain largely unknown due to their highly dynamic nature. To address this, we chose two helical peptides (melittin, Mel and pancreatic polypeptide, PP) and studied their aggregation and toxicity. Mel converted its random coil structure to oligomeric helical structure upon binding to heparin; however, PP remained as helix after oligomerization. Interestingly, similar to Parkinson’s associated α-synuclein (AS) oligomers, Mel and PP also showed tinctorial properties, higher hydrophobic surface exposure, cellular toxicity and membrane pore formation after oligomerization in the presence of heparin. We suggest that helix-rich oligomers with exposed hydrophobic surface are highly cytotoxic to cells irrespective of their disease association. Moreover as Mel and PP (in the presence of heparin) instantly self-assemble into stable helix-rich amyloidogenic oligomers; they could be represented as models for understanding the biophysical and cytotoxic properties of helix-rich intermediates in detail. PMID:25803428

  19. Parkinson's Disease with Fatigue: Clinical Characteristics and Potential Mechanisms Relevant to α-Synuclein Oligomer

    PubMed Central

    Zuo, Li-Jun; Yu, Shu-Yang; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Du, Yang; Lian, Teng-Hong; Wang, Rui-Dan; Yu, Qiu-Jin; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yongjun

    2016-01-01

    Background and Purpose The aim of this study was to identify the clinical characteristics and potential mechanisms relevant to pathological proteins in Parkinson's disease (PD) patients who experience fatigue. Methods PD patients (n=102) were evaluated using a fatigue severity scale and scales for motor and nonmotor symptoms. The levels of three pathological proteins—α-synuclein oligomer, β-amyloid (Aβ)1-42, and tau—were measured in 102 cerebrospinal fluid (CSF) samples from these PD patients. Linear regression analyses were performed between fatigue score and the CSF levels of the above-listed pathological proteins in PD patients. Results The frequency of fatigue in the PD patients was 62.75%. The fatigue group had worse motor symptoms and anxiety, depression, and autonomic dysfunction. The CSF level of α-synuclein oligomer was higher and that of Aβ1-42 was lower in the fatigue group than in the non-fatigue group. In multiple linear regression analyses, fatigue severity was significantly and positively correlated with the α-synuclein oligomer level in the CSF of PD patients, after adjusting for confounders. Conclusions PD patients experience a high frequency of fatigue. PD patients with fatigue have worse motor and part nonmotor symptoms. Fatigue in PD patients is associated with an increased α-synuclein oligomer level in the CSF. PMID:26869370

  20. Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination

    PubMed Central

    Klein, Antonia Nicole; Ziehm, Tamar; Tusche, Markus; Buitenhuis, Johan; Bartnik, Dirk; Boeddrich, Annett; Wiglenda, Thomas; Wanker, Erich; Funke, Susanne Aileen; Brener, Oleksandr; Gremer, Lothar; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer’s disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD. PMID:27105346

  1. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity.

    PubMed

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 ± 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease. PMID:25613018

  2. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity

    NASA Astrophysics Data System (ADS)

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 +/- 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease.

  3. QIAD assay for quantitating a compound's efficacy in elimination of toxic Aβ oligomers.

    PubMed

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer's disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  4. QIAD assay for quantitating a compound’s efficacy in elimination of toxic Aβ oligomers

    PubMed Central

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A.; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A.; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  5. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.

    PubMed

    Doran, Todd M; Anderson, Elizabeth A; Latchney, Sarah E; Opanashuk, Lisa A; Nilsson, Bradley L

    2012-03-21

    Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimer's disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self-assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study the role turn nucleation plays on Aβ self-assembly. [3-(3-Aminomethyl)phenylazo]phenylacetic acid (AMPP) was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42 conformer forms fibrillar constructs that are similar in almost all characteristics, including cytotoxicity, to wild-type Aβ42. Conversely, the cis-AMPP Aβ42 congeners formed nonfibrillar, amorphous aggregates that exhibited no cytotoxicity. Additionally, cis-trans photoisomerization resulted in rapid formation of native-like amyloid fibrils and trans-cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photocontrol over Aβ turn conformation provides significant insight into Aβ self-assembly. Specifically, Aβ mutants that adopt stable β-turns form aggregate structures that are unable to enter folding pathways leading to cross-β fibrils and cytotoxic prefibrillar intermediates. PMID:22860190

  6. Plasticity of amyloid fibrils†

    PubMed Central

    Wetzel, Ronald; Shivaprasad, Shankaramma; Williams, Angela D.

