Metamaterials with conformational nonlinearity
NASA Astrophysics Data System (ADS)
Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.
2011-11-01
Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control.
Nonlinear metamaterials for holography
Almeida, Euclides; Bitton, Ora
2016-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581
Nonlinear metamaterials for holography.
Almeida, Euclides; Bitton, Ora; Prior, Yehiam
2016-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency-the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581
Nonlocal homogenization for nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Gorlach, Maxim A.; Voytova, Tatiana A.; Lapine, Mikhail; Kivshar, Yuri S.; Belov, Pavel A.
2016-04-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analyzing resonant nonlinear metamaterials.
Optical nonlinearities in plasmonic metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zayats, Anatoly V.
2016-04-01
Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.
Theory and design of nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers
Enhanced optical phase conjugation in nonlinear metamaterials.
Kim, Kihong
2014-12-15
Optical phase conjugation by degenerate four-wave mixing in nonlinear metamaterials is studied theoretically by solving the coupled wave equations using a generalized version of the invariant imbedding method. The phase-conjugate reflectance and the lateral shift of the phase-conjugate reflected beams are calculated and their dependencies on the frequency, the polarization, the incident angle, the material properties and the structure are investigated in detail. It is found that the efficiency of phase conjugation can be significantly enhanced due to the enhancement of electromagnetic fields in various metamaterial structures. PMID:25607488
Transistor-based metamaterials with dynamically tunable nonlinear susceptibility
NASA Astrophysics Data System (ADS)
Barrett, John P.; Katko, Alexander R.; Cummer, Steven A.
2016-08-01
We present the design, analysis, and experimental demonstration of an electromagnetic metamaterial with a dynamically tunable effective nonlinear susceptibility. Split-ring resonators loaded with transistors are shown theoretically and experimentally to act as metamaterials with a second-order nonlinear susceptibility that can be adjusted through the use of a bias voltage. Measurements confirm that this allows for the design of a nonlinear metamaterial with adjustable mixing efficiency.
Eliminating material constraints for nonlinearity with plasmonic metamaterials
Neira, Andres D.; Olivier, Nicolas; Nasir, Mazhar E.; Dickson, Wayne; Wurtz, Gregory A.; Zayats, Anatoly V.
2015-01-01
Nonlinear optical materials comprise the foundation of modern photonics, offering functionalities ranging from ultrafast lasers to optical switching, harmonic and soliton generation. Optical nonlinearities are typically strong near the electronic resonances of a material and thus provide limited tuneability for practical use. Here we show that in plasmonic nanorod metamaterials, the Kerr-type nonlinearity is not limited by the nonlinear properties of the constituents. Compared with gold's nonlinearity, the measured nonlinear absorption and refraction demonstrate more than two orders of magnitude enhancement over a broad spectral range that can be engineered via geometrical parameters. Depending on the metamaterial's effective plasma frequency, either a focusing or defocusing nonlinearity is observed. The ability to obtain strong and fast optical nonlinearities in a given spectral range makes these metamaterials a flexible platform for the development of low-intensity nonlinear applications. PMID:26195182
Nonlinear optics at interfaces
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.
Active control of chirality in nonlinear metamaterials
Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang
2015-03-02
An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.
Switching nonlinearity in a superconductor-enhanced metamaterial
Kurter, Cihan; Tassin, Philippe; Zhuravel, Alexander P.; Zhang, Lei; Koschny, Thomas; Ustinov, Alexey V.; Soukoulis, Costas M.; Anlage, Steven M.
2012-03-21
We demonstrate a nonlinear metamaterial that can be switched between low and high transmission by controlling the power level of the incident beam. The origin of this nonlinear response is the superconducting Nb thin film employed in the metamaterial structure. We show that with moderate RF power of about 22 dBm it is possible to quench the superconducting state as a result of extremely strong current densities at the corners of the metamaterial's split-ring resonators. We measure a transmission contrast of 10 dB and a change in group delay of 70 ns between the low and high power states.
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
Alloatti, L. Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.
2015-09-21
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.
Multi-tone response of Nonlinear rf-SQUID metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Antonsen, Thomas; Ott, Edward; Anlage, Steven
We study the multi-tone response over a broad microwave frequency range of a nonlinear superconducting meta-atom and a metamaterial composed of Radio Frequency Superconducting QUantum Interference Devices (rf-SQUIDs). Nonlinearity in the SQUID metamaterial gives rise to large-range tunable resonance via dc/rf magnetic field and temperature, it also results in signal mixing through intermodulation distortion (IMD). Our metamaterial responds to multi-frequency signals and generates strong higher order intermodulation signals in a certain range of applied rf power. However, our meta-atom and metamaterial show a reduced third-order IMD generation around the resonance, which is unusual for typical nonlinear systems. The numerical simulation predicts the same IMD gap feature as in experiment. A comprehensive analytical model is applied to explain the phenomena, and methods to enhance, or reduce, intermodulation levels are explored. This work is supported by the NSF-GOALI and OISE programs through Grant # ECCS-1158644, and CNAM.
Nonlinear oscillator metamaterial model: numerical and experimental verification.
Poutrina, E; Huang, D; Urzhumov, Y; Smith, D R
2011-04-25
We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems. PMID:21643082
Thermally induced nonlinear optical absorption in metamaterial perfect absorbers
NASA Astrophysics Data System (ADS)
Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha
2015-03-01
A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.
Thermally induced nonlinear optical absorption in metamaterial perfect absorbers
Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha
2015-03-16
A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.
Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial.
Ou, Jun-Yu; Plum, Eric; Zhang, Jianfa; Zheludev, Nikolay I
2016-01-27
Metamaterial nanostructures actuated by light give rise to a large optical nonlinearity. Plasmonic metamolecules on a flexible support structure cut from a dielectric membrane of nanoscale thickness are rearranged by optical illumination. This changes the optical properties of the strongly coupled plasmonic structure and therefore results in modulation of light with light. PMID:26619205
Microwave memristive-like nonlinearity in a dielectric metamaterial.
Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke
2014-01-01
Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials. PMID:24975455
Microwave Memristive-like Nonlinearity in a Dielectric Metamaterial
Wu, Hongya; Zhou, Ji; Lan, Chuwen; Guo, Yunsheng; Bi, Ke
2014-01-01
Memristor exhibit interesting and valuable circuit properties and have thus become the subject of increasing scientific interest. Scientists wonder if they can conceive a microwave memristor that behaves as a memristor operating with electromagnetic fields. Here, we report a microwave memristive-like nonlinear phenomenon at room temperature in dielectric metamaterials consisting of CaTiO3-ZrO2 ceramic dielectric cubes. Hysteretic transmission-incident field power loops (similar to the hysteretic I-V loop of memristor which is the fingerprint of memristor) with various characteristics were systematically observed in the metamaterials, which exhibited designable microwave memristive-like behavior. The effect is attributed to the decreasing permittivity of the dielectric cubes with the increasing temperature generated by the interaction between the electromagnetic waves and the dielectric cubes. This work demonstrates the feasibility of fabrication transient photonic memristor at microwave frequencies with metamaterials. PMID:24975455
Non-reciprocal and highly nonlinear active acoustic metamaterials
NASA Astrophysics Data System (ADS)
Popa, Bogdan-Ioan; Cummer, Steven A.
2014-02-01
Unidirectional devices that pass acoustic energy in only one direction have numerous applications and, consequently, have recently received significant attention. However, for most practical applications that require unidirectionality at audio and low frequencies, subwavelength implementations capable of the necessary time-reversal symmetry breaking remain elusive. Here we describe a design approach based on metamaterial techniques that provides highly subwavelength and strongly non-reciprocal devices. We demonstrate this approach by designing and experimentally characterizing a non-reciprocal active acoustic metamaterial unit cell composed of a single piezoelectric membrane augmented by a nonlinear electronic circuit, and sandwiched between Helmholtz cavities tuned to different frequencies. The design is thinner than a tenth of a wavelength, yet it has an isolation factor of >10 dB. The design method generates relatively broadband unidirectional devices and is a good candidate for numerous acoustic applications.
Non-reciprocal and highly nonlinear active acoustic metamaterials.
Popa, Bogdan-Ioan; Cummer, Steven A
2014-01-01
Unidirectional devices that pass acoustic energy in only one direction have numerous applications and, consequently, have recently received significant attention. However, for most practical applications that require unidirectionality at audio and low frequencies, subwavelength implementations capable of the necessary time-reversal symmetry breaking remain elusive. Here we describe a design approach based on metamaterial techniques that provides highly subwavelength and strongly non-reciprocal devices. We demonstrate this approach by designing and experimentally characterizing a non-reciprocal active acoustic metamaterial unit cell composed of a single piezoelectric membrane augmented by a nonlinear electronic circuit, and sandwiched between Helmholtz cavities tuned to different frequencies. The design is thinner than a tenth of a wavelength, yet it has an isolation factor of >10 dB. The design method generates relatively broadband unidirectional devices and is a good candidate for numerous acoustic applications. PMID:24572771
Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu
2010-02-15
We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil Andrew; Shaner, Eric A.; Klem, John Frederick; Sinclair, Michael B.; Brener, Igal
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
Phased-array sources based on nonlinear metamaterial nanocavities
NASA Astrophysics Data System (ADS)
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.
New avenues for phase matching in nonlinear hyperbolic metamaterials.
Duncan, C; Perret, L; Palomba, S; Lapine, M; Kuhlmey, B T; de Sterke, C Martijn
2015-01-01
Nonlinear optical processes, which are of paramount importance in science and technology, involve the generation of new frequencies. This requires phase matching to avoid that light generated at different positions interferes destructively. Of the two original approaches to achieve this, one relies on birefringence in optical crystals, and is therefore limited by the dispersion of naturally occurring materials, whereas the other, quasi-phase-matching, requires direct modulation of material properties, which is not universally possible. To overcome these limitations, we propose to exploit the unique dispersion afforded by hyperbolic metamaterials, where the refractive index can be arbitrarily large. We systematically analyse the ensuing opportunities and demonstrate that hyperbolic phase matching can be achieved with a wide range of material parameters, offering access to the use of nonlinear media for which phase matching cannot be achieved by other means. With the rapid development in the fabrication of hyperbolic metamaterials, our approach is destined to bring significant advantages over conventional techniques for the phase matching of a variety of nonlinear processes. PMID:25757863
Shen Ming; Ruan Linxu; Shi Jielong; Wang Qi; Wang Xinglin
2011-04-15
We make theoretical investigations of the nonlinear guided modes near the Dirac point (DP) in nonlinear negative-zero-positive index metamaterial (NZPIM) waveguide. When the nonlinearity is self-focusing, an asymmetric forbidden band exists near the DP that can be modulated by the strength of the nonlinearity. However, the self-defocusing nonlinearity can completely eliminate the asymmetric band gap. We also study the nonlinear surface waves in such nonlinear NZPIM waveguide. These results may predict analogous phenomena in nonlinear graphene.
Negative refraction, gain and nonlinear effects in hyperbolic metamaterials.
Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; Alù, Andrea
2013-06-17
The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices. PMID:23787691
Nonlinear optics, active plasmonics and metamaterials with liquid crystals
NASA Astrophysics Data System (ADS)
Khoo, Iam Choon
2014-03-01
Nematic liquid crystals possess large and versatile optical nonlinearities suitable for photonics applications spanning the femtoseconds to milliseconds time scales, and across a wide spectral window. We present a comprehensive review of the physical properties and mechanisms that underlie these multiple time scales nonlinearities, delving into individual molecular electronic responses as well as collective ordered-phase dynamical processes. Several exemplary theoretical formalisms and feasibility demonstrations of ultrafast all-optical transmission switching and tunable metamaterials and plasmonic photonic structures where the liquid crystal constituents play the critical role of enabling the processes are discussed. Emphasis is placed on all-optical processes, but we have also highlighted cases where electro-optical means could provide additional control, flexibility and enhancement possibility. We also point out how another phase of chiral nematic, namely, Blue-Phase liquid crystals could circumvent some of the limitations of nematic and present new possibilities.
Perfect Lensing by a Single Interface: Defying Loss and Bandwidth Limitations of Metamaterials.
Rosenblatt, Gilad; Orenstein, Meir
2015-11-01
Loss is known to be detrimental for achieving perfect focusing with the passive perfect lens designs suggested thus far, and it is believed to pose a fundamental barrier. We show that perfect lensing can be achieved with actual lossy left-handed metamaterials, without a need for gain or nonlinearity. The proposed loss-immune perfect lens is composed of a single interface between a conventional dielectric material on the source side and a lossy left-handed material on the image side. Its immunity to material loss was derived analytically using three complementary methodologies, confirming perfect lensing with point-to-point accuracy and shedding light on the underlying focusing mechanism. This result provides a new road map for practical realization of a near-field camera based on the single-interface lens design. PMID:26588398
Perfect Lensing by a Single Interface: Defying Loss and Bandwidth Limitations of Metamaterials
NASA Astrophysics Data System (ADS)
Rosenblatt, Gilad; Orenstein, Meir
2015-11-01
Loss is known to be detrimental for achieving perfect focusing with the passive perfect lens designs suggested thus far, and it is believed to pose a fundamental barrier. We show that perfect lensing can be achieved with actual lossy left-handed metamaterials, without a need for gain or nonlinearity. The proposed loss-immune perfect lens is composed of a single interface between a conventional dielectric material on the source side and a lossy left-handed material on the image side. Its immunity to material loss was derived analytically using three complementary methodologies, confirming perfect lensing with point-to-point accuracy and shedding light on the underlying focusing mechanism. This result provides a new road map for practical realization of a near-field camera based on the single-interface lens design.
Smith, David R.; Schurig, David; Starr, Anthony F.; Mock, Jack J.
2014-09-09
One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
Controllable Raman soliton self-frequency shift in nonlinear metamaterials
Xiang Yuanjiang; Wen Shuangchun; Guo Jun; Fan Dianyuan
2011-09-15
Controllable and dispersive magnetic permeability in the metamaterials (MMs) provides us more freedom to harness the propagation of ultrashort electromagnetic pulses at will. Here we discuss the controllability of the Raman soliton self-frequency shift (SSFS) in the MMs with a nonlinear electric polarization. First, we derive a generalized nonlinear Schroedinger equation suitable for few-cycle pulse propagation in the MMs with delayed Raman response, and demonstrate the Raman effect, high-order Raman-related nonlinearity, and high-order nonlinear dispersion terms occurring in this equation. Second, we present a theoretical investigation on the controllability of the Raman SSFS in the MMs. In particular, we identify the combined effects of the anomalous self-steepening (SS), third-order dispersion (TOD), and Raman effect on SSFS. It is shown that the positive SS effect suppresses SSFS; however, the negative SS effect enhances SSFS, and the positive TOD leads to the deceleration of SSFS. Finally, the effects of SS on the SSFS of the second-order soliton are also discussed.
Development of Analog Nonlinear Materials Using Varactor Loaded Split-ring Resonator Metamaterials
NASA Astrophysics Data System (ADS)
Huang, Da
As research in electromagnetics has expanded, it has given rise to the examination of metamaterials, which possess nontrivial electromagnetic material properties such as engineered permittivity and permeability. Aside from their application in the microwave industry, metamaterials have been associated with novel phenomena since their invention, including sub-wavelength focusing in negative refractive index slabs, evanescent wave amplification in negative index media, and invisibility cloaking and its demonstration at microwave frequency with controlled material properties in space. Effective medium theory plays a key role in the development and application of metamaterials, simplifying the electromagnetic analysis of complex engineered metamaterial composites. Any metamaterial composite can be treated as a homogeneous or inhomogeneous medium, while every unit structure in the composite is represented by its permittivity and permeability tensor. Hence, studying an electromagnetic wave's interaction with complex composites is equivalent to studying the interaction between the wave and an artificial material. This dissertation first examines the application of a magnetic metamaterial lens in wireless power transfer (WPT) technology, which is proposed to enhance the mutual coupling between two magnetic dipoles in the system. I examine and investigate the boundary effect in the finite sized magnetic metamaterial lens using a numerical simulator. I propose to implement an anisotropic and indefinite lens in a WPT system to simplify the lens design and relax the lens dimension requirements. The numerical results agree with the analytical model proposed by Smith et al. in 2011, where lenses are assumed to be infinitely large. By manipulating the microwave properties of a magnetic metamaterial, the nonlinear properties come into the scope of this research. I chose split-ring resonators (SRR) loaded with varactors to develop nonlinear metamaterials. Analogous to linear
Fan, Li; Ge, Huan; Zhang, Shu-yi; Gao, Hai-fei; Liu, Yong-hui; Zhang, Hui
2013-06-01
Nonlinear acoustic fields in transmission-line acoustic metamaterials based on a cylindrical pipe with periodically arranged side holes are studied, in which the dispersions and characteristic parameters of the nonlinear acoustic waves are obtained with the Bloch theory, and meanwhile the distributions of the fundamental wave (FW) and second harmonic wave (SHW) in the metamaterial are simulated. Three characteristic frequency bands are defined according to the relations between the frequencies of the FW, SHW, and the low-frequency forbidden band (LFB) in the metamaterial. Especially, when the FW is in the LFB while the SHW is outside the LFB, the SHW can transmit through the metamaterial although the FW is blocked, which exhibits the possibility to extract the information from the SHW instead of the FW. In addition, experiments are carried out to measure the distributions of the acoustic pressures for the FW and SHW along the metamaterial and the experimental results are in agreement with the theory. PMID:23742339
Sukhorukov, Andrey A; Solntsev, Alexander S; Kruk, Sergey S; Neshev, Dragomir N; Kivshar, Yuri S
2014-02-01
We derive general coupled-mode equations describing the nonlinear interaction of electromagnetic modes in periodic media with loss and gain. Our approach is rigorously based on the Lorentz reciprocity theorem, and it can be applied to a broad range of metal-dielectric photonic structures, including plasmonic waveguides and metamaterials. We verify that our general results agree with the previous analysis of particular cases, and predict novel effects on self- and cross-phase modulation in multilayer nonlinear fishnet metamaterials. PMID:24487840
A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2016-06-01
An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial. PMID:27369164
Solitary waves and nonlinear dynamic coherent structures in magnetic metamaterials
NASA Astrophysics Data System (ADS)
Tankeyev, A. P.; Smagin, V. V.; Borich, M. A.; Zhuravlev, A. S.
2009-03-01
Within the framework of the extended nonlinear Schrödinger equation (ENSE), two types of nonlinear states of magnetization in a ferromagnet-dielectric-metal metamagnetic structure have been obtained and investigated. These states have an internal structure; e.g., a periodic sequence of compound solitons is formed by kink-antikink pairs (shock waves), and coherent periodic breather structures are formed by “bright” quasi-solitons. Conditions have been found under which the envelope of these states is described by a modified Korteweg-de Vries (mKdV) equation. It is shown that the compound solitons are described by an mKdV equation with repulsion, and the breather structures, by an mKdV equation with attraction. It is shown also that the characteristic properties of the solutions are determined by the sign of the group-velocity dispersion rather than by the sign of the group velocity itself. The results obtained can be used for searching new nonlinear dynamic coherent structures, e.g., compound solitons and breathers in high-dispersion magnetic metamaterials.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil Andrew; Shaner, Eric A.; Klem, John Frederick; Sinclair, Michael B.; et al
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Phased-array sources based on nonlinear metamaterial nanocavities.
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Manimala, James M; Sun, C T
2016-06-01
The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides. PMID:27369163
Wolf, Omri E-mail: ibrener@sandia.gov; Ma, Xuedan; Brener, Igal E-mail: ibrener@sandia.gov; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.
2015-10-12
We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.
Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; Wendt, Joel R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal
2015-10-15
We use planar metamaterial resonators to enhance, by more than two orders of magnitude, the optical second harmonic generation, in the near infrared, obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators’ cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a new class of sources for quantum photonics related phenomena.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Wang, Bingnan
2009-01-01
nonlinear SRRs are built and modeled to study the nonlinearity in magnetic metamaterials and the results will be presented in Chapter 3. Negative refractive index n is one of the major target in the research of metamaterials. Negative n can be obtained with a metamaterial with both ϵ and μ negative. As an alternative, negative index for one of the circularly polarized waves could be achieved with metamaterials having a strong chirality ?. In this case neither ϵ} nor μ negative is required. My work on chiral metamaterials will be presented in Chapter 4.
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials.
Shorokhov, Alexander S; Okhlopkov, Kirill I; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R; Pertsch, Thomas; Fedyanin, Andrey A
2016-01-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial's χ((3)) was observed; the all-optical χ((3)) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm(2). PMID:27335268
Vasilantonakis, N; Wurtz, G A; Podolskiy, V A; Zayats, A V
2015-06-01
Metamaterials with hyperbolic dispersion based on metallic nanorod arrays provide a flexible platform for the design of bio- and chemical sensors and nonlinear devices, allowing the incorporation of functional materials into and onto the plasmonic metamaterial. Here, we have investigated, both analytically and numerically, the dependence of the optical response of these metamaterials on refractive index variations in commonly used experimental sensing configurations, including transmission, reflection, and total internal reflection. The strategy for maximising refractive index sensitivity for different configurations has been considered, taking into account contributions from the superstrate, embedding matrix, and the metal itself. It is shown that the sensitivity to the refractive index variations of the host medium is at least 2 orders of magnitude higher than to the ones originating from the superstrate. It is also shown that the refractive index sensitivity increases for higher-order unbound and leaky modes of the metamaterial sensor. The impact of the transducer's thickness was also analysed showing significant increase of the sensitivity for the thinner metamaterial layers (down to few 0.01 fraction of wavelength and, thus, requiring less analyte) as long as modes are supported by the structure. In certain configurations, both TE and TM-modes of the metamaterial transducer have comparable sensitivities. The results provide the basis for the design of new ultrasensitive chemical and biosensors outperforming both surface plasmon polaritons and localised surface plasmons based transducers. PMID:26072797
Interface solitons in thermal nonlinear media
Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei
2011-05-15
We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher refractive index. The two intensity peaks of dipole interface solitons are unequal except under some specific conditions, which is different from their counterparts in uniform thermal nonlinear media.
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped–clamped boundary conditions.
Localization properties of photonic modes in disordered nonlinear-Kerr/metamaterial heterostructures
NASA Astrophysics Data System (ADS)
Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.
2016-02-01
The localization properties of electromagnetic waves in one-dimensional disordered nonlinear-Kerr/metamaterial heterostructures are investigated. Structural disorder is introduced via a random fluctuation of layer widths of both nonlinear-Kerr and metamaterial slabs composing the photonic heterostructure. For frequency values in the vicinity of the zero-n gap, multiple electromagnetic modes with different transmission lengths are obtained for a given value of the Kerr defocusing nonlinearity power. Maximum-delocalized photonic states, which are associated with high-transmission electromagnetic modes corresponding to gap-soliton waves, are found to be quite sensitive with respect to the degree of disorder. Moreover, we have found that inclusion of absorption effects leads, as expected, to a decreasing of the transmission length.
Weakly nonlinear analysis and localised structures in nonlinear cavities with metamaterials
NASA Astrophysics Data System (ADS)
Slimani, N.; Makhoute, A.; Tlidi, M.
2016-04-01
We consider an optical ring cavity filled with a metamaterial and with a Kerr medium. The cavity is driven by a coherent radiation beam. The modelling of this device leads to the well known Lugiato-Lefever equation with high order diffraction term. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction effect allows us to stabilise dark localised structures in this device. These structures consist of dips or holes in the transverse profile of the intracavity field and do not exist without high-order diffraction effects. We show that high order diffraction effects alter in depth the space-time dynamics of this device. A weakly nonlinear analysis in the vicinity of the first threshold associated with the Turing instability is performed. This analysis allows us to determine the parameter regime where the transition from super- to sub-critical bifurcation occurs. When the modulational instability appears subcritically, we show that bright localised structures of light may be generated in two-dimensional setting. Close to the second threshold associated with the Turing instability, dark localised structures are generated.
Nonlinear optical studies of polymer interfaces
Shen, Y.R. |
1993-11-01
Second-order nonlinear optical processes can be used as effective surface probes. They can provide some unique opportunities for studies of polymer interfaces. Here the author describes two examples to illustrate the potential of the techniques. One is on the formation of metal/polymer interfaces. The other is on the alignment of liquid crystal films by mechanically rubbed polymer surfaces.
An exact approach to intensity analysis of optical pulses in nonlinear meta-materials
NASA Astrophysics Data System (ADS)
Nanda, Lipsa
2016-05-01
The nonlinear pulse propagation has been analytically studied by solving the nonlinear Schrödinger's equation (NLSE) in bulk media exhibiting frequency dependent dielectric permittivity(ɛ) and magnetic permeability(μ). The exact solutions obtained are shown to be of trigonometric & localized types. The analytical and simulation based method has been further extended to investigate the intensity distribution in a nonlinear meta-material which behaves as a negative refractive medium (NRM), where both ɛ and μ are shown to be dispersive and negative in nature.
Metamaterials-based sensor to detect and locate nonlinear elastic sources
NASA Astrophysics Data System (ADS)
Gliozzi, Antonio S.; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.; Scalerandi, Marco
2015-10-01
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials
Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.
2016-01-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2. PMID:27335268
Kong, Xiang-kun; Liu, Shao-Bin Bian, Bo-rui; Chen, Chen; Zhang, Hai-feng
2014-12-15
A novel, compact, and multichannel nonreciprocal absorber through a wave tunneling mechanism in epsilon-negative and matching metamaterials is theoretically proposed. Nonreciprocal absorption properties are acquired via the coupling together of evanescent and propagating waves in an asymmetric configuration, constituted of nonlinear plasma alternated with matching metamaterial. The absorption channel number can be adjusted by changing the periodic number. Due to the positive feedback between nonlinear permittivity of plasma and the inner electric field, bistable absorption and reflection are achieved. Moreover, compared with some truncated photonic crystal or multilayered designs proposed before, our design is more compact and independent of incident angle or polarization. This kind of multilayer structure offers additional opportunities to design novel omnidirectional electromagnetic wave absorbers.
Ultrafast control of third-order optical nonlinearities in fishnet metamaterials
NASA Astrophysics Data System (ADS)
Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.
2016-06-01
Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2.
Metamaterials-based sensor to detect and locate nonlinear elastic sources
Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.
2015-10-19
In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.
Discrete dissipative localized modes in nonlinear magnetic metamaterials.
Rosanov, Nikolay N; Vysotina, Nina V; Shatsev, Anatoly N; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S
2011-12-19
We analyze the existence, stability, and propagation of dissipative discrete localized modes in one- and two-dimensional nonlinear lattices composed of weakly coupled split-ring resonators (SRRs) excited by an external electromagnetic field. We employ the near-field interaction approach for describing quasi-static electric and magnetic interaction between the resonators, and demonstrate the crucial importance of the electric coupling, which can completely reverse the sign of the overall interaction between the resonators. We derive the effective nonlinear model and analyze the properties of nonlinear localized modes excited in one-and two-dimensional lattices. In particular, we study nonlinear magnetic domain walls (the so-called switching waves) separating two different states of nonlinear magnetization, and reveal the bistable dependence of the domain wall velocity on the external field. Then, we study two-dimensional localized modes in nonlinear lattices of SRRs and demonstrate that larger domains may experience modulational instability and splitting. PMID:22274234
Nonlinear interaction of two trapped-mode resonances in a bilayer fish-scale metamaterial
NASA Astrophysics Data System (ADS)
Tuz, Vladimir R.; Novitsky, Denis V.; Mladyonov, Pavel L.; Prosvirnin, Sergey L.; Novitsky, Andrey V.
2014-09-01
We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.
Low-power all-optical tunable plasmonic-mode coupling in nonlinear metamaterials
Zhang, Fan; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn
2014-03-31
All-optical tunable plasmonic-mode coupling is realized in a nonlinear photonic metamaterial consisting of periodic arrays of gold asymmetrically split ring resonators, covered with a poly[(methyl methacrylate)-co-(disperse red 13 acrylate)] azobenzene polymer layer. The third-order optical nonlinearity of the azobenzene polymer is enormously enhanced by using resonant excitation. Under excitation with a 17-kW/cm{sup 2}, 532-nm pump light, plasmonic modes shift by 51 nm and the mode interval is enlarged by 30 nm. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while extremely large tunability is maintained.
Dark solitons at nonlinear interfaces.
Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S
2010-05-01
The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell's law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter. PMID:20436564
Helmholtz solitons at nonlinear interfaces.
Sánchez-Curto, J; Chamorro-Posada, P; McDonald, G S
2007-05-01
Reflection and refraction of spatial solitons at dielectric interfaces, accommodating arbitrarily angles of incidence, is studied. Analysis is based on Helmholtz soliton theory, which eliminates the angular restriction associated with the paraxial approximation. A novel generalization of Snell's law is discovered that is valid for collimated light beams and the entire angular domain. Our new theoretical predictions are shown to be in excellent agreement with full numerical simulations. New qualitative features of soliton refraction and limitations of previous paraxial analyses are highlighted. PMID:17410257
Liu, Sheng; Keeler, Gordon A.; Reno, John L.; Sinclair, Michael B.; Brener, Igal
2016-06-10
We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.
NASA Astrophysics Data System (ADS)
Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.
2016-09-01
We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.
