Hoover, C G; DeGroot, A J; Sherwood, R J
2000-06-01
ParaDyn is a parallel version of the DYNA3D computer program, a three-dimensional explicit finite-element program for analyzing the dynamic response of solids and structures. The ParaDyn program has been used as a production tool for over three years for analyzing problems which range in size from a few tens of thousands of elements to between one-million and ten-million elements. ParaDyn runs on parallel computers provided by the Department of Energy Accelerated Strategic Computing Initiative (ASCI) and the Department of Defense High Performance Computing and Modernization Program. Preprocessing and post-processing software utilities and tools are designed to facilitate the generation of partitioned domains for processors on a massively parallel computer and the visualization of both resultant data and boundary data generated in a parallel simulation. This manual provides a brief overview of the parallel implementation; describes techniques for running the ParaDyn program, tools and utilities; and provides examples of parallel simulations.
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
Adaptive contact elements for three-dimensional explicit transient analysis
Kulak, R.F.
1989-01-01
A finite element method was developed for treating the mechanics of contact between deformable bodies. The method uses a family of adaptive interface elements, which were based on the penalty method, to handle the changing contact configurations that can occur between discretized contacting bodies. The nodal connectivity of these interface elements was allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface satisfies the stress equilibrium condition during contact. Explicit forms for the nodal internal forces are presented. The methodology has been coded and several sample problems are presented. 23 refs., 29 figs., 6 tabs.
Nonlinear three-dimensional trajectory following: simulation and application
NASA Astrophysics Data System (ADS)
Hines, George H.
In light of recent military requirements for unmanned and autonomous vehicles, research into methods of designing arbitrary three-dimensional trajectories and controlling aircraft along them has become vital. In this report, we explore two methods of nonlinear control for the purpose of following three-dimensional trajectories and paths. First, prior work on a dynamic feedback linearization exploiting the differential flatness of the ideal airplane is adapted with the intent of implementing it on a physical testbed in MIT's Realtime indoor Autonomous Vehicle test ENvironment (RAVEN), but poor behavior—both in simulation and in hardware—under moderate levels of joint parameter uncertainty thwarted attempts at implementation. Additionally, the differential flatness technique in its pure form follows trajectories, which are sometimes inferior intuitively and practically to paths. In the context of unmanned air vehicle (UAV) flight in gusty environments, this motivated the extension of prior work on two-dimensional path following to three-dimensions, and simulations are presented in which the fully nonlinear controller derived from differential flatness follows a trajectory that is generated dynamically from a path. The three-dimensional path-following logic is actually implemented in RAVEN, and results are presented that demonstrate good vertical rise time in response to a step input and centimeter accuracy in vertical and lateral tracking. Future directions are proposed.
A naturally grown three-dimensional nonlinear photonic crystal
NASA Astrophysics Data System (ADS)
Xu, Tianxiang; Lu, Dazhi; Yu, Haohai; Zhang, Huaijin; Zhang, Yong; Wang, Jiyang
2016-02-01
Nonlinear frequency conversion via three-dimensional (3D) quasi-phase matching (QPM) process is experimentally realized based on a Ba0.77Ca0.23TiO3 (BCT) crystal. The ferroelectric domains in BCT crystal are observed, and the results reveal that the antiparallel domains distribute in three dimensions and can provide 3D reciprocal lattice vectors for QPM processes. Broadband petal-like second-harmonic patterns are achieved, which are well consistent with the theoretical quasi-cubic model of 3D nonlinear photonic crystals. Our work not only promotes the development of QPM technique but also builds a platform for 3D nonlinear optics and quantum optics.
Three-dimensional nonlinear vibration of gear pairs
NASA Astrophysics Data System (ADS)
Eritenel, Tugan; Parker, Robert G.
2012-07-01
This work investigates the three-dimensional nonlinear vibration of gear pairs where the nonlinearity is due to portions of gear teeth contact lines losing contact (partial contact loss). The gear contact model tracks partial contact loss using a discretized stiffness network. The nonlinear dynamic response is obtained using the discretized stiffness network, but it is interpreted and discussed with reference to a lumped-parameter gear mesh model named the equivalent stiffness representation. It consists of a translational stiffness acting at a changing center of stiffness location (two parameters) and a twist stiffness. These four parameters, calculated from the dynamic response, change as the gears vibrate, and tracking their behavior as a post-processing tool illuminates the nonlinear gear response. There is a gear mesh twist mode where the twist stiffness is active in addition to the well-known mesh deflection mode where the translational stiffness is active. The twist mode is excited by periodic back and forth axial movement of the center of stiffness in helical gears. The same effect can occur in wide facewidth spur gears if tooth lead modifications or other factors such as shaft and bearing deflections disrupt symmetry about the axial centers of the mating teeth. Resonances of both modes are shown to be nonlinear due to partial and total contact loss. Comparing the numerical results with gear vibration experiments from the literature verifies the model and confirms partial contact loss nonlinearity in experiments.
An exactly solvable three-dimensional nonlinear quantum oscillator
Schulze-Halberg, A.; Morris, J. R.
2013-11-15
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.
A complete and explicit solution to the three-dimensional problem of two fixed centres
NASA Astrophysics Data System (ADS)
Biscani, Francesco; Izzo, Dario
2016-02-01
We present for the first time an explicit, complete and closed-form solution to the three-dimensional problem of two fixed centres, based on Weierstrass elliptic and related functions. With respect to previous treatments of the problem, our solution is exact, valid for all initial conditions and physical parameters of the system (including unbounded orbits and repulsive forces), and expressed via a unique set of formulae. Various properties of the three-dimensional problem of two fixed centres are investigated and analysed, with a particular emphasis on quasi-periodic and periodic orbits, regions of motion and equilibrium points.
NONLINEAR THREE-DIMENSIONAL MAGNETOCONVECTION AROUND MAGNETIC FLUX TUBES
Botha, G. J. J.; Rucklidge, A. M.; Hurlburt, N. E. E-mail: A.M.Rucklidge@leeds.ac.uk
2011-04-20
Magnetic flux in the solar photosphere forms concentrations from small scales, such as flux elements, to large scales, such as sunspots. This paper presents a study of the decay process of large magnetic flux tubes, such as sunspots, on a supergranular scale. Three-dimensional nonlinear resistive magnetohydrodynamic numerical simulations are performed in a cylindrical domain, initialized with axisymmetric solutions that consist of a well-defined central flux tube and an annular convection cell surrounding it. As the nonlinear convection evolves, the annular cell breaks up into many cells in the azimuthal direction, allowing magnetic flux to slip between cells away from the central flux tube (turbulent erosion). This lowers magnetic pressure in the central tube, and convection grows inside the tube, possibly becoming strong enough to push the tube apart. A remnant of the central flux tube persists with nonsymmetric perturbations caused by the convection surrounding it. Secondary flux concentrations form between convection cells away from the central tube. Tube decay is dependent on the convection around the tube. Convection cells forming inside the tube as time-dependent outflows will remove magnetic flux. (This is most pronounced for small tubes.) Flux is added to the tube when flux caught in the surrounding convection is pushed toward it. The tube persists when convection inside the tube is sufficiently suppressed by the remaining magnetic field. All examples of persistent tubes have the same effective magnetic field strength, consistent with the observation that pores and sunspot umbrae all have roughly the same magnetic field strength.
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
Three-dimensional viscous-flow computations using a directionally hybrid implicit-explicit procedure
NASA Astrophysics Data System (ADS)
Rizk, Y. M.; Chaussee, D. S.
A new, directionally dependent, hybrid numerical algorithm for solving the unsteady, three-dimensional Navier-Stokes equations has been developed and used to compute the viscous supersonic flow over complex configurations, which may generate local regions of embedded subsonic or streamwise separated flows or both. The new hybrid implicit-explicit algorithm is derived from the more general implicit Beam-Warming algorithm and is particularly suitable for viscous computations in which the grid spacing in the direction outward from the body is considerably smaller than the spacing in the other two directions. Numerical results obtained from both the hybrid and implicit schemes are presented and compared on the basis of numerical stability, convergence history, and computer and core memory requirements.
NASA Astrophysics Data System (ADS)
Kilic, Mustafa Hakan
This study presents a new three-dimensional (3D) micromechanics-based nonlinear framework for the analysis of pultruded composite structures. The proposed material modeling framework is a nested micromechanical approach that explicitly recognizes the different composite systems within the cross-section of a pultruded composite member. The 3D lamination theory is used to generate a homogenized nonlinear effective response using a through-thickness representative stacking sequence. Different 3D micromechanical models can be used to represent the composite layers within the repeating stacking sequence, e.g. roving layer, continuous filament mat (CFM), and woven fabrics. The proposed modeling framework is applied for pultruded composite material systems made from roving and CFM. The roving layer is idealized using an existing 3D nonlinear micromechanics model for a unidirectional fiber reinforced material. A simple nonlinear micromechanical model for the CFM layer is introduced and implemented. The overall modeling approach is able to predict both the elastic and nonlinear response of the composite material based on the in-situ properties and response of the fiber and matrix constituents. Experimental data, from off-axis tests of pultruded plates, is used to verify the proposed modeling approach. The 3D modeling framework shows good prediction capabilities for the overall effective elastic constants, as well as the nonlinear multi-axial stress-strain response. In addition, a simple degradation and damage modeling is coupled with the proposed analysis framework. Several applications are performed for the nonlinear analysis of pultruded composite structures, such as progressive failure analysis of notched plates, bending of short beams, and damage analysis of pultruded FRP bolted connections.
Parallel computation of three-dimensional nonlinear magnetostatic problems.
Levine, D.; Gropp, W.; Forsman, K.; Kettunen, L.; Mathematics and Computer Science; Tampere Univ. of Tech.
1999-02-01
We describe a general-purpose parallel electromagnetic code for computing accurate solutions to large computationally demanding, 3D, nonlinear magnetostatic problems. The code, CORAL, is based on a volume integral equation formulation. Using an IBM SP parallel computer and iterative solution methods, we successfully solved the dense linear systems inherent in such formulations. A key component of our work was the use of the PETSc library, which provides parallel portability and access to the latest linear algebra solution technology.
Modulation of breathers in the three-dimensional nonlinear Gross-Pitaevskii equation
Avelar, A. T.; Cardoso, W. B.; Bazeia, D.
2010-11-15
In this paper we present analytical breather solutions of the three-dimensional nonlinear generalized Gross-Pitaevskii equation. We use an Ansatz to reduce the three-dimensional equation with space- and time-dependent coefficients into a one-dimensional equation with constant coefficients. The key point is to show that both the space- and time-dependent coefficients of the nonlinear equation can contribute to modulate the breather excitations. We briefly discuss the experimental feasibility of the results in Bose-Einstein condensates.
Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Belić, Milivoj
2009-02-01
We demonstrate the existence of localized optical vortex and necklace solitons in three-dimensional (3D) highly nonlocal nonlinear media, both analytically and numerically. The 3D solitons are constructed with the help of Kummer’s functions in spherical coordinates and their unique properties are discussed. The procedure we follow offers ways for generation, control, and manipulation of spatial solitons.
Nonlinear characteristics analysis of vortex-induced vibration for a three-dimensional flexible tube
NASA Astrophysics Data System (ADS)
Feng, Zhipeng; Jiang, Naibin; Zang, Fenggang; Zhang, Yixiong; Huang, Xuan; Wu, Wanjun
2016-05-01
Vortex-induced vibration of a three-dimensional flexible tube is one of the key problems to be considered in many engineering situations. This paper aims to investigate the nonlinear dynamic behaviors and response characteristics of a three-dimensional tube under turbulent flow. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, and the dynamic equilibrium equations are discretized by the finite element theory. A three-dimensional fully coupled numerical model for vortex-induced vibration of flexible tube is proposed. The model realized the fluid-structure interaction with solving the fluid flow and the structure vibration simultaneously. Based on this model, Response regimes, trajectory, phase difference, fluid force coefficient and vortex shedding frequency are obtained. The nonlinear phenomena of lock-in, phase-switch are captured successfully. Meanwhile, the limit cycle, bifurcation of lift coefficient and displacement are analyzed using phase portrait and Poincare section. The results reveal that, a quasi-upper branch occurs in the present fluid-flexible tube coupling system with high mass-damping and low mass ratio. There is no bifurcation of lift coefficient and lateral displacement occurred in the three-dimensional flexible tube submitted to uniform turbulent flow.
An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone
NASA Technical Reports Server (NTRS)
Tripoli, G. J.
1992-01-01
A nonhydrostatic numerical simulation of a tropical cyclone is performed with explicit representation of cumulus on a meso-beta scale grid and for a brief period on a meso-gamma scale grid. Individual cumulus plumes are represented by a combination of explicit resolution and a 1.5 level closure predicting turbulent kinetic energy (TKE).
NASA Astrophysics Data System (ADS)
Kew, Lee Ming; Ali, Norhashidah Hj. Mohd
2015-08-01
In this paper, new group iterative numerical schemes based on the centred and rotated (skewed) seven-point finite difference discretisations are proposed for the solution of a three dimensional second order hyperbolic telegraph equation, subject to specific initial and Dirichlet boundary conditions. Both schemes are shown to be of second order accuracies and unconditionally stable. The scheme derived from the rotated grid stencil results in a reduced linear system with lower computational complexity compared to the scheme derived from the centred approximation formula. A comparative study with other common point iterative methods based on the seven-point centred difference approximation together with their computational complexity analyses is also presented.
NASA Technical Reports Server (NTRS)
Gibson, A. F.
1983-01-01
A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.
Detection and analysis of coherent groups in three-dimensional fully-nonlinear potential wave fields
NASA Astrophysics Data System (ADS)
Sanina, E. V.; Suslov, S. A.; Chalikov, D.; Babanin, A. V.
2016-07-01
We investigate the emergence of coherent groups in three-dimensional fully-nonlinear potential deep water waves whose initial spectrum is assumed to be of the JONSWAP type with directional distribution given by cos nθ, where n is the integer varying from 1 to 16. The analysis is based on the results of long-term wave simulations performed using a numerical solution of a three-dimensional Laplace equation for the velocity potential subject to nonlinear kinematic and dynamic boundary conditions at the free surface. The main characteristics of wave groups such as their average velocity, maximum group wave height, lifetime and length are analysed. The statistics of extreme waves occurring in the detected groups are discussed. Spatial and temporal scale characteristics of wave groups are compared to the previous results.
Some exact solutions of a system of nonlinear Schroedinger equations in three-dimensional space
Moskalyuk, S.S.
1988-02-01
Interactions that break the symmetry of systems of nonrelativistic Schroedinger equations but preserve their symmetry with respect to one-parameter subgroups of the Schroedinger group are described. Ansatzes for invariant solutions and the corresponding systems of reduced equations in invariant variables for Galileo-invariant Schroedinger equations are found. Exact solutions for the system of nonlinear Schroedinger equations in three-dimensional space for the generalized Hubbard model are obtained.
Three dimensional nonlinear magnetic AdS solutions through topological defects
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panah, B. Eslam; Momennia, M.; Panahiyan, S.
2015-09-01
Inspired by large applications of topological defects in describing different phenomena in physics, and considering the importance of three dimensional solutions in AdS/CFT correspondence, in this paper we obtain magnetic anti-de Sitter solutions of nonlinear electromagnetic fields. We take into account three classes of nonlinear electrodynamic models; first two classes are the well-known Born-Infeld like models including logarithmic and exponential forms and third class is known as the power Maxwell invariant nonlinear electrodynamics. We investigate the effects of these nonlinear sources on three dimensional magnetic solutions. We show that these asymptotical AdS solutions do not have any curvature singularity and horizon. We also generalize the static metric to the case of rotating solutions and find that the value of the electric charge depends on the rotation parameter. Finally, we consider the quadratic Maxwell invariant as a correction of Maxwell theory and we investigate the effects of nonlinearity as a correction. We study the behavior of the deficit angle in presence of these theories of nonlinearity and compare them with each other. We also show that some cases with negative deficit angle exists which are representing objects with different geometrical structure. We also show that in case of the static only magnetic field exists whereas by boosting the metric to rotating one, electric field appears too.
Hybrid three-dimensional variation and particle filtering for nonlinear systems
NASA Astrophysics Data System (ADS)
Leng, Hong-Ze; Song, Jun-Qiang
2013-03-01
This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems.
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Ibrahim, D. A.
2016-08-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
SIMULATION OF THREE-DIMENSIONAL NONLINEAR FIELDS OF ULTRASOUND THERAPEUTIC ARRAYS
Yuldashev, P. V.; Khokhlova, V. A.
2011-01-01
A novel numerical model was developed to simulate three-dimensional nonlinear fields generated by high intensity focused ultrasound (HIFU) arrays. The model is based on the solution to the Westervelt equation; the developed algorithm makes it possible to model nonlinear pressure fields of periodic waves in the presence of shock fronts localized near the focus. The role of nonlinear effects in a focused beam of a two-dimensional array was investigated in a numerical experiment in water. The array consisting of 256 elements and intensity range on the array elements of up to 10 W/cm2 was considered. The results of simulations have shown that for characteristic intensity outputs of modern HIFU arrays, nonlinear effects play an important role and shock fronts develop in the pressure waveforms at the focus. PMID:21804751
NASA Astrophysics Data System (ADS)
Driben, R.; Konotop, V. V.; Meier, T.
2016-03-01
Nonlinearity is the driving force for numerous important effects in nature typically showing transitions between different regimes, regular, chaotic or catastrophic behavior. Localized nonlinear modes have been the focus of intense research in areas such as fluid and gas dynamics, photonics, atomic and solid state physics etc. Due to the richness of the behavior of nonlinear systems and due to the severe numerical demands of accurate three-dimensional (3D) numerical simulations presently only little knowledge is available on the dynamics of complex nonlinear modes in 3D. Here, we investigate the dynamics of 3D non-coaxial matter wave vortices that are trapped in a parabolic potential and interact via a repulsive nonlinearity. Our numerical simulations demonstrate the existence of an unexpected and fascinating nonlinear regime that starts immediately when the nonlinearity is switched-on and is characterized by a smooth dynamics representing torque-free precession with nutations. The reported motion is proven to be robust regarding various effects such as the number of particles, dissipation and trap deformations and thus should be observable in suitably designed experiments. Since our theoretical approach, i.e., coupled nonlinear Schrödinger equations, is quite generic, we expect that the obtained novel dynamical behavior should also exist in other nonlinear systems.
Driben, R.; Konotop, V. V.; Meier, T.
2016-01-01
Nonlinearity is the driving force for numerous important effects in nature typically showing transitions between different regimes, regular, chaotic or catastrophic behavior. Localized nonlinear modes have been the focus of intense research in areas such as fluid and gas dynamics, photonics, atomic and solid state physics etc. Due to the richness of the behavior of nonlinear systems and due to the severe numerical demands of accurate three-dimensional (3D) numerical simulations presently only little knowledge is available on the dynamics of complex nonlinear modes in 3D. Here, we investigate the dynamics of 3D non-coaxial matter wave vortices that are trapped in a parabolic potential and interact via a repulsive nonlinearity. Our numerical simulations demonstrate the existence of an unexpected and fascinating nonlinear regime that starts immediately when the nonlinearity is switched-on and is characterized by a smooth dynamics representing torque-free precession with nutations. The reported motion is proven to be robust regarding various effects such as the number of particles, dissipation and trap deformations and thus should be observable in suitably designed experiments. Since our theoretical approach, i.e., coupled nonlinear Schrödinger equations, is quite generic, we expect that the obtained novel dynamical behavior should also exist in other nonlinear systems. PMID:26964759
MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Imtiaz, Maria; Alsaedi, Ahmed; Kutbi, Marwan A.
2015-12-01
An analysis has been carried out for the three dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from the previous literature, the nonlinear system for temperature distribution is solved and analyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt number are computed and examined. It is concluded that heat transfer rate increases when temperature and radiation parameters are increased.
Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime
Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.
2006-05-15
An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)].
NASA Technical Reports Server (NTRS)
Powell, E. A.; Zinn, B. T.
1973-01-01
An analytical technique is developed to solve nonlinear three-dimensional, transverse and axial combustion instability problems associated with liquid-propellant rocket motors. The Method of Weighted Residuals is used to determine the nonlinear stability characteristics of a cylindrical combustor with uniform injection of propellants at one end and a conventional DeLaval nozzle at the other end. Crocco's pressure sensitive time-lag model is used to describe the unsteady combustion process. The developed model predicts the transient behavior and nonlinear wave shapes as well as limit-cycle amplitudes and frequencies typical of unstable motor operation. The limit-cycle amplitude increases with increasing sensitivity of the combustion process to pressure oscillations. For transverse instabilities, calculated pressure waveforms exhibit sharp peaks and shallow minima, and the frequency of oscillation is within a few percent of the pure acoustic mode frequency. For axial instabilities, the theory predicts a steep-fronted wave moving back and forth along the combustor.
Three dimensional nonlinear analysis of a single-grating rectangular waveguide Cerenkov maser
Xie, Wenqiu; Wang, Zi-Cheng; Luo, Jirun; Zhao, Ding
2015-04-15
A three dimensional (3-D) nonlinear model for illustrating the beam-wave interaction in a single-grating rectangular waveguide sheet-beam Cerenkov maser is presented. The dynamical equations and the equations of motion are solved self-consistently to predict the device performance. Space-charge effects and Ohmic losses are considered in the model. A 1.03 THz backward wave oscillator and a 0.65 THz traveling wave tube are discussed as two illustrative examples.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wu, J.
2015-08-01
In this work, a truly three-dimensional (3D) flux solver is presented for simulation of inviscid compressible flows. Like the conventional multi-dimensional gas-kinetic scheme, in the present work, the local solution of 3D Boltzmann equation at the cell interface is used to evaluate the flux. On the other hand, different from most of the existing gas-kinetic schemes, which are constructed from Maxwellian distribution function, the present flux solver is derived from a simple distribution function defined on the spherical surface in the phase velocity space. As a result, the explicit expression of flux vector at the cell interface can be simply given. Since the simple distribution function is defined on the spherical surface, for simplicity, it is termed as sphere function hereafter. In addition, to simulate fluid flow problems with strong shock waves, the non-equilibrium part of the distribution function is regarded as numerical dissipation and involved in evaluating the inviscid flux at the cell interface. The weight of the non-equilibrium part is controlled by introducing a switch function which ranges from 0 to 1. In the smooth region, the switch function takes a value close to zero, while around the strong shock wave, it tends to one. To validate the proposed flux solver, several transonic, supersonic and hypersonic inviscid flows are simulated. Numerical results showed that the present solver can provide accurate numerical results for three-dimensional inviscid flows with strong shock waves.
Petrov, Pavel S; Sturm, Frédéric
2016-03-01
A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction. PMID:27036271
Weiland, C.M.; Steck, L.K.; Dawson, P.B.
1995-10-10
The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.
Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging
Pinton, Gianmarco
2015-10-28
Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it
Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging
NASA Astrophysics Data System (ADS)
Pinton, Gianmarco
2015-10-01
Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it
The nonlinear evolution of inviscid Goertler vortices in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1995-01-01
The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.
A three-dimensional network model describing a non-linear composite material
NASA Astrophysics Data System (ADS)
Mårtensson, E.; Gäfvert, U.
2004-01-01
A three-dimensional network model for performing non-linear time-dependent simulations of the electrical characteristics related to a composite material is presented. The considered compounds are represented by a cubic lattice and consist of conducting particles distributed in an insulating matrix. Earlier studies of the non-linear characteristics of silicon carbide (SiC) grains and of the linear frequency-dependent electrical properties of composites are combined and extended. The calculations are compared to measurements on ethylene-propylene-diene monomer rubber filled with angular SiC grains. The field-dependent conductivity measured for the unconsolidated SiC powder is used as input to the simulations. The model can manage the conductivity difference of seven decades between the constituents and the strong exponential non-linearity of the conducting particles. The network calculations replicate the experimental characteristic at high filler concentrations, where direct 'face' contacts between the filler grains dominate the behaviour. At lower concentrations, it is shown that indirect 'edge' contacts involving the polymer control the current transport also in the non-linear high field range. The general effective conductivity describing an edge connection in the linear case is no longer appropriate. Non-linear mechanisms in the polymer and the conducting grains within a field enhanced limited region around the contact need to be represented by an equivalent circuit element with a case-dependent resulting expression.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Yan, R.; Betti, R.; Sanz, J.; Aluie, H.; Liu, B.; Frank, A.
2016-02-01
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
Three-dimensional nonlinear transient dynamic accident analyses of waste packages
Bennett, S.M.; Ceylan, Z.; Doering, T.W.
1996-02-01
The analyses presented in this paper describe advanced methods of performing accident analyses by using finite element analysis. The models created to obtain solutions for these accident conditions are three-dimensional solid models which are solved in transient dynamic analyses. Previous solutions to similar problems were found by applying dynamic load factors to static solutions. By solving the analyses using the transient dynamic approach, the use of dynamic load factors is eliminated, leading to more accurate solutions and better control of the amount of conservatism included in the design. These analyses are also performed using nonlinear material properties to represent the elastic and plastic regions of stress and strain. The use of elastic-plastic material properties is necessary to accurately determine if breach of waste package containment occurs.
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators
NASA Astrophysics Data System (ADS)
Driben, R.; Konotop, V. V.; Malomed, B. A.; Meier, T.