    2008-01-01

    In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Aβ(1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than they do globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th Century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloid from the point of view of the polymer chemist may shed new light on issues such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation. PMID:17198370

  7. α-Casein Inhibits Insulin Amyloid Formation by Preventing the Onset of Secondary Nucleation Processes.

    PubMed

    Librizzi, Fabio; Carrotta, Rita; Spigolon, Dario; Bulone, Donatella; San Biagio, Pier Luigi

    2014-09-01

    α-Casein is known to inhibit the aggregation of several proteins, including the amyloid β-peptide, by mechanisms that are not yet completely clear. We studied its effects on insulin, a system extensively used to investigate the properties of amyloids, many of which are common to all proteins and peptides. In particular, as for other proteins, insulin aggregation is affected by secondary nucleation pathways. We found that α-casein strongly delays insulin amyloid formation, even at extremely low doses, when the aggregation process is characterized by secondary nucleation. At difference, it has a vanishing inhibitory effect on the initial oligomer formation, which is observed at high concentration and does not involve any secondary nucleation pathway. These results indicate that an efficient inhibition of amyloid formation can be achieved by chaperone-like systems, by sequestering the early aggregates, before they can trigger the exponential proliferation brought about by secondary nucleation mechanisms. PMID:26278257

  8. Amyloid-β aggregation on model lipid membranes: an atomic force microscopy study.

    PubMed

    Hane, Francis; Drolle, Elizabeth; Gaikwad, Ravi; Faught, Erin; Leonenko, Zoya

    2011-01-01

    Amyloid fibril formation is generally associated with many neurodegenerative disorders, including Alzheimer's disease (AD). Although fibril plaque formation is associated with biological membranes in vivo, the role of the cell surfaces in amyloid fibril formation and the molecular mechanism of amyloid toxicity are not well understood. Understanding the details of amyloid interaction with lipid membrane may shed light on the mechanism of amyloid toxicity. Using atomic force microscopy, we investigated aggregation of amyloid-β1-42 (Aβ1-42) on model phospholipid membranes as a function of time and membrane composition. Neutral, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic - 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DOPG), and cationic - 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), were used to study the effect of lipid type on amyloid binding. We showed that both the charge on the lipid head group and lipid phase affect the interaction of amyloid oligomers with the membrane surface changing the rate of adsorption and causing changes in membrane structure and structure of amyloid deposits. We observed that amyloid aggregates progressively accumulate in a similar manner on the surface of neutral DPPC gel phase membrane and on the surface of fluid phase negatively charged DOPG membrane. In contrast to DPPC and DOPG, positively charged fluid DOTAP membrane and neutral fluid phase DOPC membrane contain amyloid deposits with reduced height, which suggests fusing of Aβ1-42 into the lipid membrane surface. PMID:21694459

  9. Ultrafast propagation of β-amyloid fibrils in oligomeric cloud

    PubMed Central

    Ogi, Hirotsugu; Fukukshima, Masahiko; Hamada, Hiroki; Noi, Kentaro; Hirao, Masahiko; Yagi, Hisashi; Goto, Yuji

    2014-01-01

    Interaction between monomer peptides and seeds is essential for clarifying the fibrillation mechanism of amyloid β (Aβ) peptides. We monitored the deposition reaction of Aβ1–40 peptides on immobilized seeds grown from Aβ1–42, which caused formation of oligomers in the early stage. The deposition reaction and fibrillation procedure were monitored throughout by novel total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM) system. This system allows simultaneous evaluation of the amount of deposited peptides on the surface seeds by QCM and fibril nucleation and elongation by TIRFM. Most fibrils reached other nuclei, forming the fibril network across the nucleus hubs in a short time. We found a fibril-elongation rate two-orders-of-magnitude higher in an oligomeric cloud than reported values, indicating ultrafast transition of oligomers into fibrils. PMID:25376301