Nano-structured magnetic metamaterial with enhanced nonlinear properties
Kobljanskyj, Yuri; Melkov, Gennady; Guslienko, Konstantin; Novosad, Valentyn; Bader, Samuel D.; Kostylev, Michael; Slavin, Andrei
2012-01-01
Nano-structuring can significantly modify the properties of materials. We demonstrate that size-dependent modification of the spin-wave spectra in magnetic nano-particles can affect not only linear, but also nonlinear magnetic response. The discretization of the spectrum removes the frequency degeneracy between the main excitation mode of a nano-particle and the higher spin-wave modes, having the lowest magnetic damping, and reduces the strength of multi-magnon relaxation processes. This reduction of magnon-magnon relaxation for the main excitation mode leads to a dramatic increase of its lifetime and amplitude, resulting in the intensification of all the nonlinear processes involving this mode. We demonstrate this experimentally on a two-dimensional array of permalloy nano-dots for the example of parametric generation of a sub-harmonic of an external microwave signal. The characteristic lifetime of this sub-harmonic is increased by two orders of magnitude compared to the case of a continuous magnetic film, where magnon-magnon relaxation limits the lifetime. PMID:22745899
Hsiao, Hui-Hsin; Abass, Aimi; Fischer, Johannes; Alaee, Rasoul; Wickberg, Andreas; Wegener, Martin; Rockstuhl, Carsten
2016-05-01
Nanolaminate metamaterials recently attracted a lot of attention as a novel second-order nonlinear material that can be used in integrated photonic circuits. Here, we explore theoretically and numerically the opportunity to enhance the nonlinear response from such nanolaminates by exploiting Fano resonances supported in grating-coupled waveguides. The enhancement factor of the radiated second harmonic signal compared to a flat nanolaminate can reach values as large as 35 for gold gratings and even 7000 for MgF_{2} gratings. For the MgF_{2} grating, extremely high-Q Fano resonances are excited in such all-dielectric system that result in strong local fields in the nonlinear waveguide layer to boost the nonlinear conversion. A significant portion of the nonlinear signal is also strongly coupled to a dark waveguide mode, which remains guided in the nanolaminate. The strong excitation of a dark mode at the second harmonic frequency provides a viable method for utilizing second-order nonlinearities for light generation and manipulation in integrated photonic circuits. PMID:27137578
Quasi-phase-matching of the dual-band nonlinear left-handed metamaterial
Liu, Yahong Song, Kun; Gu, Shuai; Liu, Zhaojun; Guo, Lei; Zhao, Xiaopeng; Zhou, Xin
2014-11-17
We demonstrate a type of nonlinear meta-atom creating a dual-band nonlinear left-handed metamaterial (DNLHM). The DNLHM operates at two distinct left-handed frequency bands where there is an interval of one octave between the two center frequencies. Under the illumination of a high-power signal at the first left-handed frequency band corresponding to fundamental frequency (FF), second-harmonic generation (SHG) is observed at the second left-handed band. This means that our DNLHM supports backward-propagating waves both at FF and second-harmonic (SH) frequency. We also experimentally demonstrate quasi-phase-matching configurations for the backward SHG. This fancy parametric process can significantly transmits the SH generated by an incident FF wave.
A review of nano-optics in metamaterial hybrid heterostructures
Singh, Mahi R.
2014-03-31
We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.
A review of nano-optics in metamaterial hybrid heterostructures
NASA Astrophysics Data System (ADS)
Singh, Mahi R.
2014-03-01
We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.
NASA Astrophysics Data System (ADS)
Rapoport, Yu G.; Boardman, A. D.; Grimalsky, V. V.; Ivchenko, V. M.; Kalinich, N.
2014-05-01
The idea of nonlinear ‘transformation optics-inspired’ [1-6] electromagnetic cylindrical field concentrators has been taken up in a preliminary manner in a number of conference reports [7-9]. Such a concentrator includes both external linear region with a dielectric constant increased towards the centre and internal region with nonlinearity characterized by constant coefficients. Then, in the process of farther investigations we realized the following factors considered neither in [7-9] nor in the recent paper [10]: saturation of nonlinearity, nonlinear losses, linear gain, numerical convergence, when nonlinear effect becomes very strong and formation of ‘hotspots’ starts. It is clearly demonstrated here that such a strongly nonlinear process starts when the nonlinear amplitude of any incident beam(s) exceeds some ‘threshold’ value. Moreover, it is shown that the formation of hotspots may start as the result of any of the following processes: an increase of the input amplitude, increasing the linear amplification in the central nonlinear region, decreasing the nonlinear losses, a decrease in the saturation of the nonlinearity. Therefore, a tendency to a formation of ‘hotspots’ is a rather universal feature of the strongly nonlinear behaviour of the ‘nonlinear resonator’ system, while at the same time the system is not sensitive to the ‘prehistory’ of approaching nonlinear threshold intensity (amplitude). The new proposed method includes a full-wave nonlinear solution analysis (in the nonlinear region), a new form of complex geometric optics (in the linear inhomogeneous external cylinder), and new boundary conditions, matching both solutions. The observed nonlinear phenomena will have a positive impact upon socially and environmentally important devices of the future. Although a graded-index concentrator is used here, it is a direct outcome of transformation optics. Numerical evaluations show that for known materials these nonlinear effects
Lapine, Mikhail; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S
2012-01-01
The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics. In particular, nonlinear metamaterials established a new research direction giving rise to fruitful ideas for tunable and active artificial materials. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics of photonic structures or magnetoelasticity in magnetic materials. PMID:22081080
Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials
Zhu, Yu; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn
2014-05-26
An all-optical tunable double plasmon-induced transparency is realized in a photonic metamaterial coated on the surface of a nanocomposite layer made of polycrystalline indium-tin oxide doped with gold nanoparticles. The local-field effect, quantum confinement effect, and hot-electron injection ensure a large optical nonlinearity for the nanocomposite. A shift of 120 nm in the central wavelength of transparency windows is reached under excitation with a weak pump laser with an intensity of 21 kW/cm{sup 2}. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while an ultrafast response time of 34.9 ps is maintained.
Ultralow-power all-optical tunable dual Fano resonances in nonlinear metamaterials
Zhang, Fan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn
2013-11-04
Dual Fano resonances are realized in a nonlinear photonic metamaterial consisting of periodic arrays of asymmetrical meta-molecules etched in a gold film coated with azobenzene polymer layer made of poly[(methyl methacrylate)-co-(disperse red 13 acrylate)]. Enormously enhanced photoisomerization associated with resonant excitation brings about a large refractive index variation in the azobenzene polymer. Under excitation of a weak pump light as low as 0.61 kW/cm{sup 2}, a large shift of 50 nm in the Fano resonance wavelength is obtained. Compared with previous reports, the threshold pump intensity is reduced by seven orders of magnitude while a large tunability is maintained simultaneously.
NASA Astrophysics Data System (ADS)
Zhong, Xian-qiong; Xiang, Wen-li; Cheng, Ke
2013-11-01
After taking the higher-order dispersion and three kinds of saturable nonlinearities into account, we investigate the characteristics of modulation instability (MI) in real units in the positive refractive region of metamaterials (MMs). The results show that the gain spectra of MI consist of two spectral regions, one of which is close to and the other is far from the zero point. In particular, the spectral region far from the zero point also has high cut-off frequency but narrow spectral width just as those revealed in the negative refractive region. Moreover, the gain spectra can change with the normalized angular frequency, the normalized optical power and the form of the saturable nonlinearity. Concretely, the spectral width increases with increase of the normalized angular frequency. But both of the spectral width and the peak gain increase and then decrease with increase of the normalized optical power. In other words, the MI characteristics and MI related applications can be controlled by adjusting the structure of the MMs, the form of the saturable nonlinearity and the normalized optical power.
Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial
NASA Astrophysics Data System (ADS)
Tuz, Vladimir R.; Kochetov, Bogdan A.; Kochetova, Lyudmila A.; Mladyonov, Pavel L.; Prosvirnin, Sergey L.
2015-02-01
We discuss a similarity between resonant oscillations in two nonlinear systems; namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, whereas the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in the appearance of closed loops in spectral lines and bending and overlapping of resonant curves. Conditions for achieving bistability and multistability are determined.
Enhanced energy transport owing to nonlinear interface interaction
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
Enhanced energy transport owing to nonlinear interface interaction.
Su, Ruixia; Yuan, Zongqiang; Wang, Jun; Zheng, Zhigang
2016-01-01
It is generally expected that the interface coupling leads to the suppression of thermal transport through coupled nanostructures due to the additional interface phonon-phonon scattering. However, recent experiments demonstrated that the interface van der Waals interactions can significantly enhance the thermal transfer of bonding boron nanoribbons compared to a single freestanding nanoribbon. To obtain a more in-depth understanding on the important role of the nonlinear interface coupling in the heat transports, in the present paper, we explore the effect of nonlinearity in the interface interaction on the phonon transport by studying the coupled one-dimensional (1D) Frenkel-Kontorova lattices. It is found that the thermal conductivity increases with increasing interface nonlinear intensity for weak inter-chain nonlinearity. By developing the effective phonon theory of coupled systems, we calculate the dependence of heat conductivity on interfacial nonlinearity in weak inter-chain couplings regime which is qualitatively in good agreement with the result obtained from molecular dynamics simulations. Moreover, we demonstrate that, with increasing interface nonlinear intensity, the system dimensionless nonlinearity strength is reduced, which in turn gives rise to the enhancement of thermal conductivity. Our results pave the way for manipulating the energy transport through coupled nanostructures for future emerging applications. PMID:26787363
NASA Astrophysics Data System (ADS)
Yang, Rongcao; Min, Xuemin; Tian, Jinping; Zhang, Wenmei
2016-02-01
Modulation instability (MI) in metamaterials induced by pseudo-quintic nonlinearity, self-steepening effect along with delayed Raman response (DRR) is investigated and expression for MI gain is presented by linear stability method. Compared to the previous results with saturable nonlinearity, it is found that the MI without DRR may occur in four primary cases with different threshold behaviors depending on the combination of dispersion and nonlinearity and the competition of pseudo-quintic nonlinearity and self-steepening effect. This implies that we may manipulate or tune the MI by adjusting the power and frequency of incident waves at will. In addition, we consider the influence of DRR on MI and find that the DRR leads to additional regions where it entirely governs the MI gain, besides the primary ones where the self-steepening and the pseudo-quintic nonlinearity dominate the MI gain. Moreover, the DRR makes MI happen in three new cases exhibiting monotonous growth with perturbation frequency, which means that it is possible to observe MI at arbitrary high frequency. Finally, we confirm the analytical results by numerical simulations. The obtained results may be useful for manipulating or tuning the MI in metamaterials and provide more ways to generate ultrashort pulses with ultrahigh repetition rate.
Quadratic soliton self-reflection at a quadratically nonlinear interface
NASA Astrophysics Data System (ADS)
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
Clemmen, Stéphane; Hermans, Artur; Solano, Eduardo; Dendooven, Jolien; Koskinen, Kalle; Kauranen, Martti; Brainis, Edouard; Detavernier, Christophe; Baets, Roel
2015-11-15
We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is noncentrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic generation Maker-fringe measurements shows that the main component of their nonlinear susceptibility tensor is about 5 pm/V, which is comparable to well-established materials and more than an order of magnitude greater than reported for a similar crystal [Appl. Phys. Lett.107, 121903 (2015)APPLAB0003-695110.1063/1.4931492]. Our demonstration opens new possibilities for second-order nonlinear effects on CMOS-compatible nanophotonic platforms. PMID:26565877
Nonlinear acoustic resonances to probe a threaded interface
NASA Astrophysics Data System (ADS)
Rivière, Jacques; Renaud, Guillaume; Haupert, Sylvain; Talmant, Maryline; Laugier, Pascal; Johnson, Paul A.
2010-06-01
We evaluate the sensitivity of multimodal nonlinear resonance spectroscopy to torque changes in a threaded interface. Our system is comprised of a bolt progressively tightened in an aluminum plate. Different modes of the system are studied in the range 1-25 kHz, which correspond primarily to bending modes of the plate. Nonlinear parameters expressing the importance of resonance frequency and damping variations are extracted and compared to linear ones. The influence of each mode shape on the sensitivity of nonlinear parameters is discussed. Results suggest that a multimodal measurement is an appropriate and sensitive method for monitoring bolt tightening. Further, we show that the nonlinear components provide new information regarding the interface, which can be linked to different friction theories. This work has import to study of friction and to nondestructive evaluation of interfaces for widespread application and basic research.
Influence of geometric nonlinearities on skin-stiffener interface stresses
NASA Technical Reports Server (NTRS)
Cohen, D.; Hyer, M. W.
1988-01-01
A method for computing skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The results indicate that the inclusion of geometric nonlinearities is very important for an accurate determination of the interface stresses. Membrane flattening of the panel tends to reduce the tendency of the stiffener to separate.
Nonlinear viscoelasticity and shear localization at complex fluid interfaces.
Erni, Philipp; Parker, Alan
2012-05-22
Foams and emulsions are often exposed to strong external fields, resulting in large interface deformations far beyond the linear viscoelastic regime. Here, we investigate the nonlinear and transient interfacial rheology of adsorption layers in large-amplitude oscillatory shear flow. As a prototypical material forming soft-solid-type interfacial adsorption layers, we use Acacia gum (i.e., gum arabic), a protein/polysaccharide hybrid. We quantify its nonlinear flow properties at the oil/water interface using a biconical disk interfacial rheometer and analyze the nonlinear stress response under forced strain oscillations. From the resulting Lissajous curves, we access quantitative measures recently introduced for nonlinear viscoelasticity, including the intracycle moduli for both the maximum and zero strains and the degree of plastic energy dissipation upon interfacial yielding. We demonstrate using in situ flow visualization that the onset of nonlinear viscoelasticity coincides with shear localization at the interface. Finally, we address the nonperiodic character of this flow transition using an experimental procedure based on opposing stress pulses, allowing us to extract additional interfacial properties such as the critical interfacial stress upon yielding and the permanent deformation. PMID:22563849
Nonlinear electrostatic oscillations in a sharp plasma interface
Haas, F.; Shukla, P. K.
2009-11-10
We revisit a generalized nonlinear Schroedinger equation derived by Stenflo and Gradov, describing electrostatic oscillations in a sharp plasma interface. A Madelung decomposition is used to deduce a Sagdeev potential associated to an autonomous one-dimensional Hamiltonian system, whose solutions are all periodic. A conservation law preventing singularities (under suitable boundary conditions and initial wave profile) is derived. In the particular case where some of the nonlinearities can be neglected, the model is shown to be equivalent to the free-particle Schroedinger equation.
Metamaterials: Metamaterials go Gattaca
NASA Astrophysics Data System (ADS)
Tao, Andrea R.
2014-01-01
DNA tethers guide the self-assembly of colloidal metal nanoparticles into three-dimensional optical metamaterials. The observation of epsilon-near-zero behaviour in nanoparticle-based materials indicates that bottom-up assembly may be a viable solution to current challenges in the manufacture of metamaterials.
Golush, W.G.
1994-12-31
Nonlinear equations are expressed using a new OMNI statement FORM NLE. This allows OMNI Constructs, Classes, Tables, and New Variables to be used in nonlinear equations. The interface passes the nonlinear equations and symbolic derivatives to a general nonlinear solver. After optimization, the row and column activities of the solution are written to an OMNI Standard Solution File. Reports are written from this file using the OMNI FORM LINE report writer. The interface will be illustrated with an example of a nonlinear model written in OMNI and solved using the MINOS nonlinear solver.
Snapping mechanical metamaterials under tension.
Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano
2015-10-21
A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior. PMID:26314680
NASA Astrophysics Data System (ADS)
Alloatti, Luca; Kieninger, Clemens M.; Frölich, Andreas M.; Lauermann, Matthias; Frenzel, Tobias; Köhnle, Kira; Freude, Wolfgang; Leuthold, Juerg; Koos, Christian; Wegener, Martin
2015-09-01
[invited] We introduce ABC laminate metamaterials composed of layers of three different dielectrics. Each layer has zero bulk second-order optical nonlinearity, yet centro-symmetry is broken locally at each inner interface. To achieve appreciable effective bulk metamaterial second-order nonlinear optical susceptibilities, we densely pack many inner surfaces to a stack of atomically thin layers grown by conformal atomic-layer deposition. For the ABC stack, centro-symmetry is also broken macroscopically. Our experimental results for excitation at around 800 nm wavelength indicate interesting application perspectives for frequency conversion or electro-optic modulation in silicon photonics.
Nonlinear reduced order homogenization of materials including cohesive interfaces
NASA Astrophysics Data System (ADS)
Fritzen, Felix; Leuschner, Matthias
2015-07-01
The mechanical response of composite materials is strongly influenced by the nonlinear behavior of the interface between the constituents. In order to make reliable yet computationally efficient predictions for such materials, a reduced order model is developed. Conceptual ideas of the NTFA (Michel and Suquet, Int J Solids Struct 40:6937-6955, 2003, Comput Methods Appl Mech Eng 193:5477-5502, 2004) and of the pRBMOR (Fritzen, Hodapp and Leuschner Comput Methods Appl Mech Eng 260:143-154, 2013, Fritzen et al., Comput Methods Appl Mech Eng 278:186-217, 2014) are adopted. The key idea is to parameterize the displacement jumps on the cohesive interfaces by a reduced basis of global ansatz functions. Micromechanical considerations and the potential structure of the constitutive models lead to a variational formulation and reduced equilibrium conditions. The effect of the preanalysis phase on the accuracy is investigated using geometrically optimal training directions. The reduced model is tested for three-dimensional microstructures. Besides the effective stress response, the tension-compression asymmetry and the distribution of the separation of the interface are investigated. Memory savings on the order of are realized. The computing time is reduced considerably.
Nonlinear optical studies of aqueous interfaces, polymers, and nanowires
NASA Astrophysics Data System (ADS)
Onorato, Robert Michael
-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical
Liu, Cunding; Kong, Mingdong; Li, Bincheng
2014-05-01
Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector. PMID:24921834
Numerical Simulation of Nonlinear Ultrasonic Waves Due to Bi-material Interface Contact
NASA Astrophysics Data System (ADS)
Hirose, S.; Saitoh, T.
2014-06-01
Boundary integral equations are formulated to investigate nonlinear waves generated by a debonding interface of bi-material subjected to an incident plane wave. For the numerical simulation, the IRK (Implicit Runge-Kutta method) based CQ-BEM (Convolution Quadrature-Boundary Element Method) is developed. The interface conditions for a debonding area, consisting of three phases of separation, stick, and slip, are developed for the simulation of nonlinear ultrasonic waves. Numerical results are obtained and discussed for normal incidence of a plane longitudinal wave onto the nonlinear interface with a static compressive stress.
Tensional acoustomechanical soft metamaterials
Xin, Fengxian; Lu, Tianjian
2016-01-01
We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106
Tensional acoustomechanical soft metamaterials
NASA Astrophysics Data System (ADS)
Xin, Fengxian; Lu, Tianjian
2016-06-01
We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.
Tensional acoustomechanical soft metamaterials.
Xin, Fengxian; Lu, Tianjian
2016-01-01
We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106
Reconfigurable nanomechanical photonic metamaterials
NASA Astrophysics Data System (ADS)
Zheludev, Nikolay I.; Plum, Eric
2016-01-01
The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.
Active nanoplasmonic metamaterials
NASA Astrophysics Data System (ADS)
Hess, O.; Pendry, J. B.; Maier, S. A.; Oulton, R. F.; Hamm, J. M.; Tsakmakidis, K. L.
2012-07-01
Optical metamaterials and nanoplasmonics bridge the gap between conventional optics and the nanoworld. Exciting and technologically important capabilities range from subwavelength focusing and stopped light to invisibility cloaking, with applications across science and engineering from biophotonics to nanocircuitry. A problem that has hampered practical implementations have been dissipative metal losses, but the efficient use of optical gain has been shown to compensate these and to allow for loss-free operation, amplification and nanoscopic lasing. Here, we review recent and ongoing progress in the realm of active, gain-enhanced nanoplasmonic metamaterials. On introducing and expounding the underlying theoretical concepts of the complex interaction between plasmons and gain media, we examine the experimental efforts in areas such as nanoplasmonic and metamaterial lasers. We underscore important current trends that may lead to improved active imaging, ultrafast nonlinearities on the nanoscale or cavity-free lasing in the stopped-light regime.
Reconfigurable nanomechanical photonic metamaterials.
Zheludev, Nikolay I; Plum, Eric
2016-01-01
The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters. PMID:26740040
Chen, Hou-tong; Taylor, Antoineete J; Azad, Abul K; O' Hara, John F
2009-01-01
In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.
NASA Astrophysics Data System (ADS)
Shepard, Ralph Hamilton, III
Developments in nanotechnology and material science have produced optical materials with astonishing properties. Theory and experimentation have demonstrated that, among other properties, the law of refraction is reversed at an interface between a naturally occurring material and these so-called metamaterials. As the technology advances metamaterials have the potential to vastly impact the field of optical science. In this study we provide a foundation for future work in the area of geometric optics and lens design with metamaterials. The concept of negative refraction is extended to derive a comprehensive set of first-order imaging principles as well as an exhaustive aberration theory to 4th order. Results demonstrate congruence with the classical theory; however, negative refraction introduces a host of novel properties. In terms of aberration theory, metamaterials present the lens designer with increased flexibility. A singlet can be bent to produce either positive or negative spherical aberration (regardless of its focal length), its contribution to coma can become independent of its conjugate factor, and its field curvature takes on the opposite sign of its focal power. This is shown to be advantageous in some designs such as a finite conjugate relay lens; however, in a wider field of view landscape lens we demonstrate a metamaterial's aberration properties may be detrimental. This study presents the first comprehensive investigation of metamaterial lenses using industry standard lens design software. A formal design study evaluates the performance of doublet and triplet lenses operating at F/5 with a 100 mm focal length, a 20° half field of view, and specific geometric constraints. Computer aided optimization and performance evaluation provide experimental controls to remove designer-induced bias from the results. Positive-index lenses provide benchmarks for comparison to metamaterial systems subjected to identical design constraints. We find that
Matsui, Tatsunosuke; Takagi, Ryosuke; Takano, Keisuke; Hangyo, Masanori
2013-11-15
Terahertz (THz) transmission modulation through copper phthalocyanine (CuPc)-coated Si under various laser light irradiation conditions was investigated using THz time-domain spectroscopy. The charge carrier transfer from Si to CuPc is crucial for photo-induced metallization, and the thickness of the CuPc layer is a critical parameter for achieving high charge carrier density for metallization. Transmission through a split-ring resonator array metamaterial, fabricated on CuPc-coated Si, can be efficiently modulated by laser light irradiation. Our findings may open the way for various types of metamaterials using organic conjugated materials that are suitable for easy device fabrication using printing technologies. PMID:24322092
Blanloeuil, Philippe; Croxford, Anthony J; Meziane, Anissa
2014-04-01
The nonlinear interaction of shear waves with a frictional interface are presented and modeled using simple Coulomb friction. Analytical and finite difference implementations are proposed with both in agreement and showing a unique trend in terms of the generated nonlinearity. A dimensionless parameter ξ is proposed to uniquely quantify the nonlinearity produced. The trends produced in the numerical study are then validated with good agreement experimentally. This is carried out loading an interface between two steel blocks and exciting this interface with different amplitude normal incidence shear waves. The experimental results are in good agreement with the numerical results, suggesting the simple friction model does a reasonable job of capturing the fundamental physics. The resulting approach offers a potential way to characterize a contacting interface; however, the difficulty in activating that interface may ultimately limit its applicability. PMID:25234971
A Navigational Analysis of Linear and Non-Linear Hypermedia Interfaces.
ERIC Educational Resources Information Center
Hall, Richard H.; Balestra, Joel; Davis, Miles
The purpose of this experiment was to assess the effectiveness of a comprehensive model for the analysis of hypermap navigation patterns through a comparison of navigation patterns associated with a traditional linear interface versus a non-linear "hypermap" interface. Twenty-six general psychology university students studied material on bipolar…
Multiple-type solutions for multipole interface solitons in thermal nonlinear media
Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei
2011-09-15
We address the existence of multipole interface solitons in one-dimensional thermal nonlinear media with a step in the linear refractive index at the sample center. It is found that there exist two types of solutions for tripole and quadrupole interface solitons. The two types of interface solitons have different profiles, beam widths, mass centers, and stability regions. For a given propagation constant, only one type of interface soliton is proved to be stable, while the other type can also survive over a long distance. In addition, three types of solutions for fifth-order interface solitons are found.
Multiple-type solutions for multipole interface solitons in thermal nonlinear media
NASA Astrophysics Data System (ADS)
Ma, Xuekai; Yang, Zhenjun; Lu, Daquan; Hu, Wei
2011-09-01
We address the existence of multipole interface solitons in one-dimensional thermal nonlinear media with a step in the linear refractive index at the sample center. It is found that there exist two types of solutions for tripole and quadrupole interface solitons. The two types of interface solitons have different profiles, beam widths, mass centers, and stability regions. For a given propagation constant, only one type of interface soliton is proved to be stable, while the other type can also survive over a long distance. In addition, three types of solutions for fifth-order interface solitons are found.
A nonlinear interface model applied to masonry structures
NASA Astrophysics Data System (ADS)
Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella
2015-12-01
In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.
Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.
2014-08-12
Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.
Geochemical Insight from Nonlinear Optical Studies of Mineral-Water Interfaces
NASA Astrophysics Data System (ADS)
Covert, Paul A.; Hore, Dennis K.
2016-05-01
The physics and chemistry of mineral-water interfaces are complex, even in idealized systems. Our need to understand this complexity is driven by both pure and applied sciences, that is, by the need for basic understanding of earth systems and for the knowledge to mitigate our influences upon them. The second-order nonlinear optical techniques of second-harmonic generation and sum-frequency generation spectroscopy have proven adept at probing these types of interfaces. This review focuses on the contributions to geochemistry made by nonlinear optical methods. The types of questions probed have included a basic description of the structure adopted by water molecules at the mineral interface, how flow and porosity affect this structure, adsorption of trace metal and organic species, and dissolution mechanisms. We also discuss directions and challenges that lie ahead and the outlook for the continued use of nonlinear optical methods for studies of mineral-water boundaries.
NASA Astrophysics Data System (ADS)
Della Giovampaola, Cristian; Engheta, Nader
2014-12-01
Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, ‘0’ and ‘1’, in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call ‘metamaterial bits’, with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental ‘metamaterial bytes’ with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.
Della Giovampaola, Cristian; Engheta, Nader
2014-12-01
Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, '0' and '1', in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call 'metamaterial bits', with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental 'metamaterial bytes' with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology. PMID:25218061
Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface.
Allan, Daniel B; Firester, Daniel M; Allard, Victor P; Reich, Daniel H; Stebe, Kathleen J; Leheny, Robert L
2014-09-28
We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase. PMID:24969505
Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Wang, John T.; Ransom, Jonathan B.
1997-01-01
A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.
An Energy Approach to a Micromechanics Model Accounting for Nonlinear Interface Debonding.
Tan, H.; Huang, Y.; Geubelle, P. H.; Liu, C.; Breitenfeld, M. S.
2005-01-01
We developed a micromechanics model to study the effect of nonlinear interface debonding on the constitutive behavior of composite materials. While implementing this micromechanics model into a large simulation code on solid rockets, we are challenged by problems such as tension/shear coupling and the nonuniform distribution of displacement jump at the particle/matrix interfaces. We therefore propose an energy approach to solve these problems. This energy approach calculates the potential energy of the representative volume element, including the contribution from the interface debonding. By minimizing the potential energy with respect to the variation of the interface displacement jump, the traction balanced interface debonding can be found and the macroscopic constitutive relations established. This energy approach has the ability to treat different load conditions in a unified way, and the interface cohesive law can be in any arbitrary forms. In this paper, the energy approach is verified to give the same constitutive behaviors as reported before.
NASA Astrophysics Data System (ADS)
Shukla, Ratnesh K.
2014-11-01
Single fluid schemes that rely on an interface function for phase identification in multicomponent compressible flows are widely used to study hydrodynamic flow phenomena in several diverse applications. Simulations based on standard numerical implementation of these schemes suffer from an artificial increase in the width of the interface function owing to the numerical dissipation introduced by an upwind discretization of the governing equations. In addition, monotonicity requirements which ensure that the sharp interface function remains bounded at all times necessitate use of low-order accurate discretization strategies. This results in a significant reduction in accuracy along with a loss of intricate flow features. In this paper we develop a nonlinear transformation based interface capturing method which achieves superior accuracy without compromising the simplicity, computational efficiency and robustness of the original flow solver. A nonlinear map from the signed distance function to the sigmoid type interface function is used to effectively couple a standard single fluid shock and interface capturing scheme with a high-order accurate constrained level set reinitialization method in a way that allows for oscillation-free transport of the sharp material interface. Imposition of a maximum principle, which ensures that the multidimensional preconditioned interface capturing method does not produce new maxima or minima even in the extreme events of interface merger or breakup, allows for an explicit determination of the interface thickness in terms of the grid spacing. A narrow band method is formulated in order to localize computations pertinent to the preconditioned interface capturing method. Numerical tests in one dimension reveal a significant improvement in accuracy and convergence; in stark contrast to the conventional scheme, the proposed method retains its accuracy and convergence characteristics in a shifted reference frame. Results from the test
Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics
Geiger, Franz
2015-03-27
This is the Final Technical Report for "Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics", by Franz M. Geiger, PI, from Northwestern University, IL, USA, Grant Number SC0004101 and/or DE-PS02-ER09-07.
Nonlinear light-matter interactions in engineered optical media
NASA Astrophysics Data System (ADS)
Litchinitser, Natalia
In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This
Nonlinear stress deformation behavior of interfaces stabilized by food-based ingredients
NASA Astrophysics Data System (ADS)
Sagis, L. M. C.; Humblet-Hua, K. N. P.; van Kempen, S. E. H. J.
2014-11-01
Interfaces stabilized by food-based ingredients, such as proteins or glycolipids, often display nonlinear behavior when subjected to oscillatory dilatational deformations, even at the lowest deformation amplitudes which can currently be applied experimentally. Here we show that classical approaches to extract dilatational properties, based on the Young-Laplace equation, may not always be suitable to analyze data. We discuss a number of examples of food-ingredient stabilized interfaces (interfaces stabilized by protein fibrils, protein-polysaccharide complexes and oligosaccharide-fatty aid conjugates) and show how an analysis of the dynamic surface tension signal using Lissajous plots and a protocol which includes deformation amplitude and droplet size variations, can be used to obtain a more detailed and accurate description of their nonlinear dilatational behavior.
NASA Astrophysics Data System (ADS)
Sharma, Arvind; Nagar, A. K.
