Science.gov

Sample records for nongenomic thyroid hormone

  1. Overlapping nongenomic and genomic actions of thyroid hormone and steroids

    PubMed Central

    Hammes, Stephen R.; Davis, Paul J.

    2016-01-01

    The genomic actions of thyroid hormone and steroids depend upon primary interactions of the hormones with their specific nuclear receptor proteins. Formation of nuclear co-activator or co-repressor complexes involving the liganded receptors subsequently result in transcriptional events—either activation or suppression—at genes that are specific targets of thyroid hormone or steroids. Nongenomic actions of thyroid hormone and steroids are in contrast initiated at binding sites on the plasma membrane or in cytoplasm or organelles and do not primarily require formation of intranuclear receptor protein-hormone complexes. Importantly, hormonal actions that begin nongenomically outside the nucleus often culminate in changes in nuclear transcriptional events that are regulated by both traditional intranuclear receptors as well as other nuclear transcription factors. In the case of thyroid hormone, the extranuclear receptor can be the classical “nuclear” thyroid receptor (TR), a TR isoform, or integrin αvβ3. In the case of steroid hormones, the membrane receptor is usually, but not always, the classical “nuclear” steroid receptor. This concept defines the paradigm of overlapping nongenomic and genomic hormone mechanisms of action. Here we review some examples of how extranuclear signaling by thyroid hormone and by estrogens and androgens modulates intranuclear hormone signaling to regulate a number of vital biological processes both in normal physiology and in cancer progression. We also point out that nongenomic actions of thyroid hormone may mimic effects of estrogen in certain tumors. PMID:26303085

  2. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    SciTech Connect

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  3. Tissue thyroid hormones and thyronamines.

    PubMed

    Accorroni, Alice; Saponaro, Federica; Zucchi, Riccardo

    2016-07-01

    It has been known for a long time that changes in cardiac function are a major component of the clinical presentation of thyroid disease. Increased heart rate and hyperdynamic circulation are hallmarks of hyperthyroidism, while bradycardia and decreased contractility characterize hypothyroidism. Recent findings have provided novel insights in the physiology and pathophysiology of heart regulation by thyroid hormones. In this review, we summarize the present knowledge on thyroxine (T4) transport and metabolism and on the biochemical pathways leading to genomic and non-genomic effects produced by 3,5,3'-triiodothyronine (T3) and by its active metabolites, particularly 3,5-diiodothyronine (T2) and 3-iodothyronamine (T1AM). On this basis, specific issues of special interest for cardiology are discussed, namely (1) relevance of the regulation of proteins involved in the control of calcium homeostasis and in pacemaker cell activity, due to non-genomic as well as to classical genomic effects; (2) stimulation of fatty acid oxidation by T2 and T1AM, the latter also causing a negative inotropic and chronotropic action at micromolar concentrations; (3) induction of D3 deiodinase in heart failure, potentially causing selective cardiac hypothyroidism, whose clinical implications are still controversial; and (4) cardioprotective effect of T1AM, possibly occurring at physiological concentrations, and relevance of T3 and of thyroid hormone receptor α1 in post-infarction repair. PMID:27115768

  4. [Thyroid hormone and the cardiovascular system].

    PubMed

    Fraczek, Magdalena Maria; Łacka, Katarzyna

    2014-09-01

    It is well established that thyroid hormones affect the cardiovascular system through genomic and nongenomic actions. TRalpha1 is the major thyroid hormone receptor in the heart. T3 suppresses increased mitotic activity of stimulated cardiomyocytes. Hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with enhanced left ventricular systolic and diastolic function and the chronotropic and inotropic properties of thyroid hormones. Hypothyroidism, however, is characterized by opposite changes. In addition, thyroid hormones decrease peripheral vascular resistance, influence the rennin-angiotensin system (RAS), and increase blood volume and erythropoetin secretion with subsequent increased preload and cardiac output. Thyroid hormones play an important role in cardiac electrophysiology and have both pro- and anti-arrhytmic potential. Thyroid hormone deficiency is associated with a less favorable lipid profile. Selective modulation of the TRbeta1 receptor is considered as a potential therapeutic target to treat dyslipidemia without cardiac side effects. Thyroid hormones have a beneficial effect on limiting myocardial ischemic injury, preventing and reversing cardiac remodeling and improving cardiac hemodynamics in endstage heart failure. This is crucial because a low T3 syndrome accompanies both acute and chronic cardiac diseases. PMID:25345279

  5. Thyroid Hormone Treatment

    MedlinePlus

    ... is to closely replicate normal thyroid functioning. Pure, synthetic thyroxine (T4) works in the same way as ... needing thyroid hormone replacement (see Hypothyroidism brochure ). Pure synthetic thyroxine (T4), taken once daily by mouth, successfully ...

  6. Autoimmunity against thyroid hormones.

    PubMed

    Sakata, S

    1994-01-01

    The presence of thyroid hormone autoantibodies (THAA) is a common phenomenon. More than 270 cases have been reported by the end of 1993 involving not only thyroidal but also nonthyroidal disorders. Clinically, THAA in a patient's serum produces variation in thyroid hormone metabolism and, in particular, may interfere with the radioimmunoassay (RIA) results of total or free thyroid hormone measurements, which can cause unusually high or low values of the hormones depending on the B/F separation method used. This in vitro interference can give clinicians confusing information about the patient's thyroid state. As a result, the patient may receive inappropriate treatment from physicians who are unaware of this disorder. The presence of THAA has been reported not only in humans but also in dogs, chickens, and rats. In this review article, clinical features of THAA and the mechanism of autoantibody production are discussed. PMID:7535535

  7. Thyroid Hormone and Cardioprotection.

    PubMed

    Gerdes, Anthony Martin; Ojamaa, Kaie

    2016-01-01

    The heart is a major target of thyroid hormones, with maintenance of euthyroid hormone balance critical for proper function. In particular, chronic low thyroid function can eventually lead to dilated heart failure with impaired coronary blood flow. New evidence also suggests that heart diseases trigger a reduction in cardiac tissue thyroid hormone levels, a condition that may not be detectible using serum hormone assays. Many animal and clinical studies have demonstrated a high prevalence of low thyroid function in heart diseases with worse outcomes from this condition. Animal and human studies have also demonstrated many benefits from thyroid hormone treatment of heart diseases, particularly heart failure. Nonetheless, this potential treatment has not yet translated to patients due to a number of important concerns. The most serious concern involves the potential of accidental overdose leading to increased arrhythmias and sudden death. Several important clinical studies, which actually used excessive doses of thyroid hormone analogs, have played a major role in convincing the medical community that thyroid hormones are simply too dangerous to be considered for treatment in cardiac patients. Nonetheless, this issue has not gone away due primarily to overwhelmingly positive evidence for treatment benefits and a new understanding of the cellular and molecular mechanisms underlying those benefits. This review will first discuss the clinical evidence for the use of thyroid hormones as a cardioprotective agent and then provide an overview of the cellular and molecular mechanisms underlying beneficial changes from thyroid hormone treatment of heart diseases. © 2016 American Physiological Society. Compr Physiol 6:1199-1219, 2016. PMID:27347890

  8. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication. PMID:25438971

  9. Thyroid hormone resistance.

    PubMed

    Olateju, Tolulope O; Vanderpump, Mark P J

    2006-11-01

    Resistance to thyroid hormone (RTH) is a rare autosomal dominant inherited syndrome of reduced end-organ responsiveness to thyroid hormone. Patients with RTH have elevated serum free thyroxine (FT4) and free triiodothyronine (FT3) concentrations and normal or slightly elevated serum thyroid stimulating hormone (TSH) level. Despite a variable clinical presentation, the common characteristic clinical features are goitre but an absence of the usual symptoms and metabolic consequences of thyroid hormone excess. Patients with RTH can be classified on clinical grounds alone into either generalized resistance (GRTH), pituitary resistance (PRTH) or combined. Mutations in the thyroid hormone receptor (TR) beta gene are responsible for RTH and 122 different mutations have now been identified belonging to 300 families. With the exception of one family found to have complete deletion of the TRbeta gene, all others have been demonstrated to have minor alterations at the DNA level. The differential diagnosis includes a TSH-secreting pituitary adenoma and the presence of endogenous antibodies directed against thyroxine (T4) and triiodothyronine (T3). Failure to differentiate RTH from primary thyrotoxicosis has resulted in the inappropriate treatment of nearly one-third of patients. Although occasionally desirable, no specific treatment is available for RTH; however, the diagnosis allows appropriate genetic counselling. PMID:17132274

  10. Thyroid Hormone and Wound Healing

    PubMed Central

    Safer, Joshua D.

    2013-01-01

    Although thyroid hormone is one of the most potent stimulators of growth and metabolic rate, the potential to use thyroid hormone to treat cutaneous pathology has never been subject to rigorous investigation. A number of investigators have demonstrated intriguing therapeutic potential for topical thyroid hormone. Topical T3 has accelerated wound healing and hair growth in rodents. Topical T4 has been used to treat xerosis in humans. It is clear that the use of thyroid hormone to treat cutaneous pathology may be of large consequence and merits further study. This is a review of the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. The paper is intended to provide a context for recent findings of direct thyroid hormone action on cutaneous cells in vitro and in vivo which may portend the use of thyroid hormone to promote wound healing. PMID:23577275

  11. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-01-01

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. PMID:27347891

  12. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  13. Thyroid hormone replacement therapy.

    PubMed

    Wiersinga, W M

    2001-01-01

    Thyroid hormone replacement has been used for more than 100 years in the treatment of hypothyroidism, and there is no doubt about its overall efficacy. Desiccated thyroid contains both thyroxine (T(4)) and triiodothyronine (T(3)); serum T(3) frequently rises to supranormal values in the absorption phase, associated with palpitations. Liothyronine (T(3)) has the same drawback and requires twice-daily administration in view of its short half-life. Synthetic levothyroxine (L-T(4)) has many advantages: in view of its long half-life, once-daily administration suffices, the occasional missing of a tablet causes no harm, and the extrathyroidal conversion of T(4) into T(3) (normally providing 80% of the daily T(3) production rate) remains fully operative, which may have some protective value during illness. Consequently, L-T(4) is nowadays preferred, and its long-term use is not associated with excess mortality. The mean T(4) dose required to normalize serum thyroid stimulating hormone (TSH) is 1.6 microg/kg per day, giving rise to serum free T(4) (fT(4)) concentrations that are slightly elevated or in the upper half of the normal reference range. The higher fT(4) values are probably due to the need to generate from T(4) the 20% of the daily T(3) production rate that otherwise is derived from the thyroid gland itself. The daily maintenance dose of T(4) varies widely between 75 and 250 microg. Assessment of the appropriate T(4) dose is by assay of TSH and fT(4), preferably in a blood sample taken before ingestion of the subsequent T(4) tablet. Dose adjustments can be necessary in pregnancy and when medications are used that are known to interfere with the absorption or metabolism of T(4). A new equilibrium is reached after approximately 6 weeks, implying that laboratory tests should not be done earlier. With a stable maintenance dose, an annual check-up usually suffices. Accumulated experience with L-T(4) replacement has identified some areas of concern. First, the

  14. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  15. Thyroid hormones, learning and memory.

    PubMed

    Rivas, M; Naranjo, J R

    2007-06-01

    Thyroid hormones (THs), T3 and T4, have many physiological actions and are essential for normal behavioral, intellectual and neurological development. THs have a broad spectrum of effects on the developing brain and mediate important effects within the CNS throughout life. Insufficient maternal iodine intake during gestation and TH deficiency during human development are associated to pathological alterations such as cretinism and mental retardation. In adulthood, thyroid dysfunction is related to neurological and behavioral abnormalities, including memory impairment. Analysis of different experimental models suggests that most of the effects on cognition as a result of thyroid dysfunction rely on hippocampal modifications. Insufficiency of THs during development thus alters hippocampal synaptic function and impairs behavioral performance of hippocampal-dependent learning and memory tasks that persist in euthyroid adult animals. In the present review, we summarize the current knowledge obtained by clinical observations and experimental models that shows the importance of THs in learning and mnemonic processes. PMID:17543038

  16. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  17. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  18. Thyroid hormone resistance and its management

    PubMed Central

    Lado-Abeal, Joaquin

    2016-01-01

    The syndrome of impaired sensitivity to thyroid hormone, also known as syndrome of thyroid hormone resistance, is an inherited condition that occurs in 1 of 40,000 live births characterized by a reduced responsiveness of target tissues to thyroid hormone due to mutations on the thyroid hormone receptor. Patients can present with symptoms of hyperthyroidism or hypothyroidism. They usually have elevated thyroid hormones and a normal or elevated thyroid-stimulating hormone level. Due to their nonspecific symptomatic presentation, these patients can be misdiagnosed if the primary care physician is not familiar with the condition. This can result in frustration for the patient and sometimes unnecessary invasive treatment such as radioactive iodine ablation, as in the case presented herein. PMID:27034574

  19. Cardioprotection and thyroid hormones.

    PubMed

    Pingitore, Alessandro; Nicolini, Giuseppina; Kusmic, Claudia; Iervasi, Giorgio; Grigolini, Paolo; Forini, Francesca

    2016-07-01

    The evolution of cardiac disease after an acute ischemic event depends on a complex and dynamic network of mechanisms alternating from ischemic damage due to acute coronary occlusion to reperfusion injury due to the adverse effects of coronary revascularization till post-ischemic remodeling. Cardioprotection is a new purpose of the therapeutic interventions in cardiology with the goal to reduce infarct size and thus prevent the progression toward heart failure after an acute ischemic event. In a complex biological system such as the human one, an effective cardioprotective strategy should diachronically target the network of cross-talking pathways underlying the disease progression. Thyroid system is strictly interconnected with heart homeostasis, and recent studies highlighted its role in cardioprotection, in particular through the preservation of mitochondrial function and morphology, the antifibrotic and proangiogenetic effect and also to the potential induction of cell regeneration and growth. The objective of this review was to highlight the cardioprotective role of triiodothyronine in the complexity of post-ischemic disease evolution. PMID:27011011

  20. Thyroid hormones and heart failure.

    PubMed

    Martinez, Felipe

    2016-07-01

    Heart failure is a major health problem and its relationship to thyroid dysfunction has been increasingly investigated in recent years. Since it has been demonstrated that thyroid hormones (TH) and mainly T3 have cardioprotective effects, it is easy to understand that in the scenario of thyroid disorder, cardiac function may be damaged, and inversely in cardiac dysfunction thyroid dysregulation may be seen. The increase in plasma TH produces a clear neurohormonal activation which impacts negatively on cardiac function. In hypothyroidism, and in addition to extracardiac dysfunction, myocardial and vascular remodelling is altered and they contribute to cardiac failure. Abnormal low plasma TSH has also been shown to be a risk factor for developing HF in several recent studies, and they suggest that TSH is an independent predictor of clinical outcome including death and cardiac hospitalizations. Therefore, physicians should consider all these concepts when managing a patient with heart failure, not only for a clear diagnosis, but also for better and accurate treatment. PMID:27098905

  1. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  2. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size. PMID:24217081

  3. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  4. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  5. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  6. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  7. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  8. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  9. Thyroid Hormone Replacement in Patients Following Thyroidectomy for Thyroid Cancer

    PubMed Central

    Hannoush, Zeina C.; Weiss, Roy E.

    2016-01-01

    Thyroid hormone replacement therapy in patients following thyroidectomy for thyroid cancer, although a potentially straightforward clinical problem, can present the clinician and patient with a variety of challenges. Most often the problems are related to the dose and preparation of thyroid hormone (TH) to use. Some patients feel less well following thyroidectomy and/or radioiodine ablation than they did before their diagnosis. We present evidence that levothyroxine (L-T4) is the preparation of choice, and keeping the thyroid-stimulating hormone (TSH) between detectable and 0.1 mU/L should be the standard of care in most cases. In unusual circumstances, when the patient remains clinically hypothyroid despite a suppressed TSH, we acknowledge there may be as yet unidentified factors influencing the body’s response to TH, and individualized therapy may be necessary in such patients. PMID:26886951

  10. Metabolism of thyroid hormones by rat thyroid tissue in vitro.

    PubMed

    Green, W L

    1978-09-01

    Rat thyroid lobes or hemilobes have been incubated in Krebs-Ringer phosphate buffer containing labeled T4 and/or T3, and the products were separated by paper chromatography. Labeled T4 was actively degraded; about half of the T4 metabolized was recovered as T3. Labeled T3 was also metabolized, but less rapidly than T4. Other than T3 produced from T4, the major products from both hormones were inorganic iodide and iodoprotein; the latter was presumably a secondary product of iodide organification because its formation was inhibited by hypoxia and methimazole. Feeding the animals a low iodine diet increased their hormone-metabolizing activity. Incubation under nitrogen did not affect the rate of T4 degradation, but partially inhibited T3 degradation. Degradation of both hormones was unchanged in the presence of methimazole and ascorbate, was markedly inhibited by 1 mM propylthiouracil (PTU), and was partially inhibited by azide and cyanide. Thyroid tissues concentrated both hormones, tissue to medium gradients averaging 5.4 for T4 and 20.7 for T3; none of the conditions affecting hormone degradation (incubation under nitrogen or with azide, cyanide, or PTU) significantly altered these gradients. It is concluded that the thyroid can metabolize both of its major hormones by a system distinct from thyroidal peroxidase. Hormone metabolism, therefore, is a potentially important factor in net hormone secretion. In its resistance to hypoxia, methimazole, and ascorbate and its sensitivity to PTU, the thyroid's system for generating T3 from T4 resembles T3-forming systems of liver and kidney. The thyroid, because T3 formation is its dominant pathway for T4 metabolism, may provide a useful model for study of this reaction. PMID:744119

  11. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  12. New avenues for regulation of lipid metabolism by thyroid hormones and analogs.

    PubMed

    Senese, Rosalba; Lasala, Pasquale; Leanza, Cristina; de Lange, Pieter

    2014-01-01

    Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3'-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through "non-genomic" pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism. PMID:25538628

  13. Coexistence of resistance to thyroid hormone and papillary thyroid carcinoma

    PubMed Central

    Igata, Motoyuki; Tsuruzoe, Kaku; Kawashima, Junji; Kukidome, Daisuke; Kondo, Tatsuya; Motoshima, Hiroyuki; Shimoda, Seiya; Furukawa, Noboru; Nishikawa, Takeshi; Miyamura, Nobuhiro

    2016-01-01

    Summary Resistance to thyroid hormone (RTH) is a syndrome of reduced tissue responsiveness to thyroid hormones. RTH is majorly caused by mutations in the thyroid hormone receptor beta (THRB) gene. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. Here, we report a rare case of RTH with a papillary thyroid carcinoma (PTC). A 26-year-old woman was referred to our hospital due to a thyroid tumor and hormonal abnormality. She had elevated serum thyroid hormones and non-suppressed TSH levels. Genetic analysis of THRB identified a missense mutation, P452L, leading to a diagnosis of RTH. Ultrasound-guided fine-needle aspiration biopsy of the tumor and lymph nodes enabled the cytological diagnosis of PTC with lymph node metastases. Total thyroidectomy and neck lymph nodes dissection were performed. Following surgery, thyroxine replacement (≥500 μg) was necessary to avoid the symptoms of hypothyroidism and to maintain her TSH levels within the same range as before the operation. During the follow-up, basal thyroglobulin (Tg) levels were around 6 ng/ml and TSH-stimulated Tg levels were between 12 and 20 ng/ml. Up to present, the patient has had no recurrence of PTC. This indicates that these Tg values are consistent with a biochemical incomplete response or an indeterminate response. There is no consensus regarding the management of thyroid carcinoma in patients with RTH, but aggressive treatments such as total thyroidectomy followed by radioiodine (RAI) and TSH suppression therapy are recommended. Learning points There are only a few cases reporting the coexistence of RTH and thyroid carcinoma. Moreover, our case would be the first case presenting one with lymph node metastases. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. When total thyroidectomy is performed in

  14. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  15. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  16. Actions of Thyroid Hormone Analogues on Chemokines.

    PubMed

    Davis, Paul J; Glinsky, Gennadi V; Lin, Hung-Yun; Mousa, Shaker A

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3'-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  17. Biological Functions of Thyroid Hormone in Placenta

    PubMed Central

    Chen, Cheng-Yi; Chen, Chie-Pein; Lin, Kwang-Huei

    2015-01-01

    The thyroid hormone, 3,3,5-triiodo-l-thyronine (T3), modulates several physiological processes, including cellular growth, differentiation, metabolism, inflammation and proliferation, via interactions with thyroid hormone response elements (TREs) in the regulatory regions of target genes. Infection and inflammation are critical processes in placental development and pregnancy-related diseases. In particular, infection is the leading cause of neonatal mortality and morbidity worldwide. However, to date, no successful approach has been developed for the effective diagnosis of infection in preterm infants. Pre-eclampsia (PE) is a serious disorder that adversely affects ~5% of human pregnancies. Recent studies identified a multiprotein complex, the inflammasome, including the Nod-like receptor (NLR) family of cytosolic pattern recognition receptors, the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1, which plays a vital role in the placenta. The thyroid hormone modulates inflammation processes and is additionally implicated in placental development and disease. Therefore, elucidation of thyroid hormone receptor-regulated inflammation-related molecules, and their underlying mechanisms in placenta, should facilitate the identification of novel predictive and therapeutic targets for placental disorders. This review provides a detailed summary of current knowledge with respect to identification of useful biomarkers and their physiological significance in placenta. PMID:25690032

  18. [Sex Specificity in Age-Related Thyroid Hormone Responsiveness].