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3 +3 harmonic-oscillator p -wave eigenfunctions with orbital and magnetic quantum numbers l =1 and m =1 , 0, -1 . The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p -wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l =1 .
Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model
NASA Technical Reports Server (NTRS)
Martin, J. E.; Meiburg, E.
1996-01-01
The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.
Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators.
Driben, R; Konotop, V V; Malomed, B A; Meier, T
2016-07-01
The dynamics of a pair of harmonic oscillators represented by three-dimensional fields coupled with a repulsive cubic nonlinearity is investigated through direct simulations of the respective field equations and with the help of the finite-mode Galerkin approximation (GA), which represents the two interacting fields by a superposition of 3+3 harmonic-oscillator p-wave eigenfunctions with orbital and magnetic quantum numbers l=1 and m=1, 0, -1. The system can be implemented in binary Bose-Einstein condensates, demonstrating the potential of the atomic condensates to emulate various complex modes predicted by classical field theories. First, the GA very accurately predicts a broadly degenerate set of the system's ground states in the p-wave manifold, in the form of complexes built of a dipole coaxial with another dipole or vortex, as well as complexes built of mutually orthogonal dipoles. Next, pairs of noncoaxial vortices and/or dipoles, including pairs of mutually perpendicular vortices, develop remarkably stable dynamical regimes, which feature periodic exchange of the angular momentum and periodic switching between dipoles and vortices. For a moderately strong nonlinearity, simulations of the coupled-field equations agree very well with results produced by the GA, demonstrating that the dynamics is accurately spanned by the set of six modes limited to l=1. PMID:27575123
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
Broser, Philip J; Schulte, R; Lang, S; Roth, A; Helmchen, Fritjof; Waters, J; Sakmann, Bert; Wittum, G
2004-01-01
Two-photon microscopy in combination with novel fluorescent labeling techniques enables imaging of three-dimensional neuronal morphologies in intact brain tissue. In principle it is now possible to automatically reconstruct the dendritic branching patterns of neurons from 3-D fluorescence image stacks. In practice however, the signal-to-noise ratio can be low, in particular in the case of thin dendrites or axons imaged relatively deep in the tissue. Here we present a nonlinear anisotropic diffusion filter that enhances the signal-to-noise ratio while preserving the original dimensions of the structural elements. The key idea is to use structural information in the raw data-the local moments of inertia-to locally control the strength and direction of diffusion filtering. A cylindrical dendrite, for example, is effectively smoothed only parallel to its longitudinal axis, not perpendicular to it. This is demonstrated for artificial data as well as for in vivo two-photon microscopic data from pyramidal neurons of rat neocortex. In both cases noise is averaged out along the dendrites, leading to bridging of apparent gaps, while dendritic diameters are not affected. The filter is a valuable general tool for smoothing cellular processes and is well suited for preparing data for subsequent image segmentation and neuron reconstruction. PMID:15574067
Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.
2009-02-01
The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.
Comparing analytical and numerical solution of nonlinear two and three-dimensional hydrostatic flows
NASA Astrophysics Data System (ADS)
Casulli, Vincenzo; Zanolli, Paola
2007-02-01
New test cases for frictionless, three-dimensional hydrostatic flows have been derived from some known analytical solutions of the two-dimensional shallow water equations. The flow domain is a paraboloid of revolution and the flow is determined by the initial conditions, the nonlinear advective terms, the Coriolis acceleration and by the hydrostatic pressure. Wetting and drying is also included.Some specific properties of the exact solutions are discussed under different hypothesis and relative importance of the forcing terms. These solutions are proposed for testing the stability, the accuracy and the efficiency of numerical models to be used for simulating environmental hydrostatic flows.The computed solutions obtained with a semi-implicit finite difference - finite volume algorithm on unstructured grid are compared with the corresponding analytical solutions in both two and three space dimension. Excellent agreement are obtained for the velocity and for the resulting water surface elevation. Comparison of the computed inundation area also shows a good agreement with the analytical solution with degrading accuracy observed when the inundation area becomes relatively large and for long simulation time.
A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation
NASA Technical Reports Server (NTRS)
Crivelli, Luis A.; Felippa, Carlos A.
1992-01-01
A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.
A three-dimensional robust nonlinear terminal guidance law with ISS finite-time convergence
NASA Astrophysics Data System (ADS)
Li, Guilin; Ji, Haibo
2016-05-01
This paper presents a novel three-dimensional nonlinear terminal guidance law with finite-time convergence for intercepting manoeuvring targets. Different from the usual method of decoupling the missile-target relative motion into two-dimensional planes, this law is designed via using the coupled dynamics. The guidance law is derived based on the theory of finite-time input-to-state stability (ISS), which needs no assumption of the linearisation and the estimation of target accelerations. Under this law, the line-of-sight angular rates can be stabilised to a small domain of convergence around zero in finite time. The convergence rate and convergence domain can be adjusted by changing the guidance parameters. First, a sufficient condition on finite-time ISS of the guidance system is given, and is subsequently used to design the guidance law. Finally, simulation results are provided to show that the proposed guidance law possesses fast convergence rate and strong robustness to target manoeuvres.
2014-01-01
Background Minimal available information concerning hip morphology is the motivation for several researchers to study the difference between Asian and Western populations. Current use of a universal hip stem of variable size is not the best option for all femur types. This present study proposed a new design process of the cementless femoral stem using a three dimensional model which provided more information and accurate analysis compared to conventional methods. Methods This complete design cycle began with morphological analysis, followed by femoral stem design, fit and fill analysis, and nonlinear finite element analysis (FEA). Various femur parameters for periosteal and endosteal canal diameters are measured from the osteotomy level to 150 mm below to determine the isthmus position. Results The results showed better total fit (53.7%) and fill (76.7%) canal, with more load distributed proximally to prevent stress shielding at calcar region. The stem demonstrated lower displacement and micromotion (less than 40 μm) promoting osseointegration between the stem–bone and providing primary fixation stability. Conclusion This new design process could be used as a preclinical assessment tool and will shorten the design cycle by identifying the major steps which must be taken while designing the femoral stem. PMID:24484753
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
King, J. D.; Strait, E. J.; Ferraro, N. M.; Lanctot, M. J.; Paz-Soldan, C.; Turnbull, A. D.; Lazerson, S. A.; Logan, N. C.; Park, J.-K.; Nazikian, R.; Okabayashi, M.; Haskey, S. R.; Hanson, J. M.; Liu, Yueqiang; Shiraki, D.
2015-07-15
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. These tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. Scans of the applied poloidal spectrum and edge safety factor confirm that low-pressure, n = 1 non-axisymmetric tokamak equilibria are determined by a single, dominant, stable eigenmode. However, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.
Acoustic waves in a stratified atmosphere. IV. Three-dimensional nonlinear hydrodynamics
NASA Astrophysics Data System (ADS)
Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.
2010-09-01
Context. The quiet solar chromosphere in the interior of supergranulation cells is believed to be heated by the dissipation of acoustic waves that originate with a typical period of 3 min in the photosphere. Aims: We investigate how the horizontal expansion with height of acoustic waves traveling upward into an isothermal, gravitationally stratified atmosphere depends on the size of the source region. Methods: We have solved the three-dimensional, nonlinear, time-dependent hydrodynamic equations for impulsively-generated, upward-propagating acoustic waves, assuming cylindrical symmetry. Results: When the diameter of the source of acoustic waves is small, the pattern of the upward-propagating waves is that of a point source, for which the energy travels upward in a vertical cone, qualitatively matching the observed pattern of bright-point expansion with height. For the largest plausible size of a source region, i.e., with granular size of 1 Mm, wave propagation in the low chromosphere is approximately that of plane waves, but in the middle and upper chromosphere it is also that of a point source. The assumption of plane-wave propagation is not a good approximation in the solar chromosphere. The upward-directed energy flux is larger than that of the solar chromosphere, at least in the middle and upper chromosphere, and probably throughout. Conclusions: Simulations of impulsively generated acoustic waves emitted from source regions with diameters that are small compared to the pressure scale height of the atmosphere qualitatively reproduce the upward expansion observed in chromospheric bright points. The emission features in the cores of the H and K lines are predicted to be blueshifted for a pulse and redshifted for the waves in its wake. The contribution of internal gravity waves to the upward energy flux is small and decreases with increasing size of the source region.
Seismic velocity structure of the Puget Sound Region from three dimensional nonlinear tomography
NASA Astrophysics Data System (ADS)
Symons, Neill Philip
In this dissertation I describe a non-linear seismic tomography experiment in the Greater Puget Sound Region (GPSR). The GPSR contains portions of three distinct geologic provinces: (1) the Coast Range Province---composed of the Olympic Mountains and the Siletzia terrane lying along the Washington Coast (the western edge of the GPSR). (2) The Puget Lowland---an approximately linear depression that stretches from Oregon's Willamette Valley to the Strait of Georgia in Canada. The Puget Lowland lies in the middle of the GPSR. (3) The Cascade Range---lying along the eastern edge of the GPSR and characterized by extensive episodic volcanism since the later Mesozoic. The result of this study is a three-dimensional model of the P-wave velocity within the GPSR. Interpretation of this model provides information about the subsurface geology in the region. The method used to perform the tomography has been developed as part of this research. The method uses a finite-difference algorithm to calculate seismic travel-times to every point in the region using the full 3-d velocity model. The method is capable of using three different types of data: (1) earthquakes with unknown hypocenters. The earthquake hypocenters are found as part of the model during solution of the tomography problem. (2) Explosions or other seismic events with known locations. (3) External data constraining the seismic velocity at known locations within the model. There is a good correlation between the velocity model derived in this experiment and several known geologic structures in the GPSR, including: the core of the Olympic Mountains; high seismic velocity where the basalt that makes up the Siletzia terrane outcrops; and low-velocity regions at basins under the cities of Seattle, Tacoma, Everett, and Chehalis. The data provides sufficient resolution to delineate the geometry of the contacts between these units within a large portion of the GPSR.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM
NASA Technical Reports Server (NTRS)
Martin, Thomas J.; Dulikravich, George S.
1993-01-01
A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2015-12-01
The propagation of dust-ion-acoustic waves with high-energy electrons and positrons in three-dimensional is considered. The Zakharov-Kuznetsov-Burgers (ZKB) equations for the dust-ion-acoustic waves in dusty plasmas is obtained. The conservations laws and integrals of motion for the ZKB equation are deduced. In the present study, by applying the modified direct algebraic method, we found the electric field potential, electric field and quantum statistical pressure in form water wave solutions for three-dimensional ZKB equation. The solutions for the ZKB equation are obtained precisely and efficiency of the method can be demonstrated. The stability of the obtained solutions and the movement role of the waves by making the graphs of the exact solutions are discussed and analyzed.
NASA Astrophysics Data System (ADS)
Saati, Abdulmannan Abdulhamid
1991-02-01
The direct numerical simulation of the stability and transition of compressible Couette flow is studied. The effects of a constant body force along the vertical direction are also studied. Cartesian geometry is adopted to approximate Couette flow produced in the gap between two coaxial cylinders rotating at high-speed, with the body force representing the effects of the centrifugal force. A new, compressible flow solver for two- and three-dimensional, time dependent Navier-Stokes equations, using both the MacCormack and the high-order Two-Four methods was developed. In order to facilitate the simulations with greater detail and accuracy, a high-speed supercomputer with large core memory is required. Thus, the computer code was written in FORTRAN for its execution on the CRAY2, at NASA Langley. In a concurrent effort, in order to study the feasibility and efficiency of massively parallel super-computers and to speed up the computations, the work was further extended by rewriting the computer code in both C* and PARIS languages, for execution on the massively parallel Connection Machine CM 2 at the University of Colorado. Extensive testing of this new computer code was performed using wave propagation problems involving small- and large-amplitude two- and three-dimensional disturbances. Numerical simulations on the stability of compressible Couette flow between two infinite, parallel plates, with the inclusion of (1) a sudden body force, and (2) a body force in equilibrium, were performed. First, two-dimensional disturbances were considered and then the work was extended by considering three-dimensional disturbances on the rectangular Couette flow problem. Effects of body force magnitude, Mach number, and Reynolds number were also investigated. The simulations provide excellent agreement with the linear theory, thus documenting the phase and amplitude accuracy of the computed results; the overall amplitude error remains less than one percent. The results show that
NASA Astrophysics Data System (ADS)
Ren, C.; Mori, W. B.
2004-05-01
The nonlinear and finite spot size effects for short laser pulses propagating in a plasma across a constant magnetic field (ordinary and extraordinary modes) have been studied. Starting from a fluid Lagrangian for magnetized plasmas with immobile ions, we derive the envelope equation for the laser and also the equation for the plasma wake in a three-dimensional geometry. The derived equations reveal that the external magnetic field reduces the strength of ponderomotive self-focusing, causes astigmatic self-focusing, and leads to the possibility of deflecting a short and narrow laser pulse in a magnetized plasma.
Lyra, Wladimir
2014-07-01
Recently, Klahr and Hubbard claimed that a hydrodynamical linear overstability exists in protoplanetary disks, powered by buoyancy in the presence of thermal relaxation. We analyze this claim, confirming it through rigorous compressible linear analysis. We model the system numerically, reproducing the linear growth rate for all cases studied. We also study the saturated properties of the overstability in the shearing box, finding that the saturated state produces finite amplitude fluctuations strong enough to trigger the subcritical baroclinic instability (SBI). Saturation leads to a fast burst of enstrophy in the box, and a large-scale vortex develops in the course of the next ≈100 orbits. The amount of angular momentum transport achieved is of the order of α ≈ 10{sup –3}, as in compressible SBI models. For the first time, a self-sustained three-dimensional vortex is produced from linear amplitude perturbation of a quiescent base state.
NASA Technical Reports Server (NTRS)
Gullbrand, Jessica
2003-01-01
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM
Liu, Z. X. Xia, T. Y.; Liu, S. C.; Ding, S. Y.; Xu, X. Q.; Joseph, I.; Meyer, W. H.; Gao, X.; Xu, G. S.; Shao, L. M.; Li, G. Q.; Li, J. G.
2014-09-15
Experimental measurements of edge localized modes (ELMs) observed on the EAST experiment are compared to linear and nonlinear theoretical simulations of peeling-ballooning modes using the BOUT++ code. Simulations predict that the dominant toroidal mode number of the ELM instability becomes larger for lower current, which is consistent with the mode structure captured with visible light using an optical CCD camera. The poloidal mode number of the simulated pressure perturbation shows good agreement with the filamentary structure observed by the camera. The nonlinear simulation is also consistent with the experimentally measured energy loss during an ELM crash and with the radial speed of ELM effluxes measured using a gas puffing imaging diagnostic.
Critical-layer nonlinearity in the resonance growth of three-dimensional waves in boundary layers
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1990-01-01
The nonlinear interactions of a triad of initially linear stability waves are addressed. The triad consisted of a single two-dimensional mode at a given frequency and two oblique modes with equal and opposite spanwise wave numbers. The oblique waves were at half the frequency and streamwise wave number of the two-dimensional mode. Attention was focused on the boundary-layer transition at low frequencies and high Reynolds numbers. A five-zoned structure and low-frequency scaling were used to derive the nonlinear-interaction equations. The initial nonlinear development of the waves was analyzed; the results indicated that the two-dimensional wave behaves according to linear theory. Nonlinear interactions caused exponential-of-an-exponential growth of the oblique modes. This resonant amplification of the subharmonic depended on the initial amplitude of the two-dimensional wave and on the initial phase angle between the two-dimensional wave and the oblique waves. The resonant growth of the oblique modes was more pronounced at lower frequencies than at higher frequencies. The results are in good agreement with experimental results and offer explanations of the observed process.
Three-dimensional finite-difference modeling of non-linear ground notion
Jones, E.M.; Olsen, K.B.
1997-08-01
We present a hybrid finite-difference technique capable of modeling non-linear soil amplification from the 3-D finite-fault radiation pattern for earthquakes in arbitrary earth models. The method is applied to model non-linear effects in the soils of the San Fernando Valley (SFV) from the 17 January 1994 M 6.7 Northridge earthquake. 0-7 Hz particle velocities are computed for an area of 17 km by 19 km immediately above the causative fault and 5 km below the surface where peak strike-parallel, strike-perpendicular, vertical, and total velocities reach values of 71 cm/s, 145 cm/s, 152 cm/s, and 180 cm/s, respectively. Selected Green`s functions and a soil model for the SFV are used to compute the approximate stress level during the earthquake, and comparison to the values for near-surface alluvium at the U.S. Nevada Test Site suggests that the non-linear regime may have been entered. We use selected values from the simulated particle velocity distribution at 5 km depth to compute the non-linear response in a soil column below a site within the Van Norman Complex in SFV, where the strongest ground motion was recorded. Since site-specific non- linear material parameters from the SFV are currently unavailable, values are taken from analyses of observed Test Site ground motions. Preliminary results show significant reduction of spectral velocities at the surface normalized to the peak source velocity due to non-linear effects when the peak velocity increases from 32 cm/s (approximately linear case) to 64 cm/s (30-92%), 93 cm/s (7-83%), and 124 cm/s (2-70%). The largest reduction occurs for frequencies above 1 Hz.
Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles
Tijs, Chris; van Dieën, Jaap H.; Baan, Guus C.; Maas, Huub
2014-01-01
The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and −3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and −0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions. PMID:25360524
Three-Dimensional Single-Mode Nonlinear Ablative Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Yan, R.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.
2015-11-01
The nonlinear evolution of the ablative Rayleigh-Taylor (ART) instability is studied in three dimensions for conditions relevant to inertial confinement fusion targets. The simulations are performed using our newly developed code ART3D and an astrophysical code AstroBEAR. The laser ablation can suppress the growth of the short-wavelength modes in the linear phase but may enhance their growth in the nonlinear phase because of the vortex-acceleration mechanism. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the bubble velocity grows faster than predicted in the classical 3-D theory. When compared to 2-D results, 3-D short-wavelength bubbles grow faster and do not reach saturation. The unbounded 3-D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes into the ablated plasma filling the bubble volume. A density plateau is observed inside a nonlinear ART bubble and the plateau density is higher for shorter-wavelength modes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
A non-linear von Neumann law for three-dimensional foam coarsening
NASA Astrophysics Data System (ADS)
Hilgenfeldt, Sascha; Kraynik, Andrew M.; Koehler, Stephan A.; Stone, Howard A.
2001-03-01
About 50 years ago, John von Neumann proved that the coarsening rate of individual bubbles in a 2-D dry foam is a linear function of the number of edges of the polygonal bubble. Soon afterwards it was conjectured that a statistical analog holds in three dimensions: polyhedral bubbles with a given number F of faces have an average growth rate that scales linearly in F. Using a theorem by Minkowski, we derive a parameter-free analytical expression for the average growth rates and show that it is non-linear, asymptoting to a square-root power in F. Experimental data and detailed foam simulations are in exceptionally good agreement with the analytical results. A refined model incorporates foam disorder to further improve the predictive power of the theory.
Three-Dimensional EMHD Simulation Studies of Nonlinear Magnetic Structures in Magnetized Plasmas
Eliasson, B.; Shukla, P. K.
2008-10-15
We present a numerical study of strongly nonlinear magnetic vortex-like structures, denoted whistler spheromaks, which have recently been observed in laboratory experiments. The whistler spheromaks are excited with a ring antenna immersed in the magnetized plasma, and are propagating away from the antenna with a constant speed along the ambient magnetic field lines. The wave magnetic field of the spheromaks are of the same order or larger than the ambient magnetic field, and consists of two parts, the poloidal field which is strong enough to reverse the magnetic field in the center of the spheromak, and the toroidal field. We demonstrate numerically that the latter is crucial for the propagation speed and direction of the spheromak, and that the whistler spheromaks are long-lived structures.
Maker, B.N.
1995-04-14
This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1995-01-01
We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.
Jain, Neeraj; Büchner, Jörg
2014-07-15
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2016-08-01
The nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov (mKdV-ZK) equation governs the behavior of weakly nonlinear ion-acoustic waves in magnetized electron-positron plasma which consists of equal hot and cool components of each species. By using the reductive perturbation procedure leads to a mKdV-ZK equation governing the oblique propagation of nonlinear electrostatic modes. The stability of solitary traveling wave solutions of the mKdV-ZK equation to three-dimensional long-wavelength perturbations is investigated. We found the electrostatic field potential and electric field in form traveling wave solutions for three-dimensional mKdV-ZK equation. The solutions for the mKdV-ZK equation are obtained precisely and efficiency of the method can be demonstrated.
NASA Astrophysics Data System (ADS)
Ajili, Y.; Ben Abdallah, D.; Mogren Al-Mogren, M.; Lique, F.; Francisco, J. S.; Hochlaf, M.
2016-07-01
The intermonomer three-dimensional potential-energy surface (3D PES) of the thiazyl-hydride-helium (HSN-He) weakly bound molecular system is generated using the explicitly correlated coupled-cluster method with single, double, and perturbative triple excitations. The 3D PES is mapped in Jacobi coordinates. This potential-energy surface shows a unique potential well at planar configurations. The depth of this potential is 74.4 c m-1 . This 3D PES is incorporated into a close-coupling and coupled-states quantum dynamical treatment of nuclear motions to deduce the rotational (de-)excitation of HSN by He for energies up to 1400 c m-1 . After averaging over a Maxwell-Boltzmann distribution, the collisional rate coefficients are derived for temperatures ranging from 5 to 200 K. These data are essential for the identification of HSN molecules in astrophysical media. A comparison between thionitrosyl-hydride—He and HSN-He is performed.
Bai Mei; Chen Jiuhong; Raupach, Rainer; Suess, Christoph; Tao Ying; Peng Mingchen
2009-01-15
A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P>0.05), whereas noise was reduced (P<0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P>0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.
Dai, Chao-Qing; Wang, Yan
2014-01-01
The spatiotemporal nonlinear Schrödinger equation with power-law nonlinearity in -symmetric potentials is investigated, and two families of analytical three-dimensional spatiotemporal structure solutions are obtained. The stability of these solutions is tested by the linear stability analysis and the direct numerical simulation. Results indicate that solutions are stable below some thresholds for the imaginary part of -symmetric potentials in the self-focusing medium, while they are always unstable for all parameters in the self-defocusing medium. Moreover, some dynamical properties of these solutions are discussed, such as the phase switch, power and transverse power-flow density. The span of phase switch gradually enlarges with the decrease of the competing parameter k in -symmetric potentials. The power and power-flow density are all positive, which implies that the power flow and exchange from the gain toward the loss domains in the cell. PMID:24983624
NASA Astrophysics Data System (ADS)
Dake, Fumihiro
2016-08-01
Three-dimensional structured illumination microscopy (SIM) enlarges frequency cutoff laterally and axially by a factor of two, compared with conventional microscopy. However, its optical resolution is still fundamentally limited. It is necessary to introduce nonlinearity to enlarge frequency cutoff further. We propose three-dimensional nonlinear structured illumination microscopy based on stimulated emission depletion (STED) effect, which has a structured excitation pattern and a structured STED pattern, and both three-dimensional illumination patterns have the same lateral pitch and orientation. Theoretical analysis showed that nonlinearity induced by STED effect, which causes harmonics and contributes to enlarging frequency cutoff, depends on the phase difference between two structured illuminations and that the phase difference of π is the most efficient to increase nonlinearity. We also found that undesirable background fluorescence, which degenerates the contrast of structured pattern and limits the ability of SIM, can be reduced by our method. These results revealed that optical resolution improvement and background fluorescence reduction would be compatible. The feasibility study showed that our method will be realized with commercially available laser, having 3.5 times larger frequency cutoff compared with conventional microscopy.
NASA Astrophysics Data System (ADS)
Dake, Fumihiro
2016-07-01
Three-dimensional structured illumination microscopy (SIM) enlarges frequency cutoff laterally and axially by a factor of two, compared with conventional microscopy. However, its optical resolution is still fundamentally limited. It is necessary to introduce nonlinearity to enlarge frequency cutoff further. We propose three-dimensional nonlinear structured illumination microscopy based on stimulated emission depletion (STED) effect, which has a structured excitation pattern and a structured STED pattern, and both three-dimensional illumination patterns have the same lateral pitch and orientation. Theoretical analysis showed that nonlinearity induced by STED effect, which causes harmonics and contributes to enlarging frequency cutoff, depends on the phase difference between two structured illuminations and that the phase difference of π is the most efficient to increase nonlinearity. We also found that undesirable background fluorescence, which degenerates the contrast of structured pattern and limits the ability of SIM, can be reduced by our method. These results revealed that optical resolution improvement and background fluorescence reduction would be compatible. The feasibility study showed that our method will be realized with commercially available laser, having 3.5 times larger frequency cutoff compared with conventional microscopy.
Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-01-01
Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ∼15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ∼100 μm in tumour spheroids. PMID:26219252
NASA Astrophysics Data System (ADS)
Perillo, Evan P.; Liu, Yen-Liang; Huynh, Khang; Liu, Cong; Chou, Chao-Kai; Hung, Mien-Chie; Yeh, Hsin-Chih; Dunn, Andrew K.