2016-05-01
The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.
Kim, Sung-Phil; Sanchez, Justin C; Erdogmus, Deniz; Rao, Yadunandana N; Wessberg, Johan; Principe, Jose C; Nicolelis, Miguel
2003-01-01
This paper proposes a divide-and-conquer strategy for designing brain machine interfaces. A nonlinear combination of competitively trained local linear models (experts) is used to identify the mapping from neuronal activity in cortical areas associated with arm movement to the hand position of a primate. The proposed architecture and the training algorithm are described in detail and numerical performance comparisons with alternative linear and nonlinear modeling approaches, including time-delay neural networks and recursive multilayer perceptrons, are presented. This new strategy allows training the local linear models using normalized LMS and using a relatively smaller nonlinear network to efficiently combine the predictions of the linear experts. This leads to savings in computational requirements, while the performance is still similar to a large fully nonlinear network. PMID:12850045
Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces
NASA Astrophysics Data System (ADS)
Clark, Daniel S.; Tabak, Max
2006-06-01
Recent attention has focused on the effect of spherical convergence on the nonlinear phase of Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 056308 (2005)]. However, this model is limited in assuming a self-similar background implosion history as well as only addressing growth from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single mode growth was considered and not the multimode growth of interest in applications. Here, these deficiencies are remedied. First, the connection of the recent nonlinear results (including convergence) to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the case of multimode growth with convergence, the recent nonlinear single mode results are combined with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence in the nonlinear regime is found not to modify substantially the multimode predictions of Haan's original model.
Linear and nonlinear Rayleigh-Taylor growth at strongly convergent spherical interfaces
Clark, D S; Tabak, M
2005-12-22
Recent attention has focused on the effect of spherical convergence on the nonlinear phase of Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 0056308 (2005).]. However, this model is limited in assuming a self-similar background implosion history as well as only addressing growth from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single-mode growth was considered and not the multimode growth of interest in applications. Here, these deficiencies are remedied. First, the connection of the recent nonlinear results including convergence to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the case of multimode growth with convergence, the recent nonlinear single mode results are combined with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence in the nonlinear regime is found not to modify substantially the multimode predictions of Haan's original model.
The diffusive interface at low stability: the importance of non-linearity and turbulent entrainment
NASA Astrophysics Data System (ADS)
Rudels, Bert
1991-03-01
The diffusion and convection at low temperature at an interface separating a cold, low salinity upper layer from a warmer, more saline lower layer are examined. The densities of the layers are assumed equal and an approximate, non-linear equation of state is used. The vertical transports are determined from the molecular, diffusive fluxes through the interface. The diffusion creates instabilities at the interface, which convect into the layers. The transition from diffusion to convection is estimated from a Rayleigh number based upon the penetration depth of the density anomaly. The convection occurs as quasi-stationary plumes, maintained by inflow of lighter/denser water, driven by horizontal pressure gradients induced by the density redistribution. The turbulent energy produced in the layers is calculated from the terminal vertical velocity of the buoyant parcels and the horizontal and vertical length scales of the convection. The turbulent energy density is found to depend on layer depth and buoyancy fluxes through the interface cannot be used directly as estimates of the turbulence production. Both turbulent entrainment and the non-linear equation of state could be of less importance for the transport though a diffusive interface in the oceans than what is inferred from corresponding laboratory experiments.
NASA Astrophysics Data System (ADS)
McGurn, Arthur R.
2013-10-01
The barrier transmission characteristics of a one-dimensional chain of optically linear split-ring resonators (SRRs) containing a barrier composed of optically nonlinear split-ring resonators are studied. (This is an analogy to the quantum mechanical problem of the resonant transmission of a particle through a finite barrier potential.) The SRRs are idealized as inductor-resistor-capacitor-equivalent resonator circuits where the capacitance is either from a linear dielectric medium (optically linear SRRs) or from a Kerr-type nonlinear dielectric medium (optically nonlinear SRRs). The SRRs are arrayed in a one-dimensional chain and interact with one another through weak nearest-neighbor mutually inductive couplings. The transmission maxima of the SRR barrier problem are studied as they are located in a two-dimensional parameter space characterizing the linear mutually inductive coupling and the nonlinear Kerr dielectric of the SRRs of the barrier. The result is a two-dimensional map giving the conditions for the existence of the resonant-barrier modes that are excited in the transmission process. The various lines of transmission maxima in the two-dimensional plot are associated with different types of resonant excitations in the barrier. The map is similar to one recently made in McGurn [Phys. Rev. BPRBMDO0163-182910.1103/PhysRevB.77.115105 77, 115105 (2008)] for the resonant-transmission modes of a nonlinear barrier in a photonic crystal waveguide. The SRR problem, however, is quite different from the photonic crystal problem as the nonlinear difference equations of the two systems are different in the nature of their nonlinear interactions. Consequently, the results for the two systems are briefly compared. The transmission maxima of the SRR system occur along lines in the two-dimensional plot, which are associated with modes resonantly excited in the barrier. These lines of resonant modes either originate as a simple evolution from the resonant modes of the
Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces
NASA Astrophysics Data System (ADS)
Clark, Daniel S.; Tabak, Max
2005-11-01
The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, Phys. Rev. E 71, 055302(R) (2005)]. The spherical case is more relevant to, e.g., inertial confinement fusion or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results. The model predictions are verified by comparison with numerical hydrodynamics simulations.
Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.
2013-04-15
A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.
Transparency and Coherence in rf SQUID Metamaterials
NASA Astrophysics Data System (ADS)
Anlage, Steven; Trepanier, Melissa; Zhang, Daimeng
We have developed active metamaterials capable of quickly tuning their electrical and magnetic responses over a wide frequency range. These metamaterials are based on superconducting elements to form low loss, physically and electrically small, highly tunable structures for fundamental studies of extraordinarily nonlinear media. The meta-atoms are rf superconducting quantum interference devices (SQUIDs) that incorporate the Josephson effect. RF SQUIDs have an inductance which is strongly tunable with dc and rf magnetic fields and currents. The rf SQUID metamaterial is a richly nonlinear effective medium introducing qualitatively new macroscopic quantum phenomena into the metamaterials community, namely magnetic flux quantization and the Josephson effect. The coherent oscillation of the meta-atoms is strongly sensitive to the environment and measurement conditions, and we have developed several strategies to improve the coherence experimentally by exploiting ideas from nonlinear dynamics. The metamaterials also display a unique form of transparency whose development can be manipulated through multiple parametric dependences. We discuss these qualitatively new metamaterial phenomena. This work is supported by the NSF-GOALI and OISE Programs through Grant No. ECCS-1158644 and the Center for Nanophysics and Advanced Materials (CNAM).
Optical surface polaritons of TM type at the nonlinear semiconductor-nanocomposite interface
NASA Astrophysics Data System (ADS)
Panyaev, I. S.; Rozhleis, I. A.; Sannikov, D. G.
2016-03-01
TM-polarized optical surface polaritons in a nonlinear semiconductor-nanocomposite guiding structure have been considered. The nanocomposite consists of alternating layers of bismuth-containing garnet ferrite (BIG, Lu3 - x Bi x Fe5 - y Ga y O12) and gallium-gadolinium garnet (Gd3Ga5O12), and the semiconductor ( n-InSb) has a cubic nonlinearity and is characterized by two components of the nonlinear susceptibility tensor. With allowance for the anisotropy of the optical properties of the nanocomposite, caused by the magnetization of the BIG layers, the dispersion relation has been obtained and analyzed and its solutions are shown to split into two pairs of high- and low-frequency branches. The influence of the electric field at the interface on the wave characteristics and the existence domains of nonlinear surface TM polaritons has been studied. By solving the inverse problem of finding the profile of the longitudinal electric component of the surface polariton, it has been found that the nonlinearity gives rise to soliton-like wave fields.
Faraday wave lattice as an elastic metamaterial
NASA Astrophysics Data System (ADS)
Domino, L.; Tarpin, M.; Patinet, S.; Eddi, A.
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial.
Faraday wave lattice as an elastic metamaterial.
Domino, L; Tarpin, M; Patinet, S; Eddi, A
2016-05-01
Metamaterials enable the emergence of novel physical properties due to the existence of an underlying subwavelength structure. Here, we use the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize their dispersion relation and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the liquid interface behaves as an elastic metamaterial. PMID:27300815
Acceleration and Deceleration Phase Nonlinear Rayleigh-Taylor Growth at Spherical Interfaces
NASA Astrophysics Data System (ADS)
Clark, Daniel
2005-10-01
The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, Phys. Rev. E 71, 055302(R) (2005).]. The spherical case is more relevant to, e.g., Inertial Confinement Fusion (ICF) or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results, and the model predictions are verified by comparison with numerical hydrodynamics simulations. The new nonlinear growth rates are also incorporated into a Haan-type saturation model to give improved predictions of multi-mode saturated growth for ICF capsules.
Marini, A.; Skryabin, D. V.
2010-03-15
Using a multiple-scale asymptotic approach, we have derived the complex cubic Ginzburg-Landau equation for amplified and nonlinearly saturated surface plasmon polaritons propagating and diffracting along a metal-dielectric interface. An important feature of our method is that it explicitly accounts for nonlinear terms in the boundary conditions, which are critical for a correct description of nonlinear surface waves. Using our model we have analyzed filamentation and discussed the bright and dark spatially localized structures of plasmons.
Nonlinear structure of the diffusing gas-metal interface in a thermonuclear plasma.
Molvig, Kim; Vold, Erik L; Dodd, Evan S; Wilks, Scott C
2014-10-01
This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given. PMID:25325648
NASA Astrophysics Data System (ADS)
Geiger, Franz M.
2009-05-01
This review discusses recent advances in the nonlinear optics of environmental interfaces. We discuss the quantitative aspects of the label-free approaches presented here and demonstrate that nonlinear optics has now assumed the role of a Swiss Army knife that can be used to dissect, with molecular detail, the fundamental and practical aspects of environmental interfaces and heterogeneous geochemical environments. In this work, nonlinear optical methods are applied to complex organic molecules, such as veterinary antibiotics, and to small inorganic anions and cations, such as nitrate and chromate, or cadmium, zinc, and manganese. The environmental implications of the thermodynamic, kinetic, spectroscopic, structural, and electrochemical data are discussed.
Photoluminescence and spontaneous emission enhancement in metamaterial nanostructures
NASA Astrophysics Data System (ADS)
Singh, M. R.; Cox, J. D.; Brzozowski, M.
2014-02-01
We present a theory for the photoluminescence (PL) and spontaneous emission of semiconductor nanoparticles (quantum dots—QDS) doped in a metamaterial heterostructure. The heterostructure is formed by fabricating a split-ring resonator and metallic rod metamaterial on a dielectric substrate. QDs are doped near the interface in the heterostructure. Our results indicate that the PL and spontaneous emission of the QDs are enhanced in the presence of the metamaterial when the exciton and surface plasmon frequencies are resonant. These findings are consistent with recent experimental studies. The present study can be used to make new types of nanoscale optical devices for sensing, switching and imaging applications based on metamaterials.
Sound attenuation characteristics of cellular metamaterials
NASA Astrophysics Data System (ADS)
Varanasi, Satya Surya Srinivas
could be mitigated by the addition of appropriate treatments such as a lightweight grid that modified the incident sound field to be normally directed. Although the performance of the metamaterial-based barrier solutions was better compared to the conventional ones, the performance can be poor at the system eigenfrequencies. The possibility of shifting energy from the deficit bands to other regions where the barriers are more efficient was numerically explored for embodiments of segmented cellular materials having non-linear stiffness characteristics. The acoustical behavior of such materials was probed through representative two-dimensional models of a segmented plate with a contact interface. Super-harmonic response peaks were observed for pure harmonic excitations, the strength of which were found to strongly depend on the degree of non-linearity or bilinear stiffness ratio. The closer an excitation frequency was to the characteristic eigenfrequencies of the structure, the stronger was the super-harmonic response, which supported the idea of transferring energy from problematic frequency bands to higher frequencies. Finally, the possibility of a spatial-shift of energy from longitudinal to lateral direction was explored with the idea of eliminating the design constraints associated with conventional absorbing materials, and with the hope of realizing a compact sound absorber. The embodiment was a two-phase chiral composite made using a Topologically Interlocked Material (TIM) with its unit cell being a tetrahedron consisting of two helicoid dissections. A comparative study was conducted with standard microstructures inspired by the Voigt and Reuss models. The twist mode of the chiral composites was found to be excited by an incident sound field normal to the plane of the TIM assembly. Although this behavior is not unique to a chiral microstructure, many other microstructures do not exhibit this behavior. The excitation of the twist mode by the incident sound field
Nonlinear finite element analysis of crack growth at the interface of rubber-like bimaterials
NASA Astrophysics Data System (ADS)
Yang, Xiaoxiang; Fu, Mingwang; Wang, Xiurong; Liu, Xiaoying
2011-10-01
This paper presents the characteristics of the crack growth at the interface of rubber-rubber and rubber-steel bimaterials under tensile deformation using the non-linear finite element method. By using the commercial finite element software ABAQUS, the J integral calculations are carried out for the initial interface crack in the interfaces in-between two Neo-Hookean materials, two Mooney-Rivlin materials, Neo-Hookean and Mooney-Rivlin rubbers, Neo-Hookean and Polynomial, Mooney-Rivlin and Polynomial, and the Mooney-Rivlin and steel bi-materials. The computational results of the maximum J integral direction around the crack tip illustrate the possible direction of crack growth initiation. Furthermore, it is found that the crack bends to the softer rubber material at a certain angle with the initial crack direction if the crack depth is relatively small. For the crack with a larger depth, the crack propagates to grow along the interface in-between the bimaterials.
Design of Metamaterials for control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Koschny, Thomas
2014-03-01
Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response
Generalized antireflection coatings for complex bulk metamaterials
NASA Astrophysics Data System (ADS)
Maas, Ruben; Mann, Sander A.; Sounas, Dimitrios L.; Alù, Andrea; Garnett, Erik C.; Polman, Albert
2016-05-01
We present the optimized design of an antireflection coating to efficiently couple an incident plane wave into a metamaterial with a complex field profile. We show that such an antireflection coating must enable spatial engineering of the field profiles at the coating/metamaterial interface to achieve high transmission, and therefore it is required to be inhomogeneous. As a demonstration, we investigate theoretically a waveguide-based negative-index metamaterial, which under normal incidence cannot be excited due to the antisymmetric propagating eigenmode. Through careful engineering of the field profile, lateral position, and thickness of the coating layer, we enhance the transmission under normal incidence from 0 % to 100 % . This principle may generally be applied to overcome low coupling efficiency between incident plane waves and complex mode profiles in metamaterials.
Parallel-plate metamaterials for cloaking structures.
Silveirinha, Mário G; Alù, Andrea; Engheta, Nader
2007-03-01
In this work, we assess theoretically the physical response of metamaterial composite structures that emulate the behavior of negative-permittivity materials in certain relevant setups. The metamaterials under analysis consist of metallic parallel-plate implants embedded in a dielectric host in a two-dimensional geometry. Simple design rules and formulas are presented, fully considering the effect and consequences of excitation of higher-order diffraction modes at the metamaterial-dielectric interface. Following the ideas of transparency and cloaking developed by us [Alù and Engheta, Phys. Rev. E 72, 016623 (2005)], we demonstrate, analytically and numerically, that it is possible in this way to design metamaterial cloaks that significantly reduce the total scattering cross section of a given two-dimensional dielectric obstacle in some frequency band. This effect, which may be realized in a feasible way, may find interesting applications in electromagnetic cloaking, total scattering cross section reduction, and noninvasive probing. PMID:17500805
Pande, Rohit; Xie, Leiming; Zagozdzon-Wosik, Wanda; Nesteruk, Krzysztof; Wosik, Jarek
2012-02-01
We report on investigations of nonlinear radiofrequency responses of electrolytes with Na(+) and Cl(-) ions placed within gold electrodes of a capacitor. The sample was part of a frequency-adjustable inductance-capacitance-resistance (LCR) parallel resonant circuit, and measurements were carried out using the two frequencies intermodulation distortion technique. We employed double layer model to analyze the observed nonlinearities and their dependence on ionic concentration. Electrode-electrolyte interface polarization was found to be a predominant cause of this intrinsic nonlinearity and to be dependent on electrolytic ion concentration. We also measured and calculated coefficients of resistive and capacitive components of the observed nonlinearity. PMID:22396622
Pande, Rohit; Xie, Leiming; Zagozdzon-Wosik, Wanda; Nesteruk, Krzysztof; Wosik, Jarek
2012-01-01
We report on investigations of nonlinear radiofrequency responses of electrolytes with Na+ and Cl− ions placed within gold electrodes of a capacitor. The sample was part of a frequency-adjustable inductance-capacitance-resistance (LCR) parallel resonant circuit, and measurements were carried out using the two frequencies intermodulation distortion technique. We employed double layer model to analyze the observed nonlinearities and their dependence on ionic concentration. Electrode-electrolyte interface polarization was found to be a predominant cause of this intrinsic nonlinearity and to be dependent on electrolytic ion concentration. We also measured and calculated coefficients of resistive and capacitive components of the observed nonlinearity. PMID:22396622
Active terahertz metamaterials
Chen, Hou-tong
2009-01-01
We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.
Dammak, M; Shirazi-Adl, A; Zukor, D J
1997-02-01
Measured interface nonlinear friction properties are used to develop models to study the short-term fixation response of smooth- and porous-surfaced posts, bone screws, and plates fixed with and without posts/screws. Experimental studies are carried out to validate the model predictions and identify the relative role of posts and screws in fixation of a plate on a polyurethane block under symmetric/eccentric axial compression loads. The idealized Coulomb's friction is also used for the sake of comparison. The incorporation of measured nonlinear, rather than the idealized Coulomb, friction is essential to compute realistic results. For plate fixation, the experimental and finite element results show that the screw fixation yields the stiffest response followed by the smooth- and then porous-coated post fixation. For example, under 1000 N eccentric axial compression, the edge of the plate opposite the loaded edge is measured to lift by 1147 +/- 72, 244 +/- 38, or 112 +/- 28 microns, respectively, for the cases with no fixation, with smooth-surfaced posts, or with screws. The corresponding models predict, respectively, values of 1538, 347, or 259 microns and also 556 microns for the plate fixed with porous coated posts. The satisfactory agreement between numerical and experimental results confirms the importance of proper interface modelling for the analysis of posts, screws, and complex fixation systems. This becomes further evident when considering cementless implants in which the bone-implant interface exhibits relatively large displacements as the maximum resistance force is reached. The developed models can be used to investigate the post-operative short-term stability of various cementless implant designs. PMID:9001932
Active terahertz metamaterials
Chen, Hou-tong; O' Hara, John F; Taylor, Antoinette J
2009-01-01
In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.
Metamaterials beyond electromagnetism
NASA Astrophysics Data System (ADS)
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-12-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.
Metamaterials beyond electromagnetism.
Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin
2013-12-01
Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. PMID:24190877
Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration
Ramshaw, J D; Rathkopf, J
1998-12-23
A simple model is described for predicting the time evolution of the half-width h of a planar mixing layer between two immiscible incompressible fluids driven by an arbitrary time-dependent variable acceleration history a(l)a (t): The model is based on a heuristic expression for the kinetic energy per unit area of the mixing layer. This expression is based on that for the kinetic energy of a linearly perturbed interface, but with a dynamically renormalized wavelength which becomes proportional to h in the nonlinear regime. An equation of motion for h is then derived by means of Lagrange's equations. This model reproduces the known linear growth rates of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities, as well as the quadratic RT and power-law RM growth laws in the nonlinear regime. The time exponent in the RM power law depends on the rate of kinetic energy dissipation. In the case of zero dissipation, this exponent reduces to 2/3 in agreement with elementary scaling arguments. A conservative numerical scheme is proposed to solve the model equations, and is used to perform calculations that agree well with published mixing data from linear electric motor experiments. Considerations involved in implementing the model in hydrodynamics codes are briefly discussed.
A study of temperature-related non-linearity at the metal-silicon interface
NASA Astrophysics Data System (ADS)
Gammon, P. M.; Donchev, E.; Pérez-Tomás, A.; Shah, V. A.; Pang, J. S.; Petrov, P. K.; Jennings, M. R.; Fisher, C. A.; Mawby, P. A.; Leadley, D. R.; McN. Alford, N.
2012-12-01
In this paper, we investigate the temperature dependencies of metal-semiconductor interfaces in an effort to better reproduce the current-voltage-temperature (IVT) characteristics of any Schottky diode, regardless of homogeneity. Four silicon Schottky diodes were fabricated for this work, each displaying different degrees of inhomogeneity; a relatively homogeneous NiV/Si diode, a Ti/Si and Cr/Si diode with double bumps at only the lowest temperatures, and a Nb/Si diode displaying extensive non-linearity. The 77-300 K IVT responses are modelled using a semi-automated implementation of Tung's electron transport model, and each of the diodes are well reproduced. However, in achieving this, it is revealed that each of the three key fitting parameters within the model display a significant temperature dependency. In analysing these dependencies, we reveal how a rise in thermal energy "activates" exponentially more interfacial patches, the activation rate being dependent on the carrier concentration at the patch saddle point (the patch's maximum barrier height), which in turn is linked to the relative homogeneity of each diode. Finally, in a review of Tung's model, problems in the divergence of the current paths at low temperature are explained to be inherent due to the simplification of an interface that will contain competing defects and inhomogeneities.
Flux Exclusion Superconducting Quantum Metamaterial: Towards Quantum-level Switching
Savinov, V.; Tsiatmas, A.; Buckingham, A. R.; Fedotov, V. A.; de Groot, P. A. J.; Zheludev, N. I.
2012-01-01
Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial's elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial. PMID:22690319
NASA Astrophysics Data System (ADS)
Nelson, Cory
Surfaces and interfaces are a ubiquitous part of nature. They influence the behavior of devices and are essential components in charge transfer and charge trapping. While surfaces and interfaces are important studying them is difficult because they consist of only the first few layers of a material. Therefore, surface-specific techniques are needed to investigate their properties and dynamics. Perhaps the most common surface electronic surface characterization techniques are electron spectroscopies which have become the standard for determining surface electronic band structure. However, these spectroscopies require ultra high vacuum which precludes the study of surfaces at ambient pressures and buried interfaces. Ambient pressures and interfaces are precisely the conditions under which most devices operate. Therefore there is a need for a technique which can reveal information about electronic states and their dynamics of buried interfaces at ambientconditions. This thesis describes the implementation of broadband time-resolved second harmonic generation and the recovery of the time-resolved amplitude and phase by employing spectral interferometry. The even order nonlinear process allows the measurement to be surface specific which the spectral amplitude and phase reveal information about surface state transitions and couplings. The first chapter motivates the study of surface and interfaces while chapters 2 and 3 cover background information about surfaces and nonlinear optics to help understand the experiments presented in the following two chapters. Chapter 4 presents a broadband time resolved spectral SHG technique whose usefulness is demonstrated on gallium phosphide passivated undoped gallium arsenide. In this case the spec-tral features are due to the E 1 resonance in GaAs and the dynamics are assigned to band gap renormalization. Chapter 5 details a method to recover the time resolved amplitude and phase and then demonstrates the recovery of the amplitude
Various uses for optical metamaterials
NASA Astrophysics Data System (ADS)
Barbosa, Jose G.
2015-05-01
Optical metamaterials promise aberration free and better than diffraction limited performance for imaging systems through constructed materials made to regulate the interaction with electromagnetic waves. Optical metamaterials have the potential to miniaturize the optical bench and obtain diffraction-limited performance with a single device. The reduction of size, weight, and complexity of optical systems while maintaining performance is desired. In unmanned aircrafts, buoy systems, 360 degree imaging systems, and optronic or traditional periscope systems the lenses constitute a considerable percentage of the weight and volume. Another characteristic that is desired is optical cross section reduction for both visible and infrared bands. Optical cloaking using metamaterials has the potential to make objects indiscernible from its environment by masking objects signature. Other characteristics that are desired are materials that are perfect light absorbers for stray light baffles, detectors, or solar energy harvesting, nonlinear frequency conversion for photonics devices, and lenses or head window coatings to achieve specific properties. These topics are discussed in this paper.
Generalized metamaterials: Definitions and taxonomy.
Kim, Noori; Yoon, Yong-Jin; Allen, Jont B
2016-06-01
This article reviews the development of metamaterials (MM), starting from Newton's discovery of the wave equation, and ends with a discussion of the need for a technical taxonomy (classification) of these materials, along with a better defined definition of metamaterials. It is intended to be a technical definition of metamaterials, based on a historical perspective. The evolution of MMs began with the discovery of the wave equation, traceable back to Newton's calculation of the speed of sound. The theory of sound evolved to include quasi-statics (Helmholtz) and the circuit equations of Kirchhoff's circuit laws, leading to the ultimate development of Maxwell's equations and the equation for the speed of light. Be it light, or sound, the speed of the wave-front travel defines the wavelength, and thus the quasi-static (QS) approximation. But there is much more at stake than QSs. Taxonomy requires a proper statement of the laws of physics, which includes at least the six basic network postulates: (P1) causality (non-causal/acausal), (P2) linearity (non-linear), (P3) real (complex) time response, (P4) passive (active), (P5) time-invariant (time varying), and (P6) reciprocal (non-reciprocal). These six postulates are extended to include MMs. PMID:27369168
Formation of rarefaction waves in origami-based metamaterials
NASA Astrophysics Data System (ADS)
Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.
2016-04-01
We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.
Formation of rarefaction waves in origami-based metamaterials
Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.
2016-04-15
Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less
Formation of rarefaction waves in origami-based metamaterials.
Yasuda, H; Chong, C; Charalampidis, E G; Kevrekidis, P G; Yang, J
2016-04-01
We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications. PMID:27176382
Fabrication and evaluation of photonic metamaterial crystal
NASA Astrophysics Data System (ADS)
Tanabete, S.; Nakagawa, Y.; Okamoto, T.; Haraguchi, M.; Isu, T.; Shinomiya, G.
2013-09-01
Many researching efforts have been reported to seek various fundamental LC resonance structures, recently. But still the Split Ring Resonator (SRR) is the most famous and major fundamental LC-resonance structure used in the metamaterial. We employed SRR structure as the fundamental LC-resonance mechanism to fabricate photonic crystal with periodic arrangement of two different metamaterial areas composed from SRR arrays on the dielectric substrate. We developed Photonic Metamaterial Crystal (PMC) to realize the more advanced and versatile functions of the metamaterial by 1 dimensional or 2 dimensional periodic arranging of two metamaterial sections which have different dispersion properties due to the different size of SRR structures each other. In this paper, we report the fabrication process, estimation of PMC properties and some possible future application prospects, for instance the PMC waveguide structures and nonlinear properties of PMC observed as selective LC-resonant properties in Raman mapping analysis of PMC. These are quite interesting characters of PMC and the attractive applications as the PMC devices.
Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.
Chen, Meng; Fan, Fei; Shen, Si; Wang, Xianghui; Chang, Shengjiang
2016-08-10
The film thickness sensing based on metamaterial is investigated in the terahertz (THz) region. We fabricated the metamaterial sensor, and demonstrated its resonance by using the THz time-domain spectroscopy system. The results show that the resonant dip redshifts as the film thickness increases, which achieves reliable film sensing in the THz band. Its sensitivity is larger than 9.4 GHz/μm with a film thinner than λ/90. Meanwhile, the sensing mechanism is revealed by the simulation of near-field resonance distribution, which shows that the resonant intensity is stronger when the field is closer to the interface between the metamaterial surface and polyvinyl alcohol film. Therefore, the nonlinear type of the sensing sensitivity in our experiment can be well explained, and a higher sensitive sensing can be obtained when the film thickness is smaller. This simple and flexible method can realize the ultrathin film sensing in the THz region, and has application potential in the real-time monitoring of sample quality. PMID:27534497
NASA Astrophysics Data System (ADS)
Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.
2015-11-01
Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.
Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M.
2015-01-01
Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science. PMID:26531855
Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M
2015-01-01
Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science. PMID:26531855
Point interactions, metamaterials, and PT-symmetry
NASA Astrophysics Data System (ADS)
Mostafazadeh, Ali
2016-05-01
We express the boundary conditions for TE and TM waves at the interfaces of an infinite planar slab of homogeneous metamaterial as certain point interactions and use them to compute the transfer matrix of the system. This allows us to demonstrate the omnidirectional reflectionlessness of Veselago's slab for waves of arbitrary wavelength, reveal the translational and reflection symmetry of this slab, explore the laser threshold condition and coherent perfect absorption for active negative-index metamaterials, introduce a point interaction modeling phase-conjugation, determine the corresponding antilinear transfer matrix, and offer a simple proof of the equivalence of Veselago's slab with a pair of parallel phase-conjugating plates. We also study the connection between certain optical setups involving metamaterials and a class of PT-symmetric quantum systems defined on wedge-shape contours in the complex plane. This provides a physical interpretation for the latter.
Coherent control of metamaterials
NASA Astrophysics Data System (ADS)
Chakrabarti, Sangeeta; Ramakrishna, S. Anantha; Wanare, Harshawardhan
2009-08-01
We theoretically demonstrate the possibility of dynamically controlling the response of metamaterials at optical frequencies using the well known phenomenon of coherent control. Our results predict a variety of effects ranging from dramatic reduction of losses associated with the resonant response of metamaterials to switchable ultraslow to superluminal propagation of pulses governed by the magnetic field of the incident wave. These effects, generic to all metamaterials having a resonant response, involve embedding the metamaterial in resonant dispersive coherent atomic/molecular media. These effects may be utilized for narrow band switching applications and detectors for radiation below predetermined cut-off frequencies.
A comparison of optimal MIMO linear and nonlinear models for brain machine interfaces
NASA Astrophysics Data System (ADS)
Kim, S.-P.; Sanchez, J. C.; Rao, Y. N.; Erdogmus, D.; Carmena, J. M.; Lebedev, M. A.; Nicolelis, M. A. L.; Principe, J. C.