  10. Inhibiting nucleation of amyloid structure in a huntingtin fragment by targeting α-helix rich oligomeric intermediates

    PubMed Central

    Mishra, Rakesh; Jayaraman, Murali; Roland, Bartholomew P.; Landrum, Elizabeth; Fullam, Timothy; Kodali, Ravindra; Thakur, Ashwani K.; Arduini, Irene; Wetzel, Ronald

    2011-01-01

    Although oligomeric intermediates are transiently formed in almost all known amyloid assembly reactions, their mechanistic roles are poorly understood. Recently we demonstrated a critical role for the 17 amino acid N-terminal segment (httNT) of huntingtin (htt) in oligomer-mediated amyloid assembly of htt N-terminal fragments. In this mechanism, the httNT segment forms the α-helix rich core of the oligomers, leaving most or all of each polyglutamine (polyQ) segment disordered and solvent-exposed. Nucleation of amyloid structure occurs within this local high concentration of disordered polyQ. Here we demonstrate the kinetic importance of httNT self-assembly by describing inhibitory httNT-containing peptides that appear to work by targeting nucleation within the oligomer fraction. These molecules inhibit amyloid nucleation by forming mixed oligomers with the httNT domains of polyQ-containing htt N-terminal fragments. In one class of inhibitor, nucleation is passively suppressed due to the reduced local concentration of polyQ within the mixed oligomer. In the other class, nucleation is actively suppressed by a proline-rich polyQ segment covalently attached to httNT. Studies with D-amino acid and scrambled sequence versions of httNT suggest that inhibition activity is strongly linked to the propensity of inhibitory peptides to make amphipathic α-helices. HttNT derivatives with C-terminal cell penetrating peptide segments, also exhibit excellent inhibitory activity. The httNT-based peptides described here, especially those with protease-resistant D-amino acids and/or with cell penetrating sequences, may prove useful as lead therapeutics for inhibiting nucleation of amyloid formation in Huntington’s disease. PMID:22178478

  11. Ballistic Energy Transport in Oligomers.

    PubMed

    Rubtsova, Natalia I; Qasim, Layla N; Kurnosov, Arkady A; Burin, Alexander L; Rubtsov, Igor V

    2015-09-15

    The development of nanocomposite materials with desired heat management properties, including nanowires, layered semiconductor structures, and self-assembled monolayer (SAM) junctions, attracts broad interest. Such materials often involve polymeric/oligomeric components and can feature high or low thermal conductivity, depending on their design. For example, in SAM junctions made of alkane chains sandwiched between metal layers, the thermal conductivity can be very low, whereas the fibers of ordered polyethylene chains feature high thermal conductivity, exceeding that of many pure metals. The thermal conductivity of nanostructured materials is determined by the energy transport between and within each component of the material, which all need to be understood for optimizing the properties. For example, in the SAM junctions, the energy transport across the metal-chain interface as well as the transport through the chains both determine the overall heat conductivity, however, to separate these contributions is difficult. Recently developed relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy is capable of studying energy transport in individual molecules in the time domain. The transport in a molecule is initiated by exciting an IR-active group (a tag); the method records the influence of the excess energy on another mode in the molecule (a reporter). The energy transport time can be measured for different reporters, and the transport speed through the molecule is evaluated. Various molecules were interrogated by RA 2DIR: in molecules without repeating units (disordered), the transport mechanism was expected and found to be diffusive. The transport via an oligomer backbone can potentially be ballistic, as the chain offers delocalized vibrational states. Indeed, the transport regime via three tested types of oligomers, alkanes, polyethyleneglycols, and perfluoroalkanes was found to be ballistic, whereas the transport within the end groups was diffusive

  12. A look into amyloid formation by transthyretin: aggregation pathway and a novel kinetic model.

    PubMed

    Faria, Tiago Q; Almeida, Zaida L; Cruz, Pedro F; Jesus, Catarina S H; Castanheira, Pedro; Brito, Rui M M