2015-07-01
Molecular trafficking within cells, tissues and engineered three-dimensional multicellular models is critical to the understanding of the development and treatment of various diseases including cancer. However, current tracking methods are either confined to two dimensions or limited to an interrogation depth of ~15 μm. Here we present a three-dimensional tracking method capable of quantifying rapid molecular transport dynamics in highly scattering environments at depths up to 200 μm. The system has a response time of 1 ms with a temporal resolution down to 50 μs in high signal-to-noise conditions, and a spatial localization precision as good as 35 nm. Built on spatiotemporally multiplexed two-photon excitation, this approach requires only one detector for three-dimensional particle tracking and allows for two-photon, multicolour imaging. Here we demonstrate three-dimensional tracking of epidermal growth factor receptor complexes at a depth of ~100 μm in tumour spheroids.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Exact and explicit solitary wave solutions to some nonlinear equations
Jiefang Zhang
1996-08-01
Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.
Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.
2007-10-15
We complete the stability analysis for three-dimensional dissipative solitons with intrinsic vorticity S in the complex Ginzburg-Landau equation with cubic and quintic terms in its dissipative and conservative parts. It is found and qualitatively explained that a necessary stability condition for all vortex solitons, but not for the fundamental ones (S=0), is the presence of nonzero diffusivity in the transverse plane. The fundamental solitons are stable in all cases when they exist, while the vortex solitons are stable only in a part of their existence domain. However, the spectral filtering (i.e., the temporal-domain diffusivity) is not necessary for the stability of any species of dissipative solitons. In addition to the recently studied solitons with S=0,1,2, a stability region is also found for ones with S=3.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption. PMID:25215842
NASA Astrophysics Data System (ADS)
Merkel, A.; Tournat, V.; Gusev, V.
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
NASA Astrophysics Data System (ADS)
Jafari Bahman, F.; Maraghechi, B.
2013-02-01
Efficiency enhancement in free-electron laser is studied by three-dimensional and nonlinear simulation using tapered helical wiggler magnetic field or tapered ion-channel density. In order to reduce the saturation length, prebunched electron beam is used. A set of nonlinear and coupled differential equations are derived that provides the self-consistent description of the evolution of both an ensemble of electrons and the electromagnetic radiation. These equations are solved numerically to show that the combined effect of tapering and prebunching results in significant enhancement of power and considerable reduction of the saturation length. To have a deeper insight into the problem, an analytical treatment is also presented that uses the small signal theory to derive a modified pendulum equation.
Jafari Bahman, F.; Maraghechi, B.
2013-02-15
Efficiency enhancement in free-electron laser is studied by three-dimensional and nonlinear simulation using tapered helical wiggler magnetic field or tapered ion-channel density. In order to reduce the saturation length, prebunched electron beam is used. A set of nonlinear and coupled differential equations are derived that provides the self-consistent description of the evolution of both an ensemble of electrons and the electromagnetic radiation. These equations are solved numerically to show that the combined effect of tapering and prebunching results in significant enhancement of power and considerable reduction of the saturation length. To have a deeper insight into the problem, an analytical treatment is also presented that uses the small signal theory to derive a modified pendulum equation.
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir
2015-01-01
This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir
2015-01-01
This article investigates the magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid subject to the convective boundary condition. Flow is generated due to a nonlinear stretching of the surface in two lateral directions. Temperature and nanoparticles concentration distributions are studied through the Brownian motion and thermophoresis effects. Couple stress fluid is considered electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed via boundary layer approach. Nonlinear ordinary differential systems are constructed by employing suitable transformations. The resulting systems have been solved for the convergent series solutions of velocities, temperature and nanoparticles concentration profiles. Graphs are sketched to see the effects of different interesting flow parameters on the temperature and nanoparticles concentration distributions. Numerical values are computed to analyze the values of skin-friction coefficients and Nusselt number. PMID:26714259
NASA Astrophysics Data System (ADS)
Braun, Jean
1994-08-01
We have developed a three-dimensional finite element model to study wrench deformation of the crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and the existence of a component of deformation in the x-direction (normal to the direction of wrenching). The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross-sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively with direct measurement of dilatancy during high-pressure rock-deformation experiments.
Kalocsai, A.G.
1992-12-31
An asymptotic analysis is presented for two distinct and independent problems: (I) Wave propagation in dispersive optical media with quadratic nonlinearity (II) Hypersonic flows with three dimensional self-similarity. In the optics problem, we at first study single and multiple input propagating waves at frequencies away from dielectric resonances. Here we compare the Slowly Varying Envelope Approximation to the Method of Multiple Scales and show that the Method of Multiple Scales is a superior technique that can be applied self consistently to any perturbation order which in turn predicts new physical effects. For the single slowly modulated input wave problem, under appropriate conditions, we shown that at the O({epsilon}{sup 2}) perturbation, we obtain the cubic nonlinear Schrodinger equation. This means that for the single input wave propagating in a quadratic nonlinear medium, self-modulation effects and soliton behavior may be observed depending on the boundary conditions. For the single input wave near a classical dielectric resonance, we find that the wave number becomes amplitude dependent. The method of multiple scales is replaced by Whitham`s averaged Lagrangian. We derive the associated modulated envelope equations. We investigate an effective medium regime and the full nonlinear problem. The hypersonic flow problem requires the use of asymptotic matching that arises from the geometry from the problem. Here the pressure field and lift to drag C{sup 3/2}{sub L}/C{sub D} is evaluated for a wide delta wing with small power law curvature. Use is made of Hypersonic Small Disturbance Theory and three dimensional power law similarity. It is shown that an improvement for C{sup 3/2}{sub L}/C{sub D} occurs for wings with power law curvatures greater than one, when compared to flat delta wings. This improvement in performance agrees qualitatively with other types of concave wings.
Khan, Junaid Ahmad; Mustafa, Meraj; Hayat, Tasawar; Alsaedi, Ahmed
2014-01-01
This article studies the viscous flow and heat transfer over a plane horizontal surface stretched non-linearly in two lateral directions. Appropriate wall conditions characterizing the non-linear variation in the velocity and temperature of the sheet are employed for the first time. A new set of similarity variables is introduced to reduce the boundary layer equations into self-similar forms. The velocity and temperature distributions are determined by two methods, namely (i) optimal homotopy analysis method (OHAM) and (ii) fourth-fifth-order Runge-Kutta integration based shooting technique. The analytic and numerical solutions are compared and these are found in excellent agreement. Influences of embedded parameters on momentum and thermal boundary layers are sketched and discussed. PMID:25198696
Khan, Junaid Ahmad; Mustafa, Meraj; Hayat, Tasawar; Alsaedi, Ahmed
2014-01-01
This article studies the viscous flow and heat transfer over a plane horizontal surface stretched non-linearly in two lateral directions. Appropriate wall conditions characterizing the non-linear variation in the velocity and temperature of the sheet are employed for the first time. A new set of similarity variables is introduced to reduce the boundary layer equations into self-similar forms. The velocity and temperature distributions are determined by two methods, namely (i) optimal homotopy analysis method (OHAM) and (ii) fourth-fifth-order Runge-Kutta integration based shooting technique. The analytic and numerical solutions are compared and these are found in excellent agreement. Influences of embedded parameters on momentum and thermal boundary layers are sketched and discussed. PMID:25198696
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Mankbadi, Reda R.
2002-01-01
An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.
NASA Technical Reports Server (NTRS)
Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.
1992-01-01
The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.
Explicit integration of Friedmann's equation with nonlinear equations of state
NASA Astrophysics Data System (ADS)
Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong
2015-05-01
In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied.
NASA Astrophysics Data System (ADS)
Kirak, Muharrem; Yilmaz, Sait
2013-12-01
A theoretical study of the electronic properties of the ground state and excited states and the linear and the third-order nonlinear optical properties (i. e., absorption coefficients and refractive indices) in a spherical GaAs pseudodot system is reported. The variational procedure has been employed in determining sublevel energy eigenvalues and their wave functions within the effective mass approximation. Our results indicate that the chemical potential of the electron gas and the minimum value of the pseudoharmonic potential have a great influence on the electrical and optical properties of hydrogenic impurity states. Also, we have found that the magnitudes of the absorption coefficient and the refractive index change of the spherical quantum dot increase for transitions between higher levels.
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Davila, C. G.; Camanho, P. P.; Iannucci, L.; Robinson, P.
2005-01-01
A set of three-dimensional failure criteria for laminated fiber-reinforced composites, denoted LaRC04, is proposed. The criteria are based on physical models for each failure mode and take into consideration non-linear matrix shear behaviour. The model for matrix compressive failure is based on the Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment angle and by the rotation of the fibers during compressive loading. The plane of fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can be used directly for design purposes. Several applications involving a broad range of load combinations are presented and compared to experimental data and other existing criteria. Predictions using LaRC04 correlate well with the experimental data, arguably better than most existing criteria. The good correlation seems to be attributable to the physical soundness of the underlying failure models.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
NASA Astrophysics Data System (ADS)
Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.
2013-11-01
This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.
NASA Astrophysics Data System (ADS)
Cho, Yong-Bae
-consistency of the tangential shear strain on any common inter-element edge. The elements are shown to be accurate, simple to use, and compatible with the requirements of commercial finite element codes. Based on the assumed displacement fields and the finite element approximations, consistent mass matrices has been obtained. Making use of the consistent mass matrices, lumped mass matrices have been derived according to HRZ lumping scheme. The developed elements have been implemented into the explicit finite element dynamics code, NEPTUNE, wherein the internal force vector is computed for the element. Static, free vibration, and explicit structural dynamic analyses of sandwich panels and laminated composites are performed using the elements. The numerical results show that the elements are accurate, robust, and computationally efficient.
Mallory, Kristina; Van Gorder, Robert A
2015-07-01
Stationary solutions for the cubic nonlinear Schrödinger equation modeling Bose-Einstein condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied through a perturbation method and also numerically. Note that we study both repulsive and attractive BECs under similar frameworks in order to deduce the effects of the potentials in each case. After outlining the general framework, solutions for a collection of specific confining potentials of physical relevance to experiments on BECs are provided in order to demonstrate the approach. We make several observations regarding the influence of the particular potentials on the behavior of the BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repulsive BECs for potentials of various strengths and forms. Finally, we consider the nonperturbative where the potential or the amplitude of the solutions is large, obtaining various qualitative results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this also occurs in the large mass limit. Through all of these results, we are able to understand the qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining potentials. PMID:26274295
Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O
2000-03-24
This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.
Jouve, Laurene; Brun, Allan Sacha E-mail: sacha.brun@cea.fr
2009-08-20
We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favor the emergence of flux through {omega}-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly east-west orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Three-Dimensional Icosahedral Phase Field Quasicrystal
NASA Astrophysics Data System (ADS)
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Three-dimensional sonoembryology.
Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav
2002-01-01
Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Colas, L.; Jacquot, J.; Hillairet, J.; Goniche, M.; Heuraux, S.; Faudot, E.; Crombe, K.; Kyrytsya, V.
2012-09-15
A minimal two-field fluid approach is followed to describe the radio-frequency (RF) wave propagation in the bounded scrape-off layer plasma of magnetic fusion devices self-consistently with direct current (DC) biasing of this plasma. The RF and DC parts are coupled by non-linear RF and DC sheath boundary conditions at both ends of open magnetic field lines. The physical model is studied within a simplified framework featuring slow wave (SW) only and lateral walls normal to the straight confinement magnetic field. The possibility is however kept to excite the system by any realistic 2D RF field map imposed at the outer boundary of the simulation domain. The self-consistent RF + DC system is solved explicitly in the asymptotic limit when the width of the sheaths gets very large, for several configurations of the RF excitation and of the target plasma. In the case of 3D parallelepipedic geometry, semi-analytical results are proposed in terms of asymptotic waveguide eigenmodes that can easily be implemented numerically. The validity of the asymptotic treatment is discussed and is illustrated by numerical tests against a quantitative criterion expressed from the simulation parameters. Iterative improvement of the solution from the asymptotic result is also outlined. Throughout the resolution, key physical properties of the solution are presented. The radial penetration of the RF sheath voltages along lateral walls at both ends of the open magnetic field lines can be far deeper than the skin depth characteristic of the SW evanescence. This is interpreted in terms of sheath-plasma wave excitation. Therefore, the proper choice of the inner boundary location is discussed as well as the appropriate boundary conditions to apply there. The asymptotic scaling of various quantities with the amplitude of the input RF excitation is established.
Jeong, Hyunjo; Zhang, Shuzeng; Cho, Sungjong; Li, Xiongbing
2016-08-01
In absolute measurements of acoustic nonlinearity parameters, amplitudes of harmonics must be corrected for diffraction effects. In this study, we develop explicit multi-Gaussian beam (MGB) model-based diffraction corrections for the first three harmonics in weakly nonlinear, axisymmetric sound beams. The effects of making diffraction corrections on nonlinearity parameter estimation are investigated by defining "total diffraction correction (TDC)". The results demonstrate that TDC cannot be neglected even for harmonic generation experiments in the nearfield region. PMID:27186964
Three dimensional interactive display
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2005-01-01
A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J.; Ramirez, M.R.; Gupta, S.
1993-03-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
Nonlinear explicit transient finite element analysis on the Intel Delta
Plaskacz, E.J. ); Ramirez, M.R.; Gupta, S. . Dept. of Civil Engineering)
1993-01-01
Many large scale finite element problems are intractable on current generation production supercomputers. High-performance computer architectures offer effective avenues to bridge the gap between computational needs and the power of computational hardware. The biggest challenge lies in the substitution of the key algorithms in an application program with redesigned algorithms which exploit the new architectures and use better or more appropriate numerical techniques. A methodology for implementing nonlinear finite element analysis on a homogeneous distributed processing network is discussed. The method can also be extended to heterogeneous networks comprised of different machine architectures provided that they have a mutual communication interface. This unique feature has greatly facilitated the port of the code to the 8-node Intel Touchstone Gamma and then the 512-node Intel Touchstone Delta. The domain is decomposed serially in a preprocessor. Separate input files are written for each subdomain. These files are read in by local copies of the program executable operating in parallel. Communication between processors is addressed utilizing asynchronous and synchronous message passing. The basic kernel of message passing is the internal force exchange which is analogous to the computed interactions between sections of physical bodies in static stress analysis. Benchmarks for the Intel Delta are presented. Performance exceeding 1 gigaflop was attained. Results for two large-scale finite element meshes are presented.
NASA Technical Reports Server (NTRS)
Shollenberger, C. A.
1978-01-01
The ability of the potential flow analysis (POTFAN) to predict the influence of ground proximity on lift systems is examined. A two dimensional study employing vortex lattice methodology provides confidence that ground effect phenomenon can be predicted using discrete singularity representation. Two dimensional quasi-steady ascent and descent behavior determined provides guidance in interpreting three dimensional results. Steady and quasi-steady ground effect aerodynamic characteristics predicted by POTFAN are presented for several basic unpowered configurations. POTFAN results are compared with experimental data and results of other analytical methods. Modification of POTFAN to incorporate multienergy flow analysis is discussed. General aspects of thick jet models are examined to provide a basic for extending POTFAN's scope to include analysis of propulsive lift interactions.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Karel, S.
1975-01-01
An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.
Three dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Stress tensor correlators in three dimensional gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout
2016-03-01
We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. PMID:27018144
NASA Technical Reports Server (NTRS)
Mattar, F. P.; Teichmann, J.; Bissonnette, L. R.; Maccormack, R. W.
1979-01-01
The paper presents a three-dimensional analysis of the nonlinear light matter interaction in a hydrodynamic context. It is reported that the resulting equations are a generalization of the Navier-Stokes equations subjected to an internal potential which depends solely upon the fluid density. In addition, three numerical approaches are presented to solve the governing equations using an extension of McCormack predict-corrector scheme. These are a uniform grid, a dynamic rezoned grid, and a splitting technique. It is concluded that the use of adaptive mapping and splitting techniques with McCormack two-level predictor-corrector scheme results in an efficient and reliable code whose storage requirements are modest compared with other second order methods of equal accuracy.
He, L.; Denton, J.D. . Whittle Lab.)
1994-07-01
A three-dimensional nonlinear time-marching method of solving the thin-layer Navier-Stokes equations in a simplified form has been developed for blade flutter calculations. The discretization of the equations is made using the cell-vertex finite volume scheme in space and the four-stage Runge-Kutta scheme in time. Calculations are carried out in a single-blade-passage domain and the phase-shifted periodic condition is implemented by using the shape correction method. The three-dimensional unsteady Euler solution is obtained at conditions of zero viscosity, and is validated against a well-established three-dimensional semi-analytical method. For viscous solutions, the time-step limitation on the explicit temporal discretization scheme is effectively relaxed by using a time-consistent two-grid time-marching technique. A transonic rotor blade passage flow (with tip-leakage) is calculated using the present three-dimensional unsteady viscous solution method. Calculated steady flow results agree well with the corresponding experiment and with other calculations. Calculated unsteady loadings due to oscillations of the rotor blades reveal some notable three-dimensional viscous flow features. The feasibility of solving the simplified thin-layer Navier-Stokes solver for oscillating blade flows at practical conditions is demonstrated.
NASA Astrophysics Data System (ADS)
Rizal, Syamsul
2000-11-01
Numerical experiments were done with the tides in Malacca Strait using a three-dimensional model, based on finite-difference and a semi-implicit numerical scheme. The numerical experiments were carried out as follows: firstly the discreted shallow water equations were solved without non-linear terms. Secondly, the case with non-linear terms was run. The results are then compared and we show that the non-linear terms play a dominant role in the Malacca Strait. They also suggest that one must be careful when ignoring these terms in order to maintain the stability of the model. Kelvin wave propagation using the analytical model is also discussed. It is found that the pattern of M 2 amplitude's lines is greatly influenced by small value of Coriolis parameter in Malacca Strait (˜3°), while the pattern of M 2 co-tidal lines is controlled by the bottom friction parameter. It is also proposed to calculate energy balance directly using the ratio of reflected and incident Kelvin wave in open boundary of analytical model. From this direct calculation, the displacement of amphidrome can be determined exactly. It can then be concluded that the Malacca Strait has actually the virtual amphidromic point, where the position of this point is away roughly 2097 km northeastward from the middle of the Strait. The total loss of energy due to bottom friction, calculated by analytical model, coincides well with that calculated by numerical model in the Malacca Strait.
Coe, Benjamin J; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Garín, Javier; Orduna, Jesús
2005-09-28
In this article, we describe a series of new complex salts in which electron-rich transition-metal centers are coordinated to three electron-accepting N-methyl/aryl-2,2':4,4' ':4',4' ''-quaterpyridinium ligands. These complexes contain either Ru(II) or Fe(II) ions and have been characterized by using various techniques, including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer bands. The latter experiments reveal that these putatively octupolar D(3) chromophores exhibit two substantial components of the beta tensor which are associated with transitions to dipolar excited states. Computations involving time-dependent density-functional theory and the finite field method serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts. PMID:16173774
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-04-01
This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.
Three-dimensional silicon micromachining
NASA Astrophysics Data System (ADS)
Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.
2012-11-01
A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.
Three-dimensional instability of elliptical flow
NASA Astrophysics Data System (ADS)
Bayly, B. J.
1986-10-01
A clarification of the physical and mathematical nature of Pierrhumbert's (1986) three-dimensional short-wave inviscid instability of simple two-dimensional elliptical flow is presented. The instabilities found are independent of length scale, extending Pierrhumbert's conclusion that the structures of the instabilities are independent of length scale in the limit of large wave number. The fundamental modes are exact solutions of the nonlinear equations, and they are plane waves whose wave vector rotates elliptically around the z axis with a period of 2(pi)/Omega. The growth rates are shown to be the exponents of a matrix Floquet problem, and good agreement is found with previous results.
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Three-dimensional fault drawing
Dongan, L. )
1992-01-01
In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.
Three-dimensional obstetric ultrasound.
Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H
2008-04-01
Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140
Three-dimensional hybrid vortex solitons
NASA Astrophysics Data System (ADS)
Driben, Rodislav; Kartashov, Yaroslav V.; Malomed, Boris A.; Meier, Torsten; Torner, Lluis
2014-06-01
We show, by means of numerical and analytical methods, that media with a repulsive nonlinearity which grows from the center to the periphery support a remarkable variety of previously unknown complex stationary and dynamical three-dimensional (3D) solitary-wave states. Peanut-shaped modulation profiles give rise to vertically symmetric and antisymmetric vortex states, and novel stationary hybrid states, built of top and bottom vortices with opposite topological charges, as well as robust dynamical hybrids, which feature stable precession of a vortex on top of a zero-vorticity soliton. The analysis reveals stability regions for symmetric, antisymmetric, and hybrid states. In addition, bead-shaped modulation profiles give rise to the first example of exact analytical solutions for stable 3D vortex solitons. The predicted states may be realized in media with a controllable cubic nonlinearity, such as Bose-Einstein condensates.
Three-dimensional coronary angiography
NASA Astrophysics Data System (ADS)
Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John
2005-04-01
Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.
Chakrabarty, Ankush; Buzzard, Gregery T; Corless, Martin J; Zak, Stanislaw H; Rundell, Ann E
2014-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is critical in maintaining homeostasis under physical and psychological stress by modulating cortisol levels in the body. Dysregulation of cortisol levels is linked to numerous stress-related disorders. In this paper, an automated treatment methodology is proposed, employing a variant of nonlinear model predictive control (NMPC), called explicit MPC (EMPC). The controller is informed by an unknown input observer (UIO), which estimates various hormonal levels in the HPA axis system in conjunction with the magnitude of the stress applied on the body, based on measured concentrations of adreno-corticotropic hormones (ACTH). The proposed closed-loop control strategy is tested on multiple in silico patients and the effectiveness of the controller performance is demonstrated. PMID:25570727
Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability
Borhanian, J.; Hosseini Faradonbe, F.
2014-04-15
The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.
THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.
KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.
2003-05-04
BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.
Q kink of the nonlinear O(3) {sigma} model involving an explicitly broken symmetry
Loginov, A. Yu.
2011-05-15
The (1 + 1)-dimensional nonlinear O(3) {sigma} model involving an explicitly broken symmetry is considered. Sphalerons are known to exist in this model. These sphalerons are of a topological origin and are embedded kinks of the sine-Gordon model. In the case of a compact spatial manifold S{sup 1}, sine-Gordon multikinks exist in the model. It is shown that the model admits a nonstatic generalization of the sine-Gordon kink/multikink, Q kink/multikink. Explicit expressions are obtained for the dependence of the Q kink energy and charge on the phase frequency of rotation. The Q kink is studied for stability, and expressions are obtained for the eigenfunctions and eigenfrequencies of the operator of quadratic fluctuations. It is shown that the Q kink is unstable over the entire admissible frequency range {omega} Element-Of [-1, 1]. The one-loop quantum correction to the static-kink mass is calculated, and the Q-kink zero mode is quantized. It is shown that, in a general static case, the field equations of the model are integrable in quadratures.
Three-dimensional Camera Phone
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2004-12-01
An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.
Boundary Integral Solutions to Three-Dimensional Unconfined Darcy's Flow
NASA Astrophysics Data System (ADS)
Lennon, Gerard P.; Liu, Philip L.-F.; Liggett, James A.
1980-08-01
The boundary integral equation method (BIEM) is used to solve three-dimensional potential flow problems in porous media. The problems considered here are time dependent and have a nonlinear boundary condition on the free surface. The entire boundary, including the moving free surface, discretized into linear finite elements for the purpose of evaluating the boundary integrals. The technique allows transient, three-dimensional problems to be solved with reasonable computational costs. Numerical examples include recharge through rectangular and circular areas and seepage flow from a surface pond. The examples are used to illustrate the method and show the nonlinear effects.
Three-dimensional visual stimulator
NASA Astrophysics Data System (ADS)
Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki
1995-02-01
We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads
Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.
2013-01-01
This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209
Three-dimensional unstructured grid method applied to turbomachinery
NASA Technical Reports Server (NTRS)
Kwon, Oh Joon; Hah, Chunill
1993-01-01
This work has three objectives: to develop a three-dimensional flow solver based on unstructured tetrahedral meshes for turbomachinery flows; to validate the solver through comparisons with experimental data; and to apply the solver for better understanding of the flow through turbomachinery geometries and design improvement. The work followed three different approaches: an existing external flow solver/grid generator (USM3D/VGRID) was extensively modified for internal flows; a three-dimensional, finite-volume solver based on Roe's flux-difference splitting and explicit Runge-Kutta time stepping; and three-dimensional unstructured tetrahedral mesh generation using an advancing-front technique. A discussion of these topics is presented in viewgraph form.
The three-dimensional evolution of a plane wake
NASA Technical Reports Server (NTRS)
Maekawa, H.; Moser, R. D.; Mansour, N. N.
1993-01-01
In the past three decades, linear stability analysis has led to a comprehensive understanding of the linear stages of transition in plane wakes. Our understanding of the nonlinear and turbulent stages is less developed. Nonlinear theory developed by Papageorgiou and Smith was used to study the long-wavelength regime in wakes. The nonlinear and turbulent stages were investigated experimentally, and few numerical studies examined the early nonlinear stages of forced wakes. The evolution of three dimensional disturbances in an incompressible wake is investigated using direct numerical simulations. The instantaneous three-dimaensional structures and corresponding statistics are presented.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2014-08-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-01-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338
Dynamic Three-Dimensional Echocardiography
NASA Astrophysics Data System (ADS)
Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro
2000-08-01
Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177
Three-Dimensional Schlieren Measurements
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Cochrane, Andrea
2004-11-01
Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.
