Science.gov

Sample records for nonlinear gyrokinetic particle

  1. Nonlinear gyrokinetic equations

    SciTech Connect

    Dubin, D.H.E.; Krommes, J.A.; Oberman, C.; Lee, W.W.

    1983-03-01

    Nonlinear gyrokinetic equations are derived from a systematic Hamiltonian theory. The derivation employs Lie transforms and a noncanonical perturbation theory first used by Littlejohn for the simpler problem of asymptotically small gyroradius. For definiteness, we emphasize the limit of electrostatic fluctuations in slab geometry; however, there is a straight-forward generalization to arbitrary field geometry and electromagnetic perturbations. An energy invariant for the nonlinear system is derived, and various of its limits are considered. The weak turbulence theory of the equations is examined. In particular, the wave kinetic equation of Galeev and Sagdeev is derived from an asystematic truncation of the equations, implying that this equation fails to consider all gyrokinetic effects. The equations are simplified for the case of small but finite gyroradius and put in a form suitable for efficient computer simulation. Although it is possible to derive the Terry-Horton and Hasegawa-Mima equations as limiting cases of our theory, several new nonlinear terms absent from conventional theories appear and are discussed.

  2. Gyrokinetic particle simulation model

    SciTech Connect

    Lee, W.W.

    1986-07-01

    A new type of particle simulation model based on the gyrophase-averaged Vlasov and Poisson equations is presented. The reduced system, in which particle gyrations are removed from the equations of motion while the finite Larmor radius effects are still preserved, is most suitable for studying low frequency microinstabilities in magnetized plasmas. It is feasible to simulate an elongated system (L/sub parallel/ >> L/sub perpendicular/) with a three-dimensional grid using the present model without resorting to the usual mode expansion technique, since there is essentially no restriction on the size of ..delta..x/sub parallel/ in a gyrokinetic plasma. The new approach also enables us to further separate the time and spatial scales of the simulation from those associated with global transport through the use of multiple spatial scale expansion. Thus, the model can be a very efficient tool for studying anomalous transport problems related to steady-state drift-wave turbulence in magnetic confinement devices. It can also be applied to other areas of plasma physics.

  3. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-15

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Koenies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  4. High frequency gyrokinetic particle simulation

    SciTech Connect

    Kolesnikov, R. A.; Lee, W. W.; Qin, H.; Startsev, E.

    2007-07-15

    The gyrokinetic approach for arbitrary frequency dynamics in magnetized plasmas is explored, using the gyrocenter-gauge kinetic theory. Contrary to low-frequency gyrokinetics, which views each particle as a rigid charged ring, arbitrary frequency response of a particle is described by a quickly changing Kruskal ring. This approach allows the separation of gyrocenter and gyrophase responses and thus allows for, in many situations, larger time steps for the gyrocenter push than for the gyrophase push. The gyrophase response which determines the shape of Kruskal rings can be described by a Fourier series in gyrophase for some problems, thus allowing control over the cyclotron harmonics at which the plasma responds. A computational algorithm for particle-in-cell simulation based on this concept has been developed. An example of the ion Bernstein wave is used to illustrate its numerical properties, and comparison with a direct Lorentz-force approach is presented.

  5. Electromagnetic nonlinear gyrokinetics with polarization drift

    NASA Astrophysics Data System (ADS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  6. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  7. Nonlinear gyrokinetic theory for finite-BETA plasmas

    SciTech Connect

    Hahm, T.S.; Lee, W.W.; Brizard, A.

    1988-02-01

    A self-consistent and energy-conserving set of nonlinear gyrokinetic equations, consisting of the averaged Vlasov and Maxwell's equations for finite-..beta.. plasmas, is derived. The method utilized in the present investigation is based on the Hamiltonian formalism and Lie transformation. The resulting formation is valid for arbitrary values of k/perpendicular//rho//sub i/ and, therefore, is most suitable for studying linear and nonlinear evolution of microinstabilities in tokamak plasmas as well as other areas of plasma physics where the finite Larmor radius effects are important. Because the underlying Hamiltonian structure is preserved in the present formalism, these equations are directly applicable to numerical studies based on the existing gyrokinetic particle simulation techniques. 31 refs.

  8. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.

  9. Nonlinear electromagnetic gyrokinetic simulations of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Jenko, F.; Dorland, W.

    2001-12-01

    One of the central physics issues currently targeted by nonlinear gyrokinetic simulations is the role of finite-β effects. The latter change the MHD equilibrium, introduce new dynamical space and time scales, alter and enlarge the zoo of electrostatic microinstabilities and saturation mechanisms, and lead to turbulent transport along fluctuating magnetic field lines. It is shown that the electromagnetic effects on primarily electrostatic microinstabilities are generally weakly or moderately stabilizing. However, the saturation of these modes and hence the determination of the transport level in the quasi-stationary turbulent state can be dominated by nonlinear electromagnetic effects and yield surprising results. Despite this, the induced transport is generally electrostatic in nature well below the ideal ballooning limit.

  10. Nonlinear scattering term in the gyrokinetic Vlasov equation

    SciTech Connect

    Wang, Shaojie

    2013-08-15

    Nonlinear scattering term is found from the nonlinear gyrokinetic equation by decoupling the perturbed gyrocenter motion from the unperturbed motion. The gyro-center distribution function is determined by the well-understood unperturbed motion, with the effects of fields perturbation included in the nonlinear scattering term, which explicitly reveals the nonlinear stochastic dissipation on the time scale longer than the wave correlation time.

  11. Gyro-water-bag approach in nonlinear gyrokinetic turbulence

    SciTech Connect

    Besse, Nicolas Bertrand, Pierre

    2009-06-20

    Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (MHD, gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge computer resource request. An unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically-confined plasmas. The present paper addresses the derivation of the nonlinear gyro-water-bag model, its quasilinear approximation and their numerical approximations by Runge-Kutta semi-Lagrangian methods and Runge-Kutta discontinuous Galerkin schemes respectively.

  12. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    SciTech Connect

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2008-08-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρi<< ρθ¡ ~ LE ~ Lp << R (here ρi is the thermal ion Larmor radius and ρθ¡ = B/Bθ] ρi), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρi ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τi ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  13. Transport and discrete particle noise in gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Lee, W. W.

    2006-10-01

    We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.

  14. Visual interrogation of gyrokinetic particle simulations

    NASA Astrophysics Data System (ADS)

    Jones, Chad; Ma, Kwan-Liu; Sanderson, Allen; Myers, Lee Roy, Jr.

    2007-07-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data.

  15. Gyrokinetic particle simulation of neoclassical transport

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-02-01

    A time varying weighting ({delta} f) scheme for gyrokinetic particle simulation is applied to a steady state, multi-species simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated in these multispecies simulations that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the introduction of toroidal sheared flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory of Hinton and Wong. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  16. Gyrokinetic particle simulation of neoclassical transport

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-08-01

    A time varying weighting ({delta}{ital f} ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. Nonlinear Gyrokinetic Theory With Polarization Drift

    SciTech Connect

    L. Wang and T.S. Hahm

    2010-03-25

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)] .

  18. Second order gyrokinetic theory for particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-01

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.

  19. Gyrokinetic particle simulation of beta-induced Alfven eigenmode

    SciTech Connect

    Zhang, H. S.; Lin, Z.; Holod, I.; Xiao, Y.; Wang, X.; Zhang, W. L.

    2010-11-15

    The beta-induced Alfven eigenmode (BAE) in toroidal plasmas is studied using global gyrokinetic particle simulations. The BAE real frequency and damping rate measured in the initial perturbation simulation and in the antenna excitation simulation agree well with each other. The real frequency is slightly higher than the ideal magnetohydrodynamic (MHD) accumulation point frequency due to the kinetic effects of thermal ions. Simulations with energetic particle density gradient show exponential growth of BAE with a growth rate sensitive to the energetic particle temperature and density. The nonperturbative contributions by energetic particles modify the mode structure and reduce the frequency relative to the MHD theory. The finite Larmor radius effects of energetic particles reduce the BAE growth rate. Benchmarks between gyrokinetic particle simulation and hybrid MHD-gyrokinetic simulation show good agreement in BAE real frequency and mode structure.

  20. Gyrokinetic simulation studies on the energetic-particle-induced geodesic acoustic mode

    NASA Astrophysics Data System (ADS)

    Miki, Kazuhiro; Idomura, Yasuhiro

    2014-10-01

    Understanding of the energetic particles physics is of great interest in the future burning plasmas. Particularly, particle loss in the presence of EGAM may be critical for ITER. We thus need to know how EGAM is excited and interacts with turbulence. We here introduce energetic particles in a full-f gyrokinetic code (GT5D). (i) We find linear dynamics of the EGAM driven by bump-on-tail particle distributions. We examine flat-q, homogeneous, axisymmetric, electrostatic gyrokinetic simulations. Above a certain level of the beam intensity, an oscillatory mode grows with about a half of the standard GAM. The observed frequencies are consistent with the eigenmode analyses derived from the perturbed gyrokinetic equations. The theoretical analyses also indicate a bifurcation of the excited modes depending on q-value. Estimation of the finite-orbit-width effects can provide a size dependency of the EGAM growth rate. (ii) We find linear and nonlinear dynamics of the EGAM driven by slowing-down distributions. We examine the axisymmetric gyrokinetic simulations with DIII-D-like parameters. The observed growth rates and frequencies are consistent with results of other hybrid code. Furthermore, we will focus on nonlinear phase space dynamics, namely chirping mode. This work is supported by HPCI Strategic Program Field No.4: Next-Generation Industrial Innovations, funded by the MEXT, Japan.

  1. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  2. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    SciTech Connect

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.; Holland, C.; Howard, N. T.

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  3. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Jenko, F.; Bañón Navarro, A.; Bratanov, V.; Terry, P. W.; Pueschel, M. J.

    2016-07-01

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest in the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.

  4. Gyrokinetic particle simulation of a field reversed configuration

    NASA Astrophysics Data System (ADS)

    Fulton, D. P.; Lau, C. K.; Holod, I.; Lin, Z.; Dettrick, S.

    2016-01-01

    Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively. A field-aligned mesh is constructed for solving self-consistent electric fields using a semi-spectral solver in a partial torus FRC geometry. This new simulation capability has been successfully verified and driftwave instability in the FRC has been studied using the gyrokinetic simulation for the first time. Initial GTC simulations find that in the FRC core, the ion-scale driftwave is stabilized by the large ion gyroradius. In the SOL, the driftwave is unstable on both ion and electron scales.

  5. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    SciTech Connect

    White, A. E. Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; and others

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  6. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experimenta)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G.; Mikkelsen, D. R.; Edlund, E. M.; Kung, C.; Holland, C.; Candy, J.; Petty, C. C.; Reinke, M. L.; Theiler, C.

    2015-05-01

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  7. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    SciTech Connect

    Ogando, F.; Heikkinen, J. A.; Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S.

    2006-11-30

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

  8. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    SciTech Connect

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  9. Nonlinear Full-f Edge Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.; Umansky, M. V.

    2008-11-01

    TEMPEST is a nonlinear full-f 5D electrostatic gyrokinetic code for simulations of neoclassical and turbulent transport for tokamak plasmas. Given an initial density perturbation, 4D TEMPEST simulations show that the kinetic GAM exists in the edge in the form of outgoing waves [1], its radial scale is set by plasma profiles, and the ion temperature inhomogeneity is necessary for GAM radial propagation. From an initial Maxwellian distribution with uniform poloidal profiles on flux surfaces, the 5D TEMPEST simulations in a flux coordinates with Boltzmann electron model in a circular geometry show the development of neoclassical equilibrium, the generation of the neoclassical electric field due to neoclassical polarization, and followed by a growth of instability due to the spatial gradients. 5D TEMPEST simulations of kinetic GAM turbulent generation, radial propagation, and its impact on transport will be reported. [1] X. Q. Xu, Phys. Rev. E., 78 (2008).

  10. Nonlinear theory of drift-cyclotron kinetics and the possible breakdown of gyro-kinetics

    SciTech Connect

    Waltz, R. E.; Deng Zhao

    2013-01-15

    A nonlinear theory of drift-cyclotron kinetics (termed cyclo-kinetics here) is formulated to test the breakdown of the gyro-kinetic approximations. Six dimensional cyclo-kinetics can be regarded as an extension of five dimensional gyro-kinetics to include high-frequency cyclotron waves, which can interrupt the low-frequency gyro-averaging in the (sixth velocity grid) gyro-phase angle. Nonlinear cyclo-kinetics has no limit on the amplitude of the perturbations. Formally, there is no gyro-averaging when all cyclotron (gyro-phase angle) harmonics of the perturbed distribution function (delta-f) are retained. Retaining only the (low frequency) zeroth cyclotron harmonic in cyclo-kinetics recovers both linear and nonlinear gyro-kinetics. Simple recipes are given for converting continuum nonlinear delta-f gyro-kinetic transport simulation codes to cyclo-kinetics codes by retaining (at least some) higher cyclotron harmonics.

  11. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    SciTech Connect

    E. A. Belli; Hammett, G. W.; Dorland, W.

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  12. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulation

    SciTech Connect

    Howard, N. T.; Greenwald, M.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Mikkelsen, D. R.; Candy, J.

    2012-05-15

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  13. Measurement of plasma current dependent changes in impurity transport and comparison with nonlinear gyrokinetic simulationa)

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; White, A. E.; Reinke, M. L.; Ernst, D.; Podpaly, Y.; Candy, J.

    2012-05-01

    Measured impurity transport coefficients are found to demonstrate a strong dependence on plasma current in the core of Alcator C-Mod. These measurements are compared directly with linear and nonlinear gyrokinetic simulation in an attempt to both qualitatively and quantitatively reproduce the measured impurity transport. Discharges constituting a scan of plasma current from 0.6 to 1.2 MA were performed during the 2010 run campaign. The impurity transport from these discharges was determined using a novel set of spectroscopic diagnostics available on Alcator C-Mod. This diagnostic suite allowed for the effective constraint of impurity transport coefficient profiles inside of r/a = 0.6. A decrease in the measured impurity diffusivity and inward convection is found with increased plasma current. Global, nonlinear gyrokinetic simulations were performed using the GYRO code [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] for all discharges in the experimental scan and are found to reproduce the experimental trends, while demonstrating good quantitative agreement with measurement. A more comprehensive quantitative comparison was performed on the 0.8 MA discharge of the current scan which demonstrates that simultaneous agreement between experiment and simulation in both the impurity particle transport and ion heat transport channels is attainable within experimental uncertainties.

  14. Linear and nonlinear verification of gyrokinetic microstability codes

    SciTech Connect

    Bravenec, R. V.; Candy, J.; Barnes, M.

    2011-12-15

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2[W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of

  15. Linear and nonlinear verification of gyrokinetic microstability codes

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Candy, J.; Barnes, M.; Holland, C.

    2011-12-01

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2 [W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of

  16. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    SciTech Connect

    John E. Krommes

    2010-09-27

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a "pull-back" (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution -- although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  17. Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; McKee, G. R.; Shafer, M. W.; Holland, C.; Tynan, G. R.; Austin, M. E.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-05-15

    For the first time, profiles (0.3<{rho}<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At {rho}=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at {rho}=0.75 do not match either the experimentally derived transport properties or the measured fluctuation levels.

  18. Particle pinch and collisionality in gyrokinetic simulations of tokamak plasma turbulence

    SciTech Connect

    Angioni, C.; Candy, J.; Waltz, R. E.; Fable, E.; Maslov, M.; Weisen, H.; Peeters, A. G.

    2009-06-15

    The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulence in tokamaks reveal a complex dependence of the particle flux as a function of the turbulent spatial scale and of the velocity space as collisionality is increased. At experimental values of collisionality, the particle flux is found close to the null, in agreement with the experiment, due to the balance between inward and outward contributions at small and large scales, respectively. These simulations provide full theoretical support to the prediction of a peaked density profile in a future nuclear fusion reactor.

  19. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-01

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  20. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-15

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.

  1. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGESBeta

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  2. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Chang, C. S.

    2016-04-01

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  3. Gyrokinetic particle simulations of kinetic ballooning mode in tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Holod, Ihor

    2014-10-01

    The pedestal height and width in tokamak H-mode operation are widely believed to be constrained by mesoscale peeling-ballooning modes and microscopic kinetic ballooning modes (KBM). However, direct evidences of the KBM turbulence in pedestal are very limited. The role of the drift-Alfvenic microturbulence during the pedestal recovery period is not clear. Here we use gyrokinetic toroidal code (GTC) to study the edge instability of a DIII-D discharge #131997 using realistic geometry and plasma profiles and focusing on the pedestal region with steep pressure gradient. First, electrostatic simulations find a reactive trapped electron mode with an unusual eigenmode structure, which peaks at the poloidal angle θ = +/- π /2. The electron collisions decrease the growth rate by about one-half. Next, the plasma pressure is scanned in GTC electromagnetic simulations to identify the boundary for the KBM onset. At the finite electron beta an electromagnetic instability is found with KBM characteristics. The linear growth rate increases with βe and the mode propagation is in the ion diamagnetic direction. Nonlinear simulations of the KBM turbulence will also be presented. Work supported by DOE Grant DE-SC0010416, and in collaborations with GTC team.

  4. Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles

    SciTech Connect

    Xiao, Yong; Holod, Ihor; Wang, Zhixuan; Lin, Zhihong; Zhang, Taige

    2015-02-15

    Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a critical step in the code–experiment validation process. These new developments include numerical equilibrium representation using B-splines, a new Poisson solver based on finite difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for general geometry, and improvements on the conventional four-point gyroaverage with nonuniform background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly developed nonuniform loading method provides a modified radial transport profile to that of the conventional uniform loading method.