2006-06-01
The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.
Superconducting terahertz metamaterials
Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J
2010-01-01
During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.
Nonlinear traveling waves in a two-layer system with heat release/consumption at the interface
NASA Astrophysics Data System (ADS)
Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank; Legros, Jean-Claude
2016-06-01
The influence of an interfacial heat release and heat consumption on nonlinear convective flows, developed under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer system with periodic boundary conditions, is investigated. Regimes of traveling waves and modulated traveling waves have been obtained. It is found that rather intensive heat sinks at the interface can lead to the change of the direction of the waves' propagation.
Mass Separation by Metamaterials
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2016-01-01
Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419
Mass Separation by Metamaterials.
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2016-01-01
Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419
Mass Separation by Metamaterials
NASA Astrophysics Data System (ADS)
Restrepo-Flórez, Juan Manuel; Maldovan, Martin
2016-02-01
Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain
NASA Astrophysics Data System (ADS)
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-02-01
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-01-01
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-01-01
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795
NASA Astrophysics Data System (ADS)
Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan
2012-06-01
Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).
Transparency and coherence in rf SQUID metamaterials (Presentation Recording)
NASA Astrophysics Data System (ADS)
Anlage, Steven M.
2015-09-01
We have developed active metamaterials based on macroscopic quantum effects capable of quickly tuning their electrical and magnetic responses over a wide frequency range. These metamaterials are based on superconducting elements to form low insertion loss, physically and electrically small, highly tunable structures for the next generation rf electronics. The meta-atoms are rf superconducting quantum interference devices (SQUIDs) that incorporate the Josephson effect. RF SQUIDs have an inductance which includes a contribution from the Josephson inductance of the junction. This inductance is strongly tunable with dc and rf magnetic fields and currents. The rf SQUID metamaterial is a richly nonlinear effective medium introducing qualitatively new macroscopic quantum phenomena into the metamaterials community, namely magnetic flux quantization and the Josephson effect. The coherence of the metamaterials is strongly sensitive to the environment and measurement conditions. The metamaterials also display a unique form of transparency whose development can be manipulated through multiple parametric dependences. Further features such as breathers, superradiance, and self-induced transparency, along with entry into the fully quantum limit, will yield qualitatively new metamaterial phenomena. This work is supported by the NSF-GOALI and OISE Programs through Grant No. ECCS-1158644 and the Center for Nanophysics and Advanced Materials (CNAM).
Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications.
Wang, Zuojia; Cheng, Feng; Winsor, Thomas; Liu, Yongmin
2016-10-14
Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes. In this review, we will discuss the fundamental principles of chiral metamaterials, various optical chiral metamaterials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field. PMID:27606801
Spontaneous chiral symmetry breaking in metamaterials
NASA Astrophysics Data System (ADS)
Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.
2014-07-01
Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.
Reducing the losses of optical metamaterials
Fang, Anan
2010-01-01
The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.
Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides
Vasilantonakis, Nikolaos; Nasir, Mazhar E; Dickson, Wayne; Wurtz, Gregory A; Zayats, Anatoly V
2015-01-01
Hyperbolic metamaterials comprised of an array of plasmonic nanorods provide a unique platform for designing optical sensors and integrating nonlinear and active nanophotonic functionalities. In this work, the waveguiding properties and mode structure of planar anisotropic metamaterial waveguides are characterized experimentally and theoretically. While ordinary modes are the typical guided modes of the highly anisotropic waveguides, extraordinary modes, below the effective plasma frequency, exist in a hyperbolic metamaterial slab in the form of bulk plasmon-polaritons, in analogy to planar-cavity exciton-polaritons in semiconductors. They may have very low or negative group velocity with high effective refractive indices (up to 10) and have an unusual cut-off from the high-frequency side, providing deep-subwavelength (λ0/6–λ0/8 waveguide thickness) single-mode guiding. These properties, dictated by the hyperbolic anisotropy of the metamaterial, may be tuned by altering the geometrical parameters of the nanorod composite. PMID:26693254
Anthony L. Crawford
2012-07-01
MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedom during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the
Combinatorial Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
van Hecke, Martin
The structure of most mechanical metamaterials is periodic so that their design space is that of the unit cell. Here we introduce a combinatorial strategy to create a vast number of distinct mechanical metamaterials, each with a unique spatial texture and response. These are aperiodic stackings of anisotropic building blocks, and their functionality rests on both the block design and their stacking configuration which is governed by a tiling problem. We realize such metamaterials by 3D printing, and show that they act as soft machines, capable of pattern recognition and pattern analysis.
Metamaterials Application in Sensing
Chen, Tao; Li, Suyan; Sun, Hui
2012-01-01
Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975
Zarzycki, Piotr P.; Rosso, Kevin M.
2010-01-01
An analysis of surface potential nonlinearity at metal oxide/electrolyte interfaces is presented. By using Grand Canonical Monte Carlo simulations of a simple lattice model of an interface, we show a correlation exists between ionic strength as well as surface site densities and the non-Nernstian response of a metal oxide electrode. We propose two approaches to deal with the 0-nonlinearity: one based on perturbative expansion of the Gibbs free energy and another based on assumption of the pH-dependence of surface potential slope. The theoretical anal ysis based on our new potential form gives excellent performance at extreme pH regions, where classical formulae based on the Poisson-Boltzmann equation fail. The new formula is general and independent of any underlying assumptions. For this reason, it can be directly applied to experimental surface potential measurements, including those for individual surfaces of single crystals, as we present for data reported by Kallay and Preocanin [Kallay, Preocanin J. Colloid and Interface20 Sci. 318 (2008) 290].
Multispectral metamaterial absorber.
Grant, J; McCrindle, I J H; Li, C; Cumming, D R S
2014-03-01
We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging. PMID:24690713
Electrically driven optical metamaterials
Le-Van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse
2016-01-01
The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors. PMID:27328976
Electrically driven optical metamaterials.
Le-Van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse
2016-01-01
The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors. PMID:27328976
Optical pulling forces in hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Shalin, Alexander S.; Sukhov, Sergey V.; Bogdanov, Andrey A.; Belov, Pavel A.; Ginzburg, Pavel
2015-06-01
Control over mechanical motion of nanoscale particles is a valuable functionality desired in a variety of multidisciplinary applications, e.g., biophysics, and it is usually achieved by employing optical forces. Hyperbolic metamaterials enable tailoring and enhancing electromagnetic scattering and, as the result, provide a platform for a new type of optical manipulation. Here optical pulling forces acting on a small particle placed inside a hyperbolic metamaterial slab were predicted and analyzed. In order to attract particles to a light source, highly confined extraordinary modes of hyperbolic metamaterial were excited via scattering from an imperfection situated at the slab's interface. This type of structured illumination together with remarkable scattering properties, inspired by the hyperbolic dispersion in the metamaterial, creates optical attraction. Forces acting on high-, low-index dielectric, and gold particles were investigated and it was shown that the pulling effect emerges in all of the cases. The ability to control mechanical motion at nanoscale using auxiliary photonic structures paves the way for investigation of various phenomena, e.g., biochemical reactions, molecular dynamics, and more.
Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R
2016-02-01
There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs. PMID:25830903
Thermochromic Infrared Metamaterials.
Liu, Xinyu; Padilla, Willie J
2016-02-01
An infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve. PMID:26619382
Resonant dielectric metamaterials
Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B
2014-12-02
A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.
Furtak, T.E.
1996-05-30
This DOE sponsored program has been dedicated to the understanding, development, and application of nontraditional methods for studying buried interfaces, particularly the electrolyte-solid system. Most of the work has dealt with optical techniques. The early research was directed toward revealing the mechanisms of surface enhanced Raman scattering (SERS). More recently the author has concentrated on surface nonlinear optical effects--second harmonic generation (SHG) and sum-frequency generation (SHG). Both of these techniques have the potential for selective interface sensitivity, and are produced through a higher order susceptibility than that which governs linear optical response. Optical SHG has the potential of providing more information about a buried interface than can be obtained by conventional optical spectroscopy. The author`s experiments have been designed to: (a) extract the second order optical susceptibility tensor associated with the surface of a metal electrode, and (b) discover how the electrochemical environment influences the nonlinear optical measurements. Recent contributions include quantitative comparison of the nonlinear response of single crystal silver to theoretical models for the effect. The author has provided the first detailed test of the time-dependent, local density functional prediction. Optical SHG bears a fundamental connection with the symmetry of the surface atoms. While investigating Ag(111) an anomalous effect was discovered that could not be explained by the known surface structure of Ag. The phenomenon was tentatively assigned to an adsorption induced surface reconstruction, since it behaved like a second order phase transition. In addition to the optical phenomena the author has designed, built, and operated an in situ quartz crystal microbalance (QCM) electrochemical cell.
Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.
2008-12-01
In this paper, we briefly overview some theoretical approaches and empirical modeling approaches of the nonlinear Rayleigh-Taylor instabilities, which have been developed over recent decades, summarize the results of the group theory analysis of the nonlinear coherent dynamics in Rayleigh-Taylor and Richtmyer-Meshkov flows, consider the issues of validation and verification of the theories and models, and outline some criteria for the estimate of the fidelity and information capacity of the experimental and numerical data sets.
NASA Astrophysics Data System (ADS)
Kuzmanović, Slavica; Stojanović Krasić, Marija; Milović, Daniela; Miletić, Marjan; Radosavljević, Ana; Gligorić, Goran; Maluckov, Aleksandra; Stepić, Milutin
2015-09-01
Light propagation through composite photonic lattice containing a cavity bounded by the interface between two structurally different linear lattices and on-site nonlinear defect in one of them is investigated numerically. We find conditions under which dynamically stable bounded cavity modes can exist. We observe various cavity localized modes such as: single-hump, multi-hump, and moving breathing modes. Light propagation obstructions are phenomenologically related to the Fano resonances. Presented numerical findings may lead to interesting applications, such as blocking, filtering, and transporting of light beams through the optical medium.
Hyperbolic metamaterial antenna for second-harmonic generation tomography.
Segovia, Paulina; Marino, Giuseppe; Krasavin, Alexey V; Olivier, Nicolas; Wurtz, Gregory A; Belov, Pavel A; Ginzburg, Pavel; Zayats, Anatoly V
2015-11-30
The detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 10^{3}-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields. Alternatively, the observation of SHG from the metamaterial itself can be used to detect and track a nanoparticle without a nonlinear response. The antenna allows an optical resolution of several nanometers in tracking the nanoparticle's location via observations of the far-field second-harmonic radiation pattern. PMID:26698705
Hyperbolic Metamaterials with Bragg Polaritons.
Sedov, Evgeny S; Iorsh, I V; Arakelian, S M; Alodjants, A P; Kavokin, Alexey
2015-06-12
We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation. PMID:26196825
Fano resonances from gradient-index metamaterials
NASA Astrophysics Data System (ADS)
Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang
2016-01-01
Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.
Fano resonances from gradient-index metamaterials.
Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang
2016-01-01
Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies. PMID:26813107
Fano resonances from gradient-index metamaterials
Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang
2016-01-01
Fano resonances – resonant scattering features with a characteristic asymmetric profile – have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies. PMID:26813107
Anthony L. Crawford
2012-08-01
Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.
Anderson localization in metamaterials and other complex media (Review Article)
NASA Astrophysics Data System (ADS)
Gredeskul, Sergey A.; Kivshar, Yuri S.; Asatryan, Ara A.; Bliokh, Konstantin Y.; Bliokh, Yuri P.; Freilikher, Valentin D.; Shadrivov, Ilya V.
2012-07-01
This is a review of some recent (mostly ours) results on Anderson localization of light and electron waves in complex disordered systems, including: (i) left-handed metamaterials, (ii) magnetoactive optical structures, (iii) graphene superlattices, and (iv) nonlinear dielectric media. First, we demonstrate that left-handed metamaterials can significantly suppress localization of light and lead to an anomalously enhanced transmission. This suppression is essential at the long-wavelength limit in the case of normal incidence, at specific angles of oblique incidence (Brewster anomaly), and in vicinity of zero-ɛ or zero-μ frequencies for dispersive metamaterials. Remarkably, in disordered samples comprised of alternating normal and left-handed metamaterials, the reciprocal Lyapunov exponent and reciprocal transmittance increment can differ from each other. Second, we study magnetoactive multilayered structures, which exhibit nonreciprocal localization of light depending on the direction of propagation and on polarization. At resonant frequencies or realizations such nonreciprocity results in effectively unidirectional transport of light. Third, we discuss the analogy between wave propagation through multilayered samples with metamaterials and charge transport in graphene, which provides a simple physical explanation of unusual conductive properties of disordered graphene superlatices. We predict disorder-induced resonance of the transmission coefficient at oblique incidence of Dirac quasiparticles. Finally, we demonstrate that an interplay of nonlinearity and disorder in dielectric media can lead to bistability of individual localized states excited inside the medium at resonant frequencies. This results in nonreciprocity of wave transmission and unidirectional transport of light.
Broadband metamaterial for nonresonant matching of acoustic waves
NASA Astrophysics Data System (ADS)
D'Aguanno, G.; Le, K. Q.; Trimm, R.; Alù, A.; Mattiucci, N.; Mathias, A. D.; Aközbek, N.; Bloemer, M. J.
2012-03-01
Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific.
All-optical metamaterial modulators: Fabrication, simulation and characterization
NASA Astrophysics Data System (ADS)
Ku, Zahyun
Artificially structured composite metamaterials consist of sub-wavelength sized structures that exhibit unusual electromagnetic properties not found in nature. Since the first experimental verification in 2000, metamaterials have drawn considerable attention because of their broad range of potential applications. One of the most attractive features of metamaterials is to obtain negative refraction, termed left-handed materials or negative-index metamaterials, over a limited frequency band. Negative-index metamaterials at near infrared wavelength are fabricated with circular, elliptical and rectangular holes penetrating through metal/dielectric/metal films. All three negative-index metamaterial structures exhibit similar figure of merit; however, the transmission is higher for the negative-index metamaterial with rectangular holes as a result of an improved impedance match with the substrate-superstrate (air-glass) combination. In general, the processing procedure to fabricate the fishnet structured negative-index metamaterials is to define the hole-size using a polymetric material, usually by lithographically defining polymer posts, followed by deposition of the constitutive materials and dissolution of the polymer (liftoff processing). This processing (fabrication of posts: multi-layer deposition: liftoff) often gives rise to significant sidewall-angle because materials accumulate on the tops of the posts that define the structure, each successive film deposition has a somewhat larger aperture on the bottom metamaterial film, giving rise to a nonzero sidewall-angle and to optical bianisotropy. Finally, we demonstrate a nanometer-scale, sub-picosecond metamaterial device capable of over terabit/second all-optical communication in the near infrared spectrum. We achieve a 600 fs device response by utilizing a regime of sub-picosecond carrier dynamics in amorphous silicon and ˜70% modulation in a path length of only 124 nm by exploiting the strong nonlinearities in
Ultrafast optical nonlinearity of multi-layered graphene synthesized by the interface growth process
NASA Astrophysics Data System (ADS)
Kim, Won-Jun; Chang, You Min; Lee, Junsu; Kang, Dongseok; Lee, Ju Han; Song, Yong-Won
2012-06-01
We propose a novel photonic application as well as an optical tool to verify the crystallinity of interface-grown graphene demonstrating passive mode-locked lasers. The interface growth process enables the formation of multi-layered graphene at an interface of substrate and catalyst, therefore directly onto the targeted substrate without a transfer process. The synthesized graphene is characterized using Raman spectroscopy and x-ray photoelectron spectroscopy before ultrashort pulse formation to confirm the validity of the process for high-speed photonic applications of graphene. The resultant pulses have a repetition rate, pulse duration, RF extinction ratio of 14.01 MHz, 1.0 ps, and ˜35 dB, respectively.
Metamaterial electromagnetic wave absorbers.
Watts, Claire M; Liu, Xianliang; Padilla, Willie J
2012-06-19
The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995
Active terahertz metamaterial devices
Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark
2010-11-02
Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.
Anisotropic metamaterial optical fibers.
Pratap, Dheeraj; Anantha Ramakrishna, S; Pollock, Justin G; Iyer, Ashwin K
2015-04-01
Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in such anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders. PMID:25968741
Infrared metamaterial phase holograms
NASA Astrophysics Data System (ADS)
Larouche, Stéphane; Tsai, Yu-Ju; Tyler, Talmage; Jokerst, Nan M.; Smith, David R.
2012-05-01
As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 μm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.
Surface polaritons in a negative-index metamaterial with active Raman gain
NASA Astrophysics Data System (ADS)
Tan, Chaohua; Huang, Guoxiang
2015-02-01
We propose a scheme to realize stable propagation of linear and nonlinear surface polaritons (SPs) by placing a N -type four-level quantum emitters at the interface between a dielectric and a negative-index metamaterial (NIMM). We show that in linear propagation regime SPs can acquire an active Raman gain (ARG) from a pump field and a gain doublet appears in the gain spectrum of a signal field induced by the quantum interference effect from a control field. The ARG can be used not only to completely compensate the Ohmic loss in the NIMM but also to acquire a superluminal group velocity for the SPs. We also show that in the nonlinear propagation regime a huge enhancement of the Kerr nonlinearity of the SPs can be obtained. As a result, ARG-assisted (1 + 1 )- and (2 + 1 )- dimensional superluminal surface polaritonic solitons with extremely low generation power may be produced based on the strong confinement of the electric field at the dielectric-NIMM interface.
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Nonlinear dynamics of confined liquid systems with interfaces subject to forced vibrations.
Higuera, María; Porter, Jeff; Varas, Fernando; Vega, José M
2014-04-01
A review is presented of the dynamic behavior of confined fluid systems with interfaces under monochromatic mechanical forcing, emphasizing the associated spatio-temporal structure of the fluid response. At low viscosity, vibrations significantly affect dynamics and always produce viscous mean flows, which are coupled to the primary oscillating flow and evolve on a very slow timescale. Thus, unlike the primary oscillating flow, mean flows may easily interact with the surface rheology, which generates dynamics that usually exhibit a much slower timescale than that of typical gravity-capillary waves. The review is made with an eye to the typical experimental devices used to measure surface properties, which usually consist of periodically forced, symmetric fluid systems with interfaces. The current theoretical description of these systems ignores the fluid mechanics, which could play a larger role than presently assumed. PMID:24315015
Reduction of nonlinear embedded boundary models for problems with evolving interfaces
NASA Astrophysics Data System (ADS)
Balajewicz, Maciej; Farhat, Charbel
2014-10-01
Embedded boundary methods alleviate many computational challenges, including those associated with meshing complex geometries and solving problems with evolving domains and interfaces. Developing model reduction methods for computational frameworks based on such methods seems however to be challenging. Indeed, most popular model reduction techniques are projection-based, and rely on basis functions obtained from the compression of simulation snapshots. In a traditional interface-fitted computational framework, the computation of such basis functions is straightforward, primarily because the computational domain does not contain in this case a fictitious region. This is not the case however for an embedded computational framework because the computational domain typically contains in this case both real and ghost regions whose definitions complicate the collection and compression of simulation snapshots. The problem is exacerbated when the interface separating both regions evolves in time. This paper addresses this issue by formulating the snapshot compression problem as a weighted low-rank approximation problem where the binary weighting identifies the evolving component of the individual simulation snapshots. The proposed approach is application independent and therefore comprehensive. It is successfully demonstrated for the model reduction of several two-dimensional, vortex-dominated, fluid-structure interaction problems.
NASA Astrophysics Data System (ADS)
Zeevaert, A. E.
1980-03-01
A mathematical formulation to model the behavior under load of a reinforced soil system, where a fabric is placed over a soft soil and covered with stone for use as a temporary haul road is discussed. This approach is used to improve the behavior of temporary roadways, particularly where very soft soils are encountered. The stress distribution and the load-deformation characteristics of the soil-fabric system for varying geometries and material properties are defined. Included in the mathematical formulation are such features as: nonlinear behavior of the soil and fabric materials, friction parameters of the interface, tension characteristics of the fabric materials, large displacements in finite deformation, "no tension" conditions of the cohesionless materials, and yielding of plastic materials. The mathematical model is a more complete approximation of the actual fabric-soil system than is presently available.
Elastic metamaterial beam with remotely tunable stiffness
NASA Astrophysics Data System (ADS)
Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.
2016-02-01
We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.
NASA Astrophysics Data System (ADS)
Zhang, Luning
Solid-liquid interfaces have been the focus of different communities of scientists due to its importance in industrial applications and chemical processes in nature. Molecular interactions and surface charges affect the physicochemical properties of these interfaces and a thorough understanding is still lacking now. This thesis describes our work in studying several model solid-liquid interfaces using sum-frequency vibrational spectroscopy. Through the studies of interfacial vibrational spectra, we hope to gain better understanding of molecular interactions in competitive adsorption process and also surface charging behavior at different pH and salt concentrations. We start by studying alcohol-water mixture and the adsorption behavior at both hydrophilic and hydrophobic surfaces. In both cases, alcohol adsorbs preferentially from water. The tendency for water to form strong hydrogen-bonding network is the driving force for preferential adsorption of alcohol. We proposed two different interfacial molecular structures on hydrophilic and hydrophobic surfaces. We move on to study the interaction of pure water with a solid surface. Single crystal alumina is used as a model system. At different pH, the surface can undergo protonation and deprotonation reactions and accumulates surface charge. Both the hydrogen-bonding with water and the surface field created by surface charge can affect interfacial water structure. Combining the information obtained with intensity and phase spectra, we find water molecules have two types of bonding within the interfacial layer: weakly hydrogen-bonded species near 3450 cm-1 that does not flip with switching surface charge, and strongly hydrogen-bonded species at 3200 cm-1 that readily flips with switching surface field. One other system we have studied is nanoporous silica-water interface. We found that signal from interfacial water is reduced due to the porous nature of the film. The water spectral features tell us about the interfacial
Estimating interfacial thermal conductivity in metamaterials through heat flux mapping
Canbazoglu, Fatih M.; Vemuri, Krishna P.; Bandaru, Prabhakar R.
2015-04-06
The variability of the thickness as well as the thermal conductivity of interfaces in composites may significantly influence thermal transport characteristics and the notion of a metamaterial as an effective medium. The consequent modulations of the heat flux passage are analytically and experimentally examined through a non-contact methodology using radiative imaging, on a model anisotropic thermal metamaterial. It was indicated that a lower Al layer/silver interfacial epoxy ratio of ∼25 compared to that of a Al layer/alumina interfacial epoxy (of ∼39) contributes to a smaller deviation of the heat flux bending angle.
NASA Astrophysics Data System (ADS)
Jahani, Saman; Jacob, Zubin
2016-01-01
The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.
Jahani, Saman; Jacob, Zubin
2016-01-01
The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces. PMID:26740041
Negative-Index Metamaterials in the Visible Range
NASA Astrophysics Data System (ADS)
Shalaev, Vladimir
2007-03-01
In conventional materials, out of the two field components of light, electric and magnetic, only the electric one (``electric hand'') efficiently couples to and probes the atoms of a material while its ``magnetic hand'' remains almost unused because the interaction of atoms with the magnetic filed component of light is normally very week. Metamaterials, i.e. artificial materials with rationally designed properties, can enable the coupling of both field components of light to meta-atoms, enabling entirely new optical properties and exciting applications with such ``two-handed'' light. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. Negative-refractive index metamaterials create entirely new prospects for guiding light on the nanoscale, some of which may have revolutionary impact on present-day optical technologies. The extraordinary nonlinear optical properties of negative-index metamaterials are also discussed. We review this new emerging field of metamaterials and recent progress in demonstrating a negative refractive index in the optical and visible range, where applications can be particularly important, including sub-wavelength imaging and cloaking objects, i.e. making them invisible.
Tang, Yichao; Lin, Gaojian; Han, Lin; Qiu, Songgang; Yang, Shu; Yin, Jie
2015-11-25
Applying hierarchical cuts to thin sheets of elastomer generates super-stretchable and reconfigurable metamaterials, exhibiting highly nonlinear stress-strain behaviors and tunable phononic bandgaps. The cut concept fails on brittle thin sheets due to severe stress concentration in the rotating hinges. By engineering the local hinge shapes and global hierarchical structure, cut-based reconfigurable metamaterials with largely enhanced strength are realized. PMID:26461470
NASA Astrophysics Data System (ADS)
Gulyamova, E. S.; Il'ichev, N. N.; Pashinin, P. P.; Polyanskii, V. I.; Sidorin, A. V.
2016-07-01
We have measured the reflectance of an Er3+ : YAG laser pulse from silica glass – water and silica glass – ethanol interfaces at high (0.9 J cm-2) and low (5 mJ cm-2) energy densities of incident radiation. The nonlinearity of reflectance dynamics is found for high-power radiation during the laser pulse action.
Optical-image transfer through a diffraction-compensating metamaterial.
Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti
2016-05-01
Cancellation of optical diffraction is an intriguing phenomenon enabling optical fields to preserve their transverse intensity profiles upon propagation. In this work, we introduce a metamaterial design that exhibits this phenomenon for three-dimensional optical beams. As an advantage over other diffraction-compensating materials, our metamaterial is impedance-matched to glass, which suppresses optical reflection at the glass-metamaterial interface. The material is designed for beams formed by TM-polarized plane-wave components. We show, however, that unpolarized optical images with arbitrary shapes can be transferred over remarkable distances in the material without distortion. We foresee multiple applications of our results in integrated optics and optical imaging. PMID:27137594
Miles, A
2004-04-27
In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and emphasize the
NASA Astrophysics Data System (ADS)
Chen, Guannan
Understanding the effects of finite size and dimensionality on the interaction of light with nanoscale semiconductor heterostructure is central to identifying and exploiting novel modes in optoelectronic devices. In type-I heterostructured core-shell GaAs/AlxGa1-xAs nanowires, the real space transfer (RST) of photogenerated hot electrons across the interface from the GaAs core to the AlxGa1-xAs shell forms the basis of a new family of optoelectronic devices by a carefully designed and optimized nanofabrication process. Due to the large mobility difference, we observed negative differential resistance (NDR) on single nanowire devices. External modulation of the transfer rates, manifested as a large tunability of the voltage onset of NDR, is achieved using three different modes: electrostatic gating, incident photon flux, and photon energy. In this dissertation, the physics of coupling of external control to transfer rate was investigated. The combined influences of geometric confinement, heterojunction shape and carrier scattering on hot-electron transfer is discussed. Temperature-dependent transport study under monochromatic tunable laser illumination reveals an ultrafast carrier dynamics related to RST of excess carriers, which provides an insight into hot carrier cooling. Device element showing adjustable phase shift and frequency doubling of ac modulation is demonstrated. For a full understanding, Carrier transport properties are probed through electron beam induced current, which is capable of imaging sub-surface feature in excess carrier transport. Along with simulation of injected electron trajectories, selective probing of core and shell by tuning electron beam energies reveals axial and bias dependent transport along parallel channels. The drift and diffusion component of the excess carrier current is deconvoluted from a coupled decay length, from which lower than bulk shell electron mobility is extracted. A precise knowledge of band edge discontinuities at
NASA Astrophysics Data System (ADS)
Liu, Wanhai; Yu, Changping; Li, Xinliang
2014-11-01
Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r0) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r0/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r0/λ is large enough ( r0≫λ ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r0 can reduce the NSA of the second harmonic for arbitrary A at r0≲ 2 λ while increase it for A ≲ 0.6 at r0≳ 2 λ . Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.
Liu, Wanhai; Yu, Changping; Li, Xinliang
2014-11-15
Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r{sub 0}) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r{sub 0}/λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r{sub 0}/λ is large enough (r{sub 0}≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r{sub 0} can reduce the NSA of the second harmonic for arbitrary A at r{sub 0}≲2λ while increase it for A ≲ 0.6 at r{sub 0}≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design.
Hierarchical honeycomb auxetic metamaterials
NASA Astrophysics Data System (ADS)
Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan
2015-12-01
Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.
Magnetic hyperbolic optical metamaterials
NASA Astrophysics Data System (ADS)
Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang
2016-04-01
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.
Origami based mechanical metamaterials.
Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing
2014-01-01
We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402
Origami based Mechanical Metamaterials
Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing
2014-01-01
We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402
Magnetic hyperbolic optical metamaterials.
Kruk, Sergey S; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang
2016-01-01
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604
Hierarchical honeycomb auxetic metamaterials
Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan
2015-01-01
Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners. PMID:26670417
Magnetic hyperbolic optical metamaterials
Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang
2016-01-01
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604
Hierarchical honeycomb auxetic metamaterials.
Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan
2015-01-01
Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson's ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson's ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners. PMID:26670417
Cochlear bionic acoustic metamaterials
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan
2014-11-01
A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.
Metamaterial broadband angular selectivity
NASA Astrophysics Data System (ADS)
Shen, Yichen; Ye, Dexin; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D.; Soljačić, Marin
2014-09-01
We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.
Roadmap on optical metamaterials
NASA Astrophysics Data System (ADS)
Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis
2016-09-01
Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.
Radar illusion via metamaterials.
Jiang, Wei Xiang; Cui, Tie Jun
2011-02-01
An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results. PMID:21405918
Modeling of causality with metamaterials
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2013-02-01
Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.
Spatial gradient tuning in metamaterials
NASA Astrophysics Data System (ADS)
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
NASA Technical Reports Server (NTRS)
Johnson, Joseph A., III
1996-01-01
Our research and technology are focused on nonlinear issues in the aerothermochemistry of gases and materials and the associated physics and dynamics of interfaces. Our program is now organized to aggressively support the NASA Aeronautics Enterprise so as to: (a) develop a new generation of environmentally compatible, economic subsonic aircraft; (b) develop the technology base for an economically viable and environmentally compatible high-speed civil transport; (c) develop the technology options for new capabilities in high-performance aircraft; (d) develop hypersonic technologies for air-breathing flight; and (e) develop advanced concepts, understanding of physical phenomena, and theoretical, experimental, and computational tools for advanced aerospace systems. The implications from our research for aeronautical and aerospace technology have been both broad and deep. For example, using advanced computational techniques, we have determined exact solutions for the Schrodinger equation in electron-molecule scattering allowing us to evaluate atmospheric models important to reentry physics. We have also found a new class of exact solutions for the Navier Stokes equations. In experimental fluid dynamics, we have found explicit evidence of turbulence modification of droplet sizes in shock tube flow with condensation. We have developed a new diagnostic tool for the direct estimation of flow velocities at MHz sampling rates in quasi-one dimensional turbulent flow. This procedure suggests an unexpected confirmation of the possibility of 'natural' closure in Reynolds stresses with deep implications for the development of turbulent models. A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of the expected relaminarization. A unique diamond-shaped nozzle has been
Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma
Singh, Pramod K.; Hopwood, Jeffrey; Sonkusale, Sameer
2014-01-01
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976
Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.