    PubMed

    Suzuki, Satoru

    2016-01-01

    Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for assessment of the thyroid hormone action is the TSH level. Although age and sex are believed to modify the pituitary set point or response to the free thyroid hormone concentration, the precise age- and sex-dependent responses to thyroid hormone have yet to be reported. In this lecture, molecular aspects of resistance to thyroid hormone are initially overviewed. After presentation of the evidence that the TSH-thyroid hormone axis is evolutionarily modified, and that negative feedback mechanisms may start to play roles in homeostatic regulation at the time of delivery, the rationale of age-dependent thyroid hormone resistance is introduced. To assess the age- and sex-dependent resistance to thyroid hormone, the index is provided by the formula based on the relationship between thyroid hormone and TSH levels. The index is calculated by the results of thyroid function tests obtained from the two individual clinical groups. From the results, there were negative relationships between the free T3 resistance index and age in males of both groups, while there were no apparent relationships in females. These findings indicate that there is a male-specific response to thyroid hormone with aging. Furthermore, the specific features of the response may not be affected by environmental factors such as the presence of disorders or medical treatments. PMID:27192800

  19. Futures Challenges in Thyroid Hormone Signaling Research

    PubMed Central

    Flamant, Frédéric

    2016-01-01

    The canonical pathway of thyroid hormone signaling involves its binding to nuclear receptors (TRs) acting directly on the transcription of a number of genes. Recent genome-wide studies revealed that chromatin occupancy by TR is not sufficient for transactivation of gene expression. Reciprocally, in some cases, DNA binding by TR may not be required for cellular response. This leaves many new questions to be addressed in future research. PMID:27445973

  20. Futures Challenges in Thyroid Hormone Signaling Research.

    PubMed

    Flamant, Frédéric

    2016-01-01

    The canonical pathway of thyroid hormone signaling involves its binding to nuclear receptors (TRs) acting directly on the transcription of a number of genes. Recent genome-wide studies revealed that chromatin occupancy by TR is not sufficient for transactivation of gene expression. Reciprocally, in some cases, DNA binding by TR may not be required for cellular response. This leaves many new questions to be addressed in future research. PMID:27445973

  1. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide.

    PubMed

    Matsubara, Kana; Sanoh, Seigo; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi; Fujimoto, Nariaki

    2012-01-01

    A number of environmental chemicals have been reported to exhibit thyroid hormone-like activity. Since thyroid hormones play a crucial role in development, it is important to identify chemicals in the environment that are capable of endocrine disruption of thyroid hormone homeostasis. In order to detect thyroid hormone-like activity, the growth of pituitary cell lines has been commonly used as a sensitive marker, albeit with limited specificity to thyroid hormones. Reporter gene assays using the thyroid hormone responsive element (TRE) connected to the luciferase reporter gene have also been developed. Thus far however, this type of assay appears to have limited sensitivity compared to cell growth assays. In the present study, we developed a highly sensitive TRE reporter gene assay by using a pituitary cell line, MtT/E-2, and by culturing cells in a serum-free medium. Our assay was developed in order to detect T3 activity at a concentration of 10(-11)M. This assay identified thyroid hormone-like activity from the antiarrhythmic drug, amiodarone, and from three anti-parasitic drugs, bithionol, closantel and rafoxanide, all commonly used in veterinary medicine. Thyroid hormone-like activity of these compounds was further confirmed by the induction of BCL3 gene expression in MtT/E-2, which is known to be regulated by thyroid hormones. Our improved assay was proved to be a sensitive tool for assessing thyroid hormone-like activity of environmental chemicals. PMID:22015988

  2. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters

    PubMed Central

    Richardson, Samantha J.; Wijayagunaratne, Roshen C.; D'Souza, Damian G.; Darras, Veerle M.; Van Herck, Stijn L. J.

    2015-01-01

    Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms. PMID:25784853

  3. Stability of thyroid hormones during continuous infusion.

    PubMed

    Golombek, Sergio G; Alpan, Gad; Frey, Michael; Corbi, Dominick; Lagamma, Edmund F

    2011-07-01

    We investigated the stability of thyroid hormones during a mode of continuous drug infusion via polypropylene tubing using the same conditions that would be applied to treating patients in a hospital setting. The diluted thyroid hormones were prepared using aseptic technique, stored at 2-8°C (36-46°F) and tested within 24 h of preparation for stability and percent recovery from within plastic tubing. Experiments were done in duplicate with triplicate sets of readings for each assay point. Only T(4) prepared with 5% dextrose water (D5W) containing 1 mg/mL albumin remained constant, stable, predictable and accurate over time under various conditions. Other methods of preparation lost drug by adhering to the plastic containers and tubing by as much as 40% of starting concentration. T(3) recovery in the presence of 1 mg/mL of albumin was 107±2% (mean±standard error of the mean) of anticipated drug concentrations. We conclude from this series of experiments that to maintain an accurate and stable dosing of patients receiving intravenous thyroid hormones, 1 mg/mL of albumin must be added to the infusate to prevent lost on the plastic intravenous tubing. PMID:21501101

  4. Thyroid hormones and postembryonic development in amniotes.

    PubMed

    Holzer, Guillaume; Laudet, Vincent

    2013-01-01

    In chordates, metamorphosis is a developmental event well described in amphibians in which thyroid hormone triggers this event. Interestingly, among amphibians, several variations upon the eggs/tadpole/frog developmental sequence are observed such as direct development or neoteny. The fact that TH-regulated metamorphosis is conserved in invertebrate chordates such as amphioxus implies that this event is an ancient feature of all vertebrates. This allows us to propose that TH may play an important role in coordinating the postembryonic development of apparently nonmetamorphosing vertebrates such as mammals or sauropsids. Indeed, the observations of thyroid hormone levels in mammals and sauropsids draw interesting parallels with what is observed during amphibian metamorphosis. At the physiological level, the increase of thyroid hormone signaling is required for the normal development particularly for the intestine and the brain. At the behavioral level, a peak of TH often precedes the autonomy of the young from parental care. At the ecological level, offspring with a TH peak close to birth/hatching tends to be precocial young whereas offspring with a TH peak long after birth/hatching tends to be altricial young. Taken together, these observations in amniotes, which are not considered as undergoing metamorphosis during their development, are consistent with the idea of a late developmental step controlled by TH and allowing the accession to the adult ecological niche. Thus, according to this view, at the molecular level all vertebrates undergo a period of remodeling controlled by TH that is reminiscent of metamorphosis. PMID:23347527

  5. Resistance to thyroid hormone due to defective thyroid receptor alpha

    PubMed Central

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  6. Resistance to thyroid hormone due to defective thyroid receptor alpha.

    PubMed

    Moran, Carla; Chatterjee, Krishna

    2015-08-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  7. Thyroid hormone effect in human hepatocytes.

    PubMed

    Miler, Eliana A; Ríos de Molina, María Del Carmen; Domínguez, Gabriela; Guerra, Liliana N

    2008-01-01

    We have already demonstrated that a combined treatment of methimazole and an antioxidant mixture improved the condition of hyperthyroid patients both biochemically and clinically. Elevated thyroid hormone levels might trigger signs and symptoms of hyperthyroidism through the increase of free radicals. To study the direct effect of thyroid hormone on cellular markers of oxidative stress, we carried out in vitro assays in which 0.1-20.0 nM T3 (6.5-1300.0 ng/dl) doses were added to culture media of the human hepatocyte cell line Hep G2 for 1-24 h. T3 increased malondialdehyde (MDA) and intracellular oxidized glutathione (GSSG) levels; SOD activity was also higher with hormone treatment, whereas catalase and glutathione peroxidase activities showed no variation at different T3 doses and during all experimental times. When ascorbic acid was added to the culture, the MDA level decreased and SOD activity was increased. With higher doses of T3 (e.g. 200 nM), cell death occurred (69% of apoptotic cells). The increase in SOD activity was not enough to overcome the effect of T3 since MDA and GSSG remained high during a 24-h experiment. We showed a beneficial effect of ascorbic acid when cells were exposed to a T3 dose of 20 nM, a higher level of hormone than that achieved in hyperthyroidism. PMID:18647489

  8. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects. PMID:22523832

  9. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  10. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  11. Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning

    PubMed Central

    Yamaguchi, Shinji; Aoki, Naoya; Kitajima, Takaaki; Iikubo, Eiji; Katagiri, Sachiko; Matsushima, Toshiya; Homma, Koichi J.

    2012-01-01

    Filial imprinting in precocial birds is the process of forming a social attachment during a sensitive or critical period, restricted to the first few days after hatching. Imprinting is considered to be part of early learning to aid the survival of juveniles by securing maternal care. Here we show that the thyroid hormone 3,5,3′-triiodothyronine (T3) determines the start of the sensitive period. Imprinting training in chicks causes rapid inflow of T3, converted from circulating plasma thyroxine by Dio2, type 2 iodothyronine deiodinase, in brain vascular endothelial cells. The T3 thus initiates and extends the sensitive period to last more than 1 week via non-genomic mechanisms and primes subsequent learning. Even in non-imprinted chicks whose sensitive period has ended, exogenous T3 enables imprinting. Our findings indicate that T3 determines the start of the sensitive period for imprinting and has a critical role in later learning. PMID:23011135

  12. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development. PMID:24123209

  13. Thyroid Hormones and the Metabolic Syndrome

    PubMed Central

    Iwen, K. Alexander; Schröder, Erich; Brabant, Georg

    2013-01-01

    Background Clustering of various metabolic parameters including abdominal obesity, hyperglycaemia, low high-density lipoprotein cholesterol, elevated triglycerides and hypertension have been used worldwide as metabolic syndrome to predict cardiometabolic risk. Thyroid dysfunction impacts on various levels of these components. Objectives The purpose of the present review is to summarize available data on thyroid hormone-dependent action on components of the metabolic syndrome. Methods A PubMed search for any combination of hyperthyroidism, thyrotoxicosis or hypothyroidism and metabolic syndrome, blood pressure, hypertension, hyperlipidaemia, cholesterol, high-density lipoprotein cholesterol, glucose, diabetes mellitus, body weight or visceral fat was performed. We included papers and reviews published between 2000 and today but accepted also frequently cited papers before 2000. Results There is convincing evidence for a major impact of thyroid function on all components of the metabolic syndrome, reflecting profound alterations of energy homeostasis at many levels. Conclusion Even though the interactions shown in animal models and man are complex, it is evident that insulin sensitivity is highest and adverse thyroid effects on the metabolic system are lowest in euthyroid conditions. PMID:24783045

  14. Thyroid Hormone Enhances Nitric Oxide-Mediated Bacterial Clearance and Promotes Survival after Meningococcal Infection

    PubMed Central

    Wang, Xiao; Altenbacher, Georg; Hagner, Matthias; Berglund, Pernilla; Gao, Yumin; Lu, Ting; Jonsson, Ann-Beth; Sjölinder, Hong

    2012-01-01

    Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia. PMID:22844479

  15. Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas.

    PubMed

    Cremaschi, Graciela A; Cayrol, Florencia; Sterle, Helena Andrea; Díaz Flaqué, María Celeste; Barreiro Arcos, María Laura

    2016-07-01

    Thyroid hormones (THs) are important regulators of metabolism, differentiation and cell proliferation. They can modify the physiology of human and murine T cell lymphomas (TCL). These effects involve genomic mechanisms, mediated by specific nuclear receptors (TR), as well as nongenomic mechanisms, that lead to the activation of different signaling pathways through the activation of a membrane receptor, the integrin αvβ3. Therefore, THs are able to induce the survival and growth of TCL. Specifically, the signaling induced by THs through the integrin αvβ3 activates proliferative and angiogenic programs, mediated by the regulation of the vascular endothelial growth factor (VEGF). The genomic or pharmacologic inhibition of integrin αvβ3 reduces the production of VEGF and induces cell death both in vitro and in xenograft models of human TCL. Here we review the mechanisms involved in the modulation of the physiology of TCL induced by THs, the analysis of the interaction between genomic and nongenomic actions of THs and their contribution to T cell lymphomagenesis. These actions of THs suggest a novel mechanism for the endocrine modulation of the physiopathology of TCL and they provide a potential molecular target for its treatment. PMID:26855318

  16. Bone loss in thyroid disease: role of low TSH and high thyroid hormone.

    PubMed

    Abe, Etsuko; Sun, Li; Mechanick, Jeffrey; Iqbal, Jameel; Yamoah, Kosj; Baliram, Ramkumarie; Arabi, Ario; Moonga, Baljit S; Davies, Terry F; Zaidi, Mone

    2007-11-01

    More than 10% of postmenopausal women in the United States receive thyroid hormone replacement therapy and up to 20% of these women are over-replaced inducing subclinical hyperthyroidism. Because hyperthyroidism and post menopausal osteoporosis overlap in women of advancing age, it is urgent to understand the effect of thyroid hormone excess on bone. We can now provide results that not thyroid hormones but also TSH itself has an equally important role to play in bone remodeling. PMID:18083940

  17. Reduced active thyroid hormone levels after delivery.

    PubMed

    Banovac, K; Kekić, M; Bzik, L; Skreb, F; Sekso, M

    1981-01-01

    The effect of delivery on the serum concentration of thyroid hormones was studied in 25 euthyroid women. After delivery serum free and total T3 and T4 fell transiently with a simultaneous increase in reverse T3 while serum TSH and thyroxine binding globulin (TBG) concentrations showed no significant variation. These data suggest that i) similar to what happens in other stressful situations, delivery influences peripheral T4 metabolism, and ii) an elevation of TBG in serum in the early puerperium does not prevent these changes. PMID:6798093

  18. TSH (Thyroid-Stimulating Hormone) Test

    MedlinePlus

    ... symptoms of a thyroid disorder , including hyperthyroidism or hypothyroidism . TSH is produced by the pituitary gland , a ... thyroid Monitor thyroid replacement therapy in people with hypothyroidism Monitor anti-thyroid treatment in people with hyperthyroidism ...

  19. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  20. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. PMID:22497336

  1. The Role of Thyroid Hormone in Testicular Development and Function

    PubMed Central

    Wagner, Márcia Santos; Wajner, Simone Magagnin; Maia, Ana Luiza

    2009-01-01

    Thyroid hormone is a critical regulator of growth, development and metabolism in virtually all tissues, and altered thyroid status affects many organs and systems. Although for many years testis has been regarded as a thyroid hormone unresponsive organ, it is now evident that thyroid hormone plays an important role in testicular development and function. A considerable amount of data shows that thyroid hormone influences steroidogenesis as well as spermatogenesis. The involvement of triiodothyronine (T3) in the control of Sertoli cell proliferation and functional maturation is widely accepted, as well as its role in postnatal Leydig cell differentiation and steroidogenesis. The presence of thyroid hormone receptors in testicular cells throughout development and in adulthood implies that T3 may act directly on these cells to bring about its effects. Several recent studies have employed different methodologies and techniques in an attempt to understand the mechanisms underlying thyroid hormone effects on testicular cells. The current review aims at presenting an updated picture of the recent advances made regarding the role of thyroid hormones in male gonadal function. PMID:18728126

  2. New avenues for regulation of lipid metabolism by thyroid hormones and analogs

    PubMed Central

    Senese, Rosalba; Lasala, Pasquale; Leanza, Cristina; de Lange, Pieter

    2014-01-01

    Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3′-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through “non-genomic” pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism. PMID:25538628

  3. Thyroid Hormone and Leptin in the Testis

    PubMed Central

    Ramos, Cristiane Fonte; Zamoner, Ariane

    2014-01-01

    Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis. PMID:25505448

  4. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  5. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  6. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  7. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone.

    PubMed

    Ono, S; Schwartz, I D; Mueller, O T; Root, A W; Usala, S J; Bercu, B B

    1991-11-01

    Generalized resistance to thyroid hormones (GRTH) commonly results from mutations in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene. We have reported on a novel deletion mutation in c-erbA beta in a kindred, S, with GRTH. One patient from this kindred was the product of a consanguineous union from two affected members and was homozygous for the beta-receptor defect. This patient at 3.5 weeks of age had unprecedented elevations of TSH, free T4, and free T3 (TSH, 389 mU/L; free T4, 330.8 pmol/L; free T3, 82,719 fmol/L). He displayed a complex mixture of tissue-specific hyperthyroidism and hypothyroidism. He had delayed growth (height age, 1 3/12 yr at chronological age 2 9/12 yr) and skeletal maturation (bone age, 4 months), and developmental delay (developmental age, 8 months), but he was quite tachycardic. The homozygous patient of kindred S is markedly different from a recently reported patient with no c-erbA beta-receptor. This difference indicates that a dominant negative form of c-erbA beta in man can inhibit at least some thyroid hormone action mediated by the c-erbA alpha-receptors. PMID:1682340

  8. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor. beta

    SciTech Connect

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J. )

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine {yields} cytosine replacement in the codon for amino acid 340 resulted in a glycine {yields} arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor {beta} gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor {beta} gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  9. Thyroid Hormone Mediated Modulation of Energy Expenditure.

    PubMed

    Vaitkus, Janina A; Farrar, Jared S; Celi, Francesco S

    2015-01-01

    Thyroid hormone (TH) has diverse effects on mitochondria and energy expenditure (EE), generating great interest and research effort into understanding and harnessing these actions for the amelioration and treatment of metabolic disorders, such as obesity and diabetes. Direct effects on ATP utilization are a result of TH's actions on metabolic cycles and increased cell membrane ion permeability. However, the majority of TH induced EE is thought to be a result of indirect effects, which, in turn, increase capacity for EE. This review discusses the direct actions of TH on EE, and places special emphasis on the indirect actions of TH, which include mitochondrial biogenesis and reduced metabolic efficiency through mitochondrial uncoupling mechanisms. TH analogs and the metabolic actions of T2 are also discussed in the context of targeted modulation of EE. Finally, clinical correlates of TH actions on metabolism are briefly presented. PMID:26193258

  10. Emerging role of thyroid hormone metabolites.

    PubMed

    Gnocchi, D; Steffensen, K R; Bruscalupi, G; Parini, P

    2016-07-01

    Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism. PMID:26748938

  11. Thyroid Hormone Mediated Modulation of Energy Expenditure

    PubMed Central

    Vaitkus, Janina A.; Farrar, Jared S.; Celi, Francesco S.

    2015-01-01

    Thyroid hormone (TH) has diverse effects on mitochondria and energy expenditure (EE), generating great interest and research effort into understanding and harnessing these actions for the amelioration and treatment of metabolic disorders, such as obesity and diabetes. Direct effects on ATP utilization are a result of TH’s actions on metabolic cycles and increased cell membrane ion permeability. However, the majority of TH induced EE is thought to be a result of indirect effects, which, in turn, increase capacity for EE. This review discusses the direct actions of TH on EE, and places special emphasis on the indirect actions of TH, which include mitochondrial biogenesis and reduced metabolic efficiency through mitochondrial uncoupling mechanisms. TH analogs and the metabolic actions of T2 are also discussed in the context of targeted modulation of EE. Finally, clinical correlates of TH actions on metabolism are briefly presented. PMID:26193258

  12. The Relationships between Thyroid Hormones and Thyroid-stimulating Hormone with Lipid Profile in Euthyroid Men

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Mohamed, Isa Naina; Aminuddin, Amilia; Johari, Mohamad Hanapi; Ngah, Wan Zurinah Wan

    2014-01-01

    Background and Aim: Alteration in lipid profile is a common observation in patients with thyroid dysfunction, but the current knowledge on the relationship between lipids and thyroid hormone levels in euthyroid state is insufficient. The current study aimed to determine the association between thyroid hormones and thyroid-stimulating hormone (TSH) with lipid profile in a euthyroid male population. Methods: A total of 708 Chinese and Malay men aged 20 years and above were recruited in this cross-sectional study. Their blood was collected for the determination of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglyceride (TG), free thyroxine (FT4), free triiodothyronine (FT3) and TSH levels. The association was analyzed using multiple regression and logistic regression models with adjustment for age, ethnicity, body mass index and FT4/FT3/TSH levels. Results: In multiple regression models, TSH was positively and significantly associated with TG (p<0.05). Free T4 was positively and significantly associated with TC, LDL-C and HDL-C (p<0.05). Free T3 was negatively and significantly associated with HDL-C (p<0.05). In binary logistic models, an increase in TSH was significantly associated with higher prevalence of elevated TG in the subjects (p<0.05), while an increase in FT4 was significantly associated with higher prevalence of elevated TC but a lower prevalence of subnormal HDL in the subjects (p<0.05). Free T3 was not associated with any lipid variables in the logistic regression (p>0.05). Conclusions: In euthyroid Malaysian men, there are positive and significant relationships between TSH level and TG level, and between FT4 level and cholesterol levels. PMID:24578612

  13. Transport of Thyroid Hormone in Brain

    PubMed Central

    Wirth, Eva K.; Schweizer, Ulrich; Köhrle, Josef

    2014-01-01

    Thyroid hormone (TH) transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS) function. In this review, we highlight some key factors and structures regulating TH uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrations may dictate cellular uptake. One of these proteins, transthyretin is also present in the cerebrospinal fluid (CSF) after being secreted by the choroid plexus. Entry routes into the brain like the blood–brain-barrier (BBB) and the blood–CSF-barrier will be explicated regarding fetal and adult status. Recently identified TH transmembrane transporters (THTT) like monocarboxylate transporter 8 (Mct8) play a major role in uptake of TH across the BBB but as well in transport between cells like astrocytes and neurons within the brain. Species differences in transporter expression will be presented and interference of TH transport by endogenous and exogenous compounds including endocrine disruptors and drugs will be discussed. PMID:25009532

  14. Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone

    PubMed Central

    Shinomiya, Ai; Shimmura, Tsuyoshi; Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi

    2014-01-01

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication. PMID:24600435

  15. Developmental Thyroid Hormone Disruption: Prevalence, Environmental Contaminants and Neurodevelopmental Consequences

    EPA Science Inventory

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to...