  5. Gyrokinetic simulations of mesoscale energetic particle-driven Alfvenic turbulent transport embedded in microturbulence

    SciTech Connect

    Bass, E. M.; Waltz, R. E.

    2010-11-15

    Energetic particle (EP) transport from local high-n toroidal Alfven eigenmodes (TAEs) and energetic particle modes (EPMs) is simulated with a gyrokinetic code. Linear and nonlinear simulations have identified a parameter range where the longwave TAE and EPM are unstable alongside the well-known ion-temperature-gradient (ITG) and trapped-electron-mode (TEM) instabilities. A new eigenvalue solver in GYRO facilitates this mode identification. States of nonlinearly saturated local TAE/EPM turbulent intensity are identified, showing a 'soft' transport threshold for enhanced energetic particle transport against the TAE/EPM drive from the EP pressure gradient. The very long-wavelength (mesoscale) TAE/EPM transport is saturated partially by nonlinear interaction with microturbulent ITG/TEM-driven zonal flows. Fixed-gradient-length, nonlinearly saturated states are accessible over a relatively narrow range of EP pressure gradient. Within this range, and in the local limit employed, TAE/EPM-driven transport more closely resembles drift-wave microturbulent transport than 'stiff' ideal MHD transport with a clamped critical total pressure gradient. At a higher, critical EP pressure gradient, fixed-gradient nonlinear saturation fails: EP transport increases without limit and background transport decreases. Presumably saturation is then obtained by relaxation of the EP pressure gradient to near this critical EP pressure gradient. If the background plasma gradients driving the ITG/TEM turbulence and zonal flows are weakened, the critical gradient collapses to the TAE/EPM linear stability threshold. Even at the critical EP pressure gradient there is no evidence that TAE/EPM instability significantly increases transport in the background plasma channels.

  6. Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas

    SciTech Connect

    Candy, J.; Waltz, R. E.; Parker, S. E.; Chen, Y.

    2006-07-15

    The influence of the parallel nonlinearity on transport in gyrokinetic simulations is assessed for values of {rho}{sub *} which are typical of current experiments. Here, {rho}{sub *}={rho}{sub s}/a is the ratio of gyroradius, {rho}{sub s}, to plasma minor radius, a. The conclusion, derived from simulations with both GYRO [J. Candy and R. E. Waltz, J. Comput. Phys., 186, 585 (2003)] and GEM [Y. Chen and S. E. Parker J. Comput. Phys., 189, 463 (2003)] is that no measurable effect of the parallel nonlinearity is apparent for {rho}{sub *}<0.012. This result is consistent with scaling arguments, which suggest that the parallel nonlinearity should be O({rho}{sub *}) smaller than the ExB nonlinearity. Indeed, for the plasma parameters under consideration, the magnitude of the parallel nonlinearity is a factor of 8{rho}{sub *} smaller (for 0.000 75<{rho}{sub *}<0.012) than the other retained terms in the nonlinear gyrokinetic equation.

  7. Gyrokinetic study of the role of β on electron particle transport in tokamaks

    NASA Astrophysics Data System (ADS)

    Hein, T.; Angioni, C.; Fable, E.; Candy, J.

    2010-10-01

    Electromagnetic effects on the radial transport of electrons in the core of tokamak plasmas are studied by means of linear and nonlinear gyrokinetic simulations with the code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and by an analytical derivation. The impact of a finite β, that is, a finite ratio of the plasma pressure to the magnetic pressure, is considered on the fluctuations of the magnetic field through Ampére's law, as well as on the geometrical modification of the vertical drift produced by the Shafranov shift in the magnetic equilibrium, which, for realistic descriptions, has to be included in both electrostatic and electromagnetic modeling. The condition of turbulent particle flux at the null, which allows the determination of stationary logarithmic density gradients when neoclassical transport and particle sources are negligible, is investigated for increasing values of β, in regimes of ion temperature gradient and trapped electron mode turbulence. The loss of adiabaticity of passing electrons produced by fluctuations in the magnetic vector potential produces an outward convection. When the magnetic equilibrium geometry is kept fixed, this induces a strong reduction of the stationary logarithmic density gradient with increasing β. This effect is partly compensated by the geometrical effect on the vertical drift. This compensation effect, however, is significantly weaker in nonlinear simulations as compared to quasilinear calculations. A detailed comparison between quasilinear and nonlinear results reveals that the predicted value of the logarithmic density gradient is highly sensitive on the assumptions on the wave number spectrum applied in the quasilinear model. The qualitative consistency of the theoretical predictions with the experimental results obtained so far on the dependence of density peaking on β is discussed by considering the additional impact, with increasing β, of a particle source delivered by neutral beam

  8. Gyrokinetic study of the role of {beta} on electron particle transport in tokamaks

    SciTech Connect

    Hein, T.; Angioni, C.; Fable, E.; Candy, J.

    2010-10-15

    Electromagnetic effects on the radial transport of electrons in the core of tokamak plasmas are studied by means of linear and nonlinear gyrokinetic simulations with the code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and by an analytical derivation. The impact of a finite {beta}, that is, a finite ratio of the plasma pressure to the magnetic pressure, is considered on the fluctuations of the magnetic field through Ampere's law, as well as on the geometrical modification of the vertical drift produced by the Shafranov shift in the magnetic equilibrium, which, for realistic descriptions, has to be included in both electrostatic and electromagnetic modeling. The condition of turbulent particle flux at the null, which allows the determination of stationary logarithmic density gradients when neoclassical transport and particle sources are negligible, is investigated for increasing values of {beta}, in regimes of ion temperature gradient and trapped electron mode turbulence. The loss of adiabaticity of passing electrons produced by fluctuations in the magnetic vector potential produces an outward convection. When the magnetic equilibrium geometry is kept fixed, this induces a strong reduction of the stationary logarithmic density gradient with increasing {beta}. This effect is partly compensated by the geometrical effect on the vertical drift. This compensation effect, however, is significantly weaker in nonlinear simulations as compared to quasilinear calculations. A detailed comparison between quasilinear and nonlinear results reveals that the predicted value of the logarithmic density gradient is highly sensitive on the assumptions on the wave number spectrum applied in the quasilinear model. The qualitative consistency of the theoretical predictions with the experimental results obtained so far on the dependence of density peaking on {beta} is discussed by considering the additional impact, with increasing {beta}, of a particle source delivered

  9. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    SciTech Connect

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  10. Energetically consistent collisional gyrokinetics

    DOE PAGESBeta

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-30

    Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  11. Global gyrokinetic particle-in-cell simulations of internal kink instabilities

    SciTech Connect

    Mishchenko, Alexey; Zocco, Alessandro

    2012-12-15

    Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.

  12. Nonlinear gyrokinetic theory and its application to computation of the gyrocenter motion in ripple field

    NASA Astrophysics Data System (ADS)

    Zhu, Siqiang; Xu, Yingfeng; Wang, Shaojie

    2016-06-01

    The nonlinear gyrokinetic equation with full electromagnetic potential perturbations is derived by using the two-step transform procedure. The second-order transformed Hamiltonian can be simplified as /1 2 δ A∥ 2 , instead of /1 2 δ A 2 in the long-wave-length limit. A numerical code based on the I-transform method is improved to compute the gyrocenter orbit in the TFTR tokamak with a ripple field, and the numerical results indicate that the collisionless stochastic diffusion criterion agrees well with the theoretical prediction.

  13. Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations

    NASA Astrophysics Data System (ADS)

    Bottino, A.; Sonnendrücker, E.

    2015-10-01

    > The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.

  14. Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-β Plasmas

    SciTech Connect

    Lin, Zhihong

    2014-03-13

    Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

  15. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    SciTech Connect

    Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V

    2008-09-18

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

  16. Nonlinear Gyrokinetic Turbulence Simulations of the NSTX Spherical Torus

    NASA Astrophysics Data System (ADS)

    Peterson, J. Luc; Hammett, G. W.; Mikkelsen, D.; Kaye, S.; Mazzucato, E.; Bell, R.; Leblanc, B.; Yuh, H.; Smith, D.; Candy, J.; Waltz, R. E.; Belli, E. A.; Staebler, G. M.; Kinsey, J.

    2010-11-01

    The National Spherical Torus Experiment provides a unique environment for the study of electron turbulence and transport. We present nonlinear GYROootnotetextJ. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003). simulations of microturbulence in NSTX discharges and make comparisons between numerically simulated and experimentally measured levels of electron-scale turbulence. In particular we examine the effects of magnetic shear, ExB shearing and collisionality on turbulence driven by the Electron Temperature Gradient (ETG) mode, while paying attention to the roles of electromagnetic fluctuations, kinetic ions and realistic experimental NSTX parameters. We also investigate the interplay between electron turbulence and transport using the TGYROootnotetextJ. Candy et al., Phys. Plasmas 16, 060704 (2009). simulation suite. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of the National Center for Computational Sciences at ORNL, under DOE Contract DE-AC05-00OR22725.

  17. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  18. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    SciTech Connect

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  19. Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation

    SciTech Connect

    Holod, I.; Lin, Z.

    2013-03-15

    The fluid-kinetic hybrid electron model is verified in global gyrokinetic particle simulation of linear electromagnetic drift-Alfvenic instabilities in tokamak. In particular, we have recovered the {beta}-stabilization of the ion temperature gradient mode, transition to collisionless trapped electron mode, and the onset of kinetic ballooning mode as {beta}{sub e} (ratio of electron kinetic pressure to magnetic pressure) increases.

  20. Quantitative comparison of experimental impurity transport with nonlinear gyrokinetic simulation in an Alcator C-Mod L-mode plasma

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; Greenwald, M.; Mikkelsen, D. R.; Reinke, M. L.; White, A. E.; Ernst, D.; Podpaly, Y.; Candy, J.

    2012-06-01

    Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 ⩽ r/a ⩽ 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.

  1. Feasibility study for a correlation electron cyclotron emission turbulence diagnostic based on nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Mikkelsen, D. R.; Greenwald, M.; Candy, J.; Waltz, R. E.

    2011-11-01

    This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (kθρs < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod.

  2. Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Scott, Parker

    2011-05-02

    This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of

  3. Global gyrokinetic models for energetic particle driven Alfvén instabilities in 3D equilibria

    NASA Astrophysics Data System (ADS)

    Spong, Don; Holod, Ihor

    2015-11-01

    The GTC global gyrokinetic PIC model has been adapted to 3D VMEC equilibria and provides a new method for the analysis of Alfvénic instabilities in stellarators, 3D tokamaks, and helical RFP states. The gyrokinetic orderings (k||/k⊥ << 1, ω/Ωci << 1, ρEP/L << 1) are applicable to a range of energetic particle driven instabilities that have been observed in 3D configurations. Applications of this model to stellarators have indicated that a variety of different Alfvén instabilities can be excited, depending on the toroidal mode number, fast ion average energy and fast ion density profile. Both an LHD discharge where bursting n = 1 Alfvén activity in the TAE gap was observed and a W7-X case have been examined. TAE,/EAE/GAE modes have been found in the simulations, depending on the mode family and fast ion profiles used. The dynamical evolution of the instabilities shows the field period coupling between n and n + Nfp expected for a stellarator. The development of gyrofluid reduced models that can capture relevant physics aspects of the gyrokinetic models will also be discussed. Research sponsored by the U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and the GSEP SciDAC Center.

  4. Gyrokinetic particle simulations of reversed shear Alfven eigenmode excited by antenna and fast ions

    SciTech Connect

    Deng Wenjun; Holod, Ihor; Xiao Yong; Lin Zhihong; Wang Xin; Zhang Wenlu

    2010-11-15

    Global gyrokinetic particle simulations of reversed shear Alfven eigenmode (RSAE) have been successfully performed and verified. We have excited the RSAE by initial perturbation, by external antenna, and by energetic ions. The RSAE excitation by antenna provides verifications of the mode structure, the frequency, and the damping rate. When the kinetic effects of the background plasma are artificially suppressed, the mode amplitude shows a near-linear growth. With kinetic thermal ions, the mode amplitude eventually saturates due to the thermal ion damping. The damping rates measured from the antenna excitation and from the initial perturbation simulation agree very well. The RSAE excited by fast ions shows an exponential growth. The finite Larmor radius effects of the fast ions are found to significantly reduce the growth rate. With kinetic thermal ions and electron pressure, the mode frequency increases due to the elevation of the Alfven continuum by the geodesic compressibility. The nonperturbative contributions from the fast ions and kinetic thermal ions modify the mode structure relative to the ideal magnetohydrodynamic (MHD) theory. The gyrokinetic simulations have been benchmarked with extended hybrid MHD-gyrokinetic simulations.

  5. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Munoz Sepulveda, Patricio Alejandro; Büchner, Jörg; Kilian, Patrick; Told, Daniel; Jenko, Frank

    2016-07-01

    Fully kinetic Particle-in-Cell (PIC) simulations of (strong) guide-field reconnection can be computationally very demanding, due to the intrinsic stability and accuracy conditions required by this numerical method. One convenient approach to circumvent this issue is using gyrokinetic theory, an approximation of the Vlasov-Maxwell equations for strongly magnetized plasmas that eliminates the fast gyromotion, and thus reduces the computational cost. Although previous works have started to compare the features of reconnection between both approaches, a complete understanding of the differences is far from being complete. This knowledge is essential to discern the limitations of the gyrokinetic simulations of magnetic reconnection when applied to scenarios with moderate guide fields, such as the Solar corona, in contrast to most of the fusion/laboratory plasmas. We extend a previous work by our group, focused in the differences in the macroscopic flows, by analyzing the heating processes and non-thermal features developed by reconnection between both plasma approximations. We relate these processes by identifying some high-frequency cross-streaming instabilities appearing only in the fully kinetic approach. We characterize the effects of these phenonema such as anisotropic electron heating, beam formation and turbulence under different parameter regimes. And finally, we identify the conditions under which these instabilities tends to become negligible in the fully kinetic model, and thus a comparison with gyrokinetic theory becomes more reliable.

  6. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  7. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Migliano, P.; Buchholz, R.; Grosshauser, S.; Weikl, A.; Zarzoso, D.; Casson, F. J.; Poli, E.; Peeters, A. G.

    2016-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable {{Δ }\\prime}>0 current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as opposed to the electron diamagnetic direction in which it rotates when no turbulence is present. In addition, it is found that the mode rotation slows as the island grows in size.

  8. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

    SciTech Connect

    Chame, Jacqueline

    2011-05-27

    The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.

  9. Gyrokinetic particle simulation of fast-electron driven beta-induced Aflvén eigenmode

    NASA Astrophysics Data System (ADS)

    Cheng, Junyi; Zhang, Wenlu; Lin, Zhihong; Holod, Ihor; Li, Ding; Chen, Yang; Cao, Jintao

    2016-05-01

    The fast-electron driven beta-induced Alfvén eigenmode (e-BAE) in toroidal plasmas is investigated for the first time using global gyrokinetic particle simulations, where the fast electron is described by the drift kinetic equation. The simulation shows that the e-BAE propagates in the fast electron diamagnetic direction and its polarization is close to an ideal MHD mode. The phase space structure shows that only the fast electron processional resonance is responsible for the e-BAE excitations while fast-ion driven BAE can be excited through all the channels, including transit, bounce, and processional resonance.

  10. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Ma, Kwan-Liu

    2011-12-21

    In this project, we have developed techniques for visualizing large-scale time-varying multivariate particle and field data produced by the GPS_TTBP team. Our basic approach to particle data visualization is to provide the user with an intuitive interactive interface for exploring the data. We have designed a multivariate filtering interface for scientists to effortlessly isolate those particles of interest for revealing structures in densely packed particles as well as the temporal behaviors of selected particles. With such a visualization system, scientists on the GPS-TTBP project can validate known relationships and temporal trends, and possibly gain new insights in their simulations. We have tested the system using over several millions of particles on a single PC. We will also need to address the scalability of the system to handle billions of particles using a cluster of PCs. To visualize the field data, we choose to use direct volume rendering. Because the data provided by PPPL is on a curvilinear mesh, several processing steps have to be taken. The mesh is curvilinear in nature, following the shape of a deformed torus. Additionally, in order to properly interpolate between the given slices we cannot use simple linear interpolation in Cartesian space but instead have to interpolate along the magnetic field lines given to us by the scientists. With these limitations, building a system that can provide an accurate visualization of the dataset is quite a challenge to overcome. In the end we use a combination of deformation methods such as deformation textures in order to fit a normal torus into their deformed torus, allowing us to store the data in toroidal coordinates in order to take advantage of modern GPUs to perform the interpolation along the field lines for us. The resulting new rendering capability produces visualizations at a quality and detail level previously not available to the scientists at the PPPL. In summary, in this project we have

  11. Gyrokinetic particle simulation of beta-induced Alfven-acoustic eigenmode

    NASA Astrophysics Data System (ADS)

    Zhang, H. S.; Liu, Y. Q.; Lin, Z.; Zhang, W. L.

    2016-04-01

    The beta-induced Alfven-acoustic eigenmode (BAAE) in toroidal plasmas is verified and studied by global gyrokinetic particle simulations. When ion temperature is much lower than electron temperature, the existence of the weakly damped BAAE is verified in the simulations using initial perturbation, antenna excitation, and energetic particle excitation, respectively. When the ion temperature is comparable to the electron temperature, the unstable BAAE can be excited by realistic energetic particle density gradient, even though the stable BAAE (in the absence of energetic particles) is heavily damped by the thermal ions. In the simulations with reversed magnetic shear, BAAE frequency sweeping is observed and poloidal mode structure has a triangle shape with a poloidal direction similar to that observed in tokamak experiments. The triangle shape changes the poloidal direction, and no frequency sweeping is found in the simulations with normal magnetic shear.