Singh, Pramod K; Hopwood, Jeffrey; Sonkusale, Sameer
2014-01-01
Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976
Ultrafast self-action of surface-plasmon polaritons at an air/metal interface
NASA Astrophysics Data System (ADS)
Baron, Alexandre; Hoang, Thang B.; Fang, Chao; Mikkelsen, Maiken H.; Smith, David R.
2015-05-01
We investigate both theoretically and experimentally the nonlinear propagation of surface-plasmon polaritons (SPP) on a single air/metal interface. Inspired by nonlinear dielectric waveguide theory, we analytically derive a model that describes the nonlinear propagation of SPPs, thus bridging the description of plasmonic and dielectric waveguides. The model, the numerical simulations, and the experiments, which are carried out in the 100 fs regime, reveal that the SPP undergoes strong ultrafast self-action which manifests itself through self-induced absorption. Our observations are consistent with a large, bulk, third-order nonlinear susceptibility (χ(3 )) of gold and provide a self-consistent theory of self-action of SPPs at an air/metal interface. Experimentally, we find Im {χ-(3 )} ˜3 ×10-16m2/V2 . These findings have important implications in the nonlinear physics of plasmonics and metamaterials as they provide evidence that nonlinear absorption has a significant effect on the propagation of SPPs excited by intense optical pulses. This self-action is also expected to affect the anomalous absorption of light near subwavelength structures as well as the strength of desirable nonlinear processes such as third-harmonic generation and four-wave mixing, which will inevitably compete with nonlinear absorption.
The Fano resonance in plasmonic nanostructures and metamaterials
Luk'yanchuk, Boris; Zheludev, Nikolay I.; Maier, Stefan A.; Halas, Naomi J.; Nordlander, Peter; Giessen, Harald; Chong, Chong Tow
2010-08-23
Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
Meta-Atom Interactions and Coherent Response in rf SQUID Metamaterials
NASA Astrophysics Data System (ADS)
Trepanier, Melissa; Zhang, Daimeng; Mukhanov, Oleg; Jung, Philipp; Butz, Susanne; Koshelets, V. P.; Ustinov, Alexey; Anlage, Steven
2015-03-01
An rf SQUID (radio frequency superconducting quantum interference device) metamaterial can be modeled as an array of coupled nonlinear oscillators with resonant frequencies that are extremely tunable with temperature, dc magnetic field, and rf current. The metamaterial is driven by an external rf field and its response to that field defines its metamaterial characteristics. In the presence of disorder (nonuniform applied dc magnetic flux for instance) the SQUIDs may or may not oscillate coherently in response to the external rf field. Since we are interested in metamaterial applications, a strong coherent response is desirable. The coherence is affected by a variety of factors including flux uniformity, array size, degree of coupling, strength of the driving field, and uniformity in SQUID parameters. In this talk we will present experimental and simulation results exploring the effect of these parameters on coherence. This work is supported by the NSF-GOALI and OISE programs through Grant # ECCS-1158644, and CNAM.
Ultrasmooth patterned metals for plasmonics and metamaterials.
Nagpal, Prashant; Lindquist, Nathan C; Oh, Sang-Hyun; Norris, David J
2009-07-31
Surface plasmons are electromagnetic waves that can exist at metal interfaces because of coupling between light and free electrons. Restricted to travel along the interface, these waves can be channeled, concentrated, or otherwise manipulated by surface patterning. However, because surface roughness and other inhomogeneities have so far limited surface-plasmon propagation in real plasmonic devices, simple high-throughput methods are needed to fabricate high-quality patterned metals. We combined template stripping with precisely patterned silicon substrates to obtain ultrasmooth pure metal films with grooves, bumps, pyramids, ridges, and holes. Measured surface-plasmon-propagation lengths on the resulting surfaces approach theoretical values for perfectly flat films. With the use of our method, we demonstrated structures that exhibit Raman scattering enhancements above 10(7) for sensing applications and multilayer films for optical metamaterials. PMID:19644116
NASA Astrophysics Data System (ADS)
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2012-01-01
We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes to effective SH radiation. In the experiment, we observe 19.6 dB enhancement in the SH radiation in comparison with the nonlinear metamaterial that resonates only for the fundamental waves.
Tunable terahertz fishnet metamaterial
NASA Astrophysics Data System (ADS)
Chang, Cheng-Ling; Wang, Wei-Chih; Lin, Hong-Ren; Ju Hsieh, Feng; Pun, Yue-Bun; Chan, Chi-Hou
2013-04-01
This paper describes and demonstrates a terahertz (THz) frequency tunable fishnet metamaterial (TFMM) using an electrically controlled polymer dispersed liquid crystal (PDLC) matrix. In contrast to other PDLC-based devices, the TFMM employs a novel method for encapsulating PDLC using a thin (1.5 μm) polyimide "skin layer" to form a uniform surface for metal electrodes while minimizing the Fabry-Perot effect of the skin layer on the TFMM measurements. The tunability was verified by measuring the frequency shift in the reflection coefficient (0.01 THz), with an observed minimum negative refractive index of -15 at 0.55 THz.
Nanoporous plasmonic metamaterials
Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A
2007-05-24
We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul
2015-04-28
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Hu, Yuantai; Xue, Huan; Hu, Ting; Hu, Hongping
2008-01-01
This paper studies the performance of an energy harvester with a piezoelectric bimorph (PB) and a real electrochemical battery (ECB), both are connected as an integrated system through a rectified dc-dc converter (DDC). A vibrating PB can scavenge energy from the operating environment by the electromechanical coupling. A DDC can effectively match the optimal output voltage of the harvesting structure to the battery voltage. To raise the output power density of PB, a synchronized switch harvesting inductor (SSHI) is used in parallel with the harvesting structure to reverse the voltage through charge transfer between the output electrodes at the transition moments from closed-to open-circuit. Voltage reversal results in earlier arrival of rectifier conduction because the output voltage phases of any two adjacent closed-circuit states are just opposite each other. In principle, a PB is with a smaller, flexural stiffness under closed-circuit condition than under open-circuit condition. Thus, the PB subjected to longer closed-circuit condition will be easier to be accelerated. A larger flexural velocity makes the PB to deflect with larger amplitude, which implies that more mechanical energy will be converted into an electric one. Nonlinear interface between the vibrating PB and the modulating circuit is analyzed in detail, and the effects of SSHI and DDC on the charging efficiency of the storage battery are researched numerically. It was found that the introduction of a DDC in the modulating circuit and an SSHI in the harvesting structure can raise the charging efficiency by several times. PMID:18334321
NASA Astrophysics Data System (ADS)
Xu, Yujie; Zhang, Hongliang; Li, Jie; Lai, Yanqing
2013-11-01
A nonlinear shallow-water model combined with the effect of anode gas bubbles was derived for the melt flows and interface instability in aluminum reduction cells. Both the electromagnetic forces and the drag forces between the bath and gas bubbles, as the main driven forces for the melt flows, were taken into account in this model. A comparative numerical study was carried out using both the model considering the bubble and the model without considering the bubble. The results show the effect of the bubble cannot be neglected in a fluid dynamics analysis for the aluminum reduction cell. The bath flow, induced by the motion of bubbles, presents a series of small eddies rather than large eddies as the metal flow pattern shows. The horizontal drag forces between the bath and the bubbles in the bath layer enlarge the deformation of the metal-bath interface, to some extent, but have a positive influence on stabilizing the metal-bath interface perturbations.
Transformable topological mechanical metamaterials
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming
We present a class of mechanical metamaterials characterized by a uniform soft deformation--a large, zero-energy homogeneous elastic deformation mode of the structure--that may be used to induce topological transitions and dramatically change mechanical and acoustic properties of the structure. We show that the existence of such a mode determines certain exotic mechanical and acoustic properties of the structure and its activation can reversibly alter and tune these properties. This serves as the basis for a design principle for mechanical metamaterials with tunable properties. When the structure's uniform mode is primarily dilational (shearing) its surface (bulk) possesses phonon modes with vanishing speed of sound. Maxwell lattices comprise a subclass of such material which, owing to their critical coordination number (four, in 2D), necessarily possess such a uniform zero mode, often termed a Guest mode, and which may be topologically polarized, such that zero modes are moved from one edge to another. We show that activating the deformation can alter the shear/dilational character of the mode and topologically polarize the structure, thereby altering the bulk and surface properties at no significant energy cost. arXiv:1510.06389 [cond-mat.soft] NWO, Delta Institute of Physics, ICAM fellowship (DZR) and NSF Grant PHY-1402971 at University of Michigan (KS).
Topological mechanics: from metamaterials to active matter
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo
2015-03-01
Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.
Shape morphing Kirigami mechanical metamaterials
NASA Astrophysics Data System (ADS)
Neville, Robin M.; Scarpa, Fabrizio; Pirrera, Alberto
2016-08-01
Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson’s ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.
Acoustic metamaterials for sound mitigation
NASA Astrophysics Data System (ADS)
Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming
2016-05-01
We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"
Shape morphing Kirigami mechanical metamaterials.
Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto
2016-01-01
Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures. PMID:27491945
Superlens from complementary anisotropic metamaterials
NASA Astrophysics Data System (ADS)
Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.
2007-12-01
Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.
The topology of gyroscopic metamaterials
NASA Astrophysics Data System (ADS)
Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.
Mechanical metamaterials can have topologically protected states, much like their electronic and optical counterparts. We recently demonstrated this in experiment by building a meta-material composed of coupled gyroscopes on a honeycomb lattice. This system breaks time-reversal symmetry and exhibits topologically protected one-way edge modes. In this talk we will explore the relationship between the topology of the band structure and the geometry of the lattice.
Science meets magic: photonic metamaterials
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2012-05-01
The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.
Science meets magic: photonic metamaterials
NASA Astrophysics Data System (ADS)
Ozbay, Ekmel
2012-03-01
The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.
Metamaterials program at Sandia National Laboratories.
McCormick, Frederick Bossert
2010-10-01
Sandia National Laboratories Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies.
Non-Bragg-gap solitons in one-dimensional Kerr-metamaterial Fibonacci heterostructures.
Reyes-Gómez, E; Cavalcanti, S B; Oliveira, L E
2015-06-01
A detailed study of non-Bragg-gap solitons in one-dimensional Kerr-metamaterial quasiperiodic Fibonacci heterostructures is performed. The transmission coefficient is numerically obtained by combining the transfer-matrix formalism in the metamaterial layers with a numerical solution of the nonlinear differential equation in the Kerr slabs, and by considering the loss effects in the metamaterial slabs. A switching from states of no transparency in the linear regime to high-transparency states in the nonlinear regime is observed for both zero-order and plasmon-polariton gaps. The spatial localization of the non-Bragg-gap solitons is also examined, and the symmetry properties of the soliton waves are briefly discussed. PMID:26172816
Non-Bragg-gap solitons in one-dimensional Kerr-metamaterial Fibonacci heterostructures
NASA Astrophysics Data System (ADS)
Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.
2015-06-01
A detailed study of non-Bragg-gap solitons in one-dimensional Kerr-metamaterial quasiperiodic Fibonacci heterostructures is performed. The transmission coefficient is numerically obtained by combining the transfer-matrix formalism in the metamaterial layers with a numerical solution of the nonlinear differential equation in the Kerr slabs, and by considering the loss effects in the metamaterial slabs. A switching from states of no transparency in the linear regime to high-transparency states in the nonlinear regime is observed for both zero-order and plasmon-polariton gaps. The spatial localization of the non-Bragg-gap solitons is also examined, and the symmetry properties of the soliton waves are briefly discussed.
NASA Astrophysics Data System (ADS)
James, Kenneth Edward
Second harmonic generation (SHG) is a successful and widely used technique for the study of surfaces and surface phenomena. We present a novel technique using second harmonic generation from oriented water molecules in the Gouy-Chapman diffuse layer at the alkylsiloxane and biomolecular self assembled monolayer (SAM) interface with water to measure distance between the solid surface and the average location of the oriented water in the diffuse layer. This distance is manifest in the SHG angular dependence profile from the relative phases of the second harmonic light generated at the diffuse layer and at the solid surface. Distances of one nanometer can be distinguished. Values for the diffuse layer potential, diffuse layer decay length, magnitude and phase of the nonlinear susceptibility were obtained. This in situ probe is universally applicable for organic adsorbates which in general will push the diffuse layer away from the solid surface. The organic layer thickness can be used to obtain the adsorption fraction. From this and an understanding of the likely chemistry, the orientation of the molecules can be inferred. We have demonstrated this technique on three molecular systems: hydrophobic self assembled monolayers of methoxysilane molecules of varying hydrocarbon chain length, self assembled monolayers of streptavidin glycoproteins and the combined streptavidin-biotinylated antibody monolayer. In the methoxysilane monolayers a relationship between hydrophobicity and molecular orientation was observed. The thickness of the streptavidin monolayer was determined to be 5.6 nm. This is strikingly close to the length of the of the streptavidin molecule which implies a close packed monolayer of streptavidin molecules. The average height of the antibodies was determined to be 10.9 nm or about two thirds the height of an antibody molecule. This too confirms a monolayer and allows for good approximation of surface coverage. This method does nothing to disturb or alter
Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials.
Sadatgol, Mehdi; Özdemir, Şahin K; Yang, Lan; Güney, Durdu Ö
2015-07-17
Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch. PMID:26230802
Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials
NASA Astrophysics Data System (ADS)
Sadatgol, Mehdi; Ã-zdemir, Şahin K.; Yang, Lan; Güney, Durdu Ã.-.
2015-07-01
Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π ) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch.
Hierarchical Auxetic Mechanical Metamaterials
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.
2015-01-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts. PMID:25670400
Hierarchical Auxetic Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.
2015-02-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.
Hierarchical auxetic mechanical metamaterials.
Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N
2015-01-01
Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts. PMID:25670400
Harnessing geometric and magnetic nonlinearities in phononic meta-plates
NASA Astrophysics Data System (ADS)
Bilal, Osama; Foehr, Andre; Daraio, Chiara
Owing to their physical realization, locally resonant metamaterials retain narrow subwavelength band gaps. Moreover, the fixed geometry and dimensions of the unit cell set a hardbound on the central frequency of the operational bandwidth. Real-time tunable metamaterials extend the range of applications and further enable the realization of new sensors, filters, and switches. Our work harnesses the interaction between geometric nonlinearity and nonlinear magnetic potentials to engineer frequency-agile subwavelength band gaps. The concept is general and applicable to various metamaterials systems. Both numerical simulations and experimental realization of the proposed concept will be presented.
NASA Astrophysics Data System (ADS)
Zhang, Zhenguo; Zhang, Zhiyi; Huang, Xiuchang; Hua, Hongxing
2014-06-01
This paper investigates the friction-induced instability and the resulting self-excited vibration of a propeller-shaft system supported by water-lubricated rubber bearing. The system under consideration is modeled with an analytical approach by involving the nonlinear interaction among torsional vibrations of the continuous shaft, tangential vibrations of the rubber bearing and the nonlinear friction acting on the bearing-shaft contact interface. A degenerative two-degree-of-freedom analytical model is also reasonably developed to characterize system dynamics. The stability and vibrational characteristics are then determined by the complex eigenvalues analysis together with the quantitative analysis based on the method of multiple scales. A parametric study is conducted to clarify the roles of friction parameters and different vibration modes on instabilities; both the graphic and analytical expressions of instability boundaries are obtained. To capture the nature of self-excited vibrations and validate the stability analysis, the nonlinear formulations are numerically solved to calculate the transient dynamics in time and frequency domains. Analytical and numerical results reveal that the nonlinear coupling significantly affects the system responses and the bearing vibration plays a dominant role in the dynamic behavior of the present system.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.
1990-01-01
The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.
Controlling sound with acoustic metamaterials
NASA Astrophysics Data System (ADS)
Cummer, Steven A.; Christensen, Johan; Alù, Andrea
2016-03-01
Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.
Electrically tunable infrared metamaterial devices
Brener, Igal; Jun, Young Chul
2015-07-21
A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.
Cummins, H.Z.
1993-11-01
Progress is reported on the following: dendritic sidebranching (pivalic acid), subcritical-supercritical bifurcation crossover in directional solidification (succinonitrile-coumarin 152), and evolution of planar-cellular-dendritic interface (succinonitrile-rhodamine 6G).
NASA Astrophysics Data System (ADS)
AlZayed, N. S.; Kityk, I. V.; Ozga, K.; Fedorchuk, A. O.; Soltan, S.; Shahabuddin, M.; El-Naggar, A.
2014-09-01
The calculations of the photoinduced nonlinear optical shift with respect to critical temperature for the MgB2 superconducting films (pure and doped by Cr) were performed using the first principle quantum chemical simulations. The principal role of the nano-interfaces between the MgB2 and Cr2O3 was established, and the nano-interfaces have a thickness varying within the 20-30 nm. The latter was done taking into account their long-range ordering additionally aligned by bicolour optical poling. The bicolour poling was performed by the fundamental 10.6 μm laser beam and its doubled frequency coherent second harmonic generation signal. The so formed internal dc-electric field has introduced additional polarization to the media which re-scale the factor of the electron-phonon interaction including the anharmionic one responsible for the occurrence of charge density non-centrosymmetry and the related second order nonlinear optical response. The simulations of the IR induced bicolour treatment were performed both for pure as well as MgB2 superconducting films doped by Cr3+.
Metamaterials for terahertz polarimetric devices
O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul
2008-01-01
We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.
Metamaterials for terahertz polarimetric devices
O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal
2008-01-01
We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.
Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G
2014-01-01
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. PMID:24589837
Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei
2013-12-27
In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.
Implementation of a quantum metamaterial using superconducting qubits.
Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V
2014-01-01
The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field. PMID:25312205
Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model
Liu Jinjie; Brio, Moysey; Zeng Yong; Zakharian, Armis R.; Hoyer, Walter; Koch, Stephan W.; Moloney, Jerome V.
2010-08-20
In this paper we present a numerical method for solving a three-dimensional cold-plasma system that describes electron gas dynamics driven by an external electromagnetic wave excitation. The nonlinear Drude dispersion model is derived from the cold-plasma fluid equations and is coupled to the Maxwell's field equations. The Finite-Difference Time-Domain (FDTD) method is applied for solving the Maxwell's equations in conjunction with the time-split semi-implicit numerical method for the nonlinear dispersion and a physics based treatment of the discontinuity of the electric field component normal to the dielectric-metal interface. The application of the proposed algorithm is illustrated by modeling light pulse propagation and second-harmonic generation (SHG) in metallic metamaterials (MMs), showing good agreement between computed and published experimental results.
Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal
2014-08-25
We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less
Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal
2014-08-25
We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.
Optical forces in nanorod metamaterial
Bogdanov, Andrey A.; Shalin, Alexander S.; Ginzburg, Pavel
2015-01-01
Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the ‘topological transition’ from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found. PMID:26514667
Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes
Xiang, Nan; Cheng, Qiang Zhao, Jie; Jun Cui, Tie Feng Ma, Hui; Xiang Jiang, Wei
2014-02-03
We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.
Implementation of optical dielectric metamaterials: A review
NASA Astrophysics Data System (ADS)
Corbitt, Shandra J.; Francoeur, Mathieu; Raeymaekers, Bart
2015-06-01
Metamaterials are a class of man-made materials with exotic electromagnetic properties. The ability to fabricate three-dimensional macroscale metamaterials would enable embedding these structures in engineering applications and devices, to take advantage of their unique properties. This paper reviews the implementation of optical Mie resonance-based dielectric (MRD) metamaterials, as opposed to the more commonly used metallic-based metamaterials. Design constraints are derived based on Mie theory and related to fabrication specifications. Techniques to fabricate optical dielectric metamaterials are reviewed, including electron-beam lithography, focused ion beam lithography, nanoimprint lithography, and directed self-assembly. The limitations of each fabrication method are critically evaluated in light of the design constraints. The challenges that must be overcome to achieve fabrication and implementation of macroscale three-dimensional MRD metamaterials are discussed.
Casimir interactions between graphene sheets and metamaterials
Drosdoff, D.; Woods, Lilia M.
2011-12-15
The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.
Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials
NASA Astrophysics Data System (ADS)
Xiao, Meng; Lin, Qian; Fan, Shanhui
2016-07-01
We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.
NASA Astrophysics Data System (ADS)
Hardhienata, Hendradi
2016-01-01
Second-harmonic-generation (SHG) has long been considered as a powerful optical surface diagnostic tool due to its ability to sense optical surface properties in centrosymmetric material. In a series of papers Aspnes et. al. showed that azimuthal measurements of rotated samples can be described by the so called simplified bond-hyperpolarizabilty model (SBHM) [G. D. Powell, J. F. Wang, and D. E. Aspnes, Phys. Rev. B 65, 205320 (2002)]. In this work, their model is applied to show how small changes in the step hyperpolarizability and vicinal angle of a Silicon (001) interface affects the second harmonic generation (SHG) intensity profile significantly, suggesting that real time surface deposition and interface vicinal angle monitoring using SHG is possible.
Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S
2011-09-15
Giant Goos-Hänchen shifts and radiation-induced trapping are studied at the planar boundary separating two focusing Kerr media within the framework of the Helmholtz theory. The analysis, valid for all angles of incidence, reveals that interfaces exhibiting linear external refraction can also accommodate both phenomena. Numerical evidence of these effects is provided, based on analytical predictions derived from a generalized Snell's law. PMID:21931405
Goos-Hänchen effect in epsilon-near-zero metamaterials
Xu, Yadong; Chan, C. T.; Chen, Huanyang
2015-01-01
Light reflection and refraction at an interface between two homogeneous media is analytically described by Snell's law. For a beam with a finite waist, it turns out that the reflected wave experiences a lateral displacement from its position predicted by geometric optics. Such Goos-Hänchen (G-H) effect has been extensively investigated among all kinds of optical media, such as dielectrics, metals, photonic crystals and metamaterials. As a fundamental physics phenomenon, the G-H effect has been extended to acoustics and quantum mechanics. Here we report the unusual G-H effect in zero index metamaterials. We show that when linearly polarized light is obliquely incident from air to epsilon-near-zero metamaterials, no G-H effect could be observed for p polarized light. While for s polarization, the G-H shift is a constant value for any incident angle. PMID:25731726
Electron beam coupling to a metamaterial structure
French, David M.; Shiffler, Don; Cartwright, Keith
2013-08-15
Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.
Multi-band near-field radiative heat transfer between two anisotropic fishnet metamaterials
NASA Astrophysics Data System (ADS)
Bai, Yang; Jiang, Yongyuan; Liu, Linhua
2015-06-01
We study the near-field radiative heat transfer between two metal-insulator-metal sandwiched-like fishnet metamaterials (FMMs) by fluctuation electrodynamics. Results show that multi-band heat flux between the fishnet metamaterials is achieved, which is attributed to the thermally excited surface modes within the FMM. Apart from the electric response mode of the near-field heat flux, magnetic modes are also existed, which are related with the excitations of the surface plasmon polaritons (SPPs) propagating on the outer surface of metal (external SPPs) and along the inner metal-dielectric interface (internal SPPs). Moreover, we show that the electromagnetic parameters of this anisotropic fishnet metamaterial depend on the angles θ of the incident light when heating the fishnet metamaterial, and thus the overall effect of the anisotropic FMM parameters is considered to predict the near-field radiative heat transfer. Different external-SPPs and internal-SPPs modes are excited at different frequencies which is attributed to the anisotropic electromagnetic response of FMM, which open new frequency channels of the near-field radiative heat transfer. This kind of anisotropic metamaterial should assist in thermal management in nanoscale.
Experimental demonstration of topological effects in bianisotropic metamaterials
Slobozhanyuk, Alexey P.; Khanikaev, Alexander B.; Filonov, Dmitry S.; Smirnova, Daria A.; Miroshnichenko, Andrey E.; Kivshar, Yuri S.
2016-01-01
Existence of robust edge states at interfaces of topologically dissimilar systems is one of the most fascinating manifestations of a novel nontrivial state of matter, a topological insulator. Such nontrivial states were originally predicted and discovered in condensed matter physics, but they find their counterparts in other fields of physics, including the physics of classical waves and electromagnetism. Here, we present the first experimental realization of a topological insulator for electromagnetic waves based on engineered bianisotropic metamaterials. By employing the near-field scanning technique, we demonstrate experimentally the topologically robust propagation of electromagnetic waves around sharp corners without backscattering effects. PMID:26936219
Metamaterial Apertures for Computational Imaging
NASA Astrophysics Data System (ADS)
Hunt, John; Driscoll, Tom; Mrozack, Alex; Lipworth, Guy; Reynolds, Matthew; Brady, David; Smith, David R.
2013-01-01
By leveraging metamaterials and compressive imaging, a low-profile aperture capable of microwave imaging without lenses, moving parts, or phase shifters is demonstrated. This designer aperture allows image compression to be performed on the physical hardware layer rather than in the postprocessing stage, thus averting the detector, storage, and transmission costs associated with full diffraction-limited sampling of a scene. A guided-wave metamaterial aperture is used to perform compressive image reconstruction at 10 frames per second of two-dimensional (range and angle) sparse still and video scenes at K-band (18 to 26 gigahertz) frequencies, using frequency diversity to avoid mechanical scanning. Image acquisition is accomplished with a 40:1 compression ratio.
Micro-/nanostructured mechanical metamaterials.
Lee, Jae-Hwang; Singer, Jonathan P; Thomas, Edwin L
2012-09-18
Mechanical properties of materials have long been one of the most fundamental and studied areas of materials science for a myriad of applications. Recently, mechanical metamaterials have been shown to possess extraordinary effective properties, such as negative dynamic modulus and/or density, phononic bandgaps, superior thermoelectric properties, and high specific energy absorption. To obtain such materials on appropriate length scales to enable novel mechanical devices, it is often necessary to effectively design and fabricate micro-/nano- structured materials. In this Review, various aspects of the micro-/nano-structured materials as mechanical metamaterials, potential tools for their multidimensional fabrication, and selected methods for their structural and performance characterization are described, as well as some prospects for the future developments in this exciting and emerging field. PMID:22899377
Manipulating Complex Light with Metamaterials
Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.
2013-01-01
Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836
Fluctuational electrodynamics of hyperbolic metamaterials
Guo, Yu; Jacob, Zubin
2014-06-21
We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.
Scattering characteristics of cylindrical metamaterials
NASA Astrophysics Data System (ADS)
Hwang, Ruey-Bing; Huang, Hsien-Tung
2016-03-01
This paper reports the scattering of electromagnetic plane wave by annular metamaterials composed of concentric regular dielectric layers of infinite length. Interestingly, in certain frequency ranges, their scattering properties are similar to those of a perfect electric conductor cylinder, except that the tangential electric field on their surfaces does not vanish. Moreover, the frequency bands of total reflection spectra can be rigorously predicted using Floquet-Bloch theorem.
Topological design of torsional metamaterials
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo; Paulose, Jayson; Meeussen, Anne; Topological Mechanics Lab Team
Frameworks - stiff elements with freely hinged joints - model the mechanics of a wide range of natural and artificial structures, including mechanical metamaterials with auxetic and topological properties. The unusual properties of the structure depend crucially on the balance between degrees of freedom associated with the nodes, and the constraints imposed upon them by the connecting elements. Whereas networks of featureless nodes connected by central-force springs have been well-studied, many real-world systems such as frictional granular packings, gear assemblies, and flexible beam meshes incorporate torsional degrees of freedom on the nodes, coupled together with transverse shear forces exerted by the connecting elements. We study the consequences of such torsional constraints on the mechanics of periodic isostatic networks as a foundation for mechanical metamaterials. We demonstrate the existence of soft modes of topological origin, that are protected against disorder or small perturbations of the structure analogously to their counterparts in electronic topological insulators. We have built a lattice of gears connected by rigid beams that provides a real-world demonstration of a torsional metamaterial with topological edge modes and mechanical Weyl modes.
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale. PMID:27333052
Three-component gyrotropic metamaterial
Tralle, Igor Ziȩba, Paweł; Paśko, Wioletta
2014-06-21
All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of μ, while the other two would be responsible for the negativity of ε. The first component of the mixture is the “swarm” of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1−x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.
Design of a programmable active acoustics metamaterial
NASA Astrophysics Data System (ADS)
Smoker, Jason J.
Metamaterials are artificial materials engineered to provide properties which may not be readily available in nature. The development of such class of materials constitutes a new area of research that has grown significantly over the past decade. Acoustic metamaterials, specifically, are even more novel than their electromagnetic counterparts arising only in the latter half of the decade. Acoustic metamaterials provide a new tool in controlling the propagation of pressure waves. However, physical design and frequency tuning, is still a large obstacle when creating a new acoustic metamaterial. This dissertation describes active and programmable design for acoustic metamaterials which allows the same basic physical design principles to be used for a variety of application. With cloaking technology being of a great interest to the US Navy, the proposed design approach would enable the development of a metamaterial with spatially changing effective parameters while retaining a uniform physical design features. The effective parameters would be controlled by tuning smart actuators embedded inside the metamaterial structure. Since this design is based on dynamic effective parameters that can be electrically controlled, material property ranges of several orders of magnitude could potentially be achieved without changing any physical parameters. With such unique capabilities, physically realizable acoustic cloaks can be achieved and objects treated with these active metamaterials can become acoustically invisible.