  16. Thyroiditis

    MedlinePlus

    ... Hashimoto’s thyroiditis is the most common cause of hypothyroidism in the United States. Postpartum thyroiditis, which causes ... hormone levels in the blood) followed by temporary hypothyroidism, is a common cause of thyroid problems after ...

  17. Thyroid

    MedlinePlus

    Thyroid is used to treat the symptoms of hypothyroidism (a condition where the thyroid gland does not produce enough thyroid hormone). Symptoms of hypothyroidism include lack of energy, depression, constipation, weight gain, ...

  18. Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole

    EPA Science Inventory

    Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...

  19. The thyroid gland and thyroid hormones in sheepshead minnow (Cyprinodon variegatus) during early development and metamorphosis.

    PubMed

    Schnitzler, Joseph G; Klaren, Peter H M; Mariavelle, Emeline; Das, Krishna

    2016-04-01

    The sheepshead minnow is widely used in ecotoxicological studies that only recently have begun to focus on disruption of the thyroid axis by xenobiotics and endocrine disrupting compounds. However, reference levels of the thyroid prohormone thyroxine (T4) and biologically active hormone 3,5,3'-triiodothyronine (T3) and their developmental patterns are unknown. This study set out to describe the ontogeny and morphology of the thyroid gland in sheepshead minnow, and to correlate these with whole-body concentrations of thyroid hormones during early development and metamorphosis. Eggs were collected by natural spawning in our laboratory. T4 and T3 were extracted from embryos, larvae and juveniles and an enzyme-linked immunoassay was used to measure whole-body hormone levels. Length and body mass, hatching success, gross morphology, thyroid hormone levels and histology were measured. The onset of metamorphosis at 12-day post-hatching coincided with surges in whole-body T4 and T3 concentrations. Thyroid follicles were first observed in pre-metamorphic larvae at hatching and were detected exclusively in the subpharyngeal region, surrounding the ventral aorta. Follicle size and thyrocyte epithelial cell heights varied during development, indicating fluctuations in thyroid hormone synthesis activity. The increase in the whole-body T3/T4 ratio was indicative of an increase in outer ring deiodination activity. This study establishes a baseline for thyroid hormones in sheepshead minnows, which will be useful for the understanding of thyroid hormone functions and in future studies of thyroid toxicants in this species. PMID:26573854

  20. Prolonged weightlessness effect on postflight plasma thyroid hormones

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1977-01-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  1. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  2. Glucoregulatory function of thyroid hormones: role of pancreatic hormones

    SciTech Connect

    Mueller, M.J.B.; Burger, A.G.; Ferrannini, E.; Jequier, E.; Acheson, K.J.

    1989-01-01

    Glucose metabolism was investigated in humans before and 14 days after 300 micrograms L-thyroxine (T4)/day using a sequential clamp protocol during short-term somatostatin infusion (500 micrograms/h, 0-6 h) at euglycemia (0-2.5 h), at 165 mg/dl (2.5-6 h), and during insulin infusion (1.0 mU.kg-1.min-1, 4.5-6 h). T4 treatment increased plasma T4 (+96%) and 3,5,3'-triiodothyronine (T3, +50%), energy expenditure (+8%), glucose turnover (+32%), and glucose oxidation (Glucox +87%) but decreased thyroid-stimulating hormone (-96%) and nonoxidative glucose metabolism (Glucnonox, -30%) at unchanged lipid oxidation (Lipox). During somatostatin and euglycemia glucose production (Ra, -67%) and disposal (Rd, -28%) both decreased in euthyroid subjects but remained at -22% and -5%, respectively, after T4 treatment. Glucox (control, -20%; +T4, -25%) fell and Lipox increased (control, +42%; +T4, +45%) in both groups, whereas Glucnonox decreased before (-36%) but increased after T4 (+57%). During somatostatin infusion and hyperglycemia Rd (control, +144%; +T4, +84%) and Glucnonox (control, +326%; +T4, +233%) increased, whereas Glucox and Lipox remained unchanged. Insulin further increased Rd (+76%), Glucox (+155%), and Glucnonox (+50%) but decreased Ra (-43%) and Lipox (-43%). All these effects were enhanced by T4 (Rd, +38%; Glucox, +45%; Glucnonox, +35%; Ra, +40%; Lipox, +11%). Our data provide evidence that, in humans, T3 stimulates Ra and Rd, which is in part independent of pancreatic hormones.

  3. Thyroid hormone action: astrocyte-neuron communication.

    PubMed

    Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone (TH) action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by D2. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article, we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local TH action during development. PMID:24910631

  4. Thyroid Hormone Action: Astrocyte–Neuron Communication

    PubMed Central

    Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone (TH) action is exerted mainly through regulation of gene expression by binding of T3 to the nuclear receptors. T4 plays an important role as a source of intracellular T3 in the central nervous system via the action of the type 2 deiodinase (D2), expressed in the astrocytes. A model of T3 availability to neural cells has been proposed and validated. The model contemplates that brain T3 has a double origin: a fraction is available directly from the circulation, and another is produced locally from T4 in the astrocytes by D2. The fetal brain depends almost entirely on the T3 generated locally. The contribution of systemic T3 increases subsequently during development to account for approximately 50% of total brain T3 in the late postnatal and adult stages. In this article, we review the experimental data in support of this model, and how the factors affecting T3 availability in the brain, such as deiodinases and transporters, play a decisive role in modulating local TH action during development. PMID:24910631

  5. BRAIN, LIVER AND THYROID BIOMARKERS REFLECT ENHANCED SENSITIVITY OF THE DEVELOPING RAT TO THYROID HORMONE DEPLETION.

    EPA Science Inventory

    Many developmental events are regulated at least in part by thyroid hormones. It was hypothesized that tissue biomarkers of thyroid status would be more accurate predictors of neurotoxicity than serum biomarkers in rats treated with the goitrogen propylthiouracil (PTU). Over seve...

  6. Deiodination as an index of chemical disruption of thyroid hormone homeostasis and thyroidal status in fish

    SciTech Connect

    Eales, J.G.; Brown, S.B.; Cyr, D.G.; Adams, B.A.; Finnson, K.R.

    1999-07-01

    Commonly used indices of fish thyroidal status are based on thyroxine (T4) secretion by thyroid tissue under control of the central brain-pituitary-thyroid axis. However, much of the control of the fish thyroid system also occurs in peripheral tissues, such as liver, by regulating T4 prohormone conversion to biologically active 3,5,3{prime}-triiodothyronine (T3) or to biologically inactive 3,3{prime},5{prime}-triiodothyronine and by regulating T3 conversion to inactive 3,3{prime}-diiodothyronine. These extrathyroidal conversions depend on a family of independently-regulated selenocysteine-containing microsomal deiodinases. The authors describe deiodination assays and evaluate their potential as biomarkers for exposure to chemicals that directly or indirectly disrupt thyroid hormone homeostasis or thyroidal status. The authors conclude that deiodination be included in a minimum suite of assays to detect xenobiotic effects on the fish thyroid system.

  7. Embryonic exposure to excess thyroid hormone causes thyrotrope cell death

    PubMed Central

    Tonyushkina, Ksenia N.; Shen, Meng-Chieh; Ortiz-Toro, Theresa; Karlstrom, Rolf O.

    2013-01-01

    Central congenital hypothyroidism (CCH) is more prevalent in children born to women with hyperthyroidism during pregnancy, suggesting a role for thyroid hormone (TH) in the development of central thyroid regulation. Using the zebrafish embryo as a model for thyroid axis development, we have characterized the ontogeny of negative feedback regulation of thyrotrope function and examined the effect of excess TH on thyrotrope development. We found that thyroid-stimulating hormone β subunit (tshb) and type 2 deiodinase (dio2) are coexpressed in zebrafish thyrotropes by 48 hours after fertilization and that TH-driven negative feedback regulation of tshb transcription appears in the thyroid axis by 96 hours after fertilization. Negative feedback regulation correlated with increased systemic TH levels from the developing thyroid follicles. We used a transgenic zebrafish that expresses GFP under the control of the tshb promoter to follow thyrotrope fates in vivo. Time-lapse imaging revealed that early exposure to elevated TH leads to thyrotrope cell death. Thyrotrope numbers slowly recovered following the removal of excess TH. These data demonstrate that transient TH exposure profoundly impacts the thyrotrope population during a critical period of pituitary development and may have long-term implications for the functional reserve of thyroid-stimulating hormone (TSH) production and the TSH set point later in life. PMID:24316972

  8. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  9. Thyroid hormone transporters--functions and clinical implications.

    PubMed

    Bernal, Juan; Guadaño-Ferraz, Ana; Morte, Beatriz

    2015-07-01

    The cellular influx and efflux of thyroid hormones are facilitated by transmembrane protein transporters. Of these transporters, monocarboxylate transporter 8 (MCT8) is the only one specific for the transport of thyroid hormones and some of their derivatives. Mutations in SLC16A2, the gene that encodes MCT8, lead to an X-linked syndrome with severe neurological impairment and altered concentrations of thyroid hormones. Histopathological analysis of brain tissue from patients who have impaired MCT8 function indicates that brain lesions start prenatally, and are most probably the result of cerebral hypothyroidism. A Slc16a2 knockout mouse model has revealed that Mct8 is an important mediator of thyroid hormone transport, especially T3, through the blood-brain barrier. However, unlike humans with an MCT8 deficiency, these mice do not have neurological impairment. One explanation for this discrepancy could be differences in expression of the T4 transporter OATP1C1 in the blood-brain barrier; OATP1C1 is more abundant in rodents than in primates and permits the passage of T4 in the absence of T3 transport, thus preventing full cerebral hypothyroidism. In this Review, we discuss the relevance of thyroid hormone transporters in health and disease, with a particular focus on the pathophysiology of MCT8 mutations. PMID:25942657

  10. Influence of thyroid hormones on maturation of rat cerebellar astrocytes.

    PubMed

    Manzano, Jimena; Bernal, Juan; Morte, Beatriz

    2007-05-01

    Thyroid hormone influences brain maturation through interaction with nuclear receptors and regulation of gene expression. Their role on astrocyte maturation remains unclear. We have analyzed the role of thyroid hormone in rat cerebellar astrocyte maturation by comparing the sequential patterns of intermediate filament expression in normal and hypothyroid animals. During normal development astroglial cells sequentially express nestin, vimentin, and glial fibrillary acidic protein. Differentiated astrocytes appeared in the superior medullary vellum by postnatal day 2 and reached the white mater and internal granular layer by postnatal day 4. Intermediate filament marker expression was transiently lost from postnatal days 6 to 8 in anterior lobes, without an increased apoptosis. Vimentin expression was replaced by glial fibrillary acidic protein between postnatal days 10 and 32. The differentiated astrocytes were evenly distributed throughout the cerebellar slices, including the internal granular layer. Differences between normal and hypothyroid rats were observed starting from postnatal day 4, with lack of differentiated astrocytes in the internal granular layer. The transient decrease of astrocyte markers immunoreactivity in the anterior lobe did not take place in hypothyroid rats. The vimentin-glial fibrillary acidic protein transition was delayed and most differentiated astrocytes remained confined to the white matter. The results indicate that thyroid hormone deficiency induces a delay and a partial arrest of astrocyte differentiation. Astrocytes express thyroid hormone receptor alpha and beta subtypes suggesting that astrocytes are direct target cells of thyroid hormones. PMID:17408906

  11. Early Temporal Effects of Three Thyroid Hormone Synthesis Inhibitors in Xenopus laevis

    EPA Science Inventory

    Thyroid axis disruption is an important consideration when evaluating the risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone ...

  12. Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...

  13. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay

    PubMed Central

    Miyata, Kaori; Ose, Keiko

    2012-01-01

    There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach. PMID:22481853

  14. Neonatal detection of generalized resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Balzano, S.; Scherberg, N.H.; Refetoff, S. )

    1990-11-07

    Generalized resistance to thyroid hormone (GRTH) is an inherited disease that is usually suspected when elevated serum thyroid hormone levels are associated with nonsuppressed thyrotropin. Often these test results are obtained because of short stature, decreased intelligence, and/or hyperactivity with learning disability noted in childhood and adolescence, or because of goiter in adulthood. The authors detected GRTH at birth by analysis of blood obtained during routine neonatal screening. The proposita, born to a mother with GRTH, had a thyrotropin level of 26 mU/L and a corresponding thyroxine concentration of 656 nmol/L. Administration of thyroid hormone in doses eightfold to 10-fold above replacement levels were required to reduce serum thyrotropin to normal levels without induction of hypermetabolism. This case, and the retrospective finding of high thyroxine levels in five newborns subsequently diagnosed as having GRTH, suggest that measurement of thyroxine at birth, in conjunction with thyrotropin, could allow the early detection of GRTH.

  15. Multiple genetic factors in the heterogeneity of thyroid hormone resistance

    SciTech Connect

    Weiss, R.E.; Refetoff, S. ); Marcocci, C.; Bruno-Bossio, G. )

    1993-01-01

    Generalized resistance to thyroid hormone (GRTH), a syndrome of inherited tissue hyposensitivity to thyroid hormone, is linked to thyroid hormone receptor (TR) mutations. A typical feature of GRTH is variable severity of organ involvement among families that, surprisingly, does not correlate with the degree of T[sub 3]-binding impairment of the corresponding in vitro synthesized mutant TRs. Furthermore, variations in the clinical severity among family members harboring identical TR[beta] mutations have been reported. The authors compared serum levels of thyroid hormones that maintained a normal TSH in members of a large family with GRTH divided in three groups: Group A, 8 affected subjects with a mutation replacing arginine-320 with a histidine in the T[sub 3]-binding domain of TR[beta]; Group B, 11 first degree relatives (sibs and children of affected subjects) with no TR[beta] mutation; Group C, 16 controls related by marriage. TSH values were not different among the three groups. As expected, total and free T[sub 4] and T[sub 3], and rT[sub 3] levels were significantly higher in Group A vs Groups B and C. However, with the exception of T[sub 3], the same tests were also significantly higher in Group B vs Group C. The latter differences are not due to thyroid hormone transport in serum since TBG concentrations were not different. It is postulated that genetic variability of factors that contribute to the action of thyroid hormone modulate the phenotype of GRTH associated with TR[beta] mutations. 23 refs., 2 figs., 1 tab.

  16. Thyroid hormones in milk: physiological approach--a review.

    PubMed

    Strbák, V; Macho, L; Skultétyová, M; Michalicková, J; Pohlová, G

    1983-10-01

    Reported values of the concentration of thyroid hormones in milk vary substantially. There are some doubts on the specificity of methods used for their estimation. We aimed, therefore, to study the effects of mother milk on thyroid function parameters in sucklings as well as at the effect of milk secretion on maternal thyroid. According to Fukuda et al. [1980] the lactation induces a hypothyroid state in the rat (high TSH, low thyroid hormones in maternal plasma). In our study the weaning of 18-day old rats resulted in gradual decrease of T4 in suckling plasma through 24 h followed with a transient thyroid activation. Thyroidectomy of lactating rats resulted in a transient decrease of T4 in sucklings. The difference in mother milk intake achieved by different litter size also affected the thyroid function of sucklings. The pups from small size litters (more milk consumption) had low thyroid secretion rate and low plasma TSH, while the level of T4 in plasma was high under a higher growth rate and accelerated overall maturation. All these results suggest an exogenous intake of thyroid hormones in suckling rat. We found that lactation in women resulted in lower T4 and higher TSH in plasma as compared to women who had interrupted their lactation. In the next part of our study more than 80 infants were longitudinally followed and sampled at birth (cord blood), at 2, 6 and 10 weeks and at 4, 6, 9 and 12 months. Only moderate differences were found at 4 months (high rT3) in breast fed infants and 9 at months (high T3 in plasma of infants weaned during the first week of life) when the data were evaluated according to the type of feeding. Thyroid activity of human milk was tested by feeding thyroidectomized rats with a diet containing human milk. Although plasma TSH was affected by such a diet, we did not detect any T4 and T3 in plasma of thyroidectomized rats which probably refects low calculated intake of hormones with the diet. We conclude that the lactation affects the

  17. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance.

    PubMed

    Bassett, J H Duncan; Williams, Graham R

    2016-04-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  18. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  19. Iodine and thyroid hormones during pregnancy and postpartum.

    PubMed

    Pérez-López, Faustino R

    2007-07-01

    Iodine is a trace element essential for synthesis of the thyroid hormones, triiodothyronine and thyroxine. These hormones play a vital role in the early growth and development stages of most organs, especially the brain. The World Health Organization (WHO) has declared that, after famine, iodine deficiency is the most avoidable cause of cerebral lesions including different degrees of mental retardation and cerebral paralysis. The main function of iodine in vertebrates is to interact with the thyroid hormones. During pregnancy sufficient quantities of iodine are required to prevent the appearance of hypothyroidism, trophoblastic and embryonic or fetal disorders, neonatal and maternal hypothyroidism, and permanent sequelae in infants. Thyroid hormone receptors and iodothyronine deiodinases are present in placenta and central nervous tissue of the fetus. A number of environmental factors influence the epidemiology of thyroid disorders, and even relatively small abnormalities and differences in the level of iodine intake in a population have profound effects on the occurrence of thyroid abnormalities. The prevalence of disorders related to iodine deficit during pregnancy and postpartum has increased. Iodine supplementation is an effective measure in the case of pregnant and lactating women. However, it is not implemented and the problem is still present even in societies with theoretically advanced health systems. During pregnancy and postpartum, the WHO recommends iodine intake be increased to at least 200 microg/day. Side-effects provoked by iodine supplementation are rare during pregnancy at the recommended doses. PMID:17701774

  20. Thyroid Hormone Response Element Half-Site Organization and Its Effect on Thyroid Hormone Mediated Transcription

    PubMed Central

    Paquette, Martin A.; Atlas, Ella; Wade, Mike G.; Yauk, Carole L.

    2014-01-01

    Thyroid hormone (TH) exerts its effects by binding to the thyroid hormone receptor (TR), which binds to TH response elements (TREs) to regulate target gene expression. We investigated the relative ability of liganded homodimers TR and retinoid X receptor (RXR), and the heterodimer TR/RXR, to regulate gene expression for the TRE half-site organizations: direct repeat 4 (DR4), inverted repeat 0 (IR0) and everted repeat 6 (ER6). Luciferase reporter assays using a DR4 TRE suggest that both the TR homodimer and TR/RXR heterodimer regulate luciferase expression in the presence of their respective ligands. However, in the presence of the IR0 TRE, transfection with TR/RXR and RXR alone increased luciferase activity and there was no effect of TR alone. The presence of 9-cis-retinoic acid was necessary for luciferase expression, whereas TH treatment alone was insufficient. For the ER6 TRE, transfection with TR/RXR, TR alone and RXR alone (in the presence of their respective ligands) all caused a significant increase in luciferase activity. When both ligands were present, transfection with both TR/RXR caused more activation. Finally, we investigated the efficacy of the TR-antagonist 1–850 in inhibiting transcription by TR or TR/RXR at DR4 and ER6 TREs. We found that 1–850 did not suppress luciferase activation in the presence of TR/RXR for the ER6 TRE, suggesting conformational changes of the ligand binding domain of the TR when bound to different TRE half-site organizations. Collectively, the findings indicate that there are fundamental differences between TRE configurations that affect nuclear receptor interactions with the response element and ability to bind ligands and antagonists. PMID:24971931

  1. [Thyroid hormones and their precursors. II. Species-specific properties].

    PubMed

    Tóth, Gergo; Noszál, Béla

    2014-01-01

    This paper surveys the species-specific physico-chemical parameters (basicity and lipophilicity) and related biological functions of thyroid hormones (thyroxine, liothyronine and reverse liothyronine) and their biological precursors (tyrosine, monoiodotyrosine and diiodotyrosine). The protonation macroconstants were determined by 1H NMR-pH titrations while the microconstants were determined by a multimodal spectroscopic-deductive methodology using auxiliary derivatives of reduced complexity. Our results show that the different number and/or position of iodine are the key factors to influence the phenolate basicity. The ionization state of the phenolate site is crucial in the biosynthesis and protein binding of thyroid hormones. The role of the protonation state in the receptor binding was investigated by an in silico docking method. Microspecies of thyroid hormones were docked to the thyroid hormone receptor isoforms. Our results quantitate at the molecular level how the ionization stage and the charge distribution influence the protein binding. The anionic form of the carboxyl group is essential for the protein binding, whereas the protonated form of the amino group loosens it. The protonation state of the phenolate plays a role of secondary importance in the receptor binding. The combined results of docking and microspeciation studies show that microspecies of the highest concentration at the pH of blood are not the strongest binding ones. The site-specific lipophilicity of our investigated molecules was determined with the measurement of distribution coefficients at different pH using carboxymethyl- and O-methyl-derivatives to mimic the partition of some of the individual microspecies. Correction factors were determined and introduced. Our data show that the iodinated aromatic ring system is the definitive structural element that fundamentally determines the lipophilicity of thyroid hormones, whereas the protonation state of the aliphatic part is essential in

  2. Regulation of Mammary Gland Sensitivity to Thyroid Hormones during the Transition from Pregnancy to Lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thyroid hormones are galactopoietic and appear to assist in establishing the mammary gland’s metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of Holstei...

  3. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  4. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  5. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  6. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  7. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  8. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  9. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones. PMID:25913319

  10. The immune system as a regulator of thyroid hormone activity.

    PubMed

    Klein, John R

    2006-03-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid-stimulating hormone (TSH) can be produced by many types of extra-pituitary cells--including T cells, B cells, splenic dendritic cells, bone marrow hematopoietic cells, intestinal epithelial cells, and lymphocytes--the functional significance of those TSH pathways remains elusive and historically has been largely ignored from a research perspective. There is now, however, evidence linking cells of the immune system to the regulation of thyroid hormone activity in normal physiological conditions as well as during times of immunological stress. Although the mechanisms behind this are poorly understood, they appear to reflect a process of local intrathyroidal synthesis of TSH mediated by a population of bone marrow cells that traffic to the thyroid. This hitherto undescribed cell population has the potential to microregulate thyroid hormone secretion leading to critical alterations in metabolic activity independent of pituitary TSH output, and it has expansive implications for understanding mechanisms by which the immune system may act to modulate neuroendocrine function during times of host stress. In this article, the basic underpinnings of the hematopoietic-thyroid connection are described, and a model is presented in which the immune system participates in the regulation of thyroid hormone activity during acute infection. PMID:16514168

  11. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems. PMID:27420076

  12. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  13. Thyroid hormone testing in the 21st century.

    PubMed

    Singh, Ravinder J; Kaur, Parmpreet

    2016-08-01

    Thyroid dysfunction and treatment follow up require accurate measurement of thyroid hormones. Most thyroid disease is treated on an outpatient basis; thus, assays have to be rapid and cost effective for optimal patient care. There are no rapid or point-of-care thyroid tests yet available, which could replace centralized automated thyroid testing. With the high population of thyroid dysfunction, it is important for thyroid assays to be available widely and locally. Immunoassays are most commonly used due to their ease and availability, but are limited in their accuracy. MS assays are much more specific, but are laborious with a high machine cost. Many hospitals may not be able to afford the machines and lack technical expertise. Sensitivity, specificity and standardization issues still result in substantial differences between various tests currently used for this population. To address these issues, new performance standards are being established by the professional organizations and technological advancements are being undertaken by instrument manufacturers. Automation solution is provided by various manufacturers and offers a choice for the hospital labs to select a platform which helps in their workflow and other chemistry testing. This has also resulted in decentralization and easy access to the thyroid testing. Even with these advancements, it is understandably confusing for clinicians to choose an assay for various clinical scenarios (20). As it becomes more available and standardized, LC-MS will continue to demonstrate its superiority to immunoassay. PMID:27329994

  14. Role of maternal thyroid hormones in the developing neocortex and during human evolution.

    PubMed

    Stenzel, Denise; Huttner, Wieland B

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  15. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  16. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    PubMed Central

    Banker, D E; Eisenman, R N

    1993-01-01

    Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid

  17. Thyroid hormone and anti-apoptosis in tumor cells.

    PubMed

    Lin, Hung-Yun; Glinsky, Gennadi V; Mousa, Shaker A; Davis, Paul J

    2015-06-20

    The principal secretory product of the thyroid gland, L-thyroxine (T4), is anti-apoptotic at physiological concentrations in a number of cancer cell lines. Among the mechanisms of anti-apoptosis activated by the hormone are interference with the Ser-15 phosphorylation (activation) of p53 and with TNFα/Fas-induced apoptosis. The hormone also decreases cellular abundance and activation of proteolytic caspases and of BAX and causes increased expression of X-linked inhibitor of apoptosis (XIAP). The anti-apoptotic effects of thyroid hormone largely are initiated at a cell surface thyroid hormone receptor on the extracellular domain of integrin αvβ3 that is amply expressed and activated in cancer cells. Tetraiodothyroacetic acid (tetrac) is a T4 derivative that, in a model of resveratrol-induced p53-dependent apoptosis in glioma cells, blocks the anti-apoptotic action of thyroid hormone, permitting specific serine phosphorylation of p53 and apoptosis to proceed. In a nanoparticulate formulation limiting its action to αvβ3, tetrac modulates integrin-dependent effects on gene expression in human cancer cell lines that include increased expression of a panel of pro-apoptotic genes and decreased transcription of defensive anti-apoptotic XIAP and MCL1 genes. By a variety of mechanisms, thyroid hormone (T4) is an endogenous anti-apoptotic factor that may oppose chemotherapy-induced apoptosis in αvβ3-expressing cancer cells. It is possible to decrease this anti-apoptotic activity pharmacologically by reducing circulating levels of T4 or by blocking effects of T4 that are initiated at αvβ3. PMID:26041883

  18. Thyroid hormone and anti-apoptosis in tumor cells

    PubMed Central

    Lin, Hung-Yun; Glinsky, Gennadi V.; Mousa, Shaker A.; Davis, Paul J.

    2015-01-01

    The principal secretory product of the thyroid gland, L-thyroxine (T4), is anti-apoptotic at physiological concentrations in a number of cancer cell lines. Among the mechanisms of anti-apoptosis activated by the hormone are interference with the Ser-15 phosphorylation (activation) of p53 and with TNFα/Fas-induced apoptosis. The hormone also decreases cellular abundance and activation of proteolytic caspases and of BAX and causes increased expression of X-linked inhibitor of apoptosis (XIAP). The anti-apoptotic effects of thyroid hormone largely are initiated at a cell surface thyroid hormone receptor on the extracellular domain of integrin αvβ3 that is amply expressed and activated in cancer cells. Tetraiodothyroacetic acid (tetrac) is a T4 derivative that, in a model of resveratrol-induced p53-dependent apoptosis in glioma cells, blocks the anti-apoptotic action of thyroid hormone, permitting specific serine phosphorylation of p53 and apoptosis to proceed. In a nanoparticulate formulation limiting its action to αvβ3, tetrac modulates integrin-dependent effects on gene expression in human cancer cell lines that include increased expression of a panel of pro-apoptotic genes and decreased transcription of defensive anti-apoptotic XIAP and MCL1 genes. By a variety of mechanisms, thyroid hormone (T4) is an endogenous anti-apoptotic factor that may oppose chemotherapy-induced apoptosis in αvβ3-expressing cancer cells. It is possible to decrease this anti-apoptotic activity pharmacologically by reducing circulating levels of T4 or by blocking effects of T4 that are initiated at αvβ3. PMID:26041883

  19. μ-Crystallin controls muscle function through thyroid hormone action.

    PubMed

    Seko, Daiki; Ogawa, Shizuka; Li, Tao-Sheng; Taimura, Akihiro; Ono, Yusuke

    2016-05-01

    μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action. PMID:26718889

  20. Profile of thyroid hormones in breast cancer patients.

    PubMed

    Saraiva, P P; Figueiredo, N B; Padovani, C R; Brentani, M M; Nogueira, C R

    2005-05-01

    Estrogen involvement in breast cancer has been established; however, the association between breast cancer and thyroid diseases is controversial. Estrogen-like effects of thyroid hormone on breast cancer cell growth in culture have been reported. The objective of the present study was to determine the profile of thyroid hormones in breast cancer patients. Serum aliquots from 26 patients with breast cancer ranging in age from 30 to 85 years and age-matched normal controls (N = 22) were analyzed for free triiodothyronine (T3F), free thyroxine (T4F), thyroid-stimulating hormone (TSH), antiperoxidase antibody (TPO), and estradiol (E2). Estrogen receptor ss (ERss) was determined in tumor tissues by immunohistochemistry. Thyroid disease incidence was higher in patients than in controls (58 vs 18%, P < 0.05). Subclinical hyperthyroidism was the most frequent disorder in patients (31%); hypothyroidism (8%) and positive anti-TPO antibodies (19%) were also found. Subclinical hypothyroidism was the only dysfunction (18%) found in controls. Hyperthyroidism was associated with postmenopausal patients, as shown by significantly higher mean T3 and T4 values and lower TSH levels in this group of breast cancer patients than in controls. The majority of positive ERss tumors were clustered in the postmenopausal patients and all cases presenting subclinical hyperthyroidism in this subgroup concomitantly exhibited Erss-positive tumors. Subclinical hyperthyroidism was present in only one of 6 premenopausal patients. We show here that postmenopausal breast cancer patients have a significantly increased thyroid hormone/E2 ratio (P < 0.05), suggesting a possible tumor growth-promoting effect caused by this misbalance. PMID:15917958

  1. THE THYROID HORMONE TRANSPORTER, MCT8, SELECTIVELY RESPONDS TO THYROID HORMONE INSUFFICIENCY IN THE DEVELOPMENT RAT BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...

  2. Maternal-fetal thyroid hormone relationships and the fetal brain.

    PubMed

    Morreale de Escobar, G; Obregon, M J; Escobar del Rey, F

    1988-01-01

    Thyroid hormones are transferred from the mother to the fetus. Thus, despite the deiodinating enzymes of the placenta (26), some T4 and T3 is transferred, both before and after onset of fetal thyroid function, at least in those cases where fetal thyroid function is impaired. It is also possible that transfer occurs under normal conditions. Maternal to fetal transfer of T3 and T4 is partially limited. But it might be enough to mitigate severe fetal T4 and T3 deficiencies. However, the mitigating effects of both hormones are not equivalent for all fetal tissues. 1) Maternal T4 mitigates T4 and T3 deficiency of most fetal tissues, the brain included. 2) Maternal T3 mitigates T3 deficiency only in some fetal tissues, the brain being excluded. It does not mitigate cerebral T3 deficiency even at doses which are toxic for the mother, and it does not depress fetal plasma TSH. 3) Normal maternal thyroid function is important for fetal development. Maternal hypothyroxinemia is damaging to the developing fetal brain early in gestation. It might also later have adverse effects in gestation, if the fetal thyroid is impaired. Normal maternal T3 levels might avoid overt hypothyroidism of some fetal tissues, but is of no benefit to the brain. PMID:3176827

  3. Thyroid Hormones, Autoantibodies, Ultrasonography, and Clinical Parameters for Predicting Thyroid Cancer

    PubMed Central

    He, Lin-zheng; Zeng, Tian-shu; Pu, Lin; Pan, Shi-xiu; Xia, Wen-fang; Chen, Lu-lu

    2016-01-01

    Our objective was to evaluate thyroid nodule malignancy prediction using thyroid function tests, autoantibodies, ultrasonographic imaging, and clinical data. We conducted a retrospective cohort study in 1400 patients with nodular thyroid disease (NTD). The thyroid stimulating hormone (TSH) concentration was significantly higher in patients with differentiated thyroid cancer (DTC) versus benign thyroid nodular disease (BTND) (p = 0.004). The receiver operating characteristic curve of TSH showed an AUC of 0.58 (95% CI 0.53–0.62, p = 0.001), sensitivity of 74%, and specificity of 57% at a cut-off of 1.59 mIU/L. There was an incremental increase in TSH concentration along with the increasing tumor size (p < 0.001). Thyroglobulin antibody (TgAb) concentration was associated with an increased risk of malignancy (p = 0.029), but this association was lost when the effect of TSH was taken into account (p = 0.11). Thyroid ultrasonographic characteristics, including fewer than three nodules, hypoechoic appearance, solid component, poorly defined margin, intranodular or peripheral-intranodular flow, and punctate calcification, can be used to predict the risk of thyroid cancer. In conclusion, our study suggests that preoperative serum TSH concentration, age, and ultrasonographic features can be used to predict the risk of malignancy in patients with NTD. PMID:27313612

  4. Role of the Thyroid System in Myelination and Neural Connectivity.

    PubMed

    Calzà, Laura; Fernández, Mercedes; Giardino, Luciana

    2015-07-01

    The role of thyroid hormone on brain development is dramatically illustrated by "cretinism," a severe mental retardation due to iodine deficiency and maternal hypothyroidism during gestation. In the last decades, the molecular bases of the cellular action of thyroid hormone in the nervous tissue have been at least partially elucidated, and the emerged picture is much more complex than expected. In this article, the main mechanisms determining thyroid hormone availability, nuclear and membrane receptor occupancy and downstream action, gene expression, and nongenomic mechanism are reviewed, focusing on myelination and myelin turnover. PMID:26140723

  5. Free and total thyroid hormones in humans at extreme altitude

    NASA Astrophysics Data System (ADS)

    Basu, Minakshi; Pal, K.; Malhotra, A. S.; Prasad, R.; Sawhney, R. C.

    1995-03-01

    Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.

  6. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions

    PubMed Central

    Mittag, Jens; Lyons, David J.; Sällström, Johan; Vujovic, Milica; Dudazy-Gralla, Susi; Warner, Amy; Wallis, Karin; Alkemade, Anneke; Nordström, Kristina; Monyer, Hannah; Broberger, Christian; Arner, Anders; Vennström, Björn

    2012-01-01

    Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone’s central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1. PMID:23257356

  7. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site.

    PubMed

    Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-07-01

    Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349

  8. Thyroid Hormones and Thyroid Disease in Relation to Perchlorate Dose and Residence Near a Superfund Site

    PubMed Central

    Gold, Ellen B.; Blount, Benjamin C.; Rasor, Marianne O’Neill; Lee, Jennifer S.; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-01-01

    Background Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. Objectives In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Methods Residential blocks were randomly selected from areas: 1) with potential perchlorate exposure via drinking water; 2) with potential exposure to environmental contaminants; and 3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20–50 years during 1988–1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone [TSH] and free thyroxine [fT4]) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Results Residential location and current perchlorate dose were not associated with thyroid function or disease. Conclusions No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349

  9. Hypothalamic thyroid hormone feedback in health and disease.

    PubMed

    Fliers, Eric; Alkemade, Anneke; Wiersinga, Wilmar M; Swaab, Dick F

    2006-01-01

    The role of the human hypothalamus in the neuroendocrine response to illness has only recently begun to be explored. Extensive changes in the hypothalamus-pituitary-thyroid (HPT) axis occur within the framework of critical illness. The best-documented change in the HPT axis is a decrease in serum concentrations of the biologically active thyroid hormone triiodothyronine (T3). From studies in post-mortem human hypothalamus it appeared that low serum T3 and thyrotropin (TSH) during illness (nonthyroidal illness, NTI) are paralleled by decreased thyrotropin-releasing hormone (TRH)mRNA expression in the hypothalamic paraventricular nucleus (PVN), pointing to a major alteration in HPT axis setpoint regulation. A strong decrease in TRHmRNA expression is also present in the PVN of patients with major depression as well as in glucocorticoid-treated patients. By inference, hypercortisolism in hospitalized patients with severe depression or in critical illness may induce down-regulation of the HPT axis at the level of the hypothalamus. In order to start defining the determinants and mechanisms of these setpoint changes in various clinical conditions, it is important to note that an increasing number of hypothalamic proteins appears to be involved in central thyroid hormone metabolism. In recent studies, we have investigated the distribution and expression of thyroid hormone receptor (TR) isoforms, type 2 and type 3 deiodinase (D2 and D3), and the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the human hypothalamus by a combination of immunocytochemistry, mRNA in situ hybridization and enzyme activity assays. Both D2 and D3 enzyme activities are detectable in the mediobasal hypothalamus. D2 immunoreactivity is prominent in glial cells of the infundibular nucleus/median eminence region and in tanycytes lining the third ventricle. Combined D2, D3, MCT8 or TR immunocytochemistry and TRHmRNA in situ hybridization indicates that D3, MCT8 and TRs are all

  10. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    PubMed Central

    2011-01-01

    Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid

  11. Visualisation of thyroid hormone synthesis by ion imaging

    NASA Astrophysics Data System (ADS)

    Audinot, J. N.; Senou, M.; Migeon, H.-N.; Many, M.-C.

    2008-12-01

    The main function of the thyroid gland is to make hormones, T4 and T3, which are essential for the regulation of metabolic processes throughout the body. Caveolae harbour is the key enzymes involved in this iodide organification. The analyses of thyroids from normal mice and caveolin-1 Knockout mice (mice deficient in caveolin) have been performed using the SIMS imaging. In the thyroid of control mice, the epithelium is homogeneous and iodine ( 127I) is observed in the follicle lumen. In Knockout mice, we observe an accumulation of intracellular vesicles and apoptotic nuclei resulting from oxidative stress due to H 2O 2 overproduction also inducing apical lesions of the thyrocytes, at the site of iodine organification and H 2O 2 generation. We also observe in the Knockout mice an accumulation of 127I in the cellular cytoplasm and an absence of the iodine in some follicular lumina, indicating a problem at the level of iodine organification.

  12. Thyroid hormones according to gestational age in pregnant Spanish women

    PubMed Central

    2009-01-01

    Background Thyroid function changes during pregnancy and maternal thyroid dysfunction have been associated with adverse outcomes. Our aim was to evaluate thyroid hormones levels in pregnant women resident in Aragon, Spain. Findings Samples for 1198 pregnant women with no apparent thyroid disorders were analyzed, using paramagnetic microparticle and chemiluminescent detection technologies, in order to determine levels of thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibodies (TPO-Ab), and thyroglobulin antibodies (Tg-Ab). Of the women in our sample, 85.22% had normal values for TPO-Ab and Tg-Ab and 14.77% had results revealing the presence of autoimmune diseases of the thyroid. The thyroid hormone reference values obtained according to gestational age (in brackets) were as follows: for free T3, values were 3.38 ± 0.52 pg/mL (<11 weeks), 3.45 ± 0.54 pg/mL (11-20 weeks), 3.32 ± 0.43 pg/mL (21-30 weeks), 3.21 ± 0.53 pg/mL (31-36 weeks), and 3.23 ± 0.41 pg/mL (>36 weeks); for free T4, values were 1.10 ± 0.14 ng/dL (<10 weeks), 1.04 ± 0.14 ng/dL (11-20 weeks), 0.93 ± 0.12 ng/dL (21-30 weeks), 0.90 ± 0.13 ng/dL (31-36 weeks), and 0.80 ± 0.21 ng/dL (>36 weeks); and for TSH, values were (μIU/mL): 1.12 ± 0.69 (<10 weeks), 1.05 ± 0.67 (11-20 weeks), 1.19 ± 0.60 (21-30 weeks), 1.38 ± 0.76 (31-36 weeks), and 1.46 ± 0.72 (>36 weeks). Conclusion Pregnant women with normal antibody values according to gestational age had values for FT4 and TSH, but not for FT3, that differed to a statistically significant degree. The values we describe can be used as reference values for the Aragon region of Spain. PMID:19939287

  13. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...

  14. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  15. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs. PMID:25422881

  16. Coupling between Nutrient Availability and Thyroid Hormone Activation.

    PubMed

    Lartey, Lattoya J; Werneck-de-Castro, João Pedro; O-Sullivan, InSug; Unterman, Terry G; Bianco, Antonio C

    2015-12-18

    The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway. PMID:26499800

  17. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  18. THYROID HORMONE INSUFFICIENCY AND BRAIN DEVELOPMENT -- DETERMINATION OF NEUROTOXICITY AT LOW LEVELS OF HORMONE DISRUPTION.

    EPA Science Inventory

    Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...

  19. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone

    PubMed Central

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R.; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  20. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.

    PubMed

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  1. Low selenium status in the elderly influences thyroid hormones.