    2015-03-21

    The aggregation of proteins into insoluble amyloid fibrils is the hallmark of many, highly debilitating, human pathologies such as Alzheimer's or Parkinson's disease. Transthyretin (TTR) is a homotetrameric protein implicated in several amyloidoses like Senile Systemic Amyloidosis (SSA), Familial Amyloid Polyneuropathy (FAP), Familial Amyloid Cardiomyopathy (FAC), and the rare Central Nervous System selective Amyloidosis (CNSA). In this work, we have investigated the kinetics of TTR aggregation into amyloid fibrils produced by the addition of NaCl to acid-unfolded TTR monomers and we propose a mathematically simple kinetic mechanism to analyse the aggregation kinetics of TTR. We have conducted circular dichroism, intrinsic tryptophan fluorescence and thioflavin-T emission experiments to follow the conformational changes accompanying amyloid formation at different TTR concentrations. Kinetic traces were adjusted to a two-step model with the first step being second-order and the second being unimolecular. The molecular species present in the pathway of TTR oligomerization were characterized by size exclusion chromatography coupled to multi-angle light scattering and by transmission electron microscopy. The results show the transient accumulation of oligomers composed of 6 to 10 monomers in agreement with reports suggesting that these oligomers may be the causative agent of cell toxicity. The results obtained may prove to be useful in understanding the mode of action of different compounds in preventing fibril formation and, therefore, in designing new drugs against TTR amyloidosis. PMID:25694367

  13. Aggregation of fibrils and plaques in amyloid molecular systems

    NASA Astrophysics Data System (ADS)

    Nicodemi, Mario; de Candia, Antonio; Coniglio, Antonio

    2009-10-01

    Amyloidlike proteins form highly organized aggregates, such as fibrils and plaques, preceded by the assembly of a wide range of unstructured oligomers and protofibrils. Despite their importance in a number of human neurodegenerative diseases, a comprehensive understanding of their kinetics and thermodynamics is still missing. We investigate, by computer simulations, a realistic model of amyloid molecules interacting via the experimentally determined Derjaguin-Landau-Verwey-Overbeek potential and derive its phase diagram. We show that fibrils and plaques, along with their precursors, correspond to different equilibrium and metastable thermodynamics phases and discuss the dynamical mechanisms leading to the nucleation and self-assembly of large scale structures.

  14. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-01

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  15. Inhibition of beta-amyloid aggregation by fluorescent dye labels

    SciTech Connect

    Amaro, Mariana; Wellbrock, Thorben; Birch, David J. S.; Rolinski, Olaf J.

    2014-02-10

    The fluorescence decay of beta-amyloid's (Aβ) intrinsic fluorophore tyrosine has been used for sensing the oligomer formation of dye-labelled Aβ monomers and the results compared with previously studied oligomerization of the non-labelled Aβ peptides. It has been demonstrated that two different sized, covalently bound probes 7-diethylaminocoumarin-3-carbonyl and Hilyte Fluor 488 (HLF), alter the rate and character of oligomerization to different extents. The ability of HLF to inhibit formation of highly ordered structures containing beta-sheets was also shown. The implications of our findings for using fluorescence methods in amyloidosis research are discussed and the advantages of this auto-fluorescence approach highlighted.

  16. Early oligomerization stages for the non-amyloid component of α-synuclein amyloid

    NASA Astrophysics Data System (ADS)

    Eugene, Cindie; Laghaei, Rozita; Mousseau, Normand

    2014-10-01

    In recent years, much effort has focused on the early stages of aggregation and the formation of amyloid oligomers. Aggregation processes for these proteins are complex and their non-equilibrium nature makes any experimental study very difficult. Under these conditions, simulations provide a useful alternative for understanding the dynamics of the early stages of oligomerization. Here, we focus on the non-Aβ amyloid component (NAC) of the monomer, dimer, and trimer of α-synuclein, an important 35-residue sequence involved in the aggregation and fibrillation of this protein associated with Parkinson's disease. Using Hamiltonian and temperature replica exchange molecular dynamics simulations combined with the coarse grained Optimized Potential for Efficient peptide structure Prediction potential, we identify the role of the various regions and the secondary structures for the onset of oligomerization. For this sequence, we clearly observe the passage from α-helix to β-sheet, a characteristic transition of amyloid proteins. More precisely, we find that the NAC monomer is highly structured with two α-helical regions, between residues 2-13 and 19-25. As the dimer and trimer form, β-sheet structures between residues 2-14 and 26-34 appear and rapidly structure the system. The resulting conformations are much more structured than similar dimers and trimers of β-amyloid and amylin proteins and yet display a strong polymorphism at these early stages of aggregation. In addition to its inherent experimental interest, comparison with other sequences shows that NAC could be a very useful numerical model for understanding the onset of aggregation.