  12. Quasisteady and steady states in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Bottino, A.; Angelino, P.

    2009-05-15

    Collisionless delta-f gyrokinetic particle-in-cell simulations suffer from the entropy paradox, in which the entropy grows linearly in time while low-order moments are saturated. As a consequence, these simulations do not reach a steady state and are unsuited to make quantitative predictions. A solution to this issue is the introduction of artificial dissipation. The notion of steady state in gyrokinetic simulations is studied by deriving an evolution equation for the fluctuation entropy and applying it to the global collisionless particle-in-cell code ORB5 [S. Jolliet et al., Comput. Phys. Commun. 177, 409 (2007)]. It is shown that a recently implemented noise-control algorithm [B. F. McMillan et al., Phys. Plasmas 15, 052308 (2008)] based on a W-stat provides the necessary dissipation to reach a steady state. The two interesting situations of decaying and driven turbulence are considered. In addition, it is shown that a separate heating algorithm, not based on a W-stat, does not lead to a statistical steady state.

  13. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    SciTech Connect

    Chen, Yang

    2012-03-07

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects

  14. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    SciTech Connect

    Kuley, A. Lin, Z.; Bao, J.; Wei, X. S.; Xiao, Y.

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  15. Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma

    SciTech Connect

    Viktor K. Decyk

    2008-04-24

    The UCLA work on this grant was to design and help implement an object-oriented version of the GTC code, which is written in Fortran90. The GTC code is the main global gyrokinetic code used in this project, and over the years multiple, incompatible versions have evolved. The reason for this effort is to allow multiple authors to work together on GTC and to simplify future enhancements to GTC. The effort was designed to proceed incrementally. Initially, an upper layer of classes (derived types and methods) was implemented which called the original GTC code 'under the hood.' The derived types pointed to data in the original GTC code, and the methods called the original GTC subroutines. The original GTC code was modified only very slightly. This allowed one to define (and refine) a set of classes which described the important features of the GTC code in a new, more abstract way, with a minimum of implementation. Furthermore, classes could be added one at a time, and at the end of the each day, the code continued to work correctly. This work was done in close collaboration with Y. Nishimura from UC Irvine and Stefan Ethier from PPPL. Ten classes were ultimately defined and implemented: gyrokinetic and drift kinetic particles, scalar and vector fields, a mesh, jacobian, FLR, equilibrium, interpolation, and particles species descriptors. In the second state of this development, some of the scaffolding was removed. The constructors in the class objects now allocated the data and the array data in the original GTC code was removed. This isolated the components and now allowed multiple instantiations of the objects to be created, in particular, multiple ion species. Again, the work was done incrementally, one class at a time, so that the code was always working properly. This work was done in close collaboration with Y. Nishimura and W. Zhang from UC Irvine and Stefan Ethier from PPPL. The third stage of this work was to integrate the capabilities of the various versions of

  16. Gyrokinetic particle-in-cell simulations of Alfvén eigenmodes in presence of continuum effects

    SciTech Connect

    Mishchenko, Alexey Könies, Axel; Hatzky, Roman

    2014-05-15

    First-principle gyrokinetic particle-in-cell simulations of a global Toroidal Alfvén Eigenmode (TAE) are undertaken in the presence of a strong coupling with the continuum. Effects of the bulk plasma temperature on the interplay between the TAE and Kinetic Alfvén Waves (KAWs) are investigated. A global TAE-KAW structure is identified which appears to be more unstable with respect to the fast ions than a simple (fluid-like) TAE mode.

  17. Nonlinear gyrokinetic theory based on a new method and computation of the guiding-center orbit in tokamaks

    SciTech Connect

    Xu, Yingfeng Dai, Zongliang; Wang, Shaojie

    2014-04-15

    The nonlinear gyrokinetic theory in the tokamak configuration based on the two-step transform is developed; in the first step, we transform the magnetic potential perturbation to the Hamiltonian part, and in the second step, we transform away the gyroangle-dependent part of the perturbed Hamiltonian. Then the I-transform method is used to decoupled the perturbation part of the motion from the unperturbed motion. The application of the I-transform method to the computation of the guiding-center orbit and the guiding-center distribution function in tokamaks is presented. It is demonstrated that the I-transform method of the orbit computation which involves integrating only along the unperturbed orbit agrees with the conventional method which integrates along the full orbit. A numerical code based on the I-transform method is developed and two numerical examples are given to verify the new method.

  18. SciDAC Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas

    SciTech Connect

    Lin, Zhihong

    2013-12-18

    During the first year of the SciDAC gyrokinetic particle simulation (GPS) project, the GPS team (Zhihong Lin, Liu Chen, Yasutaro Nishimura, and Igor Holod) at the University of California, Irvine (UCI) studied the tokamak electron transport driven by electron temperature gradient (ETG) turbulence, and by trapped electron mode (TEM) turbulence and ion temperature gradient (ITG) turbulence with kinetic electron effects, extended our studies of ITG turbulence spreading to core-edge coupling. We have developed and optimized an elliptic solver using finite element method (FEM), which enables the implementation of advanced kinetic electron models (split-weight scheme and hybrid model) in the SciDAC GPS production code GTC. The GTC code has been ported and optimized on both scalar and vector parallel computer architectures, and is being transformed into objected-oriented style to facilitate collaborative code development. During this period, the UCI team members presented 11 invited talks at major national and international conferences, published 22 papers in peer-reviewed journals and 10 papers in conference proceedings. The UCI hosted the annual SciDAC Workshop on Plasma Turbulence sponsored by the GPS Center, 2005-2007. The workshop was attended by about fifties US and foreign researchers and financially sponsored several gradual students from MIT, Princeton University, Germany, Switzerland, and Finland. A new SciDAC postdoc, Igor Holod, has arrived at UCI to initiate global particle simulation of magnetohydrodynamics turbulence driven by energetic particle modes. The PI, Z. Lin, has been promoted to the Associate Professor with tenure at UCI.

  19. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.; Holland, C.; Tynan, G. R.; Austin, M. E.; McKee, G. R.; Shafer, M. W.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.

    2008-10-15

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w{sub o}{approx}1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k{sub {theta}}{<=}1.8 cm{sup -1} and k{sub r}{<=}4 cm{sup -1}, relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5

  20. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulationsa)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.; Holland, C.; Tynan, G. R.; Austin, M. E.; McKee, G. R.; Shafer, M. W.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.; Makowski, M. A.

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with wo˜1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are kθ≤1.8 cm-1 and kr≤4 cm-1, relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5

  1. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code. PMID:19044712

  2. Nonlinear dynamics of beta-induced Alfvén eigenmode driven by energetic particles.

    PubMed

    Wang, X; Briguglio, S; Chen, L; Di Troia, C; Fogaccia, G; Vlad, G; Zonca, F

    2012-10-01

    Nonlinear saturation of a beta-induced Alfvén eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyrokinetic code. Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the evidence of resonance detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial nonuniformity and mode structure. PMID:23214643

  3. Geometric Gyrokinetic Theory for Edge Plasma

    SciTech Connect

    Qin, H; Cohen, R H; Nevins, W M; Xu, X Q

    2007-01-18

    It turns out that gyrokinetic theory can be geometrically formulated as special cases of a geometrically generalized Vlasov-Maxwell system. It is proposed that the phase space of the spacetime is a 7-dimensional fiber bundle P over the 4-dimensional spacetime M, and that a Poincare-Cartan-Einstein 1-form {gamma} on the 7-dimensional phase space determines particles worldlines in the phase space. Through Liouville 6-form {Omega} and fiber integral, the 1-form {gamma} also uniquely defines a geometrically generalized Vlasov-Maxwell system as a field theory for the collective electromagnetic field. The geometric gyrokinetic theory is then developed as a special case of the geometrically generalized Vlasov-Maxwell system. In its most general form, gyrokinetic theory is about a symmetry, called gyro-symmetry, for magnetized plasmas, and the 1-form {gamma} again uniquely defines the gyro-symmetry. The objective is to decouple the gyro-phase dynamics from the rest of particle dynamics by finding the gyro-symmetry in {gamma}. Compared with other methods of deriving the gyrokinetic equations, the advantage of the geometric approach is that it allows any approximation based on mathematical simplification or physical intuition to be made at the 1-form level, and yet the field theories still have the desirable exact conservation properties such as phase space volume conservation and energy-momentum conservation if the 1-form does not depend on the spacetime coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge plasmas is then derived using this geometric method. This formalism allows large-amplitude, time-dependent background electromagnetic fields to be developed fully nonlinearly in addition to small-amplitude, short-wavelength electromagnetic perturbations. The fact that we adopted the geometric method in the present study does not necessarily imply that the major results reported here can not be achieved using classical methods. What the

  4. Continuum Edge Gyrokinetic Theory and Simulations

    SciTech Connect

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V

    2007-01-09

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  5. Generalized Covariant Gyrokinetic Dynamics of Magnetoplasmas

    SciTech Connect

    Cremaschini, C.; Tessarotto, M.; Nicolini, P.; Beklemishev, A.

    2008-12-31

    A basic prerequisite for the investigation of relativistic astrophysical magnetoplasmas, occurring typically in the vicinity of massive stellar objects (black holes, neutron stars, active galactic nuclei, etc.), is the accurate description of single-particle covariant dynamics, based on gyrokinetic theory (Beklemishev et al., 1999-2005). Provided radiation-reaction effects are negligible, this is usually based on the assumption that both the space-time metric and the EM fields (in particular the magnetic field) are suitably prescribed and are considered independent of single-particle dynamics, while allowing for the possible presence of gravitational/EM perturbations driven by plasma collective interactions which may naturally arise in such systems. The purpose of this work is the formulation of a generalized gyrokinetic theory based on the synchronous variational principle recently pointed out (Tessarotto et al., 2007) which permits to satisfy exactly the physical realizability condition for the four-velocity. The theory here developed includes the treatment of nonlinear perturbations (gravitational and/or EM) characterized locally, i.e., in the rest frame of a test particle, by short wavelength and high frequency. Basic feature of the approach is to ensure the validity of the theory both for large and vanishing parallel electric field. It is shown that the correct treatment of EM perturbations occurring in the presence of an intense background magnetic field generally implies the appearance of appropriate four-velocity corrections, which are essential for the description of single-particle gyrokinetic dynamics.

  6. Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges

    NASA Astrophysics Data System (ADS)

    Sung, C.; White, A. E.; Mikkelsen, D. R.; Greenwald, M.; Holland, C.; Howard, N. T.; Churchill, R.; Theiler, C.

    2016-04-01

    Long wavelength turbulent electron temperature fluctuations (kyρs < 0.3) are measured in the outer core region (r/a > 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (kyρs ≲ 1.7) performed at r/a ˜ 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)].

  7. Performance of the UCAN2 Gyrokinetic Particle In Cell (PIC) Code on Two Massively Parallel Mainframes with Intel ``Sandy Bridge'' Processors

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul

    2013-10-01

    The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.

  8. The effect of plasma shaping on turbulent transport and ExB shear quenching in nonlinear gyrokinetic simulations

    SciTech Connect

    Kinsey, J. E.; Waltz, R. E.; Candy, J.

    2007-10-15

    Nonlinear gyrokinetic simulations with kinetic electron dynamics are used to study the effects of plasma shaping on turbulent transport and ExB shear in toroidal geometry including the presence of kinetic electrons using the GYRO code. Over 120 simulations comprised of systematic scans were performed around several reference cases in the local, electrostatic, collisionless limit. Using a parameterized local equilibrium model for shaped geometry, the GYRO simulations show that elongation {kappa} (and its gradient) stabilizes the energy transport from ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities at fixed midplane minor radius. For scans around a reference set of parameters, the GYRO ion energy diffusivity, in gyro-Bohm units, approximately follows a {kappa}{sup -1} scaling which is qualitatively similar to recent experimental energy confinement scalings. Most of the {kappa} scaling is due to the shear in the elongation rather than the local {kappa} itself. The {kappa} scaling for the electrons is found to vary and can be stronger or weaker than {kappa}{sup -1} depending on the wavenumber where the transport peaks. The {kappa} scaling is weaker when the energy diffusivity peaks at low wavenumbers and is stronger when the peak occurs at high wavenumbers. The simulations also demonstrate a nonlinear upshift in the critical temperature gradient as the elongation increases due to an increase in the residual zonal flow amplitude. Triangularity is found to be slightly destabilizing and its effect is strongest for highly elongated plasmas. Finally, we find less ExB shear is needed to quench the transport at high elongation and low aspect ratio. A new linear ExB shear quench rule, valid for shaped tokamak geometry, is presented.

  9. Gyrokinetic simulation of global and local Alfven eigenmodes driven by energetic particles in a DIII-D discharge

    SciTech Connect

    Bass, E. M.; Waltz, R. E.

    2013-01-15

    The unstable spectrum of Alfven eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfven eigenmode (RSAE) at toroidal mode number n=3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfven eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E Multiplication-Sign B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfven eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.

  10. Gyrokinetic simulation of current-driven instabilities

    NASA Astrophysics Data System (ADS)

    McClenaghan, Joseph

    The gyrokinetic toroidal code(GTC) capability has been extended for simulating current-driven instabilities in magnetized plasmas such as kink and resistive tearing modes with kinetic effects. This new gyrokinetic capability enables first-principles, integrated simulations of macroscopic magnetohydrodynamic(MHD) modes, which limit the performance of burning plasmas and threaten the integrity of fusion devices. The excitation and evolution of macroscopic MHD modes often depend on the kinetic effects at microscopic scales and the nonlinear coupling of multiple physical processes. GTC simulation in the fluid limit of the internal kink modes in cylindrical geometry has been verified by benchmarking with an MHD eigenvalue code. The global simulation domain covers the magnetic axis which is necessary for simulating the macroscopic MHD modes. Gyrokinetic simulations of the internal kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface. This new GTC capability for current-driven instability has now been extended to simulate fishbone instabilities excited by energetic particles and resistive tearing modes. GTC has also been applied to study the internal kink modes in astrophysical jets that are formed around supermassive black holes. Linear simulations find that the internal kink modes in astrophysical jets are unstable with a broad eigenmode. Nonlinear saturation amplitude of these kink modes is observed to be small, suggesting that the jets can remain collimated even in the presence of the internal kink modes. Generation of a mean parallel electric field by the nonlinear dynamics of internal kink modes and the potential implication of this field on particle acceleration in jets has been examined.

  11. Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence

    SciTech Connect

    Tatsuno, T.; Dorland, W.; Plunk, G. G.; Schekochihin, A. A.; Barnes, M.

    2009-07-03

    Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.

  12. Comment on 'Nonlinear gyrokinetic theory with polarization drift' [Phys. Plasmas 17, 082304 (2010)

    SciTech Connect

    Leerink, S.; Parra, F. I.; Heikkinen, J. A.

    2010-12-15

    In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating ExB velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].

  13. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    SciTech Connect

    Lauber, Ph. Guenter, S.; Koenies, A.; Pinches, S.D.

    2007-09-10

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfven physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU Muenchen, 2003; Ph. Lauber, S. Guenter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfven regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfven

  14. Gyrokinetic simulation of internal kink modes

    SciTech Connect

    Naitou, Hiroshi; Tsuda, Kenji; Lee, W.W.; Sydora, R.D.

    1995-05-01

    Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode ({delta}f code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the {delta}f code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection.

  15. Gyrokinetic simulations of ion and impurity transport

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R.E.

    2005-02-01

    A systematic study of turbulent particle and energy transport in both pure and multicomponent plasmas is presented. In this study, gyrokinetic results from the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are supplemented with those from the GLF23 [R. E. Waltz, G. M. Staebler, W. Dorland et al., Phys. Plasmas 4, 2482 (1997)] transport model, as well as from quasilinear theory. Various results are obtained. The production of a particle pinch driven by temperature gradients (a thermal pinch) is demonstrated, and further shown to be weakened by finite electron collisionality. Helium transport and the effects of helium density gradient and concentration in a deuterium plasma are examined. Interestingly, it is found that the simple D-v (diffusion versus convective velocity) model of impurity flow is consistent with results obtained from nonlinear gyrokinetic simulations. Also studied is the transport in a 50-50 deuterium-tritium plasma, where a symmetry breaking is observed indicating the potential for fuel separation in a burning plasma. Quasilinear theory together with linear simulations shows that the symmetry breaking which enhances the tritium confinement arises largely from finite-Larmor-radius effects. To justify the numerical methods used in the paper, a variety of linear benchmarks and nonlinear grid refinement studies are detailed.