    PubMed

    Olivieri, O; Girelli, D; Azzini, M; Stanzial, A M; Russo, C; Ferroni, M; Corrocher, R

    1995-12-01

    1. Iodothyronine 5'-deiodinase, which is mainly responsible for peripheral triiodothyronine (T3) production, has recently been demonstrated to be a selenium-containing enzyme. In the elderly, reduced peripheral conversion of thyroxine (T4) to T3 and overt hypothyroidism are frequently observed. 2. We measured serum selenium and erythrocyte glutathione peroxidase (as indices of selenium status), thyroid hormones and thyroid-stimulating hormone in 109 healthy euthyroid subjects (52 women, 57 men), carefully selected to exclude abnormally low thyroid hormone levels induced by acute or chronic diseases or calorie restriction. The subjects were subdivided into three age groups. To avoid conditions of under-nutrition or malnutrition, dietary records were obtained for a sample of 24 subjects, randomly selected and representative of the whole population for age and sex. 3. In order to properly assess the influence of selenium status on iodothyronine 5'-deiodinase type I activity, a double-blind placebo-controlled trial was also carried out on 36 elderly subjects, resident at a privately owned nursing home. 4. In the free-living population, a progressive reduction of the T3/T4 ratio (due to increased T4 levels) and of selenium and erythrocyte glutathione peroxidase activity was observed with advancing age. A highly significant linear correlation between T4, T3/T4 and selenium was observed in the population as a whole (for T4, R = -0.312, P < 0.002; for T3/T4 ratio, R = 0.32, P < 0.01) and in older subjects (for T4, R = -0.40, P < 0.05; for T3/T4 ratio, R = 0.54, P < 0.002). 5. The main result of the double-blind placebo-controlled trial was a significant improvement of selenium indices and a decrease in the T4 level in selenium-treated subjects; serum selenium, erythrocyte glutathione peroxidase activity and thyroid hormones did not change in placebo-treated subjects. 6. We concluded that selenium status influences thyroid hormones in the elderly, mainly modulating T4

  2. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis. PMID:26513566

  3. Thyroid hormones in chronic heat exposed men

    NASA Astrophysics Data System (ADS)

    Gertner, A.; Israeli, R.; Lev, A.; Cassuto, Y.

    1983-03-01

    Previous reports have indicated that thyroid gland activity, is depressed in the heat. Total thyroxine (T4) and triiodothyronine (T3) serum levels in 17 workers of the metal work shop at a plant near the Dead Sea and 8 workers in Beer Sheva, Israel were examined. The metal workshop of the plant near the Dead Sea is part of a large chemical plant. The one in Beer Sheva is part of a large construction company. Maintenance work, as well as metal work projects are performed in both workshops. During the work shifts, the workers of the Dead Sea plant were exposed to temperatures ranging from 30 36°C (May Oct.) and 14 21°C (Dec. Feb). In Beer Sheva the range was 25 32°C (June Sept.) and 10 17°C (Dec. Feb.). Total T4 was measured by competitive protein binding and total T3 by radioimmunoassay in blood drawn before work (0700) in July and January. In summer. T4 was higher and T3 was lower for both groups than in winter. The observed summer T3 decrease may result from depressed extrathyroidal conversion of T4 to T3. We conclude that the regulation of energy metabolism in hot climates may be related to extrathyroidal conversion of T4 to T3.

  4. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences.

    PubMed

    Gilbert, Mary E; Rovet, Joanne; Chen, Zupei; Koibuchi, Noriyuki

    2012-08-01

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to neurodevelopment, there is less information regarding the consequences of modest degrees of thyroid. The impact of low level TH disruptions induced by environmental contaminants has not been defined. This paper is a synopsis from four invited speakers who presented at the 13th International Neurotoxicology Association meeting held in Xi'an, China during the summer of 2011. An overview of the role of TH in brain development and a review of human and animal data on the neurological sequelae of disruption of the thyroid axis in the pre- and early post-natal periods were presented by Mary Gilbert and Joanne Rovet. Iodine deficiency, a common cause of TH insufficiency and mental retardation in many countries, including China, was addressed by Zupei Chen. In this presentation the current incidence of iodine deficiency and neurological outcome in China and the efficacy of recently implemented iodinization programs to eliminate this cause of mental retardation were reviewed. Joanne Rovet described the impact of TH disruption during pregnancy and under conditions of congenital hypothyroidism. Children born with normal thyroid function, but who experienced TH insufficiency in the womb, display subtle cognitive impairments and abnormalities in brain imaging. Despite early detection and treatment, deficiencies also exist in children born with thyroid disorders. Different patterns of cognitive effects result from prenatal versus postnatal TH insufficiency. Mary Gilbert reported on the effects of environmental contaminants with thyroid disrupting action on brain development in animals. Results of neurophysiological, behavioral, structural and molecular alterations that accompany modest perturbations of

  5. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus. PMID:26513165

  6. Effects of thyroid hormone and thyroid dysfunction on the cardiovascular system.

    PubMed

    Kienle, R D; Bruyette, D; Pion, P D

    1994-05-01

    Thyroid disease is common in veterinary practice. The heart, especially the myocardium, is sensitive to thyroid hormone, and deficiencies or excesses can alter cardiovascular function. Observed changes result from direct effects upon the myocardium and indirect effects that result from effects upon the vasculature and peripheral tissues. Clinically significant cardiovascular abnormalities related to hypothyroidism are rare. If present, they are primarily manifest as reduced left ventricular pump function, as apparent echocardiographically, or arrhythmias. Hyperthyroidism is common in the cat and infrequently encountered in dogs. Clinically significant cardiovascular manifestations are common and often dramatic. Hyperdynamic systolic function and mild myocardial hypertrophy are common manifestations which may lead to overt congestive and high output heart failure. If signs of congestive heart failure or significant arrhythmias are not evident, specific therapy need only be directed toward restoration of the euthyroid state. In most cases the cardiovascular changes associated with thyroid dysfunction are completely reversible. PMID:8053109

  7. IN VITRO METABOLISM OF THYROID HORMONES BY RECOMBINANT HUMAN UDP-GLUCORONOSYLTRANSFERASES AND SULFOTRANSFERASES

    EPA Science Inventory

    Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...

  8. Thyroid hormone replacement one day before 131I therapy in patients with well-differentiated thyroid cancer

    PubMed Central

    Kayano, Daiki; Taki, Junichi; Inaki, Anri; Wakabayashi, Hiroshi; Nakamura, Ayane; Fukuoka, Makoto; Kinuya, Seigo

    2013-01-01

    Objective: The current study aimed to determine the efficacy of radioiodine-131 (131I) ablation therapy with thyroid hormone replacement one day before 131I administration in patients with well-differentiated thyroid cancer (DTC). Methods: This retrospective study included 29 patients who underwent 131I therapies twice for DTC during 6-12 months. Since all the patients obviously had residual lesions by their serum thyroglobulin levels or their scintigrams at the first therapies, they underwent the second 131I therapies without diagnostic scintigraphy after the first therapies. After confirming the sufficient elevation of TSH concentration, thyroid hormone replacement was resumed one day before 131I administration (3.7-7.4GBq). The ablation rate of thyroid remnant at the first 131I therapy was evaluated by comparing 131I post-therapeutic images of the two treatments. Results: Three patients were administrated thyroid hormone after 131I therapy because of insufficient TSH concentration under thyroid hormone withdrawal. In the remaining 26 patients, 41 thyroid remnant accumulations were detected in all 26 patients at the first 131I therapy. Based on the second 131I post-therapeutic images, successful ablation was confirmed in 24 of 26 patients (92.3%) and 38 of 41 sites (92.7%), which was comparable with historically reported ablation rates. Conclusion: Thyroid hormone replacement one day before 131I therapy could provide a sufficiently high ablation rate in patients with DTC.

  9. Recombinant Human Thyroid Stimulating Hormone versus Thyroid Hormone Withdrawal for Radioactive Iodine Treatment of Differentiated Thyroid Cancer with Nodal Metastatic Disease

    PubMed Central

    Wolfson, Robert M.; Rachinsky, Irina; Morrison, Deric; Driedger, Al; Spaic, Tamara; Van Uum, Stan H. M.

    2016-01-01

    Introduction. Recombinant human thyroid stimulating hormone (rhTSH) is approved for preparation of thyroid remnant ablation with radioactive iodine (RAI) in low risk patients with well differentiated thyroid cancer (DTC). We studied the safety and efficacy of rhTSH preparation for RAI treatment of thyroid cancer patients with nodal metastatic disease. Methods. A retrospective analysis was performed on 108 patients with histopathologically confirmed nodal metastatic DTC, treated with initial RAI between January 1, 2000, and December 31, 2007. Within this selected group, 31 and 42 patients were prepared for initial and all subsequent RAI treatments by either thyroid hormone withdrawal (THW) or rhTSH protocols and were followed up for at least 3 years. Results. The response to initial treatment, classified as excellent, acceptable, or incomplete, was not different between the rhTSH group (57%, 21%, and 21%, resp.) and the THW group (39%, 13%, and 48%, resp.; P = 0.052). There was no significant difference in the final clinical outcome between the groups. The rhTSH group received significantly fewer additional doses of RAI than the THW group (P = 0.03). Conclusion. In patients with nodal-positive DTC, preparation for RAI with rhTSH is a safe and efficacious alternative to THW protocol. PMID:26977148

  10. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    SciTech Connect

    Vickers, Alison E.M.; Heale, Jason; Sinclair, John R.; Morris, Stephen; Rowe, Josh M.; Fisher, Robyn L.

    2012-04-01

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered

  11. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  12. Polybrominated Diphenyl Ether (DE-71)Interferes with Thyroid Hormone Action Independent Of Effects On Circulating Levels of Thyroid Hormone in Male Rats

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...

  13. Thyroid-pituitary interaction: Feedback regulation of thyrotropin secretion by thyroid hormones

    SciTech Connect

    Larsen, P.R.; Bleich, H.L.; Moore, M.J.

    1982-01-07

    Thyroid-hormone regulation of TSH production involves a response to plasma concentrations of T4 and T3. A substantial fraction of intracellular T3 in the pituitary derives from the conversion of T4 to T3, and recent studies indicate that this process is physiologically regulated. Changes in pituitary conversion of T4 to T3 are often the opposite of those that occur in the liver and kidney under similar circumstances. The presence of this pathway for T3 production indicates that the pituitary can respond independently to changes in plasma levels of T4 and T3; in contrast, many tissues appear to be sensitive mainly to the plasma T3 concentration. Recent studies suggest that conversion of T4 to T3 in the cerebral cortex and cerebellum is also important in providing intracellular T3 to these particular tissues. Given these results, it is not suprising that a complete definition of thyroid status requires more than the measurement of the serum concentrations of thyroid hormones. For some tissues, among them the brain and pituitary, the intracellular T3 concentrations may only partly reflect those in the serum. Recognition that the intracellular T3 concentration in each tissue may be subject to local regulation and an understanding of the importance of this process to the regulation of TSH production shoul permit a better appreciation of the limitations of radioimmunoassay serum thyroid hormone and TSH levels. These concepts also provide a physiologic rationale for the use of thyroxine for replacement in hypothyroid patients or for TSH suppression.

  14. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    SciTech Connect

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  15. Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3.

    PubMed

    Schmohl, Kathrin A; Müller, Andrea M; Wechselberger, Alexandra; Rühland, Svenja; Salb, Nicole; Schwenk, Nathalie; Heuer, Heike; Carlsen, Janette; Göke, Burkhard; Nelson, Peter J; Spitzweg, Christine

    2015-12-01

    To improve our understanding of non-genomic, integrin αvβ3-mediated thyroid hormone action in tumour stroma formation, we examined the effects of triiodo-l-thyronine (T3), l-thyroxine (T4) and integrin-specific inhibitor tetrac on differentiation, migration and invasion of mesenchymal stem cells (MSCs) that are an integral part of the tumour's fibrovascular network. Primary human bone marrow-derived MSCs were treated with T3 or T4 in the presence of hepatocellular carcinoma (HCC) cell-conditioned medium (CM), which resulted in stimulation of the expression of genes associated with cancer-associated fibroblast-like differentiation as determined by qPCR and ELISA. In addition, T3 and T4 increased migration of MSCs towards HCC cell-CM and invasion into the centre of three-dimensional HCC cell spheroids. All these effects were tetrac-dependent and therefore integrin αvβ3-mediated. In a subcutaneous HCC xenograft model, MSCs showed significantly increased recruitment and invasion into tumours of hyperthyroid mice compared to euthyroid and, in particular, hypothyroid mice, while treatment with tetrac almost completely eliminated MSC recruitment. These studies significantly improve our understanding of the anti-tumour activity of tetrac, as well as the mechanisms that regulate MSC differentiation and recruitment in the context of tumour stroma formation, as an important prerequisite for the utilisation of MSCs as gene delivery vehicles. PMID:26307023

  16. The non-steroidal mycoestrogen zeranol suppresses luteinizing hormone secretion from the anterior pituitary of cattle via the estradiol receptor GPR30 in a rapid, non-genomic manner.

    PubMed

    Nakamura, Urara; Rudolf, Faidiban O; Pandey, Kiran; Kadokawa, Hiroya

    2015-05-01

    Picomolar concentrations of estradiol produce rapid suppression of GnRH-induced luteinizing hormone (LH) secretion from the anterior pituitary (AP) of cattle via G-protein-coupled receptor 30 (GPR30). Zeranol is a strong estrogenic metabolite derived from zearalenone, a non-steroidal mycoestrogen produced by Fusarium that induces reproductive disorders in domestic animals. The hypothesis was tested that zeranol suppresses GnRH-induced LH release from the AP of cattle via GPR30 in a rapid, non-genomic manner. The AP cells (n=15) were cultured for 3 days in steroid-free conditions and then treated them with estradiol (0.001-10nM) or zeranol (0.001-100nM) for 5min before GnRH stimulation. Pre-treatment with 0.001-0.1nM estradiol suppressed GnRH-stimulated LH secretion. Pre-treatment with zeranol at concentrations of 0.001nM (P<0.01), 0.01nM (P<0.01), 0.1nM (P<0.05), and 1nM (P<0.05), but not at concentrations of 10 and 100nM, also inhibited GnRH-stimulated LH secretion from AP cells. Pre-treatment for 5min with a GPR30-specific antagonist, G36, inhibited estradiol or zeranol suppression of LH secretion from cultured AP cells. Cyclic AMP measurements and quantitative PCR analyses revealed that pre-treatment with small amounts of estradiol (P<0.05) or zeranol (P<0.01) decreased cAMP, but not gene expressions of the LHα, LHβ, or FSHβ subunits in the AP cells. Hence, zeranol may suppress luteinizing hormone secretion from the AP of cattle via GPR30 in a rapid, non-genomic manner. PMID:25824341

  17. Thyroid hormone stimulation of plasma protein synthesis in cultured hepatocytes.

    PubMed

    Hertzberg, K M; Pindyck, J; Mosesson, M W; Grieninger, G

    1981-01-25

    The direct effect of thyroid hormones on hepatocellular plasma protein synthesis has been studied in primary monolayer cultures derived from chick embryo liver. The chemically defined medium used for plating and maintaining the cultures contained no other hormones, protein, or serum supplement. Addition of physiological concentrations (10 nM) of triiodothyronine or thyroxine produced 3-fold or greater increases in the rates of synthesis of fibrinogen and three other major secreted proteins. By comparison albumin, transferrin, and total protein synthesis were not substantially increased. The enhanced synthesis of selected plasma proteins could be detected 6 h after initial addition of triiodothyronine. Exposure of the cells to the hormone for only 30 min was nearly as effective as continuous exposure in eliciting the ultimate response. Triiodothyronine exerted its half-maximal effect at a concentration of 1 nM. Diminished potency was associated with less iodination of the hormone; a marked reduction was noted with di-iodinated thyronine and no stimulatory activity at all with either mono- or non-iodinated thyronine. PMID:7451459

  18. Effects of thyroid hormones on human breast cancer cell proliferation.

    PubMed

    Hall, Linda C; Salazar, Eddie P; Kane, Staci R; Liu, Nan

    2008-03-01

    The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17beta-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression. PMID:18328691

  19. [Modification of endocrine function of trophoblasts by thyroid hormone].

    PubMed

    Matsuo, H; Maruo, T; Hayashi, M; Mochizuki, M

    1991-11-01

    Direct effects of L-triiodothyronine(T3) on placental endocrine function were investigated in vitro with an organ culture system for human placental tissues. Explants of trophoblastic tissues obtained from early and term placentas were cultured with or without graded doses of T3 in a serum-free condition. The addition of an optimal concentration of T3(10(-3) M T3) stimulated daily secretion of progesterone and estradiol from cultured early placental tissues by acting at the level of 3 beta-hydroxysteroid dehydrogenase and aromatase enzyme activity, together with the enhancement of hCG(alpha, beta) and hPL secretion. The addition of higher or lower concentrations of T3 gave attenuated effects and the addition of an excessive concentration of T3(10(-3) M T3) resulted in remarkable inhibition of progesterone and estradiol secretion by cultured early placental tissues. These results suggest that the optimal concentration of thyroid hormone acts as a biological amplifier of endocrine function of cultured trophoblasts obtained from early placentas. Unlike the early placental tissues, cultured term placental tissues did not respond to the addition of graded doses of T3 with increased endocrine function. Thus, the frequent occurrence of spontaneous abortion in early pregnancy during the state of hypothyroidism or hyperthyroidism may represent a direct consequence of inadequate thyroid hormone availability at the level of the trophoblast, followed by diminished endocrine function of early placental trophoblasts. PMID:1940550

  20. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    PubMed

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage. PMID:21558188

  1. Thyroid Storm Caused by a Chinese Herb Contaminated with Thyroid Hormones

    PubMed Central

    St-Onge, Maude; Vandenberghe, Hilde; Thompson, Margaret

    2015-01-01

    Patient: Male, 70 Final Diagnosis: Thyroid storm Symptoms: Atrial fibrillation • confusion • hyperthermia • tachycardia Medication: — Clinical Procedure: Intubation • cardioversion Specialty: Critical Care Medicine Objective: Adverse events of drug therapy Background: We report a case of thyroid storm caused by consuming a Chinese herb contaminated with thyroid hormones. Case Report: A 70-year-old man presented to an emergency department after 2 days of nausea, vomiting, and weakness. Three days previously, he had started taking Cordyceps powder and “Flower Man Sang Hung” as recommended by his Chinese physician. Following admission, the patient deteriorated and was eventually diagnosed with thyroid storm complicated by rapid atrial fibrillation requiring cardioversion, intubation, and intensive care admission. The analysis of the Chinese herb “Flower Man Sang Hung” was positive for levothyroxine. The patient was extubated 11 days after admission and discharged to a rehabilitation centre after 17 days of hospitalization. The Chinese medicine physician was informed of the events. Conclusions: Herbal products can be the source of illness, medication interactions, and contamination. Awareness should be raised among Chinese medicine physicians, allopathic physicians, and their patients. Clinicians should also have a low threshold of suspicion to seek laboratory analysis of suspect substances when the cause of the clinical presentation is unclear. PMID:25644333

  2. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes.

    PubMed

    Roman, Corina; Fuior, Elena V; Trusca, Violeta G; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341-488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5'- and 3'-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. PMID:26519880

  3. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  4. Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action.

    PubMed

    Marelli, Federica; Carra, Silvia; Agostini, Maura; Cotelli, Franco; Peeters, Robin; Chatterjee, Krishna; Persani, Luca

    2016-03-15

    Resistance to thyroid hormone can be due to heterozygous, dominant negative (DN) THRA (RTHα) or THRB (RTHβ) mutations, but the underlying mechanisms are incompletely understood. Here, we delineate the spatiotemporal expression of TH receptors (TRs) in zebrafish and generated morphants expressing equivalent amounts of wild-type and DN TRαs (thraa_MOs) and TRβs (thrb_MOs) in vivo. Both morphants show severe developmental abnormalities. The phenotype of thraa_MOs includes brain and cardiac defects, but normal thyroid volume and tshba expression. A combined modification of dio2 and dio3 expression can explain the high T3/T4 ratio seen in thraa_MOs, as in RTHα. Thrb_MOs show abnormal eyes and otoliths, with a typical RTHβ pattern of thyroid axis. The coexpression of wild-type, but not mutant, human TRs can rescue the phenotype in both morphants. High T3 doses can partially revert the dominant negative action of mutant TRs in morphant fish. Therefore, our morphants recapitulate the RTHα and RTHβ key manifestations representing new models in which the functional consequences of human TR mutations can be rapidly and faithfully evaluated. PMID:26802880

  5. Identification of thyroid hormone response elements in vivo using mice expressing a tagged thyroid hormone receptor α1

    PubMed Central

    Dudazy-Gralla, Susi; Nordström, Kristina; Hofmann, Peter Josef; Meseh, Dina Abdul; Schomburg, Lutz; Vennström, Björn; Mittag, Jens

    2013-01-01

    TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1–GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA–TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor–DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1–GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo. PMID:23398480

  6. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.

    PubMed Central

    Forrest, D; Hanebuth, E; Smeyne, R J; Everds, N; Stewart, C L; Wehner, J M; Curran, T

    1996-01-01

    The diverse functions of thyroid hormone (T3) are presumed to be mediated by two genes encoding the related receptors, TRalpha and TRbeta. However, the in vivo functions of TRalpha and TRbeta are undefined. Here, we report that targeted inactivation of the mouse TRbeta gene results in goitre and elevated levels of thyroid hormone. Also, thyroid-stimulating hormone (TSH), which is released by pituitary thyrotropes and which is normally suppressed by increased levels of thyroid hormone, was present at elevated levels in homozygous mutant (Thrb-/-) mice. These findings suggest a unique role for TRbeta that cannot be substituted by TRalpha in the T3-dependent feedback regulation of TSH transcription. Thrb-/- mice provide a recessive model for the human syndrome of resistance to thyroid hormone (RTH) that exhibits a similar endocrine disorder but which is typically caused by dominant TRbeta mutants that are transcriptional inhibitors. It is unknown whether TRalpha, TRbeta or other receptors are targets for inhibition in dominant RTH; however, the analysis of Thrb-/- mice suggests that antagonism of TRbeta-mediated pathways underlies the disorder of the pituitary-thyroid axis. Interestingly, in the brain, the absence of TRbeta may not mimic the defects often associated with dominant RTH, since no overt behavioural or neuroanatomical abnormalities were detected in Thrb-/- mice. These data define in vivo functions for TRbeta and indicate that specificity in T3 signalling is conferred by distinct receptor genes. Images PMID:8670802

  7. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones.

    PubMed

    Mondal, Santanu; Raja, Karuppusamy; Schweizer, Ulrich; Mugesh, Govindasamy

    2016-06-27

    Thyroid hormones (THs) are secreted by the thyroid gland. They control lipid, carbohydrate, and protein metabolism, heart rate, neural development, as well as cardiovascular, renal, and brain functions. The thyroid gland mainly produces l-thyroxine (T4) as a prohormone, and 5'-deiodination of T4 by iodothyronine deiodinases generates the nuclear receptor binding hormone T3. In this Review, we discuss the basic aspects of the chemistry and biology as well as recent advances in the biosynthesis of THs in the thyroid gland, plasma transport, and internalization of THs in their target organs, in addition to the deiodination and various other enzyme-mediated metabolic pathways of THs. We also discuss thyroid hormone receptors and their mechanism of action to regulate gene expression, as well as various thyroid-related disorders and the available treatments. PMID:27226395

  8. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  9. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks

  10. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  11. Effect of thyroid stimulating hormone on adaptive behaviour in Down's syndrome.

    PubMed

    Bhaumik, S; Collacott, R A; Garrick, P; Mitchell, C

    1991-12-01

    Patients with Down's syndrome are particularly vulnerable to the development of both hypothyroidism and Alzheimer's disease. Both hypothyroidism and Alzheimer's disease may be associated with elevated serum concentrations of thyroid stimulating hormone. In a group of institutionalized Down's syndrome patients with normal thyroid function, global scores of ability were higher than in a group of patients with elevated thyroid stimulating hormone levels in the presence of normal T3 and T4. The actual concentrations of thyroid stimulating hormone were shown to be significantly and inversely correlated with scores of global abilities. If these findings are reproducible, the authors believe that thyroid stimulating hormone estimation may provide confirmatory evidence of clinical dementia in this group of mentally handicapped individuals. PMID:1839315

  12. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  13. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. PMID:22004968

  14. Regulation of five tubulin isotypes by thyroid hormone during brain development.

    PubMed

    Aniello, F; Couchie, D; Gripois, D; Nunez, J

    1991-11-01

    Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency. PMID:1717658

  15. Effects of substitution and high-dose thyroid hormone therapy on deiodination, sulfoconjugation, and tissue thyroid hormone levels in prolonged critically ill rabbits.

    PubMed

    Debaveye, Yves; Ellger, Björn; Mebis, Liese; Visser, Theo J; Darras, Veerle M; Van den Berghe, Greet

    2008-08-01

    To delineate the metabolic fate of thyroid hormone in prolonged critically ill rabbits, we investigated the impact of two dose regimes of thyroid hormone on plasma 3,3'-diiodothyronine (T(2)) and T(4)S, deiodinase type 1 (D1) and D3 activity, and tissue iodothyronine levels in liver and kidney, as compared with saline and TRH. D2-expressing tissues were ignored. The regimens comprised either substitution dose or a 3- to 5- fold higher dose of T(4) and T(3), either alone or combined, targeted to achieve plasma thyroid hormone levels obtained by TRH. Compared with healthy animals, saline-treated ill rabbits revealed lower plasma T(3) (P=0.006), hepatic T(3) (P=0.02), and hepatic D1 activity (P=0.01). Substitution-dosed thyroid hormone therapy did not affect these changes except a further decline in plasma (P=0.0006) and tissue T(4) (P=0.04). High-dosed thyroid hormone therapy elevated plasma and tissue iodothyronine levels and hepatic D1 activity, as did TRH. Changes in iodothyronine tissue levels mimicked changes in plasma. Tissue T(3) and tissue T(3)/reverse T(3) ratio correlated with deiodinase activities. Neither substitution- nor high-dose treatment altered plasma T(2). Plasma T(4)S was increased only by T(4) in high dose. We conclude that in prolonged critically ill rabbits, low plasma T(3) levels were associated with low liver and kidney T(3) levels. Restoration of plasma and liver and kidney tissue iodothyronine levels was not achieved by thyroid hormone in substitution dose but instead required severalfold this dose. This indicates thyroid hormone hypermetabolism, which in this model of critical illness is not entirely explained by deiodination or by sulfoconjugation. PMID:18450965

  16. The Effect of Thyroid-Stimulating Hormone on Tumor Size in Differentiated Thyroid Carcinoma.

    PubMed

    Ozemir, I A; Gurbuz, B; Bayraktar, B; Aslan, S; Başkent, A; Yalman, H; Yigitbasi, R; Alimoglu, O

    2015-12-01

    We evaluated the correlation between serum thyroid-stimulating hormone (TSH) levels and tumor size and other invasiveness parameters of tumor in patients with differentiated thyroid carcinoma (DTC). Several clinical studies have reported that TSH may also have a role as a regulator of the development and function of the thyroid gland. It is currently not clear whether TSH is involved in the existence of thyroid cancer or progression of thyroid cancer or both. Patients with DTC who underwent thyroid surgery between 2003 and 2008 were included this study. Preoperative serum T3, T4, and TSH levels were compared with the size and invasiveness of cancer, retrospectively. DTC was observed in 110 patients over the 5-year period. Seventy-seven (70 %) of them were euthyroid and classified as the "normal-TSH group" (NTG), and 33 (30 %) have an overt or subclinical hyperthyroidism, classified as the "low-TSH group" (LTG). The mean tumor diameter in the LTG was found to be 8.91 ± 8.03 mm; however, it was found to be 18.19 ± 16.24 mm in the NTG. There were significantly differences among the groups related to the diameter of tumor (p = 0.001). Microcarcinoma was determined in 36 patients (46.8 %) in the NTG and 23 patients (69.7 %) in the LTG (p = 0.027). Although there were no significant differences, tumor capsule invasion (33.8 vs. 18.2 %, p = 0.099) and lymphovascular invasion (16.9 vs. 6.1 %, p = 0.130) rates were higher in the NTG. These findings suggest that TSH has effects on growing and proliferation of not only normal thyroid cells but also cancer cells in DTC. This study revealed that serum TSH level can be explored as an important factor that affects the size and invasiveness of tumor in DTC. PMID:27011492

  17. Transient neonatal hyperthyrotrophinaemia: a serum abnormality due to transplacentally acquired antibody to thyroid stimulating hormone.

    PubMed Central

    Lazarus, J H; John, R; Ginsberg, J; Hughes, I A; Shewring, G; Smith, B R; Woodhead, J S; Hall, R

    1983-01-01

    In a screening programme for neonatal hypothyroidism an otherwise healthy female infant was found to have a high concentration of thyroid stimulating hormone in a filter paper blood spot and in serum. A high concentration was also found in the maternal serum. Mother and baby were both biochemically euthyroid with normal serum thyroxine concentrations. The apparently high concentration of thyroid stimulating hormone in the mother was due to the presence of an IgG antibody that bound to human but not bovine thyroid stimulating hormone. Maternal serum inhibited the action of human thyroid stimulating hormone in an in vitro bioassay for the hormone. It is suggested that the baby acquired the antibody transplacentally, especially as the concentration of thyroid stimulating hormone subsequently fell. It is concluded that maternal serum should be assayed for thyroid stimulating hormone when a neonate is found to have a high concentration of the hormone and a normal concentration of thyroxine to establish the incidence of this finding and to avoid inappropriate replacement treatment. PMID:6402161

  18. Non-Genomic Effects of Xenoestrogen Mixtures

    PubMed Central

    Viñas, René; Jeng, Yow-Jiun; Watson, Cheryl S.

    2012-01-01

    Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens’ actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types. PMID:23066391

  19. Effects of thyroid hormones on inner mitochondrial membrane fluidity.

    PubMed

    Chimenti, R; Covello, C; De Cicco, T; Bruno, R; Martino, G

    2001-01-01

    Authors studied the effects of thyroid hormones and their diasteroisomers and 3,5-diiodothyronine (LT2) on the fluidity properties of inner mitochondrial membrane (IMM) by specifical fluorescent probe for the internal zone of biological membranes, the 1,6-diphenyl-1,3,5-hexatriene (DPH). The studied parameters are Arrhenius and Perrin plots. The DPH shows a decreased fluorescence quenching in the presence of both T3 and T4. The maximum effect is observed with 2 nM LT2. LT2 is more effective than LT3 in the central zone. The data confirm the selective action of LT3 and LT4 on IMM fluidity. PMID:11822198

  20. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD.

    PubMed

    Sinha, Rohit Anthony; Yen, Paul M

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a fast-growing silent epidemic that is present in both developed and developing countries. Initially thought as a benign deposition of lipids in the liver, it now has been shown to be a major risk factor for type II diabetes and one of the leading causes of cirrhosis. Recent findings suggest that dysregulation of mitochondrial homeostasis and autophagy play critical roles in the hepatocyte injury and insulin resistance of NAFLD. Thyroid hormone (TH) is a major stimulator of hepatic autophagy and mitochondrial function. Decreased TH action has been associated with NAFLD in man. In this review, we highlight some of the new discoveries that demonstrate the roles of TH in hepatic mitochondrial homeostasis via mitophagy and their implications for NAFLD. PMID:27437098

  1. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue. PMID:24798447

  2. Thyroid hormone regulation of heme oxidation in the liver.

    PubMed Central

    Smith, T J; Drummond, G S; Kourides, I A; Kappas, A

    1982-01-01

    The effects of 3,5,3'-triiodothyronine (T3) on heme oxygenase (EC 1.14.99.3) activity and cytochrome P-450 content in liver were examined in thyroidectomized rats. T3, when administered for 5 days at a dose of 6 micrograms/100 g of body weight, stimulated basal heme oxygenase activity approximately equal to 2-fold compared to diluent-treated animals. The induction of heme oxygenase by cobalt heme also was enhanced approximately equal to 3-fold in T3-treated animals. T3 treatment lowered cytochrome P-450 content by approximately equal to 50% and potentiated the depletion of this heme protein after cobalt heme administration. Reverse T3 had no effect either on cytochrome P-450 content or on heme oxygenase activity in liver. The time course of response to a single dose of T3 (50 micrograms/100 g of body weight) revealed that both basal and cobalt heme-induced heme oxygenase activity peaked at 48 hr and that cytochrome P-450 content declined to approximately equal to 40% of controls at 96 hr. Examination of microsomal proteins by polyacrylamide gel electrophoresis after T3 treatment disclosed that major bands in the Mr approximately equal to 50,000-55,000 region were diminished. The administration of T3 together with SKF-525A, a compound known to complex with the heme prosthetic group of cytochrome P-450, resulted in partial preservation of these proteins. These data indicate that thyroid hormone can regulate heme oxygenase activity and concomitantly can lower cytochrome P-450 content in liver. The hormone also can act in a synergistic fashion to enhance the response of hepatic heme oxygenase to a chemical inducer of the enzyme. Thyroid status thus may be a potentially significant determinant of the rate of heme oxidation in the liver. Images PMID:6961431

  3. Rethinking the biological relationships of the thyroid hormones, l-thyroxine and 3,5,3'-triiodothyronine.

    PubMed

    Maher, Stacey K; Wojnarowicz, Pola; Ichu, Taka-Aki; Veldhoen, Nik; Lu, Linghong; Lesperance, Mary; Propper, Catherine R; Helbing, Caren C

    2016-06-01

    Thyroid hormones (THs), l-thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are essential for vertebrate growth and development. Classically, T4 is 5'-deiodinated to the active hormone, T3, in target tissues which then binds nuclear TH receptors (TRs) and regulates gene transcription. However, it is possible that T4 acts directly on target tissues. Frog metamorphosis is a powerful TR-dependent model for studying TH action. Premetamorphic Rana (Lithobates) catesbeiana tadpoles were injected with 0.1-50 T3 or 0.5-250T4pmol/gbodyweight to account for their 5-fold difference in biological activity and the mRNA profiles in six tissues from well-characterized TH-responsive genes were evaluated after 48h using quantitative real time polymerase chain reaction. 5'-deiodinase-poor tissues should produce superimposable dose-response curves if T4 does not require conversion to T3. This was the case in lung and tail fin; the latter tissue recapitulating these responses in organ culture. 5'-deiodinase-rich tissues should convert T4 to T3. Because T3 has a higher affinity to TRs, a 5-fold higher T4 dose compared to T3 should produce greater transcript induction. This was observed in the brain and for most intestinal transcripts. However, some gene transcripts in the intestine and all transcripts in the back skin produced superimposable response curves suggesting that a direct mode of T4 action is plausible in these tissues. While the liver showed results consistent with its 5'-deiodinase-poor status, we found evidence of an alternate, non-genomic mechanism for two gene transcripts. Therefore, mechanisms not requiring T4 conversion to T3 may play a far greater role than previously thought. PMID:27085304

  4. Exhaustive exercise and vitamins C and E modulate thyroid hormone levels at low and high altitudes

    PubMed Central

    Al-Hashem, Fahaid; Alkhateeb, Mahmoud; Al-Ani, Bahjat; Sakr, Hussein; Khalil, Mohammad

    2012-01-01

    Thyroid hormones play an important role in cell growth and differentiation and regulation of oxygen consumption and thermogenesis. The effect of altitude and vitamin supplementation on thyroid hormone levels in animals or humans performing acute exhaustive exercise have not been investigated before. Therefore, we thought to test whether exhaustive exercise-induced stress with antioxidant supplementation was capable of modulating the level of thyroid hormones at different altitudes. Serum levels of T4 (Thyroxin), T3 (Triiodothyronine), and TSH (Thyroid Stimulating Hormone) were measured in rats (N=36) born and bred in low altitude (600 m above sea level) and high altitude (2200 m above sea level) following forced swimming with or without vitamins C and E (25 mg/kg) pre-treatments. Thyroid levels were significantly decreased in resting rats at high altitude compared to low altitude, and swimming exercise moderately increased T3 and TSH at both high and low altitudes, whereas T4 was markedly increased (62 %) at low altitude compared to a moderate high altitude increase (28 %). Co-administration of vitamins C and E augmented the observed forced swimming-induced thyroid release. However, the conversion of T4 to T3 was reduced in both altitude areas following swimming exercise and vitamin pre-treatment had no effect. We conclude that acute stress induced thyroidal hormones in rats, which was augmented by antioxidant drugs in both high and low altitude areas. These findings may play an important role in the human pathophysiology of thyroid gland at different altitudes.

  5. Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells.

    PubMed

    Manzano, Jimena; Cuadrado, Maria; Morte, Beatriz; Bernal, Juan

    2007-12-01

    Thyroid hormones have important actions in the developing central nervous system. We describe here a novel action of thyroid hormone and its nuclear receptors on maturation of cerebellar gamma-aminobutyric acid (GABA)-ergic interneurons from their precursor cells. In rats, the density of GABAergic terminals in the cerebellum was decreased by hypothyroidism, as shown by immunohistochemistry for the GABA transporter GAT-1. This was due, at least partially, to a decreased number of GABAergic cells, because the number of Golgi II cells in the internal granular layer was decreased. GABAergic interneurons in the cerebellum differentiate from precursors expressing the Pax-2 transcription factor, generated in the subventricular zone of the embryonic fourth ventricle from where they migrate to the cerebellum. Hypothyroidism caused both decreased proliferation and delayed differentiation of precursors, with the net effect being an accumulation of immature cells during the neonatal period. The contribution of thyroid hormone receptors was studied by treating hypothyroid rats with T(3) or with the thyroid hormone receptor (TR) beta-selective agonist GC-1. Whereas treatment with T(3) reduced the number of precursors to control levels, GC-1 had only a partial effect, indicating that both TRalpha1 and TRbeta mediate the actions of T(3). Deletion of TRalpha1 in mice decreased cerebellar GAT-1 expression and Pax-2 precursor cell proliferation. It is concluded that thyroid hormone, acting through the nuclear receptors, has a major role in the proliferation and further differentiation of the Pax-2 precursors of cerebellar GABAergic cells. PMID:17761765

  6. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  7. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no

  8. Postpartum Thyroiditis

    MedlinePlus

    ... high thyroid hormone levels in the blood) and hypothyroidism (low thyroid hormone levels in the blood). In postpartum thyroiditis, thyrotoxicosis occurs first followed by hypothyroidism. What causes postpartum thyroiditis? The exact cause is ...

  9. Thyroid hormone effects on lactase expression by rat enterocytes.

    PubMed Central

    Hewitt, J E; Smith, M W

    1986-01-01

    Thyroxine (T4) and triiodothyronine (T3) injected into adult rats causes first an increase and then a decrease in lactase activity measured subsequently in intestinal homogenates of rat jejunum. These changes are not associated with any alteration in intestinal structure or enterocyte migration rate. Quantitative cytochemistry shows T4 stimulation and inhibition of lactase activity to take place in upper villus and crypt cells respectively (O- and C-enterocytes). T3 injected into thyroidectomized rats produces identical stimulatory effects on lactase development to T4 injected into control animals. Radioactive T3 is distributed in all cell types following intraperitoneal injection into thyroidectomized rats. Highest amounts of recovered T3 are found in C- rather than O- enterocytes. Quantitative autoradiography shows intracellular T3 to be located in nuclear and cytoplasmic compartments following intraperitoneal injection. Simultaneous injection of non-radioactive hormone displaces 50-75% of radioactive T3. These results are discussed in relation to what is already known concerning the ability of thyroid hormones to affect intestinal development. The future need to study the physiological effects of T3 at the cellular level in the intestine is also emphasized. Images Fig. 3 PMID:3098965

  10. Hatching the Cleidoic Egg: The Role of Thyroid Hormones

    PubMed Central

    De Groef, Bert; Grommen, Sylvia V.H.; Darras, Veerle M.

    2013-01-01

    A major life stage transition in birds and other oviparous sauropsids is the hatching of the cleidoic egg. Not unlike amphibian metamorphosis, hatching in these species can be regarded as a transition from a relatively well-protected “aqueous” environment to a more hazardous and terrestrial life outside the egg, a transition in which thyroid hormones (THs) (often in concert with glucocorticoids) play an important role. In precocial birds such as the chicken, the perihatch period is characterized by peak values of THs. THs are implicated in the control of muscle development, lung maturation and the switch from chorioallantoic to pulmonary respiration, yolk sac retraction, gut development and induction of hepatic genes to accommodate the change in dietary energy source, initiation of thermoregulation, and the final stages of brain maturation as well as early post-hatch imprinting behavior. There is evidence that, at least for some of these processes, THs may have similar roles in non-avian sauropsids. In altricial birds such as passerines on the other hand, THs do not rise significantly until well after hatching and peak values coincide with the development of endothermy. It is not known how hatching-associated processes are regulated by hormones in these animals or how this developmental mode evolved from TH-dependent precocial hatching. PMID:23755041

  11. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  12. Iodotyrosine deiodinase, a novel target of environmental halogenated chemicals for disruption of the thyroid hormone system in mammals.

    PubMed

    Shimizu, Ryo

    2014-01-01

    Many synthetic chemicals have been identified as environmental contaminants with activity to disrupt normal function of the thyroid hormone system. Thyroid hormones play important roles in growth, development, differentiation, and basal metabolic homeostasis, as well as in brain development in human fetus and children, and thyroid dysfunction can have very serious consequences, including mental retardation. Environmental chemicals may affect thyroid hormone action in multiple ways, including reduced thyroid hormone synthesis owing to direct toxicity at the thyroid gland, interaction with thyroid hormone receptors and transporters such as transthyretin, and disturbance of thyroid hormone metabolism (e.g., glucuronidation, sulfation and deiodination). In addition, iodotyrosine deiodinase, which is involved in iodide salvage by catalyzing deiodination of iodinated by-products of thyroid hormone production, was recently identified as a possible new target for disruption of thyroid hormone homeostasis by environmental halogenated chemicals. This topic, after briefly summarizing findings on the thyroid hormone-disrupting action of environmental chemicals in mammals, focuses on the effects of environmental halogenated chemicals on iodotyrosine deiodinase activity. PMID:25177024

  13. Computational Modeling of Thyroid Hormone Regulated Neurodevelopment for Chemical Prioritization (SOT)

    EPA Science Inventory

    Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...

  14. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    EPA Science Inventory

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...

  15. TRα receptor mutations extend the spectrum of syndromes of reduced sensitivity to thyroid hormone.

    PubMed

    Vlaeminck-Guillem, Virginie; Espiard, Stéphanie; Flamant, Frédéric; Wémeau, Jean-Louis

    2015-11-01

    Since 2012, eight different abnormalities have been described in the THRA gene (encoding the TRα1 thyroid hormone receptor) of 14 patients from 9 families. These mutations induce a clinical phenotype (resistance to thyroid hormone type α) associating symptoms of untreated mild congenital hypothyroidism and a near-normal range of free and total thyroid hormones and TSH (the T4/T3 ratio is nevertheless usually low). The phenotype can diversely include short stature (due to growth retardation), dysmorphic syndrome (face and limb extremities), psychoneuromotor disorders, constipation and bradycardia. The identified genetic abnormalities are located within the ligand-binding domain and result in defective T3 binding, an abnormally strong interaction with corepressors and a dominant negative activity against still functional receptors. The identification of patients with consistent phenotypes and the underlying mutations are warranted to better delineate the spectrum of the syndromes of reduced sensitivity to thyroid hormone. PMID:26585273

  16. Characterization of Thyroid Hormone Transporter Protein Expression during Tissue-specific Metamorphic Events in Xenopus tropicalis

    EPA Science Inventory

    Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphi...

  17. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  18. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  19. Developmental Thyroid Hormone Insufficiency Impairs Visual Contrast Sensitivity in Adult Male Offspring.

    EPA Science Inventory

    Severe thyroid hormone (TH) insufficiency during early development results in alterations in brain structure and function. Many environmental agents produce subtle alterations in TH status, but the dose-response relationships for such effects are unclear. We have previously demon...

  20. DEVELOPMENTAL THYROID HORMONE INSUFFICIENCY ALTERS THE AMPLITUDE OF THE ACOUSTIC STARTLE RESPONSE IN RATS

    EPA Science Inventory

    Purpose: The thyroid hormone (TH) system is one of the targets of endocrine disrupting chemicals. Since TH is essential for proper brain development, disruption by exposure to chemicals during development can result in adverse neurological outcomes. Previous studies revealed th...

  1. EFFECTS OF BDE-47 ON NUCLEAR RECEPTOR REGULATED GENES AND IMPLICATIONS FOR THYROID HORMONE DISRUPTION.

    EPA Science Inventory

    Previous studies have shown that exposure to polybrominated diphenyl ethers (PBDEs) can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferase, (UGTs) which catalyze glucuronidation of T4 resulting in T4-glucuronide excretion. Bas...

  2. RISK ASSESSMENT OF THYROID HORMONE DISRUPTION AND MIXTURES IN MARINE BIOTA

    EPA Science Inventory

    Varieties of chemicals alter thyroid hormones (THs) in vertabrates. The importance of THs during neurodevelopment, suggest that these chemicals would likely be developmental neurotoxicants. A number of epidemiological studies have demonstrated associations between exposure to p...

  3. MEASUREMENT OF THYROID HORMONES IN THE RAT SERA CONTAINING PERFLUOROOCTANESULFONATE (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative acid, is widely distributed in humans and wildlife. Prior studies with PFOS (rats and monkeys) have observed decreased total and free thyroid hormones (TH) in serum without a rise in thyrotropin (TSH). Measuremen...

  4. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  5. Analysis of thyroid hormones in gland and serum using liquid chromatography-tandem mass spectrometry

    EPA Science Inventory

    Thyroid hormones (THs), which are critical for growth and development in all vertebrates, can be impacted through chemical perturbation of the hypothalamic-pituitary-thyroid (HPT)-axis. Amphibian and mammalian models are being used to address this research priority within US EPA...

  6. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  7. HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media

    EPA Science Inventory

    Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...

  8. Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn girls.

    PubMed

    Shah-Kulkarni, Surabhi; Kim, Byung-Mi; Hong, Yun-Chul; Kim, Hae Soon; Kwon, Eun Jin; Park, Hyesook; Kim, Young Ju; Ha, Eun-Hee

    2016-09-01

    Perfluorinated compounds (PFCs) are ubiquitous in the environment and have been detected in humans and wildlife. Exposure to PFCs has decreased in the United States recently, while exposure to PFCs continues in Asian countries, which represents a public health concern. Various mechanisms by which PFCs affect fetal growth have been proposed, such as activation of peroxisome proliferators, disruption of thyroid hormones and changes in lipid metabolism. However, the overall evidence for an association with thyroid hormones is not strong. Therefore, we examined the effect of various prenatal PFCs on cord blood thyroid hormones: triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH) levels, and explored the endocrine disrupting effect of these PFCs on thyroid hormone levels in children according to gender. Two hundred and seventy-nine study participants were selected from among the enrolled participants in the Ewha Birth & Growth Retrospective Cohort, a retrospective birth cohort study conducted at Ewha Womans University Hospital, Seoul, Korea between 2006 and 2010. A generalized linear model was constructed to explore the association of PFCs and thyroid hormones. Further, an analysis stratified by gender was conducted. Our study shows that cord blood perfluoro n-pentanoic acid (PFPeA) was positively associated with cord blood T4 (p=0.01) level. Gender-specific analysis showed that prenatal PFCs: PFPeA and Perfluorohexane sulfonic acid (PFHxS) exposure significantly increased T4 (p<0.01) and T3 (p=0.03), respectively, while perfluorononanoic acid (PFNA) decreased TSH (p=0.04) concentration in newborn girls. Thus, prenatal PFC exposure may disrupt thyroid hormone homeostasis. Thyroid hormones play a crucial role in fetal development and may have gender specific action. Hence, these results are of utmost importance in high-risk groups, such as pregnant women and children. PMID:27395336

  9. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. PMID:25682001

  10. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  11. Predictive Modeling of a Mixture of Thyroid Hormone Disrupting Chemicals that Affect Production and Clearance of Thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...

  12. Association Between Autoantibodies Against Thyroid Stimulating Hormone Receptor and Thyroid Diseases

    PubMed Central

    Latifi-Pupovci, Hatixhe

    2014-01-01

    Aim: The aim of this study is to determine the relationship between TRAb and different diseases. The highest percentage of increased TRAb levels can be found at patients with Graves’ diseases. Material and methods: Study was performed in 70 patients, grouped in three groups, and 14 persons who based on the clinical status and the levels of thyroid hormones do not have any thyroid disease. The TRAb levels has been determined in patients with Graves’ disease (N=40), Hashimoto’s disease (N=15), Plummer’s disease (N=15) and the control group (N=14). Results: The highest mean TRAb levels exist in patients with Graves’ disease. There exists a positive correlation between TRAb levels and T3, and T4, while there is no correlation between TSH and TRAb levels in patients with Graves’ disease,. On the other hand, the correlation between TRAb and T3 and T4 in patients with Hashimoto’s diseases and Plummers disease was shown to be positive, but of a low levels.

  13. Degradation of thyroid hormones by phagocytosing human leukocytes.

    PubMed

    Klebanoff, S J; Green, W L

    1973-01-01

    Thyroxine (T(4)) and triiodothyronine (T(9)) are rapidly degraded by a purified preparation of myeloperoxidase (MPO) and H(2)O(2) with the formation of iodide and material which remains at the origin on paper chromatography. Deiodination by MPO and H(2)O(2) occurs more readily at pH 7.0 than at pH 5.0 in contrast to iodination by this system which is known to occur more readily at pH 5.0 than at pH 7.0. Degradation is inhibited by azide, cyanide, ascorbic acid, and propylthiouracil. Methimazole stimulates deiodination by MPO and H(2)O(2) but inhibits this reaction when MPO is replaced by lactoperoxidase or horseradish peroxidase.Intact human leukocytes, in the resting state, degrade T(4) and T(3) slowly: degradation, however, is increased markedly during phagocytosis of preopsonized particles. Serum inhibits this reaction. T(3) can be detected as a minor product of T(4) degradation. Proteolytic digestion of the reaction products increases the recovery of monoiodotyrosine. The fixation of iodine in the cytoplasm of leukocytes which contain ingested bacteria was detected radioautographically. Chronic granulomatous disease leukocytes, which are deficient in H(2)O(2) formation, degrade T(4) and T(3) poorly during phagocytosis. MPO-deficient leukocytes degrade the thyroid hormones at a slower rate than do normal leukocytes although considerable degradation is still observed. Azide, cyanide, ascorbic acid, and propylthiouracil which inhibit certain peroxidasecatalyzed reactions inhibit degradation by normal leukocytes; however, inhibition is incomplete. Formation of iodinated origin material is inhibited to a greater degree by azide, cyanide, and propylthiouracil than is deiodination. Methimazole inhibits the formation of iodinated origin material by both normal and MPO-deficient leukocytes. However, deiodination by normal leukocytes is stimulated and that of MPO-deficient leukocytes is unaffected by methimazole. Hypoxia inhibits the degradation of T(4) and T(3) by

  14. Hypertrophic response of the Association of Thyroid Hormone and Exercise in the Heart of Rats

    PubMed Central

    de Souza, Fernanda Rodrigues; Resende, Elmiro Santos; Lopes, Leandro; Gonçalves, Alexandre; Chagas, Rafaella; Fidale, Thiago; Rodrigues, Poliana

    2014-01-01

    Background Cardiac hypertrophy is a component of cardiac remodeling occurring in response to an increase of the activity or functional overload of the heart. Objective Assess hypertrophic response of the association of thyroid hormone and exercise in the rat heart. Methods We used 37 Wistar rats, male, adults were randomly divided into four groups: control, hormone (TH), exercise (E), thyroid hormone and exercise (H + E); the group received daily hormone levothyroxine sodium by gavage at a dose of 20 μg thyroid hormone/100g body weight, the exercise group took swimming five times a week, with additional weight corresponding to 20% of body weight for six weeks; in group H + E were applied simultaneously TH treatment groups and E. The statistics used was analysis of variance, where appropriate, by Tukey test and Pearson correlation test. Results The T4 was greater in groups TH and H + E. The total weight of the heart was greater in patients who received thyroid hormone and left ventricular weight was greater in the TH group. The transverse diameter of cardiomyocytes increased in groups TH, E and H + E. The percentage of collagen was greater in groups E and H + E Correlation analysis between variables showed distinct responses. Conclusion The association of thyroid hormone with high-intensity exercise produced cardiac hypertrophy, and generated a standard hypertrophy not directly correlated to the degree of fibrosis. PMID:24676374

  15. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  16. Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement

    PubMed Central

    Bianco, Antonio C.; Bauer, Andrew J.; Burman, Kenneth D.; Cappola, Anne R.; Celi, Francesco S.; Cooper, David S.; Kim, Brian W.; Peeters, Robin P.; Rosenthal, M. Sara; Sawka, Anna M.

    2014-01-01

    Background: A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Methods: Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. Results: We reviewed the

  17. Increased risk of papillary thyroid cancer related to hormonal factors in women.

    PubMed

    Wang, Ping; Lv, Long; Qi, Feng; Qiu, Feng

    2015-07-01

    Strikingly higher rates of papillary thyroid cancer in women compared with men suggest that hormonal factors may be involved in the development of this cancer. A number of independent studies have investigated the association between hormonal factors and papillary thyroid cancer risk in women but yielded conflicting and inconclusive findings. We performed a meta-analysis of all currently published studies to provide better estimates for the risk of papillary thyroid cancer related to menstrual, reproductive, and other hormonal factors in women. Six cohort studies and three case-control ones were included into our study after a comprehensive literature search. The pooled relative risk (RR) with 95 % confidence interval (95 % CI) implicated that late age at menopause was associated with an increased risk of papillary thyroid cancer (RR = 1.39, 95 % CI 1.03-1.89, P = 0.032). No significant association was demonstrated between papillary thyroid cancer risk and other hormone-related factors, including oral contraceptive, hormone replacement therapy, age at menarche, parity, age at first birth, menopausal status, and breast feeding. Subgroup analysis by study design confirmed those associations. Sensitivity analysis did not materially alter the pooled results. The meta-analysis firstly suggests that late age at menopause is a risk factor for papillary thyroid cancer. PMID:25669169

  18. Influence of Thyroid Hormone Disruption on the Incidence of Shingles

    PubMed Central

    Ajavon, Amakoe; Killian, Dennis; Odom, Randy; Figliozzi, Robert W.; Chen, Feng; Balish, Matthew; Parmar, Jayesh; Freeman, Robert; Snitzer, Jack; Hsia, S. Victor

    2015-01-01

    SUMMARY The reactivation of dormant alpha-Human Herpes Virus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes Simplex Virus Type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by Thyroid hormone (TH) using molecular biology approaches. Varicella Zoster Virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claim database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An OR of 2.95 with a Chi-square of 51.74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited much higher chance of simultaneous diagnoses. These results showed that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  19. Thyroid Hormone Potentially Benefits Multiple Sclerosis via Facilitating Remyelination.

    PubMed

    Zhang, Mao; Ma, Ziyi; Qin, Haochen; Yao, Zhongxiang

    2016-09-01

    Myelin destruction due to inflammatory damage of oligodendrocytes (OLs) in conjunction with axonal degeneration is one of the major histopathological hallmarks of multiple sclerosis (MS), a common autoimmune disorder affecting the central nervous system (CNS). Therapies over the last 20 years mainly focus on the immune system and, more specifically, on the modulation of immune cell behavior. It seems to be effective in MS with relapse, while it is of little benefit to progressive MS in which neurodegeneration following demyelination outweighs inflammation. Otherwise, remyelination, as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs), is considered to be a potential target for the treatment of progressive MS. In this review, positive effects of remyelination on MS will be discussed in view of the critical role played by thyroid hormone (TH), focusing on the following points: (1) promising treatment of TH on MS that potentially targets to remyelination; (2) the active role of TH that is able to promote remyelination; (3) the regulative role of TH that works on endogenous stem and precursor cells; (4) the effect of TH on gene transcription; and (5) a working hypothesis which is developed that TH can alleviate MS by promoting remyelination, and the mechanism of which is its regulative role in gene transcription of OPCs. PMID:26243185

  20. Influence of thyroid hormone disruption on the incidence of shingles.

    PubMed

    Ajavon, A; Killian, D; Odom, R; Figliozzi, R W; Chen, F; Balish, M; Parmar, J; Freeman, R; Snitzer, J; Hsia, S V

    2015-12-01

    The reactivation of dormant alpha-human herpesvirus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes simplex virus type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by thyroid hormone (TH) using molecular biology approaches. Varicella zoster virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claims database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An odds ratio of 2·95 with a χ 2 value of 51·74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited a much higher chance of simultaneous diagnoses. These results show that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  1. Structure and Function of Thyroid Hormone Plasma Membrane Transporters

    PubMed Central

    Schweizer, Ulrich; Johannes, Jörg; Bayer, Dorothea; Braun, Doreen

    2014-01-01

    Thyroid hormones (TH) cross the plasma membrane with the help of transporter proteins. As charged amino acid derivatives, TH cannot simply diffuse across a lipid bilayer membrane, despite their notorious hydrophobicity. The identification of monocarboxylate transporter 8 (MCT8, SLC16A2) as a specific and very active TH transporter paved the way to the finding that mutations in the MCT8 gene cause a syndrome of psychomotor retardation in humans. The purpose of this review is to introduce the current model of transmembrane transport and highlight the diversity of TH transmembrane transporters. The interactions of TH with plasma transfer proteins, T3 receptors, and deiodinase are summarized. It is shown that proteins may bind TH owing to their hydrophobic character in hydrophobic cavities and/or by specific polar interaction with the phenolic hydroxyl, the aminopropionic acid moiety, and by weak polar interactions with the iodine atoms. These findings are compared with our understanding of how TH transporters interact with substrate. The presumed effects of mutations in MCT8 on protein folding and transport function are explained in light of the available homology model. PMID:25538896

  2. Thyroid Hormone T3 Counteracts STZ Induced Diabetes in Mouse

    PubMed Central

    Madaro, Luca; Ranieri, Danilo; Lupoi, Lorenzo; Stigliano, Antonio; Torrisi, Maria Rosaria; Bouchè, Marina; Toscano, Vincenzo; Misiti, Silvia

    2011-01-01

    This study intended to demonstrate that the thyroid hormone T3 counteracts the onset of a Streptozotocin (STZ) induced diabetes in wild type mice. To test our hypothesis diabetes has been induced in Balb/c male mice by multiple low dose Streptozotocin injection; and a group of mice was contemporaneously injected with T3. After 48 h mice were tested for glucose tolerance test, insulin serum levels and then sacrified. Whole pancreata were utilized for morphological and biochemical analyses, while protein extracts and RNA were utilized for expression analyses of specific molecules. The results showed that islets from T3 treated mice were comparable to age- and sex-matched control, untreated mice in number, shape, dimension, consistency, ultrastructure, insulin and glucagon levels, Tunel positivity and caspases activation, while all the cited parameters and molecules were altered by STZ alone. The T3-induced pro survival effect was associated with a strong increase in phosphorylated Akt. Moreover, T3 administration prevented the STZ-dependent alterations in glucose blood level, both during fasting and after glucose challenge, as well as in insulin serum level. In conclusion we demonstrated that T3 could act as a protective factor against STZ induced diabetes. PMID:21637761

  3. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California

    PubMed Central

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C.; Miller, Mark D.; Pearce, Elizabeth N.; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N.; Liaw, Jane

    2015-01-01

    Background: Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. Objectives: We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Methods: Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000–2003, a period when much of the area’s water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. Results: The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. population. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = –0.70; 95% CI: –1.06, –0.34], decreasing free thyroxine (fT4) (β = –0.053; 95% CI: –0.092, –0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). Conclusions: These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Citation: Steinmaus C, Pearl M, Kharrazi M, Blount BC

  4. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex.

    PubMed Central

    Fondell, J D; Ge, H; Roeder, R G

    1996-01-01

    Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8710870

  5. Activated Thyroid Hormone Promotes Differentiation and Chemotherapeutic Sensitization of Colorectal Cancer Stem Cells by Regulating Wnt and BMP4 Signaling.

    PubMed

    Catalano, Veronica; Dentice, Monica; Ambrosio, Raffaele; Luongo, Cristina; Carollo, Rosachiara; Benfante, Antonina; Todaro, Matilde; Stassi, Giorgio; Salvatore, Domenico

    2016-03-01

    Thyroid hormone is a pleiotropic factor that controls many cellular processes in multiple cell types such as cancer stem cells (CSC). Thyroid hormone concentrations in the blood are stable, but the action of the deiodinases (D2-D3) provides cell-specific regulation of thyroid hormone activity. Deregulation of deiodinase function and thyroid hormone status has been implicated in tumorigenesis. Therefore, we investigated the role of thyroid hormone metabolism and signaling in colorectal CSCs (CR-CSC), where deiodinases control cell division and chemosensitivity. We found that increased intracellular thyroid hormone concentration through D3 depletion induced cell differentiation and sharply mitigated tumor formation. Upregulated BMP4 expression and concomitantly attenuated Wnt signaling accompanied these effects. Furthermore, we demonstrate that BMP4 is a direct thyroid hormone target and is involved in a positive autoregulatory feedback loop that modulates thyroid hormone signaling. Collectively, our findings highlight a cell-autonomous metabolic mechanism by which CR-CSCs exploit thyroid hormone signaling to facilitate their self-renewal potential and suggest that drug-induced cell differentiation may represent a promising therapy for preventing CSC expansion and tumor progression. PMID:26676745

  6. Thyroid hormone level is associated with motor symptoms in de novo Parkinson's disease.

    PubMed

    Umehara, Tadashi; Matsuno, Hiromasa; Toyoda, Chizuko; Oka, Hisayoshi

    2015-07-01

    Sympathetic denervation has been observed not only in the myocardium but also in the thyroid of patients with Parkinson's disease (PD). We investigated whether sympathetic denervation as indicated by decreased cardiac (123)I-meta-iodobenzylguanidine uptake is associated with the levels of thyroid hormones and whether the levels of thyroid hormones affect clinical manifestations in patients with PD. The subjects were 75 patients with de novo PD and 20 age-matched healthy controls. We examined the levels of thyroid-stimulating hormone, free triiodothyronine, and free thyroxine, and evaluated the associations of these levels with cardiac (123)I-meta-iodobenzylguanidine uptake and motor symptoms. The results showed that the free triiodothyronine level was below the normal range in 29 patients (approximately 40 %) and was significantly lower in the patients with PD than in the controls. The decreased free triiodothyronine level was associated with akinetic-rigid motor subtype and washout ratio of cardiac (123)I-meta-iodobenzylguanidine scintigraphy. The free triiodothyronine level negatively correlated with disease severity. Thyroid-stimulating hormone level was within normal range. However, its level was lower in patients with tremor-dominant type or mixed type than in those with akinetic-rigid type. All correlations of these variables with the levels of thyroid hormones remained statistically significant on multiple regression analysis. Our results suggest that the thyroid hormone level, especially the free triiodothyronine level, is closely related to motor symptoms in patients with de novo PD. Further studies are needed to clarify whether the decreased hormone levels have functional roles in motor and non-motor symptoms. PMID:25987207

  7. Activation of the RhoB Signaling Pathway by Thyroid Hormone Receptor β in Thyroid Cancer Cells

    PubMed Central

    Ichijo, Sayaka; Furuya, Fumihiko; Shimura, Hiroki; Hayashi, Yoshitaka; Takahashi, Kazuya; Ohta, Kazuyasu; Kobayashi, Tetsuro; Kitamura, Kenichiro

    2014-01-01

    Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer cell proliferation, we constructed a recombinant adenovirus vector, AdTRβ, which expresses human TRβ1 cDNA. Thyroid cancer cell lines in which TRβ protein levels were significantly decreased as compared to intact thyroid tissues were infected with AdTRβ and the function of TRβ on cell proliferation and migration was analyzed. Ligand-bound TRβ induced HDAC1 and HDAC3 dissociation from, and histone acetylation associated with the RhoB promoter and enhanced the expression of RhoB mRNA and protein. In AdTRβ-infected cells, T3 and farnesyl transferase inhibitor (FTI)-treatment induced the distribution of RhoB on the cell membrane and enhanced the abundance of active GTP-bound RhoB. This RhoB protein led to p21-associated cell-cycle arrest in the G0/G1 phase, following inhibition of cell proliferation and invasion. Conversely, lowering cellular RhoB by small interfering RNA knockdown in AdTRβ-infected cells led to downregulation of p21 and inhibited cell-cycle arrest. The growth of BHP18-21v tumor xenografts in vivo was significantly inhibited by AdTRβ injection with FTIs-treatment, as compared to control virus-injected tumors. This novel signaling pathway triggered by ligand-bound TRβ provides insight into possible mechanisms of proliferation and invasion of thyroid cancer and may provide new therapeutic targets for thyroid cancers. PMID:25548921

  8. A new point mutation (C446R) in the thyroid hormone receptor-{beta} gene of a family with resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Chyna, B.; Hayashi, Yoshitaka; Sunthornthepvarakul, T.; Refetoff, S.; Duell, P.B.

    1994-05-01

    Resistance to thyroid hormone (RTH) is a condition of impaired end-organ responsiveness to thyroid hormone characterized by goiter and elevated thyroid hormone levels with an appropriately normal TSH. RTH has been associated with mutations in the thyroid hormone receptor-{beta} (TR{beta}) gene. The authors report studies carried out in 21 members of a family (F119), 12 of whom exhibited the RTH phenotype. A point mutation was detected in the T{sub 3}-binding domain of the TR{beta} gene. It resulted in replacement of the normal cysteine-446 with an arginine (C446R) that has not been previously reported. The clinical characteristics of this family are similar to those reported in other families with RTH, namely goiter, tachycardia, and learning disabilities. Thyroid function tests are also typical of other subjects with RTH. The mean values ({+-}SD) in untreated affected subjects compared to those in unaffected family members were: free T{sub 4} index, 250 {+-} 21 vs. 108 {+-} 13; total T{sub 3}, 4.3 {+-} 0.4 vs. 2.4 {+-} 0.4 nmol/L; and TSH, 4.5 {+-} 1.1 vs. 2.4 {+-} 1.1 mU/L. DNA samples from 18 family members were screened for the TR{beta} mutation, which results in the loss of a BsmI restriction site, and each of the 11 subjects with abnormal thyroid function tests were heterozygous for the mutant allele. The mutant TR{beta} expressed in Cos-I cells did not bind T{sub 3} (K{sub a} of C446R/wild-type, <0.05). T{sub 3} at a concentration up to 100 nmol/L failed to enhance the transactivation of a reporter gene, and the mutant receptor inhibited the T{sub 3}-mediated transcriptional activation of the wild-type TR{beta}. 17 refs., 3 figs., 1 tab.

  9. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    PubMed Central

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  10. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-02-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  11. SEX-STEROID AND THYROID HORMONE CONCENTRATIONS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE LAKES IN FLORIDA, USA

    EPA Science Inventory

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...

  12. In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles.

    PubMed

    Hornung, Michael W; Kosian, Patricia A; Haselman, Jonathan T; Korte, Joseph J; Challis, Katie; Macherla, Chitralekha; Nevalainen, Erica; Degitz, Sigmund J

    2015-08-01

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of 6 benzothiazoles to affect endpoints related to thyroid hormone synthesis inhibition were assessed using in vitro, ex vivo, and in vivo assays. Inhibition of thyroid peroxidase (TPO) derived from pig thyroid glands was determined for benzothiazole (BTZ), 2-mercaptobenzothiazole (MBT), 5-chloro-2-mercaptobenzothiazole (CMBT), 2-aminobenzothiazole (ABT), 2-hydroxybenzothiazole (HBT), and 2-methylthiobenzothiazole (MTBT). Their rank order potency for TPO inhibition was MBT=CMBT>ABT>BTZ, whereas HBT and MTBT exhibited no inhibitory activity. The benzothiazoles were tested further in a Xenopus laevis thyroid gland explant culture assay in which inhibition of thyroxine (T4) release was the measured endpoint. In this assay all 6 benzothiazoles inhibited T4 release. The activity of the benzothiazoles for disrupting thyroid hormone activity was verified in vivo using X. laevis tadpoles in a 7-day assay. The 2 most potent chemicals for TPO inhibition, MBT and CMBT, produced responses in vivo indicative of T4 synthesis inhibition including induction of sodium iodide symporter mRNA and decreases in glandular and circulating thyroid hormones. The capability to measure thyroid hormone levels in the glands and blood by ultrahigh performance LC-MS/MS methods optimized for small tissue samples was critical for effects interpretation. These results indicate that inhibition of TPO activity in vitro was a good indicator of a chemical's potential for thyroid hormone disruption in vivo and may be useful for prioritizing chemicals for further investigation. PMID:25953703

  13. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Macaulay, Laura J.; Douglas, Nora K.; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ether (PBDE) flame retardants have been shown to disrupt thyroid hormone regulation, neurodevelopment, and reproduction in some animals. However, effects of the most heavily used PBDE, decabromodiphenyl ether (BDE-209), on thyroid functioning remain unclear. This study examined low-dose effects of BDE-209 on thyroid hormone levels and signaling in fathead minnows. Adult males received dietary exposures of BDE-209 at a low dose (~3 ng/g bw-day) and high dose (~300 ng/g bw-day) for 28 days followed by a 14-day depuration to evaluate recovery. Compared to controls, fish exposed to the low dose for 28 days experienced a 53% and 46% decline in circulating total thyroxine (TT4) and 3,5,3'-triiodothyronine (TT3), respectively, while TT4 and TT3 deficits at the high dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ~65% at both doses. BDE-209 elevated the relative mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and membrane transporters in the brain and liver in patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI) and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting non-linear relationships between BDE-209 exposures and thyroid dysfunction. PMID:23899252

  14. The role of thyroid hormone and brown adipose tissue in energy homoeostasis

    PubMed Central

    Bianco, Antonio C; McAninch, Elizabeth A

    2016-01-01

    The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity—a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity. PMID:24622373

  15. Hypothyroidism in Pancreatic Cancer: Role of Exogenous Thyroid Hormone in Tumor Invasion—Preliminary Observations

    PubMed Central

    Sarosiek, Konrad; Gandhi, Ankit V.; Saxena, Shivam; Kang, Christopher Y.; Chipitsyna, Galina I.; Yeo, Charles J.; Arafat, Hwyda A.

    2016-01-01

    According to the epidemiological studies, about 4.4% of American general elderly population has a pronounced hypothyroidism and relies on thyroid hormone supplements daily. The prevalence of hypothyroidism in our patients with pancreatic cancer was much higher, 14.1%. A retrospective analysis was performed on patients who underwent pancreaticoduodenectomy (Whipple procedure) or distal pancreatectomy and splenectomy (DPS) at Thomas Jefferson University Hospital, Philadelphia, from 2005 to 2012. The diagnosis of hypothyroidism was correlated with clinicopathologic parameters including tumor stage, grade, and survival. To further understand how thyroid hormone affects pancreatic cancer behavior, functional studies including wound-induced cell migration, proliferation, and invasion were performed on pancreatic cancer cell lines, MiaPaCa-2 and AsPC-1. We found that hypothyroid patients taking exogenous thyroid hormone were more than three times likely to have perineural invasion, and about twice as likely to have higher T stage, nodal spread, and overall poorer prognostic stage (P < 0.05). Pancreatic cancer cell line studies demonstrated that exogenous thyroid hormone treatment increased cell proliferation, migration, and invasion (P < 0.05). We conclude that exogenous thyroid hormone may contribute to the progression of pancreatic cancer. PMID:27123358

  16. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  17. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  18. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  19. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  20. A model for chronic, intrahypothalamic thyroid hormone administration in rats.

    PubMed

    Zhang, Z; Bisschop, P H; Foppen, E; van Beeren, H C; Kalsbeek, A; Boelen, A; Fliers, E

    2016-04-01

    In addition to the direct effects of thyroid hormone (TH) on peripheral organs, recent work showed metabolic effects of TH on the liver and brown adipose tissue via neural pathways originating in the hypothalamic paraventricular and ventromedial nucleus (PVN and VMH). So far, these experiments focused on short-term administration of TH. The aim of this study is to develop a technique for chronic and nucleus-specific intrahypothalamic administration of the biologically active TH tri-iodothyronine (T3). We used beeswax pellets loaded with an amount of T3 based on in vitro experiments showing stable T3 release (∼5 nmol l(-1)) for 32 days. Upon stereotactic bilateral implantation, T3 concentrations were increased 90-fold in the PVN region and 50-fold in the VMH region after placing T3-containing pellets in the rat PVN or VMH for 28 days respectively. Increased local T3 concentrations were reflected by selectively increased mRNA expression of the T3-responsive genes Dio3 and Hr in the PVN or in the VMH. After placement of T3-containing pellets in the PVN, Tshb mRNA was significantly decreased in the pituitary, without altered Trh mRNA in the PVN region. Plasma T3 and T4 concentrations decreased without altered plasma TSH. We observed no changes in pituitary Tshb mRNA, plasma TSH, or plasma TH in rats after placement of T3-containing pellets in the VMH. We developed a method to selectively and chronically deliver T3 to specific hypothalamic nuclei. This will enable future studies on the chronic effects of intrahypothalamic T3 on energy metabolism via the PVN or VMH. PMID:26865639

  1. Hormones

    MedlinePlus

    ... the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, thymus, thyroid, adrenal ...

  2. Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor {beta} gene

    SciTech Connect

    Weiss, R.E.; Stein, M.A.; Chyna, B.; Phillips, W.; O`Brien, T.; Gutermuth, L.; Refetoff, S.; Duck, S.C.

    1994-06-01

    Resistance to thyroid hormone (RTH) is a syndrome of reduced responsiveness of tissues to thyroid hormone. The clinical manifestations are variable and 46-50% of children with RTH have attention deficit hyperactivity disorder (ADD). The authors present a new family with RTH (F120) found to have a mutation R316H in the thyroid hormone receptor {beta} (TR{beta}) gene identical for that reported in an unrelated family. Assignment of the mutant allele and haplotyping based on CA repeat polymorphism were done on 16 family members. Semistructured diagnostic interviews and psychometric testing were used to determine the psychiatric diagnosis of 12 family members by examiners blinded to the genotype. Three subjects were identified to have the R316H allele as well as mildly elevated free T{sub 4} index (168 {+-} 12; normal range 77-135) and nonsuppressed TSH (4.1 {+-} 1.7 mU/L). Only 2 of the subjects with RTH were found to have ADD, while one family member homozygous for the wild type TR{beta} and normal thyroid function tests also had ADD. Unaffected family members had higher full scale intelligence quotients ({vert_bar}Q) (93 {+-} 7) than any of the 3 family members with RTH (77 {+-} 5, p = 0.006). These data do not support the genetic linkage of ADD and RTH, but do suggest that RTH is associated with lower IQ scores that may confer a high likelihood of exhibiting ADD symptoms. 20 refs., 2 figs., 2 tabs.

  3. Placental angiogenic and hormonal factors are affected by thyroid hormones in rats.

    PubMed

    Silva, Juneo Freitas; Ocarino, Natália Melo; Serakides, Rogéria

    2015-03-01

    The objective of the present study was to evaluate the effect of the thyroid hormones in the gene transcription and immunohistochemical expression of hormonal and angiogenic factors in the placenta of rats. Seventy-two adult female rats were divided equally into propylthiouracil (PTU)-treated, thyroxine (T4)-treated, and control groups. The animals were sacrificed at 10, 14, and 19 days of gestation. We evaluated the immunohistochemical expression of VEGF and its receptor Flk-1. The gene transcription of VEGF, Flk-1, PGF, sFlt1, PL-1, and rPlf was evaluated in placental discs by real-time RT-PCR. The data were analyzed using a Student-Newman-Keuls (SNK) test. At day 10, T4-treated rats presented increased VEGF and PGF gene expression, while PTU-treated rats showed increased rPlf gene expression. Both groups showed reduced Flk-1 and PL-1 gene expression at day 10. At day 14, PTU-treated rats showed reduced VEGF, PGF, and rPlf gene expression. PTU-treated group showed reduced VEGF immunostaining in the placental labyrinth at 14 and 19 days of gestation but it showed increased VEGF immunostaining in the spongiotrophoblast layer at day 14. PTU-treated rats showed increased Flk-1 expression at 14 days of gestation. At days 14 and 19, T4-treated group showed increased PL-1 gene expression and reduced VEGF immunostaining. T4-treated rats also showed reduced Flk-1 and sFlt-1 expression at day 19. Both groups showed increased rPlf gene expression at day 19. In conclusion, rats treated with PTU and T4 have differential effects on the expression of factors involved in placental angiogenic and hormonal activity, and these effects are dependent on the gestational period. PMID:25499719

  4. Effects of chronic treatment with several halogenated bephenyl isomers on thyroid and adrenal hormone secretion

    SciTech Connect

    Carbone, J.P.

    1982-01-01

    This investigation was undertaken to assess the consequences of chronic ingestion of several halogenated biphenyl mixtures with variable chlorine content and isomeric composition on rat thyroid and adrenal physiological parameters. Chronic ingestion of the PCB Aroclor 1016, 1242 and 1254 and the PBB hexabromobiphenyl and octabromobiphenyl induced reductions of circulating thyroid hormones. The PCB or PBB containing the highest halogenation and the highest concentration of highly halogenated isomers within the mixture proved to be most toxic. However, the chlorinated compounds were more toxic than the borminated compounds. A series of experiments were designed to address the question of whether the responsiveness of the thyroid gland to thyroid stimulating hormone (TSH) was altered following chronic exposure to Aroclor 1254 or hexabromobiphenyl. The effects of chronically ingested halogenated biphenyls, PCB, 1016, 1242 and 1254 and PBB hexabromobiphenyl and octabromobiphenyl on serum 17-keto steroids of adrenal origin were assessed.

  5. Thyroid Hormone Receptor-β (TRβ) Mediates Runt-Related Transcription Factor 2 (Runx2) Expression in Thyroid Cancer Cells: A Novel Signaling Pathway in Thyroid Cancer.

    PubMed

    Carr, Frances E; Tai, Phillip W L; Barnum, Michael S; Gillis, Noelle E; Evans, Katherine G; Taber, Thomas H; White, Jeffrey H; Tomczak, Jennifer A; Jaworski, Diane M; Zaidi, Sayyed K; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2016-08-01

    Dysregulation of the thyroid hormone receptor (TR)β is common in human cancers. Restoration of functional TRβ delays tumor progression in models of thyroid and breast cancers implicating TRβ as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRβ as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRβ is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRβ by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRβ levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRβ specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRβ suppressed Runx2 transcriptional activities, thus confirming TRβ regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRβ and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRβ-Runx2 signaling supports the emerging role of TRβ as a tumor suppressor and reveals a novel pathway for intervention. PMID:27253998

  6. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression.

    PubMed

    Bastian, Thomas W; Prohaska, Joseph R; Georgieff, Michael K; Anderson, Grant W

    2014-03-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  7. The Relationship between Perchlorate in Drinking Water and Cord Blood Thyroid Hormones: First Experience from Iran

    PubMed Central

    Javidi, Ashraf; Rafiei, Nasim; Amin, Mohammad Mehdi; Hovsepian, Silva; Hashemipour, Mahin; Kelishadi, Roya; Taghian, Zahra; Mofateh, Samaneh; Poursafa, Parinaz

    2015-01-01

    Background: Considering the controversial information regarding the effects of perchlorate on thyroid function of high risk population as neonates, and given the high prevalence rate of thyroid disorders specially congenital hypothyroidism in our region, this study aims to investigate for the first time in Iran, the relationship between drinking groundwater perchlorate and cord blood thyroid hormones level in an industrial region. Methods: In this cross-sectional study, drinking groundwater perchlorate level of rural areas of Zarinshahr, Isfahan was measured. Simultaneously, cord blood level of thyroid hormones of neonates born in the studied region was measured. Thyroid function test of neonates in regions with low and high perchlorate level were compared. Results: In this study, 25 tap water samples were obtained for perchlorate measurement. Level of cord blood thyroid stimulating hormone (TSH), T4 and T3 of 25 neonates were measured. Mean (standard deviation) of perchlorate, TSH, T4 and T3 was 3.59 (5.10) μg/l, 7.81 (4.14) mIU/m, 6.06 (0.85) mg/dl, and 63.46 (17.53) mg/dl, respectively. Mean levels of thyroid function tests were not different in low (<5 μg/l) and high level of drinking ground water perchlorate (P > 0.05). Conclusions: Perchlorate did not appear to be related to thyroid function of neonates in the studied industrial region. It seems that iodine status of the regions, as well as other environmental contaminants and genetic background, could impact on its relation with thyroid function of neonates. PMID:25789149

  8. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children.

    PubMed Central

    Osius, N; Karmaus, W; Kruse, H; Witten, J

    1999-01-01

    As part of an epidemiologic study on exposure to a toxic waste incineration plant we investigated whether blood concentrations of polychlorinated biphenyls (PCBs), lead, and cadmium, as well as concentration of mercury in 24-hr urine samples were associated with thyroid hormone status. As an indication of status, we determined levels of thyroid-stimulating hormone (TSH), free thyroxine (FT(4)), and free triiodothyronine (FT(3)) in children living in households where [less than/equal to] 10 cigarettes were smoked per day. Eight PCB congeners (PCBs 101, 118, 138, 153, 170, 180, 183, and 187) were measured in whole blood samples. Of these, seven congeners (PCB 101 was not detected in any sample) and the sum of all PCB congeners were analyzed as predictors for thyroid hormone status in separate linear regression models adjusted for potential confounders. In addition, the possible effects of cadmium, lead, and mercury on levels of thyroid hormones were examined. Blood concentrations and information on questionnaire data were available for 320 children 7-10 years of age. We found a statistically significant positive association between the mono-ortho congener PCB 118 and TSH as well as statistically significant negative relationships of PCBs 138, 153, 180, 183, and 187 to FT(3). There was no association for the PCB congeners and FT(4). Blood cadmium concentration was associated with increasing TSH and diminishing FT(4). Blood lead and urine concentration of mercury were of no importance to thyroid hormone levels. The results stress the need for future studies on the possible influences of PCB and cadmium exposure on thyroid hormones, particularly in children. These studies should also take neurologic development into account. PMID:10504153

  9. Positive correlation of thyroid hormones and serum copper in children with congenital hypothyroidism.

    PubMed

    Blasig, Sarah; Kühnen, Peter; Schuette, Andrea; Blankenstein, Oliver; Mittag, Jens; Schomburg, Lutz

    2016-09-01

    Thyroid hormones are of central relevance for growth and development. However, the underlying molecular mechanisms are still not fully understood. Recent studies in humans and mice have demonstrated that serum levels of selenium (Se) and copper (Cu) are positively affected by thyroid hormones. Given the importance of these trace elements for many biochemical processes, we tested whether this interaction is found in children at risk for hypothyroidism, potentially providing a novel factor contributing to the disturbed development observed in congenital hypothyroidism (CH). We conducted a cross-sectional analysis of 84 children diagnosed with CH displaying a wide range of thyroid hormone concentrations. Serum Se and Cu concentrations were measured by total reflection X-ray fluorescence. Data for thyrotropin (TSH) were available in all, thyroxine (T4) and free thyroxine (fT4) in the majority and triiodothyronine (T3) in 29 of the children. Spearman rank analyzes were performed. Cu and thyroid hormones showed a strong positive correlation (Cu/T4, rho=0.5241, P=0.0003; Cu/T3, rho=0.6003, P=0.0006). Unlike in adults, no associations were found between Se and any of the thyroid hormones. Our data highlight that serum Cu and thyroid hormones are strongly associated already in early postnatal life. Severely hypothyroid children are thus at risk of developing a Cu deficiency if not adequately nourished or supplemented. This finding needs to be verified in larger groups of children in order not to miss an easily-avoidable risk factor for poor development. PMID:27267969

  10. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development.

    PubMed

    Veldhoen, Nik; Skirrow, Rachel C; Osachoff, Heather; Wigmore, Heidi; Clapson, David J; Gunderson, Mark P; Van Aggelen, Graham; Helbing, Caren C

    2006-12-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) alpha and beta, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10(-11)mol/g body weight 3,5,3'-triiodothyronine (T3) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10nM T3. Tadpoles pretreated with triclosan concentrations as low as 0.15+/-0.03 microg/L for 4 days showed increased hindlimb development and a decrease in total body weight following T3 administration. Triclosan exposure also resulted in decreased T3-mediated TRbeta mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T3 treatment whereas TRalpha was unaffected [corrected] Triclosan alone altered thyroid hormone receptor alpha transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T3 plus nominal concentrations of triclosan as low as 0.03 microg/L for 24h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development. PMID:17011055