  17. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    PubMed

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease. PMID:26099310

  18. Candidate anti-Aβ fluorene compounds selected from analogs of amyloid imaging agents

    PubMed Central

    Hong, Hyun-Seok; Maezawa, Izumi; Budamagunta, Madhu; Rana, Sandeep; Shi, Aibin; Vassar, Robert; Liu, Ruiwu; Lam, Kit S.; Cheng, R. Holland; Hua, Duy H.; Voss, John C.; Jin, Lee-Way

    2009-01-01

    Alzheimer’s disease (AD) is characterized by depositions of β-amyloid (Aβ) aggregates as amyloid in the brain. To facilitate diagnosis of AD by radioligand imaging, several highly specific small-molecule amyloid ligands have been developed. Because amyloid ligands display excellent pharmacokinetics properties and brain bioavailability, and because we have previously shown that some amyloid ligands bind the highly neurotoxic Aβ oligomers (AβO) with high affinities, they may also be valuable candidates for anti-Aβ therapies. Here we identified two fluorene compounds from libraries of amyloid ligands, initially based on their ability to block cell death secondary to intracellular AβO. We found that the lead fluorenes were able to reduce the amyloid burden including the levels of AβO in cultured neurons and in 5xFAD mice. To explain these in vitro and in vivo effects, we found that the lead fluorenes bind and destabilize AβO as shown by electron paramagnetic resonance spectroscopy studies, and block the harmful AβO-synapse interaction. These fluorenes and future derivatives, therefore, have a potential use in AD therapy and research. PMID:19022536

  19. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain

    PubMed Central

    Logan, Clare V.; Cossins, Judith; Rodríguez Cruz, Pedro M.; Parry, David A.; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A.; Lake, Alice V.R.; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M.; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A.; Beeson, David

    2015-01-01

    The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs∗71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. PMID:26626625

  20. Congenital Myasthenic Syndrome Type 19 Is Caused by Mutations in COL13A1, Encoding the Atypical Non-fibrillar Collagen Type XIII α1 Chain.

    PubMed

    Logan, Clare V; Cossins, Judith; Rodríguez Cruz, Pedro M; Parry, David A; Maxwell, Susan; Martínez-Martínez, Pilar; Riepsaame, Joey; Abdelhamed, Zakia A; Lake, Alice V R; Moran, Maria; Robb, Stephanie; Chow, Gabriel; Sewry, Caroline; Hopkins, Philip M; Sheridan, Eamonn; Jayawant, Sandeep; Palace, Jacqueline; Johnson, Colin A; Beeson, David

    2015-12-01

    The neuromuscular junction (NMJ) consists of a tripartite synapse with a presynaptic nerve terminal, Schwann cells that ensheathe the terminal bouton, and a highly specialized postsynaptic membrane. Synaptic structural integrity is crucial for efficient signal transmission. Congenital myasthenic syndromes (CMSs) are a heterogeneous group of inherited disorders that result from impaired neuromuscular transmission, caused by mutations in genes encoding proteins that are involved in synaptic transmission and in forming and maintaining the structural integrity of NMJs. To identify further causes of CMSs, we performed whole-exome sequencing (WES) in families without an identified mutation in known CMS-associated genes. In two families affected by a previously undefined CMS, we identified homozygous loss-of-function mutations in COL13A1, which encodes the alpha chain of an atypical non-fibrillar collagen with a single transmembrane domain. COL13A1 localized to the human muscle motor endplate. Using CRISPR-Cas9 genome editing, modeling of the COL13A1 c.1171delG (p.Leu392Sfs(∗)71) frameshift mutation in the C2C12 cell line reduced acetylcholine receptor (AChR) clustering during myotube differentiation. This highlights the crucial role of collagen XIII in the formation and maintenance of the NMJ. Our results therefore delineate a myasthenic disorder that is caused by loss-of-function mutations in COL13A1, encoding a protein involved in organization of the NMJ, and emphasize the importance of appropriate symptomatic treatment for these individuals. PMID:26626625

  1. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  2. Cerebral amyloid angiopathy

    MedlinePlus

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  3. Reexamining Alzheimer's disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta.