  16. Gyrokinetic microtearing turbulence.

    PubMed

    Doerk, H; Jenko, F; Pueschel, M J; Hatch, D R

    2011-04-15

    The nonlinear dynamics of microtearing modes in standard tokamak plasmas are investigated by means of ab initio gyrokinetic simulations. The saturation levels of the magnetic field fluctuations can be understood in the framework of a balance between (small poloidal wave number) linear drive and small-scale dissipation. The resulting heat transport is dominated by the electron magnetic component, and the transport levels are found to be experimentally relevant. Microtearing modes thus constitute another candidate for explaining turbulent transport in such toroidal systems. PMID:21568567

  17. Wavenumber-resolved core turbulence studies in the ASDEX Upgrade tokamak and comparison with non-linear gyrokinetic simulations with the GENE code

    NASA Astrophysics Data System (ADS)

    Happel, Tim; Bañón Navarro, Alejandro; Conway, Garrard; Görler, Tobias; Jenko, Frank; Ryter, Francois; Stroth, Ulrich; ASDEX Upgrade Team

    2014-10-01

    Core plasma turbulence determines transport properties and impacts on the efficiency of a fusion reactor. Gyrokinetic codes are developed to predict dominant instabilities and the turbulence level, which causes the observed particle and heat losses. A careful validation of these codes is mandatory to improve the reliability of predictions. To this end, core turbulence is investigated in ASDEX Upgrade by means of Doppler reflectometry, which provides the perpendicular velocity of turbulent structures and their fluctuation level. H-mode discharges have been performed in which ECRH is used to drive the turbulence from the ITG turbulence regime towards the TEM regime. In general, the turbulence level increases from core towards the edge. With increasing R /LTe , core large scale structures show larger fluctuation amplitudes while their phase velocity is altered with respect to that of small structures. Results are compared with gyrokinetic simulations with the GENE code. Linear results show a transition from ITG towards TEM turbulence close to the radial ECRH deposition location. After matching of heat fluxes to results from power balance analysis, the radial trend in the turbulence level is reproduced. The response to additional heating is opposite to the experimental findings.

  18. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-15

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v{sub Parallel-To }, {mu}) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v{sub Parallel-To} and {mu} are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.

  19. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    DOE PAGESBeta

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy.more » Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.« less

  20. Simulation of neoclassical transport with the continuum gyrokinetic code COGENT

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Dorr, M.; Rognlien, T.; Hittinger, J.; Compton, J.; Colella, P.; Martin, D.; McCorquodale, P.

    2013-01-25

    The development of the continuum gyrokinetic code COGENT for edge plasma simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, v∥, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. Here, R is the particle gyrocenter coordinate in the poloidal plane, and v∥ and μ are the guiding center velocity parallel to the magnetic field and the magnetic moment, respectively. The COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. Furthermore, topics presented are the implementation of increasingly detailed model collision operators, and the results of neoclassical transport simulations including the effects of a strong radial electric field characteristic of a tokamak pedestal under H-mode conditions.

  1. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    SciTech Connect

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z.

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  2. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z.

    2014-12-01

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  3. A Gyrokinetic Approach to Low Frequency Anisotropy-Driven Instabilities in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Porazik, P.

    2014-12-01

    Observational surveys of temperature anisotropy in the solar wind indicate that anisotropy is bounded over a wide range of plasma beta and the anisotropy bounds appear to be predominately controlled by wave-particle interactions associated with mirror and oblique firehose instabilities. We present a reduced kinetic description that exploits gyrosymmetry (a symmetry associated with the gyromotion), providing an efficient, self-consistent approach that can be utilized in global models of the solar wind. We discuss the underlying physics of the mirror and firehose instabilities that allow for a reduced gyrokinetic description, and we verify the approach through comparisons of theory and simulations using gyrokinetic, hybrid, and fully kinetic descriptions. We present simulations showing the nonlinear development and saturation of the mirror instability and explain the amplitude and structure of the nonlinear state in terms of particle trapping. We also consider the nonlinear development of the oblique firehose instability and the associated wave spectra.

  4. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Told, D.; Kilian, P.; Büchner, J.; Jenko, F.

    2015-08-01

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bg). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg ≳ 5). Kinetic PIC simulations using guide fields bg ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg ≲ 3).

  5. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    SciTech Connect

    Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.

    2015-08-15

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)

  6. Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations

    SciTech Connect

    Brizard, Alain J.; Tronko, Natalia

    2011-08-15

    The exact momentum conservation laws for the nonlinear gyrokinetic Vlasov-Poisson equations are derived by applying the Noether method on the gyrokinetic variational principle [A. J. Brizard, Phys. Plasmas 7, 4816 (2000)]. From the gyrokinetic Noether canonical-momentum equation derived by the Noether method, the gyrokinetic parallel momentum equation and other gyrokinetic Vlasov-moment equations are obtained. In addition, an exact gyrokinetic toroidal angular-momentum conservation law is derived in axisymmetric tokamak geometry, where the transport of parallel-toroidal momentum is related to the radial gyrocenter polarization, which includes contributions from the guiding-center and gyrocenter transformations.

  7. A new hybrid kinetic electron model for full-f gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Idomura, Y.

    2016-05-01

    A new hybrid kinetic electron model is developed for electrostatic full-f gyrokinetic simulations of the ion temperature gradient driven trapped electron mode (ITG-TEM) turbulence at the ion scale. In the model, a full kinetic electron model is applied to the full-f gyrokinetic equation, the multi-species linear Fokker-Planck collision operator, and an axisymmetric part of the gyrokinetic Poisson equation, while in a non-axisymmetric part of the gyrokinetic Poisson equation, turbulent fluctuations are determined only by kinetic trapped electrons responses. By using this approach, the so-called ωH mode is avoided with keeping important physics such as the ITG-TEM, the neoclassical transport, the ambipolar condition, and particle trapping and detrapping processes. The model enables full-f gyrokinetic simulations of ITG-TEM turbulence with a reasonable computational cost. Comparisons between flux driven ITG turbulence simulations with kinetic and adiabatic electrons are presented. Although the similar ion temperature gradients with nonlinear upshift from linear critical gradients are sustained in quasi-steady states, parallel flows and radial electric fields are qualitatively different with kinetic electrons.

  8. Transport in gyrokinetic tokamaks

    SciTech Connect

    Mynick, H.E.; Parker, S.E.

    1995-01-01

    A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.

  9. Gyrokinetic simulation of isotope scaling in tokamak plasmas

    SciTech Connect

    Lee, W.W.; Santoro, R.A.

    1995-07-01

    A three-dimensional global gyrokinetic particle code in toroidal geometry has been used for investigating the transport properties of ion temperature gradient (ITG) drift instabilities in tokamak plasmas. Using the isotopes of hydrogen (H{sup +}), deuterium (D{sup +}) and tritium (T{sup +}), we have found that, under otherwise identical conditions, there exists a favorable isotope scaling for the ion thermal diffusivity, i.e., Xi decreases with mass. Such a scaling, which exists both at the saturation of the instability and also at the nonlinear steady state, can be understood from the resulting wavenumber and frequency spectra.

  10. Nonlinear energetic particle transport in the presence of multiple Alfvénic waves in ITER

    NASA Astrophysics Data System (ADS)

    Schneller, M.; Lauber, Ph; Briguglio, S.

    2016-01-01

    This work presents the results of a multi-mode iter study on toroidal Alfvén eigenmodes (TAEs), using the nonlinear hybrid Hagis-Ligka model. It is found that main conclusions from earlier studies of Asdex Upgrade discharges can be transferred to the iter scenario: global, nonlinear effects are crucial for the evolution of the multi-mode scenario. This work focuses on the iter 15 MA baseline scenario with a safety factor at the magnetic axis of q 0  =  0.986. The least damped eigenmodes of the system are identified with the gyrokinetic, non-perturbative Ligka solver, concerning the mode structure, frequency and damping. Taking into account all weakly damped modes that can be identified linearly, nonlinear simulations with Hagis reveal strong multi-mode behaviour: while in some parameter ranges, quasilinear estimates turn out to be reasonable approximations for the nonlinearly relaxed energetic particle (EP) profile, under certain conditions low-n TAE branches can be excited. As a consequence, not only grow amplitudes of all modes to (up to orders of magnitude) higher values compared to the single mode cases but also, strong redistribution is triggered in the outer radial area between \\sqrt{{{{\\hatρ}}\\text{pol}}}=0.6 and 0.85, far above quasilinear estimates.

  11. Nonlinear particle behavior during cross-type optical particle separation

    SciTech Connect

    Kim, Sang Bok; Lee, Kyung Heon; Sung, Hyung Jin; Kim, Sang Soo

    2009-12-28

    The effects of varying the ratio of the optical force to the viscous drag force, termed S, on cross-type optical particle separation were investigated experimentally to test previous theoretical predictions. The experiments were performed for various flow velocities, powers of the laser beam, and radii of the laser beam waist and the particles. The behaviors of the particles during optical separation were examined by measuring the retention distances and analyzing the particle trajectories. For small values of S, the particles move with constant velocity in the flow direction and the retention distance increases linearly with S. However, the particles accelerate and decelerate within the laser beam and the retention distance increases nonlinearly with S when S increases further.

  12. Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2009-11-15

    Linearized model collision operators for multiple ion species plasmas are presented that conserve particles, momentum, and energy and satisfy adjointness relations and Boltzmann's H-theorem even for collisions between different particle species with unequal temperatures. The model collision operators are also written in the gyrophase-averaged form that can be applied to the gyrokinetic equation. Balance equations for the turbulent entropy density, the energy of electromagnetic fluctuations, the turbulent transport fluxes of particle and heat, and the collisional dissipation are derived from the gyrokinetic equation including the collision term and Maxwell equations. It is shown that, in the steady turbulence, the entropy produced by the turbulent transport fluxes is dissipated in part by collisions in the nonzonal-mode region and in part by those in the zonal-mode region after the nonlinear entropy transfer from nonzonal to zonal modes.

  13. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. III. Collisionless tearing mode

    NASA Astrophysics Data System (ADS)

    Liu, Dongjian; Bao, Jian; Han, Tao; Wang, Jiaqi; Lin, Zhihong

    2016-02-01

    A finite-mass electron fluid model for low frequency electromagnetic fluctuations, particularly the collisionless tearing mode, has been implemented in the gyrokinetic toroidal code. Using this fluid model, linear properties of the collisionless tearing mode have been verified. Simulations verify that the linear growth rate of the single collisionless tearing mode is proportional to De2, where De is the electron skin depth. On the other hand, the growth rate of a double tearing mode is proportional to De in the parameter regime of fusion plasmas.

  14. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen R.

    2013-11-01

    We focus in this presentation on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchanges occur between the EDL which surrounders the particle and the bulk solution. In this situation, the velocity field, the electric potential and the ionic concentration at the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. These equations are classically considered in the limit of a weak applied field, which enables further analytical progress (Khair and Squires, Phys. Fluids, 2010). However, in the general case, the equation governing the electrophoretic motion of the particle must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, ionic concentration and velocity field in the bulk solution surrounding the particle. The numerical simulations use a pseudo-spectral which was used successfully by Chu and Bazant to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere (Physical Review E, 2006). Our numerical model also incorporates the steric model developed by Kilic et al. in 2007 to account for crowding effects in the electric double layer.

  15. A Short Introduction to General Gyrokinetic Theory

    SciTech Connect

    H. Qin

    2005-02-14

    Interesting plasmas in the laboratory and space are magnetized. General gyrokinetic theory is about a symmetry, gyro-symmetry, in the Vlasov-Maxwell system for magnetized plasmas. The most general gyrokinetic theory can be geometrically formulated. First, the coordinate-free, geometric Vlasov-Maxwell equations are developed in the 7-D phase space, which is defined as a fiber bundle over the space-time. The Poincar{copyright}-Cartan-Einstein 1-form pullbacked onto the 7-D phase space determines particles' worldlines in the phase space, and realizes the momentum integrals in kinetic theory as fiber integrals. The infinite small generator of the gyro-symmetry is then asymptotically constructed as the base for the gyrophase coordinate of the gyrocenter coordinate system. This is accomplished by applying the Lie coordinate perturbation method to the Poincar{copyright}-Cartan-Einstein 1-form, which also generates the most relaxed condition under which the gyro-symmetry still exists. General gyrokinetic Vlasov-Maxwell equations are then developed as the Vlasov-Maxwell equations in the gyrocenter coordinate system, rather than a set of new equations. Since the general gyrokinetic system-developed is geometrically the same as the Vlasov-Maxwell equations, all the coordinate independent properties of the Vlasov-Maxwell equations, such as energy conservation, momentum conservation, and Liouville volume conservation, are automatically carried over to the general gyrokinetic system. The pullback transformation associated with the coordinate transformation is shown to be an indispensable part of the general gyrokinetic Vlasov-Maxwell equations. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered. Three examples of applications of the general gyrokinetic theory developed in the areas of plasma equilibrium and plasma waves are

  16. Gyrokinetic simulation of global and local Alfvén eigenmodes driven by energetic particles in a DIII-D discharge

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Waltz, R. E.

    2013-01-01

    The unstable spectrum of Alfvén eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfvén eigenmode (RSAE) at toroidal mode number n =3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfvén eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E ×B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfvén eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.

  17. Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Ku, S.; Chang, C.-S.; Adams, M.; Cummings, J.; Hinton, F.; Keyes, D.; Klasky, S.; Lee, W.; Lin, Z.; Parker, S.; CPES Team

    2006-09-01

    A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.

  18. Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma

    SciTech Connect

    Adams, Mark; Chang, C. S.; Cummings, J.; Hinton, F.; Keyes, David E; Klasky, Scott A; Ku, S.; Lee, W. W.; Lin, Z.; Parker, Scott; CPES Team, the

    2006-01-01

    A gyrokinetic neoclassical solution for a diverted tokamak edge plasma has been obtained for the first time using the massively parallel Jaguar XT3 computer at Oak Ridge National Laboratory. The solutions show similar characteristics to the experimental observations: electric potential is positive in the scrape-off layer and negative in the H-mode layer, and the parallel rotation is positive in the scrape-off layer and at the inside boundary of the H-mode layer. However, the solution also makes a new physical discovery that there is a strong ExB convective flow in the scrape-off plasma. A general introduction to the edge simulation problem is also presented.

  19. Free Energy Cascade in Gyrokinetic Turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-02-04

    In gyrokinetic theory, the quadratic nonlinearity is known to play an important role in the dynamics by redistributing (in a conservative fashion) the free energy between the various active scales. In the present study, the free energy transfer is analyzed for the case of ion temperature gradient driven turbulence. It is shown that it shares many properties with the energy transfer in fluid turbulence. In particular, one finds a (strongly) local, forward (from large to small scales) cascade of free energy in the plane perpendicular to the background magnetic field. These findings shed light on some fundamental properties of plasma turbulence, and encourage the development of large-eddy-simulation techniques for gyrokinetics.

  20. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, B.; Chan, W. H. R.; Moran, J. L.; Buie, C. R.

    2014-10-01

    We focus in this paper on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchange occurs between the electric double layer, which surrounds the particle, and the bulk solution. In addition, steric effects due to the finite size of ions drastically modify the electric potential distribution in the electric double layer. In this situation, the velocity field, the electric potential, and the ionic concentration in the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. In the general case, these equations must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, the ionic concentration, and the velocity field in the bulk solution surrounding the particle. The numerical simulations rely on a pseudo-spectral method which was used successfully by Chu and Bazant [J. Colloid Interface Sci. 315(1), 319-329 (2007)] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. Our numerical simulations also incorporate the steric model developed by Kilic et al. [Phys. Rev. E 75, 021502 (2007)] to account for crowding effects in the electric double layer, advective transport, and for the presence of a body force in the bulk electrolyte. The simulations demonstrate that surface conduction significantly decreases the electrophoretic mobility of polarizable particles at high zeta potential and at high applied electric field. Advective transport in the electric double layer and in the bulk solution is also shown to significantly impact surface conduction.

  1. Particle systems and nonlinear Landau damping

    SciTech Connect

    Villani, Cédric

    2014-03-15

    Some works dealing with the long-time behavior of interacting particle systems are reviewed and put into perspective, with focus on the classical Kolmogorov–Arnold–Moser theory and recent results of Landau damping in the nonlinear perturbative regime, obtained in collaboration with Clément Mouhot. Analogies are discussed, as well as new qualitative insights in the theory. Finally, the connection with a more recent work on the inviscid Landau damping near the Couette shear flow, by Bedrossian and Masmoudi, is briefly discussed.

  2. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    SciTech Connect

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  3. Predictive Gyrokinetic Transport Simulations and Application of Synthetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Candy, J.

    2009-11-01

    In this work we make use of the gyrokinetic transport solver TGYRO [1] to predict kinetic plasma profiles consistent with energy and particle fluxes in the DIII-D tokamak. TGYRO uses direct nonlinear and neoclassical fluxes calculated by the GYRO and NEO codes, respectively, to solve for global, self-consistent temperature and density profiles via Newton iteration. Previous work has shown that gyrokinetic simulation results for DIII-D discharge 128913 match experimental data rather well in the plasma core, but with a discrepancy in both fluxes and fluctuation levels emerging closer to the edge (r/a > 0.8). The present work will expand on previous results by generating model predictions across the entire plasma core, rather than at isolated test radii. We show that TGYRO predicts temperature and density profiles in good agreement with experimental observations which simultaneously yield near-exact (to within experimental uncertainties) agreement with power balance calculations of the particle and energy fluxes for r/a <=0.8. Moreover, we use recently developed synthetic diagnostic algorithms [2] to show that TGYRO also predicts density and electron temperature fluctuation levels in close agreement with experimental measurements across the simulated plasma volume. 8pt [1] J. Candy, C. Holland, R.E. Waltz, M.R. Fahey, and E. Belli, ``Tokamak profile prediction using direct gyrokinetic and neoclassical simulation," Phys. Plasmas 16, 060704 (2009). [2] C. Holland, A.E. White, G.R. McKee, M.W. Shafer, J. Candy, R.E. Waltz, L. Schmitz, and G.R. Tynan, ``Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence," Phys. Plasmas 16, 052301 (2009).

  4. Electromagnetic gyrokinetic simulation of turbulent transport in high ion temperature discharge of Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ishizawa, Akihiro; Watanabe, Tomo-Hiko; Sugama, Hideo; Maeyama, Shinya; Nunami, Masanori; Nakajima, Noriyoshi

    2014-10-01

    Turbulent transport in a high ion temperature discharge of Large Helical Device (LHD) is investigated by means of electromagnetic gyrokinetic simulations including kinetic electrons. A new electromagnetic gyrokinetic simulation code GKV+enables us to examine electron heat and particle fluxes as well as ion heat flux in finite beta heliotron/stellarator plasmas. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The turbulent fluxes, which are evaluated through a nonlinear simulation carried out in the K-super computer system, will be reported. This research uses computational resources of K at RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140044).

  5. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    SciTech Connect

    Skyman, A. Tegnered, D. Nordman, H. Strand, P.

    2014-09-15

    Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma β, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.

  6. Intercode comparison of gyrokinetic global electromagnetic modes

    NASA Astrophysics Data System (ADS)

    Görler, T.; Tronko, N.; Hornsby, W. A.; Bottino, A.; Kleiber, R.; Norscini, C.; Grandgirard, V.; Jenko, F.; Sonnendrücker, E.

    2016-07-01

    Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.

  7. Edge gyrokinetic theory and continuum simulations

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Dorr, M. R.; Hittinger, J. A.; Bodi, K.; Candy, J.; Cohen, B. I.; Cohen, R. H.; Colella, P.; Kerbel, G. D.; Krasheninnikov, S.; Nevins, W. M.; Qin, H.; Rognlien, T. D.; Snyder, P. B.; Umansky, M. V.

    2007-08-01

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.

  8. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  9. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    SciTech Connect

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  10. Free energy balance in gyrokinetic turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  11. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the

  12. Beyond linear gyrocenter polarization in gyrokinetic theory

    SciTech Connect

    Brizard, Alain J.

    2013-09-15

    The concept of polarization in gyrokinetic theory is clarified and generalized to include contributions from the guiding-center (zeroth-order) polarization as well as the nonlinear (second-order) gyrocenter polarization. The guiding-center polarization, which appears as the antecedent (zeroth-order) of the standard linear (first-order) gyrocenter polarization, is obtained from a modified guiding-center transformation. The nonlinear gyrocenter polarization is derived either variationally from the third-order gyrocenter Hamiltonian or directly by gyrocenter push-forward method.

  13. Gyrokinetic turbulence simulations at high plasma beta

    SciTech Connect

    Pueschel, M. J.; Kammerer, M.; Jenko, F.

    2008-10-15

    Electromagnetic gyrokinetic turbulence simulations employing Cyclone Base Case parameters are presented for {beta} values up to and beyond the kinetic ballooning threshold. The {beta} scaling of the turbulent transport is found to be linked to a complex interplay of linear and nonlinear effects. Linear investigation of the kinetic ballooning mode is performed in detail, while nonlinearly, it is found to dominate the turbulence only in a fairly narrow range of {beta} values just below the respective ideal limit. The magnetic transport scales like {beta}{sup 2} and is well described by a Rechester-Rosenbluth-type ansatz.

  14. Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2010-01-01

    The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction

  15. Status of Continuum Edge Gyrokinetic Code Physics Development

    SciTech Connect

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Kerbel, G D; Nevins, W M; Cohen, B I; Cohen, R H

    2005-05-31

    We are developing an edge gyro-kinetic continuum simulation code to study the boundary plasma over a region extending from inside the H-mode pedestal across the separatrix to the divertor plates. A 4-D ({psi}, {theta}, {epsilon}, {mu}) version of this code is presently being implemented, en route to a full 5-D version. A set of gyrokinetic equations[1] are discretized on computational grid which incorporates X-point divertor geometry. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. A fourth order upwinding algorithm is used for particle cross-field drifts, parallel streaming, and acceleration. Boundary conditions at conducting material surfaces are implemented on the plasma side of the sheath. The Poisson-like equation is solved using GMRES with multi-grid preconditioner from HYPRE. A nonlinear Fokker-Planck collision operator from STELLA[2] in ({nu}{sub {parallel}},{nu}{sub {perpendicular}}) has been streamlined and integrated into the gyro-kinetic package using the same implicit Newton-Krylov solver and interpolating F and dF/dt|{sub coll} to/from ({epsilon}, {mu}) space. With our 4D code we compute the ion thermal flux, ion parallel velocity, self-consistent electric field, and geo-acoustic oscillations, which we compare with standard neoclassical theory for core plasma parameters; and we study the transition from collisional to collisionless end-loss. In the real X-point geometry, we find that the particles are trapped near outside midplane and in the X-point regions due to the magnetic configurations. The sizes of banana orbits are comparable to the pedestal width and/or the SOL width for energetic trapped particles. The effect of the real X-point geometry and edge plasma conditions on standard neoclassical theory will be evaluated, including a comparison of our 4D code with other kinetic

  16. Particle flow for nonlinear filters with log-homotopy

    NASA Astrophysics Data System (ADS)

    Daum, Fred; Huang, Jim

    2008-04-01

    We describe a new nonlinear filter that is vastly superior to the classic particle filter. In particular, the computational complexity of the new filter is many orders of magnitude less than the classic particle filter with optimal estimation accuracy for problems with dimension greater than 2 or 3. We consider nonlinear estimation problems with dimensions varying from 1 to 20 that are smooth and fully coupled (i.e. dense not sparse). The new filter implements Bayes' rule using particle flow rather than with a pointwise multiplication of two functions; this avoids one of the fundamental and well known problems in particle filters, namely "particle collapse" as a result of Bayes' rule. We use a log-homotopy to derive the ODE that describes particle flow. This paper was written for normal engineers, who do not have homotopy for breakfast.

  17. Gyrokinetic equations and full f solution method based on Dirac's constrained Hamiltonian and inverse Kruskal iteration

    SciTech Connect

    Heikkinen, J. A.; Nora, M.

    2011-02-15

    Gyrokinetic equations of motion, Poisson equation, and energy and momentum conservation laws are derived based on the reduced-phase-space Lagrangian and inverse Kruskal iteration introduced by Pfirsch and Correa-Restrepo [J. Plasma Phys. 70, 719 (2004)]. This formalism, together with the choice of the adiabatic invariant J= as one of the averaging coordinates in phase space, provides an alternative to the standard gyrokinetics. Within second order in gyrokinetic parameter, the new equations do not show explicit ponderomotivelike or polarizationlike terms. Pullback of particle information with an iterated gyrophase and field dependent gyroradius function from the gyrocenter position defined by gyroaveraged coordinates allows direct numerical integration of the gyrokinetic equations in particle simulation of the field and particles with full distribution function. As an example, gyrokinetic systems with polarization drift either present or absent in the equations of motion are considered.

  18. Discrete particle noise in a nonlinearly saturated plasma

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Lee, W. W.

    2006-04-01

    Understanding discrete particle noise in an equilibrium plasma has been an important topic since the early days of particle-in- cell (PIC) simulation [1]. In this paper, particle noise in a nonlinearly saturated system is investigated. We investigate the usefulness of the fluctuation-dissipation theorem (FDT) in a regime where drift instabilities are nonlinearly saturated. We obtain excellent agreement between the simulation results and our theoretical predictions of the noise properties. It is found that discrete particle noise always enhances the particle and thermal transport in the plasma, in agreement with the second law of thermodynamics. [1] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York (1985).

  19. Comparisons of gyrofluid and gyrokinetic simulations

    SciTech Connect

    Parker, S.E.; Dorland, W.; Santoro, R.A.; Beer, M.A.; Liu, Q.P.; Lee, W.W.; Hammett, G.W.

    1994-03-01

    The gyrokinetic and gyrofluid models show the most promise for large scale simulations of tokamak microturbulence. This paper discusses detailed comparisons of these two complementary approaches. Past comparisons with linear theory have been fairly good, therefore the emphasis here is on nonlinear comparisons. Simulations include simple two dimensional slab test cases, turbulent three dimensional slab cases, and toroidal cases, each modeling the nonlinear evolution of the ion temperature gradient instability. There is good agreement in both turbulent and coherent nonlinear slab comparisons in terms of the ion heat flux, both in magnitude and scaling with magnetic shear. However, the nonlinear saturation level for {vert_bar}{Phi}{vert_bar} in the slab comparisons show differences of approximately 40%. Preliminary toroidal comparisons show agreement within 50%, in terms of ion heat flux and saturation level.

  20. Global gyrokinetic ion temperature gradient turbulence simulations of ITER

    NASA Astrophysics Data System (ADS)

    Villard, L.; Angelino, P.; Bottino, A.; Brunner, S.; Jolliet, S.; McMillan, B. F.; Tran, T. M.; Vernay, T.

    2013-07-01

    Global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence in an ideal MHD ITER equilibrium plasma are performed with the ORB5 code. The noise control and field-aligned Fourier filtering procedures implemented in ORB5 are essential in obtaining numerically healthy results with a reasonable amount of computational effort: typical simulations require 109 grid points, 109 particles and, despite a particle per cell ratio of unity, achieve a signal to noise ratio larger than 50. As compared with a circular concentric configuration with otherwise similar parameters (same ρ* = 1/720), the effective heat diffusivity is considerably reduced for the ITER MHD equilibrium. A self-organized radial structure appears, with long-lived zonal flows (ZF), modulating turbulence heat transport and resulting in a corrugated temperature gradient profile. The ratio of long-lived ZF to the fluctuating ZF is markedly higher for the ITER MHD equilibrium as compared with circular configurations, thereby producing a more effective ITG turbulence suppression, in spite of a higher linear growth rate. As a result, the nonlinear critical temperature gradient, R/LTcrit,NL, is about twice the linear critical temperature gradient, R/LTcrit,lin. Moreover, the heat transport stiffness above the nonlinear threshold is considerably reduced as compared with circular cases. Plasma elongation is probably one of the essential causes of this behaviour: indeed, undamped ZF residual levels and geodesic acoustic mode damping are both increasing with elongation. Other possible causes of the difference, such as magnetic shear profile effects, are also investigated.

  1. Nonlinearly interacting trapped particle solitons in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Mandal, Debraj; Sharma, Devendra

    2016-02-01

    The formulation of collective waves in collisionless plasmas is complicated by the kinetic effects produced by the resonant particles, capable of responding to the smallest of the amplitude disturbance. The dispersive plasma manifests this response by generating coherent nonlinear structures associated with phase-space vortices, or holes, at very small amplitudes. The nonlinear interaction between solitary electron phase-space holes is studied in the electron acoustic regime of a collisionless plasma using Vlasov simulations. Evolution of the analytic trapped particle solitary solutions is examined, observing them propagate stably, preserve their identity across strong mutual interactions in adiabatic processes, and display close correspondence with observable processes in nature.

  2. Saturation of Gyrokinetic Turbulence through Damped Eigenmodes

    SciTech Connect

    Hatch, D. R.; Terry, P. W.; Jenko, F.; Merz, F.; Nevins, W. M.

    2011-03-18

    In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems.

  3. Nonlinear dynamics of inhomogeneous mismatched charged particle beams

    SciTech Connect

    Nunes, R. P.; Rizzato, F. B.

    2012-08-13

    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations.

  4. Generalized nonlinear Proca equation and its free-particle solutions

    NASA Astrophysics Data System (ADS)

    Nobre, F. D.; Plastino, A. R.

    2016-06-01

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.

  5. Gyrokinetic large eddy simulations

    SciTech Connect

    Morel, P.; Navarro, A. Banon; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-07-15

    The large eddy simulation approach is adapted to the study of plasma microturbulence in a fully three-dimensional gyrokinetic system. Ion temperature gradient driven turbulence is studied with the GENE code for both a standard resolution and a reduced resolution with a model for the sub-grid scale turbulence. A simple dissipative model for representing the effect of the sub-grid scales on the resolved scales is proposed and tested. Once calibrated, the model appears to be able to reproduce most of the features of the free energy spectra for various values of the ion temperature gradient.

  6. Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.

    2014-10-01

    We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.

  7. Adiabatic nonlinear waves with trapped particles. III. Wave dynamics

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2012-01-15

    The evolution of adiabatic waves with autoresonant trapped particles is described within the Lagrangian model developed in Paper I, under the assumption that the action distribution of these particles is conserved, and, in particular, that their number within each wavelength is a fixed independent parameter of the problem. One-dimensional nonlinear Langmuir waves with deeply trapped electrons are addressed as a paradigmatic example. For a stationary wave, tunneling into overcritical plasma is explained from the standpoint of the action conservation theorem. For a nonstationary wave, qualitatively different regimes are realized depending on the initial parameter S, which is the ratio of the energy flux carried by trapped particles to that carried by passing particles. At S < 1/2, a wave is stable and exhibits group velocity splitting. At S > 1/2, the trapped-particle modulational instability (TPMI) develops, in contrast with the existing theories of the TPMI yet in agreement with the general sideband instability theory. Remarkably, these effects are not captured by the nonlinear Schroedinger equation, which is traditionally considered as a universal model of wave self-action but misses the trapped-particle oscillation-center inertia.

  8. On the Existence of Canonical Gyrokinetic Variables for Chaotic Magnetic Fields

    SciTech Connect

    Nicolini, Piero; Tessarotto, Massimo

    2008-12-31

    The gyrokinetic description of particle dynamics faces a basic difficulty when a special type of canonical variables is sought, i.e., the so-called gyrokinetic canonical variables. These are defined in such a way that two of them are respectively identified with the gyrophase-angle, describing the fast particle gyration motion around magnetic field lines, and its canonically conjugate momentum. In this paper we intend to discuss the conditions of existence for these variables.

  9. Particle swarm optimization for complex nonlinear optimization problems

    NASA Astrophysics Data System (ADS)

    Alexandridis, Alex; Famelis, Ioannis Th.; Tsitouras, Charalambos

    2016-06-01

    This work presents the application of a technique belonging to evolutionary computation, namely particle swarm optimization (PSO), to complex nonlinear optimization problems. To be more specific, a PSO optimizer is setup and applied to the derivation of Runge-Kutta pairs for the numerical solution of initial value problems. The effect of critical PSO operational parameters on the performance of the proposed scheme is thoroughly investigated.

  10. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  11. Dielectric Decrement Effects on Nonlinear Electrophoresis of Ideally Polarizable Particles

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey L.; Chan, Wai Hong Ronald; Buie, Cullen R.; Figliuzzi, Bruno

    2014-11-01

    We present numerical simulations of nonlinear electrophoresis of ideally polarizable particles that specifically include the effects of a spatially non-uniform dielectric permittivity near the particle surface. Models for this dielectric decrement phenomenon have been developed by several authors, including Ben-Yaakov et al. [J. Phys.: Condens. Matter 2009] Hatlo et al. [EPL 2012], and Zhao & Zhai [JFM 2013]. We extend this work to ideally polarizable particles and include the effects of surface conduction and advective transport in the electric double layer. By numerically solving for the coupled velocity field, electric potential, and ionic concentration distributions in the bulk solution surrounding the particle, we demonstrate that the dielectric decrement model predicts ionic saturation around the particle and thus physical implications that resemble those resulting from the steric model developed by Kilic et al. [PRE 2007], albeit with differences that reflect the nonlinearity of the modified Poisson-Boltzmann equation. In addition, we develop a generalized condensed layer model that approximates both the steric and dielectric decrement models in the limits of strong electric fields and negligible surface conduction to obtain more physical insights into these models. We demonstrate that the mobility in both models asymptotically scales as the square root of the electric field at high fields, recovering the result of Bazant et al. [Adv. Colloid Interface Sci. 2009].

  12. Nonlinear Statistical Signal Processing: A Particle Filtering Approach

    SciTech Connect

    Candy, J

    2007-09-19

    A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations.

  13. Gyrokinetic Simulations of ETG and ITG Turbulence

    SciTech Connect

    Dimits, A; Nevins, W; Shumaker, D; Hammett, G; Dannert, T; Jenko, F; Dorland, W; Leboeuf, J; Rhodes, T; Candy, J; Estrada-Mila, C

    2006-10-03

    Published gyrokinetic continuum-code simulations indicated levels of the electron thermal conductivity {chi}{sub e} due to electron-temperature-gradient (ETG) turbulence large enough to be significant in some tokamaks, while subsequent global particle-in-cell (PIC) simulations gave significantly lower values. We have carried out an investigation of this discrepancy. We have reproduced the key features of the aforementioned PIC simulations using the flux-tube gyrokinetic PIC code, PG3EQ, thereby eliminating global effects and as the cause of the discrepancy. We show that the late-time low-transport state in both of these sets of PIC simulations is a result of discrete particle noise, which is a numerical artifact. Thus, the low value of {chi}{sub e} along with conclusions about anomalous transport drawn from these particular PIC simulations are unjustified. In our attempts to benchmark PIC and continuum codes for ETG turbulence at the plasma parameters used above, both produce very large intermittent transport. We have therefore undertaken benchmarks at an alternate reference point, magnetic shear s=0.1 instead of s=0.796, and have found that PIC and continuum codes reproduce the same transport levels. Scans in the magnetic shear show an abrupt transition to a high-{chi}{sub e} state as the shear is increased above s=0.4. When nonadiabatic ions are used, this abrupt transition is absent, and {chi}{sub e} increases gradually reaching values consistent with transport analyses of DIII-D, JET, and JT60-U discharges. New results on the balances of zonal-flow driving and damping terms in late-time quasi-steady ITG turbulence and on real-geometry gyrokinetic simulations of shaped DIII-D discharges are also reported.

  14. The theory of gyrokinetic turbulence: A multiple-scales approach

    NASA Astrophysics Data System (ADS)

    Plunk, Gabriel Galad

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature

  15. Nonlinear EEG Decoding Based on a Particle Filter Model

    PubMed Central

    Hong, Jun

    2014-01-01

    While the world is stepping into the aging society, rehabilitation robots play a more and more important role in terms of both rehabilitation treatment and nursing of the patients with neurological diseases. Benefiting from the abundant contents of movement information, electroencephalography (EEG) has become a promising information source for rehabilitation robots control. Although the multiple linear regression model was used as the decoding model of EEG signals in some researches, it has been considered that it cannot reflect the nonlinear components of EEG signals. In order to overcome this shortcoming, we propose a nonlinear decoding model, the particle filter model. Two- and three-dimensional decoding experiments were performed to test the validity of this model. In decoding accuracy, the results are comparable to those of the multiple linear regression model and previous EEG studies. In addition, the particle filter model uses less training data and more frequency information than the multiple linear regression model, which shows the potential of nonlinear decoding models. Overall, the findings hold promise for the furtherance of EEG-based rehabilitation robots. PMID:24949420

  16. Optical bistability of a nondilute suspension of nonlinear coated particles

    NASA Astrophysics Data System (ADS)

    Gu, Liping; Gao, Lei

    2005-11-01

    The intrinsic optical bistability (OB) of a nondilute suspension of coated spherical particles is investigated. We assume both the core and the shell to be nonlinear with third-order nonlinear susceptibilities χc and χs, respectively, and thus the local field in the nonlinear core is not uniform and cannot be obtained exactly. In this connection, we establish the self-consistent mean field approximation, and obtain the spatial average of the local field squared in the nonlinear core (or the shell) as a function of the external applied field. We show that an optical bistable behavior exists only when the structure parameter (λ) is less than the critical one λc, which is dependent on the magnitude of both χc and χs. Moreover, the bistable curves depend strongly on χc and are weakly dependent on χs. In addition, the threshold intensity decreases with increasing λ, and it can be lowered further by using a nondilute volume fraction. The field-dependent effective dielectric function is also studied, and the hysteretic loops are again found.

  17. Effect of dynamical friction on nonlinear energetic particle modes

    SciTech Connect

    Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.

    2010-09-15

    A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.

  18. Testing gyrokinetic simulations of electron turbulence

    NASA Astrophysics Data System (ADS)

    Holland, C.; DeBoo, J. C.; Rhodes, T. L.; Schmitz, L.; Hillesheim, J. C.; Wang, G.; White, A. E.; Austin, M. E.; Doyle, E. J.; Peebles, W. A.; Petty, C. C.; Zeng, L.; Candy, J.

    2012-06-01

    An extensive set of tests comparing gyrokinetic predictions of temperature-gradient driven electron turbulence to power balance transport analyses and fluctuation measurements are presented. These tests use data from an L-mode validation study on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614) in which the local value of a/L_{T_e } =-(a/T_e )(dT_e /dr) is varied by modulated electron cyclotron heating; the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) is used to make the gyrokinetic predictions. Using a variety of novel measures, both local and global nonlinear simulations are shown to predict key characteristics of the electron energy flux Qe and long-wavelength (low-k) Te fluctuations, but systematically underpredict (by roughly a factor of two) the ion energy flux Qi. A new synthetic diagnostic for comparison to intermediate wavelength Doppler backscattering measurements is presented, and used to compare simulation predictions against experiment. In contrast to the agreement observed in the low-k Te fluctuation comparisons, little agreement is found between the predicted and measured intermediate-k density fluctuation responses. The results presented in this paper significantly expand upon those previously reported in DeBoo et al (2010 Phys. Plasmas 17 056105), comparing transport and multiple turbulence predictions from numerically converged local and global simulations for all four experimental heating configurations (instead of only fluxes and low-k Te fluctuations for one condition) to measurements and power balance analyses.

  19. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Chen, Y.; Candy, J.; Wan, W.; Parker, S.

    2013-10-01

    A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem [Y. Chen and S. Parker, J. Comput. Phys. 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.

  20. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2

    SciTech Connect

    Bravenec, R. V.; Chen, Y.; Wan, W.; Parker, S.; Candy, J.

    2013-10-15

    A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys. 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.

  1. Benchmarking of the Gyrokinetic Microstability Codes GYRO, GS2, and GEM

    NASA Astrophysics Data System (ADS)

    Bravenec, Ronald; Chen, Yang; Wan, Weigang; Parker, Scott; Candy, Jeff; Barnes, Michael; Howard, Nathan; Holland, Christopher; Wang, Eric

    2012-10-01

    The physics capabilities of modern gyrokinetic microstability codes are now so extensive that they cannot be verified fully for realistic tokamak plasmas using purely analytic approaches. Instead, verification (demonstrating that the codes correctly solve the gyrokinetic-Maxwell equations) must rely on benchmarking (comparing code results for identical plasmas and physics). Benchmarking exercises for a low-power DIII-D discharge at the mid-radius have been presented recently for the Eulerian codes GYRO and GS2 [R.V. Bravenec, J. Candy, M. Barnes, C. Holland, Phys. Plasmas 18, 122505 (2011)]. This work omitted ExB flow shear, but we include it here. We also present GYRO/GS2 comparisons for a high-power Alcator C-Mod discharge. To add further confidence to the verification exercises, we have recently added the particle-in-cell (PIC) code GEM to the efforts. We find good agreement of linear frequencies between GEM and GYRO/GS2 for the DIII-D plasma. We also present preliminary nonlinear comparisons. This benchmarking includes electromagnetic effects, plasma shaping, kinetic electrons and one impurity. In addition, we compare linear results among the three codes for the steep-gradient edge region of a DIII-D plasma between edge-localized modes.

  2. Collisionless Dissipative Nonlinear Alfvén Waves: Nonlinear Steepening, Particle Trapping, and Compressible Turbulence

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.

    1998-11-01

    The magnetic field fluctuations frequently observed in the Solar Wind and Interstellar Medium are likely to be nonlinear Alfvén waves, in which the ponderomotive coupling of Alfvénic magnetic energy to ion-acoustic quasi-modes has modified the phase velocity vA and caused wave-front steepening. In the warm, collisionless Solar Wind plasma the resonant particle-wave interactions result in relatively rapid (compared to the particle bounce time) formation of quasi-stationary Alfvénic Rotational Discontinuities, (M.V. Medvedev, P.H. Diamond, V.I. Shevchenko, and V.L. Galinsky, Phys. Rev. Lett. 78), 4934 (1997) and references therein. which have been the subject of intense satellite observations and theoretical investigations, and whose emergence and dynamics has not been previously understood. These discontinuities are shown to be quasi-stationary wave-form remnants of nonlinearly evolved coherent Alfvén waves. In long-time asymptotics, however, the particle distribution function (PDF) is affected by wave magnetic fields. Indeed, the resonant particles are trapped in the quasi-stationary Alfvénic discontinuities by mirroring forces giving rise to the nonlinear Landau damping and, ultimately, to a formation of a plateau on the PDF, so that the linear collisionless damping vanishes. Using Virial theorem for trapped particles, it is analytically demonstrated (M.V. Medvedev, P.H. Diamond, M.N. Rosenbluth, and V.I. Shevchenko, Submitted to Phys. Rev. Lett. (1998).) that their effect on the nonlinear dynamics of such discontinuities is highly non-trivial and forces a significant departure of the theory from the conventional paradigm. Considering the strongly compressible MHD (Alfvénic) Solar Wind turbulence as an ensemble of randomly interacting Alfvénic discontinuities and nonlinear waves, it is also shown (M.V. Medvedev and P.H. Diamond, Phys. Rev. E 56), R2371 (1997). that there exist two different phases of turbulence which are due to the collisionless (Landau

  3. The isotope effect in turbulent transport control by GAMs. Observation and gyrokinetic modeling

    NASA Astrophysics Data System (ADS)

    Gurchenko, A. D.; Gusakov, E. Z.; Niskala, P.; Altukhov, A. B.; Esipov, L. A.; Kiviniemi, T. P.; Korpilo, T.; Kouprienko, D. V.; Lashkul, S. I.; Leerink, S.; Perevalov, A. A.; Irzak, M. A.

    2016-04-01

    A comparative investigation of the isotope effect in multi-scale anomalous transport phenomena is performed both experimentally by highly localized turbulence diagnostics in comparable hydrogen and deuterium FT-2 tokamak discharges and theoretically with the help of global gyrokinetic modeling. Substantial excess of the geodesic acoustic mode (GAM) amplitude, radial wavelength and correlation length in a wide spatial region of deuterium discharge resulting in stronger modulation of drift-wave turbulence level is demonstrated by both approaches. A larger turbulence radial correlation length is found at LFS in D-discharge in experiment and a stronger modulation of gyrokinetic particles and energy fluxes is shown there by the gyrokinetic code. The gyrokinetic modeling demonstrated comparable levels of drift wave density and electric field fluctuations in hydrogen and deuterium discharges. Nevertheless, the mean value of the ion energy and particle anomalous flux provided by modeling shows the systematic isotope effect at all radii.

  4. Intrinsic rotation with gyrokinetic models

    SciTech Connect

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Ivan

    2012-05-15

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  5. Implementation of 2D domain decomposition in the UCAN gyrokinetic PIC code for non-diffusive transport studies in tokamaks

    NASA Astrophysics Data System (ADS)

    Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul

    2012-03-01

    The massively parallel, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, PIC, Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in DIII-D-like tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii per minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the 2D domain decomposed PLIB2 library of field and particle management routines developed for UCLA's UPIC framework of conventional PIC codes. The gyro-averaging in gyrokinetic codes has necessitated the use of replicated arrays for efficient charge accumulation and particle push. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain results within roundoff. Production calculations at large system sizes have been performed with UCAN2 on 131072 processors of the Cray XE6 at NERSC.

  6. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  7. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    PubMed

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  8. Saturation of gyrokinetic turbulence through damped eigenmodes.

    PubMed

    Hatch, D R; Terry, P W; Jenko, F; Merz, F; Nevins, W M

    2011-03-18

    In the context of toroidal gyrokinetic simulations, it is shown that a hierarchy of damped modes is excited in the nonlinear turbulent state. These modes exist at the same spatial scales as the unstable eigenmodes that drive the turbulence. The larger amplitude subdominant modes are weakly damped and exhibit smooth, large-scale structure in velocity space and in the direction parallel to the magnetic field. Modes with increasingly fine-scale structure are excited to decreasing amplitudes. In aggregate, damped modes define a potent energy sink. This leads to an overlap of the spatial scales of energy injection and peak dissipation, a feature that is in contrast with more traditional turbulent systems. PMID:21469869

  9. Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence

    NASA Astrophysics Data System (ADS)

    Heusen, M.; Shalchi, A.

    2016-09-01

    We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.

  10. Discoveries from the exploration of gyrokinetic momentum transport

    SciTech Connect

    Staebler, G.M.; Waltz, R. E.; Kinsey, J. E.

    2011-05-15

    The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.

  11. Discoveries from the exploration of gyrokinetic momentum transporta)

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Waltz, R. E.; Kinsey, J. E.

    2011-05-01

    The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.

  12. Numerical Solution of the Gyrokinetic Poisson Equation in TEMPEST

    NASA Astrophysics Data System (ADS)

    Dorr, Milo; Cohen, Bruce; Cohen, Ronald; Dimits, Andris; Hittinger, Jeffrey; Kerbel, Gary; Nevins, William; Rognlien, Thomas; Umansky, Maxim; Xiong, Andrew; Xu, Xueqiao

    2006-10-01

    The gyrokinetic Poisson (GKP) model in the TEMPEST continuum gyrokinetic edge plasma code yields the electrostatic potential due to the charge density of electrons and an arbitrary number of ion species including the effects of gyroaveraging in the limit kρ1. The TEMPEST equations are integrated as a differential algebraic system involving a nonlinear system solve via Newton-Krylov iteration. The GKP preconditioner block is inverted using a multigrid preconditioned conjugate gradient (CG) algorithm. Electrons are treated as kinetic or adiabatic. The Boltzmann relation in the adiabatic option employs flux surface averaging to maintain neutrality within field lines and is solved self-consistently with the GKP equation. A decomposition procedure circumvents the near singularity of the GKP Jacobian block that otherwise degrades CG convergence.

  13. The energetic coupling of scales in gyrokinetic plasma turbulence

    SciTech Connect

    Teaca, Bogdan; Jenko, Frank

    2014-07-15

    In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

  14. Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.

    2004-11-01

    It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).

  15. The Implementation of Magnetic Islands in Gyrokinetic Toroidal Code

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Lin, Zhihong; Ihor, Holod; Xiao, Chijie

    2016-02-01

    The implementation of magnetic islands in gyrokinetic simulation has been verified in the gyrokinetic toroidal code (GTC). The ion and electron density profiles become partially flattened inside the islands. The density profile at the low field side is less flattened than that at the high field side due to toroidally trapped particles in the low field side, which do not move along the perturbed magnetic field lines. When the fraction of trapped particles decreases, the density profile at the low field becomes more flattened. supported by National Special Research Program of China for ITER (Nos. 2013GB111000 and 2014GB107004), China Scholarship Council (No. 2011601098), U.S. DOE Grants DE-SC0010416 and DE-FG02-07ER54916

  16. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott

    2012-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the GPU accelerator compiler directives. We have implemented the GPU acceleration on a Core I7 gaming PC with a NVIDIA GTX 580 GPU. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. Optimization strategies and comparisons between DIRAC and the gaming PC will be presented. We will also discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  17. Gyrokinetic simulations of the tearing instability

    SciTech Connect

    Numata, Ryusuke; Dorland, William; Howes, Gregory G.; Loureiro, Nuno F.; Tatsuno, Tomoya

    2011-11-15

    Linear gyrokinetic simulations covering the collisional-collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.

  18. Gyrokinetic Simulations of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike

    2015-11-01

    It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  19. Status of edge gyrokinetic turbulence simulation in XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung-Hoe; Chang, C. S.; Zorin, D.; Greengard, L.; Adams, M.; Cummings, J.; Worley, P.; D'Azevedo, E.; Lee, W.; Parker, S.; Chen, Y.; Lin, Z.

    2007-11-01

    Gyrokinetic simulation of a tokamak edge plasma is one of the highest priority research items for ITER and the magnetic fusion program. Due to the complex physical modeling required in the edge plasma (closed and open magnetic field lines with the magnetic separatrix in between, the importance of neoclassical physics, the material wall boundary, steep pressure gradients, a non-Maxwellian distribution function, and the neutral particle physics), most of the gyrokinetic simulation activities have so far been focused on the core plasmas. The status of the gyrokinetic edge turbulence simulation in the XGC1 particle code in the SciDAC Prototype FSP Center for Plasma Edge Simulation (CPES) will be reported. XGC1 includes the above mentioned edge complexities with full- f/delta-f particle technology on an unstructured mesh. Special physics/math/CS features will be discussed. Our current electrostatic turbulence/neoclassical capabilities will be presented and verified. Plans for incorporating full electromagnetic turbulence will also be discussed.

  20. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  1. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  2. A generalized gyrokinetic Poisson solver

    SciTech Connect

    Lin, Z.; Lee, W.W.

    1995-03-01

    A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms.

  3. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    SciTech Connect

    E.A. Belli; G.W. Hammett

    2004-12-17

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.

  4. On push-forward representations in the standard gyrokinetic model

    SciTech Connect

    Miyato, N. Yagi, M.; Scott, B. D.

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.

  5. Effects of collisions on conservation laws in gyrokinetic field theory

    NASA Astrophysics Data System (ADS)

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2015-08-01

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  6. Effects of collisions on conservation laws in gyrokinetic field theory

    SciTech Connect

    Sugama, H.; Nunami, M.; Watanabe, T.-H.

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  7. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

    SciTech Connect

    Candy, Jeff; Holland, Chris; Waltz, R. E.; Fahey, Mark R; Belli, E

    2009-01-01

    okamak transport modeling scenarios, including ITER ITER Physics Basis Editors, Nucl. Fusion 39, 2137 1999 performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles . Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D J. L. Luxon, Nucl. Fusion 42, 614 2002 plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 2003 code, for turbulent transport, and the NEO E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 2008 code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8.

  8. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

    SciTech Connect

    Candy, J.; Waltz, R. E.; Belli, E.; Holland, C.; Fahey, M. R.

    2009-06-15

    Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO[E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0{<=}r/a{<=}0.8.

  9. Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Told, D.; Jenko, F.; Doerk, H.; Dunne, M. G.; Wolfrum, E.; Viezzer, E.; The ASDEX Upgrade Team; Pueschel, M. J.

    2015-06-01

    The gyrokinetic GENE code is used to study the inter-ELM H-mode pedestal profile evolution for an ASDEX Upgrade discharge. Density gradient driven trapped electron modes are the dominant pedestal instability during the early density-buildup phase. Nonlinear simulations produce particle transport levels consistent with experimental expectations. Later inter-ELM phases appear to be simultaneously constrained by electron temperature gradient (ETG) and kinetic ballooning mode (KBM) turbulence. The electron temperature gradient achieves a critical value early in the ELM cycle, concurrent with the appearance of both microtearing modes and ETG modes. Nonlinear ETG simulations demonstrate that the profiles lie at a nonlinear critical gradient. The nominal profiles are stable to KBM, but moderate increases in β are sufficient to surpass the KBM threshold. Certain aspects of the dynamics support the premise of KBM-constrained pedestal evolution; the density and temperature profiles separately undergo large changes, but in a manner that keeps the pressure profile constant and near the KBM limit.