Ramshaw, J D
2000-10-01
A simple model was recently described for predicting the time evolution of the width of the mixing layer at an unstable fluid interface [J. D. Ramshaw, Phys. Rev. E 58, 5834 (1998); ibid. 61, 5339 (2000)]. The ordinary differential equations of this model have been heuristically generalized into partial differential equations suitable for implementation in multicomponent hydrodynamics codes. The central ingredient in this generalization is a nun-diffusional expression for the species mass fluxes. These fluxes describe the relative motion of the species, and thereby determine the local mixing rate and spatial distribution of mixed fluid as a function of time. The generalized model has been implemented in a two-dimensional hydrodynamics code. The model equations and implementation procedure are summarized, and comparisons with experimental mixing data are presented.
NASA Astrophysics Data System (ADS)
James, Kenneth
2010-03-01
Second harmonic generation (SHG) is a successful and widely used technique for the study of surfaces and surface phenomena. We present a novel technique using second harmonic generation from oriented water molecules in the Gouy-Chapman diffuse layer at the alkylsiloxane and biomolecular self assembled monolayer (SAM) interface with water to measure distance between the solid surface and the average location of the oriented water in the diffuse layer. Distances of one nanometer can be distinguished. This in situ probe is applicable for organic adsorbates which in general will push the diffuse layer away from the solid surface. The organic layer thickness can be used to obtain the adsorption fraction. From this and an understanding of the likely chemistry, the orientation of the molecules can be inferred. We have demonstrated this technique on three molecular systems: hydrophobic self assembled monolayers of methoxysilane molecules of varying hydrocarbon chain length, self assembled monolayers of streptavidin glycoproteins and the combined streptavidin-biotinylated antibody monolayer.
Strong Coupling between Nanoscale Metamaterials and Phonons
Shelton, David J.; Brener, Igal; Ginn, James C.; Sinclair, Michael B.; Peters, David W.; Coffey, Kevin R.; Boreman, Glenn D.
2011-05-11
We use split ring resonators (SRRs) at optical frequencies to study strong coupling between planar metamaterials and phonon vibrations in nanometer-scale dielectric layers. A series of SRR metamaterials were fabricated on a semiconductor wafer with a thin intervening SiO{sub 2} dielectric layer. The dimensions of the SRRs were varied to tune the fundamental metamaterial resonance across the infrared (IR) active phonon band of SiO{sub 2} at 130 meV (31 THz). Strong anticrossing of these resonances was observed, indicative of strong coupling between metamaterial and phonon excitations. This coupling is very general and can occur with any electrically polarizable resonance including phonon vibrations in other thin film materials and semiconductor band-to-band transitions in the near to far IR. These effects may be exploited to reduce loss and to create unique spectral features that are not possible with metamaterials alone.
Inverse Doppler Effects in Broadband Acoustic Metamaterials.
Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R
2016-01-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317
Tunable beam steering enabled by graphene metamaterials.
Orazbayev, B; Beruete, M; Khromova, I
2016-04-18
We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing. PMID:27137318
Broadband electromagnetic cloaking with smart metamaterials.
Shin, Dongheok; Urzhumov, Yaroslav; Jung, Youngjean; Kang, Gumin; Baek, Seunghwa; Choi, Minjung; Park, Haesung; Kim, Kyoungsik; Smith, David R
2012-01-01
The ability to render objects invisible with a cloak that fits all objects and sizes is a long-standing goal for optical devices. Invisibility devices demonstrated so far typically comprise a rigid structure wrapped around an object to which it is fitted. Here we demonstrate smart metamaterial cloaking, wherein the metamaterial device not only transforms electromagnetic fields to make an object invisible, but also acquires its properties automatically from its own elastic deformation. The demonstrated device is a ground-plane microwave cloak composed of an elastic metamaterial with a broad operational band (10-12 GHz) and nearly lossless electromagnetic properties. The metamaterial is uniform, or perfectly periodic, in its undeformed state and acquires the necessary gradient-index profile, mimicking a quasi-conformal transformation, naturally from a boundary load. This easy-to-fabricate hybrid elasto-electromagnetic metamaterial opens the door to implementations of a variety of transformation optics devices based on quasi-conformal maps. PMID:23169054
Gassin, Pierre-Marie; Girard, Luc; Martin-Gassin, Gaelle; Brusselle, Damien; Jonchère, Alban; Diat, Olivier; Viñas, Clara; Teixidor, Francesc; Bauduin, Pierre
2015-03-01
Because of their amphiphilic structure, surfactants adsorb at the water-air interface with their hydrophobic tails pointing out of the water and their polar heads plunging into the liquid phase. Unlike classical surfactants, metallabisdicarbollides (MCs) do not have a well-defined amphiphilic structure. They are nanometer-sized inorganic anions with an ellipsoidal shape composed of two carborane semicages sandwiching a metal ion. However, MCs have been shown to share many properties with surfactants, such as self-assembly in water (formation of micelles and vesicles), formation of lamellar lyotropic phases, and surface activity. By combining second harmonic generation and surface tension measurement, we show here that cobaltabis(dicarbollide) anion {[(C2B9H11)2Co](-) also named [COSAN](-)} with H(+) as a counterion, the most representative metallacarborane, adsorbs vertically at the water surface with its long axis normal to the surface. This vertical molecular orientation facilitates the formation of intermolecular and nonconventional dihydrogen bonds such as the B-H(δ-)···(δ+)H-C bond that has recently been proven to be at the origin of the self-assembly of MCs in water. Therefore, it appears here that lateral dihydrogen bonds are also involved in the surface activity of MCs. PMID:25644035
Topologically Reconfigurable Atomic Lattice Quantum Metamaterial
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri; Zhang, Xiang
Metamaterials have attracted unprecedented attention owing to their exceptional light-matter interaction properties. However, harnessing metamaterial at single photon or few photon excitations is still a long way to go due to several critical challenges such as optical loss, defects to name a few. Here we introduce and theoretically demonstrate a novel platform toward quantum metamaterial, immune to aforementioned challenges, with ultra-cold neutral atoms trapped in an artificial crystal of light. Such periodic atomic density grating -an atomic lattice- exhibits extreme anisotropic optical response where it behaves like a metal in one direction but dielectric along orthogonal directions. We harness the interacting dark resonance physics to eliminate the absorption loss and demonstrate an all-optical and ultra-fast control over the photonic topological transition from a close to an open topology at the same frequency. Such atomic lattice quantum metamaterial enables dynamic manipulation of the decay rate of a quantum emitter by more than an order of magnitude. Our proposal brings together two important contemporary realm of science - cold atom physics and metamaterial for applications in both fundamental and applied science. Atomic lattice quantum metamaterial may provide new opportunities, at single or few photon level, for quantum sensing, quantum information processing with metamaterials.
An active viscoelastic metamaterial for isolation applications
NASA Astrophysics Data System (ADS)
Reynolds, M.; Daley, S.
2014-04-01
Metamaterials are of interest due to their ability to produce novel acoustic behaviour beyond that seen in naturally occurring media. Of particular interest is the appearance of band gaps which lead to very high levels of attenuation within narrow frequency ranges. Resonant elements within metamaterials allow band gaps to form within the long wavelength limit at low frequencies where traditional passive isolation solutions suffer poor performance. Hence metamaterials may provide a path to high performance, low frequency isolation. Two metamaterials are presented here. An acoustic material consisting of an array of split hollow spheres is developed, and its performance is validated experimentally. The application of an acoustic/mechanical analogy allows the development of an elastodynamic metamaterial that could be employed as a high performance vibration isolator at low frequencies. A prototype isolator is manufactured, and its performance is measured. The passively occurring band gap is enhanced using an active control architecture. The use of the active control system in conjunction with the natural passive behaviour of the metamaterial enables high levels of isolation across a broad frequency range. An eventual goal of the work is to produce such materials on a small scale, and as such the metamaterials developed are designed for, and produced using, additive layer manufacturing techniques.
Wave propagation in metamaterial lattice sandwich plates
NASA Astrophysics Data System (ADS)
Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong
2016-04-01
This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.
Acoustic metamaterial design and applications
NASA Astrophysics Data System (ADS)
Zhang, Shu
The explosion of interest in metamaterials is due to the dramatically increased manipulation ability over light as well as sound waves. This material research was stimulated by the opportunity to develop an artificial media with negative refractive index and the application in superlens which allows super-resolution imaging. High-resolution acoustic imaging techniques are the essential tools for nondestructive testing and medical screening. However, the spatial resolution of the conventional acoustic imaging methods is restricted by the incident wavelength of ultrasound. This is due to the quickly fading evanescent fields which carry the subwavelength features of objects. By focusing the propagating wave and recovering the evanescent field, a flat lens with negative-index can potentially overcome the diffraction limit. We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements. Moreover, the concept of metamaterial extends far beyond negative refraction, rather giving enormous choice of material parameters for different applications. One of the most interesting examples these years is the invisible cloak. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. However, the cloak designed by transformation optics usually calls for a highly anisotropic metamaterial, which
Pal, Rahul; Yang, Jinping; Ortiz, Daniel; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie
2015-01-01
The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p < 0.01) higher in dysplasia (0.41±0.24) than normal (0.11±0.04) as measured in MPAM-SHGM and results were confirmed in histology which showed similar trends in ΔLinearity. Increase in ΔLinearity was also statistically significant for different grades of dysplasia. In-vivo ΔLinearity measurement alone from microscopy discriminated dysplasia from normal tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in
Microwave propagation in chiral metamaterials
NASA Astrophysics Data System (ADS)
Prybylski, Aida; Yon, Luis; Noginova, Natalia
Chiral hyperbolic metamaterials are predicted to show interesting properties associated with possible topological photonic states in these materials, which present new opportunities for light control and manipulation. As prototypes, we consider two metal-dielectric systems designed for microwave range: a twisted wires array, where chirality is associated with shape of metal inclusions, and a rotated layer system, with parallel wires in each layer, and direction of the wires orientation rotated from layer to layer. Systems with different content of metal and layer-to-layer distance were fabricated and studied in the free space propagation experiment. The results were discussed in terms of effective media consideration.
Reversed rainbow with a nonlocal metamaterial
NASA Astrophysics Data System (ADS)
Morgado, Tiago A.; Marcos, João S.; Costa, João T.; Costa, Jorge R.; Fernandes, Carlos A.; Silveirinha, Mário G.
2014-12-01
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Reversed rainbow with a nonlocal metamaterial
Morgado, Tiago A. Marcos, João S.; Silveirinha, Mário G.; Costa, João T.; Costa, Jorge R.; Fernandes, Carlos A.
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices. PMID:26560623
Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.
Xiao, Meng; Lin, Qian; Fan, Shanhui
2016-07-29
We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points. PMID:27517792
Wavelength-tunable microbolometers with metamaterial absorbers.
Maier, Thomas; Brückl, Hubert
2009-10-01
Microbolometers are modified by metallic resonant absorber elements, leading to an enhanced responsivity at selectable wavelengths. The dissipative energy absorption of tailored metamaterials allows for engineering the response of conventional bolometer microbridges. The absorption peak position and height are determined by the geometry of the metamaterial. Square-shaped metal/dielectric/metal stacks as absorber elements show spectral resonances at wavelengths between 4.8 and 7.0 microm in accordance with numerical simulations. Total peak absorptions of 0.8 are obtained. The metamaterial modified bolometers are suitable for multispectral thermal imaging systems in the mid-IR and terahertz regime. PMID:19794799
Highly flexible near-infrared metamaterials.
Li, G X; Chen, S M; Wong, W H; Pun, E Y B; Cheah, K W
2012-01-01
Plasmonic or metamaterial nanostructures are usually fabricated on rigid substrate i.e. glass, silicon. Optical functionality of such kinds of nanostructures is limited by the planar surface and thus sensitive to the incident angle of light. In this work, we demonstrated that a tri-layer flexible metamaterials working at near infrared (NIR) regime can be fabricated on transparent PET substrate using flip chip transfer (FCT) technique. FCT technique is solution-free and can also be applied to fabricate other functional nanostructures device on flexible substrate. We demonstrated NIR metamaterial device can be transformed into various shapes by bending the PET substrate. PMID:22274363
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.
2016-01-01
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
NASA Astrophysics Data System (ADS)
Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; di Falco, A.; Faccio, D.
2016-06-01
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.
Kaipurath, R M; Pietrzyk, M; Caspani, L; Roger, T; Clerici, M; Rizza, C; Ciattoni, A; Di Falco, A; Faccio, D
2016-01-01
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270
Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
Ginzburg, P; Rodríguez Fortuño, F J; Wurtz, G A; Dickson, W; Murphy, A; Morgan, F; Pollard, R J; Iorsh, I; Atrashchenko, A; Belov, P A; Kivshar, Y S; Nevet, A; Ankonina, G; Orenstein, M; Zayats, A V
2013-06-17
One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent crystals and, thus, have a bulky design. Here, we have demonstrated the polarization manipulation of light by employing a thin subwavelength slab of metamaterial with an extremely anisotropic effective permittivity tensor. Polarization properties of light incident on the metamaterial in the regime of hyperbolic, epsilon-near-zero, and conventional elliptic dispersions were compared. We have shown that both reflection from and transmission through λ/20 thick slab of the metamaterial may provide nearly complete linear-to-circular polarization conversion or 90° linear polarization rotation, not achievable with natural materials. Using ellipsometric measurements, we experimentally studied the polarization conversion properties of the metamaterial slab made of the plasmonic nanorod arrays in different dispersion regimes. We have also suggested all-optical ultrafast control of reflected or transmitted light polarization by employing metal nonlinearities. PMID:23787679
NASA Astrophysics Data System (ADS)
Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.
2015-11-01
Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.
Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.
2015-01-01
Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light–matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light–matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation. PMID:26584781
Design and optimization of membrane-type acoustic metamaterials
NASA Astrophysics Data System (ADS)
Blevins, Matthew Grant
One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.
Photonic simulation of topological excitations in metamaterials
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-01
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment. PMID:24452532
Ultralight shape-recovering plate mechanical metamaterials
NASA Astrophysics Data System (ADS)
Davami, Keivan; Zhao, Lin; Lu, Eric; Cortes, John; Lin, Chen; Lilley, Drew E.; Purohit, Prashant K.; Bargatin, Igor
2015-12-01
Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm-2 and have the ability to `pop-back' to their original shape without damage even after undergoing multiple sharp bends of more than 90°.
Interferometric direction finding with a metamaterial detector
Venkatesh, Suresh; Schurig, David; Shrekenhamer, David; Padilla, Willie; Xu, Wangren; Sonkusale, Sameer
2013-12-16
We present measurements and analysis demonstrating useful direction finding of sources in the S band (2–4 GHz) using a metamaterial detector. An augmented metamaterial absorber that supports magnitude and phase measurement of the incident electric field, within each unit cell, is described. The metamaterial is implemented in a commercial printed circuit board process with off-board back-end electronics. We also discuss on-board back-end implementation strategies. Direction finding performance is analyzed for the fabricated metamaterial detector using simulated data and the standard algorithm, MUtiple SIgnal Classification. The performance of this complete system is characterized by its angular resolution as a function of radiation density at the detector. Sources with power outputs typical of mobile communication devices can be resolved at kilometer distances with sub-degree resolution and high frame rates.
Tunable VO2/Au hyperbolic metamaterial
NASA Astrophysics Data System (ADS)
Prayakarao, S.; Mendoza, B.; Devine, A.; Kyaw, C.; van Dover, R. B.; Liberman, V.; Noginov, M. A.
2016-08-01
Vanadium dioxide (VO2) is known to have a semiconductor-to-metal phase transition at ˜68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO2 and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO2 thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.
Microwave mode structure of superconducting metamaterial resonators
NASA Astrophysics Data System (ADS)
Wang, Haozhi; Rouxinol, Francisco; Lahaye, Matthew; Plourde, Britton
2015-03-01
Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit novel behavior compared to resonators made from conventional distributed transmission lines. By engineering the parameters and configurations of the lumped elements composing the unit cell of such a metamaterial resonator, one can generate spectra with wide stop-bands as well as pass-bands with dense microwave modes. If the metamaterials are fabricated from superconducting traces, the losses can be low enough to allow for these dense modes to be resolved and potentially coupled to quantum systems, such as superconducting qubits. We will present our low-temperature measurements of a variety of superconducting metamaterial resonators and we will compare these with numerical simulations of the microwave properties.
Photonic simulation of topological excitations in metamaterials.
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-01
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment. PMID:24452532
Harnessing the electromagnetic absorptions of metamaterials for positive applications
NASA Astrophysics Data System (ADS)
Xiang, Yuanjiang; Zou, Yanhong; Luo, Hailu; Dai, Xiaoyu; Wen, Shuangchun; Fan, Dianyuan
2010-08-01
Absorption or loss is inevitable for the metal-based metamaterials (MMs) due to the intrinsic loss of the metal, and constitutes a major hurdle to the practical realization of most applications such as a sub-wavelength lens. Thus, to reduce the losses becomes one of the major challenges in the MM field. However, the inevitable loss can also be harnessed to take a positive role in the applications of MMs such as stealth technology or other types of cloaking devices. In this presentation, after a brief review of the advances in MMs-based absorbers, we present several schemes to fulfill the desired electromagnetic absorption properties, both linear and nonlinear. For linear absorption, we have experimentally demonstrated that the absorption performance of an ordinary microwave absorbing material can be evidently improved by using the electric resonance resulting from an array of subwavelength metallic circuit elements. For nonlinear absorption, we show theoretically that the active linear magnetic permeability induces a nonlinear absorption, similar to the two-photon absorption (TPA), of electric field in a lossy MM with a Kerr-type nonlinear polarization.
Chiral THz metamaterial with tunable optical activity
Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M
2010-01-01
Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation
Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong Gong, Qihuang
2015-08-24
An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm{sup 2} is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.
Repulsive Casimir force in chiral metamaterials.
Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M
2009-09-01
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309
Realizing optical magnetism from dielectric metamaterials.
Ginn, James C; Brener, Igal; Peters, David W; Wendt, Joel R; Stevens, Jeffrey O; Hines, Paul F; Basilio, Lorena I; Warne, Larry K; Ihlefeld, Jon F; Clem, Paul G; Sinclair, Michael B
2012-03-01
We demonstrate, for the first time, an all-dielectric metamaterial composite in the midinfrared based on micron-sized, high-index tellurium dielectric resonators. Dielectric resonators are desirable compared to conventional metallodielectric metamaterials at optical frequencies as they are largely angular invariant, free of Ohmic loss, and easily integrated into three-dimensional volumes. Measurements and simulation provide evidence of optical magnetism, which could be used for infrared magnetic mirrors, hard or soft surfaces, and subwavelength cavities. PMID:22463666
Microelectromechanically tunable multiband metamaterial with preserved isotropy
NASA Astrophysics Data System (ADS)
Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo
2015-06-01
We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.
Direct Writing of Metamaterials Using Atomic Calligraphy
NASA Astrophysics Data System (ADS)
Stark, Thomas; Reeves, Jeremy; Barrett, Lawrence; Lally, Richard; Bishop, David
The trend toward creating metamaterials with spectral features at shorter wavelengths demands a concomitant decrease in the minimum feature size. Many fabrication techniques have been developed to meet this challenge, all of which must address competition between resolution and throughput. We fabricate metamaterials using atomic calligraphy, a technique that tackles both the throughput and resolution challenges, and present optical characterization of the metamaterials we fabricate. Atomic calligraphy is a microelectromechanical systems (MEMS) based moveable stencil used to fabricate nanostructures. We increase the throughput of this technique by using many stencils in parallel and work toward further enhancing throughput by using a stage system to step the MEMS and repeat fabrication over large areas. Finally, we characterize the infrared response of the metamaterials that we fabricated. This technology can be used to fabricate metamaterials on a host of substrates, including those that are chemically incompatible with or have topological features that preclude them from use with conventional nanofabrication techniques, such as mechanical scaffolds that enable tuning of the metamaterial spectral response. This work is funded by the DARPA A2P Program.
Microelectromechanically tunable multiband metamaterial with preserved isotropy.
Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo
2015-01-01
We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future. PMID:26115416
Dynamic metamaterial aperture for microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; F. Imani, Mohammadreza; Gollub, Jonah N.; Smith, David R.
2015-11-01
We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.
Microelectromechanically tunable multiband metamaterial with preserved isotropy
Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo
2015-01-01
We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future. PMID:26115416
Dynamic metamaterial aperture for microwave imaging
Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.
2015-11-16
We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.
Levitated crystals and quasicrystals of metamaterials
Wang, Zhehui; Morris, Christopher; Goree, John A
2012-07-25
New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.
Batra, Karuna; Mitra, Sugata; Subbarao, D.; Sharma, R.P.; Uma, R.
2005-01-01
The task for the present study is to make an investigation of self-similarity in a self-focusing laser beam both theoretically and numerically using graphical user interface based interactive computer simulation model in MATLAB (matrix laboratory) software in the presence of saturating ponderomotive force based and relativistic electron quiver based plasma nonlinearities. The corresponding eigenvalue problem is solved analytically using the standard eikonal formalism and the underlying dynamics of self-focusing is dictated by the corrected paraxial theory for slow self-focusing. The results are also compared with computer simulation of self-focusing by the direct fast Fourier transform based spectral methods. It is found that the self-similar solution obtained analytically oscillates around the true numerical solution equating it at regular intervals. The simulation results are the main ones although a feasible semianalytical theory under many assumptions is given to understand the process. The self-similar profiles are called as self-organized profiles (not in a strict sense), which are found to be close to Laguerre-Gaussian curves for all the modes, the shape being conserved. This terminology is chosen because it has already been shown from a phase space analysis that the width of an initially Gaussian beam undergoes periodic oscillations that are damped when any absorption is added in the model, i.e., the beam width converges to a constant value. The research paper also tabulates the specific values of the normalized phase shift for solutions decaying to zero at large transverse distances for first three modes which can, however, be extended to higher order modes.
Coherent control of optical polarization effects in metamaterials.
Mousavi, Seyedmohammad A; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
A membrane-type acoustic metamaterial with adjustable acoustic properties
NASA Astrophysics Data System (ADS)
Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.
2016-07-01
A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.
Coherent control of optical polarization effects in metamaterials
Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing
2016-01-01
Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions. PMID:26911449
Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C. T.; Wong, Kam Sing
2016-01-01
Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions. PMID:26911449
NASA Astrophysics Data System (ADS)
Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C. T.; Wong, Kam Sing
2016-02-01
Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.
Topological mechanics of gyroscopic metamaterials
Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.
2015-01-01
Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides. PMID:26561580
Granular metamaterials for vibration mitigation
NASA Astrophysics Data System (ADS)
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method
NASA Astrophysics Data System (ADS)
Ampilogov, Dmitrii; Leble, Sergey
2016-07-01
We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.
Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Xue, Chun-hua; Ding, Yaqiong; Jiang, Hai-tao; Li, Yunhui; Wang, Zhan-shan; Zhang, Ye-wen; Chen, Hong
2016-03-01
We theoretically study dispersionless gaps and cavity modes in one-dimensional photonic crystals composed of hyperbolic metamaterials and dielectric. Bragg gaps in conventional all-dielectric photonic crystals are always dispersive because propagating phases in two kinds of dielectrics decrease with incident angle. Here, based on phase variation compensation between a hyperbolic metamaterial layer and an isotropic dielectric layer, the dispersion of the gap can be offset and thus a dispersionless gap can be realized. Moreover, the dispersionless property of such gap has a wide parameter space. The dispersionless gap can be used to realize a dispersionless cavity mode. The dispersionless gaps and cavity modes will possess significant applications for all-angle reflectors, high-Q filters excited with finite-sized sources, and nonlinear wave mixing processes.
NASA Astrophysics Data System (ADS)
Sun, Lei; Yang, Xiaodong; Wang, Wei; Gao, Jie
2015-03-01
Extremely anisotropic metal-dielectric multilayer metamaterials are designed to have the effective permittivity tensor of a transverse component (parallel to the interfaces of the multilayer) with zero real part and a longitudinal component (normal to the interfaces of the multilayer) with ultra-large imaginary part at the same wavelength, including the optical nonlocality analysis based on the transfer-matrix method. The diffraction-free deep-subwavelength optical beam propagation with near-zero phase variation in the designed multilayer stack due to the near-flat iso-frequency contour is demonstrated and analyzed, including the effects of the multilayer period and the material loss.
Modulation instability of structured-light beams in negative-index metamaterials
NASA Astrophysics Data System (ADS)
Silahli, Salih Z.; Walasik, Wiktor; Litchinitser, Natalia M.
2016-05-01
One of the most fundamental properties of isotropic negative-index metamaterials (NIMs), namely opposite directionality of the Poynting vector and the wavevector, enable many novel linear and nonlinear regimes of light–matter interactions. Here, we predict distinct characteristics of azimuthal modulation instability (MI) of optical vortices with different topological charges in NIMs with Kerr-type and saturable nonlinearity. We derive an analytical expression for the spatial modulation-instability gain for the Kerr-nonlinearity case and show that a specific condition relating the diffraction and the nonlinear lengths must be fulfilled for the azimuthal MI to occur. Finally, we investigate the rotation of the necklace beams due to the transfer of orbital angular momentum of the generating vortex on the movement of solitary necklace beams. We show that the direction of rotation is opposite in positive- and negative-index materials.
Plasmonic tunable metamaterial absorber as ultraviolet protection film
NASA Astrophysics Data System (ADS)
Hedayati, M. K.; Zillohu, A. U.; Strunskus, T.; Faupel, F.; Elbahri, M.
2014-01-01
Plasmonic metamaterials designed for optical frequency have to be shrunk down to few 10th of nanometer which turns their manufacturing cumbersome. Here, we shift the performance of metamaterial down to ultraviolet (UV) by using ultrathin nanocomposite as a tunable plasmonic metamaterial fabricated with tandem co-deposition. It provides the possibility to realize a plasmonic metamaterial absorber for UV frequency with marginal angle sensitivity. Its resonance frequency and intensity can be adjusted by changing thickness and filling factor of the composite. Presented approach for tunable metamaterials for high frequency could pave the way for their application for thermo-photovoltaic, stealth technology, and UV-protective coating.
Inverse Doppler Effects in Broadband Acoustic Metamaterials
Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.
2016-01-01
The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317
[INVITED] Self-assembled optical metamaterials
NASA Astrophysics Data System (ADS)
Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe
2016-08-01
Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.
Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials
Nefedov, Igor S.; Melnikov, Leonid A.
2014-10-20
We demonstrate the production of strong directive thermal emissions in the far-field zone of asymmetric hyperbolic metamaterials (AHMs), exceeding that predicted by Planck's limit. Asymmetry is inherent to the uniaxial medium, where the optical axis is tilted with respect to medium interfaces. The use of AHMs is shown to enhance the free-space coupling efficiency of thermally radiated waves, resulting in Super-Planckian far-field thermal emission in certain directions. This effect is impossible in usual hyperbolic materials because emission of high density of states (DOS) photons into vacuum with smaller DOS is preserved by the total internal reflection. Different plasmonic metamaterials are proposed for realizing AHM media; the thermal emission from a AHM, based on a grapheme multilayer structure, is presented, as an example.
Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial
Gao, Xi; Zhou, Liang; Cui, Tie Jun
2015-01-01
Surface plasmon polaritons (SPPs), either on metal-dielectric interfaces in optical frequencies or on structured metal surfaces in the lower frequencies, are dominantly even modes. Here we discover dominant odd-mode SPPs on a complementary plasmonic metamaterial, which is constructed by complementary symmetric grooves. We show that the fundamental SPP mode on such a plasmonic metamaterial is a tightly confined odd mode, whose dispersion curve can be tuned by the shape of groove. According to the electric field distributions of odd-mode SPPs, we propose a high-efficiency transducer using asymmetric coplanar waveguide and slot line to excite the odd-mode SPPs. Numerical simulations and experimental results validate the high-efficiency excitation and excellent propagation performance of odd-mode SPPs on the complementary plasmonic waveguides in the microwave frequencies. PMID:25783166
Acoustic metamaterials: From local resonances to broad horizons.
Ma, Guancong; Sheng, Ping
2016-02-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692
Acoustic metamaterials: From local resonances to broad horizons
Ma, Guancong; Sheng, Ping
2016-01-01
Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens. PMID:23787690
Detection of microorganisms using terahertz metamaterials
NASA Astrophysics Data System (ADS)
Park, S. J.; Hong, J. T.; Choi, S. J.; Kim, H. S.; Park, W. K.; Han, S. T.; Park, J. Y.; Lee, S.; Kim, D. S.; Ahn, Y. H.
2014-05-01
Microorganisms such as fungi and bacteria cause many human diseases and therefore rapid and accurate identification of these substances is essential for effective treatment and prevention of further infections. In particular, contemporary microbial detection technique is limited by the low detection speed which usually extends over a couple of days. Here we demonstrate that metamaterials operating in the terahertz frequency range shows promising potential for use in fabricating the highly sensitive and selective microbial sensors that are capable of high-speed on-site detection of microorganisms in both ambient and aqueous environments. We were able to detect extremely small amounts of the microorganisms, because their sizes are on the same scale as the micro-gaps of the terahertz metamaterials. The resonant frequency shift of the metamaterials was investigated in terms of the number density and the dielectric constants of the microorganisms, which was successfully interpreted by the change in the effective dielectric constant of a gap area.
Photoexited switchable metamaterial absorber at terahertz frequencies
NASA Astrophysics Data System (ADS)
Xu, Zongcheng; Gao, Runmei; Ding, Chunfeng; Wu, Liang; Zhang, Yating; Xu, Degang; Yao, Jianquan
2015-06-01
We propose a design and numerical study of an optically switchable metamaterial absorber in the terahertz regime. The metamaterial absorber comprises a periodic array of metallic split-ring resonators sitting back to back with an embedded semiconductor silicon. Filing the gap between the resonator arms with a semiconductor (silicon), leads to easy modification of its optical response through a pump beam which changes conductivity of Si. The conductivity of silicon is a function of incident pump power. Therefore, the resonance frequencies of the metamaterial can be tunable by applying an external pump power. The resonance peak of the absorption spectra shows a shift from 1.17 to 0.68 THz via external optical stimulus, with granting a resonance tuning range on the order of 42%. The optical-tuned absorber has potential applications as a terahertz modulator and switchable device and offer a step forward in filling the "THz gap".
