Science.gov

Sample records for nonlinear optomechanical coupling

  1. Dark state in a nonlinear optomechanical system with quadratic coupling

    NASA Astrophysics Data System (ADS)

    Huang, Yue-Xin; Zhou, Xiang-Fa; Guo, Guang-Can; Zhang, Yong-Sheng

    We consider a hybrid system consisting of a cavity optomechanical device with nonlinear quadratic radiation pressure coupled to an atomic ensemble. By considering the collective excitation, we show that this system supports nontrivial, nonlinear dark states. The coupling strength can be tuned via the lasers that ensure the population transfer adiabatically between the mechanical modes and the collective atomic excitations in a controlled way. In addition, we show how to detect the dark-state resonance by calculating the single-photon spectrum of the output fields and the transmission of the probe beam based on two-phonon optomechanically induced transparency. Possible application and extension of the dark states are also discussed. Supported by the National Fundamental Research Program of China (Grants No. 2011CB921200 and No. 2011CBA00200), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01030200), and NSFC (Grants No. 61275122 and 11474266).

  2. Nonlinear optomechanics with graphene

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  3. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    SciTech Connect

    Ramos, Daniel Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  4. Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems

    PubMed Central

    Lü, Xin-You; Zhang, Wei-Min; Ashhab, Sahel; Wu, Ying; Nori, Franco

    2013-01-01

    We investigate a hybrid electro-optomechanical system that allows us to realize controllable strong Kerr nonlinearities even in the weak-coupling regime. We show that when the controllable electromechanical subsystem is close to its quantum critical point, strong photon-photon interactions can be generated by adjusting the intensity (or frequency) of the microwave driving field. Nonlinear optical phenomena, such as the appearance of the photon blockade and the generation of nonclassical states (e.g., Schrödinger cat states), are demonstrated in the weak-coupling regime, making the observation of strong Kerr nonlinearities feasible with currently available optomechanical technology. PMID:24126279

  5. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    NASA Astrophysics Data System (ADS)

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-04-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities.

  6. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    SciTech Connect

    He, Yong

    2015-03-23

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is an approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.

  7. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    PubMed Central

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-01-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814

  8. Nonlinear optomechanical measurement of mechanical motion.

    PubMed

    Brawley, G A; Vanner, M R; Larsen, P E; Schmid, S; Boisen, A; Bowen, W P

    2016-01-01

    Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications. PMID:26996234

  9. Nonlinear optomechanical measurement of mechanical motion

    PubMed Central

    Brawley, G. A.; Vanner, M. R.; Larsen, P. E.; Schmid, S.; Boisen, A.; Bowen, W. P.

    2016-01-01

    Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can be used to experimentally explore collapse models of the wavefunction and the potential for mechanical-resonator-based quantum information and metrology applications. PMID:26996234

  10. The nonclassical effects in coupled optomechanical array

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Cheng, Jiong; Zhang, Wenzhao; Yousif, Taha; Zhou, Ling

    2015-07-01

    We investigate a coupled array of ? identical cavity optomechanical systems. By adiabatically eliminating the cavity fields, we derive an effective Hamiltonian of the ? phonon modes coupled via XX form. We show further that the coupled mechanical oscillators can be used to transmit state and the single mode of the oscillator and the two-mode of neighbor oscillators can exhibit squeezing simultaneously. Under the suitable regime of parameters, the phonon blockade is exhibited.

  11. Strong Optomechanical Coupling in Nanobeam Cavities based on Hetero Optomechanical Crystals

    PubMed Central

    Huang, Zhilei; Cui, Kaiyu; Li, Yongzhuo; Feng, Xue; Liu, Fang; Zhang, Wei; Huang, Yidong

    2015-01-01

    Nanobeam cavities based on hetero optomechanical crystals are proposed. With optical and mechanical modes separately confined by two types of periodic structures, the mechanical frequency is designed as high as 5.88 GHz. Due to the optical field and the strain field concentrated in the optomechanical cavity and resembling each other with an enhanced overlap, a high optomechanical coupling rate of 1.31 MHz is predicted. PMID:26530128

  12. Linear and nonlinear optomechanics in a cryogenic membrane-in-the-middle system

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Underwood, Mitchell; Mason, David; Shkarin, Alexey; Hoch, Scott; Harris, Jack

    2014-03-01

    In cavity optomechanics, linear optomechanical interactions have been used to readout and cool the motion of mechanical oscillators, while nonlinear interactions have been proposed to study quantum non-demolition measurements of mechanical oscillators and the production of non-Gaussian mechanical states. A membrane-in-the-middle system can provide both types of interactions. In this talk, we will present recent results measured in both linear and nonlinear interaction regimes with a membrane-in-the-middle system operating at 500 mK. Linear coupling in this device enables us to cool the mechanical mode of a SiN membrane at 705 kHz to roughly one phonon. During the cooling measurement, we also observed strong asymmetry between the mechanical sidebands, in agreement with the phonon number inferred from other measurements. We also measured nonlinear optomechanics, in particular the quadratic interaction. With a simple theoretical model, we systematically characterized the classical dynamics arising from this quadratic optomechanical interaction. We expect that by combining quadratic coupling with resolved-sideband laser cooling, this device will be able to explore the aforementioned quantum phenomena. We gracefully acknowledge financial support from AFOSR (No. FA9550-90-1-0484).

  13. Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity.

    PubMed

    Yi, Fei; Ren, Mingliang; Reed, Jason C; Zhu, Hai; Hou, Jiechang; Naylor, Carl H; Johnson, A T Charlie; Agarwal, Ritesh; Cubukcu, Ertugrul

    2016-03-01

    Emerging two-dimensional semiconductor materials possess a giant second order nonlinear response due to excitonic effects while the monolayer thickness of such active materials limits their use in practical nonlinear devices. Here, we report 3300 times optomechanical enhancement of second harmonic generation from a MoS2 monolayer in a doubly resonant on-chip optical cavity. We achieve this by engineering the nonlinear light-matter interaction in a microelectro-mechanical system enabled optical frequency doubling device based on an electrostatically tunable Fabry-Perot microresonator. Our versatile optomechanical approach will pave the way for next generation efficient on-chip tunable light sources, sensors, and systems based on molecularly thin materials. PMID:26854706

  14. Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir

    NASA Astrophysics Data System (ADS)

    Bai, C.; Hou, B. P.; Lai, D. G.; Wu, D.

    2016-04-01

    We consider the optomechanically induced transparency in the double quadratically coupled optomechanical cavities within a common reservoir, in which the two cavities are driven by the coupling fields. It is shown that the probe transparency is improved by increasing the coupling field (the left coupling field) applied on the probing cavity, but the transparency position (the probe frequency of the maximal transparency) is shifted to high frequency. The coupling field (the right coupling field) applied on the other quadratically coupled cavity can lead to a low-frequency shift for the transparency position, which can be used to fix the transparency position by adjusting the right coupling field. We get the quantitative findings that the transparency position is exactly determined by the intensity difference between the two coupling fields. On the other hand, it is found that when the two coupled optomechanical cavities interact with their common reservoir, the cross decay induced by the common reservoir can improve the probe transparency and widen the transparency window. Finally, the effects of the environment's temperature on the transparency are investigated. This will be useful in cooling the membrane, squeezing and entangling the output fields.

  15. The Correlated Two-Photon Transport in a One-Dimensional Waveguide Coupling to a Hybrid Atom-Optomechanical System

    NASA Astrophysics Data System (ADS)

    Liu, Jingyi; Zhang, Wenzhao; Li, Xun; Yan, Weibin; Zhou, Ling

    2016-06-01

    We investigate the two-photon transport properties inside one-dimensional waveguide side coupled to an atom-optomechanical system, aiming to control the two-photon transport by using the nonlinearity. By generalizing the scheme of Phys. Rev. A 90, 033832, we show that Kerr nonlinearity induced by the four-level atoms is remarkable and can make the photons antibunching, while the nonlinear interaction of optomechanical coupling participates in both the single photon and the two photon processes so that it can make the two photons exhibiting bunching and antibunching.

  16. Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Wang, Zhi-Hai; Ren, Chun-Nian; Gao, Hang; Li, Yong; Wu, Jin-Hui

    2015-02-01

    We study the steady-state behaviors of a typical optomechanical cavity coupled to cold Rydberg atoms with dipole-dipole interactions. The interacting atoms are described as one superatom of three collective states in a ladder configuration in the limit of a strong dipole blockade and a weak cavity field. We find that this hybrid system exhibits phenomena of conditional duality and nonlinear bistability in terms of mirror displacement, number of cavity photons, and Rydberg population, depending on the detuning of the cavity field, the strength of the optical driving field, and the number of cold atoms. It is of particular interest that the two branches of relevant curves may intersect to yield a nontrivial duality and bistability. Such correlated optical, mechanical, and atomic responses arise from the efficient feedback between atom-light and optomechanical interactions and have realistic applications, e.g., in realizing accurate optomechanical detection or attaining deterministic single photons.

  17. Observation of generalized optomechanical coupling and cooling on cavity resonance.

    PubMed

    Sawadsky, Andreas; Kaufer, Henning; Nia, Ramon Moghadas; Tarabrin, Sergey P; Khalili, Farid Ya; Hammerer, Klemens; Schnabel, Roman

    2015-01-30

    Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g., via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative, optomechanical coupling, with a macroscopic (1.5  mm)2-size silicon nitride membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection. PMID:25679890

  18. Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xuereb, André; Malossi, Nicola; Vitali, David

    2016-08-01

    We study the cavity mode frequencies of a Fabry–Pérot cavity containing two vibrating dielectric membranes. We derive the equations for the mode resonances and provide approximate analytical solutions for them as a function of the membrane positions, which act as an excellent approximation when the relative and center-of-mass position of the two membranes are much smaller than the cavity length. With these analytical solutions, one finds that extremely large optomechanical coupling of the membrane relative motion can be achieved in the limit of highly reflective membranes when the two membranes are placed very close to a resonance of the inner cavity formed by them. We also study the cavity finesse of the system and verify that, under the conditions of large coupling, it is not appreciably affected by the presence of the two membranes. The achievable large values of the ratio between the optomechanical coupling and the cavity decay rate, g/κ , make this two-membrane system the simplest promising platform for implementing cavity optomechanics in the strong coupling regime.

  19. Integrated III-V Photonic Crystal - Si waveguide platform with tailored optomechanical coupling

    NASA Astrophysics Data System (ADS)

    Tsvirkun, Viktor; Surrente, Alessandro; Raineri, Fabrice; Beaudoin, Grégoire; Raj, Rama; Sagnes, Isabelle; Robert-Philip, Isabelle; Braive, Rémy

    2015-11-01

    Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications.

  20. Fast cooling in dispersively and dissipatively coupled optomechanics.

    PubMed

    Chen, Tian; Wang, Xiang-Bin

    2015-01-01

    The cooling performance of an optomechanical system comprising both dispersive and dissipative coupling is studied. Here, we present a scheme to cool a mechanical resonator to its ground state in finite time using a chirped pulse. We show that there is distinct advantage in using the chirp-pulse scheme to cool a resonator rapidly. The cooling behaviors of dispersively and dissipatively coupled system is also explored with different types of incident pulses and different coupling strengths. Our scheme is feasible in cooling the resonator for a wide range of the parameter region. PMID:25582660

  1. Quantum Coherence of Optomechanical Systems in the Single-photon Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Hu, Dan; Huang, Shang-Yu; Liao, Jie-Qiao; Tian, Lin; Goan, Hsi-Sheng

    2015-03-01

    Optomechanical systems with ultrastrong coupling could demonstrate nonlinear optical effects such as photon blockade. The system-bath couplings in these systems play an essential role in observing these effects. In this work, we use a dressed-state master equation approach to study the quantum coherence of an optomechanical system. In this approach, the system-bath couplings are decomposed in terms of the eigenbasis of the optomechanical system, where the mechanical state is displaced by finite photon occupation. Compared with the standard master equation often seen in the literature, our master equation includes photon-number-dependent terms that induce dephasing. We calculate cavity dephasing, second-order photon correlation, and two-cavity entanglement using the dressed-state master equation. At high temperature, our master equation predicts faster decay of the quantum coherence than with the standard master equation. The second-order photon correlation derived with our master equation shows less antibunching than that with the standard master equation. This work is supported by awards from DARPA, NSF, JSPS (Japan), MOST (Taiwan) and NTU (Taiwan).

  2. Squeezed light and correlated photons from dissipatively coupled optomechanical systems

    NASA Astrophysics Data System (ADS)

    Kilda, Dainius; Nunnenkamp, Andreas

    2016-01-01

    We study theoretically the squeezing spectrum and second-order correlation function of the output light for an optomechanical system in which a mechanical oscillator modulates the cavity linewidth (dissipative coupling). We find strong squeezing coinciding with the normal-mode frequencies of the linearized system. In contrast to dispersive coupling, squeezing is possible in the resolved-sideband limit simultaneously with sideband cooling. The second-order correlation function shows damped oscillations, whose properties are given by the mechanical-like, the optical-like normal mode, or both, and can be below shot-noise level at finite times, {g}(2)(τ )\\lt 1.

  3. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-04-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  4. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-08-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  5. Cavity Optomechanics: Coherent Coupling of Light and Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kippenberg, Tobias J.

    2012-06-01

    The mutual coupling of optical and mechanical degrees of freedom via radiation pressure has been a subject of interest in the context of quantum limited displacements measurements for Gravity Wave Detection for many decades, however light forces have remained experimentally unexplored in such systems. Recent advances in nano- and micro-mechanical oscillators have for the first time allowed the observation of radiation pressure phenomena in an experimental setting and constitute the expanding research field of cavity optomechanics [1]. These advances have allowed achieving to enter the quantum regime of mechanical systems, which are now becoming a third quantum technology after atoms, ions and molecules in a first and electronic circuits in a second wave. In this talk I will review these advances. Using on-chip micro-cavities that combine both optical and mechanical degrees of freedom in one and the same device [2], radiation pressure back-action of photons is shown to lead to effective cooling [3-6]) of the mechanical oscillator mode using dynamical backaction, which has been predicted by Braginsky as early as 1969 [4]. This back-action cooling exhibits many close analogies to atomic laser cooling. With this novel technique the quantum mechanical ground state of a micromechanical oscillator has been prepared with high probability using both microwave and optical fields. In our research this is reached using cryogenic precooling to ca. 800 mK in conjunction with laser cooling, allowing cooling of micromechanical oscillator to only motional 1.7 quanta, implying that the mechanical oscillator spends about 40% of its time in the quantum ground state. Moreover it is possible in this regime to observe quantum coherent coupling in which the mechanical and optical mode hybridize and the coupling rate exceeds the mechanical and optical decoherence rate [7]. This accomplishment enables a range of quantum optical experiments, including state transfer from light to mechanics

  6. Integrated III-V Photonic Crystal – Si waveguide platform with tailored optomechanical coupling

    PubMed Central

    Tsvirkun, Viktor; Surrente, Alessandro; Raineri, Fabrice; Beaudoin, Grégoire; Raj, Rama; Sagnes, Isabelle; Robert-Philip, Isabelle; Braive, Rémy

    2015-01-01

    Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications. PMID:26567535

  7. Integrated III-V Photonic Crystal--Si waveguide platform with tailored optomechanical coupling.

    PubMed

    Tsvirkun, Viktor; Surrente, Alessandro; Raineri, Fabrice; Beaudoin, Grégoire; Raj, Rama; Sagnes, Isabelle; Robert-Philip, Isabelle; Braive, Rémy

    2015-01-01

    Optomechanical systems, in which the vibrations of a mechanical resonator are coupled to an electromagnetic radiation, have permitted the investigation of a wealth of novel physical effects. To fully exploit these phenomena in realistic circuits and to achieve different functionalities on a single chip, the integration of optomechanical resonators is mandatory. Here, we propose a novel approach to heterogeneously integrate arrays of two-dimensional photonic crystal defect cavities on top of silicon-on-insulator waveguides. The optomechanical response of these devices is investigated and evidences an optomechanical coupling involving both dispersive and dissipative mechanisms. By controlling the optical coupling between the waveguide and the photonic crystal, we were able to vary and understand the relative strength of these couplings. This scalable platform allows for an unprecedented control on the optomechanical coupling mechanisms, with a potential benefit in cooling experiments, and for the development of multi-element optomechanical circuits in the framework of optomechanically-driven signal-processing applications. PMID:26567535

  8. Acceleration Sensing, Feedback Cooling, and Nonlinear Dynamics with Nanoscale Cavity-Optomechanical Devices

    NASA Astrophysics Data System (ADS)

    Krause, Alexander Grey

    Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg). In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10. In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to

  9. Controllable optomechanical coupling in serially-coupled triple resonators

    SciTech Connect

    Huang, Chenguang Zhao, Yunsong; Fan, Jiahua; Zhu, Lin

    2014-12-15

    Radiation pressure can efficiently couple mechanical modes with optical modes in an optical cavity. The coupling efficiency is quite dependent on the interaction between the optical mode and mechanical mode. In this report, we investigate a serially-coupled triple resonator system, where a freestanding beam is placed in the vicinity of the middle resonator. In this coupled system, we demonstrate that the mechanical mode of the free-standing beam can be selectively coupled to different resonance supermodes through the near field interaction.

  10. Slot-mode optomechanical crystals with enhanced coupling and multimode functionality

    NASA Astrophysics Data System (ADS)

    Grutter, Karen; Davanco, Marcelo; Srinivasan, Kartik

    A number of cavity optomechanics applications involve multiple interacting optical and mechanical modes. A key challenge in such systems is developing multimode platforms with both flexibility in the optical and mechanical designs and interactions as strong as those shown in single-mode systems. We thus present slot-mode optomechanical crystals, in which photonic and phononic crystal nanobeams separated by a narrow slot couple optomechanically. We pattern these beams to confine a low-loss optical mode in the slot and a mechanical breathing mode at the center of the mechanical beam. This structure has large optomechanical coupling rates and great design flexibility toward multimode systems. We demonstrate this in Si3N4 slot-mode devices, with 980 nm optical modes coupling to mechanical modes at 3.4 GHz, 1.8 GHz, and 400 MHz. We use Si3N4 tensile stress to shrink slot widths to 24 nm, greatly enhancing optomechanical coupling. Finally, with this platform, we develop multimode systems with three-beam geometries, in which two different mechanical modes couple to one optical mode and two different optical modes couple to one mechanical mode. The authors acknowledge funding from DARPA (MESO) and the National Research Council Research Associateship Program.

  11. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs/AlAs Multiple Quantum Wells.

    PubMed

    Jusserand, B; Poddubny, A N; Poshakinskiy, A V; Fainstein, A; Lemaitre, A

    2015-12-31

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs/AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 10(5) at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g(0) in the range of 100 GHz. PMID:26765028

  12. Effects of squeezed-film damping on the optomechanical nonlinearity in dual-nanoweb fiber

    NASA Astrophysics Data System (ADS)

    Koehler, J. R.; Butsch, A.; Euser, T. G.; Noskov, R. E.; St. J. Russell, P.