  10. Petascale Parallelization of the Gyrokinetic Toroidal Code

    SciTech Connect

    Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid

    2010-05-01

    The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.

  11. Applications of large eddy simulation methods to gyrokinetic turbulence

    SciTech Connect

    Bañón Navarro, A. Happel, T.; Teaca, B. [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB; Max-Planck für Sonnensystemforschung, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau; Max-Planck Jenko, F. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching; Max-Planck Hammett, G. W. [Max-Planck Collaboration: ASDEX Upgrade Team

    2014-03-15

    The large eddy simulation (LES) approach—solving numerically the large scales of a turbulent system and accounting for the small-scale influence through a model—is applied to nonlinear gyrokinetic systems that are driven by a number of different microinstabilities. Comparisons between modeled, lower resolution, and higher resolution simulations are performed for an experimental measurable quantity, the electron density fluctuation spectrum. Moreover, the validation and applicability of LES is demonstrated through a series of diagnostics based on the free energetics of the system.

  12. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    SciTech Connect

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Besse, N.; Bertrand, P.

    2006-11-30

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations.

  13. A multi-species collisional operator for full-F gyrokinetics

    SciTech Connect

    Estève, D.; Garbet, X.; Sarazin, Y.; Grandgirard, V.; Cartier-Michaud, T.; Dif-Pradalier, G.; Ghendrih, P.; Latu, G.; Norscini, C.

    2015-12-15

    A linearized multi-species collision operator has been developed for an efficient implementation in gyrokinetic codes. This operator satisfies the main expected properties: particle, momentum, and energy conservation, and existence of an H-theorem. A gyrokinetic version is then calculated, which involves derivatives with respect to the gyrocenter position, parallel velocity, and magnetic momentum. An isotropic version in the velocity space can be constructed for the specific problem of trace impurities colliding with a main species. A simpler version that involves derivatives with parallel velocity only has been developed. This reduced version has been implemented in the GYSELA gyrokinetic code, and is shown to comply with particle, momentum, and energy conservation laws. Moreover, the interspecies relaxation rates for momentum and energy agree very well with the theoretical values.

  14. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    SciTech Connect

    Deng, Zhao; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively tested over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  15. Plasma Simulation Using Gyrokinetic-Gyrofluid Hybrid Models

    SciTech Connect

    Scott Parker

    2009-04-09

    We are developing kinetic ion models for the simulation of extended MHD phenomena. The model they have developed uses full Lorentz force ions, and either drift-kinetic or gyro-kinetic electrons. Quasi-neutrality is assumed and the displacement current is neglected. They are also studying alpha particle driven Toroidal Alfven Eigenmodes (TAE) in the GEM gyrokinetic code [Chen 07]. The basic kinetic ion MHD model was recently reported in an invited talk given by Dan Barnes at the 2007 American Physical Society - Division of Plasma Physics (APS-DPP) and it has been published [Jones 04, Barnes 08]. The model uses an Ohm's law that includes the Hall term, pressure term and the electron inertia [Jones 04]. These results focused on the ion physics and assumed an isothermal electron closure. It is found in conventional gyrokinetic turbulence simulations that the timestep cannot be made much greater than the ion cyclotron period. However, the kinetic ion MHD model has the compressional mode, which further limits the timestep. They have developed an implicit scheme to avoid this timestep constraint. They have also added drift kinetic electrons. This model has been benchmarked linearly. Waves investigated where shear and compressional Alfven, whisterl, ion acoustic, and drift waves, including the kinetic damping rates. This work is ongoing and was first reported at the 2008 Sherwood Fusion Theory Conference [Chen 08] and they are working on a publication. They have also formulated an integrated gyrokinetic electron model, which is of interest for studying electron gradient instabilities and weak guide-field magnetic reconnection.

  16. Porting the 3D Gyrokinetic Particle-in-cell Code GTC to the CRAY/NEC SX-6 Vector Architecture: Perspectives and Challenges

    SciTech Connect

    S. Ethier; Z. Lin

    2003-09-15

    Several years of optimization on the super-scalar architecture has made it more difficult to port the current version of the 3D particle-in-cell code GTC to the CRAY/NEC SX-6 vector architecture. This paper explains the initial work that has been done to port this code to the SX-6 computer and to optimize the most time consuming parts. Early performance results are shown and compared to the same test done on the IBM SP Power 3 and Power 4 machines.

  17. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    SciTech Connect

    M.H. Redi; C. Fiore; P. Bonoli; C. Bourdelle; R. Budny; W.D. Dorland; D. Ernst; G. Hammett; D. Mikkelsen; J. Rice; S. Wukitch

    2002-06-18

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic.

  18. Experimentally Relevant Benchmarks for Gyrokinetic Codes

    NASA Astrophysics Data System (ADS)

    Bravenec, Ronald

    2010-11-01

    Although benchmarking of gyrokinetic codes has been performed in the past, e.g., The Numerical Tokamak, The Cyclone Project, The Plasma Microturbulence Project, and various informal activities, these efforts have typically employed simple plasma models. For example, the Cyclone ``base case'' assumed shifted-circle flux surfaces, no magnetic transport, adiabatic electrons, no collisions nor impurities, ρi << a (ρi the ion gyroradius and a the minor radius), and no ExB flow shear. This work presents comparisons of linear frequencies and nonlinear fluxes from GYRO and GS2 with none of the above approximations except ρi << a and no ExB flow shear. The comparisons are performed at two radii of a DIII-D plasma, one in the confinement region (r/a = 0.5) and the other closer to the edge (r/a = 0.7). Many of the plasma parameters differ by a factor of two between these two locations. Good agreement between GYRO and GS2 is found when neglecting collisions. However, differences are found when including e-i collisions (Lorentz model). The sources of the discrepancy are unknown as of yet. Nevertheless, two collisionless benchmarks have been formulated with considerably different plasma parameters. Acknowledgements to J. Candy, E. Belli, and M. Barnes.

  19. Electromagnetic Gyrokinetic Simulations

    SciTech Connect

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  20. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  1. Nonlinear Gyroviscous Force in a Collisionless Plasma

    SciTech Connect

    Belova, E.V.

    2001-05-23

    Nonlinear gyroviscous forces in a collisionless plasma with temperature variations are calculated from the gyrofluid moments of the gyrokinetic Vlasov equation. The low-frequency gyrokinetic ordering and electrostatic perturbations are assumed, and an additional finite Larmor radius (FLR) expansion is performed. This approach leads naturally to an expression for the gyroviscous force in terms of the gyrocenter distribution function, thus including all resonant effects, and represents a systematic FLR expansion in a general form (no assumption of any closure is made). The expression for the gyroviscous force is also calculated in terms of the particle-fluid moments by making the transformation from the gyrocenter to particle coordinates. The calculated expression represents a modification of the Braginskii gyroviscosity for a collisionless plasma with nonuniform temperature. It is compared with previous calculations based on the traditional fluid approach. As a byproduct of the gyroviscosity calculations, we derive a set of nonlinear reduced gyrofluid (and a corresponding set of particle-fluid) moment equations with FLR corrections, which exhibit a generalized form of the ''gyroviscous cancellation.''

  2. Adiabatic nonlinear waves with trapped particles. II. Wave dispersion

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2012-01-15

    A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.

  3. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    SciTech Connect

    W.W. Lee

    2003-09-17

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers.

  4. Equilibrium fluctuation energy of gyrokinetic plasma

    SciTech Connect

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8..pi.. = 1/2T/(1 + (klambda/sub D/)/sup 2/) valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs.

  5. Neoclassical equilibrium in gyrokinetic simulations

    SciTech Connect

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.

    2009-06-15

    This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.

  6. Nonlinear dynamics of toroidal Alfvén eigenmodes driven by energetic particles

    SciTech Connect

    Zhu, J.; Ma, Z. W.; Fu, G. Y.

    2013-07-15

    A kinetic simulation code based on a reduced model is developed to study dynamic evolutions of a single toroidicity-induced shear Alfvén eigenmode driven by energetic particles. For zero background damping, it is found that the wave amplitude in nonlinear phase can either saturate for weak energetic particle drives or slowly increase for strong drives. This slow nonlinear growth in strong drive cases is found to be associated with broadening and overlapping of resonances between the wave and trapped particles. For the near-marginal-stability case with a large background damping, the mode nonlinear evolution exhibits strong upward and downward frequency chirping in multiple branches. A hole/clump formation is observed clearly in the corresponding evolution of energetic particle distribution.

  7. Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas

    SciTech Connect

    Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W.; Berk, H.L.

    1996-12-17

    A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.

  8. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  9. Particle-Wave Micro-Dynamics in Nonlinear Self-Excited Dust Acoustic Waves

    SciTech Connect

    Tsai, C.-Y.; Teng, L.-W.; Liao, C.-T.; I Lin

    2008-09-07

    The large amplitude dust acoustic wave can be self-excited in a low-pressure dusty plasma. In the wave, the nonlinear wave-particle interaction determines particle motion, which in turn determines the waveform and wave propagation. In this work, the above behaviors are investigated by directly tracking particle motion through video-microscopy. A Lagrangian picture for the wave dynamics is constructed. The wave particle interaction associated with the transition from ordered to disordered particle oscillation, the wave crest trapping and wave heating are demonstrated and discussed.

  10. Significance of Wave-Particle Interaction Analyzer for direct measurement of nonlinear wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Kitahara, M.; Kojima, H.; Omura, Y.; Kasahara, S.; Hirahara, M.; Miyoshi, Y.; Seki, K.; Asamura, K.; Takashima, T.

    2012-12-01

    We study the statistical significance of the Wave Particle Interaction Analyzer (WPIA) for measurement of the energy transfer process between energetic electrons and whistler-mode chorus emissions in the Earth's inner magnetosphere. The WPIA measures a relative phase angle between the wave vector and velocity vector of each particle and computes an inner product W(t), while W(t) is equivalent to the variation of the kinetic energy of energetic electrons interacting with plasma waves. The WPIA measurements will be realized by the Software-type WPIA in the SPRINT-B/ERG satellite mission. In the present study, we evaluate the feasibility of WPIA by applying the WPIA analysis to the simulation results on whistler-mode chorus generation. We compute W(t) of a wave electric field observed at a fixed point assumed in the simulation system and a velocity vector of each energetic electron passing through the assumed point. By integrating W(t) in time, we obtain significant values of W_{int} in the kinetic energy and pitch angle ranges as expected from the evolution of chorus emissions in the simulation result. The statistical significance of the obtained W_{int} is evaluated by calculating the standard deviation σ_W of W_{int}. We show that W_{int} greater than σ_W is obtained in the velocity phase space corresponding to the wave generation and acceleration of relativistic electrons. We conduct another analysis of a distribution of energetic electrons in the wave phase space using the same dataset of the simulation results. We clarify that the deviation of the distribution in the wave phase space is found in the velocity phase space corresponding to the large W_{int} values, which is consistent with formation of nonlinear resonant currents assumed in the generation mechanism of chorus emissions. The present study suggests that the statistical significance of the WPIA can be evaluated by calculating σ_W of W_{int}, and reveals the feasibility of the WPIA, which will be on

  11. Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with (omega(tau))(sub d) (where omega is the circular frequency and (tau)(sub d) the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value of(omega(tau))(sub d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes.

  12. Spectral Attenuation of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Lonegran, M.

    2008-01-01

    Theoretical studies on the dissipation and dispersion of sound in two-phase suspensions have been briefly reviewed. Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with Omega Tau(sub d) (where Omega is the circular frequency and Tau(sub d) the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value Omega Tau (sub d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes.

  13. Numerical comparison between a gyrofluid and gyrokinetic model investigating collisionless magnetic reconnection

    SciTech Connect

    Zacharias, O.; Kleiber, R.; Borchardt, M.; Comisso, L.; Grasso, D.; Hatzky, R.

    2014-06-15

    The first detailed comparison between gyrokinetic and gyrofluid simulations of collisionless magnetic reconnection has been carried out. Both the linear and nonlinear evolution of the collisionless tearing mode have been analyzed. In the linear regime, we have found a good agreement between the two approaches over the whole spectrum of linearly unstable wave numbers, both in the drift kinetic limit and for finite ion temperature. Nonlinearly, focusing on the small-Δ′ regime, with Δ′ indicating the standard tearing stability parameter, we have compared relevant observables such as the evolution and saturation of the island width, as well as the island oscillation frequency in the saturated phase. The results are basically the same, with small discrepancies only in the value of the saturated island width for moderately high values of Δ′. Therefore, in the regimes investigated here, the gyrofluid approach can describe the collisionless reconnection process as well as the more complete gyrokinetic model.

  14. Direct identification of predator-prey dynamics in gyrokinetic simulations

    SciTech Connect

    Kobayashi, Sumire Gürcan, Özgür D; Diamond, Patrick H.

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  15. Multi-code benchmark of global gyrokinetic electromagnetic instabilities

    NASA Astrophysics Data System (ADS)

    Goerler, Tobias; Bottino, Alberto; Hornsby, William A.; Kleiber, Ralf; Tronko, Natalia; Grandgirard, Virginie; Norscini, Claudia; Sonnendruecker, Eric

    2015-11-01

    Considering the recent major extensions of global gyrokinetic codes towards a comprehensive and self-consistent treatment of electromagnetic (EM) effects, corresponding verification tests are obvious and necessary steps to be taken. While a number of (semi-)analytic test cases and benchmarks exist in the axisymmetric limit, microinstabilities and particularly EM turbulence are rarely addressed. In order to remedy this problem, a hierarchical linear gyrokinetic benchmark study is presented starting with electrostatic ion temperature gradient microinstabilities with adiabatic electron response and progressing finally to the characterization of fully EM instabilities as a function of β. The inter-code comparison involves contributions from Eulerian Vlasov, Lagrangian PIC, and Semi-Lagrange codes at least in one level of this verification exercise, thus confirming a high degree of reliability for the implementations that has rarely been achieved before in this context. Additionally, possible extensions of this benchmark into the physically more relevant nonlinear turbulence regime will be discussed, e.g., relaxation problems or gradient-driven setups. This work has been carried out within the framework of the EUROfusion Consortium.

  16. Gyrokinetic simulations of microturbulence in DIII-D tokamak pedestal

    NASA Astrophysics Data System (ADS)

    Holod, Ihor; Fulton, Daniel; Taimourzadeh, Sam; Lin, Zhihong; Nazikian, Raffi; Spong, Donald

    2015-11-01

    The characteristics of H-mode pedestal are generally believed to be constrained by current-driven peeling-ballooning modes and pressure-driven instabilities, such as kinetic ballooning mode (KBM). In this work we use global gyrokinetic code (GTC) to identify and study the edge pressure-driven instabilities in the H-mode pedestal using realistic geometry and plasma profiles of DIII-D shot 131997. In our simulations we observe the KBM mode marginally dominant in the steep gradient region (ψN = 0 . 98), in the range of kθ ~ 1 cm-1 which corresponds to the most unstable mode number in the nonlinearly saturated state. For shorter wavelengths the trapped electron mode becomes dominant since its linear growth rate increases with the mode number, while the KBM gets saturated. In the pedestal top region (ψN = 0 . 95) the ITG dominates. Resonant magnetic perturbations (RMP) are widely applied for ELM mitigation. During RMP suppression, the increase of edge turbulence is often observed. To understand this phenomena we use gyrokinetic simulations to address the direct effect of magnetic perturbations on the microturbulence. Simulations with 3D equilibrium reconstructed by VMEC code have been compared with toroidally averaged equilibrium, using identical pressure profiles. Work supported by DOE grant DE-SC0010416 and by General Atomics subcontract.

  17. Direct identification of predator-prey dynamics in gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Gürcan, Özgür D.; Diamond, Patrick H.

    2015-09-01

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  18. Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; White, A. E.; Reinke, M. L.; Greenwald, M.; Holland, C.; Candy, J.; Walk, J. R.

    2013-12-01

    A rigorous validation of the gyrokinetic model was performed in both ion temperature gradient (ITG) and trapped electron mode (TEM) dominated Alcator C-Mod plasmas at (normalized midplane minor radius) r/a = 0.5 and 0.8. Analysis focuses on two L-mode discharges operated with 1.2 and 3.5 MW of ion cyclotron resonance heating. In depth investigation into the experimental uncertainties and simulation sensitivities in these discharges allows for a stringent test of the gyrokinetic model implemented by the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) in both the centre of the stiff gradient region (r/a = 0.5) and the middle of the region often associated with the transport ‘shortfall’(r/a = 0.8). To identify the nature of the plasma turbulence and to ensure a robust evaluation of the model's ability to reproduce experiment, the sensitivity of the simulation results to experimental uncertainty in turbulence drive and suppression terms were determined at both radial locations. When significant TEM activity is present, nonlinear gyrokinetic simulations are found to reproduce both electron and ion experimental heat fluxes within their diagnosed uncertainties. In contrast, in the absence of TEM, electron heat fluxes are robustly under predicted by low-k, gyrokinetic simulation.

  19. Nonlinear d--ta-f Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson; Hong Qin

    2002-05-07

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T{sub {perpendicular}b} >> T{sub {parallel}b}). The most unstable modes are identified, and their eigen frequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with {partial_derivative}/{partial_derivative}{theta} = 0.

  20. Hybrid three-dimensional variation and particle filtering for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Leng, Hong-Ze; Song, Jun-Qiang

    2013-03-01

    This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems.

  1. Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1994-01-01

    An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.

  2. Gyrokinetic δ f simulation of collisionless and semi-collisional tearing mode instabilities

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Chen, Yang; Parker, Scott

    2004-11-01

    The evolution of collisionless and semi-collisional tearing mode instabilities is studied using a three-dimensional particle-in-cell simulation model that utilizes the δ f-method with the split-weight scheme to enhance the time step, and a novel algorithm(Y. Chen and S.E. Parker, J. Comput. Phys. 198), 463 (2003) to accurately solve the Ampere's equation for experimentally relevant β values, βfracm_im_e≫ 1. We use the model of drift-kinetic electrons and gyrokinetic ions. Linear simulation results are benchmarked with eigenmode analysis for the case of fixed ions. In small box simulations the ions response can be neglected but for large box simulations the ions response is important because the width of perturbed current is larger than ρ_i.The nonlinear dynamics of magnetic islands will be studied and the results will be compared with previous theoretical studiesfootnote J.F. Drake and Y. C. Lee, Phys. Rev. Lett. 39, 453 (1977) on the saturation level and the electron bounce frequency. A collision operator is included in the electron drift kinetic equation to study the simulation in the semi-collisional regime. The algebraical growth stage has been observed and compared quantitatively with theory. Our progress on three-dimensional simulations of tearing mode instabilities will be reported.

  3. Bounce-Averaged Gyrokinetic Simulation of Current-Collection Feedback in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Roberts, T. M.; Garnier, D.; Kesner, J.; Mauel, M. E.

    2014-10-01

    A self-consistent, nonlinear simulation of interchange dynamics including the bounce-averaged gyro-kinetics of trapped electrons was previously used to understand frequency sweeping and the turbulent cascades observed in dipole-confined plasmas. Through adjustment of the particle and heat sources this code reproduces dynamics that resemble the turbulence measured experimentally, both in spectral power-law trends and in the onset of a steepened density profile. Time stepping is performed in an explicit leap-frog manner and a flux-corrected transport algorithm is implemented. In this presentation, we discuss the physics and numerical methods of the simulations as well as plans for including the effects of a biasing electrode which can collect or inject electrons. By varying this source/sink of electrons at the electrode location based on the potential fluctuations occurring elsewhere, we study the effects of current-collection feedback to compare to recent experiments observed to regulate interchange turbulence. Supported by NSF-DOE Partnership for Plasma Science and DOE Grant DE-FG02-00ER54585 and NSF Award PHY-1201896.

  4. Gyrokinetic Vlasov-Poisson simulation in slab geometry using the conservative IDO scheme

    NASA Astrophysics Data System (ADS)

    Imadera, Kenji; Kishimoto, Yasuaki; Li, Jiquan; Saito, Daisuke; Utsumi, Takayuki

    2008-11-01

    We have introduced the IDO-CF (Conservative Form of Interpolated Differential Operator) scheme [1], which is one of the multi-moment schemes and has been applied to various CFD problems, in solving a Vlasov-Poisson system. The IDO scheme is found to be efficient in capturing a sharp domain interface like shock propagation, and in introducing dissipations like particle collision and also external source/sink terms. Furthermore, the IDO-CF scheme has exact mass conservation properties, so that we can apply it to the problems that need long time scale simulations. We first apply the scheme in studying the nonlinear Landau damping and two-stream instability. We have investigated the conservation property of the total mass, energy and entropy, and found that the IDO-CF scheme allows stable simulation over many bounce periods keeping higher accuracy than other multi-moment schemes. We have also developed a gyrokinetic full-f Vlasov code with the IDO-CF scheme in studying the slab ITG driven turbulence. [1] Y.Imai et al., J. Comput. Phys. 227, 2263(2008).

  5. Gyrokinetic study of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C.-S.; Ku, S.-H.; Churchill, M.; Zweben, S.

    2014-10-01

    In an attempt to better understand the complicated physics of the inter-related ``intermittent plasma objects (blobs)'' and divertor heat-load footprint, the full-function gyrokinetic PIC code XGC1 has been used in realistic diverted geometry. Neoclassical and turbulence physics are simulated together self-consistently in the presence of Monte Carlo neutral particles. Blobs are modeled here as electrostatic nonlinear turbulence phenomenon. It is found that the ``blobs'' are generated, together with the ``holes,'' around the steep density gradient region. XGC1 reasserts the previous findings that blobs move out convectively into the scrape-off layer, while the holes move inward toward plasma core. The measured radial width of the divertor heat load, mapped to the outer midplane, is found to be much less than the median radial size of the intermittent plasma objects, but is rather closer to the width of neoclassical orbit excursion from pedestal to divertor, yielding approximately the 1/Ip-type scaling found from our previous pure neoclassical simulation or a heuristic neoclassical argument by Goldston. However, it also shows some spreading by the intermittent turbulence. In ITER plasma edge, where the ion banana width at separatrix becomes negligibly small compared to the meso-scale blob size, blobs may saturate the 1/Ip scaling.

  6. Complex statistics and diffusion in nonlinear disordered particle chains

    SciTech Connect

    Antonopoulos, Ch. G.; Bountis, T.; Skokos, Ch.; Drossos, L.

    2014-06-15

    We investigate dynamically and statistically diffusive motion in a Klein-Gordon particle chain in the presence of disorder. In particular, we examine a low energy (subdiffusive) and a higher energy (self-trapping) case and verify that subdiffusive spreading is always observed. We then carry out a statistical analysis of the motion, in both cases, in the sense of the Central Limit Theorem and present evidence of different chaos behaviors, for various groups of particles. Integrating the equations of motion for times as long as 10{sup 9}, our probability distribution functions always tend to Gaussians and show that the dynamics does not relax onto a quasi-periodic Kolmogorov-Arnold-Moser torus and that diffusion continues to spread chaotically for arbitrarily long times.

  7. Dynamic procedure for filtered gyrokinetic simulations

    SciTech Connect

    Morel, P.; Banon Navarro, A.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2012-01-15

    Large eddy simulations (LES) of gyrokinetic plasma turbulence are investigated as interesting candidates to decrease the computational cost. A dynamic procedure is implemented in the gene code, allowing for dynamic optimization of the free parameters of the LES models (setting the amplitudes of dissipative terms). Employing such LES methods, one recovers the free energy and heat flux spectra obtained from highly resolved direct numerical simulations. Systematic comparisons are performed for different values of the temperature gradient and magnetic shear, parameters which are of prime importance in ion temperature gradient driven turbulence. Moreover, the degree of anisotropy of the problem, which can vary with parameters, can be adapted dynamically by the method that shows gyrokinetic large eddy simulation to be a serious candidate to reduce numerical cost of gyrokinetic solvers.

  8. A computational and theoretical investigation of nonlinear wave-particle interactions in oblique whistlers

    NASA Astrophysics Data System (ADS)

    Nunn, David; Omura, Yoshiharu

    2015-04-01

    Most previous work on nonlinear wave-particle interactions between energetic electrons and VLF waves in the Earth's magnetosphere has assumed parallel propagation, the underlying mechanism being nonlinear trapping of cyclotron resonant electrons in a parabolic magnetic field inhomogeneity. Here nonlinear wave-particle interaction in oblique whistlers in the Earth's magnetosphere is investigated. The study is nonself-consistent and assumes an arbitrarily chosen wave field. We employ a "continuous wave" wave field with constant frequency and amplitude, and a model for an individual VLF chorus element. We derive the equations of motion and trapping conditions in oblique whistlers. The resonant particle distribution function, resonant current, and nonlinear growth rate are computed as functions of position and time. For all resonances of order n, resonant electrons obey the trapping equation, and provided the wave amplitude is big enough for the prevailing obliquity, nonlinearity manifests itself by a "hole" or "hill" in distribution function, depending on the zero-order distribution function and on position. A key finding is that the n = 1 resonance is relatively unaffected by moderate obliquity up to 25°, but growth rates roll off rapidly at high obliquity. The n = 1 resonance saturates due to the adiabatic effect and here reaches a maximum growth at ~20 pT, 2000 km from the equator. Damping due to the n = 0 resonance is not subject to adiabatic effects and maximizes at some 8000 km from the equator at an obliquity ~55°.

  9. Gyrokinetic Simulations of Enhanced Alpha Transport by De-stabilized Alfvèn Turbulence

    NASA Astrophysics Data System (ADS)

    Bass, E. M.

    2009-11-01

    Alfvèn turbulence, destabilized by fusion-produced α-particles, is expected to greatly enhance transport of these hot fusion products. Previously, the gyrokinetic code GYRO [1] was used to simulate the convective transport of fusion alpha particles by electrostatic (β=0) ITG/TEM turbulence driven at low k (0particles are modeled by a hot Maxwellian (Tα=100,e) superimposed at trace density (0.005< nα/ne<0.025 and a/Lα=4 fixed) on the background plasma. Linear stability studies show two high-frequency modes driven unstable at very long wavelength (0particle mode (EPM), exhibit hybrid ``drift-Alfvèn" frequency scaling with kθρs and nα. At densities below the Alfvèn linear stability threshold (nα/ne<=0.005), ITG/TEM turbulence dominates nonlinear simulations. In this limit, the transported alpha particles are passive tracers and ion and electron transport agrees well with nα=0 results. Just above the alpha-particle density gradient threshold, Alfvènic (TAE/EPM) drive enhances transport in α-particle and background channels. This trend continues as nα and TAE/EPM microturbulence drive increase. The focus is on conditions for obtaining stationary nonlinearly saturated transport avoiding any subcritical limit on the total beta gradient. 8pt [1] J. Candy and R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003). [2] C. Estrada-Mila, et al., Phys. Plasmas 13, 112303 (2006).

  10. Thermodynamic Bounds on Nonlinear Electrostatic Perturbations in Intense Charged Particle Beams

    SciTech Connect

    Nikolas C. Logan and Ronald C. Davidson

    2012-07-18

    This paper places a lowest upper bound on the field energy in electrostatic perturbations in single-species charged particle beams with initial temperature anisotropy (TllT⊥ < 1). The result applies to all electrostatic perturbations driven by the natural anisotropies that develop in accelerated particle beams, including Harris-type electrostatic instabilities, known to limit the luminosity and minimum spot size attainable in experiments. The thermodynamic bound on the field perturbation energy of the instabilities is obtained from the nonlinear Vlasov-Poisson equations for an arbitrary initial distribution function, including the effects of intense self-fields, finite geometry and nonlinear processes. This paper also includes analytical estimates of the nonlinear bounds for space-charge-dominated and emittance-dominated anisotropic bi-Maxwellian distributions.

  11. Gyrokinetic investigation of ITG turbulence in helical RFPs

    NASA Astrophysics Data System (ADS)

    Predebon, I.; Xanthopoulos, P.; Terranova, D.

    2014-10-01

    Micro-instabilities in reversed field pinch (RFP) plasmas have been investigated in the last years from several viewpoints and with various numerical tools. So far, axisymmetry of the magnetic equilibrium has always been postulated. Nevertheless, experimental evidence suggests that the physical conditions mostly favoring the onset of electrostatic/electromagnetic turbulence, e.g., the occurrence of large pressure gradients, emerge when magnetic surfaces become helical, during the single helicity states. In this work, we investigate ion-temperature-gradient driven turbulence focusing on the 3D feature, with the aim to describe its distinct properties compared to the axisymmetric geometry. For this study, we will apply the 3D nonlinear gyrokinetic code GENE to RFP equilibria generated by the VMEC code.

  12. Cosmology and low energy particle physics of nonlinear supersymmetric general relativity

    SciTech Connect

    Shima, Kazunari; Tsuda, Motomu

    2009-04-17

    The basic idea and some physical implications of nonlinear supersymmetric general relativity(NLSUSY GR) are discussed, which give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g., the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.

  13. Summary report of the group on single-particle nonlinear dynamics

    SciTech Connect

    Axinescu, S.; Bartolini, R.; Bazzani, A.

    1996-10-01

    This report summarizes the research on single-particle nonlinear beam dynamics. It discusses the following topics: analytical and semi-analytical tools; early prediction of the dynamic aperture; how the results are commonly presented; Is the mechanism of the dynamic aperture understand; ripple effects; and beam-beam effects.

  14. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2016-07-01

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.

  15. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles.

    PubMed

    Mukamel, Shaul

    2016-07-28

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles. PMID:27475341

  16. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  17. A nonlinear auxetic structural vibration damper with metal rubber particles

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie

    2013-08-01

    The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.

  18. Gyrokinetic stability theory of electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Helander, P.; Connor, J. W.

    2016-06-01

    > The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, Phys. Rev. Lett., vol. 113, 2014a, 135003) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal magnetohydrodynamics. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.

  19. Nonlinear gyrofluid model of ITG turbulence

    SciTech Connect

    Dorland, W.; Hammett, G.w.; Hahm, T.S.; Beer, M.A. )

    1994-05-01

    Early results from nonlinear simulations and analysis based on a recently derived nonlinear gyrofluid model [W. Dorland and G. W. Hammett, Phys. Fluids B, 812 (1993)] of electrostatic ion-temperature-gradient driven turbulence are presented. Comparisons with gyrokinetic particle simulations reveal a few important simulation requirements (such as enforcing radial periodicity), and indicate that the gyrofluid description is probably adequate to describe three-dimensional, low-frequency drift-type turbulence. Results from a detailed weak-turbulence analysis of drift wave turbulence are presented which support this conclusion. The importance of keeping the proper adiabatic electron response is also discussed. In particular, perpendicular velocity shear is greatly enhanced when the magnetic shear is weak if the nonphysical radial transport of electrons is disallowed.

  20. Gyrokinetic simulation of the collisional micro-tearing mode instability

    NASA Astrophysics Data System (ADS)

    Startsev, Edward; Lee, Wei-Li; Wang, Weixing

    2015-11-01

    An application of recently developed perturbative particle simulation scheme for finite- β plasmas in the presence of background inhomogeneities is presented. Originally, using similar scheme, we were able to simulate shear-Alfven waves, finite- β modified drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. Recently, we have successfully used the scheme for simulation of linear tearing and drift-tearing modes, in both collisionless semi-collisional regimes in slab geometry with sheared magnetic field. Here, we present further development of this scheme for the simulation of linear semi-collisional micro-tearing mode driven by electron temperature gradient in high-aspect ratio cylindrical cross-section tokamak using the modified turbulence code GTS. Research supported by the U. S. Department of Energy.

  1. Gyrokinetic studies of core turbulence features in ASDEX Upgrade: Can gyrokinetic simulations match the fluctuation measurements?

    NASA Astrophysics Data System (ADS)

    Banon Navarro, Alejandro

    2015-11-01

    Worldwide, gyrokinetic codes are used to predict the dominant micro-instabilities as well as the resulting anomalous transport in fusion experiments. A careful verification and validation of these codes is crucial to develop confidence in the model and improving the predictive capabilities of the numerical simulations. To date, the validation of gyrokinetic simulations versus experiments is mainly done at a macroscopic level, namely, by comparing turbulent heat fluxes. This is usually achieved by varying the profile gradients within the experimental error bars until a match with the experimental heat fluxes is obtained. However, since the turbulent fluxes are caused by plasma fluctuations on microscopic scales, it is also necessary to validate gyrokinetic codes on a microscopic level. We will describe a recent step in this direction by presenting simulation results with the gyrokinetic code GENE for an ASDEX Upgrade discharge. In particular, after flux-matched simulations are achieved, density fluctuations measured by means of Doppler reflectometry are compared with results of gyrokinetic simulations. We will also show that density and temperature fluctuation amplitudes and even the fluctuation spectra can be very sensitive to small changes in the profile gradients. This implies that a match of gyrokinetic simulations with experiment measurements for these quantities can be very difficult to achieve. However, it is observed that cross-phases between different quantities are robust to changes in this parameter, indicating that cross-phases could be a better observable for comparisons with experimental measurements.

  2. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  3. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    SciTech Connect

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod; Candy, J.; and others

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  4. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Greenwald, M.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F.; Porkolab, M.; Rice, J. E.; Walk, J.; Wukitch, S. J.; Team, Alcator C-Mod

    2013-05-01

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T˜e/Te)/(n ˜e/ne), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.

  5. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles

    SciTech Connect

    G. Y. Fu

    2010-06-04

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low uctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  6. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles

    SciTech Connect

    G.Y. Fu

    2010-10-01

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  7. Nonlinear simulations of particle source effects on edge localized mode

    SciTech Connect

    Huang, J.; Tang, C. J.; Chen, S. Y.; Wang, Z. H.

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  8. Nonlinear simulations of particle source effects on edge localized mode

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, S. Y.; Wang, Z. H.; Tang, C. J.

    2015-12-01

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  9. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions

    NASA Astrophysics Data System (ADS)

    Shen, Zheqi; Tang, Youmin

    2016-04-01

    The ensemble Kalman particle filter (EnKPF) is a combination of two Bayesian-based algorithms, namely, the ensemble Kalman filter (EnKF) and the sequential importance resampling particle filter(SIR-PF). It was recently introduced to address non-Gaussian features in data assimilation for highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-PF analysis schemes. In this paper, we first extend the EnKPF algorithm by modifying the formula for the computation of the covariancematrix, making it suitable for nonlinear measurement functions (we will call this extended algorithm nEnKPF). Further, a general form of the Kalman gain is introduced to the EnKPF to improve the performance of the nEnKPF when the measurement function is highly nonlinear (this improved algorithm is called mEnKPF). The Lorenz '63 model and Lorenz '96 model are used to test the two modified EnKPF algorithms. The experiments show that the mEnKPF and nEnKPF, given an affordable ensemble size, can perform better than the EnKF for the nonlinear systems with nonlinear observations. These results suggest a promising opportunity to develop a non-Gaussian scheme for realistic numerical models.

  10. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.