NASA Astrophysics Data System (ADS)
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
A three-dimensional asymmetric magnetopause model
NASA Astrophysics Data System (ADS)
Lin, R. L.; Zhang, X. X.; Liu, S. Q.; Wang, Y. L.; Gong, J. C.
2010-04-01
A new three-dimensional asymmetric magnetopause model has been developed for corrected GSM coordinates and parameterized by the solar wind dynamic and magnetic pressures (Pd + Pm), the interplanetary magnetic field (IMF) Bz, and the dipole tilt angle. On the basis of the magnetopause crossings from Geotail, IMP 8, Interball, TC1, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Wind, Cluster, Polar, Los Alamos National Laboratory (LANL), GOES, and Hawkeye, and the corresponding upstream solar wind parameters from ACE, Wind, or OMNI, this model is constructed by the Levenberg-Marquardt method for nonlinear multiparameter fitting step-by-step over the divided regions. The asymmetries of the magnetopause and the indentations near the cusps are appropriately described in this new model. In addition, the saturation effect of IMF Bz on the subsolar distance and the extrapolation for the distant tail magnetopause are also considered. On the basis of this model, the power law index for the subsolar distance versus Pd + Pm is a bit less than -1/6, the northward IMF Bz almost does not influence the magnetopause, and the dipole tilt angle is very important to the north-south asymmetry and the location of indentations. In comparison with the previous empirical magnetopause models based on our database, the new model improves prediction capability to describe the three-dimensional structure of the magnetopause. It is shown that this new model can be used to quantitatively study how Pd + Pm compresses the magnetopause, how the southward IMF Bz erodes the magnetopause, and how the dipole tilt angle influences the north-south asymmetry and the indentations.
Finan, C.H. III
1980-12-01
Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.
Three-dimensional analysis of tubular permanent magnet machines
NASA Astrophysics Data System (ADS)
Chai, J.; Wang, J.; Howe, D.
2006-04-01
This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.
PLOT3D- DRAWING THREE DIMENSIONAL SURFACES
NASA Technical Reports Server (NTRS)
Canright, R. B.
1994-01-01
PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
Free Convection Nanofluid Flow in the Stagnation-Point Region of a Three-Dimensional Body
Farooq, Umer
2014-01-01
Analytical results are presented for a steady three-dimensional free convection flow in the stagnation point region over a general curved isothermal surface placed in a nanofluid. The momentum equations in x- and y-directions, energy balance equation, and nanoparticle concentration equation are reduced to a set of four fully coupled nonlinear differential equations under appropriate similarity transformations. The well known technique optimal homotopy analysis method (OHAM) is used to obtain the exact solution explicitly, whose convergence is then checked in detail. Besides, the effects of the physical parameters, such as the Lewis number, the Brownian motion parameter, the thermophoresis parameter, and the buoyancy ratio on the profiles of velocities, temperature, and concentration, are studied and discussed. Furthermore the local skin friction coefficients in x- and y-directions, the local Nusselt number, and the local Sherwood number are examined for various values of the physical parameters. PMID:25114954
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.
1998-01-14
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.
A deterministic method for transient, three-dimensional neutron transport
Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.
1998-05-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.
Three-dimensional photon counting double-random-phase encryption.
Cho, Myungjin; Javidi, Bahram
2013-09-01
In this Letter, we present a three-dimensional (3D) photon counting double-random-phase encryption (DRPE) technique using passive integral imaging. A 3D photon counting DRPE can encrypt a 3D scene and provides more security and authentications due to photon counting Poisson nonlinear transformation on the encrypted image. In addition, 3D imaging allows verification of the 3D object at different depths. Preliminary results and performance evaluation have been presented. PMID:23988912
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-08-20
We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Finite element solution theory for three-dimensional boundary flows
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
A finite element algorithm is derived for the numerical solution of a three-dimensional flow field described by a system of initial-valued, elliptic boundary value partial differential equations. The familiar three-dimensional boundary layer equations belong to this description when diffusional processes in only one coordinate direction are important. The finite element algorithm transforms the original description into large order systems of ordinary differential equations written for the dependent variables discretized at node points of an arbitrarily irregular computational lattice. The generalized elliptic boundary conditions is piecewise valid for each dependent variable on boundaries that need not explicitly coincide with coordinate surfaces. Solutions for sample problems in laminar and turbulent boundary flows illustrate favorable solution accuracy, convergence, and versatility.
COMOC: Three dimensional boundary region variant, programmer's manual
NASA Technical Reports Server (NTRS)
Orzechowski, J. A.; Baker, A. J.
1974-01-01
The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.
NASA Astrophysics Data System (ADS)
Hayek, Mohamed
2016-04-01
This work develops a simple exact and explicit solution of the one-dimensional transient and nonlinear Richards' equation for soils in a special case of exponential water retention curve and power law hydraulic conductivity. The exact solution is obtained as traveling wave based on the approach proposed by Philip (1957, 1967) and adopted by Zlotnik et al. (2007). The obtained solution is novel, and it expresses explicitly the water content as function of the depth and time. It can be useful to model infiltration into semi-infinite soils with time-dependent boundary conditions and infiltration with constant boundary condition but space-dependent initial condition. A complete analytical inverse procedure based on the proposed analytical solution is presented which allows the estimation of hydraulic parameters. The proposed exact solution is also important for the verification of numerical schemes as well as for checking the implementation of time-dependent boundary conditions.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Three-dimensional stellarator equilibria by iteration
Boozer, A.H.
1983-02-01
The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
Device fabrication: Three-dimensional printed electronics
NASA Astrophysics Data System (ADS)
Lewis, Jennifer A.; Ahn, Bok Y.
2015-02-01
Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.
Three-dimensional simulations of the implosion of inertial confinement fusion targets
Town, R.P.J.; Bell, A.R. )
1991-09-30
The viability of inertial confinement fusion depends crucially on implosion symmetry. A spherical three-dimensional hydrocode called PLATO has been developed to model the growth in asymmetries during an implosion. Results are presented in the deceleration phase which show indistinguishable linear growth rates, but greater nonlinear growth of the Rayleigh-Taylor instability than is found in two-dimensional cylindrical simulations. The three-dimensional enhancement of the nonlinear growth is much smaller than that found by Sakagami and Nishihara.
Nonlocalized receptivity of boundary layers to three-dimensional disturbances
NASA Astrophysics Data System (ADS)
Crouch, J. D.; Bertolotti, F. P.
1992-01-01
The nonlocalized receptivity of the Blasius boundary layer over a wavy surface is analyzed using two different approaches. First, a mode-interaction theory is employed to unveil basic mechanisms and to explore the interplay between different components of the disturbance field. The second approach is derived from the parabolized stability equations. These nonlinear equations incorporate the effects of the stream-wise divergence of the boundary layer. The analysis provides results for three-dimensional disturbances and also considers nonparallel effects. Results for two-dimensional disturbances demonstrate that nonparallel effects are negligible and substantiates the mechanism described by the mode-interaction theory. Nonparallel effects become significant with increasing three-dimensionality. Receptivity amplitudes are shown to be large over a broad range of surface wave numbers. When operative, this mechanism is likely to dominate the boundary-layer receptivity.
Analytical Prediction of Three Dimensional Chatter Stability in Milling
NASA Astrophysics Data System (ADS)
Altintas, Yusuf
The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.
Three-dimensional "Mercedes-Benz" model for water.
Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility. PMID:19673572
Three-dimensional ``Mercedes-Benz'' model for water
NASA Astrophysics Data System (ADS)
Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
Numerical simulation of three-dimensional supersonic inlet flow fields
NASA Technical Reports Server (NTRS)
Kawamura, T.; Chyu, W. J.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions of an axisymmetric inlet model were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows typically found in supersonic inlets such as shock-wave intersections, flow spillage around the cowl lip, shock-wave/boundary-layer interactions, control of shock-induced flow separation by means of boundary layer bleed, internal normal (terminal) shocks, and the effects of flow incidence. Computed results were compared with available wind tunnel data.
Distributional properties of the three-dimensional Poisson Delaunay cell
Muche, L.
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in {Re}{sup 3}. The considerations are based on a well-known formula given by Miles which describes the size and shape of the {open_quotes}typical{close_quotes} three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
Distributional properties of the three-dimensional Poisson Delaunay cell
NASA Astrophysics Data System (ADS)
Muche, Lutz
1996-07-01
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in ℝ3. The considerations are based on a well-known formula given by Miles which describes the size and shape of the "typical" three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
Vision in our three-dimensional world.
Parker, Andrew J
2016-06-19
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269595
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Three dimensional responsive structure of tough hydrogels
NASA Astrophysics Data System (ADS)
Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng
2015-04-01
Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be construed as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Three-Dimensional Robotic Vision System
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Three-Dimensional Extended Bargmann Supergravity.
Bergshoeff, Eric; Rosseel, Jan
2016-06-24
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712
Three-Dimensional Extended Bargmann Supergravity
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Rosseel, Jan
2016-06-01
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.
Fully explicit nonlinear optics model in a particle-in-cell framework
Gordon, D.F. Helle, M.H.; Peñano, J.R.
2013-10-01
A numerical technique which incorporates the nonlinear optics of anisotropic crystals into a particle-in-cell framework is described. The model is useful for simulating interactions between crystals, ultra-short laser pulses, intense relativistic electron bunches, plasmas, or any combination thereof. The frequency content of the incident and scattered radiation is limited only by the resolution of the spatial and temporal grid. A numerical stability analysis indicates that the Courant condition is more stringent than in the vacuum case. Numerical experiments are carried out illustrating the electro-optic effect, soliton propagation, and the generation of fields in a crystal by a relativistic electron bunch.
A communication-avoiding implicit-explicit method for a free-surface ocean model
NASA Astrophysics Data System (ADS)
Newman, Christopher; Womeldorff, Geoffrey; Knoll, Dana A.; Chacón, Luis
2016-01-01
We examine a nonlinear elimination method for the free-surface ocean equations based on barotropic-baroclinic decomposition. The two dimensional scalar continuity equation is treated implicitly with a preconditioned Jacobian-free Newton-Krylov method (JFNK). The remaining three dimensional equations are subcycled explicitly within the JFNK residual evaluation with a method known as nonlinear elimination. In this approach, the memory footprint of the underlying Krylov vector is greatly reduced over that required by fully coupled implicit methods. The method is second-order accurate and scales algorithmically, with allowed timesteps much larger than fully explicit methods. Moreover, the hierarchical nature of the algorithm lends itself readily to emerging architectures. In particular, we introduce a communication staging strategy for the three dimensional explicit system that greatly reduces the communication costs of the algorithm and provides a key advantage as communication costs continue to dominate relative to floating point costs in emerging architectures.
Three-dimensional jamming and flows of soft glassy materials.
Ovarlez, G; Barral, Q; Coussot, P
2010-02-01
Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046
Low-frequency three-dimensional ultrasonic tomography
NASA Astrophysics Data System (ADS)
Goncharsky, A. V.; Romanov, S. Yu.; Seryozhnikov, S. Yu.
2016-05-01
The possibility of making ultrasonic 3D tomographs for medical diagnostics of soft tissues was established. The choice of frequencies of ultrasonic pulses of 300-500 kHz was due to low absorption in soft tissues within this range. The reverse problems of ultrasonic tomography, which are three-dimensional and nonlinear, have been considered in a model that takes into account both wave effects and absorption. The effectiveness of algorithms to solve the reverse problems that were developed has been illustrated by model calculations. The velocity configuration has been shown to be recovered better than the function that describes absorption in soft tissues.
Multilevel elliptic smoothing of large three-dimensional grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1995-01-01
Elliptic grid generation methods have been used for many years to smooth and improve grids generated by algebraic interpolation schemes. However, the elliptic system that must be solved is nonlinear and convergence is generally very slow for large grids. In an attempt to make elliptic methods practical for large three-dimensional grids, a two-stage implementation is developed where the overall grid point locations are set using a coarse grid generated by the elliptic system. The coarse grid is then interpolated to generate a finer grid which is smoothed using only a few iterations of the elliptic system.
Maximum range three-dimensional lifting planetary entry
NASA Technical Reports Server (NTRS)
Dickmanns, E. D.
1972-01-01
Variational equations for maximum range three-dimensional quasisteady glide are given. Nonlinear oscillatory maximum range trajectories obtained with a refined gradient program are approximated by a superposition of quasisteady glide and linearized perturbation equation results. A basic control law is found which is closely followed for maximum cross-range trajectories. The effect of a reradiative heating constraint involving velocity, altitude and angle of attack on a maximum cross-range trajectory for a space shuttle orbiter-type vehicle reentering the earth's atmosphere is investigated numerically.
Growing Three-Dimensional Cocultures Of Cells
NASA Technical Reports Server (NTRS)
Wolf, David A.; Goodwin, Thomas J.
1995-01-01
Laboratory process provides environmental conditions favoring simultaneous growth of cocultures of mammalian cells of more than one type. Cultures become three-dimensional tissuelike assemblies serving as organoid models of differentiation of cells. Process used, for example, to study growth of human colon cancers, starting from mixtures of normal colonic fibroblasts and partially differentiated colon adenocarcinoma cells.
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Three-dimensional rf structure calculations
Cooper, R.K.; Browman, M.J.; Weiland, T.
1988-01-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.
Three-dimensional RF structure calculations
NASA Astrophysics Data System (ADS)
Cooper, R. K.; Browman, M. J.; Weiland, T.
1989-04-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Three-Dimensional Pointers for Stereoscopic Projection.
ERIC Educational Resources Information Center
Hayman, H. J. G.
1984-01-01
Because class size often limits student opportunity to handle individual models, teachers use stereoscopic projections to demonstrate structural features. Describes three-dimensional pointers for use with different projection systems so teachers can indicate a particular atom or bond to entire classes, avoiding the perspective problems inherent in…
Cohomology of real three-dimensional triquadrics
NASA Astrophysics Data System (ADS)
Krasnov, Vyacheslav A.
2012-02-01
We consider non-singular intersections of three real five-dimensional quadrics. They are referred to for brevity as real three-dimensional triquadrics. We calculate the dimensions of the cohomology spaces of triquadrics with coefficients in the field of two elements.
Three-dimensional spirals of atomic layered MoS2.
Zhang, Liming; Liu, Kaihui; Wong, Andrew Barnabas; Kim, Jonghwan; Hong, Xiaoping; Liu, Chong; Cao, Ting; Louie, Steven G; Wang, Feng; Yang, Peidong
2014-11-12
Atomically thin two-dimensional (2D) layered materials, including graphene, boron nitride, and transition metal dichalcogenides (TMDs), can exhibit novel phenomena distinct from their bulk counterparts and hold great promise for novel electronic and optoelectronic applications. Controlled growth of such 2D materials with different thickness, composition, and symmetry are of central importance to realize their potential. In particular, the ability to control the symmetry of TMD layers is highly desirable because breaking the inversion symmetry can lead to intriguing valley physics, nonlinear optical properties, and piezoelectric responses. Here we report the first chemical vapor deposition (CVD) growth of spirals of layered MoS2 with atomically thin helical periodicity, which exhibits a chiral structure and breaks the three-dimensional (3D) inversion symmetry explicitly. The spirals composed of tens of connected MoS2 layers with decreasing areas: each basal plane has a triangular shape and shrinks gradually to the summit when spiraling up. All the layers in the spiral assume an AA lattice stacking, which is in contrast to the centrosymmetric AB stacking in natural MoS2 crystals. We show that the noncentrosymmetric MoS2 spiral leads to a strong bulk second-order optical nonlinearity. In addition, we found that the growth of spirals involves a dislocation mechanism, which can be generally applicable to other 2D TMD materials. PMID:25343743
Transformation equation in three-dimensional photoelasticity.
Ainola, Leo; Aben, Hillar
2006-03-01
Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution. PMID:16539073
Analysis of three-dimensional transonic compressors
NASA Technical Reports Server (NTRS)
Bourgeade, A.
1984-01-01
A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.
Three-dimensional visualization of a qutrit
NASA Astrophysics Data System (ADS)
Kurzyński, Paweł; Kołodziejski, Adrian; Laskowski, Wiesław; Markiewicz, Marcin
2016-06-01
We present a surprisingly simple three-dimensional Bloch sphere representation of a qutrit, i.e., a single three-level quantum system. We start with a symmetric state of a two-qubit system and relate it to the spin-1 representation. Using this representation we associate each qutrit state with a three-dimensional vector a and a metric tensor Γ ̂ which satisfy a .Γ ̂.a ≤1 . This resembles the well known condition for qubit Bloch vectors in which case Γ ̂=1 . In our case the vector a corresponds to spin-1 polarization, whereas the tensor Γ ̂ is a function of polarization uncertainties. Alternatively, a is a local Bloch vector of a symmetric two-qubit state and Γ ̂ is a function of the corresponding correlation tensor.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Simulation of complex three-dimensional flows
NASA Technical Reports Server (NTRS)
Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.
1985-01-01
The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.
Three-Dimensional Images For Robot Vision
NASA Astrophysics Data System (ADS)
McFarland, William D.
1983-12-01
Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Three dimensional inelastic finite element analysis of laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. H., Jr.; Kamat, M. P.
1980-01-01
Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
Three-dimensional adjustment of trilateration data
NASA Technical Reports Server (NTRS)
Sung, L.-Y.; Jackson, D. D.
1985-01-01
The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.
Three-dimensional Lorentz-violating action
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.
2014-03-01
We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-Dimensional Dispaly Of Document Set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Generating Three-Dimensional Grids About Anything
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1991-01-01
Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
The first three-dimensional vanadium hypophosphite.
Maouel, Hind A; Alonzo, Véronique; Roisnel, Thierry; Rebbah, Houria; Le Fur, Eric
2009-07-01
The title synthesized hypophosphite has the formula V(H(2)PO(2))(3). Its structure is based on VO(6) octahedra and (H(2)PO(2))(-) pseudo-tetrahedra. The asymmetric unit contains two crystallographically distinct V atoms and six independent (H(2)PO(2))(-) groups. The connection of the polyhedra generates [VPO(6)H(2)](6-) chains extended along a, b and c, leading to the first three-dimensional network of an anhydrous transition metal hypophosphite. PMID:19578249
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Teaching and Assessing Three-Dimensional M
NASA Astrophysics Data System (ADS)
Bateman, Robert C., Jr.; Booth, Deborah; Sirochman, Rudy; Richardson, Jane; Richardson, David
2002-05-01
Structural concepts such as the exact arrangement of a protein in three dimensions are crucial to almost every aspect of biology and chemistry, yet most of us have not been educated in three-dimensional literacy and all of us need a great deal of help in order to perceive and to communicate structural information successfully. It is in the undergraduate biochemistry course where students learn most concepts of molecular structure pertinent to living systems. We are addressing the issue of three-dimensional structural literacy by having undergraduate students construct kinemages, which are plain text scripts derived from Protein Data Bank coordinate files that can be viewed with the program MAGE. These annotated, interactive, three-dimensional illustrations are designed to develop a molecular story and allow exploration in the world of that story. In the process, students become familiar with the structure-based scientific literature and the Protein Data Bank. Our assessment to date has shown that students perceive kinemage authorship to be more helpful in understanding protein structure than simply viewing prepared kinemages. In addition, students perceived kinemage authorship as being beneficial to their career and a significant motivation to learn biochemistry.
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
Three-dimensional printing of the retina
Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.
2016-01-01
Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545
Three-Dimensional Imaging. Chapter 10
NASA Technical Reports Server (NTRS)
Kelso, R. M.; Delo, C.
1999-01-01
This chapter is concerned with three-dimensional imaging of fluid flows. Although relatively young, this field of research has already yielded an enormous range of techniques. These vary widely in cost and complexity, with the cheapest light sheet systems being within the budgets of most laboratories, and the most expensive Magnetic Resonance Imaging systems available to a select few. Taking the view that the most likely systems to be developed are those using light sheets, the authors will relate their knowledge and experience of such systems. Other systems will be described briefly and references provided. Flows are inherently three-dimensional in structure; even those generated around nominally 2-D surface geometry. It is becoming increasingly apparent to scientists and engineers that the three-dimensionalities, both large and small scale, are important in terms of overall flow structure and species, momentum, and energy transport. Furthermore, we are accustomed to seeing the world in three dimensions, so it is natural that we should wish to view, measure and interpret flows in three-dimensions. Unfortunately, 3-D images do not lend themselves to convenient presentation on the printed page, and this task is one of the challenges facing us.
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
Three-dimensional boundary layer stability and transition
NASA Technical Reports Server (NTRS)
Malik, M. R.; Li, F.
1992-01-01
Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.
Modelling Three Dimensional, Tape Spring Based, Space Deployable Structures
NASA Astrophysics Data System (ADS)
Walker, S. J. I.; Kiley, A.; Aglietti, G. S.; Cook, A.; McDonald, A. D.
2012-07-01
Deployable structures are required for many satellite operations, to deploy booms for communications or area deployment for power generation, and many sophisticated mechanisms have been developed for these types of structures. However, tape springs, defined as thin metallic strips with an initially curved cross- section, are an attractive structural solution and hinge mechanism for satellite deployable structures because of their low mass, low cost and general simplicity. They have previously been used to deploy booms and array panels in various configurations that incorporate small two-dimensional tape hinges, but they also have the potential to be used in greater numbers to create larger, more geometrically complicated deployable structures. This publication investigates the applicability of using a simplified modelling approach to predict the deployment dynamics of a three dimensional deployable structure that uses a significant quantity of tape springs. This work builds on previous studies which have focused on the analysis of two dimensional tape spring based structures. The configuration being investigated consists of four walls mounted as a square. Each wall has three fold lines allowing the structure to fold down in a concertina style and each fold line is populated by a series of tape spring hinges mounted in pairs. A total number of around 600 individual tape springs elements are used across the 12 fold lines. A computationally efficient method of simulating the three dimensional deployable structure was studied based on a finite element explicit analysis. Equivalent static and dynamic experimental testing on a breadboard structure is presented allowing a direct comparison of the theoretical and experimental data. It was concluded that this simplified analysis approach is capable of modelling the structural dynamics in the deployment direction for three dimensional structural deployments. As a result, the use of this approach could significantly reduce
Full three-dimensional investigation of structural contact interactions in turbomachines
NASA Astrophysics Data System (ADS)
Legrand, Mathias; Batailly, Alain; Magnain, Benoît; Cartraud, Patrice; Pierre, Christophe
2012-05-01
Minimizing the operating clearance between rotating bladed-disks and stationary surrounding casings is a primary concern in the design of modern turbomachines since it may advantageously affect their energy efficiency. This technical choice possibly leads to interactions between elastic structural components through direct unilateral contact and dry friction, events which are now accepted as normal operating conditions. Subsequent nonlinear dynamical behaviors of such systems are commonly investigated with simplified academic models mainly due to theoretical difficulties and numerical challenges involved in non-smooth large-scale realistic models. In this context, the present paper introduces an adaptation of a full three-dimensional contact strategy for the prediction of potentially damaging motions that would imply highly demanding computational efforts for the targeted aerospace application in an industrial context. It combines a smoothing procedure including bicubic B-spline patches together with a Lagrange multiplier based contact strategy within an explicit time-marching integration procedure preferred for its versatility. The proposed algorithm is first compared on a benchmark configuration against the more elaborated bi-potential formulation and the commercial software Ansys. The consistency of the provided results and the low energy fluctuations of the introduced approach underlines its reliable numerical properties. A case study featuring blade-tip/casing contact on industrial finite element models is then proposed: it incorporates component mode synthesis and the developed three-dimensional contact algorithm for investigating structural interactions occurring within a turbomachine compressor stage. Both time results and frequency-domain analysis emphasize the practical use of such a numerical tool: detection of severe operating conditions and critical rotational velocities, time-dependent maps of stresses acting within the structures, parameter studies
The three-dimensional origin of the classifying algebra
NASA Astrophysics Data System (ADS)
Fuchs, Jürgen; Schweigert, Christoph; Stigner, Carl
2010-01-01
It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S×S. Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time-dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that remove the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock-capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional viscous flow over a blunt biconic.
Three-dimensional stereo by photometric ratios
Wolff, L.B.; Angelopoulou, E.
1994-11-01
We present a methodology for corresponding a dense set of points on an object surface from photometric values for three-dimensional stereo computation of depth. The methodology utilizes multiple stereo pairs of images, with each stereo pair being taken of the identical scene but under different illumination. With just two stereo pairs of images taken under two different illumination conditions, a stereo pair of ratio images can be produced, one for the ratio of left-hand images and one for the ratio of right-hand images. We demonstrate how the photometric ratios composing these images can be used for accurate correspondence of object points. Object points having the same photometric ratio with respect to two different illumination conditions constitute a well-defined equivalence class of physical constraints defined by local surface orientation relative to illumination conditions. We formally show that for diffuse reflection the photometric ratio is invariant to varying camera characteristics, surface albedo, and viewpoint and that therefore the same photometric ratio in both images of a stereo pair implies the same equivalence class of physical constraints. The correspondence of photometric ratios along epipolar lines in a stereo pair of images under different illumination conditions is a correspondence of equivalent physical constraints, and the determination of depth from stereo can be performed. Whereas illumination planning is required, our photometric-based stereo methodology does not require knowledge of illumination conditions in the actual computation of three-dimensional depth and is applicable to perspective views. This technique extends the stereo determination of three-dimensional depth to smooth featureless surfaces without the use of precisely calibrated lighting. We demonstrate experimental depth maps from a dense set of points on smooth objects of known ground-truth shape, determined to within 1% depth accuracy.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661
Three-dimensional quantitative flow diagnostics
NASA Technical Reports Server (NTRS)
Miles, Richard B.; Nosenchuck, Daniel M.
1989-01-01
The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.
Three-dimensional x-ray microtomography
Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.
1987-09-18
The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.
Three dimensional digital holographic aperture synthesis.
Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R
2015-09-01
Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
Three-dimensional ultrasonic colloidal crystals
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2016-05-01
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"
Electrode With Porous Three-Dimensional Support
Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier
1999-07-27
Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m
Three-dimensional simulations of burning thermals
NASA Astrophysics Data System (ADS)
Aspden, Andy; Bell, John; Woosley, Stan
2010-11-01
Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.
Three-dimensional lock and key colloids.
Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Yi, Gi-Ra; Sacanna, Stefano; Pine, David J; Weck, Marcus
2014-05-14
Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as "lock" particles with multiple "key holes". Up to n "key" particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding. PMID:24785203
Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices
NASA Astrophysics Data System (ADS)
Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.
2008-03-01
We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.
On the Ill-Posedness of the Prandtl Equations in Three-Dimensional Space
NASA Astrophysics Data System (ADS)
Liu, Cheng-Jie; Wang, Ya-Guang; Yang, Tong
2016-04-01
In this paper, we give an instability criterion for the Prandtl equations in three-dimensional space, which shows that the monotonicity condition on tangential velocity fields is not sufficient for the well-posedness of the three-dimensional Prandtl equations, in contrast to the classical well-posedness theory of the two-dimensional Prandtl equations under the Oleinik monotonicity assumption. Both linear stability and nonlinear stability are considered. This criterion shows that the monotonic shear flow is linearly stable for the three-dimensional Prandtl equations if and only if the tangential velocity field direction is invariant with respect to the normal variable, and this result is an exact complement to our recent work (A well-posedness theory for the Prandtl equations in three space variables. arXiv:1405.5308, 2014) on the well-posedness theory for the three-dimensional Prandtl equations with a special structure.
Three-dimensional television: a broadcaster's perspective
NASA Astrophysics Data System (ADS)
Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.
2009-02-01
The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.
Three-dimensional image signals: processing methods
NASA Astrophysics Data System (ADS)
Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru
2010-11-01
Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.
On three-dimensional dilational elastic metamaterials
NASA Astrophysics Data System (ADS)
Bückmann, Tiemo; Schittny, Robert; Thiel, Michael; Kadic, Muamer; Milton, Graeme W.; Wegener, Martin
2014-03-01
Dilational materials are stable, three-dimensional isotropic auxetics with an ultimate Poisson's ratio of -1. Inspired by previous theoretical work, we design a feasible blueprint for an artificial material, a metamaterial, which approaches the ideal of a dilational material. The main novelty of our work is that we also fabricate and characterize corresponding metamaterial samples. To reveal all modes in the design, we calculate the phonon band structures. On this basis, using cubic symmetry we can unambiguously retrieve all different non-zero elements of the rank-four effective metamaterial elasticity tensor from which all effective elastic metamaterial properties follow. While the elastic properties and the phase velocity remain anisotropic, the effective Poisson's ratio indeed becomes isotropic and approaches -1 in the limit of small internal connections. This finding is also supported by independent, static continuum-mechanics calculations. In static experiments on macroscopic polymer structures fabricated by three-dimensional printing, we measure Poisson's ratios as low as -0.8 in good agreement with the theory. Microscopic samples are also presented.
Three-dimensional fluorescence lifetime tomography
Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.
2005-04-01
Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
In-lab three-dimensional printing
Partridge, Roland; Conlisk, Noel; Davies, Jamie A.
2012-01-01
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907
Nanowired three-dimensional cardiac patches.
Dvir, Tal; Timko, Brian P; Brigham, Mark D; Naik, Shreesh R; Karajanagi, Sandeep S; Levy, Oren; Jin, Hongwei; Parker, Kevin K; Langer, Robert; Kohane, Daniel S
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches. PMID:21946708
Three-dimensional model of lignin structure
Jurasek, L.
1995-12-01
An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.
Three-dimensional flow in Kupffer's Vesicle.
Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S
2016-09-01
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus. PMID:26825450
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Three-dimensional singular points in aerodynamics
NASA Technical Reports Server (NTRS)
Unal, Aynur
1988-01-01
When three-dimensional separation occurs on a body immersed in a flow governed by the incompressible Navier-Stokes equations, the geometrical surfaces formed by the three vector fields (velocity, vorticity and the skin-friction) and a scalar field (pressure) become interrelated through topological maps containing their respective singular points and extremal points. A mathematically consistent description of these singular points becomes inevitable when we want to study the geometry of the separation. A separated stream surface requires, for example, the existence of a saddle-type singular point on the skin-friction surface. This singular point is actually, in the proper language of mathematics, a saddle of index two. The index is a measure of the dimension of the outset (set leaving the singular point). Hence, when a saddle of index two is specified, a two dimensional surface that becomes separated from the osculating plane of the saddle is implied. The three-dimensional singular point is interpreted mathematically and the most common aerodynamical singular points are discussed through this perspective.
Intersection of three-dimensional geometric surfaces
NASA Technical Reports Server (NTRS)
Crisp, V. K.; Rehder, J. J.; Schwing, J. L.
1985-01-01
Calculating the line of intersection between two three-dimensional objects and using the information to generate a third object is a key element in a geometry development system. Techniques are presented for the generation of three-dimensional objects, the calculation of a line of intersection between two objects, and the construction of a resultant third object. The objects are closed surfaces consisting of adjacent bicubic parametric patches using Bezier basis functions. The intersection determination involves subdividing the patches that make up the objects until they are approximately planar and then calculating the intersection between planes. The resulting straight-line segments are connected to form the curve of intersection. The polygons in the neighborhood of the intersection are reconstructed and put back into the Bezier representation. A third object can be generated using various combinations of the original two. Several examples are presented. Special cases and problems were encountered, and the method for handling them is discussed. The special cases and problems included intersection of patch edges, gaps between adjacent patches because of unequal subdivision, holes, or islands within patches, and computer round-off error.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Three-Dimensional Perturbative Particle Simulation of Intense Ion Beams
NASA Astrophysics Data System (ADS)
Lee, W. Wei-Li; Stoltz, Peter H.; Davidson, Ronald C.; Qin, Hong
1998-11-01
A three-dimensional nonlinear perturbative (δ f) particle simulation scheme is under developement for studying the stability and transport properties of an intense ion beam propagating through background electrons and a periodic focusing lattice,(Q. Qian, W. Lee, and R. C. Davidson, Phys. Plasmas 4), 1915 (1997).^,(P. H. Stoltz, W. W. Lee, R. C. Davidson, this conference.) in which the distribution function is split into equilibrium and perturbed parts. To further facilitate the simulations, a mode expansion scheme (C. Z. Cheng and H. Okuda, J. Comp. Phys. 25), 133 (1977). for the perturbative scheme has been developed, in which only a few long wavelength modes along the direction of propagation are kept. The code will be useful for many applications in beam physics and is an intermediate step toward a fully three-dimensional multi-species code. The algorithm and its applications to the electron-proton instability (R. C. Davidson, P. H. Stoltz, W. W. Lee and T.-S. Wang, this conference.) in proton linacs and storage rings will be reported.
Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether
NASA Astrophysics Data System (ADS)
Ismail, N. A.; Cartmell, M. P.
2016-03-01
This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
Unsteady three-dimensional marginal separation, including breakdown
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
A situation involving a three-dimensional marginal separation is considered, where a (steady) boundary layer flow is on the verge of separating at a point (located along a line of symmetry/centerline). At this point, a triple-deck is included, thereby permitting a small amount of interaction to occur. Unsteadiness is included within this interaction region through some external means. It is shown that the problem reduces to the solution of a nonlinear, unsteady, partial-integro system, which is solved numerically by means of time-marching together with a pseudo-spectral method spatially. A number of solutions to this system are presented which strongly suggest a breakdown of this system may occur, at a finite spatial position, at a finite time. The structure and details of this breakdown are then described.
Three-dimensional MHD analysis of heliotron plasma with RMP
NASA Astrophysics Data System (ADS)
Ichiguchi, K.; Suzuki, Y.; Sato, M.; Todo, Y.; Nicolas, T.; Sakakibara, S.; Ohdachi, S.; Narushima, Y.; Carreras, B. A.
2015-07-01
The interaction between pressure driven modes and magnetic islands generated by a resonant magnetic perturbation (RMP) in the large helical device (LHD) is numerically analyzed. In this analysis, three-dimensional treatment is essential in the equilibrium and dynamics calculations, because the equilibrium pressure profile is deformed by the RMP. The deformation changes the linear mode structure from the interchange type to the ballooning-like type that is localized around the X-point of the island in the equilibrium magnetic field including the RMP. This mode causes a pressure collapse in the nonlinear evolution, which spreads from the X-point to the core. Therefore, the spatial phase of the collapse is fixed to the island geometry. The fixed phase agrees with the LHD experimental results with a natural error field.
Curved singular beams for three-dimensional particle manipulation
Zhao, Juanying; Chremmos, Ioannis D.; Song, Daohong; Christodoulides, Demetrios N.; Efremidis, Nikolaos K.; Chen, Zhigang
2015-01-01
For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark “hole” in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011
An autocorrelation method for three-dimensional strain analysis
NASA Astrophysics Data System (ADS)
Thissen, Christopher J.; Brandon, Mark T.
2015-12-01
We present a method of finite-strain estimation using the autocorrelation properties of deformed rock. Autocorrelation is the correlation of an image with itself as a function of an offset or lag. In two and three dimensions, the lag has both distance and direction. Many geologic materials are initially isotropic, which means that the autocorrelation function (ACF) will be initially isotropic as well. Deformation imposes an anisotropic distortion, which can be measured using the Ramsay and Fry strain methods for example, but can also be estimated from the ACF. X-ray tomography now provides a rapid way to measure the three-dimensional ACF of a geologic sample. Strain parameters are estimated by using a non-linear, best-fit method to minimize the anisotropy in the ACF. The ACF method works best for materials where the objects are internally uniform and contrast strongly with the matrix and other grains.
A three-dimensional magnetostatics computer code for insertion devices.
Chubar, O; Elleaume, P; Chavanne, J
1998-05-01
RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica [Mathematica is a registered trademark of Wolfram Research, Inc.]. The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented. PMID:15263552
Curved singular beams for three-dimensional particle manipulation.
Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang
2015-01-01
For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011
Spatiotemporal three-dimensional mapping of nonlinear X waves.
Trull, J; Jedrkiewicz, O; Di Trapani, P; Matijosius, A; Varanavicius, A; Valiulis, G; Danielius, R; Kucinskas, E; Piskarskas, A; Trillo, S
2004-02-01
The spatiotemporal intensity profile of a 100-fs wave packet at the output of a X2 crystal, tuned for mismatched second-harmonic generation, is probed via sum-frequency generation with a compressed, 20-fs pulse, revealing the appearance of an X-type wave shape. PMID:14995580
Three dimensional echocardiography in congenital heart defects
Shirali, Girish S.
2008-01-01
Three dimensional echocardiography (3DE) is a new, rapidly evolving modality for cardiac imaging. Important technological advances have heralded an era where practical 3DE scanning is becoming a mainstream modality. We review the modes of 3DE that can be used. The literature has been reviewed for articles that examine the applicability of 3DE to congenital heart defects to visualize anatomy in a spectrum of defects ranging from atrioventricular septal defects to mitral valve abnormalities and Ebstein's anomaly. The use of 3DE color flow to obtain echocardiographic angiograms is illustrated. The state of the science in quantitating right and left ventricular volumetrics is reviewed. Examples of novel applications including 3DE transesophageal echocardiography and image-guided interventions are provided. We also list the limitations of the technique, and discuss potential future developments in the field. PMID:20300232
Volumetric techniques: three-dimensional midface modeling
Pierzchała, Ewa; Placek, Waldemar
2014-01-01
Aging is a complex process caused by many factors. The most important factors include exposure to UV radiation, smoking, facial muscle movement, gravity, loss and displacement of fat and bone resorption. As a symptom of aging, face loses elasticity, volume and cheerful look. While changing face proportions, the dominant part of a face is its bottom instead of the mid part. The use of three-dimensional face modelling techniques, particularly the mid-face – tear through and cheeks, restores the skin firmness, volume and healthy look. For this purpose the hyaluronic acid is used, calcium hydroxyapatite, and L-polylactic acid fillers. Volumetric techniques require precision and proper selection of the filling agent to give a sense of satisfaction to both the patient and the doctor. PMID:25610354
Three-dimensional modular electronic interconnection system
NASA Technical Reports Server (NTRS)
Bolotin, Gary S. (Inventor); Cardone, John (Inventor)
2001-01-01
A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.
Modelling of Three-Dimensional Nanographene.
Mathioudakis, Christos; Kelires, Pantelis C
2016-12-01
Monte Carlo simulations and tight-binding calculations shed light on the properties of three-dimensional nanographene, a material composed of interlinked, covalently-bonded nanoplatelet graphene units. By constructing realistic model networks of nanographene, we study its structure, mechanical stability, and optoelectronic properties. We find that the material is nanoporous with high specific surface area, in agreement with experimental reports. Its structure is characterized by randomly oriented and curved nanoplatelet units which retain a high degree of graphene order. The material exhibits good mechanical stability with a formation energy of only ∼0.3 eV/atom compared to two-dimensional graphene. It has high electrical conductivity and optical absorption, with values approaching those of graphene. PMID:26983431
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Three-dimensional tori and Arnold tongues
NASA Astrophysics Data System (ADS)
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-01
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Three-dimensional structures of magnesium nanopores
NASA Astrophysics Data System (ADS)
Wu, Shujing; Zheng, He; Jia, Shuangfeng; Sheng, Huaping; Cao, Fan; Li, Lei; Hu, Shuaishuai; Zhao, Penghui; Zhao, Dongshan; Wang, Jianbo
2016-03-01
The optimization of nanopore-based devices is closely related to the nanopore three-dimensional (3D) structures. In this paper, faceted nanopores were fabricated in magnesium (Mg) by aligning the electron beam (e-beam) along the [0001] direction. Detailed structural characterization by transmission electron microscopy reveals the existence of two 3D structures: hexagonal prism-shaped and hourglass-shaped 3D morphologies. Moreover, the 3D structures of nanopores are also found to depend on the widest nanopore diameter-to-thickness ratio (D/t). A plausible formation mechanism for different 3D structures is discussed. Our results incorporate a critical piece of information regarding the nanopore 3D structures in Mg and may serve as an important design guidance for the size- and shape-controllable fabrication of solid-state nanopores applying the e-beam sculpting technique.
Three-dimensional pancreas organogenesis models.
Grapin-Botton, A
2016-09-01
A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129
Heterogeneous, three-dimensional texturing of graphene.
Wang, Michael Cai; Chun, SungGyu; Han, Ryan Steven; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo
2015-03-11
We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and graphite by using a thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be created on the centimeter scale by controlling simple thermal processing parameters without compromising the electrical properties of graphene. In addition, we show the capability to selectively pattern crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future. PMID:25667959
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Three-dimensional joint transform correlator cryptosystem.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2016-02-01
We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method. PMID:26907433
The Three-Dimensional EIT Wave
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.
Three dimensional fabric evolution of sheared sand
Hasan, Alsidqi; Alshibli, Khalid
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Ford, C. P., III
1975-01-01
The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Towards microscale electrohydrodynamic three-dimensional printing
NASA Astrophysics Data System (ADS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-02-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.
Three-dimensional cultured glioma cell lines
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)
1991-01-01
Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Three-Dimensional Gear Crack Propagation Studies
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.
1998-01-01
Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254
Three dimensional thrust chamber life prediction
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Brogren, E. W.
1976-01-01
A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.
Magneto Transport in Three Dimensional Carbon Nanostructures
NASA Astrophysics Data System (ADS)
Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa
Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.
Three-dimensional image contrast using biospeckle
NASA Astrophysics Data System (ADS)
Godinho, Robson Pierangeli; Braga, Roberto A., Jr.
2010-09-01
The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.
Propagation of three-dimensional electron-acoustic solitary waves
Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.
2011-06-15
Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.
Three-Dimensional, Nondestructive Imaging of Low Density Materials
Kinney, J.H.; Haupt, D.L.; Lemay, J.D.
1999-10-29
The goal of this study was to develop a three-dimensional imaging method for studies of deformation in low-density materials during loading, and to implement finite element solutions of the elastic equations based on the images. Specimens of silica-reinforced polysiloxane foam pads, 15 mm in diameter by 1 mm thick, were used for this study. The nominal pore density was 50%, and the pores approximated interconnected spheres. The specimens were imaged with microtomography at {approx}16{micro}m resolution. A rotating stage with micrometer driven compression allowed imaging of the foams during deformation with precise registration of the images. A finite element mesh, generated from the image voxels, was used to calculate the mechanical properties of the structure, and the results were compared with conventional mechanical testing. The foam exhibited significant nonlinear behavior with compressive loading. The finite-element calculations from the images, which were in excellent agreement with experimental data, suggested that nonlinear behavior in the load displacement curves arises from buckling of the cell walls during compression and not from any nonlinear properties of the base elastomer. High-resolution microtomography, coupled with efficient finite-element modeling, shows promise for improving our understanding of the deformation behavior of cellular materials.
Three-dimensional computations of cross-flow injection and combustion in a supersonic flow
NASA Technical Reports Server (NTRS)
Carpenter, M. H.
1989-01-01
A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.
A new mosaic method for three-dimensional surface
NASA Astrophysics Data System (ADS)
Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun
2011-08-01
Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.
A three-dimensional fast solver for arbitrary vorton distributions
Strickland, J.H.; Baty, R.S.
1994-05-01
A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.
Primary and Secondary Three Dimensional Microbatteries
NASA Astrophysics Data System (ADS)
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
Two and three dimensional magnetotelluric inversion
Booker, J.
1993-01-01
Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1996-04-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.
Three-dimensional modeling of ovarian cancer
Erin, White; Hilary, Kenny; Ernst, Lengyel
2015-01-01
New models for epithelial ovarian cancer initiation and metastasis are required to obtain a mechanistic understanding of the disease and to develop new therapeutics. Modeling ovarian cancer however is challenging as a result of the genetic heterogeneity of the malignancy, the diverse pathology, the limited availability of human tissue for research, the atypical mechanisms of metastasis, and because the origin is unclear. Insights into the origin of high-grade serous ovarian carcinomas and mechanisms of metastasis have resulted in the generation of novel three-dimensional (3D) culture models that better approximate the behavior of the tumor cells in vivo than prior two-dimensional models. The 3D models aim to recapitulate the tumor microenvironment, which has a critical role in the pathogenesis of ovarian cancer. Ultimately, findings using models that accurately reflect human ovarian cancer biology are likely to translate into improved clinical outcomes. In this review we discuss the design of new 3D culture models of ovarian cancer primarily using human cells, key studies in which these models have been applied, current limitations, and future applications. PMID:25034878
Three-dimensional charge coupled device
Conder, Alan D.; Young, Bruce K. F.
1999-01-01
A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.
Three-dimensional laser velocimeter simultaneity detector
NASA Technical Reports Server (NTRS)
Brown, James L. (Inventor)
1990-01-01
A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.
Three-dimensional urban GIS for Atlanta
NASA Astrophysics Data System (ADS)
Bhaumik, Dharmajyoti; Faust, Nickolas L.; Estrada, Diana; Linares, Jairo
1997-07-01
Georgia Tech has developed a prototype system for the demonstration of the concepts of a virtual 3D geographic information system (GIS) in an urban environment. The virtual GIS integrates the technologies of GIS, remote sensing, and visualization to provide an interactive tool for the exploration of spatial data. A high density urban environment with terrain elevation, imagery, GIS layers, and three dimensional natural and manmade features is a stressing test for the integration potential of such a virtual 3D GIS. In preparation for the 1996 Olympic Games, Georgia Tech developed two highly detailed 3D databases over parts of Atlanta. A 2.5 meter database was used to depict the downtown Atlanta area with much higher resolution imagery being used for photo- texture of individual Atlanta buildings. Less than 1 meter imagery data was used to show a very accurate map of Georgia Tech, the 1996 Olympic Village. Georgia Tech developed visualization software was integrated via message passing with a traditional GIS package so that all commonly used GIS query and analysis functions could be applied within the 3D environment. This project demonstrates the versatility and productivity that can be accomplished by operating GIS functions within a virtual GIS and multi-media framework.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Two and three dimensional magnetotelluric inversion
Booker, J.R.
1994-07-01
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Collimation and Stability of Three Dimensional Jets
NASA Astrophysics Data System (ADS)
Hardee, P. E.; Clarke, D. A.; Howell, D. A.
1993-12-01
Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.
Three-dimensional modeling equatorial spread F
NASA Astrophysics Data System (ADS)
Huba, J. D.; Krall, J.; Joyce, G.
2008-12-01
Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR
Three-dimensional null point reconnection regimes
Priest, E. R.; Pontin, D. I.
2009-12-15
Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
Three Dimensional Numerical Analysis on Discharge Properties
NASA Astrophysics Data System (ADS)
Takaishi, Kenji; Katsurai, Makoto
2003-10-01
A three dimensional simulation code with the finite difference time domain (FDTD) method combined with the two fluids model for electron and ion has been developed for the microwave excited surface wave plasma in the RDL-SWP device. This code permits the numerical analysis of the spatial distributions of electric field, power absorption, electron density and electron temperature. At low gas pressure of about 10 mTorr, the numerical results compared with the experimental measurements that shows the validity of this 3-D simulation code. A simplified analysis assuming that an electron density is spatially uniform has been studied and its applicability is evaluated by 3-D simulation. The surface wave eigenmodes are determined by electron density, and it is found that the structure of the device strongly influences to the spatial distribution of the electric fields of surface wave in a low density area. A method to irradiate a microwave to the whole surface area of the plasma is proposed which is found to be effective to obtain a high uniformity distribution of electron density.
Three-Dimensional Tomography of Interplanetary Disturbances
NASA Astrophysics Data System (ADS)
Jackson, Bernard V.; Hick, P. Paul
2004-09-01
We have developed a Computer Assisted Tomography (CAT) program that modifies a three-dimensional kinematic heliospheric model to fit interplanetary scintillation (IPS) or Thomson scattering observations. The tomography program iteratively changes this global model to least-squares fit the data. Both a corotating and time-dependent model can be reconstructed. The short time intervals of the time-dependent modeling (to shorter than 1 day) force the heliospheric reconstructions to depend on outward solar wind motion to give perspective views of each point in space accessible to the observations, allowing reconstruction of interplanetary Coronal Mass Ejections (CMEs) as well as corotating structures. We show these models as velocity or density Carrington maps and remote views. We have studied several events, including the 2000 July 14 Bastille-Day halo CME and several intervals using archival Cambridge IPS data, and we have also used archival Helios photometer data to reproduce the heliosphere. We check our results by comparison with additional remote-sensing observations, and in-situ observations from near-Earth spacecraft. A comparison of these observations and the Earth forecasts possible using them is available in real time on the World Wide Web using IPS data from the Solar Terrestrial Environment Laboratory, Japan.
Compact integral three-dimensional imaging device
NASA Astrophysics Data System (ADS)
Arai, J.; Yamashita, T.; Hiura, H.; Miura, M.; Funatsu, R.; Nakamura, T.; Nakasu, E.
2015-05-01
A compact integral three-dimensional (3D) imaging device for capturing high resolution 3D images has been developed that positions the lens array and image sensor close together. Unlike the conventional scheme, where a camera lens is used to project the elemental images generated by the lens array onto the image sensor, the developed device combines the lens array and image sensor into one unit and makes no use of a camera lens. In order to capture high resolution 3D images, a high resolution imaging sensor and a lens array composed of many elemental lenses are required, and in an experimental setup, a CMOS image sensor circuit patterned with multiple exposures and a multiple lens array were used. Two types of optics were implemented for controlling the depth of 3D images. The first type was a convex lens that is suitable for compressing a relatively large object space, and the second was an afocal lens array that is suitable for capturing a relatively small object space without depth distortion. The objects captured with the imaging device and depth control optics were reconstructed as 3D images by using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed images were found to have appropriate motion parallax.
A three-dimensional human walking model
NASA Astrophysics Data System (ADS)
Yang, Q. S.; Qin, J. W.; Law, S. S.
2015-11-01
A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
Three-dimensional Printing in the Intestine.
Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John
2016-08-01
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913
Three-dimensional assessment of hand outcome
Belcher, HJCR
2013-01-01
Introduction Patient reported outcome measures are central to National Health Service quality of care assessments. This study investigated the benefit of elective hand surgery by the simultaneous analysis of pain, function and appearance, using a three-dimensional (3D) graphical model for evaluating and presenting outcome. Methods A total of 188 patients scheduled for surgery completed pre- and postoperative questionnaires grading the severity of their pain, dysfunction and deformity of their hand(s). Scores were plotted on a 3D graph to demonstrate the degree of ‘normalisation’ following surgery. Results Surgical groups included: nerve compression (n=53), Dupuytren’s disease (n=51), trigger finger (n=20), ganglion (n=17) or other lump (n=21), trapeziometacarpal joint osteoarthritis (n=10), rheumatoid disease (n=5) and other pathology (n=13). A significant improvement towards normality was seen after surgery in each group except for patients with rheumatoid disease. Conclusions This study provides a simple, visual representation of hand surgery outcome by plotting patient scores for pain, function and appearance simultaneously on a 3D graph. PMID:24025292
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-10-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.
Interactive graphical tools for three-dimensional mesh redistribution
Dobbs, L.A.
1996-03-01
Three-dimensional meshes modeling nonlinear problems such as sheet metal forming, metal forging, heat transfer during welding, the propagation of microwaves through gases, and automobile crashes require highly refined meshes in local areas to accurately represent areas of high curvature, stress, and strain. These locally refined areas develop late in the simulation and/or move during the course of the simulation, thus making it difficult to predict their exact location. This thesis is a systematic study of new tools scientists can use with redistribution algorithms to enhance the solution results and reduce the time to build, solve, and analyze nonlinear finite element problems. Participatory design techniques including Contextual Inquiry and Design were used to study and analyze the process of solving such problems. This study and analysis led to the in-depth understanding of the types of interactions performed by FEM scientists. Based on this understanding, a prototype tool was designed to support these interactions. Scientists participated in evaluating the design as well as the implementation of the prototype tool. The study, analysis, prototype tool design, and the results of the evaluation of the prototype tool are described in this thesis.
Three-dimensional static modeling of the lumbar spine.
Karadogan, Ernur; Williams, Robert L
2012-08-01
This paper presents three-dimensional static modeling of the human lumbar spine to be used in the formation of anatomically-correct movement patterns for a fully cable-actuated robotic lumbar spine which can mimic in vivo human lumbar spine movements to provide better hands-on training for medical students. The mathematical model incorporates five lumbar vertebrae between the first lumbar vertebra and the sacrum, with dimensions of an average adult human spine. The vertebrae are connected to each other by elastic elements, torsional springs and a spherical joint located at the inferoposterior corner in the mid-sagittal plane of the vertebral body. Elastic elements represent the ligaments that surround the facet joints and the torsional springs represent the collective effect of intervertebral disc which plays a major role in balancing torsional load during upper body motion and the remaining ligaments that support the spinal column. The elastic elements and torsional springs are considered to be nonlinear. The nonlinear stiffness constants for six motion types were solved using a multiobjective optimization technique. The quantitative comparison between the angles of rotations predicted by the proposed model and in the experimental data confirmed that the model yields angles of rotation close to the experimental data. The main contribution is that the new model can be used for all motions while the experimental data was only obtained at discrete measurement points. PMID:22938364
Asymptotic homogenization of three-dimensional thermoelectric composites
NASA Astrophysics Data System (ADS)
Yang, Yang; Lei, Chihou; Gao, Cun-Fa; Li, Jiangyu
2015-03-01
Thermoelectric composites are promising for high efficiency energy conversion between thermal flows and electric conduction, though their effective behaviors remain poorly understood due to nonlinear thermoelectric coupling. In this paper, we develop an asymptotic homogenization theory to analyze the effective behavior of three-dimensional (3D) thermoelectric composites, built on the observation that the equations governing microscopic field fluctuations in the composite are actually linear instead of nonlinear after separation of length scales. A set of solutions similar to Green's function method are used to construct the unit cell problem, and appropriate interfacial continuity conditions and boundary conditions are derived. The homogenized governing equations are then developed for thermoelectric composites, and they are further reduced for a special case wherein the heat flow and electric conduction in the composite remains one-dimensional (1D) at macroscopic scale, even though the composite itself is 3D in general. The general homogenization theory is implemented using finite element method, and a key constant in the constructed solutions is determined using the reformulated eigenvalue problem. The algorithm is validated, and is applied for a number of case studies for the effective behavior of thermoelectric composites.
Inverse energy cascade in three-dimensional isotropic turbulence.
Biferale, Luca; Musacchio, Stefano; Toschi, Federico
2012-04-20
We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics. PMID:22680722
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Numerical investigation of the three-dimensional development in boundary layer transition
NASA Astrophysics Data System (ADS)
Fasel, H. F.; Rist, U.; Konzelmann, U.
1987-06-01
A numerical method for solving the complete Navier-Stokes equations for incompressible flows is introduced that is applicable for investigating three-dimensional transition phenomena in a spatially-growing boundary layer. Results are discussed for a test case with small three-dimensional disturbances for which detailed comparison to linear stability theory is possible. The validity of this numerical model for investigating nonlinear transition phenomena is demonstrated by realistic spatial simulations of the experiments by Kachanov and Levchenko (1984) for a subharmonic resonance breakdown and of the experiments of Klebanoff et al. (1962) for a fundamental resonance breakdown.
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Boisvert, R. F.; Coriell, S. R.
1987-01-01
A finite difference method is used to obtain three-dimensional steady-state solutions for nonplanar interface morphologies in order to study the situation of equal thermal properties in the crystal and melt with negligible latent heat release. Stable steady-state solutions corresponding to two-dimensional bands and three-dimensional hexagonal nodes, as well as to rectangular interface planiforms, are found using a model of an aluminum-chromium alloy with a distribution coefficient of greater than one. Hexagonal nodes are predicted near the onset of instability, in agreement with weakly nonlinear theory.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
Three-Dimensional Tectonic Model of Taiwan
NASA Astrophysics Data System (ADS)
Wu, Francis; Kuo-Chen, Hao; McIntosh, kirk
2014-05-01
We built a three-dimensional model of the interactions of the Eurasian plate (EUP) the Philippine Sea plate (PSP) and the collisional orogen, in and around Taiwan. The model is based on the results of comprehensive, milt-prong TAIGER experiments on land and at sea as well as other existing data. The clockwise rotating PSP moves NWW at ~8 cm/year relative to the Taiwan Strait. Under northern Taiwan the northward subducting PSP terminates near the edge of eastern Taiwan and collides with EUP at in increasing depth toward the north. Mountain building due to collision of EUP and PSP tapers off where the PSP goes below about 60 km. The PSP in the asthenosphere continues to advance NWW-ward. In central Taiwan PSP and EUP collide fully, lithosphere against lithosphere in the upper 60 km or so, leading to significant thickening of the crust to about 55 km on the Central Range side and about 35 km on the Coastal Range/Arc side. In between these "roots" a high velocity rise is found. Although a clear, steep dipping high velocity zone under Central Taiwan is detected, it is found not to be associated with seismicity. In southern Taiwan, mountains form over well-defined, seismically active subduction zone. The upper mantle high velocity anomaly appears to be continues with that under central Taiwan, but here an inclined seismic zone is found. In this area the Luzon Arc has not yet encountered the continental shelf - thus arc-continental collision has not yet occurred. The orogeny here may involve inversion of the subducted South China Sea lithosphere, rifted Eurasian continent, and/or escape of continental material from central Taiwan. GPS and Leveling data reflect well the 3-D plate collision model.
Three-dimensional ring current decay model
NASA Astrophysics Data System (ADS)
Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-06-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995
Remote Dynamic Three-Dimensional Scene Reconstruction
Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue
2013-01-01
Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417
Three Dimensional Printing in Orthopaedic Surgery
Mulford, Jonathan; MacKay, N; Babazadeh, S
2016-01-01
Objectives: Three dimensional (3D) printing technology has many current and future applications in orthopaedics. The objectives of this article are to review published literature regarding applications of 3D technology in orthopaedic surgery with a focus on knee surgery. Methods: A narrative review of the applications of 3D printing technology in orthopaedic practice was achieved by a search of computerised databases, internet and reviewing references of identified publications. Results: There is current widespread use of 3D printing technology in orthopaedics. 3D technology can be used in education, preoperative planning and custom manufacturing. Custom manufacturing applications include surgical guides, prosthetics and implants. Many future applications exist including biological applications. 3D printed models of anatomy have assisted in the education of patients, students, trainees and surgeons. 3D printed models also assist with surgical planning of complex injuries or unusual anatomy. 3D printed surgical guides may simplify surgery, make surgery precise and reduce operative time. Computer models based on MRI or CT scans are utilised to plan surgery and placement of implants. Complex osteotomies can be performed using 3D printed surgical guides. This can be particularly useful around the knee. A 3D printed guide allows pre osteotomy drill holes for the plate fixation and provides an osteotomy guide to allow precise osteotomy. 3D printed surgical guides for knee replacement are widely available. 3D printing has allowed the emergence of custom implants. Custom implants that are patient specific have been particularly used for complex revision arthroplasty or for very difficult cases with altered anatomy. Future applications are likely to include biological 3D printing of cartilage and bone scaffolds. Conclusion: 3D printing in orthopaedic surgery has and will continue to change orthopaedic practice. Its role is to provide safe, reproducible, reliable models with
Three-dimensional topological insulator based nanospaser
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Apalkov, Vadym; Stockman, Mark I.
2016-04-01
After the discovery of the spaser (surface plasmon amplification by stimulated emission of radiation), first proposed by Bergman and Stockman in 2003, it has become possible to deliver optical energy beyond the diffraction limit and generate an intense source of an optical field. The spaser is a nanoplasmonic counterpart of a laser. One of the major advantages of the spaser is its size: A spaser is a truly nanoscopic device whose size can be made smaller than the skin depth of a material to a size as small as the nonlocality radius (˜1 nm). Recently, an electrically pumped graphene based nanospaser has been proposed that operates in the midinfrared region and utilizes a nanopatch of graphene as a source of plasmons and a quantum-well cascade as its gain medium. Here we propose an optically pumped nanospaser based on three-dimensional topological insulator (3D TI) materials, such as Bi2Se3 , that operates at an energy close to the bulk band-gap energy ˜0.3 eV and uses the surface as a source for plasmons and its bulk as a gain medium. Population inversion is obtained in the bulk and the radiative energy of the exciton recombination is transferred to the surface plasmons of the same material to stimulate spasing action. This is truly a nanoscale spaser as it utilizes the same material for dual purposes. We show theoretically the possibility of achieving spasing with a 3D TI. As the spaser operates in the midinfrared spectral region, it can be a useful device for a number of applications, such as nanoscopy, nanolithography, nanospectroscopy, and semiclassical information processing.
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
Three-dimensional kinematics of hummingbird flight.
Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A
2007-07-01
Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species. PMID:17575042
Kourtzanidis, K. Boeuf, J. P.; Rogier, F.
2014-12-15
Recent experiments have demonstrated that a freely localized 100 GHz microwave discharge can propagate towards the microwave source with high speed, forming a complex pattern of self-organized filaments. We present three-dimensional simulations of the formation and propagation of such patterns that reveal more information on their nature and interaction with the electromagnetic waves. The developed three-dimensional Maxwell-plasma solver permits the study of different forms of incident field polarization. Results for linear and circular polarization of the wave are presented and comparisons with recent experiments show a good overall agreement. The three dimensional simulations provide a quantitative analysis of the parameters controlling the time and length scales of the strongly non-linear plasma dynamics and could be useful for potential microwave plasma applications such as aerodynamic flow and combustion control.
Three dimensional unstructured multigrid for the Euler equations
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1991-01-01
The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.
Implicit solution of three-dimensional internal turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.
1991-01-01
The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.
Three-dimensional Casimir piston for massive scalar fields
Lim, S.C. Teo, L.P.
2009-08-15
We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a{sup 4} when a{yields}0{sup +} and decays exponentially when a{yields}{infinity}. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.
Electromagnetic scattering from three dimensional periodic structures
NASA Astrophysics Data System (ADS)
Barnes, Andrew L.
We have developed a numerical method for solving electromagnetic scattering problems from arbitrary, smooth, three dimensional structures that are periodic in two directions and of finite thickness in the third direction. We solve Maxwell's equations via an integral equation that was first formulated by Claus Muller. The Muller integral equation is Fredholm of the second kind, so it is a well-posed problem. The original Muller formulation was for compact scatterers and it used a free space Green's function for the Helmholtz equation. We solve a periodic problem with a periodic Helmholtz Green's function. This Green's function has the same degree of singularity as the free space Helmholtz Green's function, but it is an infinite sum that converges very slowly. We use a resummation technique (due to P. P. Ewald) to perform an efficient calculation of the periodic Green's function. We solve the integral equation by a Galerkin method and use RWG vector basis functions to discretize surface currents on the scatterer. We perform a careful extraction of all singularities from the integrals that we compute. We use a triangular Gaussian quadrature method for calculation of the non-singular parts of the integrals. We analytically compute the remaining singular and nearly singular integrals. We also perform an acceleration technique that treats several frequencies simultaneously and leads to decreased computational times. In addition to the numerical code, we present an alternative way of looking at electromagnetic scattering in terms of Calderon projection operators. We have validated our computer code by comparing the numerical results with results from two separate cases. The first case is that of a flat dielectric slab of finite thickness, for which exact formulae are available. The second case is a periodic array of a row of infinite cylinders. In this case, we compare our results with those obtainedv from a two dimensional code developed by S. P. Shipman, S. Venakides
Airway branching morphogenesis in three dimensional culture
2010-01-01
Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching
Three-dimensional carbon nanotube based photovoltaics
NASA Astrophysics Data System (ADS)
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.
Structured image reconstruction for three-dimensional ghost imaging lidar.
Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng
2015-06-01
A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; Li, Qingbo; Zhang, Guangjun
2013-11-01
In this paper, a modified single-index signal regression (mSISR) method is proposed to construct a nonlinear and practical model with high-accuracy. The mSISR method defines the optimal penalty tuning parameter in P-spline signal regression (PSR) as initial tuning parameter and chooses the number of cycles based on minimizing root mean squared error of cross-validation (RMSECV). mSISR is superior to single-index signal regression (SISR) in terms of accuracy, computation time and convergency. And it can provide the character of the non-linearity between spectra and responses in a more precise manner than SISR. Two spectra data sets from basic research experiments, including plant chlorophyll nondestructive measurement and human blood glucose noninvasive measurement, are employed to illustrate the advantages of mSISR. The results indicate that the mSISR method (i) obtains the smooth and helpful regression coefficient vector, (ii) explicitly exhibits the type and amount of the non-linearity, (iii) can take advantage of nonlinear features of the signals to improve prediction performance and (iv) has distinct adaptability for the complex spectra model by comparing with other calibration methods. It is validated that mSISR is a promising nonlinear modeling strategy for multivariate calibration.
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three-Dimensional Gear Crack Propagation Studied
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1999-01-01
Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth
Three-dimensional simulation of helix traveling wave tubes
Freund, H.P.; Zaidman, E.G.; Mankofsky, A.; Kodis, M.A.; Vanderplaats, N.R.
1995-12-31
The authors present a three-dimensional nonlinear formulation and simulation of a helix traveling wave tube (TWT) using a sheath helix model. The simulation is capable of treating both DC and pulsed electron beams as well as single-frequency or multi-tone operation. The model relies upon a spectral decomposition of the electromagnetic fields in terms of the vacuum sheath helix polarizations. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found. Simulation of a prebunched beam is also discussed, and compared with an experiment at the Naval Research Laboratory.
Three-dimensional analysis of a postbuckled embedded delamination
NASA Technical Reports Server (NTRS)
Whitcomb, John D.
1988-01-01
Delamination growth caused by local buckling of a delaminated group of plies was investigated. Delamination growth was assumed to be governed by the strain energy release rates, G(1), G(2) and G(3). The strain energy release rates were calculated using a geometrically nonlinear three-dimensional finite element analysis. The program is described and several checks of the analysis are discussed. Based on a limited parametric study, the following conclusions were reached: (1) the problem is definitely mixed mode (in some cases G(1) is larger than G(2), for other cases the opposite is true); (2) in general, there is a large gradient in the strain energy release rates along the delamination front; (3) the locations of maximum G(1) and G(2) depend on the delamination shape and the applied strain; (4) the mode 3 component was negligible for all cases considered; and (5) the analysis predicted that parts of the delamination would overlap. The results presented did not impose contact constraints to prevent overlapping. Further work is needed to determine the effects of allowing the overlapping.
New advances in three-dimensional controlled-sourceelectromagnetic inversion
Commer, Michael; Newman, Gregory A.
2007-05-19
New techniques for improving both the computational andimaging performance of the three dimensional (3D) electromagnetic inverseproblem are presented. A non-linear conjugate gradient algorithm is theframework of the inversion scheme. Full wave equation modelling forcontrolled sources is utilized for data simulation along with anefficient gradient computation approach for the model update. Improvingthe modelling efficiency of the 3D finite difference method involves theseparation of the potentially large modelling mesh, defining the set ofmodel parameters, from the computational finite difference meshes usedfor field simulation. Grid spacings and thus overall grid sizes can bereduced and optimized according to source frequencies and source-receiveroffsets of a given input data set. Further computational efficiency isobtained by combining different levels of parallelization. While theparallel scheme allows for an arbitrarily large number of parallel tasks,the relative amount of message passing is kept constant. Imageenhancement is achieved by model parameter transformation functions,which enforce bounded conductivity parameters and thus prevent parameterovershoots. Further, a remedy for treating distorted data within theinversion process is presented. Data distortions simulated here includepositioning errors and a highly conductive overburden, hiding the desiredtarget signal. The methods are demonstrated using both synthetic andfield data.
Femtosecond laser three-dimensional micro- and nanofabrication
Sugioka, Koji; Cheng, Ya
2014-12-15
The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper
Femtosecond laser three-dimensional micro- and nanofabrication
NASA Astrophysics Data System (ADS)
Sugioka, Koji; Cheng, Ya
2014-12-01
The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper
Three-dimensional imaging of the myocardium with isotopes
NASA Technical Reports Server (NTRS)
Budinger, T. F.
1975-01-01
Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.
Pathogen Propagation in Cultured Three-Dimensional Tissue Mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Pathogen propagation in cultured three-dimensional tissue mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
NASA Astrophysics Data System (ADS)
Khan, N. A.; Naz, F.
2016-05-01
This investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of partial differential equations. A similarity transformation has been utilized for the transformation of partial differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been made. The convergence of the series solution has also been considered explicitly. The influence of admissible parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction or injection of a fluid through the surface is an example of mass transfer and it can change the flow field.
Radiative transfer for a three-dimensional raining cloud
NASA Technical Reports Server (NTRS)
Haferman, J. L.; Krajewski, W. F.; Smith, T. F.; Sanchez, A.
1993-01-01
Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.
Recognizing parameterized three-dimensional objects
NASA Astrophysics Data System (ADS)
Goldberg, Robert R.
1994-10-01
Complex object models require multiple components affixed to each other in specific and variable geometric paths. This paper expands upon earlier research to present an unified approach for relating components' coordinate systems to each other in the same model. Particularly, we show that rather complex relationships such as ball joints and geometric transformations about arbitrary axes are no more complicated than describing the model base in terms of the camera coordinate system. These require only simple rotations and translations about the major axes. This modeling approach was next integrated with a verification module of a model based vision system. We recovered from a single 2D image the original model and camera parameters that would align the projected model edges with the image segments by solving a nonlinear least squares system. A specific example of the theory is implemented. A lamp head is seceded to its base by a ball joint with three parameters of rotational freedom. From a wide range of initial guess error, the numerical system converged to the correct set of model and camera parameters. Thus, the theory of parameterized affixments and the numerical implementation to obtain these values from 2D images will aid in associated recognition tasks and in real-time tracking of complex conglomerate objects.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1985-01-01
Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-07-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Implicit solution of three-dimensional internal turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Liou, M.-S.; Povinelli, L. A.
1990-01-01
The scalar form of the approximate factorization method was used to develop a new code for the solution of three-dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form are iterated in time until a steady solution is reached. Evidence is given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at domain boundaries is proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects are accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. For the first, an investigation on the model behavior in case of multiple boundaries is performed. The flow in a developing S-duct is then solved in the laminar regime at Reynolds number (Re) 790 and in the turbulent regime at Re=40,000 using the Baldwin-Lomax model . The Stanitz elbow is then solved using an inviscid version of the same code at M(sub inlet)=0.4. Grid dependence and convergence rate are investigated showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re=2.5x10(exp 6) is solved with the Baldwin-Lomax and the q-omega models. Both approaches showed satisfactory agreement with experiments, although the q-omega model is slightly more accurate.
THREE-DIMENSIONAL MODELING OF HOT JUPITER ATMOSPHERIC FLOWS
Rauscher, Emily; Menou, Kristen
2010-05-10
We present a three-dimensional hot Jupiter model, extending from 200 bar to 1 mbar, using the Intermediate General Circulation Model from the University of Reading. Our horizontal spectral resolution is T31 (equivalent to a grid of 48 x 96), with 33 logarithmically spaced vertical levels. A simplified (Newtonian) scheme is employed for the radiative forcing. We adopt a physical setup nearly identical to the model of HD 209458b by Cooper and Showman to facilitate a direct model inter-comparison. Our results are broadly consistent with theirs but significant differences also emerge. The atmospheric flow is characterized by a super-rotating equatorial jet, transonic wind speeds, and eastward advection of heat away from the dayside. We identify a dynamically induced temperature inversion ('stratosphere') on the planetary dayside and find that temperatures at the planetary limb differ systematically from local radiative equilibrium values, a potential source of bias for transit spectroscopic interpretations. While our model atmosphere is quasi-identical to that of Cooper and Showman and we solve the same meteorological equations, we use different algorithmic methods, spectral-implicit versus grid-explicit, which are known to yield fully consistent results in the Earth modeling context. The model discrepancies identified here indicate that one or both numerical methods do not faithfully capture all of the atmospheric dynamics at work in the hot Jupiter context. We highlight the emergence of a shock-like feature in our model, much like that reported recently by Showman et al., and suggest that improved representations of energy conservation may be needed in hot Jupiter atmospheric models, as emphasized by Goodman.
Three Dimensional TEM Forward Modeling Using FDTD Accelerated by GPU
NASA Astrophysics Data System (ADS)
Li, Z.; Huang, Q.
2015-12-01
Three dimensional inversion of transient electromagnetic (TEM) data is still challenging. The inversion speed mostly depends on the forward modeling. Finite-difference time-domain (FDTD) method is one of the popular forward modeling scheme. In an explicit type, which is based on the Du Fort-Frankel scheme, the time step is under the constraint of quasi-static approximation. Often an upward-continuation boundary condition (UCBC) is applied on the earth-air surface to avoid time stepping in the model air. However, UCBC is not suitable for models with topography and has a low parallel efficiency. Modeling without UCBC may cause a much smaller time step because of the resistive attribute of the air and the quasi-static constraint, which may also low the efficiency greatly. Our recent research shows that the time step in the model air is not needed to be constrained by the quasi-static approximation, which can let the time step without UCBC much closer to that with UCBC. The parallel performance of FDTD is then largely released. On a computer with a 4-core CPU, this newly developed method is obviously faster than the method using UCBC. Besides, without UCBC, this method can be easily accelerated by Graphics Processing Unit (GPU). On a computer with a CPU of 4790k@4.4GHz and a GPU of GTX 970, the speed accelerated by CUDA is almost 10 times of that using CPU only. For a model with a grid size of 140×140×130, if the conductivity of the model earth is 0.02S/m, and the minimal space interval is 15m, it takes only 80 seconds to evolve the field from excitation to 0.032s.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
Direct three-dimensional patterning using nanoimprint lithography
NASA Astrophysics Data System (ADS)
Li, Mingtao; Chen, Lei; Chou, Stephen Y.
2001-05-01
We demonstrated that nanoimprint lithography (NIL) can create three-dimensional patterns, sub-40 nm T-gates, and air-bridge structures, in a single step imprint in polymer and metal by lift-off. A method based on electron beam lithography and reactive ion etching was developed to fabricate NIL molds with three-dimensional protrusions. The low-cost and high-throughput nanoimprint lithography for three-dimensional nanostructures has many significant applications such as monolithic microwave integrated circuits and nanoelectromechanical system.
Femtosecond laser internal manufacturing of three-dimensional microstructure devices
NASA Astrophysics Data System (ADS)
Zheng, Chong; Hu, Anming; Chen, Tao; Oakes, Ken D.; Liu, Shibing
2015-10-01
Potential applications for three-dimensional microstructure devices developed rapidly across numerous fields including microoptics, microfluidics, microelectromechanical systems, and biomedical devices. Benefiting from many unique fabricating advantages, internal manufacturing methods have become the dominant process for three-dimensional microstructure device manufacturing. This paper provides a brief review of the most common techniques of femtosecond laser three-dimensional internal manufacturing (3DIM). The physical mechanisms and representative experimental results of 3D manufacturing technologies based on multiphoton polymerization, laser modification, microexplosion and continuous hollow structure internal manufacturing are provided in details. The important progress in emerging applications based on the 3DIM technologies is introduced as well.
Three-dimensional X-ray micro-velocimetry
Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa
2011-01-01
A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921
Three-dimensional test requirement for random vibration testing
NASA Technical Reports Server (NTRS)
Chang, Kurng; Frydman, Abraham M.
1987-01-01
An approach to defining and evaluating three-dimensional vibration test requirements is discussed. The approach is used to develop the three-dimensional space random-vibration test requirements for missile components subjected to truck transportation environments. One-dimensional testing parameters such as power spectral density and overall g rms values for three mutually perpendicular directions represent the test requirements. The coherence characteristics between each input axis were established and adjusted empirically in an attempt to simulate the cross-correlation in three-dimensional random vibration excitation.
Some new results on three-dimensional rotations and pseudo-rotations
NASA Astrophysics Data System (ADS)
Brezov, D. S.; Mladenova, C. D.; Mladenov, Ivaïlo M.
2013-10-01
We use a vector parameter technique to obtain the generalized Euler decompositions with respect to arbitrarily chosen axes for the three-dimensional special orthogonal group SO(3) and the three-dimensional Lorentz group SO(2;1). Our approach, based on projecting a quaternion (respectively split quaternion) from the corresponding spin cover, has proven quite effective in various problems of geometry and physics [1, 2, 3]. In particular, we obtain explicit (generally double-valued) expressions for the three parameters in the decomposition and discuss separately the degenerate and divergent solutions, as well as decompositions with respect to two axes. There are some straightforward applications of this method in special relativity and quantum mechanics which are discussed elsewhere (see [4]).
Spin generation via bulk spin current in three-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue; Yang, Yiming; Singh, Rajiv R. P.; Savrasov, Sergey Y.; Yu, Dong
2016-03-01
To date, spin generation in three-dimensional topological insulators is primarily modelled as a single-surface phenomenon, attributed to the momentum-spin locking on each individual surface. In this article, we propose a mechanism of spin generation where the role of the insulating yet topologically non-trivial bulk becomes explicit: an external electric field creates a transverse pure spin current through the bulk of a three-dimensional topological insulator, which transports spins between the top and bottom surfaces. Under sufficiently high surface disorder, the spin relaxation time can be extended via the Dyakonov-Perel mechanism. Consequently, both the spin generation efficiency and surface conductivity are largely enhanced. Numerical simulation confirms that this spin generation mechanism originates from the unique topological connection of the top and bottom surfaces and is absent in other two-dimensional systems such as graphene, even though they possess a similar Dirac cone-type dispersion.
Numerical simulations of flow in a three-dimensional cavity-channel geometry
Torczynski, J.R.; O`Hern, T.J.
1993-11-01
The computational fluid dynamics code FIDAP (Fluid Dynamics International) is used to perform simulations of the steady laminar flow of an incompressible fluid in a three-dimensional rectangular cavity. Although most previous studies have considered a ``lid- driven`` cavity, where a uniform horizontal velocity is imposed on the cavity lid, the flow in the channel above the cavity is explicitly included in the computational domain in these simulations. Simulations are performed for various Reynolds numbers in the range 0 {le} Re {le} 1000 and are compared to corresponding two-dimensional results. The three-dimensional flow are seen to exhibit a topological complexity not present in the two-dimensional results, including a change in topology around Re {approx} 35.
Spin generation via bulk spin current in three-dimensional topological insulators.
Peng, Xingyue; Yang, Yiming; Singh, Rajiv R P; Savrasov, Sergey Y; Yu, Dong
2016-01-01
To date, spin generation in three-dimensional topological insulators is primarily modelled as a single-surface phenomenon, attributed to the momentum-spin locking on each individual surface. In this article, we propose a mechanism of spin generation where the role of the insulating yet topologically non-trivial bulk becomes explicit: an external electric field creates a transverse pure spin current through the bulk of a three-dimensional topological insulator, which transports spins between the top and bottom surfaces. Under sufficiently high surface disorder, the spin relaxation time can be extended via the Dyakonov-Perel mechanism. Consequently, both the spin generation efficiency and surface conductivity are largely enhanced. Numerical simulation confirms that this spin generation mechanism originates from the unique topological connection of the top and bottom surfaces and is absent in other two-dimensional systems such as graphene, even though they possess a similar Dirac cone-type dispersion. PMID:26932574
Spin generation via bulk spin current in three-dimensional topological insulators
Peng, Xingyue; Yang, Yiming; Singh, Rajiv R.P.; Savrasov, Sergey Y.; Yu, Dong
2016-01-01
To date, spin generation in three-dimensional topological insulators is primarily modelled as a single-surface phenomenon, attributed to the momentum-spin locking on each individual surface. In this article, we propose a mechanism of spin generation where the role of the insulating yet topologically non-trivial bulk becomes explicit: an external electric field creates a transverse pure spin current through the bulk of a three-dimensional topological insulator, which transports spins between the top and bottom surfaces. Under sufficiently high surface disorder, the spin relaxation time can be extended via the Dyakonov–Perel mechanism. Consequently, both the spin generation efficiency and surface conductivity are largely enhanced. Numerical simulation confirms that this spin generation mechanism originates from the unique topological connection of the top and bottom surfaces and is absent in other two-dimensional systems such as graphene, even though they possess a similar Dirac cone-type dispersion. PMID:26932574
NASA Technical Reports Server (NTRS)
Subramanian, S. V.; Bozzola, R.; Povinelli, L. A.
1986-01-01
The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.
Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms
Ayubi, Gaston A.; Di Martino, J. Matias; Alonso, Julia R.; Fernandez, Ariel; Perciante, Cesar D.; Ferrari, Jose A.
2011-01-10
Three-dimensional shape measurements by sinusoidal fringe projection using phase-shifting interferometry algorithms are distorted by the nonlinear response in intensity of commercial video projectors and digital cameras. To solve the problem, we present a method that consists in projecting and acquiring a temporal sequence of strictly binary patterns, whose (adequately weighted) average leads to a sinusoidal fringe pattern with the required number of bits. Since binary patterns consist of ''ones'' and ''zeros'' - and no half-tones are involved - the nonlinear response of the projector and the camera will not play a role, and a nearly unit contrast gray-level sinusoidal fringe pattern is obtained. Validation experiments are presented.
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
Loizu, J.; Hudson, S. R.; Bhattacharjee, A.; Lazerson, S.; Helander, P.
2015-09-15
We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.
Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions
NASA Astrophysics Data System (ADS)
Tasawar, Hayat; Ikram, Ullah; Taseer, Muhammad; Ahmed, Alsaedi; Sabir, Ali Shehzad
2016-07-01
This article investigates the three-dimensional flow of Powell–Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
Three-dimensional induced polarization data inversion for complex resistivity
Commer, M.; Newman, G.A.; Williams, K.H.; Hubbard, S.S.
2011-03-15
The conductive and capacitive material properties of the subsurface can be quantified through the frequency-dependent complex resistivity. However, the routine three-dimensional (3D) interpretation of voluminous induced polarization (IP) data sets still poses a challenge due to large computational demands and solution nonuniqueness. We have developed a flexible methodology for 3D (spectral) IP data inversion. Our inversion algorithm is adapted from a frequency-domain electromagnetic (EM) inversion method primarily developed for large-scale hydrocarbon and geothermal energy exploration purposes. The method has proven to be efficient by implementing the nonlinear conjugate gradient method with hierarchical parallelism and by using an optimal finite-difference forward modeling mesh design scheme. The method allows for a large range of survey scales, providing a tool for both exploration and environmental applications. We experimented with an image focusing technique to improve the poor depth resolution of surface data sets with small survey spreads. The algorithm's underlying forward modeling operator properly accounts for EM coupling effects; thus, traditionally used EM coupling correction procedures are not needed. The methodology was applied to both synthetic and field data. We tested the benefit of directly inverting EM coupling contaminated data using a synthetic large-scale exploration data set. Afterward, we further tested the monitoring capability of our method by inverting time-lapse data from an environmental remediation experiment near Rifle, Colorado. Similar trends observed in both our solution and another 2D inversion were in accordance with previous findings about the IP effects due to subsurface microbial activity.
Equilibrium Initialization and Stability of Three-Dimensional Gas Disks
Wang, Hsiang-Hsu; Klessen, Ralf S.; Dullemond, Cornelis P.; Bosch, Frank C.van den; Fuchs, Burkhard; /KIPAC, Menlo Park
2010-08-25
We present a new systematic way of setting up galactic gas disks based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify the density distribution and the velocity field which supports the disk. We first show that the required circular velocity has no dependence on the height above or below the midplane so long as the gas pressure is a function of density only. The assumption of disks being very thin enables us to decouple the vertical structure from the radial direction. Based on that, the equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets of second-order non-linear differential equation, which are easily integrated to set-up a stable disk. We call one approach 'density method' and the other one 'potential method'. Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational instability. We revisit the question of global, axisymmetric instability using fully three-dimensional disk simulations. The impact of disk thickness on the disk instability and the formation of spontaneously induced spirals is studied systematically with or without the presence of the stellar potential. In our models, the numerical results show that the threshold value for disk instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also show that self-induced spirals occur in the correct regions and with the right numbers as predicted by the analytic theory.
Three-dimensional Simulation of Backward Raman Amplification
A.A. Balakin; G.M. Fraiman; N.J. Fisch
2005-11-12
Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Three-Dimensional Lithium-Ion Battery Model (Presentation)
Kim, G. H.; Smith, K.
2008-05-01
Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761
Improving Students' Sense of Three-Dimensional Shapes.
ERIC Educational Resources Information Center
Leeson, Neville J.
1994-01-01
Describes activities to be used with fifth and sixth graders to improve students' spatial sense with respect to three-dimensional shapes. Includes the use of cubes, triangular prisms, tetrahedrons, and square pyramids. (MKR)
Three-dimensional speckle holography of cellular motion inside tissue
NASA Astrophysics Data System (ADS)
Nolte, David D.; Turek, John
2009-07-01
Three-dimensional imaging assays of anti-cancer drugs applied to tissues are performed using motility contrast imaging (MCI), a speckle holographic imaging technique that detects sub-cellular motion as a fully-endogenous imaging contrast agent.
Analysis and validation of carbohydrate three-dimensional structures
Lütteke, Thomas
2009-02-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Use of three-dimensional photoelasticity in fracture mechanics
NASA Technical Reports Server (NTRS)
Smith, C. W.
1973-01-01
The philosophy of fracture mechanics is reviewed and utilized to formulate a simplified approach to the determination of the stress-intensity factor photoelastically for three-dimensional problems. The method involves a Taylor Series correction for the maximum in-plane shear stress (TSCM) and does not involve stress separation. The results are illustrated by applying the TSCM to surface flaws in bending fields. Other three-dimensional problems solved by the TSCM are cited.
Three-dimensional study of the multi-cavity FEL
Krishnagopal, S.; Kumar, V.
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
NASA Astrophysics Data System (ADS)
Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang
2016-08-01
For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.
Three dimensional dynamics of rotating structures under mixed boundary conditions
NASA Astrophysics Data System (ADS)
Bediz, Bekir; Romero, L. A.; Ozdoganlar, O. Burak
2015-12-01
This paper presents the spectral-Tchebychev (ST) technique for solution of three dimensional (3D) dynamics of rotating structures. In particular, structures that exhibit coupled dynamic response require a 3D modeling approach to capture their dynamic behavior. Rotational motions further complicate this behavior, inducing coriolis, centrifugal softening, and (nonlinear) stress-stiffening effects. Therefore, a 3D solution approach is needed to accurately capture the rotational dynamics. The presented 3D-ST technique provides a fast-converging and precise solution approach for rotational dynamics of structures with complex geometries and mixed boundary conditions. Specifically, unlike finite elements techniques, the presented technique uses a series expansion approach considering distributed-parameter system equations: The integral boundary value problem for rotating structures is discretized using the spectral-Tchebychev approach. To simplify the domain of the structures, cross-sectional and rotational transformations are applied to problems with curved cross-section and pretwisted geometry. The nonlinear terms included in the integral boundary value problem are linearized around an equilibrium solution using the quasi-static method. As a result, mass, damping, and stiffness matrices, as well as a forcing vector, are obtained for a given rotating structure. Several case studies are then performed to demonstrate the application and effectiveness of the 3D-ST solution. For each problem, the natural frequencies and modes shapes from the 3D-ST solution are compared to those from the literature (when available) and to those from a commercial finite elements software. The case studies include rotating/spinning parallelepipeds under free and mixed boundary conditions, and a cantilevered pretwisted beam (i.e., rotating blade) with an airfoil geometry rotating on a hub. It is seen that the natural frequencies and mode shapes from the 3D-ST technique differ from those from the
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
NASA Technical Reports Server (NTRS)
Montgomery, Matthew D.; Verdon, Joseph M.
1996-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.
Jiang, Xiaoming; Van den Broek, Wouter; Koch, Christoph T
2016-04-01
Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen. PMID:27136994
Three Dimensional Probability Distributions of the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2014-12-01
Empirical probability density functions (PDFs) of the interplanetary magnetic field (IMF) have been derived from spacecraft data since the early years of the space age. A survey of the literature shows that past studies have investigated the separate Cartesian components of the magnetic field, the vector magnitude, and the direction of the IMF by means of one-dimensional or two-dimensional PDFs. But, to my knowledge, there exist no studies which investigate the three dimensional nature of the IMF by means of three dimensional PDFs, either in (Bx,By,Bz)(B_x,B_y,B_z)-coordinates or (BR,BT,BN)(B_R,B_T,B_N)-coordinates or some other appropriate system of coordinates. Likewise, there exist no studies which investigate three dimensional PDFs of magnetic field fluctuations, that is, vector differences bmB(t+τ)-bmB(t)bm{B}(t+tau)-bm{B}(t). In this talk, I shall present examples of three dimensional PDFs obtained from spacecraft data that demonstrate the solar wind magnetic field possesses a very interesting spatial structure that, to my knowledge, has not previously been identified. Perhaps because of the well known model of Barnes (1981) in which the magnitude of the IMF remains constant, it may be commonly believed that there is nothing new to learn from a full three dimensional PDF. To the contrary, there is much to learn from the investigation of three dimensional PDFs of the solar wind plasma velocity and the magnetic field, as well as three dimensional PDFs of their fluctuations. Knowledge of these PDFs will not only improve understanding of solar wind physics, it is an essential prerequisite for the construction of realistic models of the stochastic time series measured by a single spacecraft, one of the longstanding goals of space physics research. In addition, three dimensional PDFs contain valuable information about the anisotropy of solar wind fluctuations in three dimensional physical space, information that may help identify the reason why the three
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
Turbulent flow separation in three-dimensional asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert
2011-12-01
Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow
Three-dimensional coupled mode analysis of internal-wave acoustic ducts.
Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik
2014-05-01
A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting. PMID:24815234
Liao, I-Chien; Moutos, Franklin T; Estes, Bradley T; Zhao, Xuanhe; Guilak, Farshid
2013-12-17
The development of synthetic biomaterials that possess mechanical properties that mimic those of native tissues remains an important challenge to the field of materials. In particular, articular cartilage is a complex nonlinear, viscoelastic, and anisotropic material that exhibits a very low coefficient of friction, allowing it to withstand millions of cycles of joint loading over decades of wear. Here we show that a three-dimensionally woven fiber scaffold that is infiltrated with an interpenetrating network hydrogel can provide a functional biomaterial that provides the load-bearing and tribological properties of native cartilage. An interpenetrating dual-network "tough-gel" consisting of alginate and polyacrylamide was infused into a porous three-dimensionally woven poly(ε-caprolactone) fiber scaffold, providing a versatile fiber-reinforced composite structure as a potential acellular or cell-based replacement for cartilage repair. PMID:24578679
Numerical Study of Three-dimensional Spatial Instability of a Supersonic Flat Plate Boundary Layer
NASA Technical Reports Server (NTRS)
Maestrello, Lucio; Bayliss, A.; Krishnan, R.
1989-01-01
The behavior of spatially growing three-dimensional waves in a supersonic boundary layer was studied numerically by solving the complete Navier-Stokes equations. Satisfactory comparison with linear parallel and non-parallel stability theories, and experiment are obtained when a small amplitude inflow disturbance is used. The three-dimensional unsteady Navier-Stokes equations are solved by a finite difference method which is fourth-order and second-order accurate in the convection and viscous terms respectively, and second-order accurate in time. Spanwise periodicity is assumed. The inflow disturbance is composed of eigenfunctions from linear stability theory. By increasing the amplitude of the inflow disturbance, nonlinear effects in the form of a relaxation type oscillation of the time signal of rho(u) are observed.
Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling
Zhang, Huai; Ju, Lili; Gunzburger, Max; Ringler, Todd; Price, Stephen
2011-01-01
A three-dimensional full-Stokes computational model is considered for determining the dynamics, temperature, and thickness of ice sheets. The governing thermomechanical equations consist of the three-dimensional full-Stokes system with nonlinear rheology for the momentum, an advective-diffusion energy equation for temperature evolution, and a mass conservation equation for icethickness changes. Here, we discuss the variable resolution meshes, the finite element discretizations, and the parallel algorithms employed by the model components. The solvers are integrated through a well-designed coupler for the exchange of parametric data between components. The discretization utilizes high-quality, variable-resolution centroidal Voronoi Delaunay triangulation meshing and existing parallel solvers. We demonstrate the gridding technology, discretization schemes, and the efficiency and scalability of the parallel solvers through computational experiments using both simplified geometries arising from benchmark test problems and a realistic Greenland ice sheet geometry.
NASA Technical Reports Server (NTRS)
Korivi, Vamshi Mohan; Taylor, Arthur C., III; Newman, Perry A.; Jones, Henry E.
1994-01-01
In a recent work, an incremental strategy was proposed to iteratively solve the very large systems of linear equations that are required to obtain quasianalytical sensitivity derivatives from advanced computational fluid dynamics (CFD) codes. The technique was sucessfully demonstrated for two large two-dimensional problems: a subsonic and a transonic airfoil. The principal feature of this incremental iterative stategy is that it allows the use of the identical approximate coefficient matrix operator and algorithm to solve the nonlinear flow and the linear sensitivity equations; at convergence, the accuracy of the sensitivity derivatives is not compromised. This feature allows a comparatively straightforward extension of the methodology to three-dimensional problems; this extension is successfully demonstrated in the present study for a space-marching solution of the three-dimensional Euler equations over a Mach 2.4 blended wing-body configuration.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1985-01-01
A three-dimensional, linear stability analysis of a baroclinic flow for Richardson number, Ri, of order unity is presented. The model considered is a thin horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the complete set of governing, nonlinear equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in a closed form. The stability analysis is also based on the complete set of equations; and perturbation possessing zonal, meridional, and vertical structures were considered. Numerical methods were developed for the stability problem which results in a stiff, eighth-order, ordinary differential eigenvalue problem. The previous work on three-dimensional baroclinic instability for small Ri was extended to a more realistic model involving the Prandtl number, sigma, and the Ekman number, E, and to finite growth rates and a wider range of the zonal wavenumber.
A three-dimensional color space from the 13th century
Smithson, Hannah E.; Dinkova-Bruun, Greti; Gasper, Giles E. M.; Huxtable, Mike; McLeish, Tom C. B.; Panti, Cecilia
2012-01-01
We present a new commentary on Robert Grosseteste’s De colore, a short treatise that dates from the early 13th century, in which Grosseteste constructs a linguistic combinatorial account of color. In contrast to other commentaries (e.g., Kuehni & Schwarz, Color Ordered: A Survey of Color Order Systems from Antiquity to the Present, 2007, p. 36), we argue that the color space described by Grosseteste is explicitly three-dimensional. We seek the appropriate translation of Grosseteste’s key terms, making reference both to Grosseteste’s other works and the broader intellectual context of the 13th century, and to modern color spaces. PMID:22330399
Three-dimensional N =2 supergravity theories: From superspace to components
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.; Lindström, Ulf; Roček, Martin; Sachs, Ivo; Tartaglino-Mazzucchelli, Gabriele
2014-04-01
For general off-shell N=2 supergravity-matter systems in three spacetime dimensions, a formalism is developed to reduce the corresponding actions from superspace to components. The component actions are explicitly computed in the cases of type I and type II minimal supergravity formulations. We describe the models for topologically massive supergravity which correspond to all the known off-shell formulations for three-dimensional N=2 supergravity. We also present a universal setting to construct supersymmetric backgrounds associated with these off-shell supergravities.
NASA Astrophysics Data System (ADS)
Solodov, V. G.; Gnesin, V. I.
1997-12-01
Three-dimensional nonstationary model of aerodynamical interaction of turbine stage and exhaust hood is realized, based on nonstationary 3D codes for calculation of inviscid transonic flow through stage[3] and exhaust hood[4] which consist of diffuser and space under casing. The codes are built with the use of the explicit Godunov’s 2nd order difference scheme. Some results of flow simulation through the compartments “stage-exhaust hood,” “stage-exhaust axial-radial diffuser” for wide range of volumetric flow rates are represented.
Radial symmetry on three-dimensional shells in the Landau-de Gennes theory
NASA Astrophysics Data System (ADS)
Canevari, Giacomo; Ramaswamy, Mythily; Majumdar, Apala
2016-01-01
We study the radial-hedgehog solution on a three-dimensional (3D) spherical shell with radial boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. We prove that the radial-hedgehog solution is the unique minimizer of the Landau-de Gennes energy in two separate regimes: (i) for thin shells when the temperature is below the critical nematic supercooling temperature and (ii) for a fixed shell width at sufficiently low temperatures. In case (i), we provide explicit geometry-dependent criteria for the global minimality of the radial-hedgehog solution.
Three-dimensionality effects in flow around two tandem cylinders
NASA Astrophysics Data System (ADS)
Papaioannou, Georgios V.; Yue, Dick K. P.; Triantafyllou, Michael S.; Karniadakis, George E.
2006-07-01
The flow around two stationary cylinders in tandem arrangement at the laminar and early turbulent regime, (Re {=} 10(2) 10(3) ), is studied using two- and three-dimensional direct numerical simulations. A range of spacings between the cylinders from 1.1 to 5.0 diameters is considered with emphasis on identifying the effects of three-dimensionality and cylinder spacing as well as their coupling. To achieve this, we compare the two-dimensional with corresponding three-dimensional results as well as the tandem cylinder system results with those of a single cylinder. The critical spacing for vortex formation and shedding in the gap region depends on the Reynolds number. This dependence is associated with the formation length and base pressure suction variations of a single cylinder with Reynolds number. This association is useful in explaining some of the discrepancies between the two-dimensional and three-dimensional results. A major effect of three-dimensionality is in the exact value of the critical spacing, resulting in deviations from the two-dimensional predictions for the vorticity fields, the forces on the downstream cylinder, and the shedding frequency of the tandem system. Two-dimensional simulations under-predict the critical spacing, leading to erroneous results for the forces and shedding frequencies over a range of spacings where the flow is qualitatively different. To quantify the three-dimensional effects we first employ enstrophy, decomposed into a primary and a secondary component. The primary component involves the vorticity parallel to the cylinder axis, while the secondary component incorporates the streamwise and transverse components of the vorticity vector. Comparison with the single cylinder case reveals that the presence of the downstream cylinder at spacings lower than the critical value has a stabilizing effect on both the primary and secondary enstrophy. Systematic quantification of three-dimensionalities involves finding measures for the
A moving observer in a three-dimensional world
2016-01-01
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269608
Three-dimensional magnetospheric equilibrium with isotropic pressure
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal ({Psi},{alpha},{chi}) flux coordinate system, where {Psi} is the magnetic flux function, {chi} is a generalized poloidal angle, {alpha} is the toroidal angle, {alpha} = {phi} {minus} {delta}({Psi},{phi},{chi}) is the toroidal angle, {delta}({Psi},{phi},{chi}) is periodic in {phi}, and the magnetic field is represented as {rvec B} = {del}{Psi} {times} {del}{alpha}. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section.
A moving observer in a three-dimensional world.
Glennerster, Andrew
2016-06-19
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269608
Biodynamic profiling of three-dimensional tissue growth techniques
NASA Astrophysics Data System (ADS)
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
A three dimensional integral equation approach for fluids under confinement: Argon in zeolites.
Lomba, Enrique; Bores, Cecilia; Sánchez-Gil, Vicente; Noya, Eva G
2015-10-28
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials. PMID:26520539
Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
A three dimensional integral equation approach for fluids under confinement: Argon in zeolites
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Bores, Cecilia; Sánchez-Gil, Vicente; Noya, Eva G.
2015-10-01
In this work, we explore the ability of an inhomogeneous integral equation approach to provide a full three dimensional description of simple fluids under conditions of confinement in porous media. Explicitly, we will consider the case of argon adsorbed into silicalite-1, silicalite-2, and an all-silica analogue of faujasite, with a porous structure composed of linear (and zig-zag in the case of silicalite-1) channels of 5-8 Å diameter. The equation is based on the three dimensional Ornstein-Zernike approximation proposed by Beglov and Roux [J. Chem. Phys. 103, 360 (1995)] in combination with the use of an approximate fluid-fluid direct correlation function furnished by the replica Ornstein-Zernike equation with a hypernetted chain closure. Comparison with the results of grand canonical Monte Carlo/molecular dynamics simulations evidences that the theory provides an accurate description for the three dimensional density distribution of the adsorbed fluid, both at the level of density profiles and bidimensional density maps across representative sections of the porous material. In the case of very tight confinement (silicalite-1 and silicalite-2), solutions at low temperatures could not be found due to convergence difficulties, but for faujasite, which presents substantially larger channels, temperatures as low as 77 K are accessible to the integral equation. The overall results indicate that the theoretical approximation can be an excellent tool to characterize the microscopic adsorption behavior of porous materials.
Three-dimensional computations of transverse hydrogen jet combustion in a supersonic airstream
NASA Technical Reports Server (NTRS)
Uenishi, K.; Rogers, R. C.; Northam, G. B.
1987-01-01
A computational fluid dynamics (CFD) code is being developed to compute the mixing and combustion of hydrogen fuel in the turbulent flow fields of supersonic combustion ramjets (scramjet). The code solves the three-dimensional Reynolds time-averaged complete Navier-Stokes equations including transport equations for a four species, two reaction, global finite rate chemistry model. The code was applied to the case of transverse injection of hydrogen from a sonic circular orifice into a supersonic airstream. The equations were numerically integrated using MacCormack's explicit method, and the algebraic eddy viscosity model of Baldwin-Lomax was used to model the turbulence. In the species transport and energy equations, diffusion coefficients based on Fick's Law and an assumption of unit Lewis number were applied. Computed features of the three-dimensional flow field are depicted by static pressure, static temperature, mass fraction of species, and velocity vectors. For engineering interest, mixing and combustion parameters were examined to assess the effect of injector diameter, injected fuel pressure, fuel-air ratio, and spacing of fuel injectors. The objective of the present paper is to demonstrate the capability of the present three-dimensional spatially elliptic, CFD code for turbulent, reacting flow. Application of the code to specific supersonic combustion configurations is planned.
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1993-01-01
The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.
Three-dimensional hydrodynamic instabilities in stellar core collapses
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Lian, Biao
2012-03-01
A spherically symmetric hydrodynamic stellar core collapse process under gravity is time-dependent and may become unstable once disturbed. Subsequent non-linear evolutions of such growth of hydrodynamic instabilities may lead to various physical consequences. Specifically for a homologous collapse of a stellar core characterized by a polytropic exponent Γ= 4/3, we examine oscillations and/or instabilities of three-dimensional (3D) general polytropic perturbations. Being incompressible, the radial component of vorticity perturbation always grows unstably during the same homologous core collapse. For compressible 3D perturbations, the polytropic index γ of perturbations can differ from Γ= 4/3 of the general polytropic hydrodynamic background flow, where the background specific entropy is conserved along streamlines and can vary in radius and time. Our model formulation here is more general than previous ones. The Brunt-Väisälä buoyancy frequency ? does not vanish, allowing for the existence of internal gravity g- modes and/or g+ modes, depending on the sign of ? respectively. Eigenvalues and eigenfunctions of various oscillatory and unstable perturbation modes are computed, given asymptotic boundary conditions. As studied in several specialized cases of Goldreich & Weber and of Lou & Cao and Cao & Lou, we further confirm that acoustic p modes and surface f modes remain stable in the current more general situations. In comparison, g- modes and sufficiently high radial order g+ modes are unstable, leading to inevitable convective motions within the collapsing stellar interior; meanwhile, sufficiently low radial order g+ modes remain stably trapped in the collapsing core. Unstable growths of 3D g-mode disturbances are governed dominantly by the angular momentum conservation and modified by the gas pressure restoring force. We note in particular that unstable temporal growths of 3D vortical perturbations exist even when the specific entropy distribution becomes
Three-dimensional coherent structures of electrokinetic instability
NASA Astrophysics Data System (ADS)
Demekhin, E. A.; Nikitin, N. V.; Shelistov, V. S.
2014-07-01
A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge-selective surface (electric membrane, electrode, or system of micro- or nanochannels) has been carried out and analyzed. A special finite-difference method has been used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. The calculations employ parallel computing. Three characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles, and triangles. The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary pulses.
Numerical simulation of three-dimensional tuft corona and electrohydrodynamics
Yamamoto, T.; Sparks, L.E.
1986-01-01
The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of individual tufts is considerably higher even at a low average current level and, therefore, could contribute to both the formation of back corona in the collected-dust layer and the generation of the secondary flow. Numerical simulation for three-dimensional tuft corona is successfully solved. The electrical characteristics of tuft corona are investigated, and the structure and role of the three-dimensional secondary flow and EHD in relation to transport of the fine particles are described.
Three-dimensional coherent structures of electrokinetic instability.
Demekhin, E A; Nikitin, N V; Shelistov, V S
2014-07-01
A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge-selective surface (electric membrane, electrode, or system of micro- or nanochannels) has been carried out and analyzed. A special finite-difference method has been used for the space discretization along with a semi-implicit 31/3-step Runge-Kutta scheme for the integration in time. The calculations employ parallel computing. Three characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles, and triangles. The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary pulses. PMID:25122393
Three dimensional imaging of soft sphere packings under shear
NASA Astrophysics Data System (ADS)
Behringer, Robert; Dijksman, Joshua; Sia, Eric
2011-11-01
The (microscopic) flow of three dimensional disordered athermal granular packings remains poorly understood. However, experimentally studying flow and deformations in a three dimensional packing of grains is challenging due to the opacity of such packings. Our goal is to study triaxial shear of granular materials, using refractive index matched scanning. We will present results on a study of the deformation of a three dimensional soft sphere packing under quasi static compression. The spheres are made from hydrogel and virtually frictionless, similar to the study by by Mukhopadhyay et. al. (2011). We track particles and image contact deformations, and look at the effect of cyclic shear flow. NSF-DMR0906908, ARO-W911NF-11-1-0110.
Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting
NASA Astrophysics Data System (ADS)
Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo
2015-05-01
A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.
Radiation hardness of three-dimensional polycrystalline diamond detectors
Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.
2015-05-11
The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.
Hydrofocusing Bioreactor for Three-Dimensional Cell Culture
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly
2003-01-01
The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.
Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows
Liang, Litao; Zhu, Junjie; Xuan, Xiangchun
2011-01-01
Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037
Three-dimensional Bayesian optical diffusion tomography with experimental data.
Milstein, Adam B; Oh, Seungseok; Reynolds, Jeffery S; Webb, Kevin J; Bouman, Charles A; Millane, Rick P
2002-01-15
Reconstructions of a three-dimensional absorber embedded in a scattering medium by use of frequency domain measurements of the transmitted light in a single source-detector plane are presented. The reconstruction algorithm uses Bayesian regularization and iterative coordinate descent optimization, and it incorporates estimation of the detector noise level, the source-detector coupling coefficient, and the background diffusion coefficient in addition to the absorption image. The use of multiple modulation frequencies is also investigated. The results demonstrate the utility of this algorithm, the importance of a three-dimensional model, and that out-of-plane scattering permits recovery of three-dimensional features from measurements in a single plane. PMID:18007723
Coupled particle dispersion by three-dimensional vortex structures
Troutt, T.R.; Chung, J.N.; Crowe, C.T.
1996-12-31
The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.
Time of Closest Approach in Three-Dimensional Airspace
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Narkawicz, Anthony J.
2010-01-01
In air traffic management, the aircraft separation requirement is defined by a minimum horizontal distance and a minimum vertical distance that the aircraft have to maintain. Since this requirement defines a cylinder around each aircraft rather than a sphere, the three-dimensional Euclidean distance does not provide an appropriate basis for the definition of time of closest approach. For instance, conflicting aircraft are not necessarily in loss of separation at the time of closest three-dimensional Euclidean distance. This paper proposes a definition of time of closest approach that characterizes conflicts in a three-dimensional airspace. The proposed time is defined as the time that minimizes a distance metric called cylindrical norm. An algorithm that computes the time of closest approach between two aircraft is provided and the formal verification of its main properties is reported.
On three-dimensional quasi-Stäckel Hamiltonians
NASA Astrophysics Data System (ADS)
Marikhin, V. G.
2014-05-01
A three-dimensional integrable generalization of the Stäckel systems is proposed. A classification of such systems is obtained, which results in two families. The first family is the direct sum of the two-dimensional system which is equivalent to the representation of the Schottky-Manakov top in the quasi-Stäckel form and a Stäckel one-dimensional system. The second family is probably a new three-dimensional system. The system of hydrodynamic type, which we get from this family in the usual way, is a three-dimensional generalization of the Gibbons-Tsarev system. A generalization of the quasi-Stäckel systems to the case of any dimension is discussed.
Ray tracing a three dimensional scene using a grid
Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron
2013-02-26
Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.
Answering thermodynamic questions with three-dimensional viscous flow calculations
NASA Astrophysics Data System (ADS)
Moore, J.
The use of three dimensional viscous flow calculations to understand losses and irreversibility in turbomachinery flows, and to show where inefficiency arises is discussed. An IBM 3032 computer and a Prandtl mixing length turbulence model were used to study centrifugal compressor impellers operating with steady, subsonic flow near their design point. For this class of flow, three dimensional viscous flow calculations can show boundary layer growth and accumulation in wake flow; tip leakage flow and mixing; work and loss distributions; and sources of loss production.
Three-dimensional analysis of partially open butterfly valve flows
Huang, C.; Kim, R.H.
1996-09-01
A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.
Numerical simulation of three-dimensional boattail afterbody flow fields
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1980-01-01
The thin shear layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic flow over axisymmetric boattail bodies at moderate angles of attack. The plume is modeled by a solid body configuration identical to those used in experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC IV computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flow fields with moderate separation. The computed results compare favorably with three different sets of experimental data reported by Reubush, Shrewsbury, and Benek, respectively
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
A class of auxetic three-dimensional lattices
NASA Astrophysics Data System (ADS)
Cabras, Luigi; Brun, Michele
2016-06-01
We propose a class of auxetic three-dimensional lattice structures. The elastic microstructure can be designed in order to have omni-directional Poisson's ratio arbitrarily close to the stability limit -1. The cubic behavior of the periodic system has been fully characterized; the minumum and maximum Poisson's ratio and the associated principal directions are given as a function of the microstructural parameters. The initial microstructure is then modified into a body centered-cubic system that can achieve a Poisson's ratio lower than -1 and that can also behave as an isotropic three-dimensional auxetic structure.
Novel multipole Wien filter as three-dimensional spin manipulator
Yasue, T. Suzuki, M.; Koshikawa, T.; Tsuno, K.; Goto, S.; Arai, Y.
2014-04-15
Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697
Method for computing three-dimensional turbulent flows
Bernard, P.S.; Berger, B.S.
1982-06-01
The MVC (mean vorticity and covariance) turbulence closure is derived for three-dimensional turbulent flows. The derivation utilizes Lagrangian time expansion techniques applied to the unclosed terms of the mean vorticity and covariance equations. The closed mean vorticity equation is applied to the numerical solution of fully developed three-dimensional channel flow. Anisotropies in the wall region are modelled by pairs of counterrotating streamwise vortices. The numerical results are in close agreement with experimental data. Analysis of the contributions of the terms in the mean vorticity equation gives insight into the dynamics of the turbulent boundary. 41 references, 7 figures.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Hydrodynamic stability of three-dimensional homogeneous flow topologies
NASA Astrophysics Data System (ADS)
Mishra, Aashwin A.; Girimaji, Sharath S.
2015-11-01
This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Three-Dimensional Prints with Pinned Cylindrical Lens Arrays
NASA Astrophysics Data System (ADS)
Yasuda, Shin; Shimizu, Keishi
2013-09-01
An application of pinned cylindrical lens arrays (CLAs) reported in Opt. Rev. 19 (2012) 287 to three-dimensional prints is presented for the first time. This lens fabrication method features the easy control of the pitch and radius of curvature of the lens arrays by taking advantage of the pinning effect that the partition walls created on a polymeric substrate by scratching with a cutter blade prevent the ultraviolet curable polymer dispensed between the walls from spreading. It is demonstrated in this paper that a three-dimensional print was realized successfully with the pinned CLA fabricated with our method.
Inverse energy cascades in three-dimensional turbulence
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1991-01-01
Fully three-dimensional magnetohydrodynamic (MHD) turbulence at large kinetic and low magnetic Reynolds numbers is considered in the presence of a strong uniform magnetic field. It is shown by numerical simulation of a model of MHD that the energy inverse cascades to longer length scales when the interaction parameter is large. While the steady-state dynamics of the driven problem is three-dimensional in character, the behavior has resemblance to two-dimensional hydrodynamics. These results have implications in turbulence theory, MHD power generator, planetary dynamos, and fusion reactor blanket design.
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Hippocampal place-cell firing during movement in three-dimensional space
NASA Technical Reports Server (NTRS)
Knierim, J. J.; McNaughton, B. L.
2001-01-01
"Place" cells of the rat hippocampus are coupled to "head direction" cells of the thalamus and limbic cortex. Head direction cells are sensitive to head direction in the horizontal plane only, which leads to the question of whether place cells similarly encode locations in the horizontal plane only, ignoring the z axis, or whether they encode locations in three dimensions. This question was addressed by recording from ensembles of CA1 pyramidal cells while rats traversed a rectangular track that could be tilted and rotated to different three-dimensional orientations. Cells were analyzed to determine whether their firing was bound to the external, three-dimensional cues of the environment, to the two-dimensional rectangular surface, or to some combination of these cues. Tilting the track 45 degrees generally provoked a partial remapping of the rectangular surface in that some cells maintained their place fields, whereas other cells either gained new place fields, lost existing fields, or changed their firing locations arbitrarily. When the tilted track was rotated relative to the distal landmarks, most place fields remapped, but a number of cells maintained the same place field relative to the x-y coordinate frame of the laboratory, ignoring the z axis. No more cells were bound to the local reference frame of the recording apparatus than would be predicted by chance. The partial remapping demonstrated that the place cell system was sensitive to the three-dimensional manipulations of the recording apparatus. Nonetheless the results were not consistent with an explicit three-dimensional tuning of individual hippocampal neurons nor were they consistent with a model in which different sets of cells are tightly coupled to different sets of environmental cues. The results are most consistent with the statement that hippocampal neurons can change their "tuning functions" in arbitrary ways when features of the sensory input or behavioral context are altered. Understanding
Multidimensional explicit difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Vanleer, B.
1983-01-01
First and second order explicit difference schemes are derived for a three dimensional hyperbolic system of conservation laws, without recourse to dimensional factorization. All schemes are upwind (backward) biased and optimally stable.
Multidimensional explicit difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Van Leer, B.
1984-01-01
First- and second-order explicit difference schemes are derived for a three-dimensional hyperbolic system of conservation laws, without recourse to dimensional factorization. All schemes are upwind biased and optimally stable.
NASA Technical Reports Server (NTRS)
Peltier, Leonard Joel; Biringen, Sedat; Chait, Arnon
1990-01-01
Implicit techniques for calculating three-dimensional, time-dependent heat diffusion in a cube are tested with emphasis on storage efficiency, accuracy, and speed of calculation. For this purpose, a tensor product technique with both Chebyshev collocation and finite differences and a generalized conjugate gradient technique with finite differences are used in conjunction with Crank-Nicolson discretization. An Euler explicit finite difference calculation is performed for use as a benchmark. The implicit techniques are found to be competitive with the Euler explicit method in terms of storage efficiency and speed of calculation and offer advantages both in accuracy and stability. Mesh stretching in the finite difference calculations is shown to markedly improve the accuracy of the solution.
Three-dimensional crack growth with hp-generalized finite element and face offsetting methods
NASA Astrophysics Data System (ADS)
Pereira, J. P.; Duarte, C. A.; Jiao, X.
2010-08-01
A coupling between the hp-version of the generalized finite element method ( hp-GFEM) and the face offsetting method (FOM) for crack growth simulations is presented. In the proposed GFEM, adaptive surface meshes composed of triangles are utilized to explicitly represent complex three-dimensional (3-D) crack surfaces. By applying the hp-GFEM at each crack growth step, high-order approximations on locally refined meshes are automatically created in complex 3-D domains while preserving the aspect ratio of elements, regardless of crack geometry. The FOM is applied to track the evolution of the crack front in the explicit crack surface representation. The FOM provides geometrically feasible crack front descriptions based on hp-GFEM solutions. The coupling of hp-GFEM and FOM allows the simulation of arbitrary crack growth with concave crack fronts independent of the volume mesh. Numerical simulations illustrate the robustness and accuracy of the proposed methodology.
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
NASA Astrophysics Data System (ADS)
Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.
2006-03-01
Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.
NASA Astrophysics Data System (ADS)
Ashraf, M. Bilal; Hayat, T.; Alsaedi, A.
2015-01-01
The present paper addresses the three-dimensional flow of an Eyring-Powell nanofluid by an exponentially stretching surface. Convective boundary conditions for both heat and mass transfer are employed. Similarity transformations are invoked to reduce the partial differential equations into the ordinary differential equations. Convergent series solutions to the resulting nonlinear problems are derived. Influences of physical parameters on the velocities, temperature and concentration profiles are discussed. Numerical values of local Nusselt and Sherwood numbers for all the involved physical parameters are computed and analyzed. A comparative study between the present and previous results is made in a limiting sense.
Li, Xibing; Dong, Longjun
2014-02-15
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
K-factor image deshadowing for three-dimensional fluorescence microscopy
Ilovitsh, Tali; Weiss, Aryeh; Meiri, Amihai; Ebeling, Carl G.; Amiel, Aliza; Katz, Hila; Mannasse-Green, Batya; Zalevsky, Zeev
2015-01-01
The ability to track single fluorescent particles within a three dimensional (3D) cellular environment can provide valuable insights into cellular processes. In this paper, we present a modified nonlinear image decomposition technique called K-factor that reshapes the 3D point spread function (PSF) of an XYZ image stack into a narrow Gaussian profile. The method increases localization accuracy by ~60% with compare to regular Gaussian fitting, and improves minimal resolvable distance between overlapping PSFs by ~50%. The algorithm was tested both on simulated data and experimentally. PMID:26333693
Three-dimensional radiative flow with variable thermal conductivity and porous medium
NASA Astrophysics Data System (ADS)
Hayat, T.; Shehzad, S. A.; Alsaadi, F. E.; Alsaedi, A.
2013-06-01
This investigation deals with the three-dimensional boundary layer flow in a porous medium. The flow is induced by an exponentially stretching surface. Analysis is presented in the presence of heat transfer. Two cases, namely prescribed surface temperature (PST) and prescribed surface heat flux (PHF), are considered. Effects of thermal radiation are also present. The nonlinear partial differential equations are reduced into the ordinary differential equations. Series solutions are developed for the velocities and temperatures. Convergence of series solutions is checked via graphs and numerical values. Results are displayed and discussed for both PST and PHF cases.
A new three-dimensional shape measurement method based on double-frequency fringes
NASA Astrophysics Data System (ADS)
Li, Biao; Yang, Jie; Wu, Haitao; Fu, Yanjun
2015-10-01
Fringe projection profilometry (FPP) is a rapidly developing technique which is widely used for industrial manufacture, heritage conservation, and medicine etc. because of its high speed, high precision, non-contact operation, full-field acquisition, and easy information processing. Among the various FFP methods, the squared binary defocused projection method (SBM) has been promptly expanding with several advantages: (1) high projection speed because of 1-bit grayscale fringe; (2) eliminating nonlinear gamma of the projector for the defocusing effect. Nevertheless, the method is not trouble-free. When the fringe stripe is wide, it brings down the fringe contrast and is difficult to control the defocused degree, resulting in a low measurement accuracy. In order to further improve high-speed and high-precision three-dimensional shape measurement, this paper presents a new three-dimensional shape measurement method based on double-frequency fringes projection. This new method needs to project two sets of 1-bit grayscale fringe patterns (low-frequency fringe and high-frequency fringe) onto the object surface under slightly defocused projection mode. The method has the following advantages: (1) high projection speed because of 1-bit grayscale fringe; (2) high measurement precision for selectively removing undesired harmonics. Low-frequency fringe is produced by error-diffusion dithering (Dithering) technique and high-frequency fringe is generated by optimal pulse-width modulation (OPWM) technique. The two kinds of fringe patterns have each superiorities and flaws. The low-frequency fringe has a low measurement accuracy, but the continue phase can be easily retrieved. However, the property of high-frequency fringe and low-frequency fringe is the opposite. The general idea of this method proposed is as follows: Because the both fringes test the same object, the height is the same. The low-frequency fringe can be used to assist the high frequency fringe to retrieve
NUMERICAL SIMULATION OF THREE-DIMENSIONAL TUFT CORONA AND ELECTROHYDRODYNAMICS
The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of in...
Acoustic propagation in rigid three-dimensional waveguides
NASA Technical Reports Server (NTRS)
El-Raheb, M.
1980-01-01
The linear acoustic propagation in finite rigid three-dimensional waveguides is determined analytically using an eigenfunction expansion of the Helmholtz equation. The geometry considered consists of straight and circular bends of rectangular cross section with continuous interfaces (branches and sharp corners are excluded). The phenomena of resonance shift and relocation are explained for a bend-straight duct combination.
A Three-Dimensional Extension to Zatrikean Pregeometry
NASA Astrophysics Data System (ADS)
Geroyannis, V. S.; Dallas, T. G.
2006-08-01
The zatrikean abacus was originally defined as a two-dimensional chessboard-like lattice with square geobits. In this paper we generalize the zatrikean abacus in three dimensions by using a three-dimensional lattice with cubic geobits. We then calculate the values of certain interesting pregeometric quantities for the solar system.
Exciton condensation in microcavities under three-dimensional quantization conditions
Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.
2013-11-15
The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.
STREAMLINES IN STRATIFIED FLOW OVER A THREE-DIMENSIONAL HILL
A fluid modeling study was performed in the EPA Fluid Modeling Facility's stratified towing tank to determine the effects of stratification on the flow field over a three-dimensional hill. Streamlines in the stratified flow over an axisymmetric hill were marked with a dye tracer ...
Three-Dimensional Turbulent Boundary Layer With Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Hebbar, Sheshagiri K.
1992-01-01
Report describes experiment to measure effects of adverse pressure gradient on three-dimensional turbulent boundary-layer flow; effect of streamwise gradient of pressure on crossflow of particular interest. Production of turbulent kinetic energy grows rapidly in vicinity of step as result of steep mean-flow velocity gradients. Dissipation grows less quickly than production; leading to net growth with distance along streamline.
Nonaffine behavior of three-dimensional semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Hatami-Marbini, Hamed
2016-04-01
Three-dimensional semiflexible polymer networks are the structural building blocks of various biological and structural materials. Previous studies have primarily used two-dimensional models for understanding the behavior of these networks. In this paper, we develop a three-dimensional nonaffinity measure capable of providing direct comparison with continuum level homogenized quantities, i.e., strain field. The proposed nonaffinity measure is capable of capturing possible anisotropic microstructures of the filamentous networks. This strain-based nonaffinity measure is used to probe the mechanical behavior at different length scales and investigate the effects of network mechanical and microstructural properties. Specifically, it is found that although all nonaffinity measure components have a power-law variation with the probing length scale, the degree of nonaffinity decreases with increasing the length scale of observation. Furthermore, the amount of nonaffinity is a function of network fiber density, bending stiffness of the constituent filaments, and the network architecture. Finally, it is found that the two power-law scaling regimes previously reported for two-dimensional systems do not appear in three-dimensional networks. Also, unlike two-dimensional models, the exponent of the power-law relation depends weakly on the density of the three-dimensional networks.
Yttrium oxide based three dimensional metamaterials for visible light cloaking
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene
2014-04-01
Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.
Secondary three-dimensional instability in compressible boundary layers
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1989-01-01
Three dimensional linear secondary instability theory is extended for compressible boundary layers on a flat plate in the presence of finite amplitude Tollmien-Schlichting waves. The focus is on principal parametric resonance responsible for strong growth of subharmonics in low disturbance environment.
Three dimensional geometric modeling of processing-tomatoes
Technology Transfer Automated Retrieval System (TEKTRAN)
Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...
Three-dimensional manifolds with special Cotton tensor
NASA Astrophysics Data System (ADS)
Calviño-Louzao, E.; García-Río, E.; Seoane-Bascoy, J.; Vázquez-Lorenzo, R.
2015-10-01
The Cotton tensor of three-dimensional Walker manifolds is investigated. A complete description of all locally conformally flat Walker three-manifolds is given, as well as that of Walker manifolds whose Cotton tensor is either a Codazzi or a Killing tensor.
A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy
ERIC Educational Resources Information Center
Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.
2010-01-01
Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
Seeking significance in three-dimensional protein structure comparisons.
Mizuguchi, K; Go, N
1995-06-01
What is the significance of three-dimensional structural similarity? This fundamental question still remains unanswered in spite of advances in automatic structure comparison methods that have been made in the last few years. The answer to this question will give us a much deeper insight into the principles of protein architecture. PMID:7583636
Speed and pressure recording in three-dimensional flow
NASA Technical Reports Server (NTRS)
Krisam, F
1932-01-01
Van der Megge Zijnen's spherical Pitot tube with its 5 test holes insures a simultaneous record of static pressure and magnitude and direction of velocity in three-dimensional flow. The report treats the method as well as the range of application of this Pitot in the light of modern knowledge on flow around spheres.
A three dimensional calculation of elastic equilibrium for composite materials
NASA Technical Reports Server (NTRS)
Lustman, Liviu R.; Rose, Milton E.
1988-01-01
A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.