    2013-11-01

    The freely-suspended glass membranes in a dual-nanoweb fiber, driven at resonance by intensity-modulated light, exhibit a giant optomechanical nonlinearity. We experimentally investigate the effect of squeezed-film damping by exploring the pressure dependence of resonant frequency and mechanical quality factor. As a consequence of the unusually narrow slot between the nanowebs (22 μm by 550 nm), the gas-spring effect causes a pressure-dependent frequency shift that is ˜15 times greater than typically measured in micro-electro-mechanical devices. When evacuated, the dual-nanoweb fiber yields a quality factor of ˜3 600 and a resonant optomechanical nonlinear coefficient that is ˜60 000 times larger than the Kerr effect.

  13. An opto-mechanical coupled-ring reflector driven by optical force for lasing wavelength control

    NASA Astrophysics Data System (ADS)

    Ren, M.; Cai, H.; Chin, L. K.; Huang, J. G.; Gu, Y. D.; Radhakrishnan, K.; Ser, W.; Liu, A. Q.

    2016-02-01

    In this paper, an opto-mechanical coupled-ring reflector driven by optical gradient force is applied in an external-cavity tunable laser. A pair of mutually coupled ring resonators with a free-standing arc serves as a movable reflector. It obtains a 13.3-nm wavelength tuning range based on an opto-mechanical lasing-wavelength tuning coefficient of 127 GHz/nm. The potential applications include optical network, on-chip optical trapping, sensing, and biology detection.

  14. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits

    NASA Astrophysics Data System (ADS)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1,550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radiofrequency field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic-crystal waveguides, or optically through the strong photoelastic effect. Together with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which radiofrequency-driven coherent mechanical motion is cancelled by optically driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical and mechanical domains.

  15. State transfer and entanglement of two mechanical oscillators in coupled cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Yousif, Taha; Zhou, Wenjun; Zhou, Ling

    2014-08-01

    We investigate coupled two-cavity optomechanical systems to show their potential usages by revealing the physical processes. Under two conditions, we deduce the correspondingly effective Hamiltonian with beam splitter type and nondegenerate parametric-down conversion type, respectively. Including the whole interactions, we show that the state transfer and the stationary entanglement between the two mechanical resonators can be achieved.

  16. Cavity optomechanics with a nonlinear photonic-crystal nanomembrane

    SciTech Connect

    Makles, Kevin; Kuhn, Aurélien; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Antoni, Thomas; Braive, Rémy; Sagnes, Isabelle; Robert-Philip, Isabelle

    2014-12-04

    We have designed, fabricated and characterized a nanomembrane which could be used as a moving end mirror of a Fabry-Perot cavity. The high reflectivity and optimized mechanical properties of the membrane should allow us to demonstrate the mechanical ground state of the membrane. As any sub-micron mechanical resonator, our system demonstrates nonlinear dynamical effects. We characterize the mechanical response to a strong pump drive and observe a shift in the oscillation frequency and phase conjugation of the mechanical mode. Such nonlinear effects are expected to play a role in the quantum dynamics of the membrane as well.

  17. Polariton Resonances for Ultrastrong Coupling Cavity Optomechanics in GaAs /AlAs Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Jusserand, B.; Poddubny, A. N.; Poshakinskiy, A. V.; Fainstein, A.; Lemaitre, A.

    2015-12-01

    Polariton-mediated light-sound interaction is investigated through resonant Brillouin scattering experiments in GaAs /AlAs multiple-quantum wells. Photoelastic coupling enhancement at exciton-polariton resonance reaches 105 at 30 K as compared to a typical bulk solid room temperature transparency value. When applied to GaAs based cavity optomechanical nanodevices, this result opens the path to huge displacement sensitivities and to ultrastrong coupling regimes in cavity optomechanics with couplings g0 in the range of 100 GHz.

  18. Solitons in optomechanical arrays.

    PubMed

    Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying

    2016-06-15

    We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261

  19. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  20. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  1. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  2. Hybrid quantum systems with ultracold spins and optomechanics

    NASA Astrophysics Data System (ADS)

    Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund

    2016-05-01

    Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.

  3. Solving Nonlinear Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  4. Optomechanical coupling in phoxonic–plasmonic slab cavities with periodic metal strips

    SciTech Connect

    Lin, Tzy-Rong; Huang, Yin-Chen; Hsu, Jin-Chen

    2015-05-07

    We theoretically investigate the optomechanical (OM) coupling of submicron cavities formed in one-dimensional phoxonic–plasmonic slabs. The phoxonic–plasmonic slabs are structured by depositing periodic Ag strips onto the top surfaces of dielectric GaAs slabs to produce dual band gaps for both electromagnetic and acoustic waves, thereby inducing the coupling of surface plasmons with photons for tailoring the OM coupling. We quantify the OM coupling by calculating the temporal modulation of the optical resonance wavelength with the acoustic phonon-induced photoelastic (PE) and moving-boundary (MB) effects. We also consider the appearance of a uniform Ag layer on the bottom surface of the slabs to modulate the photonic–plasmonic coupling. The results show that the PE and MB effects can be constructive or destructive in the overall OM coupling, and their magnitudes depend not only on the quality factors of the resonant modes but also on the mode area, mode overlap, and individual symmetries of the photonic–phononic mode pairs. Lowering the mode area could be effective for enhancing the OM coupling of subwavelength photons and phonons. This study introduces possible engineering applications to achieve enhanced interaction between photons and phonons in nanoscale OM devices.

  5. Optomechanical coupling in phoxonic-plasmonic slab cavities with periodic metal strips

    NASA Astrophysics Data System (ADS)

    Lin, Tzy-Rong; Huang, Yin-Chen; Hsu, Jin-Chen

    2015-05-01

    We theoretically investigate the optomechanical (OM) coupling of submicron cavities formed in one-dimensional phoxonic-plasmonic slabs. The phoxonic-plasmonic slabs are structured by depositing periodic Ag strips onto the top surfaces of dielectric GaAs slabs to produce dual band gaps for both electromagnetic and acoustic waves, thereby inducing the coupling of surface plasmons with photons for tailoring the OM coupling. We quantify the OM coupling by calculating the temporal modulation of the optical resonance wavelength with the acoustic phonon-induced photoelastic (PE) and moving-boundary (MB) effects. We also consider the appearance of a uniform Ag layer on the bottom surface of the slabs to modulate the photonic-plasmonic coupling. The results show that the PE and MB effects can be constructive or destructive in the overall OM coupling, and their magnitudes depend not only on the quality factors of the resonant modes but also on the mode area, mode overlap, and individual symmetries of the photonic-phononic mode pairs. Lowering the mode area could be effective for enhancing the OM coupling of subwavelength photons and phonons. This study introduces possible engineering applications to achieve enhanced interaction between photons and phonons in nanoscale OM devices.

  6. Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband regime via a dissipatively coupled oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiang; Wu, Shengjun; Chen, Zeng-Bing; Shikano, Yutaka

    2016-08-01

    In the optomechanical cooling of a dispersively coupled oscillator, it is only possible to reach the oscillator ground state in the resolved sideband regime, where the cavity-mode linewidth is smaller than the resonant frequency of the mechanical oscillator being cooled. In this paper, we show that the dispersively coupled system can be cooled to the ground state in the unresolved sideband regime using an ancillary oscillator, which has a high quality factor and is coupled to the same optical mode via dissipative interaction. The ancillary oscillator has a resonant frequency close to that of the target oscillator; thus, the ancillary oscillator is also in the unresolved sideband regime. We require only a single blue-detuned laser mode to drive the cavity.

  7. Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio

    NASA Astrophysics Data System (ADS)

    Schneider, Katharina; Seidler, Paul

    2016-06-01

    We describe the design, fabrication, and characterization of a one-dimensional silicon photonic crystal cavity in which a central slot is used to enhance the overlap between highly localized optical and mechanical modes. The optical mode has an extremely small mode volume of 0.017 $(\\lambda_{vac}/n)^3$, and an optomechanical vacuum coupling rate of 310 kHz is measured. With optical quality factors up to $1.2 \\cdot 10^5$, fabricated devices are in the resolved-sideband regime. The electric field has its maximum at the slot wall and couples to the in-plane breathing motion of the slot. The optomechanical coupling is thus dominated by the moving-boundary effect, which we simulate to be six times greater than the photoelastic effect, in contrast to most structures, where the photoelastic effect is often the primary coupling mechanism.

  8. Cavity optomechanics in gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Mitchell, Matthew; Hryciw, Aaron C.; Barclay, Paul E.

    2014-04-01

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 105 and mode volumes <10(λ/n)3, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 104 intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g0/2π˜30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  9. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8 × 10{sup 5} and mode volumes <10(λ/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0 × 10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5 μm and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2π∼30 kHz for the fundamental mechanical radial breathing mode at 488 MHz.

  10. Phase and amplitude dynamics of nonlinearly coupled oscillators

    NASA Astrophysics Data System (ADS)

    Cudmore, P.; Holmes, C. A.

    2015-02-01

    This paper addresses the amplitude and phase dynamics of a large system of nonlinearly coupled, non-identical damped harmonic oscillators, which is based on recent research in coupled oscillation in optomechanics. Our goal is to investigate the existence and stability of collective behaviour which occurs due to a play-off between the distribution of individual oscillator frequency and the type of nonlinear coupling. We show that this system exhibits synchronisation, where all oscillators are rotating at the same rate, and that in the synchronised state the system has a regular structure related to the distribution of the frequencies of the individual oscillators. Using a geometric description, we show how changes in the non-linear coupling function can cause pitchfork and saddle-node bifurcations which create or destroy stable and unstable synchronised solutions. We apply these results to show how in-phase and anti-phase solutions are created in a system with a bi-modal distribution of frequencies.

  11. Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling.

    PubMed

    Antezza, Mauro; Braggio, Caterina; Carugno, Giovanni; Noto, Antonio; Passante, Roberto; Rizzuto, Lucia; Ruoso, Giuseppe; Spagnolo, Salvatore

    2014-07-11

    We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as ∝(d(2)an(4)t)(2)/z(0)(8), where z(0) is the average atom-surface distance, d the atomic dipole moment, a the mirror's effective oscillation amplitude, n the initial principal quantum number, and t the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance ∼2×10  μm from a semiconductor substrate whose dielectric constant is periodically driven by an external laser pulse, hence realizing an effective mechanical mirror motion due to the periodic change of the substrate from transparent to reflecting. For a parabolic gas shape, this effect is predicted to excite about ∼10(2) atoms of a dilute gas of 10(3) trapped Rydberg atoms with n=75 after about 0.5  μs, which is high enough to be detected in typical Rydberg gas experimental conditions. PMID:25062178

  12. Optomechanical Rydberg-Atom Excitation via Dynamic Casimir-Polder Coupling

    NASA Astrophysics Data System (ADS)

    Antezza, Mauro; Braggio, Caterina; Carugno, Giovanni; Noto, Antonio; Passante, Roberto; Rizzuto, Lucia; Ruoso, Giuseppe; Spagnolo, Salvatore

    2014-07-01

    We study the optomechanical coupling of a oscillating effective mirror with a Rydberg atomic gas, mediated by the dynamical atom-mirror Casimir-Polder force. This coupling may produce a near-field resonant atomic excitation whose probability scales as ∝(d2an4t)2/z08, where z0 is the average atom-surface distance, d the atomic dipole moment, a the mirror's effective oscillation amplitude, n the initial principal quantum number, and t the time. We propose an experimental configuration to realize this system with a cold atom gas trapped at a distance ˜2×10 μm from a semiconductor substrate whose dielectric constant is periodically driven by an external laser pulse, hence realizing an effective mechanical mirror motion due to the periodic change of the substrate from transparent to reflecting. For a parabolic gas shape, this effect is predicted to excite about ˜102 atoms of a dilute gas of 103 trapped Rydberg atoms with n =75 after about 0.5 μs, which is high enough to be detected in typical Rydberg gas experimental conditions.

  13. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  14. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Wei; Li, Yong

    2015-05-01

    We demonstrate the possibility of optical nonreciprocal response in a three-mode optomechanical system where one mechanical mode is optomechanically coupled to two linearly coupled optical modes simultaneously. The optical nonreciprocal behavior is induced by the phase difference between the two optomechanical coupling rates, which breaks the time-reversal symmetry of the three-mode optomechanical system. Moreover, the three-mode optomechanical system can also be used as a three-port circulator for two optical modes and one mechanical mode, which we refer to as an optomechanical circulator.

  15. Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio.

    PubMed

    Schneider, Katharina; Seidler, Paul

    2016-06-27

    We describe the design, fabrication, and characterization of a one-dimensional silicon photonic crystal cavity in which a central slot is used to enhance the overlap between highly localized optical and mechanical modes. The optical mode has an extremely small mode volume of 0.017(λvac / n)3, and an optomechanical vacuum coupling rate of 310 kHz is measured for a mechanical mode at 2.69 GHz. With optical quality factors up to 1.2 × 105, fabricated devices are in the resolved-sideband regime. The electric field has its maximum at the slot wall and couples to the in-plane breathing motion of the slot. The optomechanical coupling is thus dominated by the moving-boundary effect, which we simulate to be six times greater than the photoelastic effect, in contrast to most structures, where the photoelastic effect is often the primary coupling mechanism. PMID:27410548

  16. Generation of Steady-State Entanglement in Quadratically Coupled Optomechanical System Assisted by Two-Level Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Li, Feng-Zhi; Han, Xiang-Gang; Wu, E.

    2016-05-01

    We propose a scheme for the realization of a hybrid, strongly entangled system formed of an atomic ensemble surrounded by a quadratically coupled optomechanical cavity with a vibrating mirror. We firstly investigate the steady-state bipartite entanglement between the movable mirror and the cavity mode with the help of an atomic media. It shows that the introduction of the atomic medium can greatly improve the entanglement between the movable mirror and the cavity mode. Secondly, steady-state tripartite entanglement including the movable mirror, the cavity and atom media are investigated. We find the robust tripartite entanglement persists in the present system.

  17. Optomechanical interactions in non-Hermitian photonic molecules

    NASA Astrophysics Data System (ADS)

    Schönleber, D. W.; Eisfeld, A.; El-Ganainy, R.

    2016-04-01

    We study optomechanical interactions in non-Hermitian photonic molecules that support two photonic states and one acoustic mode. The nonlinear steady-state solutions and their linear stability landscapes are investigated as a function of the system’s parameters and excitation power levels. We also examine the temporal evolution of the system and uncover different regimes of nonlinear dynamics. Our analysis reveals several important results: (1) parity-time ({ P }{ T }) symmetry is not necessarily the optimum choice for maximum optomechanical interaction. (2) Stable steady-state solutions are not always reached under continuous wave optical excitations. (3) Accounting for gain saturation effects can regulate the behavior of the otherwise unbounded oscillation amplitudes. Our study provides a deeper insight into the interplay between optical non-Hermiticity and optomechanical coupling and can thus pave the way for new device applications.

  18. Quantum optomechanical heat engine.

    PubMed

    Zhang, Keye; Bariani, Francesco; Meystre, Pierre

    2014-04-18

    We investigate theoretically a quantum optomechanical realization of a heat engine. In a generic optomechanical arrangement the optomechanical coupling between the cavity field and the oscillating end mirror results in polariton normal mode excitations whose character depends on the pump detuning and the coupling strength. By varying that detuning it is possible to transform their character from phononlike to photonlike, so that they are predominantly coupled to the thermal reservoir of phonons or photons, respectively. We exploit the fact that the effective temperatures of these two reservoirs are different to produce an Otto cycle along one of the polariton branches. We discuss the basic properties of the system in two different regimes: in the optical domain it is possible to extract work from the thermal energy of a mechanical resonator at finite temperature, while in the microwave range one can in principle exploit the cycle to extract work from the blackbody radiation background coupled to an ultracold atomic ensemble. PMID:24785017

  19. Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation

    NASA Astrophysics Data System (ADS)

    Suchoi, Oren; Ella, Lior; Shtempluk, Oleg; Buks, Eyal

    2014-09-01

    We experimentally study an optomechanical cavity consisting of an oscillating mechanical resonator embedded in a superconducting microwave transmission line cavity. Tunable optomechanical coupling between the mechanical resonator and the microwave cavity is introduced by positioning a niobium-coated single-mode optical fiber above the mechanical resonator. The capacitance between the mechanical resonator and the coated fiber gives rise to optomechanical coupling, which can be controlled by varying the fiber-resonator distance. We study radiation-pressure-induced self-excited oscillation as a function of microwave driving parameters (frequency and power). Intermittency between limit-cycle and steady-state behaviors is observed with blue-detuned driving frequency. The experimental results are accounted for by a model that takes into account the Duffing-like nonlinearity of the microwave cavity. A stability analysis reveals a subcritical Hopf bifurcation near the region where intermittency is observed.

  20. Forced and self-excited oscillations of an optomechanical cavity.

    PubMed

    Zaitsev, Stav; Pandey, Ashok K; Shtempluck, Oleg; Buks, Eyal

    2011-10-01

    We experimentally study forced and self-excited oscillations of an optomechanical cavity, which is formed between a fiber Bragg grating that serves as a static mirror and a freely suspended metallic mechanical resonator that serves as a moving mirror. In the domain of small amplitude mechanical oscillations, we find that the optomechanical coupling is manifested as changes in the effective resonance frequency, damping rate, and cubic nonlinearity of the mechanical resonator. Moreover, self-excited oscillations of the micromechanical mirror are observed above a certain optical power threshold. A comparison between the experimental results and a theoretical model that we have recently derived and analyzed yields a good agreement. The comparison also indicates that the dominant optomechanical coupling mechanism is the heating of the metallic mirror due to optical absorption. PMID:22181294

  1. Parametric down-conversion and polariton pair generation in optomechanical systems.

    PubMed

    Liu, Yong-Chun; Xiao, Yun-Feng; Chen, You-Ling; Yu, Xiao-Chong; Gong, Qihuang

    2013-08-23

    We demonstrate that the nonlinear optomechanical interaction leads to parametric down-conversion, capable of generating polariton pairs formed by photons and phonons. The nonlinearity is resonantly enhanced through frequency matching, and such parametric down-conversion does not require the stringent condition that the single-photon optomechanical coupling strength g be on the order of the mechanical resonance frequency ω(m). We provide analytical results for the frequency matching condition and derive the nonlinear coefficient. Numerical simulations on polariton pair generation are presented, showing that photonlike polaritons, phononlike polaritons, and mixed photon-phonon polaritons can be selectively generated. Such nonlinear interaction offers a promising way for harnessing the optomechanical nonlinearity to manipulate photons and phonons. PMID:24010437

  2. Cavity optomechanics mediated by a quantum two-level system

    PubMed Central

    Pirkkalainen, J.-M.; Cho, S.U.; Massel, F.; Tuorila, J.; Heikkilä, T.T.; Hakonen, P.J.; Sillanpää, M.A.

    2015-01-01

    Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation–pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion. PMID:25912295

  3. Cavity optomechanics mediated by a quantum two-level system

    NASA Astrophysics Data System (ADS)

    Pirkkalainen, J.-M.; Cho, S. U.; Massel, F.; Tuorila, J.; Heikkilä, T. T.; Hakonen, P. J.; Sillanpää, M. A.

    2015-04-01

    Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation-pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.

  4. Ultrastrong optomechanics incorporating the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Nation, P. D.; Suh, J.; Blencowe, M. P.

    2016-02-01

    We propose a superconducting circuit comprising a dc superconducting quantum interference device with a mechanically compliant arm embedded in a coplanar microwave cavity that realizes an optomechanical system with a degenerate or nondegenerate parametric interaction generated via the dynamical Casimir effect. For experimentally feasible parameters, this setup is capable of reaching the single-photon ultrastrong-coupling regime while simultaneously possessing a parametric coupling strength approaching the renormalized cavity frequency. This opens up the possibility of observing the interplay between these two fundamental nonlinearities at the single-photon level.

  5. A new optomechanical structural optimization approach: coupling FEA and raytracing sensitivity matrices

    NASA Astrophysics Data System (ADS)

    Riva, M.

    2012-09-01

    The design of astronomical instrument is growing in dimension and complexity following ELT class telescopes. The availability of new structural material like composite ones is asking for more robust and reliable designing numerical tools. This paper wants to show a new opto-mechanical optimization approach developed starting from a previously developed integrated design framework. The Idea is to reduce number of iteration in a multi- variable structural optimization taking advantage of the embedded sensitivity routines that are available both in FEA software and in raytracing ones. This approach provide reduced iteration number mainly in case of high number of structural variable parameters.

  6. Fabrication and Testing of Microfluidic Optomechanical Oscillators

    PubMed Central

    Han, Kewen; Kim, Kyu Hyun; Kim, Junhwan; Lee, Wonsuk; Liu, Jing; Fan, Xudong; Carmon, Tal; Bahl, Gaurav

    2014-01-01

    Cavity optomechanics experiments that parametrically couple the phonon modes and photon modes have been investigated in various optical systems including microresonators. However, because of the increased acoustic radiative losses during direct liquid immersion of optomechanical devices, almost all published optomechanical experiments have been performed in solid phase. This paper discusses a recently introduced hollow microfluidic optomechanical resonator. Detailed methodology is provided to fabricate these ultra-high-Q microfluidic resonators, perform optomechanical testing, and measure radiation pressure-driven breathing mode and SBS-driven whispering gallery mode parametric vibrations. By confining liquids inside the capillary resonator, high mechanical- and optical- quality factors are simultaneously maintained. PMID:24962013

  7. Negative nonlinear damping of a multilayer graphene mechanical resonator

    NASA Astrophysics Data System (ADS)

    Singh, Vibhor; Shevchuk, Olga; Blanter, Ya. M.; Steele, Gary A.

    2016-06-01

    We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induced transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction further, we observe instabilities in the mechanical response.

  8. Optomechanical down-conversion

    NASA Astrophysics Data System (ADS)

    Groeblacher, Simon; Hofer, Sebastian; Wieczorek, Witlef; Vanner, Michael; Hammerer, Klemens; Aspelmeyer, Markus

    2011-03-01

    One of the central interactions in quantum optics is two-mode squeezing, also known as down-conversion. It has been used in a multitude of pioneering experiments to demonstrate non-classical states of light and it is at the heart of generating quantum entanglement in optical fields. Here we demonstrate first experimental results towards the optomechanical analogue, in which an optical and a mechanical mode interact via a two-mode squeezing operation. In addition, we make use of the fact that large optomechanical coupling strengths provide access to an interaction regime beyond the rotating wave approximation. This allows for simultaneous cooling of the mechanical mode, which will eventually enable the preparation of pure initial mechanical states and is hence an important precondition to achieve the envisioned optomechanical entanglement.

  9. Nonlinear optomechanical detection for Majorana fermions via a hybrid nanomechanical system

    PubMed Central

    2014-01-01

    The pursuit for detecting the existence of Majorana fermions is a challenging task in condensed matter physics at present. In this work, we theoretically propose a novel nonlinear optical method for probing Majorana fermions in the hybrid semiconductor/superconductor heterostructure. Our proposal is based on a hybrid system constituted by a quantum dot embedded in a nanomechanical resonator. With this method, the nonlinear optical Kerr effect presents a distinct signature for the existence of Majorana fermions. Further, the vibration of the nanomechanical resonator will enhance the nonlinear optical effect, which makes the Majorana fermions more sensitive to be detected. This proposed method may provide a potential supplement for the detection of Majorana fermions. PMID:24708555

  10. Effect of nonlinear nonlinear coupling to a pure dephasing model

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2015-03-01

    We investigate the influence of the nonlinear coupling to the coherence of a pure dephasing model. The total system consists of a qubit and a Bosonic bath, which are coupled by an interaction HI =g1σz ⊗ x +g2σz ⊗x2 with x =1/√{ 2} (a +a†) . It's shown that no matter how small g2 is, the long time behavior of the coherence is significantly changed by the nonlinear coupling for free induction decay (FID), while the effect of g1 can be neglected as long as g1 is much smaller than the enegy splitting of the qubit. In the case that many-pulse dynamical decoupling control is exerted on the qubit, g2 also modulates the oscillation of the coherence. Our results indicate that the nonlinear coupling must be taken into account for long time dynamics.

  11. Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system.

    PubMed

    Cai, Qiu-Hua; Xiao, Yin; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-09-01

    We propose a scheme for generating the squeezing of a mechanical mode and the anti-bunching of photonic modes in an optomechanical system. In this system, there are two photonic modes (the left cavity-mode and the right cavity-mode) and one mechanical mode. Both the left cavity-mode and the right cavity-mode are driven by two lasers, respectively. The power of the driving lasers and the detuning between them play a key role in generating squeezing of the mechanical mode. We find that the squeezing of the mechanical mode can be achieved even at a high temperature by increasing the power of the driving lasers. We also find that the cavity-modes can show photonic anti-bunching under suitable conditions. PMID:27607612

  12. Broadband tuning of optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2011-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  13. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    NASA Astrophysics Data System (ADS)

    Rivière, R.; Arcizet, O.; Schliesser, A.; Kippenberg, T. J.

    2013-04-01

    We developed an apparatus to couple a 50-μm diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550 nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65 K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability, and cryogenic cooling.

  14. Cavity optomechanics - Manipulating mechanical motion at the quantum level

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, Andreas

    2014-03-01

    Cavity optomechanics is a rapidly-growing field in which mechanical degrees of freedom are coupled to modes of the electromagnetic field inside optical or microwave resonators. These devices may lead to ultra-sensitive mass and force sensors, provide long-range interaction between distant qubits, and serve as probes of quantum mechanics at increasingly large mass and length scales [for a review see e.g. Physics Today 65, 29 (2012)]. Adapting laser-cooling techniques from atomic physics several experiments have recently observed mechanical motion close to the quantum ground-state. This paves the way for exploiting mechanical systems in the quantum regime. In this talk I will address three problems. First, I will demonstrate that signatures of the intrinsically nonlinear interaction between light and mechanical motion in cavity optomechanical systems can be observed even when the cavity line width exceeds the optomechanical coupling [PRL 111, 053603 (2013)]. Second, I will discuss optomechanical systems in which the position of a mechanical oscillator modulates the line width of the cavity [NJP 15, 045017 (2013) and PRA 88, 023850 (2013)]. Finally, I will present a recent study on synchronization in a self-sustained oscillator coupled to an external harmonic drive [arXiv:1307.7044]. Work done in collaboration with Kjetil Børkje, Christoph Bruder, Steven M. Girvin, John D. Teufel, Stefan Walter, and Talitha Weiss.

  15. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode

    PubMed Central

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-01-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 104 at 8.3 · 10−3 mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586

  16. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode.

    PubMed

    Baldacci, Lorenzo; Pitanti, Alessandro; Masini, Luca; Arcangeli, Andrea; Colangelo, Francesco; Navarro-Urrios, Daniel; Tredicucci, Alessandro

    2016-01-01

    We demonstrate the use of a compound optical cavity as linear displacement detector, by measuring the thermal motion of a silicon nitride suspended membrane acting as the external mirror of a near-infrared Littrow laser diode. Fluctuations in the laser optical power induced by the membrane vibrations are collected by a photodiode integrated within the laser, and then measured with a spectrum analyzer. The dynamics of the membrane driven by a piezoelectric actuator is investigated as a function of air pressure and actuator displacement in a homodyne configuration. The high Q-factor (~3.4 · 10(4) at 8.3 · 10(-3) mbar) of the fundamental mechanical mode at ~73 kHz guarantees a detection sensitivity high enough for direct measurement of thermal motion at room temperature (~87 pm RMS). The compound cavity system here introduced can be employed as a table-top, cost-effective linear displacement detector for cavity optomechanics. Furthermore, thanks to the strong optical nonlinearities of the laser compound cavity, these systems open new perspectives in the study of non-Markovian quantum properties at the mesoscale. PMID:27538586

  17. Quantum Optomechanics with Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Safavi-Naeini, Amir H.

    Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation. Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.

  18. Spatiotemporal coupling in dispersive nonlinear planar waveguides

    NASA Astrophysics Data System (ADS)

    Ryan, Andrew T.; Agrawal, Govind P.

    1995-12-01

    The multidimensional nonlinear Schrodinger equation governs the spatial and temporal evolution of an optical field inside a nonlinear dispersive medium. Although spatial (diffractive) and temporal (dispersive) effects can be studied independently in a linear medium, they become mutually coupled in a nonlinear medium. We present the results of numerical simulations showing this spatiotemporal coupling for ultrashort pulses propagating in dispersive Kerr media. We investigate how spatiotemporal coupling affects the behavior of the optical field in each of the four regimes defined by the type of group-velocity dispersion (normal or anomalous) and the type of nonlinearity (focusing or defocusing). We show that dispersion, through spatiotemporal coupling, can either enhance or suppress self-focusing and self-defocusing. Similarly, we demonstrate that diffraction can either enhance or suppress pulse compression or broadening. We also discuss how these effects can be controlled with optical phase modulation, such as that provided by a lens (spatial phase modulation) or frequency chirping (temporal phase modulation). Copyright (c) 1995 Optical Society of America

  19. Single-polariton optomechanics.

    PubMed

    Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan

    2014-01-10

    This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime. PMID:24483897

  20. Solitary waves in nonlinear coupled incommensurate chains

    NASA Astrophysics Data System (ADS)

    Dikandé, A. M.; Kofané, T. C.

    1994-01-01

    We present dynamical theory of soliton excitations in nonlinear coupled incommensurate chains which consists of two deformable chains of different atomic species, each with its own chemical potential, on the same substrate. In the continuum approximation, the motion equations are a set of coupled Sine-Gordon equations. The soliton solutions of these coupled equations are studied in detail. It has been shown that the frequency of the internal oscillations depends on the coupling parameter. The interaction energy between the two weakly coupled Sine-Gordon systems has been found. Results of the dynamical theory have been related to the transport properties in organic conductors such as TTF-TCNQ, KCP and others. Indeed, we have calculated some meaningful physical parameters of these compounds within the soliton limit, and discussed different types of behaviors shown at the transition with respect to variations of the physical parameters.

  1. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Roelli, Philippe; Galland, Christophe; Piro, Nicolas; Kippenberg, Tobias J.

    2016-02-01

    The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction. We thereby reveal an enhancement mechanism not considered before: dynamical backaction amplification of molecular vibrations. We first map the system onto the canonical Hamiltonian of cavity optomechanics, in which the molecular vibration and the plasmon are parametrically coupled. We express the vacuum optomechanical coupling rate for individual molecules in plasmonic ‘hot-spots’ in terms of the vibrational mode's Raman activity and find it to be orders of magnitude larger than for microfabricated optomechanical systems. Remarkably, the frequency of commonly studied molecular vibrations can be comparable to or larger than the plasmon's decay rate. Together, these considerations predict that an excitation laser blue-detuned from the plasmon resonance can parametrically amplify the molecular vibration, leading to a nonlinear enhancement of Raman emission that is not predicted by the conventional theory. Our optomechanical approach recovers known results, provides a quantitative framework for the calculation of cross-sections, and enables the design of novel systems that leverage dynamical backaction to achieve additional, mode-selective enhancements. It also provides a quantum mechanical framework to analyse plasmon-vibrational interactions in terms of molecular quantum optomechanics.

  2. Nonlinearly Coupled Superconducting Lumped Element Resonators

    NASA Astrophysics Data System (ADS)

    Collodo, Michele C.; Potočnik, Anton; Rubio Abadal, Antonio; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    We study SQUID-mediated tunable coupling between two superconducting on-chip resonators in the microwave frequency range. In this circuit QED implementation, we employ lumped-element type resonators, which consist of Nb thin film structured into interdigitated finger shunt capacitors and meander inductors. A SQUID, functioning as flux dependent and intrinsically nonlinear inductor, is placed as a coupling element together with an interdigitated capacitor between the two resonators (cf. A. Baust et al., Phys Rev. B 91 014515 (2015)). We perform a spectroscopic measurement in a dilution refrigerator and find the linear photon hopping rate between the resonators to be widely tunable as well as suppressible for an appropriate choice of parameters, which is made possible due to the interplay of inductively and capacitively mediated coupling. Vanishing linear coupling promotes nonlinear effects ranging from onsite- to cross-Kerr interaction. A dominating cross-Kerr interaction related to this configuration is notable, as it induces a unique quantum state. In the course of analog quantum simulations, such elementary building blocks can serve as a precursor for more complex geometries and thus pave the way to a number of novel quantum phases of light

  3. Coupled oscillator model for nonlinear gravitational perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Zhang, Fan; Green, Stephen R.; Lehner, Luis

    2015-04-01

    Motivated by the gravity-fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although born out of the gravity-fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, we expect its introduction to simplify the often highly technical analytical exploration of nonlinear gravitational dynamics.

  4. Realistic opto-mechanical simulation and tolerancing of an automotive optical transmitter coupling system

    NASA Astrophysics Data System (ADS)

    Vervaeke, Michael; Moens, Els; Meuret, Youri; Ottevaere, Heidi; Van Buggenhout, Carl; De Pauw, Piet; Thienpont, Hugo

    2010-05-01

    The advent of Plastic Optical Fibre (POF) opened perspectives for numerous applications in the field of datacommunications. POF is increasingly popular in the automotive industry as a robust, lightweight, electromagnetic interference free, easy and cheap to install alternative to electrical wiring for high-speed entertainment, navigation and data acquisition systems in cars. The main challenge for the introduction of datacommunication systems based on POF is imposed by the working conditions of automotive applications: systems should remain fully functional in a temperature range from -40 °C to +115 °C . Furthermore, standardisation and mechanical design considerations put a number of other boundary conditions. We designed a misalignment-tolerant optical coupling system according to the Media Oriented Systems Transport standard (MOST) to convey the divergent beam from a Resonant Cavity Light Emitting Diode (RCLED) into a Step-Index (SI) multimode POF mounted in a detachable ferrule. In this contribution we describe the methodology to synthesize the dimensions and tolerances on the optical components in the coupling system. A Monte Carlo optimisation algorithm on the full three-dimensional (3D) description of the complete RCLED package and detachable POF ferrule was used to allow a realistic modelling of all misalignments that could occur in the production chain. We select the best suited system according to manufacturing and assembly capabilities as well as its suitability for automotive applications.

  5. Quantum Optomechanical Heat Engine

    NASA Astrophysics Data System (ADS)

    Zhang, Keye; Bariani, Francesco; Meystre, Pierre

    2014-05-01

    We investigate theoretically a quantum optomechanical realization of a heat engine. The coupling between the cavity field and the mechanical resonator results in normal mode excitations whose quantum character depends on the pump detuning and on the coupling strength. By varying that detuning it is possible to transform their character from predominantly phonon-like into photon-like modes of different frequencies and coupled to two thermal reservoirs at different temperatures. We exploit this property to propose an Otto cycle along one branch of the normal modes and calculate its total work and efficiency. We discuss basic properties of that scheme for different optomechanical systems: in the optical domain it is possible to extract work from the thermal energy of a mechanical resonator, while in the microwave range one can in principle exploit the cycle to extract work from the blackbody radiation background coupled to an ultra-cold atomic ensemble. We ackowledge financial support from National Basic Research Program of China, NSF, ARO and the DARPA QuaSAR and ORCHID programs.

  6. Coupled Oscillator Model for Nonlinear Gravitational Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Zhang, Fan; Green, Stephen; Lehner, Luis

    2015-04-01

    Motivated by the fluid/gravity correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein's equation to the equations of motion of a series of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism with an asymptotically AdS black-brane spacetime, where the equations of motion for the oscillators are shown to be equivalent to the Navier-Stokes equation for the boundary fluid in the mode-expansion picture. We thereby expand on the explicit correspondence connecting the fluid and gravity sides for this particular physical set-up. Perhaps more importantly, we expect this formalism to remain valid in more general spacetimes, including those without a fluid/gravity correspondence. In other words, although born out of the correspondence, the formalism survives independently of it and has a much wider range of applicability.

  7. Nonlinearly enhanced sensing in coupled optical microresonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    Optical microresonators that confine photons to micron dimensions with low loss at telecommunication wavelengths play an important role in building modern all-optical integrated circuit. Such systems attract a considerable amount of interest because of the compact size and easy fabrication with state-of-art technologies. One can use the microresonators as sensors, optical delay lines, filters, interferometers, and lasers. In this thesis, we investigate nonlinear effects for sensing application in microring resonators. We theoretically analyze the effect of the Kerr index, two-photon absorption, free-carrier absorption, and free-carrier dispersion. In particular, selfphase and cross-phase modulations caused by the Kerr index are shown to lead to a bifurcation of degenerate resonator mode intensities. Using coupled mode equations, we present the transmission properties of our resonator system with nonlinear effects included. New sensing mechanisms based on the nonlinear bistability and bifurcation are proposed to enhance the transmission's sensitivity to perturbations of the resonance frequency of the resonators. This is used to develop models of ultra-sensitive gyroscopes and refractive index sensors for detection of chemical analytes. The bifurcation dramatically enhances the Sagnac phase shift and therefore substantially lowers the minimum detectable rotation rate (< 1deg/hour) in a micro-resonator gyroscope. For index sensing, nonlinearities enhance the resonance frequency shift and a theoretical detection limit of 10-11 RIU is derived assuming common noises in micro-optical systems. In this work, we focus on silicon-on-insulator resonators but we also consider different platforms, including silicon oxynitride, Hydex, and chalcogenide glasses, and discuss the advantages of each. The results we show here highlight novel mechanisms that can be used in practical applications to improve the performance of a microresonator based optical sensor.

  8. Optimal State Estimation for Cavity Optomechanical Systems.

    PubMed

    Wieczorek, Witlef; Hofer, Sebastian G; Hoelscher-Obermaier, Jason; Riedinger, Ralf; Hammerer, Klemens; Aspelmeyer, Markus

    2015-06-01

    We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering. By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional system state, i.e., conditioned on previous measurements, with a minimal least-squares estimation error. We apply this method to estimate the mechanical state, as well as optomechanical correlations both in the weak and strong coupling regime. The application of the Kalman filter is an important next step for achieving real-time optimal (classical and quantum) control of cavity optomechanical systems. PMID:26196621

  9. Piezo-optomechanical circuits

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Krishna; Davanco, Marcelo; Ilic, B. Robert; Srinivasan, Kartik

    Coherent links between the optical, radio frequency (RF), and mechanical domains are critical for applications ranging from quantum state transfer between the RF and optical domains to signal processing in the acoustic domain for microwave photonics. We develop such a piezo optomechanical circuit platform in GaAs, in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. GaAs allows us to exploit the photoelastic effect to engineer cavities with strong optomechanical coupling (g0/2 π ~ 1.1 MHz) and the piezoelectric effect to couple RF fields to mechanical motion through surface acoustic waves, which are routed on-chip using phononic crystal waveguides. This platform enables optical readout of electrically-injected mechanical states with an average coherent intracavity phonon number as small as ~0.05 and the ability to drive mechanical motion with equal facility through either the optical or electrical channel. This is used to demonstrate a novel acoustic wave interference effect in which optically-driven motion is completely cancelled by electrically-driven motion, and vice versa. As an application of this, we present time-domain measurements of optically-controlled acoustic pulse propagation. Secondary Affiliation is Maryland Nanocenter, University of Maryland, College Park, MD.

  10. Effects of dipole-dipole interaction on the single-photon transport in a hybrid atom-optomechanical system coupling to a single-mode waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Tan, Lei

    2016-07-01

    We theoretically investigate the single-photon transport in a hybrid atom-optomechanical system embedded with two dipole-coupled two-level atoms, interacting with a single-mode optical waveguide. The transmission amplitudes for the single-photon propagation in such a hybrid system are obtained via a real-space approach. It is shown that the dipole-dipole interaction can significantly change the amplitudes and symmetries of the single-photon spectra. Interestingly, we find that the dipole-dipole interaction plays a similar role as does the positive atom-cavity detuning. In addition, the influence from the atomic dissipation can be weakened by increasing the dipole-dipole interaction.

  11. Quadratic Measurement and Conditional State Preparation in an Optomechanical System

    NASA Astrophysics Data System (ADS)

    Brawley, George; Vanner, Michael; Bowen, Warwick; Schmid, Silvan; Boisen, Anja

    2014-03-01

    An important requirement in the study of quantum systems is the ability to measure non-linear observables at the level of quantum fluctuations. Such measurements enable the conditional preparation of highly non-classical states. Nonlinear measurement, although achieved in a variety of quantum systems including microwave cavity modes and optical fields, remains an outstanding problem in both electromechanical and optomechanical systems. To the best of our knowledge, previous experimental efforts to achieve nonlinear measurement of mechanical motion have not yielded strong coupling, nor the observation of quadratic mechanical motion. Here using a new technique reliant on the intrinsic nonlinearity of the optomechanical interaction, we experimentally observe for the first time a position squared (x2) measurement of the room-temperature Brownian motion of a nanomechanical oscillator. We utilize this measurement to conditionally prepare non-Gaussian bimodal states, which are the high temperature classical analogue of quantum macroscopic superposition states, or cat states. In the future with the aid of cryogenics and state-of-the-art optical cavities, our approach will provide a viable method of generating quantum superposition states of mechanical oscillators. This research was funded by the ARC Center of Excellence for Engineered Quantum Systems.

  12. Nonlinear interaction of meta-atoms through optical coupling

    SciTech Connect

    Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A.; Powell, D. A.; Shadrivov, I. V.; Kivshar, Yu. S.; Lapine, M.; McPhedran, R. C.

    2014-01-06

    We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.

  13. Phoxonic crystals and cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Djafari-Rouhani, Bahram; El-Jallal, Said; Pennec, Yan

    2016-05-01

    Phoxonic crystals are dual phononic/photonic crystals exhibiting simultaneously band gaps for both types of excitations. Therefore, they have the ability to confine phonons and photons in the same cavity and in turn allow the enhancement of their interaction. In this paper, we review some of our theoretical works on cavity optomechanical interactions in different types of phoxonic crystals, including two-dimensional, slab, and nanobeam structures. Two mechanisms are behind the phonon-photon interaction, namely the photoelastic and the moving interface effects. Coupling rates of a few MHz are obtained with high-frequency phonons of a few GHz. Finally, we give some preliminary results about the optomechanical interaction when a metallic nanoparticle is introduced into the cavity, giving rise to coupled photon-plasmon modes or, in the case of very small particles, to an enhancement of the electric field at the position of the particle. xml:lang="fr"

  14. Optomechanical Metamaterials: Dirac polaritons, Gauge fields, and Instabilities

    NASA Astrophysics Data System (ADS)

    Peano, Vittorio; Schmidt, Michael; Marquardt, Florian

    2014-03-01

    Freestanding photonic crystals can be used to trap both light and mechanical vibrations. These ``optomechanical crystal'' structures have already been experimentally demonstrated to yield strong coupling between a photon mode and a phonon mode, co-localized at a single defect site. Future devices may feature a regular superlattice of such defects, turning them into ``optomechanical arrays.'' We predict that tailoring the optomechanical band structure of such arrays can be used to implement Dirac physics of photons and phonons, to create a photonic gauge field via mechanical vibrations, and to observe a novel optomechanical instability. ERC Starting Grant OPTOMECH and via the DARPA program ORCHID.

  15. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  16. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis. PMID:24663947

  17. Optomechanic interactions in phoxonic cavities

    SciTech Connect

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan; El-Jallal, Said

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  18. Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling

    SciTech Connect

    Barzanjeh, Sh.; Naderi, M. H.; Soltanolkotabi, M.

    2011-12-15

    In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The system under consideration is formed by a Fabry-Perot cavity with a thin vibrating end mirror and a two-level atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe the normal mode splitting into three modes.

  19. Cavity Optomechanics at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  20. Single-photon quadratic optomechanics

    PubMed Central

    Liao, Jie-Qiao; Nori, Franco

    2014-01-01

    We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the optomechanical coupling strength, the mechanical frequency, and the cavity-field decay rate. In particular, we clarify the conditions for the phonon sidebands to be visible. We also study the photon-phonon entanglement for the long-time emission and scattering states. The linear entropy is employed to characterize this entanglement by treating it as a bipartite one between a single mode of phonons and a single photon. PMID:25200128

  1. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  2. Nonlinear spin wave coupling in adjacent magnonic crystals

    NASA Astrophysics Data System (ADS)

    Sadovnikov, A. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.; Nikitov, S. A.

    2016-07-01

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  3. Unifying Brillouin scattering and cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries

    2016-05-01

    So far, Brillouin scattering and cavity optomechanics have been mostly disconnected branches of research, although both deal with photon-phonon coupling. This begs for the development of a broader theory that contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities, and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects, such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities, and gain coefficients, thus reflecting the similarities in the underlying physics.

  4. Conditional phase gate using an optomechanical resonator

    NASA Astrophysics Data System (ADS)

    Gea-Banacloche, Julio; Német, Nikolett

    2014-05-01

    We explore the possibility of using an optomechanical resonator to induce a conditional phase gate for single photons. The problem provides an illustration of the application to optomechanical systems of a recently developed input-output formalism for single- (or few-) photon states of the radiation field. At the two-photon level, we find significant departures from expectations based on a semiclassical treatment. We also find a tradeoff between the maximum achievable conditional phase and the fidelity of the final state, consistent with other multimode studies of conditional phases based on optical nonlinearities.

  5. Nonlinear Walecka models and point-coupling relativistic models

    SciTech Connect

    Lourenco, O.; Amaral, R. L. P. G.; Dutra, M.; Delfino, A.

    2009-10-15

    We study hadronic nonlinear point-coupling (NLPC) models which reproduce numerically the binding energy, the incompressibility, and the nucleon effective mass at the nuclear matter saturation obtained by different nonlinear Walecka (NLW) models. We have investigated their behaviors as functions of the nuclear matter density to observe how they deviate from known NLW models. In our study we present a meson-exchange modified nonlinear Walecka model (MNLW) which exactly underlies a nonlinear point-coupling model (NLPC) presenting third- and fourth-order scalar density self-couplings. A discussion about naive dimensional analysis (NDA) and naturalness is also provided for a large class of NLW and NLPC models. At finite temperature, critical and flash parameters of both approaches are presented.

  6. PT symmetry breaking and nonlinear optical isolation in coupled microcavities

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Chong, Y. D.

    2016-04-01

    We perform a theoretical study of nonlinear optical isolator devices based on coupled microcavities with gain and loss. Using coupled-mode theory, we derive a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT-breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the PT transition point. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, determined by the ratio of the couplings. This could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be switched on or off using tiny variations in the inter-resonator separation.

  7. Slow light in nonlinear photonic crystal coupled-cavity waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Na; Wang, Yige; Ren, Qingqing; Zhu, Li; Yuan, Minmin; An, Guimin

    2014-04-01

    Nonlinear photonic crystals can be formed by inserting Kerr-type nonlinear dielectric rods into perfect photonic crystals. Based on nonlinear photonic crystal, nonlinear photonic crystal coupled-cavity waveguide is constructed and its slow light properties are studied by using the Plane Wave expansion Method (PWM). Both single-defect coupled cavity and two-defect coupled cavity are proposed to optimize slow light properties. The result shows that using single-defect coupled cavity in waveguide is beneficial to obtain larger Normalized Delay-Bandwidth Product (NDBP) but it contributes little to decrease the group velocity of light and enlarging Q factor and delay time; While using two-defect cavity in waveguide can efficiently reduce the group velocity of light and enlarge Q factor and delay time. Compared to normal structures, our new designed nonlinear photonic crystal coupled cavity waveguide owns group velocity that is three magnitudes smaller than the vacuum speed of light. Delay time is of magnitude order of 10 ns and Q factor is of magnitude order of 1000, it means less loss and higher ability of storing energy.

  8. Integrated waveguide-DBR microcavity opto-mechanical system.

    PubMed

    Pruessner, Marcel W; Stievater, Todd H; Khurgin, Jacob B; Rabinovich, William S

    2011-10-24

    Cavity opto-mechanics exploits optical forces acting on mechanical structures. Many opto-mechanics demonstrations either require extensive alignment of optical components for probing and measurement, which limits the number of opto-mechanical devices on-chip; or the approaches limit the ability to control the opto-mechanical parameters independently. In this work, we propose an opto-mechanical architecture incorporating a waveguide-DBR microcavity coupled to an in-plane micro-bridge resonator, enabling large-scale integration on-chip with the ability to individually tune the optical and mechanical designs. We experimentally characterize our device and demonstrate mechanical resonance damping and amplification, including the onset of coherent oscillations. The resulting collapse of the resonance linewidth implies a strong increase in effective mechanical quality-factor, which is of interest for high-resolution sensing. PMID:22109043

  9. Nonlinear wave propagation in strongly coupled dusty plasmas.

    PubMed

    Veeresha, B M; Tiwari, S K; Sen, A; Kaw, P K; Das, A

    2010-03-01

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain. PMID:20365882

  10. Nonlinear wave propagation in strongly coupled dusty plasmas

    SciTech Connect

    Veeresha, B. M.; Tiwari, S. K.; Sen, A.; Kaw, P. K.; Das, A.

    2010-03-15

    The nonlinear propagation of low-frequency waves in a strongly coupled dusty plasma medium is studied theoretically in the framework of the phenomenological generalized hydrodynamic (GH) model. A set of simplified model nonlinear equations are derived from the original nonlinear integrodifferential form of the GH model by employing an appropriate physical ansatz. Using standard perturbation techniques characteristic evolution equations for finite small amplitude waves are then obtained in various propagation regimes. The influence of viscoelastic properties arising from dust correlation contributions on the nature of nonlinear solutions is discussed. The modulational stability of dust acoustic waves to parallel perturbation is also examined and it is shown that dust compressibility contributions influenced by the Coulomb coupling effects introduce significant modification in the threshold and range of the instability domain.

  11. Dynamic stabilization of an optomechanical oscillator

    NASA Astrophysics Data System (ADS)

    Seok, H.; Wright, E. M.; Meystre, P.

    2014-10-01

    Quantum optomechanics offers the potential to investigate quantum effects in macroscopic quantum systems in extremely well-controlled experiments. In this paper we discuss one such situation, the dynamic stabilization of a mechanical system such as an inverted pendulum. The specific example that we study is a "membrane-in-the-middle" mechanical oscillator coupled to a cavity field via a quadratic optomechanical interaction, with cavity damping the dominant source of dissipation. We show that the mechanical oscillator can be dynamically stabilized by a temporal modulation of the radiation pressure force. We investigate the system both in the classical and quantum regimes highlighting similarities and differences.

  12. Macroscopic optomechanical superposition via periodic qubit flipping

    NASA Astrophysics Data System (ADS)

    Ge, Wenchao; Zubairy, M. Suhail

    2015-01-01

    We propose a scheme to generate macroscopic superpositions of well-distinguishable coherent states in an optomechanical system via periodic qubit flipping. Our scheme does not require the single-photon strong-coupling rate of an optomechanical system. The generated mechanical superposition state can be reconstructed using mechanical quantum-state reconstruction. The proposed scheme relies on recycling of an atom, fast atomic qubit flipping, and coherent state mapping between a single-photon superposition state and an atomic superposition state. We discuss the experimental feasibility of our proposal under current technology.

  13. Sensitivity of cavity optomechanical field sensors

    NASA Astrophysics Data System (ADS)

    Knittel, J.; Forstner, S.; Swaim, J.; Rubinsztein-Dunlop, H.; Bowen, W. P.

    2012-02-01

    This article presents a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying strain across the sensor. The effect of this strain is accounted for by separating the mechanical motion of the sensor into eigenmodes, each modeled by a simple harmonic oscillator. The force induced on each oscillator can then be determined from an overlap integral between strain and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected.

  14. Nonlinear wave propagation in a strongly coupled collisional dusty plasma

    SciTech Connect

    Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis

    2011-06-15

    The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched.

  15. Nonlinear wave propagation in a strongly coupled collisional dusty plasma.

    PubMed

    Ghosh, Samiran; Gupta, Mithil Ranjan; Chakrabarti, Nikhil; Chaudhuri, Manis

    2011-06-01

    The propagation of a nonlinear low-frequency mode in a strongly coupled dusty plasma is investigated using a generalized hydrodynamical model. For the well-known longitudinal dust acoustic mode a standard perturbative approach leads to a Korteweg-de Vries (KdV) soliton. The strong viscoelastic effect, however, introduced a nonlinear forcing and a linear damping in the KdV equation. This novel equation is solved analytically to show a competition between nonlinear forcing and dissipative damping. The physical consequence of such a solution is also sketched. PMID:21797497

  16. Observing spin optodynamical analog of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Gerber, Justin; Kohler, Jonathan; Spethmann, Nicolas; Schreppler, Sydney; Stamper-Kurn, Dan

    2016-05-01

    Cavity Optomechanics has been realized in many diverse systems and led to many interesting results such as ponderomotive squeezing of light, beyond-SQL measurement sensitivity, and squeezing of mechanical oscillators. Optical cavities also allow sensitive measurements of the spin of an atomic ensemble. It has been proposed to utilize this sensitivity to realize an analog of optomechanics by measuring the precession of small excitations of a spin-oscillator around a transverse magnetic field. I will present our recent work in which we realize optomechanical analogs in our system such as cavity-assisted cooling and amplification and optical spring shifts. In addition, the presence of a high-energy `ground state' of the spin oscillator allows the realization of an effective negative mass oscillator which is demonstrated by an inverted sideband asymmetry. In our ongoing work we attempt to realize coherent quantum noise cancelation by coupling spin oscillation with mechanical oscillation.

  17. Non-linear optics of ultrastrongly coupled cavity polaritons

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth

    2016-05-01

    Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.

  18. Applications of cavity optomechanics

    SciTech Connect

    Metcalfe, Michael

    2014-09-15

    “Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  19. Nonlinear Generalized Hydrodynamic Wave Equations in Strongly Coupled Dusty Plasmas

    SciTech Connect

    Veeresha, B. M.; Sen, A.; Kaw, P. K.

    2008-09-07

    A set of nonlinear equations for the study of low frequency waves in a strongly coupled dusty plasma medium is derived using the phenomenological generalized hydrodynamic (GH) model and is used to study the modulational stability of dust acoustic waves to parallel perturbations. Dust compressibility contributions arising from strong Coulomb coupling effects are found to introduce significant modifications in the threshold and range of the instability domain.

  20. The properties of Stokes and anti-Stokes processes in a double-cavity optomechanical system

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Bo; Fu, Chang-Bao; Gu, Kai-Hui; Wang, Rong; Wu, Jin-Hui

    2013-11-01

    We study the nonlinear Stokes and anti-Stokes processes of a weak probe field relevant to normal mode splitting (NMS) in a double-cavity optomechanical system where a membrane oscillator is shared by two identical cavities. The two cavity modes experience an optomechanical coupling of same amplitudes but opposite signs when the membrane deviates from its equilibrium position due to the radiation pressures arising from two strong pump fields. Our calculations show that the critical power of left-cavity pump field above which the double-cavity system enters the NMS regime can be easily controlled by adjusting the right-cavity pump field in power. In addition, we show that various NMS features can be well examined by focusing on the spectral structure of an anti-Stokes signal generated in the four-wave-mixing process arising from optomechanical coupling. Last but not least we note that the anti-Stokes signal's generation is accompanied by the Stokes signal's amplification (absorption) in the absence (presence) of right-cavity pump field.

  1. Tunable high-order sideband spectra generation using a photonic molecule optomechanical system

    PubMed Central

    Cao, Cong; Mi, Si-Chen; Gao, Yong-Pan; He, Ling-Yan; Yang, Daquan; Wang, Tie-Jun; Zhang, Ru; Wang, Chuan

    2016-01-01

    A tunable high-order sideband spectra generation scheme is presented by using a photonic molecule optomechanical system coupled to a waveguide beyond the perturbation regime. The system is coherently driven by a two-tone laser consisting of a continuous-wave control field and a pulsed driving field which propagates through the waveguide. The frequency spectral feature of the output field is analyzed via numerical simulations, and we confirm that under the condition of intense and nanosecond pulse driving, the output spectrum exhibits the properties of high-order sideband frequency spectra. In the experimentally available parameter range, the output spectrum can be efficiently tuned by the system parameters, including the power of the driving pulse and the coupling rate between the cavities. In addition, analysis of the carrier-envelop phase-dependent effect of high-order sideband generation indicates that the system may present dependence upon the phase of the pulse. This may provide a further insight of the properties of cavity optomechanics in the nonlinear and non-perturbative regime, and may have potential applications in optical frequency comb and communication based on the optomechanical platform. PMID:26960430

  2. Tunable high-order sideband spectra generation using a photonic molecule optomechanical system.

    PubMed

    Cao, Cong; Mi, Si-Chen; Gao, Yong-Pan; He, Ling-Yan; Yang, Daquan; Wang, Tie-Jun; Zhang, Ru; Wang, Chuan

    2016-01-01

    A tunable high-order sideband spectra generation scheme is presented by using a photonic molecule optomechanical system coupled to a waveguide beyond the perturbation regime. The system is coherently driven by a two-tone laser consisting of a continuous-wave control field and a pulsed driving field which propagates through the waveguide. The frequency spectral feature of the output field is analyzed via numerical simulations, and we confirm that under the condition of intense and nanosecond pulse driving, the output spectrum exhibits the properties of high-order sideband frequency spectra. In the experimentally available parameter range, the output spectrum can be efficiently tuned by the system parameters, including the power of the driving pulse and the coupling rate between the cavities. In addition, analysis of the carrier-envelop phase-dependent effect of high-order sideband generation indicates that the system may present dependence upon the phase of the pulse. This may provide a further insight of the properties of cavity optomechanics in the nonlinear and non-perturbative regime, and may have potential applications in optical frequency comb and communication based on the optomechanical platform. PMID:26960430

  3. Nonlinear matter spectra in coupled quintessence

    SciTech Connect

    Saracco, F.; Pietroni, M.; Tetradis, N.; Pettorino, V.; Robbers, G.

    2010-07-15

    We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multicomponent matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is enhanced significantly by the extra coupling and can be at the 2%-3% level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.

  4. A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation

    NASA Astrophysics Data System (ADS)

    Doha, Eid; Bhrawy, Ali; Abdelkawy, Mohamed; Hafez, Ramy

    2014-02-01

    This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

  5. Nonlinearly coupled localized plasmon resonances: Resonant second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Ginzburg, Pavel; Krasavin, Alexey; Sonnefraud, Yannick; Murphy, Antony; Pollard, Robert J.; Maier, Stefan A.; Zayats, Anatoly V.

    2012-08-01

    The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.

  6. Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  7. The coupled nonlinear dynamics of a lift system

    SciTech Connect

    Crespo, Rafael Sánchez E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Picton, Phil E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan E-mail: stefan.kaczmarczyk@northampton.ac.uk E-mail: huijuan.su@northampton.ac.uk

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  8. Current density fluctuations, nonlinear coupling, and transport in MST

    SciTech Connect

    Prager, S.C.; Almagri, A.F.; Assadi, S.; Cekic, M.; Chapman, B.E.; Crocker, N.; Den Hartog, D.J.; Dexter, R.N.; Fiksel, G.; Fonck, R.J.; Henry, J.S.; Hokin, S.A.; Holly, D.J.; Ji, H.; Rempel, T.D.; Sarff, J.S.; Scime, E.; Shen, W.; Sidikman, K.L.; Sprott, J.C.; Stoneking, M.R.; Watts, C.

    1992-09-01

    New information on magnetic fluctuations and transport in toroidal devices has been obtained in the MST reversed field pinch through measurement of nonlinear coupling of three waves in k-space, and measurement of current density fluctuations. Measurements of nonlinear coupling of magnetic fluctuations reveals that (1) two poloidal mode number m = 1 modes couple strongly to an m = 2 mode, (2) toroidal mode coupling is broad extending up to n = 20, (3) these features agree with predictions for tearing fluctuations from a nonlinear MHD code, (4) during a sawtooth crash the number of modes involved in nonlinear interactions increases dramatically and the k-spectrum broadens simultaneously. Measurements of current density fluctuations over the outer 20% of the minor radius reveal that (1) low frequency fluctuations are consistent with tearing modes, (2) high frequency fluctuations are localized turbulence which maintains resonance with the equilibrium field as q changes with radius, (3) particle transport from magnetic fluctuations is ambipolar (i.e., <{delta}j{sub {parallel}}B{sub r}> = O).

  9. Collocation Method for Numerical Solution of Coupled Nonlinear Schroedinger Equation

    SciTech Connect

    Ismail, M. S.

    2010-09-30

    The coupled nonlinear Schroedinger equation models several interesting physical phenomena presents a model equation for optical fiber with linear birefringence. In this paper we use collocation method to solve this equation, we test this method for stability and accuracy. Numerical tests using single soliton and interaction of three solitons are used to test the resulting scheme.

  10. The coupled nonlinear dynamics of a lift system

    NASA Astrophysics Data System (ADS)

    Crespo, Rafael Sánchez; Kaczmarczyk, Stefan; Picton, Phil; Su, Huijuan

    2014-12-01

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  11. Nonlinear mode coupling in whispering-gallery-mode resonators

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Menyuk, Curtis R.

    2016-04-01

    We present a first-principles derivation of the coupled nonlinear Schrödinger equations that govern the interaction between two families of modes with different transverse profiles in a generic whispering-gallery-mode resonator. We find regions of modulational instability and the existence of trains of bright solitons in both the normal and the anomalous dispersion regime.

  12. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions

    NASA Astrophysics Data System (ADS)

    Lee, Jongwon; Tymchenko, Mykhailo; Argyropoulos, Christos; Chen, Pai-Yen; Lu, Feng; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Alù, Andrea; Belkin, Mikhail A.

    2014-07-01

    Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 104 picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

  13. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions.

    PubMed

    Lee, Jongwon; Tymchenko, Mykhailo; Argyropoulos, Christos; Chen, Pai-Yen; Lu, Feng; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Alù, Andrea; Belkin, Mikhail A

    2014-07-01

    Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface. PMID:24990746

  14. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    SciTech Connect

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R. ); Assadi, S. ); Sidikman, K.L. )

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m[sub 1] + m[sub 2] = m[sub 3] and n[sub 1] + n[sub 2] = n[sub 3] is measured by the bicoherency. In the RFP, m=l, n[approximately]2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.

  15. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    SciTech Connect

    Sarff, J.S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Stoneking, M.R.; Assadi, S.; Sidikman, K.L.

    1992-11-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. 19, 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in ``k-space. The strength of nonlinear three-wave interactions satisfying the sum rules m{sub 1} + m{sub 2} = m{sub 3} and n{sub 1} + n{sub 2} = n{sub 3} is measured by the bicoherency. In the RFP, m=l, n{approximately}2R/a (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two m=l modes coupled to an m=2 mode and the coupling of intermediate toroidal modes, e.g., n=6 and 7 coupled to n=13. These experimental bispectral features agree with predicted bispectral features derived from MHD computation. However, in the experiment, enhanced coupling occurs in the ``crash`` phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.

  16. Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus

    SciTech Connect

    Sarff, J.S.; Assadi, S.; Almagri, A.F.; Cekic, M.; Den Hartog, D.J.; Fiksel, G.; Hokin, S.A.; Ji, H.; Prager, S.C.; Shen, W.; Sidikman, K.L.; Stoneking, M.R. )

    1993-07-01

    Three-wave, nonlinear, tearing mode coupling has been measured in the Madison Symmetric Torus (MST) reversed-field pinch (RFP) [Fusion Technol. [bold 19], 131 (1991)] using bispectral analysis of edge magnetic fluctuations resolved in [ital k]-space.'' The strength of nonlinear three-wave interactions satisfying the sum rules [ital m][sub 1]+[ital m][sub 2]=[ital m][sub 3] and [ital n][sub 1]+[ital n][sub 2]=[ital n][sub 3] is measured by the bicoherency. In the RFP, [ital m]=1, [ital n][similar to]2[ital R]/[ital a] (6 for MST) internally resonant modes are linearly unstable and grow to large amplitude. Large values of bicoherency occur for two [ital m]=1 modes coupled to an [ital m]=2 mode and the coupling of intermediate toroidal modes, e.g., [ital n]=6 and 7 coupled to [ital n]=13. These experimental bispectral features agree with predicted bispectral features derived from magnetohydrodynamic (MHD) computation. However, in the experiment, enhanced coupling occurs in the crash'' phase of a sawtooth oscillation concomitant with a broadened mode spectrum suggesting the onset of a nonlinear cascade.

  17. Degenerate parametric oscillation in quantum membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos

    2016-02-01

    The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.

  18. Optomechanics in a Millikelvin Environment

    NASA Astrophysics Data System (ADS)

    Hauer, Bradley; MacDonald, Allison; Popowich, Greg; Kim, Paul; Fredrick, Aron; Rojas, Xavier; Davis, John

    2015-03-01

    As advances in technology continue to improve the quality and reduce the size of nanofabricated devices, we edge closer and closer to the prospect of observing quantized motion of a mesoscopic mechanical resonator. Measurements of such devices, which consist of billions to trillions of atoms, would provide an excellent test of the scales at which quantum mechanics is applicable. However, due to their relatively large effective masses, these devices must be cooled to mK temperatures to reach their quantum ground state. The field of cavity optomechanics, which has already achieved quantum limited measurement sensitivity, provides a promising avenue for performing such measurements. To this end, we have designed a tapered fiber optomechanical coupling apparatus, with full 3D control and real time imaging of the coupling environment, on the base plate of a dilution refrigerator. This experiment is capable of passively cooling devices to temperatures below 10 mK, at which oscillators with resonance frequencies as low as 150 MHz will be cooled to single phonon occupancy. In this talk, I will present preliminary measurements from this cutting edge system.

  19. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  20. Optomechanically induced stochastic resonance and chaos transfer between optical fields

    NASA Astrophysics Data System (ADS)

    Monifi, Faraz; Zhang, Jing; Özdemir, Şahin Kaya; Peng, Bo; Liu, Yu-Xi; Bo, Fang; Nori, Franco; Yang, Lan

    2016-06-01

    Chaotic dynamics has been reported in many physical systems and has affected almost every field of science. Chaos involves hypersensitivity to the initial conditions of a system and introduces unpredictability into its output. Thus, it is often unwanted. Interestingly, the very same features make chaos a powerful tool to suppress decoherence, achieve secure communication and replace background noise in stochastic resonance—a counterintuitive concept that a system's ability to transfer information can be coherently amplified by adding noise. Here, we report the first demonstration of chaos-induced stochastic resonance in an optomechanical system, as well as the optomechanically mediated chaos transfer between two optical fields such that they follow the same route to chaos. These results will contribute to the understanding of nonlinear phenomena and chaos in optomechanical systems, and may find applications in the chaotic transfer of information and for improving the detection of otherwise undetectable signals in optomechanical systems.

  1. Cavity optomechanics -- beyond the ground state

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  2. Geometric nonlinear formulation for thermal-rigid-flexible coupling system

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Liu, Jin-Yang

    2013-10-01

    This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.

  3. Geometric nonlinear formulation for thermal-rigid-flexible coupling system

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Liu, Jin-Yang

    2013-09-01

    This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.

  4. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Atul, J. K.; Sarkar, S.; Singh, S. K.

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed.

  5. Air-coupled detection of nonlinear Rayleigh surface waves to assess material nonlinearity.

    PubMed

    Thiele, Sebastian; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J

    2014-08-01

    This research presents a new technique for nonlinear Rayleigh surface wave measurements that uses a non-contact, air-coupled ultrasonic transducer; this receiver is less dependent on surface conditions than laser-based detection, and is much more accurate and efficient than detection with a contact wedge transducer. A viable experimental setup is presented that enables the robust, non-contact measurement of nonlinear Rayleigh surface waves over a range of propagation distances. The relative nonlinearity parameter is obtained as the slope of the normalized second harmonic amplitudes plotted versus propagation distance. This experimental setup is then used to assess the relative nonlinearity parameters of two aluminum alloy specimens (Al 2024-T351 and Al 7075-T651). These results demonstrate the effectiveness of the proposed technique - the average standard deviation of the normalized second harmonic amplitudes, measured at locations along the propagation path, is below 2%. Experimental validation is provided by a comparison of the ratio of the measured nonlinearity parameters of these specimens with ratios from the absolute nonlinearity parameters for the same materials measured by capacitive detection of nonlinear longitudinal waves. PMID:24836962

  6. Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Pina-Otey, Sebastian; Jiménez, Fernando; Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos

    2016-03-01

    Recent advances in the development of modern quantum technologies have opened the possibility of studying the interplay between spontaneous parametric down-conversion and optomechanics, two of the most fundamental nonlinear optical processes. Apart from practical reasons, such a scenario is very interesting from a fundamental point of view, because it allows exploration of the optomechanical interaction in the presence of a strongly quantum-correlated field, the spontaneously down-converted mode. In this work we analyze this problem from two approximate but valuable perspectives: the classical limit and the limit of small quantum fluctuations. We show that, in the presence of optomechanical coupling, the well-known classical phase diagram of the optical problem is modified by the appearance of additional dynamical instabilities. As for the quantum-mechanical description, we prove the ability of the squeezed down-converted field to cool down the mechanical motion not only to thermal but also to squeezed thermal mechanical states, and in a way that can be much less sensitive to the parameters (e.g., detuning of the driving laser) than standard sideband cooling.

  7. Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures

    SciTech Connect

    Zhao, Y.

    1996-12-01

    Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed.

  8. Optomechanical Dirac physics

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Peano, V.; Marquardt, F.

    2015-02-01

    Recent progress in optomechanical systems may soon allow the realization of optomechanical arrays, i.e. periodic arrangements of interacting optical and vibrational modes. We show that photons and phonons on a honeycomb lattice will produce an optically tunable Dirac-type band structure. Transport in such a system can exhibit transmission through an optically created barrier, similar to Klein tunneling, but with interconversion between light and sound. In addition, edge states at the sample boundaries are dispersive and enable controlled propagation of photon-phonon polaritons.

  9. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    NASA Astrophysics Data System (ADS)

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-03-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion.

  10. Nonlinear waves in coherently coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Congy, T.; Kamchatnov, A. M.; Pavloff, N.

    2016-04-01

    We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies the dynamics of the elementary excitations. The spectrum has two branches, which are affected in different ways. The upper branch experiences a modulational instability, which is stabilized by a long-wave-short-wave resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small dispersion it is described by a Korteweg-de Vries equation or by the Gardner equation, depending on the value of the parameters of the system.

  11. Semiclassical nonlinear response functions for coupled anharmonic vibrations

    SciTech Connect

    Gruenbaum, Scott M.; Loring, Roger F.

    2009-11-28

    Observables in linear and nonlinear infrared spectroscopy may be computed from vibrational response functions describing nuclear dynamics on a single electronic surface. We demonstrate that the Herman-Kluk (HK) semiclassical approximation to the quantum propagator yields an accurate representation of quantum coherence effects in linear and nonlinear response functions for coupled anharmonic oscillators. A considerable numerical price is paid for this accuracy; the calculation requires a multidimensional integral over a highly oscillatory integrand that also grows without bound as a function of evolution times. The interference among classical trajectories in the HK approximation produces quantization of good action variables. By treating this interference analytically, we develop a mean-trajectory (MT) approximation that requires only the propagation of classical trajectories linked by transitions in action. The MT approximation accurately reproduces coherence effects in response functions of coupled anharmonic oscillators in a regime in which the observables are strongly influenced by these interactions among vibrations.

  12. Multistable internal resonance in electroelastic crystals with nonlinearly coupled modes

    PubMed Central

    Kirkendall, Christopher R.; Kwon, Jae W.

    2016-01-01

    Nonlinear modal interactions have recently become the focus of intense research in micro- and nanoscale resonators for their use to improve oscillator performance and probe the frontiers of fundamental physics. However, our understanding of modal coupling is largely restricted to clamped-clamped beams, and lacking in systems with both geometric and material nonlinearities. Here we report multistable energy transfer between internally resonant modes of an electroelastic crystal plate and use a mixed analytical-numerical approach to provide new insight into these complex interactions. Our results reveal a rich bifurcation structure marked by nested regions of multistability. Even the simple case of two coupled modes generates a host of topologically distinct dynamics over the parameter space, ranging from the usual Duffing bistability to complex multistable behaviour and quasiperiodic motion. PMID:26961749

  13. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  14. Controllable chaos in hybrid electro-optomechanical systems

    PubMed Central

    Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying

    2016-01-01

    We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication. PMID:26948505

  15. Controllable chaos in hybrid electro-optomechanical systems.

    PubMed

    Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying

    2016-01-01

    We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication. PMID:26948505

  16. Controllable chaos in hybrid electro-optomechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Lü, Xin-You; Ma, Jin-Yong; Xiong, Hao; Si, Liu-Gang; Wu, Ying

    2016-03-01

    We investigate the nonlinear dynamics of a hybrid electro-optomechanical system (EOMS) that allows us to realize the controllable opto-mechanical nonlinearity by driving the microwave LC resonator with a tunable electric field. A controllable optical chaos is realized even without changing the optical pumping. The threshold and lifetime of the chaos could be optimized by adjusting the strength, frequency, or phase of the electric field. This study provides a method of manipulating optical chaos with an electric field. It may offer the prospect of exploring the controllable chaos in on-chip optoelectronic devices and its applications in secret communication.

  17. Nonlinear source–filter coupling in phonation: Vocal exercises

    PubMed Central

    Titze, Ingo; Riede, Tobias; Popolo, Peter

    2008-01-01

    Nonlinear source–filter coupling has been demonstrated in computer simulations, in excised larynx experiments, and in physical models, but not in a consistent and unequivocal way in natural human phonations. Eighteen subjects (nine adult males and nine adult females) performed three vocal exercises that represented a combination of various fundamental frequency and formant glides. The goal of this study was to pinpoint the proportion of source instabilities that are due to nonlinear source–tract coupling. It was hypothesized that vocal fold vibration is maximally destabilized when F0 crosses F1, where the acoustic load changes dramatically. A companion paper provides the theoretical underpinnings. Expected manifestations of a source–filter interaction were sudden frequency jumps, subharmonic generation, or chaotic vocal fold vibrations that coincide with F0–F1 crossovers. Results indicated that the bifurcations occur more often in phonations with F0–F1 crossovers, suggesting that nonlinear source–filter coupling is partly responsible for source instabilities. Furthermore it was observed that male subjects show more bifurcations in phonations with F0–F1 crossovers, presumably because in normal speech they are less likely to encounter these crossovers as much as females and hence have less practice in suppressing unwanted instabilities. PMID:18396999

  18. Nonlinear source-filter coupling in phonation: vocal exercises.

    PubMed

    Titze, Ingo; Riede, Tobias; Popolo, Peter

    2008-04-01

    Nonlinear source-filter coupling has been demonstrated in computer simulations, in excised larynx experiments, and in physical models, but not in a consistent and unequivocal way in natural human phonations. Eighteen subjects (nine adult males and nine adult females) performed three vocal exercises that represented a combination of various fundamental frequency and formant glides. The goal of this study was to pinpoint the proportion of source instabilities that are due to nonlinear source-tract coupling. It was hypothesized that vocal fold vibration is maximally destabilized when F(0) crosses F(1), where the acoustic load changes dramatically. A companion paper provides the theoretical underpinnings. Expected manifestations of a source-filter interaction were sudden frequency jumps, subharmonic generation, or chaotic vocal fold vibrations that coincide with F(0)-F(1) crossovers. Results indicated that the bifurcations occur more often in phonations with F(0)-F(1) crossovers, suggesting that nonlinear source-filter coupling is partly responsible for source instabilities. Furthermore it was observed that male subjects show more bifurcations in phonations with F(0)-F(1) crossovers, presumably because in normal speech they are less likely to encounter these crossovers as much as females and hence have less practice in suppressing unwanted instabilities. PMID:18396999

  19. Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2015-11-01

    Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  20. Sensitivity and performance of cavity optomechanical field sensors

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan; Knittel, Joachim; Sheridan, Eoin; Swaim, Jon D.; Rubinsztein-Dunlop, Halina; Bowen, Warwick P.

    2012-09-01

    This article describes in detail a technique for modeling cavity optomechanical field sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be determined from an overlap integral between magnetostrictive stress and the corresponding eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar size, in particular other sensors based on a magnetostrictive mechanism.

  1. Design of tunable GHz-frequency optomechanical crystal resonators.

    PubMed

    Pfeifer, Hannes; Paraïso, Taofiq; Zang, Leyun; Painter, Oskar

    2016-05-30

    We present a silicon optomechanical nanobeam design with a dynamically tunable acoustic mode at 10.2 GHz. The resonance frequency can be shifted by 90 kHz/V2 with an on-chip capacitor that was optimized to exert forces up to 1 µN at 10 V operation voltage. Optical resonance frequencies around 190 THz with Q-factors up to 2.2 × 106 place the structure in the well-resolved sideband regime with vacuum optomechanical coupling rates up to g0/2π = 353 kHz. Tuning can be used, for instance, to overcome variation in the device-to-device acoustic resonance frequency due to fabrication errors, paving the way for optomechanical circuits consisting of arrays of optomechanical cavities. PMID:27410069

  2. Fiber-Cavity Optomechanics with Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Flowers-Jacobs, Nathan E.; Kashkanova, Anna D.; Shkarin, Alexey B.; Hoch, Scott W.; Deutsch, Christian; Reichel, Jakob; Harris, Jack G. E.

    2014-03-01

    In a typical optomechanical device, the resonance frequency of a cavity is coupled to mechanical motion through the radiation pressure force. To date, experimental cavities have predominately coupled to a resonant mechanical mode of a solid structure, often a lithographically-defined beam or membrane. We will describe our progress towards realizing an optomechanical device in which an optical fiber-cavity couples to the acoustic modes of superfluid helium. In this system, the optical modes and the acoustic modes of the superfluid are co-located between the mirrored ends of two fiber optic cables. Changes in the density of the superfluid change the effective length of the cavity which results in a standard, linear optomechanical coupling between the 300 MHz acoustic resonances and the 200 THz optical resonances. This type of device is motivated by the self-aligning nature of the acoustic and optical modes (which eases the difficulties of operating at cryogenic temperatures) and by the low optical and mechanical losses of superfluid helium. Although we expect the mechanical quality factor to be limited by acoustic radiation into the glass fiber, we will describe a proposal to realize a dual-band Bragg mirror to confine the optical and acoustic modes more efficiently. Supported by NSF Grant #1106110, ARO Grant #W911NF-13-1-0104, and the DARPA/MTO ORCHID program through a grant from AFOSR.

  3. Spin-based Optomechanics with Carbon Nanotubes

    PubMed Central

    Li, Jin-Jin; Zhu, Ka-Di

    2012-01-01

    A simple scheme for determination of spin-orbit coupling strength in spinbased optomechanics with carbon nanotubes is introduced, under the control of a strong pump field and a weak signal field. The physical mechanism comes from the phonon induced transparency (PIT), by relying on the coherent coupling of electron spin to vibrational motion of the nanotube, which is analogous to electromagnetically induced transparency (EIT) effect in atom systems. Based on this spin-nanotube optomechanical system, we also conceptually design a single photon router and a quantum microwave transistor, with ultralow pump power (~ pW) and tunable switching time, which should provide a unique platform for the study of spin-based microwave quantum optics and quantum information processing. PMID:23198093

  4. Silicon optomechanical crystal resonator at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Meenehan, Seán M.; Cohen, Justin D.; Gröblacher, Simon; Hill, Jeff T.; Safavi-Naeini, Amir H.; Aspelmeyer, Markus; Painter, Oskar

    2014-07-01

    Optical measurements of a nanoscale silicon optomechanical crystal cavity with a mechanical resonance frequency of 3.6 GHz are performed at subkelvin temperatures. We infer optical-absorption-induced heating and damping of the mechanical resonator from measurements of phonon occupancy and motional sideband asymmetry. At the lowest probe power and lowest fridge temperature (Tf=10 mK), the localized mechanical resonance is found to couple at a rate of γi/2π=400 Hz (Qm=9×106) to a thermal bath of temperature Tb≈270 mK. These measurements indicate that silicon optomechanical crystals cooled to millikelvin temperatures should be suitable for a variety of experiments involving coherent coupling between photons and phonons at the single quanta level.

  5. Spin-based optomechanics with carbon nanotubes.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2012-01-01

    A simple scheme for determination of spin-orbit coupling strength in spinbased optomechanics with carbon nanotubes is introduced, under the control of a strong pump field and a weak signal field. The physical mechanism comes from the phonon induced transparency (PIT), by relying on the coherent coupling of electron spin to vibrational motion of the nanotube, which is analogous to electromagnetically induced transparency (EIT) effect in atom systems. Based on this spin-nanotube optomechanical system, we also conceptually design a single photon router and a quantum microwave transistor, with ultralow pump power (~ pW) and tunable switching time, which should provide a unique platform for the study of spin-based microwave quantum optics and quantum information processing. PMID:23198093

  6. Spatiotemporal mode structure of nonlinearly coupled drift wave modes

    SciTech Connect

    Brandt, Christian; Grulke, Olaf; Klinger, Thomas; Negrete, Jose Jr.; Bousselin, Guillaume; Brochard, Frederic; Bonhomme, Gerard; Oldenbuerger, Stella

    2011-11-15

    This paper presents full cross-section measurements of drift waves in the linear magnetized plasma of the Mirabelle device. Drift wave modes are studied in regimes of weakly developed turbulence. The drift wave modes develop azimuthal space-time structures of plasma density, plasma potential, and visible light fluctuations. A fast camera diagnostic is used to record visible light fluctuations of the plasma column in an azimuthal cross section with a temporal resolution of 10 {mu}s corresponding approximately to 10% of the typical drift wave period. Mode coupling and drift wave dispersion are studied by spatiotemporal Fourier decomposition of the camera frames. The observed coupling between modes is compared to calculations of nonlinearly coupled oscillators described by the Kuramoto model.

  7. Higher-order spectra for identification of nonlinear modal coupling

    NASA Astrophysics Data System (ADS)

    Hickey, Daryl; Worden, Keith; Platten, Michael F.; Wright, Jan R.; Cooper, Jonathan E.

    2009-05-01

    Over the past four decades considerable work has been done in the area of power spectrum estimation. The information contained within the power spectrum relates to a signal's autocorrelation or 'second-order statistics'. The power spectrum provides a complete statistical description of a Gaussian process; however, a problem with this information is that it is phase blind. This problem is addressed if one turns to a system's frequency response function (FRF). The FRF graphs the magnitude and phase of the frequency response of a system; in order to do this it requires information regarding the frequency content of the input and output signals. Situations arise in science and engineering whereby signal analysts are required to look beyond second-order statistics and analyse a signal's higher-order statistics (HOS). HOS or spectra give information on a signal's deviation from Gaussianity and consequently are a good indicator function for the presence of nonlinearity within a system. One of the main problems in nonlinear system identification is that of high modal density. Many modelling schemes involve making some expansion of the nonlinear restoring force in terms of polynomial or other basis terms. If more than one degree-of-freedom is involved this becomes a multivariate problem and the number of candidate terms in the expansion grows explosively with the order of nonlinearity and the number of degrees-of-freedom. This paper attempts to use HOS to detect and qualify nonlinear behaviour for a number of symmetrical and asymmetrical systems over a range of degrees-of-freedom. In doing so the paper also attempts to show that HOS are a more sensitive tool than the FRF in detecting nonlinearity. Furthermore, the object of this paper is to try and identify which modes couple in a nonlinear manner in order to reduce the number of candidate coupling terms, for a model, as much as possible. The bispectrum method has previously been applied to simple low-DOF systems with high

  8. Verification of Multiphysics software: Space and time convergence studies for nonlinearly coupled applications

    SciTech Connect

    Jean C. Ragusa; Vijay Mahadevan; Vincent A. Mousseau

    2009-05-01

    High-fidelity modeling of nuclear reactors requires the solution of a nonlinear coupled multi-physics stiff problem with widely varying time and length scales that need to be resolved correctly. A numerical method that converges the implicit nonlinear terms to a small tolerance is often referred to as nonlinearly consistent (or tightly coupled). This nonlinear consistency is still lacking in the vast majority of coupling techniques today. We present a tightly coupled multiphysics framework that tackles this issue and present code-verification and convergence analyses in space and time for several models of nonlinear coupled physics.

  9. Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers.

    PubMed

    Zhang, Junshi; Chen, Hualing; Li, Bo; McCoul, David; Pei, Qibing

    2015-10-14

    This article describes the development of an analytical model to study the coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers (DEs) under non-equibiaxial tensile forces by utilizing the method of virtual work. Numerically calculated results are employed to predict this nonlinear dynamic behavior. The resonant frequency (where the amplitude-frequency response curve peaks) and the amplitude-frequency response of the deformation in both in-plane directions are tuned by varying the values of tensile force. The oscillation response in the two in-plane directions exhibits strong nonlinearity and coupling with each other, and is tuned by the changing tensile forces under a specific excitation frequency. By varying the values of tensile forces, the dynamic viscoelastic creep in a certain in-plane direction can be eliminated. Phase diagrams and Poincaré maps under several values of tensile forces are utilized to study the stability evolution of the DE system under non-equibiaxial tensile forces. PMID:26287474

  10. Optomechanical engineering education at University of Arizona

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Parks, Robert

    2009-08-01

    The College of Optical Sciences at University of Arizona has established excellent programs for training BS, MS, and Ph.D. students in optical sciences and engineering. Research activities at the University of Arizona have also been closely coupled to developments in the field of optomechanical engineering. In response to request from the optics industry, we have recently expanded the educational opportunities for BS and MS students to follow engineering curricula that provide the right mix of optics and mechanical engineering.

  11. Phonon Cooling by an Optomechanical Heat Pump

    NASA Astrophysics Data System (ADS)

    Dong, Ying; Bariani, F.; Meystre, P.

    2015-11-01

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  12. A nonlinear generalized continuum approach for electro-mechanical coupling

    NASA Astrophysics Data System (ADS)

    Skatulla, S.; Arockiarajan, A.; Sansour, C.

    2008-07-01

    Electro-active polymers (EAP) are "smart materials" whose mechanical properties may be changed significantly by the application of electric field. Hence, these materials can serve as actuators in electro-mechanical systems, artificial muscles, etc. In this paper, we provide a generalized continuum framework basis for the characterization of the nonlinear electroelastic properties of these materials. This approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is then completed by Dirichlet boundary conditions for the displacement field and the electric potential and then derivatives normal to the boundary. The basic idea behind this generalized continuum framework is the consideration of a micro- and a macro-space which together span the generalized space. All quantities including the constitutive law for the electro-mechanically coupled nonlinear hyperelasticity are defined in the generalized space. Numerical examples are presented to demonstrate the numerical accuracy of the implemented formulation using the mesh free method.

  13. Two coupled nonlinear cavities in a driven-dissipative environment

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Mahmud, Khan; Hafezi, Mohammad

    We investigate two coupled nonlinear cavities that are driven coherently in a dissipative environment. This is the simplest setting containing a good number of features of an array of coupled cavity quantum simulator with Kerr nonlinearity which gives rise to many strongly correlated phases. We find analytical solution for the steady state using the generalized P representation and expressing the master equation in the form of Fokker-Planck equation. A comparison shows a good match of the analytical and numerical solutions across different regimes. We investigate the quantum correlations in the steady state by solving the full master equation numerically, analyzing its second-order coherence, entanglment entropy and Liouvillian gap as a function of drive and detuning. This gives us insights into the nature of bistability and how the tunneling-induced bistability emerges in coupled cavities when going beyond a single cavity. We can understand much of the semiclassical physics in terms of the underlying phase space dynamics of a driven and damped classical pendulum. Furthermore, in the semiclassical analysis, we find steady state solutions with different number density in the two wells that can be considered an analog of double well self-trapped states.

  14. Hopf bifurcation with dihedral group symmetry - Coupled nonlinear oscillators

    NASA Technical Reports Server (NTRS)

    Golubitsky, Martin; Stewart, Ian

    1986-01-01

    The theory of Hopf bifurcation with symmetry developed by Golubitsky and Stewart (1985) is applied to systems of ODEs having the symmetries of a regular polygon, that is, whose symmetry group is dihedral. The existence and stability of symmetry-breaking branches of periodic solutions are considered. In particular, these results are applied to a general system of n nonlinear oscillators coupled symmetrically in a ring, and the generic oscillation patterns are described. It is found that the symmetry can force some oscillators to have twice the frequency of others. The case of four oscillators has exceptional features.

  15. Observation of chaotic dynamics of coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    van Buskirk, R.; Jeffries, C.

    1985-05-01

    Experimental data are employed as bases for theoretically modelling the behavior of a finite number of driven nonlinear coupled oscillators. Attention is focused on Si p-n junction resonators exposed to an external inductance. A junction oscillator displays period doubling, Hopf figuracions to quasi-periodicity, entrainment horns and breakup of the invariant torus. Calculated and measured data are compared, with favorable results, by means of Poincare' sections, bifurcation diagrams and parameter phase space diagrams for the drive voltage and frequency. Fractal dimensions 2.03 and 2.33 are expressed in Poincare' sections to illustrate the behavior of single and dual coupled resonators which experience a breakup of the strange attractor.

  16. Multipulses of Nonlinearly Coupled Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Yew, Alice C.

    2001-06-01

    The capacity of coupled nonlinear Schrödinger (NLS) equations to support multipulse solutions (multibump solitary-waves) is investigated. A detailed analysis is undertaken for a system of quadratically coupled equations that describe the phenomena of second harmonic generation and parametric wave interaction in non-centrosymmetric optical materials. Utilising the framework of homoclinic bifurcation theory, and employing a Lyapunov-Schmidt reduction method developed by Hale, Lin, and Sandstede, a novel mechanism for the generation of multipulses is identified, which arises from a resonant semi-simple eigenvalue configuration of the linearised steady-state equations. Conditions for the existence of multipulses, as well as a description of their geometry, are derived from the analysis.

  17. Integrable pair-transition-coupled nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  18. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system. PMID:26382492

  19. Out-of-unison resonance in weakly nonlinear coupled oscillators

    PubMed Central

    Hill, T. L.; Cammarano, A.; Neild, S. A.; Wagg, D. J.

    2015-01-01

    Resonance is an important phenomenon in vibrating systems and, in systems of nonlinear coupled oscillators, resonant interactions can occur between constituent parts of the system. In this paper, out-of-unison resonance is defined as a solution in which components of the response are 90° out-of-phase, in contrast to the in-unison responses that are normally considered. A well-known physical example of this is whirling, which can occur in a taut cable. Here, we use a normal form technique to obtain time-independent functions known as backbone curves. Considering a model of a cable, this approach is used to identify out-of-unison resonance and it is demonstrated that this corresponds to whirling. We then show how out-of-unison resonance can occur in other two degree-of-freedom nonlinear oscillators. Specifically, an in-line oscillator consisting of two masses connected by nonlinear springs—a type of system where out-of-unison resonance has not previously been identified—is shown to have specific parameter regions where out-of-unison resonance can occur. Finally, we demonstrate how the backbone curve analysis can be used to predict the responses of forced systems. PMID:25568619

  20. Multimode circuit optomechanics near the quantum limit

    PubMed Central

    Massel, Francesco; Cho, Sung Un; Pirkkalainen, Juha-Matti; Hakonen, Pertti J.; Heikkilä, Tero T.; Sillanpää, Mika A.

    2012-01-01

    The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states. PMID:22871806

  1. The optomechanical instability in the quantum regime

    NASA Astrophysics Data System (ADS)

    Ludwig, Max; Kubala, Björn; Marquardt, Florian

    2008-09-01

    We consider a generic optomechanical system, consisting of a driven optical cavity and a movable mirror attached to a cantilever. Systems of this kind (and analogues) have been realized in many recent experiments. It is well known that these systems can exhibit an instability towards a regime where the cantilever settles into self-sustained oscillations. In this paper, we briefly review the classical theory of the optomechanical instability, and then discuss the features arising in the quantum regime. We solve numerically a full quantum master equation for the coupled system, and use it to analyze the photon number, the cantilever's mechanical energy, the phonon probability distribution and the mechanical Wigner density, as a function of experimentally accessible control parameters. When a suitable dimensionless 'quantum parameter' is sent to zero, the results of the quantum mechanical model converge towards the classical predictions. We discuss this quantum-to-classical transition in some detail.

  2. Reconfigurable long-range phonon dynamics in optomechanical arrays.

    PubMed

    Xuereb, André; Genes, Claudiu; Pupillo, Guido; Paternostro, Mauro; Dantan, Aurélien

    2014-04-01

    We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays. PMID:24745417

  3. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  4. From cavity QED with quantum gases to optomechanics

    SciTech Connect

    Ritsch, Helmut

    2011-10-03

    We study the nonlinear coupled dynamics of ultra-cold quantum gases trapped in the light field of high Q optical resonators. In the very low temperature limit the quantum nature of both, light and ultra-cold matter play equally important roles. Using the dynamically generated entanglement and properly designed measurements procedures of the light field allows controlled preparation of many-body atomic states as e.g. atom number squeezed states or Schroedinger cat states. If one traps the particles inside the optical cavity, one can create a optical potential, which is a quantized and a dynamical variable itself. In addition it mediates controllable long range interactions. The self-consistent solution for light and particles the includes new classes of quantum many-body states as super-solid states and polaron like excitations. In the deep trap limit the collective coupling of the particles and the field can be tailored to reproduce a wide range of optomechanic Hamiltonians with linear, quadratic or even higher order couplings in an environment very close to zero temperature.

  5. Phononic Phase Conjugation in an Optomechanical System

    NASA Astrophysics Data System (ADS)

    Buchmann, Lukas; Wright, Ewan; Meystre, Pierre

    2013-05-01

    We study theoretically the phase conjugation of a phononic field in an optomechanical system with two mechanical modes coupled to a common optical field. Phase conjugation becomes the dominant process for an appropriate choice of driving field parameters, and he effective coupling coefficients between phonon modes can result in amplification and entanglement, phase-conjugation or a mixture thereof. We discuss surprising consequences of mechanical phase-conjugation that could lead to the preparation of mechanical states with negative temperature, the improvement of quantum memories and the study of the quantum-classical transition. Supported by DARPA ORCHID program.

  6. Parity-time-symmetry enhanced optomechanically-induced-transparency

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-08-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device.

  7. Parity-time-symmetry enhanced optomechanically-induced-transparency

    PubMed Central

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  8. Parity-time-symmetry enhanced optomechanically-induced-transparency.

    PubMed

    Li, Wenlin; Jiang, Yunfeng; Li, Chong; Song, Heshan

    2016-01-01

    We propose and analyze a scheme to enhance optomechanically-induced-transparency (OMIT) based on parity-time-symmetric optomechanical system. Our results predict that an OMIT window which does not exist originally can appear in weak optomechanical coupling and driving system via coupling an auxiliary active cavity with optical gain. This phenomenon is quite different from these reported in previous works in which the gain is considered just to damage OMIT phenomenon even leads to electromagnetically induced absorption or inverted-OMIT. Such enhanced OMIT effects are ascribed to the additional gain which can increase photon number in cavity without reducing effective decay. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our work provide a promising platform for the coherent manipulation and slow light operation, which has potential applications for quantum information processing and quantum optical device. PMID:27489193

  9. A microelectromechanically controlled cavity optomechanical sensing system

    NASA Astrophysics Data System (ADS)

    Miao, Houxun; Srinivasan, Kartik; Aksyuk, Vladimir

    2012-07-01

    Microelectromechanical systems (MEMS) have been applied to many measurement problems in physics, chemistry, biology and medicine. In parallel, cavity optomechanical systems have achieved quantum-limited displacement sensitivity and ground state cooling of nanoscale objects. By integrating a novel cavity optomechanical structure into an actuated MEMS sensing platform, we demonstrate a system with high-quality-factor interferometric readout, electrical tuning of the optomechanical coupling by two orders of magnitude and a mechanical transfer function adjustable via feedback. The platform separates optical and mechanical components, allowing flexible customization for specific scientific and commercial applications. We achieve a displacement sensitivity of 4.6 fm Hz-1/2 and a force sensitivity of 53 aN Hz-1/2 with only 250 nW optical power launched into the sensor. Cold-damping feedback is used to reduce the thermal mechanical vibration of the sensor by three orders of magnitude and to broaden the sensor bandwidth by approximately the same factor, to above twice the fundamental frequency of ≈40 kHz. The readout sensitivity approaching the standard quantum limit is combined with MEMS actuation in a fully integrated, compact, low-power, stable system compatible with Si batch fabrication and electronics integration.

  10. Nonlinear coupling between a nitrogen-vacancy-center ensemble and a superconducting qubit.

    PubMed

    Chen, Qiong; Wen, Jun; Yang, W L; Feng, M; Du, Jiangfeng

    2015-01-26

    By exchange of virtual microwave photon induced by a transmission line resonator, the nonlinear interaction between a nitrogen-vacancy-center ensemble (NVE) and a superconducting charge qubit is achieved in circuit quantum electrodynamics, where the nonlinear coupling results from the second order of the coupling between the magnetic field of the transmission line resonator and the charge qubit. In our case, the nonlinear coupling can be much enhanced by a factor of the total spin number in the NVE. As an application, we present a potentially practical scheme to realize the squeezing of the NVE using the nonlinear coupling, which is within reach of the currently available technology. PMID:25835919

  11. Integrability and chaos in nonlinearly coupled optical beams

    SciTech Connect

    David, D.

    1989-01-01

    This paper presents a study, using dynamical systems methods, of the equations describing the polarization behavior of two nonlinearly coupled optical beams counterpropagating in a nonlinear medium. In the travelling-wave regime assumption, this system possesses a Lie-Poisson structure on the manifold C{sup 2} {times} C{sup 2}. In the case where the medium is assumed to be isotropic, this system exhibits invariance under the Hamiltonian action of two copies of the rotation group, S{sup 1}, and actually reduces to a lower-dimensional system on the two-sphere, S{sup 2}. We study the dynamics on the reduced space and examine the structure of the phase portrait by determining the fixed points and infinite-period homoclinic and heteroclinic orbits; we concentrate on presenting some exotic behaviour that occurs when some parameters are varied, and we also show special solutions associated with some of the above-mentioned orbits. Last, we demonstrate the existence of complex dynamics when the system is subject to certain classes of Hamiltonian perturbations. To this end, we make use of the Melnikov method to analytically show the occurrence of either horseshoe chaos, or Arnold diffusion. 19 refs.

  12. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  13. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment.

    PubMed

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-01-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674

  14. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment

    PubMed Central

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-01-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674

  15. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment

    NASA Astrophysics Data System (ADS)

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-04-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment.

  16. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  17. Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond

    NASA Astrophysics Data System (ADS)

    Golter, D. Andrew; Oo, Thein; Amezcua, Mayra; Stewart, Kevin A.; Wang, Hailin

    2016-04-01

    We demonstrate optomechanical quantum control of the internal electronic states of a diamond nitrogen-vacancy (NV) center in the resolved-sideband regime by coupling the NV to both optical fields and surface acoustic waves via a phonon-assisted optical transition and by taking advantage of the strong excited-state electron-phonon coupling of a NV center. Optomechanically driven Rabi oscillations as well as quantum interferences between the optomechanical sideband and the direct dipole-optical transitions are realized. These studies open the door to using resolved-sideband optomechanical coupling for quantum control of both the atomlike internal states and the motional states of a coupled NV-nanomechanical system, leading to the development of a solid-state analog of trapped ions.

  18. Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond.

    PubMed

    Golter, D Andrew; Oo, Thein; Amezcua, Mayra; Stewart, Kevin A; Wang, Hailin

    2016-04-01

    We demonstrate optomechanical quantum control of the internal electronic states of a diamond nitrogen-vacancy (NV) center in the resolved-sideband regime by coupling the NV to both optical fields and surface acoustic waves via a phonon-assisted optical transition and by taking advantage of the strong excited-state electron-phonon coupling of a NV center. Optomechanically driven Rabi oscillations as well as quantum interferences between the optomechanical sideband and the direct dipole-optical transitions are realized. These studies open the door to using resolved-sideband optomechanical coupling for quantum control of both the atomlike internal states and the motional states of a coupled NV-nanomechanical system, leading to the development of a solid-state analog of trapped ions. PMID:27104709

  19. Light-induced optomechanical forces in graphene waveguides

    NASA Astrophysics Data System (ADS)

    Guizal, Brahim; Antezza, Mauro

    2016-03-01

    We show that the electromagnetic forces generated by the excitations of a mode in graphene-based optomechanical systems are highly tunable by varying the graphene chemical potential, and orders of magnitude stronger than usual non-graphene-based devices, in both attractive and repulsive regimes. We analyze coupled waveguides made of two parallel graphene sheets, either suspended or supported by dielectric slabs, and study the interplay between the light-induced force and the Casimir-Lifshitz interaction. These findings pave the way to advanced possibilities of control and fast modulation for optomechanical devices and sensors at the nano- and microscales.

  20. Sensing dispersive and dissipative forces by an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Suchoi, Oren; Buks, Eyal

    2016-07-01

    We experimentally study an optomechanical cavity that is formed between a mechanical resonator, which serves as a movable mirror, and a stationary on-fiber dielectric mirror. A significant change in the behavior of the system is observed when the distance between the fiber's tip and the mechanical resonator is made smaller than about 1 μ \\text{m} . The combined influence of Casimir force, Coulomb interaction due to trapped charges, and optomechanical coupling is theoretically analyzed. The comparison between experimental results and theory yields a partial agreement.

  1. Cavity optomechanics with ultrahigh-Q crystalline microresonators

    SciTech Connect

    Hofer, J.; Schliesser, A.; Kippenberg, T. J.

    2010-09-15

    We present the observation of optomechanical coupling in crystalline whispering-gallery-mode (WGM) resonators. The high purity of the material enables optical quality factors in excess of 10{sup 10} and finesse exceeding 10{sup 6}, as well as mechanical quality factors greater than 10{sup 5}. Ultrasensitive displacement measurements reveal mechanical radial modes at frequencies up to 20 MHz, corresponding to unprecedentedly high sideband factors (>100). In combination with the weak intrinsic mechanical damping this renders crystalline WGM microresonators promising for experiments in the classical and quantum regime of optomechanics.

  2. Steady-state entanglement activation in optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  3. Opto-mechanics with sub-wavelength grating-membranes

    NASA Astrophysics Data System (ADS)

    Xu, Haitan; Kemiktarak, Utku; Stambaugh, Corey; Durand, Mathieu; Lawall, John; Taylor, Jacob

    2014-03-01

    We fabricate highly reflective sub-wavelength grating membranes using stoichiometric silicon nitride. We achieve a grating reflectivity of 99.6% with a membrane mechanical frequency of ~1 MHz. We integrate the grating-membrane into a Fabry-Perot cavity and investigate its opto-mechanical properties. We also consider the prospect of using them for three mode opto-mechanics experiments where the two optical cavity modes are coupled through a mechanical mode. We acknowledge support from DARPA QuASAR and the NSF-funded Physics Frontier Center at the Joint Quantum Institute, and also CNST at NIST.

  4. Atom mediated sensing in a hybrid optomechanical system

    NASA Astrophysics Data System (ADS)

    Steinke, Steven; Bariani, Francesco; Singh, Swati; Meystre, Pierre; Vengalattore, Mukund

    2014-05-01

    A primary difficulty in implementing quantum optomechanical protocols is the requirement to operate in the good cavity limit, i.e., where the cavity linewidth is far smaller than the mechanical frequency. We explore a hybrid two cavity approach in which a membrane-in-the-middle optomechanical cavity is coupled to a second, atomic cavity. Specifically, we show that it is possible to detect the motion of the membrane via an indirect measurement of the atoms. In the case of a non-ideal optomechanical cavity, we show that the sensitivity can be enhanced via this indirect detection. Finally, we investigate the quantum limitations of such a measurement scheme. Supported by the DARPA QuASAR program through a grant from AFOSR and the DARPA ORCHID program through a grant from ARO, the US Army Research Office, and by NSF. M. V. acknowledges support from the Alfred P. Sloan Foundation.

  5. Using interference for high fidelity quantum state transfer in optomechanics

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Dan; Clerk, Aashish A.

    2012-02-01

    We present a theoretical study of a two-cavity optomechanical system (e.g. a single mechanical resonator coupled to both a microwave and an optical cavity), investigating how interference can be used to perform mechanically-mediated quantum state transfer between the two cavities. We show that this optomechanical system possesses an effective ``mechanically-dark'' mode which is immune to mechanical dissipation; utilizing this feature allows highly efficient transfer of intra-cavity states, as well as of itinerant photon states. Simple analytic expressions for the fidelity of transferring both Gaussian and non-Gaussian states are provided. Our work has relevance to ongoing experimental efforts in quantum optomechanics (e.g., C. A. Regal and K. W. Lehnert, J. Phys.: Conf. Ser. 264, 012025 (2011); A. H. Safavi-Naeini and O. Painter, New J. Phys. 13, 013017 (2011)).

  6. Hybrid optomechanics for Quantum Technologies

    NASA Astrophysics Data System (ADS)

    Rogers, B.; Lo Gullo, N.; De Chiara, G.; Palma, G. M.; Paternostro, M.

    2014-06-01

    We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.

  7. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  8. Optical Nonreciprocity in Optomechanical Structures

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Robinson, Jacob T.; Lipson, Michal

    2009-05-01

    We demonstrate that optomechanical devices can exhibit nonreciprocal behavior when the dominant light-matter interaction takes place via a linear momentum exchange between light and the mechanical structure. As an example, we propose a microscale optomechanical device that can exhibit a nonreciprocal behavior in a microphotonic platform operating at room temperature. We show that, depending on the direction of the incident light, the device switches between a high and low transparency state with more than a 20 dB extinction ratio.

  9. Optical-response properties in levitated optomechanical systems beyond the low-excitation limit

    NASA Astrophysics Data System (ADS)

    Nie, Wenjie; Chen, Aixi; Lan, Yueheng

    2016-02-01

    We investigate the optical-response properties of a levitated optomechanical cavity coupled to a higher order excited atomic medium. The cavity field driven through the atom-field interaction is responsible for trapping a dielectric nanosphere, whose steady-state position is biased by the Coulomb force between the nanosphere and the cavity wall. We show that the phenomena of optomechanically induced transparency (OMIT) and amplification can be generated from the output probe field in the presence of an effective optomechanical coupling between the nanosphere and the cavity field. Further, the width of the transparency window increases with increasing strength of the effective optomechanical coupling, which is controlled easily by varying the Coulomb interaction and the radius of the nanosphere. In particular, when the higher order excitation of the atomic medium is included, a large driving of the atomic ensemble but a relatively small atom-field detuning can be applied to help observe the OMIT behavior in the hybrid system.

  10. Parametric Optomechanical Oscillations in Two-dimensional Slot-type High-Q Photonic Crystal Cavities

    SciTech Connect

    Zheng J.; Stein A.; Li, Y.; Aras, M.S.; Shepard, K.L.; Wong, C.W.

    2012-05-22

    We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Q{sub o} = 4.2 x 10{sup 4} and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. The optical spring effect, optical damping, and amplification are observed with a large experimental optomechanical coupling rate g{sub om}/2{pi} of 154 GHz/nm, corresponding to a vacuum optomechanical coupling rate g*/2{pi} of 707 kHz. With sub-mW or less input power levels, the cavity exhibits strong parametric oscillations. The phase noise of the photonic crystal optomechanical oscillator is also measured.

  11. Tunable bistability in hybrid Bose-Einstein condensate optomechanics.

    PubMed

    Yasir, Kashif Ammar; Liu, Wu-Ming

    2015-01-01

    Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror and is driven by a single mode optical field. The numerical results provide evidence for controlled optical bistability in optomechanics using transverse optical field which directly interacts with atoms causing the coupling of transverse field with momentum side modes, exited by intra-cavity field. This technique of transverse field coupling is also used to control bistable dynamics of both moving-end mirror and BEC. The report provides an understanding of temporal dynamics of moving-end mirror and BEC with respect to transverse field. Moreover, dependence of effective potential of the system on transverse field has also been discussed. To observe this phenomena in laboratory, we have suggested a certain set of experimental parameters. These findings provide a platform to investigate the tunable behavior of novel phenomenon like electromagnetically induced transparency and entanglement in hybrid systems. PMID:26035206

  12. Multi-scale energy exchanges between a nonlinear oscillator of Bouc-Wen type and another coupled nonlinear system

    NASA Astrophysics Data System (ADS)

    Lamarque, C.-H.; Ture Savadkoohi, A.; Naudan, M.

    2013-09-01

    The concept of energy exchange between coupled oscillators can be endowed for wide variety of applications such as control and energy harvesting. It has been proved that by coupling an essential nonlinear oscillator (cubic nonlinearity) to a main system (mostly linear), the latter system can be controlled in a one way and almost irreversible manner. The phenomenon is called energy pumping and the coupled nonlinear system is named as nonlinear energy sink (NES). The process of energy transfer from the main system to the nonlinear smooth or non-smooth attachment at different scales of time can present several scenarios: It can be attracted to periodic behaviors which present low or high energy levels for the main system and/or to quasi-periodic responses of two oscillators by persistent bifurcations between their stable zones. In this paper we analyze multi-scale dynamics of two attached oscillators: a Bouc-Wen type in general (in particular: a Dahl type and a modified hysteresis system) and a NES (nonsmooth and cubic). The system behavior at fast and first slow times scales by detecting its invariant manifold, its fixed points and singularities will be analyzed. Analytical developments will be accompanied by some numerical examples for systems that present quasi-periodic responses. The endowed Bouc-Wen models correspond to the hysteretic behavior of materials or structures. This paper is clearly connected with the dynamics of systems with hysteresis and nonlinear dynamics based energy harvesting.

  13. Coupling of two counterpropagating modes in nonlinear split-ring resonators' chain

    NASA Astrophysics Data System (ADS)

    Cui, Wei-na; Lu, Wen; Li, Hong-xia; Sun, Min; Zhu, Yong-yuan

    2016-05-01

    The two coupled counterpropagating nonlinear magnetoinductive wave modes are analyzed theoretically in split ring resonator chain with Kerr nonlinear interaction. Starting from a general nonlinear lattice equation based on a quasi-discreteness approach we derive two coupled nonlinear Schrödinger equations governing the evolution of the slowly varying envelopes of these modes. It is shown that this system supports backward- and forward-propagating vector solitons of the bright-bright and dark-dark type through a cross-phase modulation.

  14. Tunable two-photon correlation in a double-cavity optomechanical system

    SciTech Connect

    Feng, Zhi-Bo; Zhang, Jian-Qi

    2015-12-15

    Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  15. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  16. Multifunctional optomechanical dynamics in integrated silicon photonics

    NASA Astrophysics Data System (ADS)

    Li, Huan

    Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. The emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces began to play significant roles. The interactions between light and matter in nanoscale has been the focus of almost a decade of active theoretical and experimental investigations, which are still ongoing and constitute a whole new burgeoning branch of nanotechnology, nano-optomechanical systems (NOMS). In such context, the general goal of my research is to generate, enhance and control optical forces on silicon photonics platforms, with a focus on developing new functionalities and demonstrating novel effects, which will potentially lead to a new class of silicon photonic devices for a broad spectrum of applications. In this dissertation, the concept of optical force and the general background of the NOMS research area are first introduced. The general goal of the silicon photonics research area and the research presented in this dissertation is then described. Subsequently, the fundamental theory for optical force is summarized. The different methods to calculate optical forces are enumerated and briefly reviewed. Integrated hybrid plasmonic waveguide (HPWG) devices have been successfully fabricated and the enhanced optical forces experimentally measured for the first time. All-optical amplification of RF signals has been successfully demonstrated. The optical force generated by one laser is used to mechanically change the optical path and hence the output power of another laser. In addition, completely optically tunable mechanical nonlinear behavior has been demonstrated for the first time and systematically studied. Optomechanical photon shuttling between photonic cavities has been demonstrated with a "photon see-saw" device. This photon see-saw is a novel multicavity optomechanical device which consists of two photonic crystal

  17. Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-04-01

    We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.

  18. Degenerate optomechanical parametric oscillators: Cooling in the vicinity of a critical point

    NASA Astrophysics Data System (ADS)

    Degenfeld-Schonburg, Peter; Abdi, Mehdi; Hartmann, Michael J.; Navarrete-Benlloch, Carlos

    2016-02-01

    Degenerate optomechanical parametric oscillators are optical resonators in which a mechanical degree of freedom is coupled to a cavity mode that is nonlinearly amplified via parametric down-conversion of an external pumping laser. Below a critical pumping power the down-converted field is purely quantum mechanical, making the theoretical description of such systems very challenging. Here we introduce a theoretical approach that is capable of describing this regime, even at the critical point itself. We find that the down-converted field can induce significant mechanical cooling and identify the process responsible of this as a cooling-by-heating mechanism. Moreover, we show that, contrary to naive expectations and semiclassical predictions, cooling is not optimal at the critical point, where the photon number is largest. Our approach opens the possibility of analyzing further hybrid dissipative quantum systems in the vicinity of critical points.

  19. Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime

    SciTech Connect

    Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2014-10-15

    We propose an interesting scheme for tunable high-order sideband comb generation by utilizing ultrastrong optomechanical interaction in a GaAs optomechanical disk resonator beyond the perturbative approximation. We analyze the nonlinear nature of the optomechanical interaction, and give a full description of the non-perturbative effects. It is shown, within the non-perturbative regime, that high-order sideband comb with large intensities can be realized and controlled in a GaAs optomechanical disk resonator with experimentally achievable system parameters, and the non-perturbative regime leads to rich and nontrivial behavior.

  20. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Watanabe, Takayuki; Ohta, Ryuichi; Onomitsu, Koji; Gotoh, Hideki; Sogawa, Tetsuomi; Yamaguchi, Hiroshi

    2015-10-01

    The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays.

  1. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.

    PubMed

    Okamoto, Hajime; Watanabe, Takayuki; Ohta, Ryuichi; Onomitsu, Koji; Gotoh, Hideki; Sogawa, Tetsuomi; Yamaguchi, Hiroshi

    2015-01-01

    The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays. PMID:26477487

  2. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device

    NASA Astrophysics Data System (ADS)

    Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-07-01

    We describe the principles of design, fabrication, and operation of a piezoelectric optomechanical crystal with which we demonstrate bi-directional conversion of energy between microwave and optical frequencies. The optomechanical crystal has an optical mode at 1523 nm co-located with a mechanical breathing mode at 3.8 GHz, with a measured optomechanical coupling strength gom/2π of 115 kHz. The breathing mode is driven and detected by curved interdigitated transducers that couple to a Lamb mode in suspended membranes on either end of the optomechanical crystal, allowing the external piezoelectric modulation of the optical signal as well as the converse, the detection of microwave electrical signals generated by a modulated optical signal. We compare measurements to theory where appropriate.

  3. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures

    PubMed Central

    Okamoto, Hajime; Watanabe, Takayuki; Ohta, Ryuichi; Onomitsu, Koji; Gotoh, Hideki; Sogawa, Tetsuomi; Yamaguchi, Hiroshi

    2015-01-01

    The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure–cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron–hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays. PMID:26477487

  4. Tunable Optomechanically Induced Absorption in a Hybrid Optomechanical System

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Zhao, Yun-Hui; He, Zhi; Yao, Chun-Mei

    2016-03-01

    We study the tunable optomechanically induced absorption (OMIA) with the quantized field in the system, which consists of a driven cavity and a mechanical resonator with a super-conducting charge qubit via Jaynes-Cummings interaction. Such a OMIA can be achieved by controlling the strength of the Jaynes-Cummings interaction. Moreover, our work shows this OMIA for the quantized fields can be robust against cavity decay in somehow. With the combination of optomechanically induced transparency (OMIT), our proposal may have paved a new avenue towards quantum photon router.

  5. On the importance of nonlinear couplings in large-scale neutrino streams

    NASA Astrophysics Data System (ADS)

    Dupuy, Hélène; Bernardeau, Francis

    2015-08-01

    We propose a procedure to evaluate the impact of nonlinear couplings on the evolution of massive neutrino streams in the context of large-scale structure growth. Such streams can be described by general nonlinear conservation equations, derived from a multiple-flow perspective, which generalize the conservation equations of non-relativistic pressureless fluids. The relevance of the nonlinear couplings is quantified with the help of the eikonal approximation applied to the subhorizon limit of this system. It highlights the role played by the relative displacements of different cosmic streams and it specifies, for each flow, the spatial scales at which the growth of structure is affected by nonlinear couplings. We found that, at redshift zero, such couplings can be significant for wavenumbers as small as k=0.2 h/Mpc for most of the neutrino streams.

  6. Optomechanics of two- and three-dimensional soft photonic crystals

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak

    Soft photonic crystals are a class of periodic dielectric structures that undergo highly nonlinear deformation due to strain or other external stimulus such as temperature, pH etc. This can in turn dramatically affect optical properties such as light transmittance. Moreover certain classes of lithographically fabricated structures undergo some structural distortion due to the effects of processing, eventually affecting the optical properties of the final photonic crystal. In this work, we study the deformation mechanics of soft photonic crystal structures using realistic physics-based models and leverage that understanding to explain the optomechanics of actual 2-D and 3-D soft photonic crystals undergoing similar symmetry breaking nonlinear deformations. We first study the optomechanics of two classes of 3-D soft photonic crystals: (1) hydrogel and (2) elastomer based material systems. The hydrogel based inverse face-centered-cubic structure undergoes swelling with change in pH of the surrounding fluid. The inverse structure is a network of bulky domains with thin ligament-like connections, and it undergoes a pattern transformation from FCC to L11 as a result of swelling. A continuum scale poroelasticity based coupled fluid-diffusion FEM model is developed to accurately predict this mechanical behavior. Light transmittance simulation results qualitatively explain the experimentally observed trends in the optical behavior with pH change. The elastomer based, lithographically fabricated material experiences shrinkage induced distortion upon processing. This behavior is modeled using FEM with the material represented by a neo-Hookean constitutive law. The light transmittance calculations for normal incidence are carried out using the transfer matrix method and a good comparison is obtained for the positions of first and second order reflectance peaks. A unit cell based approach is taken to compute the photonic bandstructure to estimate light propagation through the

  7. On the HAM-based mathematica package BVPh for coupled nonlinear ODEs

    NASA Astrophysics Data System (ADS)

    Zhao, Yinlong; Liao, Shijun

    2012-09-01

    The BVPh is a Mathematica package based on the Homotopy analysis method (HAM) for solving nonlinear boundary value problems (BVPs). Its aim is to provide an analytic tool for as many nonlinear BVPs as possible. Its newest version can now deal with many systems of coupled ordinary differential equations (ODEs) defined in finite or semi-infinite intervals.

  8. Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave

    SciTech Connect

    Sharma, R. P. Sharma, Swati Gaur, Nidhi

    2014-07-15

    The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.

  9. A micropillar for cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Kuhn, Aurélien; Neuhaus, Leonhard; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine

    2014-12-01

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  10. A micropillar for cavity optomechanics

    SciTech Connect

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine; Van Brackel, Emmanuel; Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier; Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  11. Deterministic synthesis of mechanical NOON states in ultrastrong optomechanics

    NASA Astrophysics Data System (ADS)

    Macrí, V.; Garziano, L.; Ridolfo, A.; Di Stefano, O.; Savasta, S.

    2016-07-01

    We propose a protocol for the deterministic preparation of entangled NOON mechanical states. The system is constituted by two identical, optically coupled optomechanical systems. The protocol consists of two steps. In the first, one of the two optical resonators is excited by a resonant external π -like Gaussian optical pulse. When the optical excitation coherently partly transfers to the second cavity, the second step starts. It consists of sending simultaneously two additional π -like Gaussian optical pulses, one at each optical resonator, with specific frequencies. In the optomechanical ultrastrong coupling regime, when the coupling strength becomes a significant fraction of the mechanical frequency, we show that NOON mechanical states with quite high Fock states can be deterministically obtained. The operating range of this protocol is carefully analyzed. Calculations have been carried out taking into account the presence of decoherence, thermal noise, and imperfect cooling.

  12. Quantum and classical phases in optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, Federico; Latmiral, Ludovico; Pikovski, Igor; Vanner, Michael R.; Brukner, Časlav; Kim, M. S.

    2016-06-01

    The control of quantum systems requires the ability to change and read-out the phase of a system. The noncommutativity of canonical conjugate operators can induce phases on quantum systems, which can be employed for implementing phase gates and for precision measurements. Here we study the phase acquired by a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.

  13. Electromagnetically induced transparency and slow light with optomechanics.

    PubMed

    Safavi-Naeini, A H; Mayer Alegre, T P; Chan, J; Eichenfield, M; Winger, M; Lin, Q; Hill, J T; Chang, D E; Painter, O

    2011-04-01

    Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals. PMID:21412237

  14. Force sensitivity of multilayer graphene optomechanical devices

    NASA Astrophysics Data System (ADS)

    Weber, P.; Güttinger, J.; Noury, A.; Vergara-Cruz, J.; Bachtold, A.

    2016-08-01

    Mechanical resonators based on low-dimensional materials are promising for force and mass sensing experiments. The force sensitivity in these ultra-light resonators is often limited by the imprecision in the measurement of the vibrations, the fluctuations of the mechanical resonant frequency and the heating induced by the measurement. Here, we strongly couple multilayer graphene resonators to superconducting cavities in order to achieve a displacement sensitivity of 1.3 fm Hz-1/2. This coupling also allows us to damp the resonator to an average phonon occupation of 7.2. Our best force sensitivity, 390 zN Hz-1/2 with a bandwidth of 200 Hz, is achieved by balancing measurement imprecision, optomechanical damping, and measurement-induced heating. Our results hold promise for studying the quantum capacitance of graphene, its magnetization, and the electron and nuclear spins of molecules adsorbed on its surface.

  15. Force sensitivity of multilayer graphene optomechanical devices

    PubMed Central

    Weber, P.; Güttinger, J.; Noury, A.; Vergara-Cruz, J.; Bachtold, A.

    2016-01-01

    Mechanical resonators based on low-dimensional materials are promising for force and mass sensing experiments. The force sensitivity in these ultra-light resonators is often limited by the imprecision in the measurement of the vibrations, the fluctuations of the mechanical resonant frequency and the heating induced by the measurement. Here, we strongly couple multilayer graphene resonators to superconducting cavities in order to achieve a displacement sensitivity of 1.3 fm Hz−1/2. This coupling also allows us to damp the resonator to an average phonon occupation of 7.2. Our best force sensitivity, 390 zN Hz−1/2 with a bandwidth of 200 Hz, is achieved by balancing measurement imprecision, optomechanical damping, and measurement-induced heating. Our results hold promise for studying the quantum capacitance of graphene, its magnetization, and the electron and nuclear spins of molecules adsorbed on its surface. PMID:27502017

  16. Force sensitivity of multilayer graphene optomechanical devices.

    PubMed

    Weber, P; Güttinger, J; Noury, A; Vergara-Cruz, J; Bachtold, A

    2016-01-01

    Mechanical resonators based on low-dimensional materials are promising for force and mass sensing experiments. The force sensitivity in these ultra-light resonators is often limited by the imprecision in the measurement of the vibrations, the fluctuations of the mechanical resonant frequency and the heating induced by the measurement. Here, we strongly couple multilayer graphene resonators to superconducting cavities in order to achieve a displacement sensitivity of 1.3 fm Hz(-1/2). This coupling also allows us to damp the resonator to an average phonon occupation of 7.2. Our best force sensitivity, 390 zN Hz(-1/2) with a bandwidth of 200 Hz, is achieved by balancing measurement imprecision, optomechanical damping, and measurement-induced heating. Our results hold promise for studying the quantum capacitance of graphene, its magnetization, and the electron and nuclear spins of molecules adsorbed on its surface. PMID:27502017

  17. Reservoir engineering in microwave cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Lecocq, Florent; Clark, Jeremy; Aumentado, Jose; Simmonds, Raymond; Teufel, John

    2015-03-01

    Microwave cavity optomechanics is an architecture in which a freely suspended membrane modulates the frequency of a superconducting microwave resonant circuit. The resulting parametric interactions influence both the mechanical degree of freedom and the microwave light emerging from the cavity. Even at cryogenic temperatures, the mechanical oscillator resonating at 10 MHz is typically dominated by its thermal reservoir, washing out any quantum behavior. However, in the presence of coherent drives to the cavity, the bare mechanical properties can be overwhelmed by the strong opto-mechanical interactions from the light field. By choosing wisely the frequency and amplitude of the drives, one can engineer the environment seen by the mechanical oscillator, a technique known as ``reservoir engineering''. From an experimentalist point of view, I will discuss how using two-tone driving schemes, we exploit correlations in the vacuum noise to: (1) eliminate the backaction imparted on the mechanical quadrature being measured, a technique so-called Back-Action Evasion, or (2) strongly couple the mechanical mode to a squeezed microwave bath.

  18. Vector cavity optomechanics in the parameter configuration of optomechanically induced transparency

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Huang, Ya-Min; Wan, Liang-Liang; Wu, Ying

    2016-07-01

    We propose the concept of vector cavity optomechanics in which the polarization behavior of light fields is introduced to achieve optomechanical control. The steady states and optomechanically induced transparency are studied in the vector regime, and we show that the polarization of optical fields may be a powerful tool to identify the underlying physical process and control the signal of optomechanically induced transparency. In particular, the conditions for obtaining a linearly polarized output probe field is given, which reveal some nontrivial polarizing effects. Despite its conceptual simplicity, vector cavity optomechanics may entail a wide range of intriguing phenomena and uncover a novel understanding for optomechanical interaction.

  19. Parametrically driven field emission in strongly nonlinear coupled electron-shuttles

    NASA Astrophysics Data System (ADS)

    Kim, Chulki; Prada, Marta; Platero, Gloria; Seo, Minah; Lee, Taikjin; Kim, Jae Hun; Lee, Seok; Blick, Robert

    2014-03-01

    The transition of coupled electron shuttles from a stable to a strongly nonlinear response is demonstrated at room temperature. The electron transport is Coulomb-controlled at low voltages but changes to the conventional field emission in this transition. This reversible process forms a well-defined band within a broad frequency range in the parameter space. Both the experimental data and numerical calculations indicate that the source of the nonlinearity is provided by the electromechanical coupling. The increased current in the nonlinear regime has the potential to form the basis for energy harvesting via nanomechanical shuttles.

  20. Detection of defect parameters using nonlinear air-coupled emission by ultrasonic guided waves at contact acoustic nonlinearities.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen

    2015-12-01

    Interaction of ultrasonic guided waves with kissing bonds (closed delaminations and incipient surface breaking cracks) gives rise to nonlinear features at the defect location. This causes higher harmonic frequency ultrasonic radiation into the ambient air, often referred to as Nonlinear Air-Coupled Emission (NACE), which may serve as a nonlinear tag to detect the defects. This paper summarizes the results of a numerical implementation and simulation study of NACE. The developed model combines a 3D time domain model for the nonlinear Lamb wave propagation in delaminated samples with a spectral solution for the nonlinear air-coupled emission. A parametric study is conducted to illustrate the potential of detecting defect location, size and shape by studying the NACE acoustic radiation patterns in different orientation planes. The simulation results prove that there is a good determination potential for the defect parameters, especially when the radiated frequency matches one of the resonance frequencies of the delaminated layer, leading to a Local Defect Resonance (LDR). PMID:26208725

  1. A novel approach to synchronization of nonlinearly coupled network systems with delays

    NASA Astrophysics Data System (ADS)

    Tseng, Jui-Pin

    2016-06-01

    In this investigation, a novel approach to establishing the global synchronization of coupled network systems is presented. Under this approach, individual subsystems can be non-autonomous, and the coupling configuration is rather general. The coupling terms can be non-diffusive, nonlinear, time-dependent, asymmetric, and with time delays. With an iteration scheme, the problem of synchronization is transformed into solving a corresponding linear system of algebraic equations. Subsequently, delay-dependent and delay-independent criteria for global synchronization can be established. We implement the present approach to analyze synchronization of the FitzHugh-Nagumo systems under delayed and nonlinear sigmoidal coupling. Two examples are presented to demonstrate new dynamical scenarios, where oscillatory behavior and multistability emerge or are suppressed as the coupled neurons synchronize under the synchronization criterion. In addition, asynchrony induced by the coupling strength or coupling delay occurs while the synchronization criterion is violated.

  2. PT-symmetric dimer of coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Cuevas, Jesús; Kevrekidis, Panayotis G.; Saxena, Avadh; Khare, Avinash

    2013-09-01

    We provide a systematic analysis of a prototypical nonlinear oscillator system respecting PT symmetry i.e., one of them has gain and the other an equal and opposite amount of loss. Starting from the linear limit of the system, we extend considerations to the nonlinear case for both soft and hard cubic nonlinearities identifying symmetric and antisymmetric breather solutions, as well as symmetry-breaking variants thereof. We propose a reduction of the system to a Schrödinger-type PT-symmetric dimer, whose detailed earlier understanding can explain many of the phenomena observed herein, including the PT phase transition. Nevertheless, there are also significant parametric as well as phenomenological potential differences between the two models and we discuss where these arise and where they are most pronounced. Finally, we also provide examples of the evolution dynamics of the different states in their regimes of instability.

  3. Tunable all-optical plasmonic diode based on Fano resonance in nonlinear waveguide coupled with cavities.

    PubMed

    Fan, Cairong; Shi, Fenghua; Wu, Hongxing; Chen, Yihang

    2015-06-01

    Tunable all-optical plasmonic diode is proposed based on the Fano resonance in an asymmetric and nonlinear system, comprising metal-insulator-metal waveguides coupled with nanocavities. The spatial asymmetry of the system gives rise to the nonreciprocity of the field localizations at the nonlinear gap between the coupled cavities and to the nonreciprocal nonlinear response. Nonlinear Fano resonance, originating from the interference between the discrete cavity mode and the continuum traveling mode, is observed and effectively tuned by changing the input power. By combining the unidirectional nonlinear response with the steep dispersion of the Fano asymmetric line shape, a transmission contrast ratio up to 41.46 dB can be achieved between forward and backward transmission. Our all-optical plasmonic diode with compact structure can find important applications in integrated optical nanocircuits. PMID:26030529

  4. Time domain simulation of nonlinear response of a coupled TLP system in random seas

    SciTech Connect

    Kim, C.H.; Kim, M.H.; Liu, Y.H.; Zhao, C.T.

    1994-12-31

    This paper presents a result of an analysis of the nonlinear interaction and response of the coupled ISSC-TLP System to the random seas in the time domain. The environmental load also includes the effect of the concurrent steady winds and currents. The first- and second-order wave-exciting forces are calculated using a robust higher-order boundary element method (HOBEM), while the nonlinear tendon dynamic analysis is performed using the three-dimensional hybrid element method with the upgated Lagrangian formulation. The Morison equation is employed for the wave and current load on slender structures. The analysis is focused on the nonlinear responses due to the nonlinear environmental load and nonlinear interaction between the platform and tendons that includes the offset, setdown, large coupled surge-heave motion in the low frequency and resonant heave/pitch responses with the springing loads in the high frequency.

  5. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Chan, H. N.; Malomed, B. A.; Chow, K. W.; Ding, E.

    2016-01-01

    Rogue waves (RWs) are unexpectedly strong excitations emerging from an otherwise tranquil background. The nonlinear Schrödinger equation (NLSE), a ubiquitous model with wide applications to fluid mechanics, optics, plasmas, etc., exhibits RWs only in the regime of modulation instability (MI) of the background. For a system of multiple waveguides, the governing coupled NLSEs can produce regimes of MI and RWs, even if each component has dispersion and cubic nonlinearity of opposite signs. A similar effect is demonstrated here for a system of coupled derivative NLSEs (DNLSEs) where the special feature is the nonlinear self-steepening of narrow pulses. More precisely, these additional regimes of MI and RWs for coupled DNLSEs depend on the mismatch in group velocities between the components, and the parameters for cubic nonlinearity and self-steepening. RWs considered in this paper differ from those of the NLSEs in terms of the amplification ratio and criteria of existence. Applications to optics and plasma physics are discussed.

  6. Optimal control of the power adiabatic stroke of an optomechanical heat engine.

    PubMed

    Bathaee, M; Bahrampour, A R

    2016-08-01

    We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained. PMID:27627280

  7. Nonlinear Landau-Zener tunneling in coupled waveguide arrays

    SciTech Connect

    Khomeriki, Ramaz

    2010-07-15

    The possibility of direct observation of the nonlinear Landau-Zener tunneling effect with a device consisting of two waveguide arrays connected to a tilted reduced refractive index barrier is discussed. Numerical simulations on this realistic setup are interpreted via a simplified double-well system and different asymmetric tunneling scenarios are predicted varying just the injected beam intensity.

  8. Optomechanics: Vibrations copying optical chaos

    NASA Astrophysics Data System (ADS)

    Sciamanna, Marc

    2016-06-01

    Mechanical oscillation in a microtoroidal optical cavity transfers chaos from a pump to a probe laser beam with a different wavelength. Through stochastic resonance, the combination of noise and internal chaotic dynamics leads to amplification of optomechanically induced light self-oscillations.

  9. Non-Linear Luminescent Coupling in Series-Connected Multijunction Solar Cells

    SciTech Connect

    Steiner, M. A.; Geisz, J. F.

    2012-06-18

    The assumption of superposition or linearity of photocurrent with solar flux is widespread for calculations and measurements of solar cells. The well-known effect of luminescent coupling in multijunction solar cells has also been assumed to be linear with excess current. Here we show significant non-linearities in luminescent coupling in III-V multijunction solar cells and propose a simple model based on competition between radiative and nonradiative processes in the luminescent junction to explain these non-linearities. We demonstrate a technique for accurately measuring the junction photocurrents under a specified reference spectrum, that accounts for and quantifies luminescent coupling effects.

  10. Strong optomechanical interactions in a sliced photonic crystal nanobeam

    PubMed Central

    Leijssen, Rick; Verhagen, Ewold

    2015-01-01

    Coupling between mechanical and optical degrees of freedom is strongly enhanced by using subwavelength optical mode profiles. We realize an optomechanical system based on a sliced photonic crystal nanobeam, which combines such highly confined optical fields with a low-mass mechanical mode. Analyzing the transduction of motion and effects of radiation pressure we find the system exhibits a photon-phonon coupling rate g0 /2π ≈ 11.5 MHz, exceeding previously reported values by an order of magnitude. We show that the large optomechanical interaction enables detecting thermal motion with detection noise below that at the standard quantum limit, even in broad bandwidth devices, important for both sensor applications as well as measurement-based quantum control. PMID:26522751