    PubMed

    Castellani, Rudy J; Lee, Hyoung-gon; Siedlak, Sandra L; Nunomura, Akihiko; Hayashi, Takaaki; Nakamura, Masao; Zhu, Xiongwei; Perry, George; Smith, Mark A

    2009-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized clinically by cognitive decline and pathologically by the accumulation of amyloid-beta-containing senile plaques and neurofibrillary tangles. A great deal of attention has focused, focused on amyloid-beta as the major pathogenic mechanism with the ultimate goal of using amyloid-beta lowering therapies as an avenue of treatment. Unfortunately, nearly a quarter century later, no tangible progress has been offered, whereas spectacular failure tends to be the most compelling. We have long contended, as has substantial literature, that proteinaceous accumulations are simply downstream and, often, endstage manifestations of disease. Their overall poor correlation with the level of dementia, and their presence in the cognitively intact is evidence that is often ignored as an inconvenient truth. Current research examining amyloid oligomers, therefore, will add copious details to what is, in essence, a reductionist distraction from upstream pleiotrophic processes such as oxidative stress, cell cycle dysfunction, and inflammation. It is now long overdue that the neuroscientists avoid the pitfall of perseverating on "proteinopathies'' and recognize that the continued targeting of end stage lesions in the face of repeated failure, or worse, is a losing proposition. PMID:19584435

  4. Structural Insight into Proteorhodopsin Oligomers

    PubMed Central

    Stone, Katherine M.; Voska, Jeda; Kinnebrew, Maia; Pavlova, Anna; Junk, Matthias J.N.; Han, Songi

    2013-01-01

    Oligomerization has important functional implications for many membrane proteins. However, obtaining structural insight into oligomeric assemblies is challenging, as they are large and resist crystallization. We focus on proteorhodopsin (PR), a protein with seven transmembrane α-helices that was found to assemble to hexamers in densely packed lipid membrane, or detergent-solubilized environments. Yet, the structural organization and the subunit interface of these PR oligomers were unknown. We used site-directed spin-labeling together with electron spin-resonance lineshape and Overhauser dynamic nuclear polarization analysis to construct a model for the specific orientation of PR subunits within the hexameric complex. We found intersubunit distances to average 16 Å between neighboring 55 residues and that residues 177 are >20 Å apart from each other. These distance constraints show that PR has a defined and radial orientation within a hexamer, with the 55-site of the A-B loop facing the hexamer core and the 177-site of the E-F loop facing the hexamer exterior. Dynamic nuclear polarization measurements of the local solvent dynamics complement the electron spin-resonance-based distance analysis, by resolving whether protein surfaces at positions 55, 58, and 177 are exposed to solvent, or covered by protein-protein or protein-detergent contacts. PMID:23442869

  5. Amyloid-β peptides in interaction with raft-mime model membranes: a neutron reflectivity insight.

    PubMed

    Rondelli, Valeria; Brocca, Paola; Motta, Simona; Messa, Massimo; Colombo, Laura; Salmona, Mario; Fragneto, Giovanna; Cantù, Laura; Del Favero, Elena

    2016-01-01

    The role of first-stage β-amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β-amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment. PMID:26880066

  6. Amyloidβ Peptides in interaction with raft-mime model membranes: a neutron reflectivity insight

    PubMed Central

    Rondelli, Valeria; Brocca, Paola; Motta, Simona; Messa, Massimo; Colombo, Laura; Salmona, Mario; Fragneto, Giovanna; Cantù, Laura; Del Favero, Elena