Travelling waves in nonlinear magneto-inductive lattices
NASA Astrophysics Data System (ADS)
Agaoglou, M.; Fečkan, M.; Pospíšil, M.; Rothos, V. M.; Susanto, H.
2016-01-01
We consider a lattice equation modelling one-dimensional metamaterials formed by a discrete array of nonlinear resonators. We focus on periodic travelling waves due to the presence of a periodic force. The existence and uniqueness results of periodic travelling waves of the system are presented. Our analytical results are found to be in good agreement with direct numerical computations.
Metamaterials for Cherenkov Radiation Based Particle Detectors
Tyukhtin, A. V.; Schoessow, P.; Kanareykin, A.; Antipov, S.
2009-01-22
Measurement of Cherenkov radiation (CR) has long been a useful technique for charged particle detection and beam diagnostics. We are investigating metamaterials engineered to have refractive indices tailored to enhance properties of CR that are useful for particle detectors and that cannot be obtained using conventional media. Cherenkov radiation in dispersive media with a large refractive index differs significantly from the same effect in conventional detector media, like gases or aerogel. The radiation pattern of CR in dispersive metamaterials presents lobes at very large angles with respect to particle motion. Moreover, the frequency and particle velocity dependence of the radiated energy can differ significantly from CR in a conventional dielectric medium.
Broadband mode conversion via gradient index metamaterials
Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang
2016-01-01
We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456
Broadband mode conversion via gradient index metamaterials.
Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang
2016-01-01
We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456
Classical and quantum optics of hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Jacob, Zubin
Nanotechnology has paved the way for artificial materials which have electromagnetic, mechanical, thermal and acoustic properties beyond those which are ordinarily found in nature. Photonic nanomaterials hold the promise:- to usher in a new generation of photonic devices with imaging capabilities well beyond the reach of conventional optics, to drive CMOS compatible nanophotonics research for sustaining Moores law and even address pressing societal needs of solar energy harvesting. The central theme of this thesis is the understanding of the essential physics for new devices based on nanofabricated metamaterials, where the bulk macroscopic material properties are governed and tailored at will, according to the constituent nanostructured building blocks. The particular class of metamaterials considered are uniaxial media with an extreme dielectric anisotropy i.e. materials with dielectric constants of opposite signs in the dielectric tensor. This gives rise to a hyperbolic dispersion relation for extraordinary propagating waves in the medium. We unravel a unique singularity in the photonic density of states (PDOS) of such hyperbolic metamaterials. The remarkable property which sets it apart from other photonic systems is the broad spectral bandwidth in which the PDOS diverges, paving the way for a new approach to controlling broadband light-matter interaction. We use the unique electromagnetic metamaterial states that cause the divergence in the PDOS for two specific device applications: subdiffraction imaging and quantum optics. We solve the long standing problem of the fundamental diffraction limit which plagues all conventional optical imaging systems using a device called the hyperlens, comprising of nanostructured hyperbolic metamaterials. The hyperlens produces magnified images of subwavelength objects in the far-field, promising to revolutionize applications such as nano-bio imaging and subdiffraction lithography. We show that the hyperlens can be understood
Single-material semiconductor hyperbolic metamaterials.
Wei, D; Harris, C; Bomberger, C C; Zhang, J; Zide, J; Law, S
2016-04-18
Layered semiconductor hyperbolic metamaterials for the mid-infrared are grown by molecular beam epitaxy using a single material system, doped and undoped InAs. The onset wavelength for metamaterial behavior can be tuned from 5.8μm to beyond 10μm, while the fill factor ranges from 0.25 to 0.75, resulting in designer optical behavior. The reflection and transmission behavior were studied by Fourier transform spectroscopy and modeled using effective medium theory. We also conducted a geometric optics experiment to demonstrate negative refraction of our materials. PMID:27137307
Terahertz metamaterials fabricated by inkjet printing
NASA Astrophysics Data System (ADS)
Walther, Markus; Ortner, Alex; Meier, Henning; Löffelmann, Ute; Smith, Patrick J.; Korvink, Jan G.
2009-12-01
Metamaterial layers designed for gigahertz to terahertz (THz)-frequencies have been fabricated by inkjet printing. The spectral response of the structures consisting of periodically arranged metallic split-ring resonators is characterized by THz-time-domain spectroscopy and compared with identical structures produced by conventional photolithography and etching techniques. The broader linewidth of their resonances is shown to originate mainly from structural inhomogeneities. Our study shows that inkjet printing is a viable route for producing metamaterial structures, allowing for rapid processing and flexibility in the choice of substrates.
Coherent perfect absorber based on metamaterials
NASA Astrophysics Data System (ADS)
Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui
2014-11-01
We demonstrate selective coherent perfect absorption based on interaction between bilayered asymmetrically split rings (ASRs) metamaterials and a standing wave formed by two coherent counter propagating beams. The selective coherent perfect absorbers with high absorption have been achieved depending on the phase difference between two coherent beams. The selective coherent control absorbers can be well designed by changing the thickness of the dielectric layer and the asymmetry of the ASRs. The coherently controlled metamaterials provide an opportunity to realize selective multiband absorption and ultrafast information processing.
Large scale phononic metamaterials for seismic isolation
Aravantinos-Zafiris, N.; Sigalas, M. M.
2015-08-14
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.
Angular distribution of emission from hyperbolic metamaterials
Gu, Lei; Livenere, J. E.; Zhu, G.; Tumkur, T. U.; Hu, H.; Cortes, C. L.; Jacob, Z.; Prokes, S. M.; Noginov, M. A.
2014-01-01
We have studied angular distribution of emission of dye molecules deposited on lamellar metal/dielectric and Si/Ag nanowire based metamaterials with hyperbolic dispersion. In agreement with the theoretical prediction, the emission pattern of dye on top of lamellar metamaterial is similar to that on top of metal. At the same time, the effective medium model predicts the emission patterns of the nanowire array and the dye film deposited on glass to be nearly identical to each other. This is not the case of our experiment. We tentatively explain the nearly Lambertian (∝cosθ) angular distribution of emission of the nanowire based sample by a surface roughness. PMID:25476126
Trampoline metamaterial: Local resonance enhancement by springboards
NASA Astrophysics Data System (ADS)
Bilal, Osama R.; Hussein, Mahmoud I.
2013-09-01
We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.
Mushroom plasmonic metamaterial infrared absorbers
NASA Astrophysics Data System (ADS)
Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi
2015-01-01
There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.
Mushroom plasmonic metamaterial infrared absorbers
Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi
2015-01-26
There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.
Design of meta-materials with novel thermoelastic properties
NASA Astrophysics Data System (ADS)
Watts, Seth
The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow
Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures.
Yang, Rui; Xie, Yongjun; Yang, Xiaodong; Wang, Rui; Chen, Botao
2009-04-13
A rigorous full wave analysis of bianisotropic split ring resonator (SRR) metamaterials is presented for different electromagnetic field polarization and propagation directions. An alternative physical explanation is gained by revealing the fact that imaginary wave number leads to the SRR resonance. Metamaterial based parallel plate waveguide and rectangular waveguide are then examined to explore the resonance response to transverse magnetic and transverse electric waves. It is shown that different dispersion properties, such as non-cutoff frequency mode propagation and enhanced bandwidth of single mode operation, become into existence under certain circumstances. In addition, salient dispersion properties are imparted to non-radiative dielectric waveguides and H waveguides by uniaxial bianisotropic SRR metamaterials. Both longitudinal-section magnetic and longitudinal-section electric modes are capable of propagating very slowly due to metamaterial bianisotropic effects. Particularly, the abnormal falling behavior of some higher-order modes, eventually leading to the leakage, may appear when metamaterials are double negative. Fortunately, for other modes, leakage can be reduced due to the magnetoelectric coupling. When the metamaterials are of single negative parameters, leakage elimination can be achieved. PMID:19365433
Selective buckling via states of self-stress in topological metamaterials
Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo
2015-01-01
States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303
Controlled Unusual Stiffness of Mechanical Metamaterials
Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul
2016-01-01
Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications. PMID:26837466
Coherently Tunable Triangular Trefoil Phaseonium Metamaterial
Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond
2016-01-01
Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials. PMID:26879520
On three-dimensional dilational elastic metamaterials
NASA Astrophysics Data System (ADS)
Bückmann, Tiemo; Schittny, Robert; Thiel, Michael; Kadic, Muamer; Milton, Graeme W.; Wegener, Martin
2014-03-01
Dilational materials are stable, three-dimensional isotropic auxetics with an ultimate Poisson's ratio of -1. Inspired by previous theoretical work, we design a feasible blueprint for an artificial material, a metamaterial, which approaches the ideal of a dilational material. The main novelty of our work is that we also fabricate and characterize corresponding metamaterial samples. To reveal all modes in the design, we calculate the phonon band structures. On this basis, using cubic symmetry we can unambiguously retrieve all different non-zero elements of the rank-four effective metamaterial elasticity tensor from which all effective elastic metamaterial properties follow. While the elastic properties and the phase velocity remain anisotropic, the effective Poisson's ratio indeed becomes isotropic and approaches -1 in the limit of small internal connections. This finding is also supported by independent, static continuum-mechanics calculations. In static experiments on macroscopic polymer structures fabricated by three-dimensional printing, we measure Poisson's ratios as low as -0.8 in good agreement with the theory. Microscopic samples are also presented.
Dynamic mode coupling in terahertz metamaterials
Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili
2015-01-01
The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057
Dynamic mode coupling in terahertz metamaterials.
Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili
2015-01-01
The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057
Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency.
Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu
2015-01-01
Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes. PMID:26522815
Effective Material Parameter Retrieval for Terahertz Metamaterials
NASA Astrophysics Data System (ADS)
Kim, T.-T.; Choi, Muhan; Kim, Yushin; Min, Bumki
Metamaterials, which are generally composed of subwavelength scale metallic structures, have been the subject of intensive research in recent years. Because their effective electromagnetic properties can be engineered by designing subwavelength scale metallic structures, called `meta-atoms', these artificially constructed materials are expected to lead to many new developments in the field of photonics. Furthermore, the terahertz (THz) frequency range has many important applications such as security detection, sensing, and biomedical imaging. Because many natural materials are inherently unresponsive to THz radiation, the natural materials that can be applied in devices in order to manipulate THz waves are very limited. Accordingly, the development of metamaterials with unusual optical properties in the THz frequency range has generated intense interest among researchers. In this part, design methods for metamaterials in the terahertz frequencies are introduced. This method is based on the unit cell design and S-parameter retrieval technique. Following a brief introduction to the method, some examples of terahertz metamaterial design will be presented in the last section.
Combinatorial design of textured mechanical metamaterials.
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2016-07-28
The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks-voxels-that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities. PMID:27466125
Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency
Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu
2015-01-01
Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes. PMID:26522815
Coherently Tunable Triangular Trefoil Phaseonium Metamaterial
NASA Astrophysics Data System (ADS)
Nguyen, D. M.; Soci, Cesare; Ooi, C. H. Raymond
2016-02-01
Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.
Metamaterials: supra-classical dynamic homogenization
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2015-12-01
Metamaterials are artificial composite structures designed for controlling waves or fields, and exhibit interaction phenomena that are unexpected on the basis of their chemical constituents. These phenomena are encoded in effective material parameters that can be electronic, magnetic, acoustic, or elastic, and must adequately represent the wave interaction behavior in the composite within desired frequency ranges. In some cases—for example, the low frequency regime—there exist various efficient ways by which effective material parameters for wave propagation in metamaterials may be found. However, the general problem of predicting frequency-dependent dynamic effective constants has remained unsolved. Here, we obtain novel mathematical expressions for the effective parameters of two-dimensional metamaterial systems valid at higher frequencies and wavelengths than previously possible. By way of an example, random configurations of cylindrical scatterers are considered, in various physical contexts: sound waves in a compressible fluid, anti-plane elastic waves, and electromagnetic waves. Our results point towards a paradigm shift in our understanding of these effective properties, and metamaterial designs with functionalities beyond the low-frequency regime are now open for innovation. Dedicated with gratitude to the memory of Prof Yves C Angel.
Optical Metamaterials: Design, Characterization and Applications
ERIC Educational Resources Information Center
Chaturvedi, Pratik
2009-01-01
Artificially engineered metamaterials have emerged with properties and functionalities previously unattainable in natural materials. The scientific breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design, novel fabrication and characterization methods. The intricate…
Ultralight shape-recovering plate mechanical metamaterials
Davami, Keivan; Zhao, Lin; Lu, Eric; Cortes, John; Lin, Chen; Lilley, Drew E.; Purohit, Prashant K.; Bargatin, Igor
2015-01-01
Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm−2 and have the ability to ‘pop-back' to their original shape without damage even after undergoing multiple sharp bends of more than 90°. PMID:26632595
Coherently Tunable Triangular Trefoil Phaseonium Metamaterial.
Nguyen, D M; Soci, Cesare; Ooi, C H Raymond
2016-01-01
Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials. PMID:26879520
Controlled Unusual Stiffness of Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul
2016-02-01
Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications.
Transient heat flux shielding using thermal metamaterials
NASA Astrophysics Data System (ADS)
Narayana, Supradeep; Savo, Salvatore; Sato, Yuki
2013-05-01
We have developed a heat shield based on a metamaterial engineering approach to shield a region from transient diffusive heat flow. The shield is designed with a multilayered structure to prescribe the appropriate spatial profile for heat capacity, density, and thermal conductivity of the effective medium. The heat shield was experimentally compared to other isotropic materials.
Combinatorial design of textured mechanical metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2016-07-01
The structural complexity of metamaterials is limitless, but, in practice, most designs comprise periodic architectures that lead to materials with spatially homogeneous features. More advanced applications in soft robotics, prosthetics and wearable technology involve spatially textured mechanical functionality, which requires aperiodic architectures. However, a naive implementation of such structural complexity invariably leads to geometrical frustration (whereby local constraints cannot be satisfied everywhere), which prevents coherent operation and impedes functionality. Here we introduce a combinatorial strategy for the design of aperiodic, yet frustration-free, mechanical metamaterials that exhibit spatially textured functionalities. We implement this strategy using cubic building blocks—voxels—that deform anisotropically, a local stacking rule that allows cooperative shape changes by guaranteeing that deformed building blocks fit together as in a three-dimensional jigsaw puzzle, and three-dimensional printing. These aperiodic metamaterials exhibit long-range holographic order, whereby the two-dimensional pixelated surface texture dictates the three-dimensional interior voxel arrangement. They also act as programmable shape-shifters, morphing into spatially complex, but predictable and designable, shapes when uniaxially compressed. Finally, their mechanical response to compression by a textured surface reveals their ability to perform sensing and pattern analysis. Combinatorial design thus opens up a new avenue towards mechanical metamaterials with unusual order and machine-like functionalities.
Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency
Bai, Zhengyang; Huang, Guoxiang; Liu, Lixiang; Zhang, Shuang
2015-01-01
We propose a method to enhance Kerr nonlinearity and realize low-power gigahertz solitons via plasmon-induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess a giant third-order nonlinear susceptibility and may be used to create solitons with extremely low generation power. Our study raises the possibility for obtaining strong nonlinear effect of gigahertz radiation at very low intensity based on room-temperature metamaterials. PMID:26348579
Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency.
Bai, Zhengyang; Huang, Guoxiang; Liu, Lixiang; Zhang, Shuang
2015-01-01
We propose a method to enhance Kerr nonlinearity and realize low-power gigahertz solitons via plasmon-induced transparency (PIT) in a new type of metamaterial, which is constructed by an array of unit cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that the PIT in such metamaterial can not only mimic the electromagnetically induced transparency in coherent three-level atomic systems, but also exhibit a crossover from PIT to Autler-Townes splitting. We further show that the system suggested here also possess a giant third-order nonlinear susceptibility and may be used to create solitons with extremely low generation power. Our study raises the possibility for obtaining strong nonlinear effect of gigahertz radiation at very low intensity based on room-temperature metamaterials. PMID:26348579
Photo-excited terahertz switch based on composite metamaterial structure
NASA Astrophysics Data System (ADS)
Wang, Guocui; Zhang, Jianna; Zhang, Bo; He, Ting; He, Yanan; Shen, Jingling
2016-09-01
A photo-excited terahertz switch based on a composite metamaterial structure was designed by integration of photoconductive silicon into the gaps of split-ring resonators. The conductivity of the silicon that was used to fill the gaps in the split-ring resonators was tuned dynamically as a function of the incident pump power using laser excitation, leading to a change in the composite metamaterial structure's properties. We studied the transmission characteristics of the composite metamaterial structure for various silicon conductivities, and the results indicated that this type of composite metamaterial structure could be used as a resonance frequency tunable terahertz metamaterial switch. We also designed other structures by filling different gaps with silicon, and proved that these structures could be used as terahertz metamaterial switches can change the working mode from a single frequency to multiple frequencies.
Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances
NASA Astrophysics Data System (ADS)
Shi, Jinhui; Liu, Ran; Na, Bo; Xu, Yiqun; Zhu, Zheng; Wang, Yuekun; Ma, Huifeng; Cui, Tiejun
2013-08-01
We numerically and experimentally demonstrate engineered electromagnetic responses from a single-peak Fano resonance to a fast roll-off behavior by using planar metamaterials, which are constructed by bilayered asymmetrically split rings (ASRs) with twist angles of 0° and 180°. Since each single-layer ASR metamaterial reveals a Fano-type resonance, the dramatic transmission properties are resulted from the hybridization of electromagnetic resonances due to the near-field coupling between two Fano resonances and the far-field retardation effect of the bilayered metamaterials. The surface currents and charges distributions provide an insight into deep understanding of in-phase and out-of-phase coupling of two Fano resonances. The measured and simulated results of bilayered metamaterials agree well to each other. Especially, the proposed metamaterials can be exploited to design metamaterial-based devices in the THz and optical ranges like filters and sensors.
Active elastic metamaterials for subwavelength wave propagation control
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Huang, G. L.
2015-06-01
Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.
Tuning the elastic nonlinearities in composite nanomaterials.
Guerder, Pierre-Yves; Giordano, Stefano; Matar, Olivier Bou; Vasseur, Jérôme Olivier
2015-04-15
The possibility of tuning the nonlinear effective response of composite materials and structures is of great importance for developing new concepts such as soft metamaterials, acoustic diodes, nonlinear waveguides and phononic crystals. In this paper we develop a homogenization technique for dispersions of nonlinear particles in a soft matrix able to take account of second and third order elastic nonlinearities. Based on this method, we prove the possibility to strongly amplify a given particles nonlinearity (either the second or the third one) under specific conditions concerning the linear response of the two constituents (particles and matrix). We finally give a realistic example based on a population of porous polymer particles embedded in a PDMS matrix. PMID:25786413
Taming the blackbody with infrared metamaterials as selective thermal emitters.
Liu, Xianliang; Tyler, Talmage; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan Marie; Padilla, Willie J
2011-07-22
In this Letter we demonstrate, for the first time, selective thermal emitters based on metamaterial perfect absorbers. We experimentally realize a narrow band midinfrared (MIR) thermal emitter. Multiple metamaterial sublattices further permit construction of a dual-band MIR emitter. By performing both emissivity and absorptivity measurements, we find that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation. Our results directly demonstrate the great flexibility of metamaterials for tailoring blackbody emission. PMID:21867022
Reconfiguring photonic metamaterials with currents and magnetic fields
Valente, João Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.
2015-03-16
We demonstrate that spatial arrangement and optical properties of metamaterial nanostructures can be controlled dynamically using currents and magnetic fields. Mechanical deformation of metamaterial arrays is driven by both resistive heating of bimorph nanostructures and the Lorentz force that acts on charges moving in a magnetic field. With electrically controlled transmission changes of up to 50% at sub-mW power levels, our approaches offer high contrast solutions for dynamic control of metamaterial functionalities in optoelectronic devices.
Metamaterials with custom emissivity polarization in the near-infrared.
Bossard, Jeremy A; Werner, Douglas H
2013-02-11
Metamaterials have been previously studied for their ability to tailor the dispersive infrared (IR) emissivity of a surface. Here, we investigate metamaterial coatings based on an electromagnetic band-gap surface for use as near-IR emitters with custom polarization selectivity. A genetic algorithm is successfully employed to optimize the metamaterial structures to exhibit custom linear, circular, and elliptical polarization. A study is also conducted on a bi-anisotropic slab, showing that anisotropic chirality is required in the metamaterial structure in order to achieve circular or elliptical emissivity polarization. PMID:23481843
Terahertz imaging with missing data analysis for metamaterials characterization
NASA Astrophysics Data System (ADS)
Sokolnikov, Andre
2012-05-01
Terahertz imaging proves advantageous for metamaterials characterization since the interaction of THz radiation with the metamaterials produces clear patterns of the material. Characteristic "finger prints" of the crystal structure help locating defects, dislocations, contamination, etc. TDS-THz spectroscopy is one of the tools to control metamaterials design and manufacturing. A computational technique is suggested that provides a reliable way of calculation of the metamaterials structure parameters, spotting defects. Based on missing data analysis, the applied signal processing facilitates a better quality image while compensating for partially absent information. Results are provided.
Electromagnetic characteristics of Hilbert curve-based metamaterials
NASA Astrophysics Data System (ADS)
Chen, Ruirui; Li, Sucheng; Gu, Chendong; Anwar, Shahzad; Hou, Bo; Lai, Yun
2014-08-01
As the typical building blocks of metamaterials, the cut wire and the split ring resonator have been extensively studied in recent years. Besides them, the space-filling curve-based metamaterials are receiving great attentions because of their intrinsic subwavelength and multi-bands characteristics. In this work, we have investigated experimentally and numerically the electromagnetic characteristics of such Hilbert curve metamaterial in the microwave frequency regime and found a deeply subwavelength magnetic resonance supported by the fractal pattern and featuring the wavelength-to-size ratio more than 20. The subwavelength electromagnetic properties of the Hilbert curve will be beneficial to realize high-performance metamaterials.
Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji
2016-01-01
Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699
Solving constant-coefficient differential equations with dielectric metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Weixuan; Qu, Che; Zhang, Xiangdong
2016-07-01
Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160–3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.
Photonic analog of a van Hove singularity in metamaterials
NASA Astrophysics Data System (ADS)
Cortes, Cristian L.; Jacob, Zubin
2013-07-01
We introduce the photonic analog of electronic van Hove singularities (VHS) in artificial media (metamaterials) with hyperbolic dispersion. Unlike photonic and electronic crystals, the VHS in metamaterials are unrelated to the underlying periodicity and occur due to slow-light modes in the structure. We show that the VHS characteristics are manifested in the near-field local density of optical states in spite of the losses, dispersion, and finite unit-cell size of the hyperbolic metamaterial. Finally, we show that this work should lead to quantum, thermal, nanolasing, and biosensing applications of van Hove singularities in hyperbolic metamaterials achievable by current fabrication technology.
Acoustic metamaterials capable of both sound insulation and energy harvesting
NASA Astrophysics Data System (ADS)
Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai
2016-04-01
Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.
Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials
Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei V.; Kivshar, Yuri S.; Lavrinenko, Andrei V.
2015-01-01
We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment. PMID:26311410
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad
1995-01-01
The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.
LDRD report nonlinear model reduction
Segalman, D.; Heinstein, M.
1997-09-01
The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.
Topologically protected elastic waves in phononic metamaterials
Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
Magnetic resonances in nano-scale metamaterials
NASA Astrophysics Data System (ADS)
Hao, Zhao; Liddle, Alex; Martin, Michael
2006-03-01
We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.
Mechanically stretchable and tunable metamaterial absorber
NASA Astrophysics Data System (ADS)
Zhang, Fuli; Feng, Shuqi; Qiu, Kepeng; Liu, Zijun; Fan, Yuancheng; Zhang, Weihong; Zhao, Qian; Zhou, Ji
2015-03-01
In this letter, we present experimental demonstration of a mechanically stretchable and tunable metamaterial absorber composed of dielectric resonator stacked on a thin conductive rubber layer. A near unity absorption is observed due to strong local field confinement around magnetic Mie resonance of dielectric resonator. Furthermore, the interspacing between unit cells is modulated dynamically under uniaxial stress. Owing to the decreases of longitudinal coupling between neighboring unit cells, the resonant absorption peak is reversibly tuned by 410 MHz, as the stain varies up to 180% along H field direction. On the contrary, the resonant absorption state is nearly independent on strain variation when external stress is applied along E field direction, due to the weak transverse interplaying. The mechanically tunable metamaterial absorber featured by flexibility paves a way forwards for actual application.
Wireless energy transfer between anisotropic metamaterials shells
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José
2014-06-15
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.
Topological mechanics of gyroscopic meta-materials
NASA Astrophysics Data System (ADS)
Irvine, William
Topological mechanical meta-materials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. I will present an experimental and theoretical study of a new kind of active meta-material comprised of coupled gyroscopes on a lattice that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes which propagate in only one direction and are unaffected by disorder. We observe these edge modes in experiment and verify their robustness to disorder and the insertion of obstacles. Controlled distortions of the underlying lattice can induce a topological phase transition that switches the edge mode chirality. This effect allows the direction of the edge current to be determined on demand.
Topologically protected elastic waves in phononic metamaterials.
Mousavi, S Hossein; Khanikaev, Alexander B; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin-orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
A seismic metamaterial: The resonant metawedge
Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V.
2016-01-01
Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. PMID:27283587
A seismic metamaterial: The resonant metawedge.
Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V
2016-01-01
Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a "seismic rainbow" effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. PMID:27283587
Rainbow Trapping in Hyperbolic Metamaterial Waveguide
Hu, Haifeng; Ji, Dengxin; Zeng, Xie; Liu, Kai; Gan, Qiaoqiang
2013-01-01
The recent reported trapped “rainbow” storage of light using metamaterials and plasmonic graded surface gratings has generated considerable interest for on-chip slow light. The potential for controlling the velocity of broadband light in guided photonic structures opens up tremendous opportunities to manipulate light for optical modulation, switching, communication and light-matter interactions. However, previously reported designs for rainbow trapping are generally constrained by inherent difficulties resulting in the limited experimental realization of this intriguing effect. Here we propose a hyperbolic metamaterial structure to realize a highly efficient rainbow trapping effect, which, importantly, is not limited by those severe theoretical constraints required in previously reported insulator-negative-index-insulator, insulator-metal-insulator and metal-insulator-metal waveguide tapers, and therefore representing a significant promise to realize the rainbow trapping structure practically. PMID:23409240
A seismic metamaterial: The resonant metawedge
NASA Astrophysics Data System (ADS)
Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V.
2016-06-01
Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context.
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2015-09-01
The generation of a second-harmonic wave, which is one typical nonlinear feature, is enhanced in a composite of plasma and metamaterial. When we generate plasma by an injection of microwaves, whose frequencies are fundamental, we observe intensified second-harmonic waves in the cases of negative-refractive-index states in which both metamaterial permeability and plasma permittivity are negative for the fundamental waves. We performed the measurements at multiple levels of microwave input power up to 300 W to regulate permittivity in the negative polarity for the fundamental wave and in the transient region, including the positive-zero-negative values, for the second-harmonic wave. We clarified that the observed enhancement results from high electron density in negative-permittivity plasma, the propagating fundamental frequency wave not being attenuated in the negative-refractive-index state, and partial phase matching between the fundamental and second-harmonic waves. PMID:26465573
NASA Astrophysics Data System (ADS)
Iwai, Akinori; Nakamura, Yoshihiro; Sakai, Osamu
2015-09-01
The generation of a second-harmonic wave, which is one typical nonlinear feature, is enhanced in a composite of plasma and metamaterial. When we generate plasma by an injection of microwaves, whose frequencies are fundamental, we observe intensified second-harmonic waves in the cases of negative-refractive-index states in which both metamaterial permeability and plasma permittivity are negative for the fundamental waves. We performed the measurements at multiple levels of microwave input power up to 300 W to regulate permittivity in the negative polarity for the fundamental wave and in the transient region, including the positive-zero-negative values, for the second-harmonic wave. We clarified that the observed enhancement results from high electron density in negative-permittivity plasma, the propagating fundamental frequency wave not being attenuated in the negative-refractive-index state, and partial phase matching between the fundamental and second-harmonic waves.
Applications of gradient index metamaterials in waveguides
Fu, Yangyang; Xu, Yadong; Chen, Huanyang
2015-01-01
In this letter, we find that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides. Through manipulating the conversion between propagating wave and surface wave, we can design some interesting applications in waveguides, such as controlling transmission effect, realizing bending waveguide and achieving waveguide splitting effect. These devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra. Numerical simulations are performed to verify our findings. PMID:26656558
Circular dichroism of planar chiral magnetic metamaterials.
Decker, M; Klein, M W; Wegener, M; Linden, S
2007-04-01
We propose, fabricate, and study a double-layer chiral planar metamaterial that exhibits pronounced circular dichroism at near-infrared wavelengths. The antisymmetric oscillation modes of the two coupled layers allow local magnetic-dipole moments and enhanced polarization effects compared with similar single-layer systems where only electric-dipole moments occur. Experiment and rigorous theoretical calculations are in good agreement. PMID:17339960
Fabrication of THz Sensor with Metamaterial Absorber
NASA Astrophysics Data System (ADS)
Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani
The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.
Enhanced absorption in silicon metamaterials waveguide structure
NASA Astrophysics Data System (ADS)
Hamouche, Houria; Shabat, Mohammed M.
2016-07-01
Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.
Purcell effect in hyperbolic metamaterial resonators
NASA Astrophysics Data System (ADS)
Slobozhanyuk, Alexey P.; Ginzburg, Pavel; Powell, David A.; Iorsh, Ivan; Shalin, Alexander S.; Segovia, Paulina; Krasavin, Alexey V.; Wurtz, Gregory A.; Podolskiy, Viktor A.; Belov, Pavel A.; Zayats, Anatoly V.
2015-11-01
The radiation dynamics of optical emitters can be manipulated by properly designed material structures modifying local density of photonic states, a phenomenon often referred to as the Purcell effect. Plasmonic nanorod metamaterials with hyperbolic dispersion of electromagnetic modes are believed to deliver a significant Purcell enhancement with both broadband and nonresonant nature. Here, we have investigated finite-size resonators formed by nanorod metamaterials and shown that the main mechanism of the Purcell effect in such resonators originates from the supported hyperbolic modes, which stem from the interacting cylindrical surface plasmon modes of the finite number of nanorods forming the resonator. The Purcell factors delivered by these resonator modes reach several hundreds, which is up to 5 times larger than those in the ɛ-near-zero regime. It is shown that while the Purcell factor delivered by the Fabry-Pérot modes depends on the resonator size, the decay rate in the ɛ-near-zero regime is almost insensitive to geometry. The presented analysis shows a possibility to engineer emission properties in structured metamaterials, taking into account their internal composition.
Experiments on Seismic Metamaterials: Molding Surface Waves
NASA Astrophysics Data System (ADS)
Brûlé, S.; Javelaud, E. H.; Enoch, S.; Guenneau, S.
2014-04-01
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.
Metamaterial perfect absorber based hot electron photodetection.
Li, Wei; Valentine, Jason
2014-06-11
While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991
Electromagnetic properties of anisotropic plasmonic metamaterials
NASA Astrophysics Data System (ADS)
Elser, Justin Lee
In this dissertation we study the electromagnetic properties of plasmonic metamaterials. We develop an analytical description to solve the fundamental problem of free-space scattering in planar plasmonic systems by utilizing anisotropic metamaterials. We show with exact numerical simulations that these manufactured materials do completely eliminate the scattering, and even in the case of fabrication defects the scattering is greatly minimized. We further show that the standard effective medium theory calculations for the cases of anisotropic metamaterials constructed of metal-dielectric layers fails to account for nonlocal effects in the cases where the constituent materials have large differences in permittivity. We show how it is possible to construct a plasmon waveguide out of such a structure and describe a new naming scheme based on the bulk plasmon modes that are supported. Finally, we study the effective medium theory applied to the case of plasmonic wires embedded in a dielectric host. We describe the effect the geometric properties of the structure has on effective permittivities. For example, we show that a 10% stretching/compression of the distance between nanowires can change the sign of elements of the permittivity tensor. These results can be applied to high-performance optical sensing, optical polarizers, novel lenses including the hyper- and superlenses, and subdiffraction imaging.
Al/dielectric metamaterials for nanocavity LEDs
NASA Astrophysics Data System (ADS)
Bacco, Carla Marie
Today's technological needs are demanding faster and smaller optical components. Optical microcavities offer a high confinement of electromagnetic field in a small volume, with dimensions comparable to the wavelength of light, which provides a unique system for the enhancement of light-matter interactions on the nanoscale. However, further reducing the size of the optical cavity (from microcavity to nanocavity) is limited to the fundamental diffraction limit. In hyperbolic metamaterials, large wave vectors can be achieved. Therefore, optical cavities, created from hyperbolic metamaterials (HMM), allow the confinement of the electromagnetic field to an extremely small volume with dimensions significantly smaller than the wavelength of light. The goal of this thesis work is to investigate the behavior of HMM cavities for eventual comparison with experimental results. Type II hyperbolic metamaterials can be created from layers of metal and dielectric. A COMSOL axisymmetric model is studied to determine the characteristic lowest order resonances of whispering gallery modes within the cavities. This model is studied for silicon, silicon dioxide, and aluminum silicon dioxide layers. A setup has been designed for the experimental study of bulk HMM materials and HMM cavities. A discussion of the fabrication process for HMM cavities follows.
Experiments on seismic metamaterials: molding surface waves.
Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S
2014-04-01
Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations. PMID:24745420
An effective media toolset for use in metamaterial design.
Johnson, William Arthur; Sinclair, Michael B.; Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.
2010-06-01
This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.
Optical isotropy at terahertz frequencies using anisotropic metamaterials
NASA Astrophysics Data System (ADS)
Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook
2016-07-01
We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.
Sub-picosecond optical switching with a negative index metamaterial
Dani, Keshav M; Upadhya, Prashant C; Zahyum, Ku
2009-01-01
Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.
Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging
NASA Astrophysics Data System (ADS)
Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young
2016-04-01
Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.
Distillation of photon entanglement using a plasmonic metamaterial
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-01-01
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790
Experimental demonstration of metamaterial ``multiverse'' in a ferrofluid
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N.
2013-06-01
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2+1 dimensional Minkowski spacetime [1]. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.
Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young
2016-01-01
Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762
Interaction between graphene and metamaterials: split rings vs. wire pairs
Zou, Yanhong; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas
2012-05-14
We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene. We show that the weak optical response of graphene can be modified dramatically by coupling to the strong resonant fields in metallic structures. A crucial element determining the interaction strength is the orientation of the resonant fields. If the resonant electric field is predominantly parallel to the graphene sheet (e.g., in a complementary split-ring metamaterial), the metamaterial’s resonance can be strongly damped. If the resonant field is predominantly perpendicular to the graphene sheet (e.g., in a wire-pair metamaterial), no significant interaction exists.
Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging
Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young
2016-01-01
Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762
Distillation of photon entanglement using a plasmonic metamaterial.
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-01-01
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790
An octave-bandwidth negligible-loss radiofrequency metamaterial.
Lier, Erik; Werner, Douglas H; Scarborough, Clinton P; Wu, Qi; Bossard, Jeremy A
2011-03-01
Metamaterials provide an unprecedented ability to manipulate electromagnetic waves and are an enabling technology for new devices ranging from flat lenses that focus light beyond the diffraction limit to coatings capable of cloaking an object. Nevertheless, narrow bandwidths and high intrinsic losses arising from the resonant properties of metamaterials have raised doubts about their usefulness. New design approaches seek to turn the perceived disadvantages of dispersion into assets that enhance a device's performance. Here we employ dispersion engineering of metamaterial properties to enable specific device performance over usable bandwidths. In particular, we design metamaterials that considerably improve conventional horn antennas over greater than an octave bandwidth with negligible loss and advance the state of the art in the process. Fabrication and measurement of a metahorn confirm its broadband, low-loss performance. This example illustrates the power of clever implementation combined with dispersion engineering to bring metamaterials into their full potential for revolutionizing practical devices. PMID:21278741
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm. PMID:23787680
Characterization of Meta-Materials Using Computational Electromagnetic Methods
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Shin, Joon
2005-01-01
An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.
Features of hyperbolic metamaterials with extremal optical characteristics
NASA Astrophysics Data System (ADS)
Kurilkina, S. N.; Binhussain, M. A.; Belyi, V. N.; Kazak, N. S.
2016-08-01
The possibility is shown and conditions are found for the realization of the type I or II epsilon-near-zero (ENZ) metamaterials based on a multilayer metal-dielectric structure. It is found that, for both propagating and evanescent extraordinary waves, diffraction-free energy transportation occurs with low losses within narrow channels inside the type I ENZ metamaterial on the basis of such a structure. The research presents the possibility of forming the type II ENZ metamaterial inside the two kinds of propagating light waves for which the amplitude decays from the boundary and the phase fronts move away from and towards the boundary of the metamaterial, respectively. The interaction between Gaussian light beams and metamaterials with extremal characteristics is theoretically investigated. The prospect of the practical application of these media is considered.
Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber
NASA Astrophysics Data System (ADS)
Xu, Zong-Cheng; Gao, Run-Mei; Ding, Chun-Feng; Wu, Liang; Zhang, Ya-Ting; Yao, Jian-Quan
2015-04-01
We present an demonstration of optically tunable metamaterial absorber at terahertz frequencies. The metamaterials are based on two split ring resonators (SSRs) that can be tuned by integrating photoconductive silicon into the metamaterial unit cell. Filing the gap between the resonator arm with a semiconductor (silicon), leads to easy modification of its optical response through a pump beam which changes conductivity of Si. The conductivity of silicon is a function of incident pump power. Therefore, the conductivity of silicon is tuned effectively by applying an external pump power. We demonstrate that a blueshift of the resonance frequency under illumination can be accomplished and a broadband switch of absorption frequencies varying from 0.68 to 1.41 THz, with a tuning range of 51.8%. The realization of broadband blueshift tunable metamaterial absorber offers opportunities for achieving switchable metamaterial absorber and could be implemented in terahertz devices to achieve additional functionalities.
An octave-bandwidth negligible-loss radiofrequency metamaterial
NASA Astrophysics Data System (ADS)
Lier, Erik; Werner, Douglas H.; Scarborough, Clinton P.; Wu, Qi; Bossard, Jeremy A.
2011-03-01
Metamaterials provide an unprecedented ability to manipulate electromagnetic waves and are an enabling technology for new devices ranging from flat lenses that focus light beyond the diffraction limit to coatings capable of cloaking an object. Nevertheless, narrow bandwidths and high intrinsic losses arising from the resonant properties of metamaterials have raised doubts about their usefulness. New design approaches seek to turn the perceived disadvantages of dispersion into assets that enhance a device’s performance. Here we employ dispersion engineering of metamaterial properties to enable specific device performance over usable bandwidths. In particular, we design metamaterials that considerably improve conventional horn antennas over greater than an octave bandwidth with negligible loss and advance the state of the art in the process. Fabrication and measurement of a metahorn confirm its broadband, low-loss performance. This example illustrates the power of clever implementation combined with dispersion engineering to bring metamaterials into their full potential for revolutionizing practical devices.
Active Metamaterials for Terahertz Communication and Imaging
NASA Astrophysics Data System (ADS)
Rout, Saroj
In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in
Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films
NASA Astrophysics Data System (ADS)
Jian, Zhihao
Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.
Switchable nonlinear metasurfaces for absorbing high power surface waves
NASA Astrophysics Data System (ADS)
Kim, Sanghoon; Wakatsuchi, Hiroki; Rushton, Jeremiah J.; Sievenpiper, Daniel F.
2016-01-01
We demonstrate a concept of a nonlinear metamaterial that provides power dependent absorption of incident surface waves. The metasurface includes nonlinear circuits which transform it from a low loss to high loss state when illuminated with high power waves. The proposed surface allows low power signals to propagate but strongly absorbs high power signals. It can potentially be used on enclosures for electric devices to protest against damage. We experimentally verify that the nonlinear metasurface has two distinct states controlled by the incoming signal power. We also demonstrate that it inhibits the propagation of large signals and dramatically decreases the field that is leaked through an opening in a conductive enclosure.
Spin dynamics in magnetic thin films and eletromagnetic properties of metamaterials
NASA Astrophysics Data System (ADS)
Cao, Rong
In this work, I have investigated the high frequency magnetic properties of a variety of novel materials by using the microwave techniques. The work consists of two parts: (1) spin dynamics study in magnetic multilayer thin films, (2) fabrication and characterization of novel magnetic materials. In the first part, we have observed nonlinear behaviors of the normal Gilbert damping G0 and the effective spin-mixing conductance g↑↓ in Pt/NiFe/Pt thin films when the incident microwave power is above a critical ac field hrf of 1.6 Oe. Both G0 and g↑↓ are affected by the coupling between spin coherent precession and spin wave modes. Our work is the first experimental demonstration of nonlinear behavior of the effective spin-mixing conductance g↑↓ . It suggests the nonlinear spin wave modes excited at high incident microwave power is detrimental to the spin pumping effect and should be avoided in future spin battery design. We have also studied the magnetization dynamic in IrMn/FeCo/Cu/NiFe/Cu spin valve through the Gilbert damping. Our results show that the Gilbert damping constant of NiFe is enhanced in antiparallel configuration when the magnetizations of both FM layers are precessing. This enhancement is induced by the dynamic exchange between the magnetizations of NiFe and FeCo layers. We have observed the dc voltage generation across the tunneling barrier while the spin precession is excited in the ferromagnetic free layer by the microwave field. The magnitude of the dc voltage peak is around few muVs with AlOx tunneling barrier. Our results directly indicate that spin current can be pumped through the tunneling barrier thus generates the dc voltage across the barrier. The results raise an important question about the role of the F/I barrier interface in spin pumping mechanism. More detailed experiment and theory studies are certainly needed, especially in MgO barrier based MTJ that could become a good candidate for realizing spin battery device. In the
Spontaneous emission interference enhancement with a {mu}-negative metamaterial slab
Zeng Xiaodong; Xu Jingping; Yang Yaping
2011-09-15
The spontaneous decay and quantum interference of a V-type Zeeman atom placed near a {mu}-negative metamaterial (MNG) slab are investigated. Based on the fact that MNG slab supports only TE-polarized surface-plasmon polariton (SPP) modes, the decay rate of the dipole component parallel to the interface would be much larger than that normal to the interface, because one can couple while another decouple to TE modes. Consequently, high-level anisotropic environment is created and the two dipoles can interfere with each other strongly by sharing such SPP modes even if they are orthogonal. In our work, we analyze the influence of the parameters of the MNG slab as well as the atomic location on the interference intensity in detail. In addition, the dissipation of the slab is considered, and the quantum interference is still excellent even with large absorption.
MEMS tunable terahertz metamaterials using out-of-plane mechanisms
NASA Astrophysics Data System (ADS)
Lin, Yu-Sheng; Pitchappa, Prakash; Ho, Chong Pei; Lee, Chengkuo
2015-03-01
The tunable terahertz metamaterial (TTM) has attracted intense research interest, since the electromagnetic response of the metamaterial can be actively controlled through external stimulus, which is of great significance in real time applications. The active control of metamaterial characteristics is crucial in order to provide a flexible and versatile platform for mimicking fundamental physical effects. To realize the electromagnetic tunability, various approaches have been demonstrated to increase the flexibility in applications, such as changing the effective electromagnetic properties. Alternatively, MEMS-based techniques are well developed. The structural reconfiguration is a straightforward way to control the electromagnetic properties. The metamaterial properties can be directly modified by reconfiguring the unit cell which is the fundamental building block of metamaterials. Currently, our research works are focusing on MEMS-based TTM adopting stress-induced curved actuators (SICA) to adjust the resonant frequency of devices. Herein, the proposed TTM designs are double split-ring resonator (DSRR), electric split-ring resonator (eSRR), Omega-ring metamaterial (ORM), symmetric and asymmetric T-shape metamaterial (STM and ATM), respectively. We demonstrated these TTM can be active, continuous, and recoverable control the resonant frequency by using electrostatic or electrothermal actuation mechanism. Therefore, the TTM devices can be effectively used for sensors, optical switches, and filters applications.
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
Pitchappa, Prakash; Pei Ho, Chong; Kropelnicki, Piotr; Singh, Navab; Kwong, Dim-Lee; Lee, Chengkuo
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μm in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.
A Broadband Bessel Beam Launcher Using Metamaterial Lens
NASA Astrophysics Data System (ADS)
Qing Qi, Mei; Tang, Wen Xuan; Cui, Tie Jun
2015-06-01
An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz.
A Broadband Bessel Beam Launcher Using Metamaterial Lens.
Qi, Mei Qing; Tang, Wen Xuan; Cui, Tie Jun
2015-01-01
An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz. PMID:26122861
A Broadband Bessel Beam Launcher Using Metamaterial Lens
Qing Qi, Mei; Tang, Wen Xuan; Cui, Tie Jun
2015-01-01
An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz. PMID:26122861
Negative-Refraction Metamaterials: Fundamental Principles and Applications
NASA Astrophysics Data System (ADS)
Eleftheriades, G. V.; Balmain, K. G.
2005-06-01
Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super-resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens 3-D transmission-line metamaterials with a negative refractive index Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) Implementations of negative-refraction metamaterials at optical frequencies Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive-index metamaterials Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scientists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.
Origin of folded bands in metamaterial crystals
NASA Astrophysics Data System (ADS)
Markoš, Peter; Hlubina, Richard
2016-02-01
Recently it has been found numerically that the spectra of metamaterial crystals may contain pairs of bands which disappear inside the Brillouin zone. We observe that the wave equations for such systems are essentially non-Hermitian, but PT-symmetric. We show that the real-frequency spectra correspond to PT-symmetric solutions of the wave equation. At those momenta in the Brillouin zone where apparently no solutions exist, there appear pairs of complex-frequency solutions with spontaneously broken PT symmetry.
Polymeric matrix materials for infrared metamaterials
Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar
2014-04-22
A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.
Strong terahertz absorption using thin metamaterial structures
Alves, Fabio; Kearney, Brian; Grbovic, Dragoslav; Lavrik, Nickolay V; Karunasiri, Gamani
2012-01-01
Metamaterial absorbers with nearly 100% absorption in the terahertz (THz) spectral band have been designed and fabricated using a periodic array of aluminum (Al) squares and an Al ground plane separated by a thin silicon dioxide (SiO{sub 2}) dielectric film. The entire structure is less than 1.6 mm thick making it suitable for the fabrication of microbolometers or bi-material sensors for THz imaging. Films with different dielectric layer thicknesses exhibited resonant absorption at 4.1, 4.2, and 4.5 THz with strengths of 98%, 95%, and 88%, respectively. The measured absorption spectra are in good agreement with simulations using finite element modeling.
Single-resonator double-negative metamaterial
Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Johnson, William A.; Ihlefeld, Jon; Ginn, III, James C.; Clem, Paul G.; Sinclair, Michael B.
2016-06-21
Resonances can be tuned in dielectric resonators in order to construct single-resonator, negative-index metamaterials. For example, high-contrast inclusions in the form of metallic dipoles can be used to shift the first electric resonance down (in frequency) to the first magnetic resonance, or alternatively, air splits can be used to shift the first magnetic resonance up (in frequency) near the first electric resonance. Degenerate dielectric designs become especially useful in infrared- or visible-frequency applications where the resonator sizes associated with the lack of high-permittivity materials can become of sufficient size to enable propagation of higher-order lattice modes in the resulting medium.
Coherent perfect absorption in chiral metamaterials.
Ye, Yuqian; Hay, Darrick; Shi, Zhimin
2016-07-15
We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535
Radiation directivity rotation by acoustic metamaterials
Jiang, Xue; Liang, Bin E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zhang, Likun
2015-08-31
We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.
Selective coherent perfect absorption in metamaterials
Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui
2014-11-17
We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.
Seismic metamaterials based on isochronous mechanical oscillators
Finocchio, G. Garescì, F.; Azzerboni, B.; Casablanca, O.; Chiappini, M.; Ricciardi, G.; Alibrandi, U.
2014-05-12
This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.
Graphene cardboard: From ripples to tunable metamaterial
NASA Astrophysics Data System (ADS)
Koskinen, Pekka
2014-03-01
Recently, graphene was introduced with tunable ripple texturing, a nanofabric enabled by graphene's remarkable elastic properties. However, one can further envision sandwiching the ripples, thus constructing composite nanomaterial, graphene cardboard. Here, the basic mechanical properties of such structures are investigated computationally. It turns out that graphene cardboard is highly tunable material, for its elastic figures of merit vary orders of magnitude, with Poisson ratio tunable from 10 to -0.5 as one example. These trends set a foundation to guide the design and usage of metamaterials made of rippled van der Waals solids.
Radiation directivity rotation by acoustic metamaterials
NASA Astrophysics Data System (ADS)
Jiang, Xue; Zhang, Likun; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun
2015-08-01
We use a metamaterial-based scheme to rotate the radiation directivity of sound radiated by a source surrounded by the structure. The rotation is demonstrated through both numerical simulations and experiments. The performance persists within a broadband and is entirely independent of the location and pattern of source inside, suggesting great potential in various practical scenarios where both the signal frequency and source position may vary significantly. We have also investigated the possibility to realize versatile controls of radiation direction by tailoring the structural parameters. Our design with special directivity-steering capability may open route to loudspeaker and auditorium acoustics designs and medical ultrasound applications.
Giant spatial-dispersion-induced birefringence in metamaterials
NASA Astrophysics Data System (ADS)
Gorlach, Maxim A.; Glybovski, Stanislav B.; Hurshkainen, Anna A.; Belov, Pavel A.
2016-05-01
We demonstrate experimentally giant spatial-dispersion-induced birefringence in metamaterials. The difference between the reflection coefficients for (1 ,1 ¯,0 ) - and (0 ,0 ,1 ) -polarized light reflected from the [1 ,1 ,0 ] surface of a metamaterial reaches 78 % . The magnitude of spatial-dispersion-induced birefringence in the transparency windows of the structure reaches n1 1 ¯0-n001=-0.13 , which is at least three orders of magnitude larger than the typical values reported for natural crystals. Our results elucidate the important role of spatial dispersion effects in a wide class of metamaterials.
Metamaterials with angle selective emissivity in the near-infrared.
Bossard, Jeremy A; Werner, Douglas H
2013-03-11
Metamaterials have been previously studied for their ability to tailor the dispersive IR emissivity of a surface. Here, we investigate two metamaterial structures based on an electromagnetic band-gap surface and a dielectric resonator array for use as near-IR emitters with custom angle selectivity. A genetic algorithm is successfully employed to optimize the metamaterial structures to have minimum emissivity in the normal direction and high emissivity at custom off-normal angles specified by the designer. Two symmetry conditions are utilized to achieve emissivity patterns that are azimuthally stable or distinct in the two orthogonal plane cuts. PMID:23482092
Metamaterial-based model of the Alcubierre warp drive
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.
2011-09-01
Electromagnetic metamaterials are capable of emulating many exotic space-time geometries, such as black holes, rotating cosmic strings, and the big bang singularity. This paper presents a metamaterial-based model of the Alcubierre warp drive and studies its limitations due to available range of material parameters. It appears that the material parameter range introduces strong limitations on the achievable “warp speed” so that ordinary magnetoelectric materials cannot be used. However, newly developed “perfect” bianisotropic nonreciprocal magnetoelectric metamaterials should be capable of emulating the physics of warp drive gradually accelerating up to 1/4c.
Graphene-based extremely wide-angle tunable metamaterial absorber
Linder, Jacob; Halterman, Klaus
2016-01-01
We investigate the absorption properties of graphene-based anisotropic metamaterial structures where the metamaterial layer possesses an electromagnetic response corresponding to a near-zero permittivity. We find that through analytical and numerical studies, near perfect absorption arises over an unusually broad range of beam incidence angles. Due to the presence of graphene, the absorption is tunable via a gate voltage, providing dynamic control of the energy transmission. We show that this strongly enhanced absorption arises due to a coupling between light and a fast wave-mode propagating along the graphene/metamaterial hybrid. PMID:27554137
Advanced Jones calculus for the classification of periodic metamaterials
NASA Astrophysics Data System (ADS)
Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk
2010-11-01
By relying on an advanced Jones calculus, we analyze the polarization properties of light upon propagation through metamaterial slabs in a comprehensive manner. Based on symmetry considerations, we show that all periodic metamaterials may be divided into five different classes only. It is shown that each class differently affects the polarization of the transmitted light and sustains different eigenmodes. We show how to deduce these five classes from symmetry considerations and provide a simple algorithm that can be applied to decide to which class a given metamaterial belongs by measuring only the transmitted intensities.
Hybridization induced transparency in composites of metamaterials and atomic media.
Weis, Peter; Garcia-Pomar, Juan Luis; Beigang, René; Rahm, Marco
2011-11-01
We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT). PMID:22109237
Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial
Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.
2015-01-01
A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433
Ultrastrong coupling of intersubband plasmons and terahertz metamaterials
Dietze, D. Unterrainer, K.; Darmo, J.; Andrews, A. M.; Klang, P.; Strasser, G.
2013-11-11
We report on the ultrastrong-coupling between localized plasmons of a planar terahertz metamaterial and intersubband plasmons in a modulation doped quantum well sample. Such a system exhibits the formation of a lower and an upper polariton branch when the metamaterial eigenfrequency is tuned close to resonance with the intersubband transition. We achieve a normalized polariton splitting of 22% and a polaritonic gap of 2.4% of the intersubband transition frequency. In addition to the usual geometrical scaling, we demonstrate the effective tuning of the metamaterial resonance by dry etching with a tuning range of more than 1 THz.
Tunable metamaterials based on voltage controlled strong coupling
Benz, Alexander Brener, Igal; Montaño, Inès; Klem, John F.
2013-12-23
We present the design, fabrication, and realization of an electrically tunable metamaterial operating in the mid-infrared spectral range. Our devices combine intersubband transitions in semiconductor quantum-wells with planar metamaterials and operate in the strong light-matter coupling regime. The resonance frequency of the intersubband transition can be controlled by an external bias relative to the fixed metamaterial resonance. This allows us to switch dynamically from an uncoupled to a strongly coupled system and thereby to shift the eigenfrequency of the upper polariton branch by 2.5 THz (corresponding to 8% of the center frequency or one full linewidth) with a bias of 5 V.
Tunable dielectric properties of ferrite-dielectric based metamaterial.
Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M
2015-01-01
A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433
Advanced Jones calculus for the classification of periodic metamaterials
Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk
2010-11-15
By relying on an advanced Jones calculus, we analyze the polarization properties of light upon propagation through metamaterial slabs in a comprehensive manner. Based on symmetry considerations, we show that all periodic metamaterials may be divided into five different classes only. It is shown that each class differently affects the polarization of the transmitted light and sustains different eigenmodes. We show how to deduce these five classes from symmetry considerations and provide a simple algorithm that can be applied to decide to which class a given metamaterial belongs by measuring only the transmitted intensities.
Graphene-based extremely wide-angle tunable metamaterial absorber.
Linder, Jacob; Halterman, Klaus
2016-01-01
We investigate the absorption properties of graphene-based anisotropic metamaterial structures where the metamaterial layer possesses an electromagnetic response corresponding to a near-zero permittivity. We find that through analytical and numerical studies, near perfect absorption arises over an unusually broad range of beam incidence angles. Due to the presence of graphene, the absorption is tunable via a gate voltage, providing dynamic control of the energy transmission. We show that this strongly enhanced absorption arises due to a coupling between light and a fast wave-mode propagating along the graphene/metamaterial hybrid. PMID:27554137
Metamaterial perfect absorber based on artificial dielectric "atoms".
Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji
2016-09-01
In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO_{3}) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650
Negative capacitor paves the way to ultra-broadband metamaterials
NASA Astrophysics Data System (ADS)
Hrabar, Silvio; Krois, Igor; Bonic, Ivan; Kiricenko, Aleksandar
2011-12-01
Experimental demonstration of the overcoming of basic dispersion-energy constraints in metamaterials with the help of active non-Foster negative capacitors is reported. The experimental metamaterial operates in RF regime, and it is based on air transmission line loaded with negative capacitors. Measurement results clearly show almost dispersionless Epsilon-Near-Zero behavior, accompanied with superluminal both phase and group velocities, over a bandwidth of more than four octaves (2 MHz-40 MHz). The principle of periodic loading of transmission line with negative capacitors may find applications in ultra-broadband active metamaterials for antennas and cloaking technology.
Super-reflection and cloaking based on zero index metamaterial
NASA Astrophysics Data System (ADS)
Hao, Jiaming; Yan, Wei; Qiu, Min
2010-03-01
A zero index metamaterial (ZIM) can be utilized to block wave (super-reflection) or conceal objects completely (cloaking). The "super-reflection" device can be realized by a Mu zero (Epsilon zero) metamaterial with a perfect electric (magnetic) conductor inclusion of arbitrary shape and size for a transverse electric (magnetic) incident wave. In contrast, a Mu zero (Epsilon zero) metamaterial with a perfect magnetic (electric) conductor inclusion for a transverse electric (magnetic) incident wave can be used to conceal objects of arbitrary shape. The underlying physics here is determined by the intrinsic properties of the ZIM.
SERS-active dielectric metamaterials based on periodic nanostructures.
Lagarkov, Andrey; Budashov, Igor; Chistyaev, Vladimir; Ezhov, Alexander; Fedyanin, Andrey; Ivanov, Andrey; Kurochkin, Ilya; Kosolobov, Sergey; Latyshev, Alexander; Nasimov, Dmitriy; Ryzhikov, Ilya; Shcherbakov, Maxim; Vaskin, Aleksandr; Sarychev, Andrey K
2016-04-01
New dielectric SERS metamaterial is investigated. The material consists of periodic dielectric bars deposited on the metal substrate. Computer simulations as well as real experiment reveal extraordinary optical reflectance in the proposed metamaterial due to the excitation of the multiple dielectric resonances. We demonstrate the enhancement of the Raman signal from the complex of 5,5'-dithio-bis-[2-nitrobenzoic acid] molecules and gold nanoparticle (DTNB-Au-NP), which is immobilized on the surface of the barshaped dielectric metamaterial. PMID:27137006
Magnetic field concentrator for probing optical magnetic metamaterials.
Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz
2010-12-01
Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials. PMID:21164936
Wideband selective polarization conversion mediated by three-dimensional metamaterials
NASA Astrophysics Data System (ADS)
Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue
2014-06-01
In this paper, we proposed to use ultra-thin 3D metamaterials to manipulate the polarization of the transmitted electromagnetic waves. As an example, we designed a 3D metamaterial to serve as an ultra-thin linear-polarization converter, which overcomes the defects of bulky volume and narrow bandwidth of conventional polarization converters. Polarization selectivity and polarization convertibility are achieved simultaneously in the single-layer metamaterial. The physical mechanism is analyzed using reflection matrix and transmission matrix in details. Simulated cross-polarization and co-polarization conversions for TE and TM incident waves verify the polarization selectivity and polarization convertibility.
Gap soliton formation in a nonlinear anti-directional coupler
Ryzhov, M S; Maimistov, Andrei I
2012-11-30
We consider propagation of electromagnetic solitary waves in two tunnel-coupled waveguides. It is assumed that one of the waveguides is made of a positive-index dielectric, having a Kerr nonlinearity. The other waveguide is made of a linear optical metamaterial characterised by the so-called negative refraction. The gap soliton formation in such a system, which, as shown, has a threshold character, is studied numerically. (solitons)