Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas
Tsintsadze, N. L.; Chaudhary, Rozina; Shah, H. A.; Murtaza, G.
2009-04-15
High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves. PMID:17799185
In-situ observations of nonlinear wave particle interaction of electromagnetic ion cyclotron waves
NASA Astrophysics Data System (ADS)
Shoji, M.; Miyoshi, Y.; Keika, K.; Katoh, Y.; Angelopoulos, V.; Nakamura, S.; Omura, Y.
2014-12-01
Direct measurement method for the electromagnetic wave and space plasma interaction has been suggested by a computer simulation study [Katoh et al., 2013], so-called Wave Particle Interaction Analysis (WPIA). We perform the WPIA for rising tone electromagnetic ion cyclotron (EMIC) waves (so-called EMIC triggered emissions), of which generation mechanism is essentially the same as the chorus emissions. THEMIS observation data (EFI, FGM, and ESA) are used for the WPIA. In the WPIA, we calculate (1) the inner product of the wave electric field and the velocity of the energetic protons: Wint, (2) the inner product of the wave magnetic field and the velocity of the energetic protons: WBint, and (3) the phase angle ζ between the wave magnetic field and the perpendicular velocity of the energetic protons. The values of (1) and (2) indicate the existence of the resonant currents inducing the nonlinear wave growth and the frequency change, respectively. We find the negative Wint and positive WBint at the nonlinear growing phase of the triggered emission as predicted in the theory [e.g. Omura and Nunn, 2011, Shoji and Omura, 2013]. In histogram of (3), we show the existence of the electromagnetic proton holes in the phase space generating the resonant currents. We also perform a hybrid simulation and evaluate WPIA method for EMIC waves. The simulation results show good agreement with the in-situ THEMIS observations.
High-informative version of nonlinear transformation of Langmuir waves to electromagnetic waves
NASA Astrophysics Data System (ADS)
Erofeev, Vasily I.; Erofeev
2014-04-01
The concept of informativeness of nonlinear plasma physical scenario is discussed. Basic principles for heightening the informativeness of plasma kinetic models are explained. Former high-informative correlation analysis of plasma kinetics (Erofeev, V. 2011 High-Informative Plasma Theory, Saarbrücken: LAP) is generalized for studies of weakly turbulent plasmas that contain fields of solenoidal plasma waves apart from former potential ones. Respective machinery of plasma kinetic modeling is applied to an analysis of fusion of Langmuir waves with transformation to electromagnetic waves. It is shown that the customary version of this phenomenon (Terashima, Y. and Yajima, N. 1963 Prog. Theor. Phys. 30, 443; Akhiezer, I. A., Danelia, I. A. and Tsintsadze, N. L. 1964 Sov. Phys. JETP 19, 208; Al'tshul', L. M. and Karpman, V. I. 1965 Sov. Phys. JETP 20, 1043) substantially distorts the picture of merging of Langmuir waves with long wavelengths (λ >~ c/ωpe ).
Abe, H.; Okuda, H.
1993-08-01
In this Letter, we first present a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. The model was then used for studying linear and nonlinear wave propagation in the dielectric medium such as an optical fiber. It is shown that the model may be useful for studying nonlinear wave propagation and harmonics generation in the nonlinear dielectric media.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-20
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
NASA Astrophysics Data System (ADS)
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.
Kourakis, I; Shukla, P K
2005-07-01
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained. PMID:16090126
Nonlinear propagation of electromagnetic waves in a plasma containing random irregularities.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1973-01-01
The problem of propagation of finite-amplitude electromagnetic waves in a plasma containing random irregularities is studied. Using a recently developed perturbation technique, a general equation for finite amplitude coherent waves is derived. Included in this equation are both the effects of quasi-harmonic nonlinear heating of electrons and random scattering by irregularities. The equation is solved in general by the equivalent linearization procedure. The amplitude of the coherent wave is found to be attenuated by collision and scattering. Both attenuation are affected by the nonlinear heating of the electrons. Curves showing the results for a specific example will be presented.
Shukla, P K; Eliasson, B
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed. PMID:17931024
Shukla, P. K.; Eliasson, B.
2007-08-31
We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schroedinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.
Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma
Shukla, P. K.; Eliasson, B.; Stenflo, L.
2012-07-15
We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-12-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10-6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment.
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma.
Tejero, E M; Crabtree, C; Blackwell, D D; Amatucci, W E; Mithaiwala, M; Ganguli, G; Rudakov, L
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10(-6) times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth's plasma environment. PMID:26647962
Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Mithaiwala, M.; Ganguli, G.; Rudakov, L.
2015-01-01
We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect the analysis and interpretation of space observations and lead to a comprehensive understanding of the nature of the Earth’s plasma environment. PMID:26647962
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
NASA Technical Reports Server (NTRS)
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Rao, N.N.
1998-01-01
A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known H{acute e}non{endash}Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. {copyright} {ital 1998 American Institute of Physics.}
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
NASA Astrophysics Data System (ADS)
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-01
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10-20 m/s for the slow wave and of the order of 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
Nonlinear propagation of Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer
Futatani, S.; Horton, W.; Kaladze, T. D.
2013-10-15
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized ionospheric E-layer is investigated with numerical simulations. Large scale, finite amplitude vortex structures are launched as initial conditions at low, mid, and high latitudes. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with local speeds of the order of 10–20 m/s for the slow wave and of the order of 500–1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary structures emitted from the initial conditions. These structures are neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes are such that the nonlinear convection around the core of the disturbance is faster than the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states is indicative of an initial strong disturbance such as that from a solar storm or a tectonic plate movement. We show that for generic, large amplitude initial disturbances both slow and fast vortex structures propagate out of the initial structure.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings. PMID:27607951
Su, Zhenpeng Zhu, Hui; Zheng, Huinan; Xiao, Fuliang; Zhang, Min; Liu, Y. C.-M.; Shen, Chao; Wang, Yuming; Wang, Shui
2014-05-15
Electromagnetic ion cyclotron (EMIC) waves can lead to the rapid decay (on a timescale of hours) of the terrestrial ring current. Such decay process is usually investigated in the framework of quasi-linear theory. Here, both theoretical analysis and test-particle simulation are performed to understand the nonlinear interaction between ring current ions and EMIC waves. In particular, the dependence of the nonlinear wave-particle interaction processes on the ion initial latitude is investigated in detail. These nonlinear processes are classified into the phase trapping and phase bunching, and the phase bunching is further divided into the channel and cluster effects. Compared to the prediction of the quasi-linear theory, the ring current decay rate can be reduced by the phase trapping, increased by the channel effect phase bunching, but non-deterministically influenced by the cluster effect phase bunching. The ion initial latitude changes the occurrence of the phase trapping, modulates the transport direction and strength of the cluster effect phase bunching, and only slightly affects the channel effect phase bunching. The current results suggest that the latitudinal dependence of these nonlinear processes should be considered in the evaluation of the ring current decay induced by EMIC waves.
Self-focusing of electromagnetic surface waves on a nonlinear impedance surface
Luo, Zhangjie; Chen, Xing; Long, Jiang; Quarfoth, Ryan; Sievenpiper, Daniel
2015-05-25
The self-focusing effect of optical beams has been a popular topic of study for quite a while, but such a nonlinear phenomenon at microwave frequencies has never been realized, partially due to the underdevelopment of nonlinear material. In this research, self-focused electromagnetic (EM) surface waves are demonstrated on a circuit-based, power-dependent impedance surface. The formation of a self-focused beam is investigated using a series of discrete-time simulations, and the result is further validated in measurement. It is experimentally observed that, in contrast to the normal scattering of low-power surface waves, high-power waves propagate through the surface while maintaining narrow beam width, and even converge extremely tightly to create a hot spot with higher power. The result is essentially a nonlinear effect of the surface that compensates for the natural tendency of surface waves to diffract. This intriguing experiment can be extended to various potential EM applications such as power-dependent beam steering antennas and nonlinear microwave propagation or dissipation.
Javan, N. Sepehri Homami, S. H. H.
2015-02-15
Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.
Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H.; Niknam, A. R.
2013-08-15
The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.
NASA Astrophysics Data System (ADS)
Ustinova, I. A.; Cherkasskii, M. A.; Ustinov, A. B.; Kalinikos, B. A.
2015-12-01
The nonlinear phase shift and nonlinear damping of spin-electromagnetic waves were theoretically studied for the first time in sub-terahertz frequency range in infinite homogeneous longitudinal magnetized multiferroics. The research was based on the solution of the Ginzburg-Landau equation. It is shown that the saturation of the phase shift occurs due to the nonlinear damping if the nonlinear damping coefficients exceed v1=108 s-1 and v2=109 s-1.
Umeda, Takayuki
2008-06-15
Nonlinear evolution of the electron two-stream instability in a current-carrying plasma is examined by using a two-dimensional electromagnetic particle-in-cell simulation. Formation of electron phase-space holes is observed as an early nonlinear consequence of electron-beam-plasma interactions. Lower-hybrid waves, electrostatic, and electromagnetic whistler mode waves are also excited by different mechanisms during the ensuing nonlinear wave-particle interactions. It is shown by the present computer simulation with a large simulation domain and a long simulation time that these low-frequency waves can disturb the electrostatic equilibrium of electron phase-space holes, suggesting that the lifetime of electron phase-space holes sometimes becomes shorter in a current-carrying plasma.
NASA Astrophysics Data System (ADS)
Zeng, Qi-Jun; Cheng, Ze
2010-06-01
In a Kerr nonlinear blackbody, bare photons with opposite wave vectors and helicities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. The present paper investigates the influence of a single frequency electromagnetic wave on the energy spectrum of the nonpolariton system. We find that the wave can lead to an energy shift of nonpolaritons. Moreover, we calculate the first-order energy shift on certain conditions.
Full-wave Nonlinear Inverse Scattering for Acoustic and Electromagnetic Breast Imaging
NASA Astrophysics Data System (ADS)
Haynes, Mark Spencer
Acoustic and electromagnetic full-wave nonlinear inverse scattering techniques are explored in both theory and experiment with the ultimate aim of noninvasively mapping the material properties of the breast. There is evidence that benign and malignant breast tissue have different acoustic and electrical properties and imaging these properties directly could provide higher quality images with better diagnostic certainty. In this dissertation, acoustic and electromagnetic inverse scattering algorithms are first developed and validated in simulation. The forward solvers and optimization cost functions are modified from traditional forms in order to handle the large or lossy imaging scenes present in ultrasonic and microwave breast imaging. An antenna model is then presented, modified, and experimentally validated for microwave S-parameter measurements. Using the antenna model, a new electromagnetic volume integral equation is derived in order to link the material properties of the inverse scattering algorithms to microwave S-parameters measurements allowing direct comparison of model predictions and measurements in the imaging algorithms. This volume integral equation is validated with several experiments and used as the basis of a free-space inverse scattering experiment, where images of the dielectric properties of plastic objects are formed without the use of calibration targets. These efforts are used as the foundation of a solution and formulation for the numerical characterization of a microwave near-field cavity-based breast imaging system. The system is constructed and imaging results of simple targets are given. Finally, the same techniques are used to explore a new self-characterization method for commercial ultrasound probes. The method is used to calibrate an ultrasound inverse scattering experiment and imaging results of simple targets are presented. This work has demonstrated the feasibility of quantitative microwave inverse scattering by way of a self
On the formation of shocks of electromagnetic plane waves in non-linear crystals
NASA Astrophysics Data System (ADS)
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
NASA Astrophysics Data System (ADS)
Sodha, Mahendra Singh; Mishra, Rashmi; Srivastava, Sweta
2016-03-01
In this paper, we consider the nonlinearity in the propagation of electromagnetic (e.m.) waves in a plasma caused by the electron temperature dependence of the coefficient of recombination of electrons with ions; specifically, the ionospheric E layer has been investigated. The enhancement in electron temperature by an intense electromagnetic wave causes reduction of the electron-ion recombination coefficient and thereby enhancement of electron density, the electron collision frequency also gets enhanced. The equations for number and energy balance of electrons and the wave equation have been used to predict the dependence of electron density/collision frequency and the nonlinear refractive index and absorption coefficient on αE02 (proportional to wave irradiance). The dependence of the propagation parameters on αE02 has been used to investigate the nonlinear electromagnetic wave propagation in the ionosphere. The study concludes that the electron temperature dependence of the recombination coefficient should be considered in all analyses of nonlinear plasma-e.m. wave interaction.
Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma
Marklund, M.; Eliasson, B.; Shukla, P. K.
2006-08-15
A kinetic equation describing the nonlinear evolution of intense electromagnetic pulses in electron-positron (e-p) plasmas is presented. The modulational instability is analyzed for a relativistically intense partially coherent pulse, and it is found that the modulational instability is inhibited by the spectral pulse broadening. A numerical study for the one-dimensional kinetic photon equation is presented. Computer simulations reveal a Fermi-Pasta-Ulam-type recurrence phenomenon for localized broadband pulses. The results should be of importance in understanding the nonlinear propagation of broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems as well as in astrophysical plasma settings.
He, Zhaoguo; Zong, Qiugang Wang, Yongfu; Liu, Siqing; Lin, Ruilin; Shi, Liqin
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
Ding, Yaqiong; Xue, Chunhua; Sun, Yong; Jiang, Haitao; Li, Yunhui; Li, Hongqiang; Chen, Hong
2012-10-22
We propose a scheme for subwavelength electromagnetic switch by employing nonlinear meta-atom. Bistable response is conceptually demonstrated on a microwave transmission line, which is side-coupled to a varactor-loaded split ring resonator acting as a nonlinear meta-atom. Calculations and experiments show that by applying conductive coupling instead of near-field interaction between the transmission line and the nonlinear meta-atom, switch performances are improved. The switch threshold of low to -5.8 dBm and the transmission contrast of up to 4.0 dB between the two bistable states were achieved. Subwavelength size of our switch should be useful for miniaturization of integrated optical nanocircuits. PMID:23187246
NASA Technical Reports Server (NTRS)
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
NASA Astrophysics Data System (ADS)
Ramadan, Omar
2015-09-01
In this paper, systematic wave-equation finite difference time domain (WE-FDTD) formulations are presented for modeling electromagnetic wave-propagation in linear and nonlinear dispersive materials. In the proposed formulations, the complex conjugate pole residue (CCPR) pairs model is adopted in deriving a unified dispersive WE-FDTD algorithm that allows modeling different dispersive materials, such as Debye, Drude and Lorentz, in the same manner with the minimal additional auxiliary variables. Moreover, the proposed formulations are incorporated with the wave-equation perfectly matched layer (WE-PML) to construct a material independent mesh truncating technique that can be used for modeling general frequency-dependent open region problems. Several numerical examples involving linear and nonlinear dispersive materials are included to show the validity of the proposed formulations.
Sati, Priti; Tripathi, V. K.
2012-12-15
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.
NASA Astrophysics Data System (ADS)
Bespalov, P. A.; Savina, O. N.
2015-01-01
The nonlinear response of the equatorial current jet to external actions is considered, as well as some geophysical effects produced by it. Irradiating the current jet by short-wave electromagnetic radiation with amplitude modulation in ranges of VLF emission and geomagnetic pulsations, one can provide for conditions when a nonlinear antenna is realized in the current jet region. Estimations have shown that under the current jet on the ground surface electromagnetic signals on modulation frequencies can be two orders of magnitude larger than at middle latitudes due to modulated electron temperature and density. The effect of signals from the modulated equatorial current jet on the modes of operation of the plasma magnetospheric maser in VLF waveband is considered. The resonance modification of the spectra of natural electromagnetic waves of VLF range in the magnetosphere is shown to be possible.
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Nonlinear electromagnetic interactions in energetic materials
Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven
2016-01-12
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.
"Hearing" Electromagnetic Waves
ERIC Educational Resources Information Center
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
NASA Astrophysics Data System (ADS)
Smirnov, Yury G.; Valovik, Dmitry V.
2015-11-01
The preceding Comment contains statements that we feel are inaccurate and that lead one to think that the problem we study in Phys. Rev. A 91, 013840 (2015), 10.1103/PhysRevA.91.013840 was solved long ago. However, we argue that our results are new and add to the understanding of the process of transverse electric wave propagation in a Kerr medium. In our Reply we contest the critical statements that are given in the Comment.
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995
Skjaeraasen, Olaf; Melatos, A.; Spitkovsky, A.; /KIPAC, Menlo Park
2005-08-15
A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over {approx}> 10{sup 2} skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale ({approx}> 0.05''?) might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.
Nonlinear Hysteretic Torsional Waves.
Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V
2015-07-31
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Electromagnetic wave propagation characteristics in unimolecular reactions
NASA Astrophysics Data System (ADS)
Liu, Xingpeng; Huang, Kama
2016-01-01
Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002 - 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis
Global Simulation of Electromagnetic Ion Cyclotron Waves
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.
2007-01-01
It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Acoustic and electromagnetic waves
NASA Astrophysics Data System (ADS)
Jones, Douglas Samuel
Theoretical models of EM and acoustic wave propagation are presented in an introductory text intended for intermediate-level science and engineering students. Chapters are devoted to the mathematical representation of acoustic and EM fields, the special theory of relativity, radiation, resonators, waveguide theory, refraction, surface waves, scattering by smooth objects, diffraction by edges, and transient waves. The mathematical tools required for the analysis (Bessel, Legendre, Mathieu, parabolic-cylinder, and spheroidal functions; tensor calculus; and the asymptotic evaluation of integrals) are covered in appendices.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Electromagnetic waves in a strong Schwarzschild plasma
Daniel, J.; Tajima, T.
1996-11-01
The physics of high frequency electromagnetic waves in a general relativistic plasma with the Schwarzschild metric is studied. Based on the 3 + 1 formalism, we conformalize Maxwell`s equations. The derived dispersion relations for waves in the plasma contain the lapse function in the plasma parameters such as in the plasma frequency and cyclotron frequency, but otherwise look {open_quotes}flat.{close_quotes} Because of this property this formulation is ideal for nonlinear self-consistent particle (PIC) simulation. Some of the physical consequences arising from the general relativistic lapse function as well as from the effects specific to the plasma background distribution (such as density and magnetic field) give rise to nonuniform wave equations and their associated phenomena, such as wave resonance, cutoff, and mode-conversion. These phenomena are expected to characterize the spectroscopy of radiation emitted by the plasma around the black hole. PIC simulation results of electron-positron plasma are also presented.
Electromagnetic wave scattering by Schwarzschild black holes.
Crispino, Luís C B; Dolan, Sam R; Oliveira, Ednilton S
2009-06-12
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time. PMID:19658920
Computational modeling of nonlinear electromagnetic phenomena
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Taflove, Allen
1992-01-01
A new algorithm has been developed that permits, for the first time, the direct time integration of the full-vector nonlinear Maxwell's equations. This new capability permits the modeling of linear and nonlinear, instantaneous and dispersive effects in the electric polarization material media. Results are presented of first-time calculations in 1D of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier.
Collision of strong gravitational and electromagnetic waves in the expanding universe
NASA Astrophysics Data System (ADS)
Alekseev, G. A.
2016-03-01
An exact analytical model of the process of collision and nonlinear interaction of gravitational and/or electromagnetic soliton waves and strong nonsoliton electromagnetic traveling waves of arbitrary profile propagating in the expanding universe (the symmetric Kasner spacetime) is presented. In contrast to intuitive expectations that rather strong traveling waves can destroy the soliton, it occurs that the soliton survives during its interaction with electromagnetic waves of arbitrary amplitude and profile, but its parameters begin to evolve under the influence of this interaction. If a traveling electromagnetic wave possesses a finite duration, the soliton parameters after interaction take constant values again, but these values in general are different from those before the interaction. Based on exact solutions of the Einstein-Maxwell equations, our model demonstrates a series of nonlinear phenomena, such as (a) creation of gravitational waves in the collision of two electromagnetic waves, (b) creation of electromagnetic soliton waves in the collision of a gravitational soliton with traveling electromagnetic waves, (c) scattering of a part of a soliton wave in the direction of propagation of a traveling electromagnetic wave, and (d) quasiperiodic oscillating character of fields in the wave interaction region and multiple mutual transformations of gravitational and electromagnetic waves in this region. The figures illustrate these features of nonlinear wave interactions in general relativity.
Laboratory investigation of nonlinear whistler wave processes
NASA Astrophysics Data System (ADS)
Amatucci, Bill; Tejero, Erik; Crabtree, Chris; Enloe, Lon; Blackwell, Dave; Ganguli, Guru
2015-11-01
Nonlinear interactions involving whistler wave turbulence result from processes such as wave-particle interactions in the radiation belts and instability generation in sharp magnetospheric boundary layers. Nonlinear scattering of large amplitude waves off thermal electrons substantially changes the wave vector direction and energy flux, while inducing a small frequency shift [Crabtree, Phys. Plasmas 19, 032903 (2012)]. This nonlinear scattering of primarily electrostatic lower hybrid waves into electromagnetic whistler modes is being investigated in the NRL Space Chamber under conditions scaled to match the respective environments. Lower hybrid waves are generated directly by antennas or self-consistently from sheared cross-magnetic field flows with scale length less than an ion gyroradius via the Electron-Ion Hybrid Instability [Ganguli, Phys. Fluids 31, 2753 (1988)), Amatucci, Phys. Plasmas 10, 1963 (2003)]. Sufficiently large amplitude lower hybrid waves have been observed to convert into whistler modes by scattering from thermal electrons. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Details of the observed wave spectra and mode characteristics will be presented. This work supported by the NRL Base Program.
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco
2012-11-15
In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Nonlinear whistler wave scattering in space plasmas
Yukhimuk, V.; Roussel-Dupre, R.
1997-04-01
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 cases of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
Erofeev, V. I.
2015-09-15
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves
NASA Astrophysics Data System (ADS)
Erofeev, V. I.
2015-09-01
The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
Electromagnetic nonlinear gyrokinetics with polarization drift
NASA Astrophysics Data System (ADS)
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-01
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Electromagnetic nonlinear gyrokinetics with polarization drift
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.
Masood, Waqas; Eliasson, Bengt; Shukla, Padma K
2010-06-01
A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534
Electromagnetic envelope solitary waves with transverse perturbation in a plasma
Borhanian, J.
2013-04-15
The system of fluid-Maxwell equations governing the two-dimensional dynamics of electromagnetic waves in a plasma is analyzed by means of multiple scale perturbation method. It is shown that the evolution of the amplitude of wave field is governed by a two-dimensional nonlinear Schroedinger equation. The stability of bright envelope solitons is studied using the variational method. It is found that the development of transverse periodic perturbations on bright solitons is faster for a plasma with near critical density. Dynamics of electromagnetic bright solitons is investigated in the long-wave approximation. Our model predicts the appearance of collapse of electromagnetic waves in plasmas and describes the collapse dynamics at initial stages.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Nonlinear electromagnetic gyrokinetic simulations of tokamak plasmas
NASA Astrophysics Data System (ADS)
Jenko, F.; Dorland, W.
2001-12-01
One of the central physics issues currently targeted by nonlinear gyrokinetic simulations is the role of finite-β effects. The latter change the MHD equilibrium, introduce new dynamical space and time scales, alter and enlarge the zoo of electrostatic microinstabilities and saturation mechanisms, and lead to turbulent transport along fluctuating magnetic field lines. It is shown that the electromagnetic effects on primarily electrostatic microinstabilities are generally weakly or moderately stabilizing. However, the saturation of these modes and hence the determination of the transport level in the quasi-stationary turbulent state can be dominated by nonlinear electromagnetic effects and yield surprising results. Despite this, the induced transport is generally electrostatic in nature well below the ideal ballooning limit.
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.
NASA Astrophysics Data System (ADS)
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Properties of Nonlinear Dynamo Waves
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Energy harvesting in the nonlinear electromagnetic system
NASA Astrophysics Data System (ADS)
Kucab, K.; Górski, G.; Mizia, J.
2015-11-01
We examine the electrical response of electromagnetic device working both in the linear and nonlinear domain. The harvester is consisted of small magnet moving in isolating tube surrounded by the coil attached to the electrical circuit. In the nonlinear case the magnet vibrates in between two fixed magnets attached to the both ends of the tube. Additionally we use two springs which limit the movement of the small magnet. The linear case is when the moving magnet is attached to the repelling springs, and the static magnets have been replaced by the non-magnetic material. The potentials and forces were calculated using both the analytical expressions and the finite elements method. We compare the results for energy harvesting obtained in these two cases. The generated output power in the linear case reaches the peak value 80 mW near the resonance frequency ω0 for maximum base acceleration considered by us, whereas in the non-linear case the corresponding outpot power has the peak value 95 mW and additionally relatively high values in the excitation frequencies range up to ω = 1.2ω0. The numerical results also show that the power efficiency in the nonlinear case exceeds the corresponding efficiency in the linear case at relatively high values of base accelerations greater than 5 g. The results show the increase of harvested energy in the broad band of excitation frequencies in the nonlinear case.
Electromagnetic scattering from nonlinear anisotropic cylinders. I - Fundamental frequency
NASA Astrophysics Data System (ADS)
Hasan, Moh'd. A.; Uslenghi, P. L. E.
1990-04-01
The solution of the problem of electromagnetic scattering of obliquely incident plane waves by homogeneous, nonlinear anisotropic cylindrical structures is obtained. The medium of the scatterer is characterized by Volterra-type integrals for the electric and magnetic flux density vectors D and B, respectively. The nonlinear problem is solved using the perturbation method. The effects of nonlinearities on the field properties both inside and outside the scatterer, together with the effect on the radar cross section, are investigated for the fundamental frequency components. To demonstrate the validity of the approach, the results obtained by the perturbation method are compared with those obtained using the plane wave representation method of Censor (1983), where the iteration method is used to solve the resulting dispersion equation. The results are in very good agreement in both amplitude and phase of the fields for the case of very weak nonlinearity. When the relative magnitude of the nonlinear component of the permittivity is increased, the iteration method shows a faster divergence of the phase from the linear phase.
Strongly nonlinear magnetosonic waves and ion acceleration
Rau, B.; Tajima, T.
1997-11-01
The electromagnetic fields associated with a nonlinear compressional Alfven wave propagating perpendicular to an external magnetic field of arbitrary strength are derived. For the strongly magnetized and high phase velocity case relevant for ion acceleration to high energies, we show that the electric field increases proportionally only to the external magnetic field O (B{sub ext}[in T] MV/cm) and the electrostatic potential increases with the square root of the ion-to-electron mass ratio {radical}M{sub i}/m{sub e}.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Detection of electromagnetic waves using MEMS antennas
Lavrik, Nickolay V; Tobin,; Bowland, Landon T
2011-01-01
We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
It is shown that a charged particle moving in a strong nonuniform electromagnetic wave suffers a net acceleration in the direction of the negative intensity gradient of the wave. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities can result.
Relativistic particle motion in nonuniform electromagnetic waves
NASA Technical Reports Server (NTRS)
Schmidt, G.; Wilcox, T.
1973-01-01
A charged particle moving in a strong nonuniform electromagnetic wave which suffers a net acceleration in the direction of the negative intensity gradient of the wave was investigated. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities result.
Experimental characterization of nonlinear processes of whistler branch waves
NASA Astrophysics Data System (ADS)
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Solitons and nonlinear wave equations
Dodd, Roger K.; Eilbeck, J. Chris; Gibbon, John D.; Morris, Hedley C.
1982-01-01
A discussion of the theory and applications of classical solitons is presented with a brief treatment of quantum mechanical effects which occur in particle physics and quantum field theory. The subjects addressed include: solitary waves and solitons, scattering transforms, the Schroedinger equation and the Korteweg-de Vries equation, and the inverse method for the isospectral Schroedinger equation and the general solution of the solvable nonlinear equations. Also considered are: isolation of the Korteweg-de Vries equation in some physical examples, the Zakharov-Shabat/AKNS inverse method, kinks and the sine-Gordon equation, the nonlinear Schroedinger equation and wave resonance interactions, amplitude equations in unstable systems, and numerical studies of solitons. 45 references.
Nonlinear positron acoustic solitary waves
Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia
2009-07-15
The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.
Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu
2010-02-15
We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.
Multiple-scattering theory for electromagnetic waves
Wang, X. ); Zhang, X. ); Yu, Q.; Harmon, B.N. )
1993-02-15
In this paper, a multiple-scattering formalism for electromagnetic waves is presented. Its application to the three-dimensional periodic dielectric structures is given in a form similar to the usual Korringa-Kohn-Rostoker form of scalar waves. Using this approach, the band-structure results of touching spheres of diamond structure in a dielectric medium with dielectric constant 12.96 are calculated. The application to disordered systems under the coherent-potential approximation is discussed.
Colliding electromagnetic shock waves in general relativity
Halilsoy, M.
1988-04-15
We derive a new, exact solution for the Einstein-Maxwell equations that describes the collision (interaction) of two arbitrarily polarized electromagnetic shock waves. In the limit that the polarization angle vanishes, our solution reduces to the Bell-Szekeres solution.
Nonlinear absorption of Alfven wave in dissipative plasma
Taiurskii, A. A. Gavrikov, M. B.
2015-10-28
We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
Principles of electromagnetic waves in metasurfaces
NASA Astrophysics Data System (ADS)
Luo, XianGang
2015-09-01
Metasurfaces are artificially structured thin films with unusual properties on demand. Different from metamaterials, the metasurfaces change the electromagnetic waves mainly by exploiting the boundary conditions, rather than the constitutive parameters in three dimensional (3D) spaces. Despite the intrinsic similarities in the operational principles of metasurfaces, there is not a universal theory available for the understanding and design of these devices. In this article, we propose the concept of metasurface waves (M-waves) and provide a general theory to describe the principles of such waves. Most importantly, it is shown that the M-waves share some fundamental properties such as extremely short wavelength, abrupt phase change and strong chromatic dispersion, which making them different from traditional bulk waves. We show that these properties can enable many important applications such as subwavelength imaging and lithography, planar optical devices, broadband anti-reflection, absorption and polarization conversion. Our results demonstrated unambiguously that traditional laws of diffraction, refraction, reflection and absorption can be overcome by using the novel properties of M-waves. The theory provided here may pave the way for the design of new electromagnetic devices and further improvement of metasurfaces.
Evidence for nonlinear wave-wave interactions in solar type III radio bursts
NASA Technical Reports Server (NTRS)
Lin, R. P.; Levedahl, W. K.; Lotko, W.; Gurnett, D. A.; Scarf, F. L.
1986-01-01
Evidence is presented that nonlinear wave-wave interactions occur in type III solar radio bursts. Intense, spiky Langmuir waves are observed to be driven by electron beams associated with type III solar radio bursts in the interplanetary medium. Bursts of 30-300 Hz (in the spacecraft frame) waves are often observed coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wavenumber approximately equal to the beam resonant Langmuir wavenumber. Three possible interpretations of these observations are considered: modulational instability, parametric decay of the parent Langmuir waves to daughter ion acoustic and Langmuir waves, and decay to daughter electromagnetic waves and ion acoustic waves.
Stationary nonlinear Alfven waves and solitons
NASA Technical Reports Server (NTRS)
Hada, T.; Kennel, C. F.; Buti, B.
1989-01-01
Stationary solutions of the derivative nonlinear Schroedinger equation are discussed and classified by using a pseudopotential formulation. The solutions consist of a rich family of nonlinear Alfven waves and solitons with parallel and oblique propagation directions. Expressions for the envelope and the phase of nonlinear waves with periodic envelope modulation, and 'hyperbolic' and 'algebraic' solitons are given. The propagation angle for the slightly modulated elliptic, periodic waves and for oblique solitons is evaluated.
Propagation characteristics of electromagnetic waves in concrete
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.; Maser, Kenneth; Kausel, Eduardo
1989-03-01
This research develops models which can predict the velocity and attenuation of electromagnetic waves in concrete as a function of frequency, temperature, moisture content, chloride content and concrete mix constituents. These models were proposed to predict the electromagnetic properties of concrete by aggregating the electromagnetic properties of its constituents. Water and the dissolved salt are the constituents having the most prominent effect on the dielectric behavior of concrete. A comparative study of three existing three-phase mixture models was carried out. Numerical results were generated using the most representative Discrete model. These results have shown that the real part of complex concrete permittivity (and therefore the velocity of electromagnetic waves) is independent of salinity or frequency in the 0.6 to 3.0 GHz frequency range. On the other hand, these results show that the attenuation coefficient and dielectric conductivity vary almost linearly with frequency in this same frequency range. The real part of concrete permittivity and the attenuation coefficient also show a linear dependence with respect to the degree of saturation of water in the concrete mixture. This suggests that future research should focus on approximating the complex models presented in this research by simple equations.
Nonlinear Fourier analysis with cnoidal waves
Osborne, A.R.
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Propagation of ultra-intense electromagnetic waves through electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Tsintsadze, N. L.; Jamil, M.
2016-07-01
A kinetic approach is used to study the propagation of ultrarelativistic (amplitude) electromagnetic waves through electron-positron-ion plasma. For our purposes, we formulate a new plasma particle distribution function in the presence of ultrarelativistically intense circularly polarized electromagnetic (EM) waves. An effective dispersion relation of constant amplitude ultrarelativistic EM wave is derived, skin depth is calculated in particular, frequency regimes and has shown numerically that the penetration depth increases with the amplitude of ultra-intense electromagnetic waves, λ s k ˜ a /1 2 , i.e., plasma will be heated more in the region of skin depth. Next, we have found that the nonlinear interaction of ultrarelativistically intense EM waves of time and space varying amplitude leads to construct kinetic nonlinear Schrödinger equation (KNSE), containing both local and non-local nonlinear terms, where nonlocal nonlinear term appears due to density perturbations of plasma species. Taking the effects of the latter into consideration, nonlinear Landau damping is discussed for KNSE, damping rate is computed, and numerically ultrarelativistic EM waves are shown to decay exponentially. The present results should be helpful to understand the specific properties of the ultrarelativistic EM waves in astrophysical plasmas, e.g., pulsars, black holes, and neutron stars.
Eliasson, B.; Lazar, M.
2015-06-15
This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.
Nonlinear waves in the solar atmosphere.
Ruderman, Michael S
2006-02-15
In this paper, we give a brief review of the contemporary theory of nonlinear waves in the solar atmosphere. The choice of topics reflects personal interests of the author. Historically the theory of nonlinear waves was first applied to the solar atmosphere to explain the chromospheric and coronal heating. It was assumed that the turbulent motion in the solar convective zone excites sound waves that propagate upwards. Due to nonlinearity these waves steepen and form shocks. The wave energy dissipates in these shocks thus heating the corona. We give a brief description of propagation and damping of nonlinear sound waves in the stratified solar atmosphere, and point out that, at present, the acoustic heating remains the most popular theory of heating the lower chromosphere. Then we extend the analysis to nonlinear slow magnetosonic waves in coronal plumes and loops, and discuss its implications for interpretation of observational results. The next topic of interest is the propagation of nonlinear waves in a magnetically structured atmosphere. Here, we restrict our analysis to slow sausage waves in magnetic tubes and discuss properties of solitary waves described by the Leibovich-Roberts equation. We conclude with the discussion of nonlinear theory of slow resonant layers, and its possible application to helioseismology. PMID:16414893
Modeling electromagnetic ion cyclotron waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, Konstantin; Engebretson, Mark; Zhang, Ming; Rassoul, Hamid
The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. [2009], however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the “bi-ion latitudes” (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth’s magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultra low frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at “bi-ion latitudes”, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation
Model of electromagnetic ion cyclotron waves in the inner magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2014-09-01
The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, nonbounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth's magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ultralow frequency waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi field aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He+-mode EMIC waves that propagate to the equator after their reflection at bi-ion latitudes, and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He+-mode EMIC waves but also causes wave generation in the region
Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma
Niknam, A. R.; Hashemzadeh, M.; Aliakbari, A.; Majedi, S.; Haji Mirzaei, F.
2011-11-15
The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.
Detection of electromagnetic radiation using nonlinear materials
Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin
2016-06-14
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Nonlinear analysis of helix traveling wave tubes
Freund, H.P.; Zaidman, E.G.; Vanderplaats, N.R.; Kodis, M.A.
1994-12-31
A nonlinear formulation of the interaction in a helix traveling wave tube (TWT) is presented. The formulation is intended to treat a wide class of helix TWTs including both emission-gated and multi-tone operation. The essential feature of each of these configurations is that multiple waves must be included in the formulation. As a result, a fully time-dependent analysis is required. The numerical procedure for this in a helix TWT is complicated by the fact that the radial profile of the field varies with frequency. This contrasts, for example, with the case of a smooth bore waveguide in which the radial profile for each TE{sub ln} or TM{sub ln} mode is invariant in frequency. Because of this, a complete self-consistent particle-in-cell (PIC) formulation must be three-dimensional. In order to circumvent the computational expense of a 3D PIC formulation, the authors adopt an approach in which the electromagnetic field is represented as a superposition of azimuthally symmetric modes in a vacuum sheath helix. The specific electron distributions are chosen to model either a continuous beam for the multi-tone TWT and a pulsed beam for the emission-gated TWT. Numerical results of the simulation for examples of interest to an emission-gated TWT experiment at NRL will be presented.
Model of Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H.
2014-12-01
The He-band electromagnetic ion cyclotron (EMIC) waves are studied using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach by Gamayunov et al. [2009], however, we do not use the bounce-averaged kinetic equation for waves but instead use a complete, non bounce-averaged, equation to model EMIC wave power spectral density. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" (the latitudes where the given wave frequency is equal to the O+-He+ bi-ion frequency) in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model if the thermal background level is used, but routinely observed in the Earth's magnetosphere. To overcome this model-observation discrepancy we suggest a nonlinear energy cascade from the lower frequency range of ULF waves into the frequency range of EMIC wave generation as a possible mechanism supplying the needed level of seed fluctuations that guarantees growth of EMIC waves during one pass through the near equatorial region. The EMIC wave development from a suprathermal background level shows that EMIC waves are quasi-field-aligned near the equator, while they are oblique at high latitudes, and the Poynting flux is predominantly directed away from the near equatorial source region in agreement with observations. (2) An abundance of O+ strongly controls the energy of oblique He-band EMIC waves that propagate to the equator after their reflection at "bi-ion latitudes", and so it controls a fraction of wave energy in the oblique normals. (3) The RC O+ not only causes damping of the He-band EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for θ > 82o, where a growth rate γ > 10-2 rad/s is frequently observed. The
Nonlinear evolution of astrophysical Alfven waves
Spangler, S.R.
1984-11-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth. (ESA)
Nonlinear evolution of astrophysical Alfven waves
NASA Technical Reports Server (NTRS)
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Electromagnetic waves in a polydisperse dusty plasma
Prudskikh, V. V.; Shchekinov, Yu. A.
2013-10-15
The properties of low-frequency electromagnetic waves in a polydisperse dusty plasma are studied. The dispersion relation for the waves propagating at an arbitrary angle to the external magnetic field is derived, with the coefficients explicitly determined by the dust-size distribution function. The dependence of wave dispersion on properties of the dust-size distribution function is analysed. It is shown that the cutoff for an oblique propagation in plasma with a wide scatter of dust sizes takes place at a much lower frequency than in a plasma with monosized dust particles. It is found that dispersion properties of a transversal magnetosonic wave mode around dust–cyclotron frequencies considerably differ from those in a plasma with monosized dust. In a plasma with low mass fraction of dust particles, the dispersion is smooth without the cutoff and the resonance intrinsic for a plasma with monosized dust. Increase of the dust fraction results in splitting of the dispersion curve on to two branches. Further increase of the dust fraction leads to emergence of the third branch located between the cutoffs and restricted from the lower and higher frequencies by two resonances. The dependence of the frequencies of cutoffs and resonances on the width of the dust-size distribution, its slope and the dust mass fraction are analysed. It is shown that the transparency frequency windows in a plasma with polydisperse dust are wider for transversal elecromagnetic waves, but narrower for longitudinal or oblique waves.
Electromagnetic Ion Cyclotron Waves in the Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H.
2013-12-01
The evolution of He+ mode electromagnetic ion cyclotron (EMIC) waves is studied in the Earth's magnetosphere using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, non bounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The results based on this new approach demonstrate overall agreement with statistical studies of EMIC waves in the inner magnetosphere. The major findings from our study can be summarized as follows. (1) The RC O+ not only causes damping of the He+ mode EMIC waves but also causes wave generation in the region of highly oblique wave normal angles, typically for θ > 82deg, where a growth rate γ > 0.01 rad/s is frequently observed. The wave instability is driven by the loss-cone feature in the RC O+ distribution function. (2) The O+ density strongly controls the He+ mode EMIC wave energetics. For the plasmaspheric O+ fraction less than 1.5%, the wave damping by RC O+ in the vicinity of the O+-He+ bi-ion frequency becomes strong enough leading to a strongly suppressed EMIC wave activity. This suggests that both the RC and thermal O+ should be carefully specified in the model, and RC O+ should be included not only in the imaginary part of wave dispersion relation but in the real part as well. (3) The thermal background level for the He+ mode EMIC waves is too low to allow waves to grow up to the observable level during one pass between the "bi-ion latitudes" in conjugate hemispheres. As a consequence, quasi-field-aligned EMIC waves are not typically produced in the model but routinely observed in the Earth's magnetosphere. Our estimates show that a nonlinear energy cascade from lower frequency pulsations (in the Pc 4 to lower Pc 2 frequency range) into the frequency range of Pc
Kinetic theory of electromagnetic ion waves in relativistic plasmas
Marklund, Mattias; Shukla, Padma K.
2006-09-15
A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by a ponderomotive force-like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.
Nonlinear spreading of Farley-Buneman waves
NASA Astrophysics Data System (ADS)
Litt, S. K.; Bains, A. S.; Smolyakov, A. I.; Onishchenko, O. G.; Pokhotelov, O. A.
2015-11-01
Nonlinear coupling of Farley-Buneman (FB) waves is studied using the method of modulational decay instabilities. Dispersion relation for the growth of the secondary Farley-Buneman waves has been derived. It is shown that the primary wave is unstable with respect to the modulational instability decay, producing the secondary waves with a finite flow angle with respect to the direction of the electron E × B flow. This process leads to the nonlinear spreading of the primary FB waves into the linearly stable region which is consistent with the previous numerical simulations and some observations.
Self-generation and management of spin-electromagnetic wave solitons and chaos
Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.
2014-06-09
Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.
Electromagnetic wave interactions with a metamaterial cloak.
Chen, Hongsheng; Wu, Bae-Ian; Zhang, Baile; Kong, Jin Au
2007-08-10
We establish analytically the interactions of electromagnetic wave with a general class of spherical cloaks based on a full wave Mie scattering model. We show that for an ideal cloak the total scattering cross section is absolutely zero, but for a cloak with a specific type of loss, only the backscattering is exactly zero, which indicates the cloak can still be rendered invisible with a monostatic (transmitter and receiver in the same location) detection. Furthermore, we show that for a cloak with imperfect parameters the bistatic (transmitter and receiver in different locations) scattering performance is more sensitive to eta(t)=square root micro(t)/epsilon(t) than n(t)=square root micro(t)epsilon(t). PMID:17930824
Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.
1987-01-01
Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.
NASA Astrophysics Data System (ADS)
Tejero, Erik
2015-11-01
The nonlinear conversion of electrostatic (ES) to electromagnetic (EM) waves in the whistler branch through induced scattering by thermal electrons is an important contribution to the evolution of plasmas in weak turbulence when the wave amplitude is large enough for linear/quasi-linear approaches to break down. It has been theoretically shown that in isothermal low beta turbulent plasmas the rate of induced scattering by particles is much larger than three-wave coalescence and decay processes. It is particularly important to near-Earth space plasma evolution during disturbed times when wave amplitudes cross the threshold for nonlinear scattering. The change in k vector and group velocity of the waves resulting from the conversion from ES to EM enhances the efficiency of pitch-angle scattering, which plays a dramatic role in regulating the trapped energetic electron fluxes inthe Earth's radiation belts. This nonlinear process is being studied in the NRL Space Physics Simulation Chamber, demonstrating the induced nonlinear scattering of quasi-electrostatic pump waves by thermal electrons. The experimental results support theoretical predictions of the nonlinear interaction. Work supported by the Naval Reseach Laboratory Base Program.
Nonlinear waves in capillary electrophoresis
Ghosal, Sandip; Chen, Zhen
2011-01-01
Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care and forensics. In capillary electrophoresis the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration ‘shocks’. In this paper we consider a simplified model consisting of a single sample ion and a background electrolyte consisting of a single co-ion and a counterion in the absence of any processes that might change the ionization states of the constituents. If the ionic diffusivities are assumed to be the same for all constituents the concentration of sample ion is shown to obey a one dimensional advection diffusion equation with a concentration dependent advection velocity. If the analyte concentration is sufficiently low in a suitable non-dimensional sense, Burgers’ equation is recovered, and thus, the time dependent problem is exactly solvable with arbitrary initial conditions. In the case of small diffusivity either a leading edge or trailing edge shock is formed depending on the electrophoretic mobility of the sample ion relative to the background ions. Analytical formulas are presented for the shape, width and migration velocity of the sample peak and it is shown that axial dispersion at long times may be characterized by an effective diffusivity that is exactly calculated. These results are consistent with known observations from physical and numerical simulation experiments. PMID:20238181
Nonlinear waves in an Alfven waveguide
Dmitrienko, I.S.
1992-06-01
A nonlinear Schroedinger equation is derived for the envelopes of weakly nonlinear quasilongitudinal (k{sub 1}<{radical}{omega}/{omega}{sub i}k{sub {parallel}}) Alfven waves in a waveguide, the existence of which is ensured by the presence of ion inertia (m{sub i}{ne}0) in a plasma with a transverse density gradient. It is shown that the nonlinear properties of such waves are associated with the presence of transverse structure in the waveguide modes. Estimates show that weakly nonlinear processes can have a significant effect on the dynamics of Pc 1 geomagnetic pulsations. 7 refs.
Steady-state solutions for relativistically strong electromagnetic waves in plasmas.
NASA Technical Reports Server (NTRS)
Max, C. E.
1973-01-01
New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.
Self-precession and frequency shift for electromagnetic waves in homogeneous plasmas
NASA Technical Reports Server (NTRS)
Arons, J.; Max, C. E.
1974-01-01
The nonlinear propagation of an arbitrarily polarized electromagnetic wave in a uniform plasma is studied. It is shown that nonlinear effects cause precession of the polarization ellipse as the wave propagates. The ellipticity remains constant, but the orientation of the principal axes is rotated relative to its initial value. A relativistic Vlasov model is used to study nonlinear frequency shifts as well as self-precession, in a plasma of arbitrary temperature. Even when the electron temperature is much greater than the product of the electron mass times the square of the velocity of light, the qualitative nature of these two processes remains unchanged, although their dependence on the plasma density is altered in significant ways. Implications of these effects for plasma instabilities driven by strong electromagnetic waves are briefly discussed.
Nonlinear electromagnetic fields as a source of universe acceleration
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2016-04-01
A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.
Observations of ELF electromagnetic waves associated with equatorial spread F
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Holtet, J. A.; Tsurutani, B. T.
1979-01-01
Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.
Evolution Of Nonlinear Waves in Compressing Plasma
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Consequences of vacuum polarization on electromagnetic waves in a Lorentz-symmetry breaking scenario
NASA Astrophysics Data System (ADS)
Agostini, B.; Barone, F. A.; Barone, F. E.; Gaete, Patricio; Helayël-Neto, J. A.
2012-02-01
The propagation of electromagnetic waves in a Lorentz-symmetry violating scenario is investigated in connection with non-linear (photon self-interacting) terms induced by quantum effects. It turns out that the photon field acquires an interesting polarization state and, from our calculations of phase and group velocities, we contemplate different scenarios with physically realizable magnetic fields and identify situations where non-linearity effects dominate over Lorentz-symmetry breaking ones and vice versa.
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M. Manzoor, R.
2012-12-15
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
Nonlinear Bloch waves in metallic photonic band-gap filaments
Kaso, Artan; John, Sajeev
2007-11-15
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Calculation of Electromagnetic Quasistatic Plasma Waves*
NASA Astrophysics Data System (ADS)
Cooley, J.; Antonsen, T. M., Jr.; Mori, W.
2001-10-01
Plasma based particle acceleration requires the generation of plasma wave wakes which maintain their coherence over long distances. For example in Laser Wake Field Acceleration (LWFA) schemes the laser pulse must propagate tens of centimeters, which coresponds to many Rayleigh lengths, and in Plasma Wake Field Acceleration (PWFA) the particle beam must be propagated many meters. These wakes, and their effect on the driver (Laser or particle beam) can be simulated efficiently in the quasistatic approximation [1]. In this approximation the driver does not evolve during the time a plasma electron spends in the driver. We discuss here various numerical algorithms for determining the full electromagnetic wake in this case. The problem is complicated in that the particle trajectories and wake fields must be determined iteratively when the wake becomes electromagnetic. The effect of different choices for the gauge will be presented. [1] "Kinetic Modeling of Intense, Short Laser Pulses Propagating in Tenuous Plasma", P. Mora and T. M. Antonsen Jr., Phys Plasma 4, 217 (1997) *Work supported by NSF and DOE
High latitude electromagnetic plasma wave emissions
NASA Technical Reports Server (NTRS)
Gurnett, D. A.
1983-01-01
The principal types of electromagnetic plasma wave emission produced in the high latitude auroral regions are reviewed. Three types of radiation are described: auroral kilometric radiation, auroral hiss, and Z mode radiation. Auroral kilometric radiation is a very intense radio emission generated in the free space R-X mode by electrons associated with the formation of discrete auroral arcs in the local evening. Theories suggest that this radiation is an electron cyclotron resonance instability driven by an enhanced loss cone in the auroral acceleration region at altitudes of about 1 to 2 R sub E. Auroral hiss is a somewhat weaker whistler mode emission generated by low energy (100 eV to 10 keV) auroral electrons. The auroral hiss usually has a V shaped frequency time spectrum caused by a freqency dependent beaming of the whistler mode into a conical beam directed upward or downward along the magnetic field.
Nonlinear waves and solitons in molecular clouds
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Fatuzzo, Marco
1993-01-01
We begin a study of nonlinear wave phenomena in molecular clouds. These clouds exhibit highly nonlinear structure that is often described in terms of 'clumps' and 'filaments' which are bouncing around, twisting, and colliding within the cloud. These clouds are important because they ultimately produce the initial conditions for the star formation process. Our motivation is to explore the possibility that solitons (i.e., spatially localized, single-hump wave entities which often exhibit remarkable stability) can live in these molecular clouds and produce their observed structure. In this paper we focus on the case of one spatial dimension, and we show that a rich variety of nonlinear waves can exist in molecular cloud fluid systems (where self-gravity is included). We show that in the absence of magnetic fields no true soliton solutions are allowed, although highly nonlinear waves (whose crests become widely spaced and thus soliton-like) do exist. For clouds with embedded magnetic fields, we derive a model equation which describes the behavior of wave phenomena; this model equation allows solutions which correspond to nonlinear waves, solitons, and topological solitons. We briefly consider the stability of these wave entities and discuss the possible role they play in molecular cloud dynamics.
Interaction of High Intensity Electromagnetic Waves with Plasmas
G. Shvets
2008-10-03
The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.
Nonlinear self-contraction of electron waves
NASA Technical Reports Server (NTRS)
Intrator, T.; Chan, C.; Hershkowitz, N.; Diebold, D.
1984-01-01
Laboratory evidence is presented of modulationally unstable electron wave packets which can be described by a nonlinear geometrical optics theory. Growth times for self-contraction are found to be much faster than ion response times and the bursts do not appear to be related to Zakharov Langmuir-wave collapse.
Nonlinear Evolution of Alfvenic Wave Packets
NASA Technical Reports Server (NTRS)
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
Scaling laws for nonlinear electromagnetic responses of Dirac fermion
NASA Astrophysics Data System (ADS)
Morimoto, Takahiro; Nagaosa, Naoto
2016-03-01
We theoretically propose that the Dirac fermion in two dimensions shows the giant nonlinear responses to electromagnetic fields in the terahertz region. A scaling form is obtained for the current and magnetization as functions of the normalized electromagnetic fields E /Eω and B /Bω , where the characteristic electric (magnetic) field Eω(Bω) depends on the frequency ω as ℏ ω2/e vF(ℏ ω2/e vF2) , and is typically of the order of 80 V/cm (8 mT) in the terahertz region. Applications of the present theory to graphene and surface state of a topological insulator are discussed.
Plasma wave aided two photon decay of an electromagnetic wave in a plasma
Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod
2014-11-15
The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.
Nonlinear Talbot effect of rogue waves
NASA Astrophysics Data System (ADS)
Zhang, Yiqi; Belić, Milivoj R.; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-03-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Compact waves in microscopic nonlinear diffusion.
Hurtado, P I; Krapivsky, P L
2012-06-01
We analyze the spread of a localized peak of energy into vacuum for nonlinear diffusive processes. In contrast with standard diffusion, the nonlinearity results in a compact wave with a sharp front separating the perturbed region from vacuum. In d spatial dimensions, the front advances as t^{1/(2+da)} according to hydrodynamics, with a the nonlinearity exponent. We show that fluctuations in the front position grow as ∼t^{μ}η, where μ<1/2+da is an exponent that we measure and η is a random variable whose distribution we characterize. Fluctuating corrections to hydrodynamic profiles give rise to an excess penetration into vacuum, revealing scaling behaviors and robust features. We also examine the discharge of a nonlinear rarefaction wave into vacuum. Our results suggest the existence of universal scaling behaviors at the fluctuating level in nonlinear diffusion. PMID:23005044
Nonlinear sharpening during superposition of surface waves
NASA Astrophysics Data System (ADS)
Chalikov, Dmitry; Babanin, Alexander V.
2016-08-01
Two-dimensional direct wave model is used for demonstration of the role of reversible interactions which probably is the main process leading to breaking. One-dimensional model was used for performing of thousands of exact short-term simulations of evolution of two superposed wave trains with different steepness, and wavenumbers were performed to investigate the effect of wave crests merging. Nonlinear sharpening of the merging crests is demonstrated. It is suggested that such effect may be responsible for appearance of the typical sharp crests of surface waves, as well as for wave breaking.
Nonlinear sharpening during superposition of surface waves
NASA Astrophysics Data System (ADS)
Chalikov, Dmitry; Babanin, Alexander V.
2016-06-01
Two-dimensional direct wave model is used for demonstration of the role of reversible interactions which probably is the main process leading to breaking. One-dimensional model was used for performing of thousands of exact short-term simulations of evolution of two superposed wave trains with different steepness, and wavenumbers were performed to investigate the effect of wave crests merging. Nonlinear sharpening of the merging crests is demonstrated. It is suggested that such effect may be responsible for appearance of the typical sharp crests of surface waves, as well as for wave breaking.
Electromagnetic wave probing of Earth's environment
NASA Technical Reports Server (NTRS)
Kong, Jin AU
1988-01-01
Polarimetric radar backscattering from anisotropic Earth terrain such as snow-covered ice fields and vegetation fields with row structures provides a challenging modeling problem from the electromagnetic wave point of view. Earth terrain covers are modeled as random media characterized by different dielectric constants and correlation functions. A three-layer model will be used to simulate a vegetation field or a snow-covered ice field with the top layer being snow or leaves, the middle layer being ice of trunks, and the bottom layer being sea water or ground. The volume scattering effects of snow-covered sea ice are studied with a three-layer random medium model for microwave remote sensing. The strong fluctuation theory and the bilocal approximation are applied to calculate the effective permittivities for snow and sea ice. The wave scattering theory in conjunction with the distorted Born approximation is then used to compute bistatic coefficients and backscattering cross sections. Theoretical results are illustrated by matching experimental data for dry snow-covered thick first-year sea ice at Point Barrow. The results derived can also be applied to the passive remote sensing by calculating the emissivity from the bistatic scattering coefficients.
Neural field theory of nonlinear wave-wave and wave-neuron processes
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Roy, N.
2015-06-01
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Electromagnetic waves in dusty magnetoplasmas using two-potential theory
Zubia, K.; Jamil, M.; Salimullah, M.
2009-09-15
The low-frequency long wavelength electromagnetic waves, viz., shear Alfven waves in a cold dusty plasma, have been examined employing two-potential theory and plasma fluid model. The presence of the unmagnetized dust particles and magnetized plasma components gives rise to a new ion-dust lower hybrid cutoff frequency for the electromagnetic shear Alfven wave propagation. The importance and relevance of the present work to the space dusty plasma environments are also pointed out.
Nonlinear noise waves in soft biological tissues
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Gurbatov, S. N.; Demin, I. Yu.
2013-09-01
The study of intense waves in soft biological tissues is necessary both for diagnostics and therapeutic aims. Tissue represents an inherited medium with frequency-dependent dissipative properties, in which waves are described by nonlinear integro-differential equations. The equations for such waves are well known. Their group analysis has been performed, and a number of exact solutions have been found. However, statistical problems for nonlinear waves in tissues have hardly been studied. As well, for medical applications, both intense noise waves and waves with fluctuating parameters can be used. In addition, statistical solutions are simpler in structure than regular solutions; they are useful for understanding the physics of processes. Below a general approach is described for solving nonlinear statistical problems applied to the considered mathematical models of biological tissues. We have calculated the dependences of the intensities of the narrowband noise harmonics on distance. For wideband noise, we have calculated the dependence of the spectral integral intensity on distance. In all cases, wave attenuation is determined both by the specific dissipative properties of the tissue and the nonlinearity of the medium.
Nonlinear Unstable Wave Disturbances in Fluidized Beds
NASA Astrophysics Data System (ADS)
Liu, J. T. C.
1983-10-01
Instabilities in fluidized beds are interpreted from the two-phase continuum theory of linearized hydrodynamic stability as the result of interactions between wave hierarchies for which the stability condition is violated; that is, in which the lower-order waves propagate at speeds exceeding those of the higher-order waves. For weak nonlinearities a hierarchy of Burgers-like equations is obtained. The nonlinear modifications to the wave speeds point towards the restoration of the stability condition in the linearized sense. A weakly nonlinear hydrodynamic stability analysis yields an amplitude equation that is of second order. It is argued, however, that the major history of the disturbance development may be expressed by a simpler first-order amplitude equation. The Landau-Stuart constant obtained is intimately related to the nonlinear modifications of the wave speeds of the higher- and lower-order wave operators. It is shown that for supercritical disturbances, amplitude and phase velocity equilibration is possible, and that the levels of the equilibration depend on the initial amplification rate, in agreement with observations. The equilibration occurs by cascades of the fundamental wave disturbance into its harmonics.
Boosted X Waves in Nonlinear Optical Systems
Arevalo, Edward
2010-01-15
X waves are spatiotemporal optical waves with intriguing superluminal and subluminal characteristics. Here we theoretically show that for a given initial carrier frequency of the system localized waves with genuine superluminal or subluminal group velocity can emerge from initial X waves in nonlinear optical systems with normal group velocity dispersion. Moreover, we show that this temporal behavior depends on the wave detuning from the carrier frequency of the system and not on the particular X-wave biconical form. A spatial counterpart of this behavior is also found when initial X waves are boosted in the plane transverse to the direction of propagation, so a fully spatiotemporal motion of localized waves can be observed.
A Numerical Study of Nonlinear Wave Interactions
NASA Astrophysics Data System (ADS)
de Bakker, A.; Tissier, M.; Ruessink, G.
2014-12-01
Nonlinear triad interactions redistribute energy among a wave field, which transforms the shape of the incident short waves (f = 0.05 - 2 Hz) and generates energy at infragravity frequencies (f = 0.005-0.05 Hz). Recently, it has been suggested that infragravity energy may dissipate by energy transfers from infragravity frequencies to either the (former) short-wave spectral peak, or through infragravity-infragravity self-interactions that cause the infragravity waves to steepen and to eventually break. To investigate these infragravity dissipation mechanisms, we use the non-hydrostatic SWASH model. In this study, we first validate the model with the high-resolution GLOBEX laboratory data set and then explore the dependence of the energy transfers, with a focus on infragravity frequencies, on beach slope. Consistent with previous studies we find that SWASH is able to reproduce the transformation and corresponding nonlinear energy transfers of shoreward propagating waves to great detail. Bispectral analysis is used to study the coupling between wave frequencies; nonlinear energy transfers are then quantified using the Boussinesq coupling coefficient. To obtain more detailed insight we divide the nonlinear interactions in four categories based on triads including 1) infragravity frequencies only, 2) two infragravity frequencies and one short-wave frequency, 3) one infragravity frequency and two short-wave frequencies and 4) short-wave frequencies only. Preliminary results suggest that interactions are rather weak on gently beach slopes (1:80) and, in the innermost part of the surf zone, are dominated by infragravity-infragravity interactions. On steeper slopes (1:20), interactions are stronger, but entirely dominated by those involving short-wave frequencies only. The dependence of the transfers on offshore wave conditions and beach shape will be explored too. Funded by NWO.
Topological horseshoes in travelling waves of discretized nonlinear wave equations
Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming
2014-04-15
Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.
Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation
NASA Technical Reports Server (NTRS)
Spangler, Steven R.
1990-01-01
A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.
Electromagnetic waves in optical fibres in a magnetic field
NASA Astrophysics Data System (ADS)
Gorelik, V. S.; Burdanova, M. G.
2016-03-01
A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.
Solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
Cooper, Fred; Khare, Avinash; Mihaila, Bogdan; Saxena, Avadh
2010-09-01
We consider the nonlinear Dirac equations (NLDE's) in 1+1 dimension with scalar-scalar self interaction g{2}/k+1(ΨΨ){k+1} , as well as a vector-vector self interaction g{2}/k+1(Ψγ{μ}ΨΨγ{μ}Ψ){1/2(k+1)} . We find the exact analytic form for solitary waves for arbitrary k and find that they are a generalization of the exact solutions for the nonlinear Schrödinger equation (NLSE) and reduce to these solutions in a well defined nonrelativistic limit. We perform the nonrelativistic reduction and find the 1/2m correction to the NLSE, valid when |ω-m|<2m , where ω is the frequency of the solitary wave in the rest frame. We discuss the stability and blowup of solitary waves assuming the modified NLSE is valid and find that they should be stable for k<2 . PMID:21230200
Nonlinear traveling waves in confined ferrofluids.
Lira, Sérgio A; Miranda, José A
2012-11-01
We study the development of nonlinear traveling waves on the interface separating two viscous fluids flowing in parallel in a vertical Hele-Shaw cell. One of the fluids is a ferrofluid and a uniform magnetic field is applied in the plane of the cell, making an angle with the initially undisturbed interface. We employ a mode-coupling theory that predicts the possibility of controlling the speed of the waves by purely magnetic means. The influence of the tilted magnetic field on the waves shape profile and the establishment of stationary traveling wave structures are investigated. PMID:23214870
Propagation of electromagnetic wave in coaxial conical transverse electromagnetic wave cell
NASA Astrophysics Data System (ADS)
Liu, Xingxun; Zhang, Tao; Qi, Wangquan
2015-11-01
In order to solve the problem of broadband field probes calibration with only selected discrete frequencies above 1 GHz, a sweep-frequency calibration technology based on a coaxial conical(co-conical) cell is researched. Existing research is only qualitative because of the complexity of theoretical calculations. For designing a high performance cell, a mathematic model of high-order modes transmission is built according to the geometrical construction of co-conical. The associated Legendre control functions of high-order modes are calculated by using recursion methodology and the numerical calculation roots are presented with different half angles of inner and outer conductor. Relationship between roots and high-order modes transmission is analyzed, when the half angles of inner conductor and outer conductor are θ 1=1.5136° and θ 2=8° respectively, the co-conical cell has better performance for fewer transmitting high-order modes. The propagation process of the first three transmitting modes wave is simulated in CST-MWS software from the same structured co-conical. The simulation plots show that transmission of high-order modes appears with electromagnetic wave reflection, then different high-order mode transmission has different cut-off region and each cut-off region is determined by its cut-off wavelength. This paper presents numerical calculation data and theoretical analysis to design key structural parameters for the co-conical transverse electromagnetic wave cell(co-conical TEM cell).
Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Kinetic Electrostatic Electron Nonlinear Waves in Laser
NASA Astrophysics Data System (ADS)
Afeyan, Bedros
2004-11-01
A new type of coherent self-sustaining nonlinear kinetic wave has been discovered, well below the plasma frequency, which we call Kinetic Electrostatic Electron Nonlinear (KEEN) waves. Vlasov-Poisson and Vlasov-Maxwell simulations where KEEN waves were excited by ponderomotive forces of short duration, generated by the beating of counter-propagating lasers of the appropriate colors [1-2], show that these waves persist without decay well after the driving fields are turned off. The resulting phase space vortical structures are reminiscent in certain respects to BGK modes proposed in 1957 [3]. However, KEEN waves are not stationary and higher harmonics which are an essential part of their make up have wider and wider frequency content. KEEN waves constitute a generalization and clarification of concepts previously invoked to help explain stimulated electron acoustic wave scattering in the presence of SRS [4,5]. However, in the case of KEEN waves, no flattened (zero slope) electron velocity distribution function need be invoked and no single mode behavior is observed. There is a threshold drive which is necessary in order to create KEEN waves. A reduced model based on a phase space coupled mode theory with 3-4 modes will be shown to capture the phase locked multimode nonlinear nature of KEEN waves. We have also successfully completed a series of experiments to generate via optical mixing and observe via 4ω Thomson scattering KEEN waves on Trident at LANL. Our latest results from this campaign will be shown. [1] B. Afeyan, et al., "Kinetic Electrostatic " Proc. IFSA Conf. (2004). [2] B. Afeyan, et al., submitted to PRL (2004) [3] I. Bernstein et al., Phys. Rev. 108. 546 (1957). [4] D. S. Montgomery et al., PRL 87, 155001 (2001). [5] H. A, Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001).
Nonlinear Biot waves in granular media
NASA Astrophysics Data System (ADS)
Dazel, Olivier; Tournat, V.
2010-01-01
The nonlinear propagation through unconsolidated model granular media is investigated in the frame of the Biot-Allard theory extended to the case of a nonlinear quadratic behavior of the solid frame (the elastic beads and their contacts). We evaluate the importance of mode coupling between solid and fluid waves, depending on the actual fluid and the bead diameter. The application of these results to other media supporting Biot's waves (trabecular bones, porous ceramics, polymer foams...) is straightforward, provided the parameters of the Biot-Allard model are available for these media.
Nonlinear Internal Waves - Evolution and Energy Dissipation
NASA Astrophysics Data System (ADS)
Orr, M.; Mignerey, P.
2003-04-01
Nonlinear internal waves have been observed propagating up the slope of the South China Sea during the recent ONR Asian Seas International Acoustics Experiment. Energy dissipation rates have been extracted. The location of the initiation of the depression to elevation conversion has been identified. Scaling parameters have been extracted and used to initialize a two-layer evolution equation model simulation. Mode1, 2 linear and nonlinear internal waves and instabilities have been observed near the shelf break of the United States of America New Jersey Shelf. Acoustic flow visualization records will be presented. Work supported by the Office of Naval Research (ONR) Ocean Acoustics Program and ONR's NRL base funding.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.
Numerical modeling of electromagnetic waves scattering from 2D coastal breaking sea waves
NASA Astrophysics Data System (ADS)
Khairi, Refzul; Coatanhay, Arnaud; Khenchaf, Ali; Scolan, Yves Marie
2013-11-01
The aim of this work is to model the interaction of L-band electromagnetic waves with coastal breaking sea waves. The breaking sea waves' profiles are generated using the desingularized technique and the electromagnetic waves scattering is computed using the high-order method of moments (HO-MoM) combined with non uniform rational basis spline (NURBS) geometry. Our study mainly focuses upon the electromagnetic waves behavior in the crest and the cavity of breaking sea waves. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Heating of ions by high frequency electromagnetic waves in magnetized plasmas
Zestanakis, P. A.; Kominis, Y.; Hizanidis, K.; Ram, A. K.
2013-07-15
The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be
Optics in a nonlinear gravitational plane wave
NASA Astrophysics Data System (ADS)
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Nonlinear excited waves on the interventricular septum
NASA Astrophysics Data System (ADS)
Bekki, Naoaki; Harada, Yoshifumi; Kanai, Hiroshi
2012-11-01
Using a novel ultrasonic noninvasive imaging method, we observe some phase singularities in propagating excited waves on a human cardiac interventricular septum (IVS) for a healthy young male. We present a possible physical model explaining one-dimensional dynamics of phase singularities in nonlinearly excited waves on the IVS. We show that at least one of the observed phase singularities in the excited waves on the IVS can be explained by the Bekki-Nozaki hole solution of the complex Ginzburg-Landau equation without any adjustable parameters. We conclude that the complex Ginzburg-Landau equation is such a suitable model for one-dimensional dynamics of cardiac phase singularities in nonlinearly excited waves on the IVS.
Scattering of electromagnetic wave by dielectric cylinder in eikonal approximation
NASA Astrophysics Data System (ADS)
Syshchenko, V. V.
2016-07-01
The scattering of the plane electromagnetic wave on a spatially extended, fiber lake target is considered. The formula for the scattering cross section is obtained using the approximation analogous to eikonal one in quantum mechanics.
Qiu, Cheng-Wei; Novitsky, Andrey; Ma, Hua; Qu, Shaobo
2009-07-01
An analytical method of electromagnetic wave interactions with a general radially anisotropic cloak is established. It is able to deal with arbitrary parameters [ epsilon r (r) , mu r (r) , epsilon t (r) , and mu t (r) ] of a radially anisotropic inhomogeneous shell. The general cloaking condition is proposed from the wave relations, in contrast to the method of transformation optics. Spherical metamaterial cloaks with improved invisibility performance are achieved with optimal nonlinearity in transformation and core-shell ratio. PMID:19658829
Design of Metamaterials for control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
NASA Technical Reports Server (NTRS)
Fejer, J. A.
1974-01-01
Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong; Wu, Zhengwei; Chu, Paul K.
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.
2011-12-15
We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Nonlinear MHD Waves in a Prominence Foot
NASA Astrophysics Data System (ADS)
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Propagation of Rossby-Khantadze Electromagnetic Planetary Waves in the Ionospheric E-Layer
NASA Astrophysics Data System (ADS)
Futatani, S.; Kaladze, T.; Horton, W.; Benkadda, S.
2013-10-01
Nonlinear vortex propagation of electromagnetic coupled Rossby and Khantadze planetary waves in the weakly ionized E-layer of the ionosphere are investigated with numerical simulations. For each k-vector the linear dispersion relation has two eigenmodes corresponding to the slow magnetized Rossby wave and the fast magnetic Khantadze wave. Both waves propagate westward with speeds of order 10-20 m/s for the slow wave and of order 500-1000 km/s for the fast wave. We show that for finite amplitudes there are dipole solitary vortex structures emitted from general initial conditions. These structures are the neutrally stable, nonlinear states that avoid radiating waves by propagating faster than the corresponding linear wave speeds. The condition for these coherent structures to occur is that their amplitudes be such that the nonlinear convection around the core of the disturbance is faster that the linear wave speed for the corresponding dominant Fourier components of the initial disturbance. The presence of the solitary vortex states are indicative of an initial strong disturbance such that arising from a solar storm, a tectonic plate movements or volcanic eruptions. Supported by NSF Grant 0964692 to the University of Texas at Austin; PIIM/CNRS at Aix-Marseille University, and by IMeRA Grant for Advanced Research.
Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma
Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.
2007-10-15
Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.
Electromagnetic radiation due to nonlinear oscillations of a charged drop
NASA Astrophysics Data System (ADS)
Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.
2016-03-01
The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.
Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael E-mail: gabriel@iafe.uba.ar
2008-06-15
Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.
NASA Astrophysics Data System (ADS)
Kondrashov, A. V.; Ustinov, A. B.; Lähderanta, E.; Pakhomov, O. V.; Nikitin, A. A.; Kalinikos, B. A.
2015-12-01
Properties of spin-electromagnetic wave chaos developed in active ring oscillators have been investigated. A multiferroic structure composed of yttrium iron garnet film and barium strontium titanate (BST) slab served as a nonlinear dispersive medium of the oscillator. Dual control of the fractal dimension of the chaotic signal attractor was realized by variation of the ring gain and dielectric permittivity of the BST slab.
Effects of Wave Nonlinearity on Wave Attenuation by Vegetation
NASA Astrophysics Data System (ADS)
Wu, W. C.; Cox, D. T.
2014-12-01
The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell
Propagation of electromagnetic waves across a diffuse plasma boundary
Zito, R.R.
1983-01-01
Electromagnetic waves may undergo partial reflection from a plasma whose interface with free space is diffuse. Waves reflected from different differential slabs of plasma may interfere constructively or destructively resulting in a total reflected intensity which is either relatively large or a complete null, respectively. The latter effect is called antireflection.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
Microscopic models for electromagnetic wave propagation in highly dispersive media
NASA Astrophysics Data System (ADS)
Defacio, Brian
1990-06-01
The purpose of this project was to advance the understanding of the propagation of ultrafast picosecond electromagnetic pulses in biological solutions and ultimately, in human tissue. Present day standards of the allowed electromagnetic doses do not include dispersion, modulation or envelope effects, memory or nonlinearity. It is well-known experimentally that biological solutions are highly dispersive. It is plausible, but not established, that modulation, memory, and nonlinearity may be important in biological solutions. Hence, this project represents a first step toward better standards.
Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
Dodin, I. Y.; Fisch, N. J.
2012-01-15
A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.
Nonlinear Planetary Electromagnetic Vortex Structures in the Ionospheric F-Layer
Aburjaniya, G. D.; Khantadze, A. G.; Kharshiladze, O. A.
2002-07-15
A study is made of the dynamics of planetary-scale electromagnetic waves in the F-layer of the ionosphere. It is shown that, in this layer, a new branch of large-scale magneto-ionospheric wave perturbations is generated under the action of the latitudinal variations of the geomagnetic field, which are a constant property of the ionosphere. The waves propagate along the parallels with phase velocities of tens to hundreds of km/s. The pulsations of the geomagnetic field in the waves can be as strong as several tens of nT. A possible self-localization effect is revealed: these waves may form nonlinear localized solitary vortices moving either westward or eastward along the parallels with velocities much higher than the phase velocities of the linear waves. The characteristic dimension of a vortex is about 10{sup 4} km or even larger. The magnetic fields generated by vortex structures are one order of magnitude stronger than those in linear waves. The vortices are long-lived formations and may be regarded as elements of strong structural turbulence in the ionosphere. The properties of the wave structures under investigation are very similar to those of ultralow-frequency perturbations observed experimentally in the ionosphere at middle latitudes.
Stratification effects on nonlinear elastic surface waves
NASA Astrophysics Data System (ADS)
Parker, D. F.
1988-01-01
On a homogeneous elastic half-space, linear surface waves are nondispersive. In each direction, waves having any profile travel without distortion. Nonlinearity causes intermodulation between the various wavelengths so that the signal distorts. Even when nonlinearity is small, sinusoidal profiles do not remain approximately sinusoidal. The absence of dispersion means that profiles suffer cumulative distortion, until the surface slope and strain become locally unbounded. Although this behaviour is typical of many signals, there are some signals for which intermodulation is constructive. These signals can travel coherently over large distances. For seismological applications, it is important to study the effects due to stratification. Dependence of the material constants on depth modifies the nonlinear evolution equations previously derived for homogeneous media. It has a smaller effect on higher frequencies than on lower frequencies. An approximate theory for short wavelength (high frequency) signals is introduced. Calculations show that when nonlinearity is no more important than dispersion, initially sinusoidal profiles propagate with surface slope remaining finite. When dispersion is small compared to nonlinearity, certain sharp peaked profiles can travel large distances while suffering little distortion.
Electromagnetic inertio-gravity waves in the Earth's ionosphere
NASA Astrophysics Data System (ADS)
Kaladze, T. D.; Tsamalashvili, L. V.; Kahlon, L. Z.
2011-05-01
Propagation of electromagnetic inertio-gravity (IG) waves in the partially ionized ionospheric E- and F-layers is considered in the shallow water approximation. Accounting of the field-aligned current is the main novelty of the investigation. Existence of two new eigen-frequencies for fast and slow electromagnetic waves is revealed in the ionospheric E-layer. It is shown that in F-layer slowly damping new type of inertial-fast magnetosonic waves can propagate. Slowly damping low-frequency oscillations connected with the field-aligned conductivity are found. Broad spectrum of oscillations is investigated.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Microstructural diagnosis using electromagnetic wave scattering methodologies
NASA Astrophysics Data System (ADS)
Chou, Kevin Jenn Chien
Scattered electromagnetic waves were used in the present work to characterize the microstructural effects on the performance of metallic materials. A Nisb3Al alloy with a dendritic microstructure has exhibited better creep resistance compared to similar alloys having equiaxed microstructure of grains. X-ray diffraction was applied along the dendritic arms to investigate their orientations. Both the interlocking boundaries and crystallographic texture of the dendritic arms resulted in the superior creep behavior. Non-invasive laser scattering was also used to optically probe smooth fatigue specimens to detect and monitor the development of fatigue damage. Inconel 718 specimens with a cylindrical geometry were tested under low cycle fatigue conditions with constant strain amplitudes ranging from 0.3% to 1%. A detection scheme to minimize computational time and memory was used to achieve in-situ data analysis. Both laser scanning and surface replication procedures were periodically performed throughout the life of the specimens. The scattered light signals were compared with microcrack length and density data from surface replicate SEM images. Three characteristic stages of the scattering signal were observed. The scanning laser light scattering (SLLS) technique was sufficiently robust, and well suited for the non-planar geometry in the leading edge. The SLLS signals correlated well with microstructural features over a large surface area. A physical model of microcrack size distribution within a surface grain was developed. The results of the model suggest that a SLLS signal saturation which coincides with the onset of microcrack density saturation corresponds to a transition from predominately single grain microcracks to microcracks that transverse multiple grains. The saturation of SLLS signal versus mean surface crack length also provided the following findings. Low cycle fatigue cracks were contained and saturated in those surface grains with the highest Schmid
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Wang, Bingnan
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress. PMID:25786963
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1985-01-01
A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Nonlinear holography for acoustic wave detection
NASA Astrophysics Data System (ADS)
Bortolozzo, U.; Dolfi, D.; Huignard, J. P.; Molin, S.; Peigné, A.; Residori, S.
2015-03-01
A liquid crystal medium is used to perform nonlinear dynamic holography and is coupled with multimode optical fibers for optical sensing applications. Thanks to the adaptive character of the nonlinear holography, and to the sensitivity of the multimode fibers, we demonstrate that the system is able to perform efficient acoustic wave detection even with noisy signals. The detection limit is estimated and multimode versus monomode optical fiber are compared. Finally, a wavelength multiplexing protocol is implemented for the spatial localization of the acoustic disturbances.
Nonlinear acoustic wave propagation in atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1986-01-01
In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.
Joint evaluation of fracture azimuth by electromagnetic wave and elastic wave
NASA Astrophysics Data System (ADS)
Feng, Xuan; Liu, Cai; Wang, Qiao; Wang, Kai; Lu, Qi; Xue, Jian; Liang, Wenjing; Yu, Yue; Ren, Qianci
2013-12-01
With the multi-wave, multi-component seismic wave exploration, one can apply the anisotropy of fracture media to analyze the attributes of the fracture media, including the fracture azimuth. In the meantime, the techniques of full-polarimetric electromagnetic wave, including full-polarimetric borehole radar, can also be used to analyze the attributes of the fracture. However, the analysis precision of both the multi-component elastic wave exploration and full-polarimetric electromagnetic wave exploration is prone to the influence of noise and other factors. So far, some researchers have conducted studies on the joint inversion of electromagnetic waves and seismic waves. This paper develops evaluation techniques of fracture azimuth by electromagnetic wave, elastic wave, and joint analysis of coincident elastic reflection and electromagnetic data. Firstly, based on the shear wave splitting of elastic waves, this paper develops a statistical analysis technique which applies Pearson correlation coefficient to count and analyze the azimuth angle of fracture. Secondly, based on the information of electromagnetic polarization rotated by fracture, this paper develops a statistical analysis method of full-polarimetric electromagnetic waves which applies the maximum amplitude ratio between the co-polarization and cross-polarization to analyze the azimuth angle of fracture. Furthermore, based on the analysis result of the elastic wave and full-polarimetric electromagnetic wave, this paper develops a joint analysis technique which adopts the standard deviation. At last, authors in this study conduct joint detection experiments on the coincident fracture medium by using the ultrasonic and full-polarimetric ground penetrating radar. The experimental result indicates that both single geophysical methods are capable of analyzing the fracture azimuth angle, but the joint analysis is more accurate.
Relativistic electromagnetic waves in an electron-ion plasma
NASA Technical Reports Server (NTRS)
Chian, Abraham C.-L.; Kennel, Charles F.
1987-01-01
High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.
Cascading processes in the nonlinear diffraction of light by standing acoustic waves
NASA Astrophysics Data System (ADS)
Dadoenkova, Yu. S.; Dadoenkova, N. N.; Bentivegna, F. F. L.; Lyubchanskii, I. L.; Lee, Y. P.
2016-01-01
The contribution of two types of cascading process to the nonlinear optical diffraction of electromagnetic waves from a standing acoustic wave in a GaAs crystal is theoretically studied. The first type of cascading process results from second-harmonic generation followed by linear acousto-optical diffraction, while the second type involves linear acousto-optical diffraction from the standing acoustic wave and subsequent sum-frequency generation. In contrast to the third, direct, nonlinear acousto-optical diffraction process we previously investigated, the photoelastic interaction between electromagnetic and acoustic waves is here linear. We establish the rules governing the cascading processes and show that in most cases the output signal simultaneously results from two or even three of the possible nonlinear diffraction mechanisms. However, we demonstrate that a careful choice of the incidence angles of the incoming electromagnetic waves, of the polarization combinations of the incoming and diffracted waves, and of the type of acoustic wave (longitudinal or transverse) makes it always possible to distinguish between the direct and either of the two cascading processes.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
NASA Astrophysics Data System (ADS)
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak
2015-09-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets
Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak
2015-01-01
Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet–height and diameter– and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials. PMID:26354891
Nonlinear wave vacillation in the atmosphere
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1987-01-01
The problem of vacillation in a baroclinically unstable flow field is studied through the time evolution of a single nonlinearly unstable wave. To this end a computer code is being developed to solve numerically for the time evolution of the amplitude of such a wave. The final working code will be the end product resulting from the development of a heirarchy of codes with increasing complexity. The first code in this series was completed and is undergoing several diagnostic analyses to verify its validity. The development of this code is detailed.
Nonlinear Generation of Vorticity by Surface Waves.
Filatov, S V; Parfenyev, V M; Vergeles, S S; Brazhnikov, M Yu; Levchenko, A A; Lebedev, V V
2016-02-01
We demonstrate that waves excited on a fluid surface produce local surface rotation owing to hydrodynamic nonlinearity. We examine theoretically the effect and obtain an explicit formula for the vertical vorticity in terms of the surface elevation. Our theoretical predictions are confirmed by measurements of surface motion in a cell with water where surface waves are excited by vertical and harmonic shaking the cell. The experimental data are in good agreement with the theoretical predictions. We discuss physical consequences of the effect. PMID:26894714
Adiabatic nonlinear waves with trapped particles. III. Wave dynamics
Dodin, I. Y.; Fisch, N. J.
2012-01-15
The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.
On Nonlinear Properties of Waves Predicted by a Boussinesq Model
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T.; Dalrymple, R. A.; Chen, Q.
2002-12-01
In this study, a fully nonlinear Boussinesq model (Wei, et al., 1995) is used to investigate nonlinear wave features observed in a physical model study of Ponce de Leon Inlet, Florida. The experiment was conducted and the laboratory data were provided by the U.S. Army Engineer Research and Development Center. We employ a curvilinear version of the fully nonlinear Boussinesq model and use a curvilinear grid which is able to resolve a broad spectrum of waves in the computational domain. Eighteen cases with monochromatic input waves and TMA spectral waves are carried out. To show the superiority of the Boussinesq model to other conventional wave models, we focus on examinations of wave nonlinearity in the study. Secondary wave crest features are presented by snapshots of the computed wave field and time series of surface elevations in both the physical model and the numerical model. Spectral analyses of spectral wave cases also show the wave energy transfer from the original peak frequencies to the corresponding harmonic frequencies. As another indicator of wave nonlinearity, the probability distributions of wave surface elevations are computed from both the measured data and numerical results and show similar deviations from their Gaussian distributions. Other measures of wave nonlinearity, such as wave skewness and asymmetry, are also examined in the study. The fairly good agreement between modeled and measured indicators of wave nonlinearity demonstrates the capability of the Boussinesq model for predicting nonlinear wave transformation in the nearshore region.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work
Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves
Gurtug, O.; Halilsoy, M.; Unver, O.
2006-08-15
We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational, and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component {psi}{sub 2} vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a successive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.
Variational modelling of nonlinear water waves
NASA Astrophysics Data System (ADS)
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Nonlinear Dirac equation solitary waves in external fields.
Mertens, Franz G; Quintero, Niurka R; Cooper, Fred; Khare, Avinash; Saxena, Avadh
2012-10-01
We consider nonlinear Dirac equations (NLDE's) in the 1+1 dimension with scalar-scalar self-interaction g2/κ+1(Ψ[over ¯]Ψ)κ+1 in the presence of various external electromagnetic fields. We find exact solutions for special external fields and we study the behavior of solitary-wave solutions to the NLDE in the presence of a wide variety of fields in a variational approximation depending on collective coordinates which allows the position, width, and phase of these waves to vary in time. We find that in this approximation the position q(t) of the center of the solitary wave obeys the usual behavior of a relativistic point particle in an external field. For time-independent external fields, we find that the energy of the solitary wave is conserved but not the momentum, which becomes a function of time. We postulate that, similarly to the nonlinear Schrödinger equation (NLSE), a sufficient dynamical condition for instability to arise is that dP(t)/dq[over ̇](t)<0. Here P(t) is the momentum of the solitary wave, and q[over ̇] is the velocity of the center of the wave in the collective coordinate approximation. We found for our choices of external potentials that we always have dP(t)/dq[over ̇](t)>0, so, when instabilities do occur, they are due to a different source. We investigate the accuracy of our variational approximation using numerical simulations of the NLDE and find that, when the forcing term is small and we are in a regime where the solitary wave is stable, that the behavior of the solutions of the collective coordinate equations agrees very well with the numerical simulations. We found that the time evolution of the collective coordinates of the solitary wave in our numerical simulations, namely the position of the average charge density and the momentum of the solitary wave, provide good indicators for when the solitary wave first becomes unstable. When these variables stop being smooth functions of time (t), then the solitary wave starts to distort
Modelling of electromagnetic wave interactions with the human body
NASA Astrophysics Data System (ADS)
Wong, Man-Faï; Wiart, Joe
2005-07-01
Electromagnetic modelling plays a more and more important role in the study of complex systems involving Maxwell phenomena, such as the interactions of radiowaves with the human body. Simulation then becomes a credible means in decision making, related to the engineering of complex electromagnetic systems. To increase confidence in the models with respect to reality, validation and uncertainty estimation methods are needed. The different dimensions of model validation are illustrated through dosimetry, i.e., quantification of human exposure to electromagnetic waves. To cite this article: M.-F. Wong, J. Wiart, C. R. Physique 6 (2005).
Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities
Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.
2001-06-11
Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also {open_quotes}scar{close_quotes} the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum.
Aharonov-Bohm phase for an electromagnetic wave background
NASA Astrophysics Data System (ADS)
Bright, Max; Singleton, Douglas; Yoshida, Atsushi
2015-09-01
The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. oint A_μ dx ^μ ) and the field (i.e. 1/2int F_{μ ν } dσ ^{μ ν }) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed.
Electromagnetic Wave Propagation over Oil-Covered Sea Surface
NASA Astrophysics Data System (ADS)
Yang, Chao; Jin, Wei; Guo, Li-Xin
2012-07-01
An exhaustive analysis of electromagnetic wave propagation over an oil-covered sea surface in an evaporation duct environment is studied in comparison with those of the oil-free sea surface. Instead of using the traditional rms height formula, which only considers the oil-free sea surface, we reduce the rms height of a one-dimensional oil-covered sea surface based on the Pierson-Moskowitz sea spectrum. Then, the electromagnetic wave propagation over the oil-covered sea surface in an evaporation duct environment with different wind speeds and frequencies is discussed by the parabolic equation for a fully oil-covered sea surface. In addition, the influence of the fractional filling factor on the electromagnetic wave propagation over non-fully oil-covered sea surface is also investigated. The results show that the oil film can reduce the sea surface roughness and strengthen the trapping effect in an evaporation duct environment.
NASA Astrophysics Data System (ADS)
Main, Daniel; Caplinger, James; Kim, Tony; Sotnikov, Vladimir
2014-10-01
The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that vortex density structures can develop on nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. We will use a numerical solution of nonlinear equations which govern the development of interchange instability to define a spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density distribution from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra.
A metasurface carpet cloak for electromagnetic, acoustic and water waves
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429
A metasurface carpet cloak for electromagnetic, acoustic and water waves.
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak. PMID:26822429
A metasurface carpet cloak for electromagnetic, acoustic and water waves
NASA Astrophysics Data System (ADS)
Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng
2016-01-01
We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments. PMID:27599240
Guided wave methods and apparatus for nonlinear frequency generation
Durfee, III, Charles G.; Rundquist, Andrew; Kapteyn, Henry C.; Murnane, Margaret M.
2000-01-01
Methods and apparatus are disclosed for the nonlinear generation of sum and difference frequencies of electromagnetic radiation propagating in a nonlinear material. A waveguide having a waveguide cavity contains the nonlinear material. Phase matching of the nonlinear generation is obtained by adjusting a waveguide propagation constant, the refractive index of the nonlinear material, or the waveguide mode in which the radiation propagates. Phase matching can be achieved even in isotropic nonlinear materials. A short-wavelength radiation source uses phase-matched nonlinear generation in a waveguide to produce high harmonics of a pulsed laser.
Identifying electromagnetic transients related to gravitational-wave emission
NASA Astrophysics Data System (ADS)
Padilla, Cinthia; LIGO Scientific Collaboration; Virgo Collaboration
2011-04-01
Over the past several years the LIGO, Virgo and GEO600 gravitational-wave detectors have operated together as a worldwide network. The combined data from these detectors allows sky localization of astrophysical gravitational-wave sources. By running searches for transient gravitational waves shortly after the data is taken, sky locations can be communicated to electromagnetic observers early enough to allow measurement of any electromagnetic emission in the aftermath of a strong gravitational-wave signal. By measuring both the gravitational and the electromagnetic radiation we can learn a significant amount about their source. Over the past year, electromagnetic images of sky locations corresponding to low-threshold gravitational-wave triggers have been acquired. These are now being analyzed for optical transients. Challenges include unrelated disturbances such as asteroids, satellites, clouds and other objects in space. In this poster we describe the procedure for identifying EM transients with a developed pipeline designed to compare images and sky catalogs to distinguish stars in nearby galaxies and reject background events.
Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas
Artun, M.; Tang, W.M.
1994-03-01
The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.
Nonlinear surface acoustic waves in cubic crystals
NASA Astrophysics Data System (ADS)
Kumon, Ronald Edward
Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform
Strongly nonlinear waves in capillary electrophoresis
NASA Astrophysics Data System (ADS)
Chen, Zhen; Ghosal, Sandip
2012-05-01
In capillary electrophoresis, sample ions migrate along a microcapillary filled with a background electrolyte under the influence of an applied electric field. If the sample concentration is sufficiently high, the electrical conductivity in the sample zone could differ significantly from the background. Under such conditions, the local migration velocity of sample ions becomes concentration-dependent, resulting in a nonlinear wave that exhibits shocklike features. If the nonlinearity is weak, the sample concentration profile, under certain simplifying assumptions, can be shown to obey Burgers’ equation [Ghosal and Chen, Bull. Math. Biol.BMTBAP0092-824010.1007/s11538-010-9527-2 72, 2047 (2010)], which has an exact analytical solution for arbitrary initial condition. In this paper, we use a numerical method to study the problem in the more general case where the sample concentration is not small in comparison to the concentration of background ions. In the case of low concentrations, the numerical results agree with the weakly nonlinear theory presented earlier, but at high concentrations, the wave evolves in a way that is qualitatively different.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation
Vollick, Dan N.
2008-09-15
In this paper I examine cosmological models that contain a stochastic background of nonlinear electromagnetic radiation. I show that for Born-Infeld electrodynamics the equation of state parameter, w=P/{rho}, remains close to 1/3 throughout the evolution of the universe if E{sup 2}=B{sup 2} in the late universe to a high degree of accuracy. Theories with electromagnetic Lagrangians of the form L=-(1/4)F{sup 2}+{alpha}F{sup 4} have recently been studied in magnetic universes, where the electric field vanishes. It was shown that the F{sup 4} term can produce a bounce in the early universe, avoiding an initial singularity. Here I show that the inclusion of an electric field, with E{sup 2}{approx_equal}B{sup 2} in the late universe, eliminates the bounce and the universe begins with an initial singularity. I also examine theories with Lagrangians of the form L=-(1/4)F{sup 2}-{mu}{sup 8}/F{sup 2}, which have been shown to produce a period of late time accelerated expansion in magnetic universes. I show that, if an electric field is introduced, the accelerated phase will only occur if E{sup 2}<3B{sup 2}.
Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence
Hahm, T. S.; Wang, Lu; Madsen, J.
2008-08-01
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ_{i}<< ρ_{θ¡} ~ L_{E} ~ L_{p} << R (here ρ_{i} is the thermal ion Larmor radius and ρ_{θ¡} = B/B_{θ}] ρ_{i}), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρ_{i} ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τ_{i} ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.
Nonlinear electromagnetic perturbations in a degenerate ultrarelativistic electron-positron plasma.
El-Taibany, W F; Mamun, A A
2012-02-01
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultrarelativistic, ultracold, degenerate (extremely dense) electron positron (EP) plasma (containing ultrarelativistic, ultracold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. The Alfvén wave velocity is modified due to the presence of the enthalpy correction in the fluid equations of motion. The degenerate EP plasma system (under consideration) supports the Korteweg-de Vries (KdV) solitons, which are associated with either fast or slow magnetosonic perturbation modes. It is found that the ultrarelativistic model leads to compressive (rarefactive) electromagnetic solitons corresponding to the fast (slow) wave mode. There are certain critical angles, θ(c), at which no soliton solution is found corresponding to the fast wave mode. For the slow mode, the magnetic-field intensity affects both the soliton amplitude and width. It is also illustrated that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of enthalpy correction, electron and positron degeneracy, magnetic-field strength, and the relativistic effect. The applications of the results in a pair-plasma medium, which occurs in many astrophysical objects (e.g., pulsars, white dwarfs, and neutron stars) are briefly discussed. PMID:22463336
Noncontact Evaluation of Surface-Wave Nonlinearity for Creep Damage in Cr-Mo-V Steel
NASA Astrophysics Data System (ADS)
Ohtani, Toshihiro; Ogi, Hirotsugu; Hirao, Masahiko
2009-07-01
A nonlinear acoustic measurement is studied for creep damage evaluation. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a cylindrical specimen during the creep of Cr-Mo-V steels. The excitation of the EMAT at half of the resonance frequency caused a standing wave to contain only the second-harmonic component, which was received by the same EMAT for determining the second-harmonic amplitude. This measured surface-wave nonlinearity showed a peak at 30% and a minimum at 50% of the total life. We interpreted these phenomena in terms of dislocation mobility and restructuring, with support from scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This noncontact resonance-EMAT measurement can monitor the evolution of surface-shear-wave nonlinearity throughout creep life and has a potential to assess damage advance and predict the creep life of metals.
NASA Astrophysics Data System (ADS)
Wang, Bin; Su, Zhenpeng; Zhang, Yan; Shi, Shengwei; Wang, Geng
2016-04-01
In response to solar wind disturbances, radiation belt (a few hundreds of keV to several MeV) electron fluxes can be depleted significantly over the entire equatorial pitch angle range. The frequently mentioned cyclotron resonant scattering is applicable only for electrons mirroring off the equator. Here we propose a new physical mechanism, nonlinear Landau resonance with oblique electromagnetic ion cyclotron (EMIC) waves, to effectively scatter the near equatorially mirroring electrons. Our test particle simulations show that the nonlinear Landau trapping can occur over a wide energy range and yield the net decrease in equatorial pitch angle Δαeq≈10° within several seconds. Our parametric studies further reveal that this nonlinear Landau-trapping process is favored by a low plasma density, an intense wave field, a high wave frequency close to ion gyrofrequencies, and a large wave normal angle.
Nonlinear wave function expansions : a progress report.
Shepard, R.; Minkoff, M.; Brozell, S. R.; Chemistry
2007-12-01
Some recent progress is reported for a novel nonlinear expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions using the Graphical Unitary Group Approach and the wave function is expanded in a basis of product functions, allowing application to closed and open shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational expansion that depends on a relatively small number of nonlinear parameters called arc factors. Efficient recursive procedures for the computation of reduced one- and two-particle density matrices, overlap matrix elements, and Hamiltonian matrix elements result in a very efficient computational procedure that is applicable to very large configuration state function (CSF) expansions. A new energy-based optimization approach is presented based on product function splitting and variational recombination. Convergence of both valence correlation energy and dynamical correlation energy with respect to the product function basis dimension is examined. A wave function analysis approach suitable for very large CSF expansions is presented based on Shavitt graph node density and arc density. Some new closed-form expressions for various Shavitt Graph and Auxiliary Pair Graph statistics are presented.
Nonlinear wave scattering and electron beam relaxation
NASA Technical Reports Server (NTRS)
Muschietti, L.; Dum, C. T.
1991-01-01
The role played by nonlinear scattering during the relaxation of a warm electron beam is investigated through a numerical code based on kinetic equations. The code encompasses the quasi-linear wave-electron interaction and wave-wave scattering off ion clouds. Ions with velocities 2 nu sub i (nu sub i being the ion thermal velocity) are found to be the most efficient for scattering the Langmuir waves off their polarization clouds. The transfer rate of the spectrum out of resonance with the beam is larger by a factor 3 compared to usual estimates. The changes produced in the dispersion relation by the presence of the beam electrons dramatically alter the characteristics of the secondary spectrum. In a late phase the classic condensate K of about 0 is depleted, with the formation of a new condensate in resonance with the flat-topped beam distribution, which follows from the fact that the mere presence of the beam electrons creates a minimum in the frequency-wave-number relation. For strong and slow beams, the predictions of the code are found to be in excellent agreement with the results of the particle simulation if a dispersion relation that includes the beam is used.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Response of thermal ions to electromagnetic ion cyclotron waves
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Fuselier, S. A.
1994-01-01
Electromagnetic ion cyclotron waves generated by 10 - 50 keV protons in the Earth's equatorial magnetosphere will interact with the ambient low-energy ions also found in this region. We examine H(+) and He(+) distribution functions from approx. equals 1 to 160 eV using the Hot Plasma Composition Experiment instrument on AMPTE/CCE to investigate the thermal ion response to the waves. A total of 48 intervals were chosen on the basis of electromagnetic ion cyclotron (EMIC) wave activity: 24 with prevalent EMIC waves and 24 with no EMIC waves observed on the orbit. There is a close correlation between EMIC waves and perpendicular heated ion distributions. For protons the perpendicular temperature increase is modest, about 5 eV, and is always observed at 90 deg pitch angles. This is consistent with a nonresonant interaction near the equator. By contrast, He(+) temperatures during EMIC wave events averaged 35 eV and sometimes exceeded 100 eV, indicating stronger interaction with the waves. Furthermore, heated He(+) ions have X-type distributions with maximum fluxes occurring at pitch angles intermediate between field-aligned and perpendicular directions. The X-type He(+) distributions are consistent with a gyroresonant interaction off the equator. The concentration of He(+) relative to H(+) is found to correlate with EMIC wave activity, but it is suggested that the preferential heating of He(+) accounts for the apparent increase in relative He(+) concentration by increasing the proportion of He(+) detected by the ion instrument.
Nonlinear density waves in the single-wave model
Marinov, Kiril B.; Tzenov, Stephan I.
2011-03-15
The single-wave model equations are transformed to an exact hydrodynamic closure by using a class of solutions to the Vlasov equation corresponding to the waterbag model. The warm fluid dynamic equations are then manipulated by means of the renormalization group method. As a result, amplitude equations for the slowly varying wave amplitudes are derived. Since the characteristic equation for waves has in general three roots, two cases are examined. If all the three roots of the characteristic equation are real, the amplitude equations for the eigenmodes represent a system of three coupled nonlinear equations. In the case where the dispersion equation possesses one real and two complex conjugate roots, the amplitude equations take the form of two coupled equations with complex coefficients. The analytical results are then compared to the exact system dynamics obtained by solving the hydrodynamic equations numerically.
Molding acoustic, electromagnetic and water waves with a single cloak.
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Molding acoustic, electromagnetic and water waves with a single cloak
Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien
2015-01-01
We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. PMID:26057934
Nonlinear scattering of acoustic waves by vibrating obstacles
NASA Astrophysics Data System (ADS)
Piquette, J. C.
1983-06-01
The problem of the generation of sum- and difference-frequency waves produced via the scattering of an acoustic wave by an obstacle whose surface vibrates harmonically was studied both theoretically and experimentally. The theoretical approach involved solving the nonlinear wave equation, subject to appropriate boundary conditions, by the use of a perturbation expansion of the fields and a Green's function method. In addition to ordinary rigid-body scattering, Censor predicted nongrowing waves at frequencies equal to the sum and to the difference of the frequencies of the primary waves. The solution to the nonlinear wave equation also yields scattered waves at the sum and difference frequencies. However, the nonlinearity of the medium causes these waves to grow with increasing distance from the scatter's surface and, after a very small distance, dominate those predicted by Censor. The simple-source formulation of the second-order nonlinear wave equation for a lossless fluid medium has been derived for arbitrary primary wave fields. This equation was used to solve the problem of nonlinear scattering of acoustic waves by a vibrating obstacle for three geometries: (1) a plane-wave scattering by a vibrating plane, (2) cylindrical-wave scattering by a vibrating cylinder, and (3) plane-wave scattering by a vibrating cylinder. Successful experimental validation of the theory was inhibited by previously unexpected levels of nonlinearity in the hydrophones used. Such high levels of hydrophone nonlinearity appeared in hydrophones that, by their geometry of construction, were expected to be fairly linear.
Geometric phase in a flat space for electromagnetic scalar waves.
Luis, Alfredo
2006-08-15
We show the existence of a fundamental geometric phase for classical electromagnetic fields arising after cyclic paths in a plane instead of a sphere. This phase is dispersive, is not related to polarization, distinguishes geometrical from wave optics, and can be easily measured in an interferometric arrangement. PMID:16880859
Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes
Zhao, Tingkai; Hou, Cuilin; Zhang, Hongyan; Zhu, Ruoxing; She, Shengfei; Wang, Jungao; Li, Tiehu; Liu, Zhifu; Wei, Bingqing
2014-01-01
Amorphous carbon nanotubes (ACNTs) with diameters in the range of 7–50 nm were used as absorber materials for electromagnetic waves. The electromagnetic wave absorbing composite films were prepared by a dip-coating method using a uniform mixture of rare earth lanthanum nitrate doped ACNTs and polyvinyl chloride (PVC). The microstructures of ACNTs and ACNT/PVC composites were characterized using transmission electron microscope and X-ray diffraction, and their electromagnetic wave absorbing properties were measured using a vector-network analyzer. The experimental results indicated that the electromagnetic wave absorbing properties of ACNTs are superior to multi-walled CNTs, and greatly improved by doping 6 wt% lanthanum nitrate. The reflection loss (R) value of a lanthanum nitrate doped ACNT/PVC composite was −25.02 dB at 14.44 GHz, and the frequency bandwidth corresponding to the reflector loss at −10 dB was up to 5.8 GHz within the frequency range of 2–18 GHz. PMID:25007783
Scattering of electromagnetic waves from a turbulent plasma slab.
NASA Technical Reports Server (NTRS)
Liu, C. H.
1972-01-01
Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.
Method for forming electromagnetic-wave-screening composite
NASA Astrophysics Data System (ADS)
1984-12-01
A number of ways to give plastic parts the ability to screen out high frequency electromagnetic waves are outlined. Another method which consists of a one stage injection molding process for forming a thermoplastic sandwich whose plastic core, containing metal flakes, is coated with a surface layer of ABS is introduced. The method employs the Battenfeld two component injection molding machine.
Spin waves cause non-linear friction
NASA Astrophysics Data System (ADS)
Magiera, M. P.; Brendel, L.; Wolf, D. E.; Nowak, U.
2011-07-01
Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.
Multiple scattering of electromagnetic waves by rain
NASA Technical Reports Server (NTRS)
Tsolakis, A.; Stutzman, W. L.
1982-01-01
As the operating frequencies of communications systems move higher into the millimeter wave region, the effects of multiple scattering in precipitation media become more significant. In this paper, general formulations are presented for single, first-order multiple, and complete multiple scattering. Included specifically are distributions of particle size, shape, and orientation angle, as well as variation in the medium density along the direction of wave propagation. Calculations are performed for rain. It is shown that the effects of higher-order scattering are not noticeable in either attenuation or channel isolation on a dual-polarized system until frequencies of about 30 GHz are reached. The complete multiple-scattering formulation presented gives accurate results at high millimeter wave frequencies as well as including realistic medium parameter distributions. Furthermore, it is numerically efficient.
Electromagnetic ion cyclotron waves in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro E-mail: saito@stelab.nagoya-u.ac.jp
2014-10-10
Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong; Wang, Mu
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
Electromagnetic Waves Broadcast by a VCR.
ERIC Educational Resources Information Center
Brown, Michael H.
1996-01-01
Presents experiments that use a video cassette recorder (VCR) to demonstrate polarization of radio waves using two dipole antennas and a spark gap transmitter tuned to a frequency of either 60-66 MHz or 66-72 MHz with wavelengths of 5 or 4.3 meters, close to the wavelengths of the original work done by Heinrich Hertz. (JRH)
Numerical computation of guided electromagnetic waves
McCartin, B.J.
1996-12-31
A computational procedure is presented for the determination of the propagating modes of cylindrical electromagnetic waveguides. The geometrical cross-section of the waveguide is completely arbitrary and may be filled with any homogeneous isotropic material, either dielectric or magnetic or both. A modal decomposition is employed thus reducing the problem to uncoupled Helmholtz equations for transverse electric (TE) and transverse magnetic (TM) modes. The discretization of these two-dimensional Helmholtz equations is accomplished by application of the Control Region Approximation. This is a generalized finite-difference procedure involving the tessellation of the cross-section by dual Dirichlet and Delaunay regions. The discrete propagation constants and modes are determined by an inverse power iteration. Power flow, wall loss, and dielectric loss are then calculated. Numerical results indicating the efficacy of this approach are represented.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
Reflection of electromagnetic waves at a biaxial-isotropic interface
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.
Reflection and interference of electromagnetic waves in inhomogeneous media
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Kyle, H. L.
1973-01-01
Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.
Reflective properties of electromagnet-optical waves in superconducting plasmas
Ohnuma, Toshiro; Ohno, J.
1995-12-31
Superconducting (SC) plasmas were discovered recently, the studies of which are becoming important. As for the SC plasmas, the penetration depth of magnetic fields to the superconductor due to the fundamental Meissner effect is given by {lambda} = c/{omega}{sub ps}, ({omega}{sub ps}: the SC electron plasma frequency). The investigations on the SC plasmas are discussed in this report. Electromagnet-optical field distributions near the SC plasma boundary are numerically investigated, when electromagnet-optical beam waves with finite size are radiated to SC plasma with ambient incident angle. Typical electric field patterns for TE incident wave are shown. The figure indicates the existence of the parallel shift of the reflective position of the beam wave for the case of the perfect reflection. The reflective shift is found to result from field penetrations to the superconductor which depend on the parameter of the SC plasmas.
Tunable resonant transmission of electromagnetic waves through a magnetized plasma.
Kee, Chul-Sik; Li, Shou-Zhe; Kim, Kihong; Lim, H
2003-03-01
We theoretically investigate the resonant transmission of circularly polarized electromagnetic waves in the electromagnetic stop band of a magnetized plasma slab using the invariant embedding method. The frequency and quality factor of the resonant mode for the right-handed (left-handed) circularly polarized wave created by inserting a dielectric layer into the plasma increase (decrease) as the magnitude of the external magnetic field increases. These phenomena are compared with the characteristics of resonant modes in metallic and dielectric Fabry-Perot resonators to show that they are due to the change of plasma reflectivity. We also discuss the damping effect due to the collisions of the constituent particles of the plasma on the resonant transmission of circularly polarized waves. PMID:12689184
Electron beam injection during active experiments. I - Electromagnetic wave emissions
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Kellogg, P. J.
1990-01-01
The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.
Nonlinear wavenumber shift of large amplitude Langmuir waves
NASA Astrophysics Data System (ADS)
Li, Dehui; Wang, Shaojie
2016-07-01
Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
Nonlinear wave propagation in constrained solids subjected to thermal loads
NASA Astrophysics Data System (ADS)
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Emission of terahertz electromagnetic waves by vortex flow in high- Tc superconductors
NASA Astrophysics Data System (ADS)
Tachiki, Masashi; Iizuka, Mikio; Minami, Kazuo; Tejima, Shogo; Nakamura, Hisashi
2006-05-01
Continuous terahertz electromagnetic waves have new applications in scientific and industrial fields such as medicine and information technology. Cuprate high-temperature superconductors have a layer structure, and form a naturally multi-connected Josephson junction system called intrinsic Josephson junction (IJJ). In IJJ, there appears a new excitation called the Josephson plasma. Its frequency is in the region of terahertz inside the superconducting energy gap. The excited plasma wave is converted into an electromagnetic wave at sample surfaces. Therefore the IJJ has a great potential to generate terahertz continuous wave. Here we report the results of simulations to find the optimum condition for obtaining the strongest emission power of the terahertz waves. The simulations were carried out using our theory. Since the simulation uses very large-sized coupled nonlinear equations therefore difficult to compute, we used the fastest supercomputer named as Earth Simulator. We found that the quite intense continuous terahertz coherent wave is emitted from a small sample with high-energy efficiency.
Nonlinear wave growth theory of coherent hiss emissions in the plasmasphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Nakamura, Satoko; Kletzing, Craig A.; Summers, Danny; Hikishima, Mitsuru
2015-09-01
Recent observations of plasmaspheric hiss emissions by the Van Allen Probes show that broadband hiss emissions in the plasmasphere comprise short-time coherent elements with rising and falling tone frequencies. Based on nonlinear wave growth theory of whistler mode chorus emissions, we have examined the applicability of the nonlinear theory to the coherent hiss emissions. We have generalized the derivation of the optimum wave amplitude for triggering rising tone chorus emissions to the cases of both rising and falling tone hiss elements. The amplitude profiles of the hiss emissions are well approximated by the optimum wave amplitudes for triggering rising or falling tones. Through the formation of electron holes for rising tones and electron hills for falling tones, the coherent waves evolve to attain the optimum amplitudes. An electromagnetic particle simulation confirms the nonlinear wave growth mechanism as the initial phase of the hiss generation process. We find very good agreement between the theoretical optimum amplitudes and the observed amplitudes as a function of instantaneous frequency. We calculate nonlinear growth rates at the equator and find that nonlinear growth rates for rising tone emissions are much larger than the linear growth rates. The time scales of observed hiss emissions also agree with those predicted by the nonlinear theory. Based on the theory, we can infer properties of energetic electrons generating hiss emissions in the equatorial region of the plasmasphere.