    2016-01-01

    The role of first-stage β–amyloid aggregation in the development of the Alzheimer disease, is widely accepted but still unclear. Intimate interaction with the cell membrane is invoked. We designed Neutron Reflectometry experiments to reveal the existence and extent of the interaction between β–amyloid (Aβ) peptides and a lone customized biomimetic membrane, and their dependence on the aggregation state of the peptide. The membrane, asymmetrically containing phospholipids, GM1 and cholesterol in biosimilar proportion, is a model for a raft, a putative site for amyloid-cell membrane interaction. We found that the structured-oligomer of Aβ(1-42), its most acknowledged membrane-active state, is embedded as such into the external leaflet of the membrane. Conversely, the Aβ(1-42) unstructured early-oligomers deeply penetrate the membrane, likely mimicking the interaction at neuronal cell surfaces, when the Aβ(1-42) is cleaved from APP protein and the membrane constitutes a template for its further structural evolution. Moreover, the smaller Aβ(1-6) fragment, the N-terminal portion of Aβ, was also used. Aβ N-terminal is usually considered as involved in oligomer stabilization but not in the peptide-membrane interaction. Instead, it was seen to remove lipids from the bilayer, thus suggesting its role, once in the whole peptide, in membrane leakage, favouring peptide recruitment. PMID:26880066

  7. Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain.

    PubMed

    Cámara-Artigas, Ana

    2016-07-15

    Oligomerization by 3D domain swapping is found in a variety of proteins of diverse size, fold and function. In the early 1960s this phenomenon was postulated for the oligomers of ribonuclease A, but it was not until the 1990s that X-ray diffraction provided the first experimental evidence of this special manner of oligomerization. Nowadays, structural information has allowed the identification of these swapped oligomers in over one hundred proteins. Although the functional relevance of this phenomenon is not clear, this alternative folding of protomers into intertwined oligomers has been related to amyloid formation. Studies on proteins that develop 3D domain swapping might provide some clues on the early stages of amyloid formation. The SH3 domain is a small modular domain that has been used as a model to study the basis of protein folding. Among SH3 domains, the c-Src-SH3 domain emerges as a helpful model to study 3D domain swapping and amyloid formation. PMID:26924596

  8. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and Aβ and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrPC to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrPC that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  9. Proneurogenic Group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Aβ oligomer mouse.

    PubMed

    Kim, S H; Steele, J W; Lee, S W; Clemenson, G D; Carter, T A; Treuner, K; Gadient, R; Wedel, P; Glabe, C; Barlow, C; Ehrlich, M E; Gage, F H; Gandy, S

    2014-11-01

    Proneurogenic compounds have recently shown promise in some mouse models of Alzheimer's pathology. Antagonists at Group II metabotropic glutamate receptors (Group II mGluR: mGlu2, mGlu3) are reported to stimulate neurogenesis. Agonists at those receptors trigger γ-secretase-inhibitor-sensitive biogenesis of Aβ42 peptides from isolated synaptic terminals, which is selectively suppressed by antagonist pretreatment. We have assessed the therapeutic potential of chronic pharmacological inhibition of Group II mGluR in Dutch APP (Alzheimer's amyloid precursor protein E693Q) transgenic mice that accumulate Dutch amyloid-β (Aβ) oligomers but never develop Aβ plaques. BCI-838 is a clinically well-tolerated, orally bioavailable, investigational prodrug that delivers to the brain BCI-632, the active Group II mGluR antagonist metabolite. Dutch Aβ-oligomer-forming APP transgenic mice (APP E693Q) were dosed with BCI-838 for 3 months. Chronic treatment with BCI-838 was associated with reversal of transgene-related amnestic behavior, reduction in anxiety, reduction in levels of brain Aβ monomers and oligomers, and stimulation of hippocampal neurogenesis. Group II mGluR inhibition may offer a unique package of relevant properties as an Alzheimer's disease therapeutic or prophylactic by providing both attenuation of neuropathology and stimulation of repair. PMID:25113378

  10. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS

    NASA Astrophysics Data System (ADS)

    Pujol-Pina, Rosa; Vilaprinyó-Pascual, Sílvia; Mazzucato, Roberta; Arcella, Annalisa; Vilaseca, Marta; Orozco, Modesto; Carulla, Natàlia

    2015-10-01

    The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples.